

www.allitebooks.com

http://www.allitebooks.org

Web Performance in Action: Building Fast Web

Pages

by Jeremy L. Wagner

Publisher: Manning Publications

Release Date: December 2016

ISBN: 9781617293771

Topic: Web Development

Book Description

Summary

Web Performance in Action is your companion guide to making websites faster. You’ll learn

techniques that speed the delivery of your site's assets to the user, increase rendering

speed, decrease the overall footprint of your site, as well as how to build a workflow that

automates common optimization techniques.

About the Technology

Nifty features, hip design, and clever marketing are great, but your website will flop if

visitors think it’s slow. Network conditions can be unpredictable, and with today’s sites

being bigger than ever, you need to set yourself apart from the competition by focusing

on speed. Achieving a high level of performance is a combination of front-end architecture

choices, best practices, and some clever sleight-of-hand. This book will demystify all these

topics for you.

About the Book

Web Performance in Action is your guide to making fast websites. Packed with “Aha!” moments

and critical details, this book teaches you how to create performant websites the right

way. You’ll master optimal rendering techniques, tips for decreasing your site’s

footprint, and technologies like HTTP/2 that take your website’s speed from merely adequate

to seriously fast. Along the way, you’ll learn how to create an automated workflow to

accomplish common optimization tasks and speed up development in the process.

What’s Inside

 Foolproof performance-boosting techniques

www.allitebooks.com

https://www.safaribooksonline.com/search/?query=author%3A%22Jeremy%20L.%20Wagner%22&sort=relevance&highlight=true
https://www.safaribooksonline.com/library/publisher/manning-publications/
https://www.safaribooksonline.com/topics/web-development
http://www.allitebooks.org

 Optimizing images and fonts

 HTTP/2 and how it affects your optimization workflow

About the Reader

This book assumes that you’re familiar with HTML, CSS, and JavaScript. Many examples make

use of Git and Node.js.

About the Author

Jeremy Wagner is a professional front-end web developer with over ten years of experience.

www.allitebooks.com

http://www.allitebooks.org

Copyright

For online information and ordering of this and other Manning books, please visit

www.manning.com. The publisher offers discounts on this book when ordered in quantity. For

more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,

in any form or by means electronic, mechanical, photocopying, or otherwise, without prior

written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in the book, and Manning

Publications was aware of a trademark claim, the designations have been printed in initial

caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy

to have the books we publish printed on acid-free paper, and we exert our best efforts to

that end. Recognizing also our responsibility to conserve the resources of our planet,

Manning books are printed on paper that is at least 15 percent recycled and processed without

the use of elemental chlorine.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Susanna Kline

Review editor: Ivan Martinović

Technical development editor: Nick Watts

Project editor: Kevin Sullivan

Copyeditor: Sharon Wilkey

Proofreader: Elizabeth Martin

Technical proofreader: David Fombella Pombal

Typesetter: Gordan Salinovic

www.allitebooks.com

http://www.manning.com/
http://www.allitebooks.org

Cover designer: Marija Tudor

ISBN 9781617293771

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.allitebooks.com

http://www.allitebooks.org

Brief Table of Contents

Copyright

Brief Table of Contents

Table of Contents

Foreword

Preface

Acknowledgments

About this Book

About the Author

About the Cover Illustration

Chapter 1. Understanding web performance

Chapter 2. Using assessment tools

Chapter 3. Optimizing CSS

Chapter 4. Understanding critical CSS

Chapter 5. Making images responsive

Chapter 6. Going further with images

Chapter 7. Faster fonts

Chapter 8. Keeping JavaScript lean and fast

Chapter 9. Boosting performance with service workers

Chapter 10. Fine-tuning asset delivery

Chapter 11. Looking to the future with HTTP/2

Chapter 12. Automating optimization with gulp

Appendix A. Tools reference

www.allitebooks.com

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_001.html#copyrightp1g
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_002.html#btoc
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_003.html#toc
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_004.html#pref01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_005.html#pref02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_006.html#pref03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_007.html#pref04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_008.html#pref05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_009.html#pref06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01
http://www.allitebooks.org

Appendix B. Native equivalents of common jQuery functionality

Index

List of Figures

List of Tables

List of Listings

www.allitebooks.com

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndex
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_025.html#lof
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_026.html#lot
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_027.html#loe
http://www.allitebooks.org

Table of Contents

Copyright

Brief Table of Contents

Table of Contents

Foreword

Preface

Acknowledgments

About this Book

About the Author

About the Cover Illustration

Chapter 1. Understanding web performance

1.1. Understanding web performance

1.1.1. Web performance and the user experience

1.1.2. How web browsers talk to web servers

1.1.3. How web pages load

1.2. Getting up and running

1.2.1. Installing Node.js and Git

1.2.2. Downloading and running the client’s website

1.2.3. Simulating a network connection

1.3. Auditing the client’s website

1.4. Optimizing the client’s website

1.4.1. Minifying assets

1.4.2. Using server compression

www.allitebooks.com

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_001.html#copyrightp1g
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_002.html#btoc
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_003.html#toc
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_004.html#pref01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_005.html#pref02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_006.html#pref03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_007.html#pref04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_008.html#pref05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_009.html#pref06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec8
http://www.allitebooks.org

1.4.3. Optimizing images

1.5. Performing the final weigh-in

1.6. Summary

Chapter 2. Using assessment tools

2.1. Evaluating with Google PageSpeed Insights

2.1.1. Appraising website performance

2.1.2. Using Google Analytics for bulk reporting

2.2. Using browser-based assessment tools

2.3. Inspecting network requests

2.3.1. Viewing timing information

2.3.2. Viewing HTTP request and response headers

2.4. Rendering performance-auditing tools

2.4.1. Understanding how browsers render web pages

2.4.2. Using Google Chrome’s Timeline tool

2.4.3. Identifying problem events: thy enemy is jank

2.4.4. Marking points in the timeline with JavaScript

2.4.5. Rendering profilers in other browsers

2.5. Benchmarking JavaScript in Chrome

2.6. Simulating and monitoring devices

2.6.1. Simulating devices in the desktop web browser

2.6.2. Debugging websites remotely on Android devices

2.6.3. Debugging websites remotely on iOS devices

2.7. Creating custom network throttling profiles

2.8. Summary

www.allitebooks.com

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01lev1sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev2sec12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02lev1sec8
http://www.allitebooks.org

Chapter 3. Optimizing CSS

3.1. Don’t talk much and stay DRY

3.1.1. Write shorthand CSS

3.1.2. Use shallow CSS selectors

3.1.3. Culling shallow selectors

3.1.4. LESS is more and taming SASS

3.1.5. Don’t repeat yourself

3.1.6. Going DRY

3.1.7. Finding redundancies with csscss

3.1.8. Segment CSS

3.1.9. Customize framework downloads

3.2. Mobile-first is user-first

3.2.1. Mobile-first vs. desktop-first

3.2.2. Mobilegeddon

3.2.3. Using Google’s mobile-friendly guidelines

3.2.4. Verifying a site’s mobile-friendliness

3.3. Performance-tuning your CSS

3.3.1. Avoiding the @import declaration

3.3.2. @import serializes requests

3.3.3. <link> parallelizes requests

3.3.4. Placing CSS in the <head>

3.3.5. Preventing the Flash of Unstyled Content

3.3.6. Increasing rendering speed

3.3.7. Using faster selectors

www.allitebooks.com

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec20
http://www.allitebooks.org

3.3.8. Constructing and running the benchmark

3.3.9. Examining the benchmark results

3.3.10. Using flexbox where possible

3.3.11. Comparing box model and flexbox styles

3.3.12. Examining the benchmark results

3.4. Working with CSS transitions

3.4.1. Using CSS transitions

3.4.2. Observing CSS transition performance

3.4.3. Optimizing transitions with the will-change property

3.5. Summary

Chapter 4. Understanding critical CSS

4.1. What does critical CSS solve?

4.1.1. Understanding the fold

4.1.2. Understanding render blocking

4.2. How does critical CSS work?

4.2.1. Loading above-the-fold styles

4.2.2. Loading below-the-fold styles

4.3. Implementing critical CSS

4.3.1. Getting the recipe website up and running

4.3.2. Identifying and separating above-the-fold CSS

4.3.3. Loading below-the-fold CSS

4.4. Weighing the benefits

4.5. Making maintainability easier

4.6. Considerations for multipage websites

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec24
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec25
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec26
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec27
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev2sec28
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec6

4.7. Summary

Chapter 5. Making images responsive

5.1. Why think about image delivery?

5.2. Understanding image types and their applications

5.2.1. Working with raster images

5.2.2. Working with SVG images

5.2.3. Knowing what image formats to use

5.3. Image delivery in CSS

5.3.1. Targeting displays in CSS by using media queries

5.3.2. Targeting high DPI displays with media queries

5.3.3. Using SVG background images in CSS

5.4. Image delivery in HTML

5.4.1. The universal max-width rule for images

5.4.2. Using srcset

5.4.3. Using the <picture> element

5.4.4. Polyfilling support with Picturefill

5.4.5. Using SVG in HTML

5.5. Summary

Chapter 6. Going further with images

6.1. Using image sprites

6.1.1. Getting up and running

6.1.2. Generating the image sprite

6.1.3. Using the generated sprite

6.1.4. Considerations for image sprites

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev1sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec4

6.1.5. Falling back to raster image sprites with Grumpicon

6.2. Reducing images

6.2.1. Reducing raster images with imagemin

6.2.2. Optimizing SVG images

6.3. Encoding images with WebP

6.3.1. Encoding lossy WebP images with imagemin

6.3.2. Encoding lossless WebP Images with imagemin

6.3.3. Supporting browsers that don’t support WebP

6.4. Lazy loading images

6.4.1. Configuring the markup

6.4.2. Writing the lazy loader

6.4.3. Accommodating users without JavaScript

6.5. Summary

Chapter 7. Faster fonts

7.1. Using fonts wisely

7.1.1. Selecting fonts and font variants

7.1.2. Rolling your own @font-face cascade

7.2. Compressing EOT and TTF font formats

7.3. Subsetting fonts

7.3.1. Manually subsetting fonts

7.3.2. Delivering font subsets by using the unicode-range property

7.4. Optimizing the loading of fonts

7.4.1. Understanding font-loading problems

7.4.2. Using the CSS font-display property

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec6

7.4.3. Using the font-loading API

7.4.4. Using Font Face Observer as a fallback

7.5. Summary

Chapter 8. Keeping JavaScript lean and fast

8.1. Affecting script-loading behavior

8.1.1. Placing the <script> element properly

8.1.2. Working with asynchronous script loading

8.1.3. Using async

8.1.4. Using async reliably with multiple scripts

8.2. Using leaner jQuery-compatible alternatives

8.2.1. Comparing the alternatives

8.2.2. Exploring the contenders

8.2.3. Comparing file size

8.2.4. Comparing performance

8.2.5. Implementing an alternative

8.2.6. Using Zepto

8.2.7. Understanding caveats on using Shoestring or Sprint

8.3. Getting by without jQuery

8.3.1. Checking for the DOM to be ready

8.3.2. Selecting elements and binding events

8.3.3. Using classList to manipulate classes on elements

8.3.4. Reading and modifying element attributes and content

8.3.5. Making AJAX requests with the Fetch API

8.3.6. Using the Fetch API

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec17

8.3.7. Polyfilling the Fetch API

8.4. Animating with requestAnimationFrame

8.4.1. requestAnimationFrame at a glance

8.4.2. Timer function-driven animations and requestAnimationFrame

8.4.3. Comparing performance

8.4.4. Implementing requestAnimationFrame

8.4.5. Dropping in Velocity.js

8.5. Summary

Chapter 9. Boosting performance with service workers

9.1. What are service workers?

9.2. Writing your first service worker

9.2.1. Installing the service worker

9.2.2. Registering the service worker

9.2.3. Intercepting and caching network requests

9.2.4. Measuring the performance benefits

9.2.5. Tweaking network request interception behavior

9.3. Updating your service worker

9.3.1. Versioning your files

9.3.2. Cleaning up old caches

9.4. Summary

Chapter 10. Fine-tuning asset delivery

10.1. Compressing assets

10.1.1. Following compression guidelines

10.1.2. Using Brotli compression

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev2sec23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec2

10.2. Caching assets

10.2.1. Understanding caching

10.2.2. Crafting an optimal caching strategy

10.2.3. Invalidating cached assets

10.3. Using CDN assets

10.3.1. Using CDN-hosted assets

10.3.2. What to do if a CDN fails

10.3.3. Verifying CDN assets with Subresource Integrity

10.4. Using resource hints

10.4.1. Using the preconnect resource hint

10.4.2. Using the prefetch and preload resource hints

10.4.3. Using the prerender resource hint

10.5. Summary

Chapter 11. Looking to the future with HTTP/2

11.1. Understanding why we need HTTP/2

11.1.1. Understanding the problem with HTTP/1

11.1.2. Solving common HTTP/1 problems via HTTP/2

11.1.3. Writing a simple HTTP/2 server in Node

11.1.4. Observing the benefits

11.2. Exploring how optimization techniques change for HTTP/2

11.2.1. Asset granularity and caching effectiveness

11.2.2. Identifying performance antipatterns for HTTP/2

11.3. Sending assets preemptively with Server Push

11.3.1. Understanding Server Push and how it works

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec7

11.3.2. Using Server Push

11.3.3. Measuring Server Push performance

11.4. Optimizing for both HTTP/1 and HTTP/2

11.4.1. How HTTP/2 servers deal with HTTP/2-incapable browsers

11.4.2. Segmenting your users

11.4.3. Serving assets according to browser capability

11.5. Summary

Chapter 12. Automating optimization with gulp

12.1. Introducing gulp

12.1.1. Why should I use a build system?

12.1.2. How gulp works

12.2. Laying down the foundations

12.2.1. Structuring your project’s folders

12.2.2. Installing gulp and its plugins

12.3. Writing gulp tasks

12.3.1. The anatomy of a gulp task

12.3.2. Writing the core tasks

12.3.3. Writing the utility tasks

12.4. Going a little further with gulp plugins

12.5. Summary

Appendix A. Tools reference

A.1. Web-based tools

A.2. Node.js-based tools

A.2.1. Web servers and related middleware

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev2sec12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev2sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev2sec1

A.2.2. Image processors and optimizers

A.2.3. Minifiers/reducers

A.2.4. Font conversion tools

A.2.5. gulp and gulp plugins

A.2.6. PostCSS and PostCSS plugins

A.3. Other tools

Appendix B. Native equivalents of common jQuery functionality

B.1. Selecting elements

B.2. Checking DOM readiness

B.3. Binding events

B.3.1. Simple event binding

B.3.2. Triggering events programmatically

B.3.3. Targeting elements that don’t exist yet

B.3.4. Removing event bindings

B.4. Iterating over a set of elements

B.5. Manipulating classes on elements

B.6. Accessing and modifying styles

B.7. Getting and setting attributes

B.8. Getting and setting element contents

B.9. Replacing elements

B.10. Hiding and showing elements

B.11. Removing elements

B.12. Going further

Index

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev2sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev2sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev2sec2
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev2sec3
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev2sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec4
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec5
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec7
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec8
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec9
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02lev1sec12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndex

List of Figures

List of Tables

List of Listings

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_025.html#lof
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_026.html#lot
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_027.html#loe

Foreword

“May you live in interesting times,” goes the old half-curse. And I don’t know about

you, but it feels like the web is perpetually stuck in interesting times. We’re designing

for an ever-expanding number of mobile devices, each one more powerful than most laptops

I’ve owned throughout my career. But we’re also designing for a web that travels over

the aging infrastructure of developed economies, as well as to cheaper, low-powered mobile

devices in younger, emerging markets.

In other words, the web is more broadly accessed today than ever before—but over a network

that’s far more fragile than we might like to think. Once a user requests one of our web

pages, any number of things can fail. Maybe a connection drops, or a network’s latency

is too high for an asset to load. Or maybe the users exceeded their data allotment for the

month.

We’re building digital experiences—some responsive, some not—that are more beautiful

than anything produced at any other point in the web’s history. But we need to start

designing for performance as well. We need to create sites and services optimized for the
fragility of the network, as well as the widths of our users’ screens.

Thankfully, you’ve begun reading Web Performance in Action, a book that can help you do
just that. Jeremy Wagner has written an invaluable, accessible reference for the modern

web developer, one that demystifies even the most arcane-sounding acronyms and frames even

the most arcane-seeming web optimization tricks in approachable, plain language. In

interesting times like these, Jeremy’s guide is indispensable: As you travel through these

pages, you’ll gain the skills to ensure your sites are as beautiful as they are fast, nimble,

and bandwidth-friendly.

Ethan Marcotte

Designer, Ethanmarcotte.com

Author of Responsive Web Design

Preface

Well before I ever entertained the notion of writing a book, the idea that websites ought

to be fast was a high priority in all my projects. In my humble opinion, slow websites are

not a mere inconvenience. They are a critical sort of user experience problem. Until a

website loads, no user experience exists. The longer it takes for a site to load, the more

this absence is felt by the user.

When I proposed this book to Manning in 2015, I was hardly the first to write on the topic

of web performance. Many authors before me had written in this space, and I knew that I

would be standing on the shoulders of giants. My goal with Web Performance in Action was
to provide a modern guide for today’s web developers that would give them the knowledge

they need to make their websites faster than ever. I think this book meets that goal.

When web performance is discussed, it’s often tied to financial concepts. The idea that

a poorly performing website can affect sales or ad revenues is hardly new. What we don’t

hear enough about, however, is how such a website can be potentially costly for the user

on a restricted data plan. Or how slow websites are an impassible sort of barrier for people

mired in an antiquated internet infrastructure. So much of the world has such a difficult

time accessing the web. While infrastructure is slowly improving, we as developers can move

the needle for users by developing sites with performance in mind.

I wrote Web Performance in Action to help you meet your goals, and the folks at Manning
participated in refining it. In an age where the web is becoming increasingly complex, the

time has never been more appropriate to tackle this problem. I think this book will help

you get to where you want to be.

Acknowledgments

It takes a ton of people, beyond the author, to put a book together. The people at Manning

played a huge role in getting this book from a mere proposal to what you’re reading right

now. Brace yourself, because this section is brimming with gratitude.

I’ll start by thanking the first person from Manning I talked to, an acquisitions editor

named Frank Pohlmann. The proposal phase of this book took quite some time, and Frank coached

me on what to do and what not to do, and most importantly, let me know exactly what I was

getting into. Thank you, Frank, for guiding me in the early part of this process.

As this is my first book, I’d like to extend my gratitude to Manning’s publisher Marjan

Bace, who saw fit to grant me this opportunity. Green-lighting any book proposal is a risk,

and that’s especially true when the proposal comes from someone who hasn’t made a name

for himself prior to that point, so it took some courage to take that risk. Thank you, Marjan.

Behind every author is an editor pushing them to write the best manuscript they can. Susanna

Kline was the development editor for this book, and here I offer my sincerest thanks and

gratitude for her hard work and indispensable guidance on this project. Susanna not only

played the role of an editor, she was also a great coach who understood the vulnerability

I felt in this vast and new undertaking, especially when there was so much uncertainty in

the early stages of development. Her guidance in this project was essential to its success.

Thank you, Susanna, for all your help.

Every technical book, of course, needs a technical editor. Nick Watts did a superb job in

this role. His informed perspective, valuable input, and willingness to challenge my

assertions and points of view certainly contributed positively to the quality of the final

text. Thank you, Nick.

This book was also reviewed by many people at various stages in its development, including

Alexey Galiullin, Amit Lamba, Birnou Sebarte, Daniel Vasquez, John Huffman, Justin Calleja,

Kevin Liao, Matt Harting, Michael Martinsson, Michael Sperber, Narayanan Jayaratchagan,

Noreen Dertinger, Omer Faruk Celebi, Simone Cafiero, and William Ross. Their feedback gave

valuable insight into what public perception of the book could be. I would like to thank

them for their input and suggestions, which made this book better than what I could have

achieved on my own.

The final polish of a book is also very important. I’d like to thank David Fombella Pombal

for his thorough and excellent technical proofing of the manuscript, which identified issues

I would have otherwise missed. Sharon Wilkey meticulously combed through and copyedited

the final manuscript, which further refined it, for which I’m grateful. Elizabeth Martin

filed off the rough edges and reined in some of my excesses with keen precision. On top

of all this, Kevin Sullivan did a great job of coordinating the preproduction and production

phases. Thank you so much, guys. You did great work in that last, critical mile of the

project.

I also wish to extend my gratitude to Ethan Marcotte, a person whose work has irrevocably

changed how we all develop for the web. When I contacted Ethan to see if he would be interested

in writing the foreword to Web Performance in Action, I was pleasantly surprised that he
had time to reply, let alone read the manuscript. A foreword is not a matter to be taken

lightly. It’s an endorsement of a book’s quality. To know that Ethan endorses the material

in this book is one of the proudest moments of my professional career. Thank you, Ethan.

I’d like to thank my father Luke and my mother Georgia for supporting me in all that I’ve

done and attempted to do, even the harebrained stuff. I’d also like to thank my brother

Lucas who has always been an incredible example to me, and led the way in showing what’s

possible if you’re willing to work hard for something. Thank you so much.

Lastly, I owe gratitude and thanks to my wife Alexandria. Her unwavering support and

selflessness has been a source of strength for me throughout this endeavor. Her gentle

encouragement and belief in my potential has helped more than she knows.

To anyone else I may have overlooked, know that you were a part of making this book what

it is. For that, I thank you.

About this Book

The purpose of Web Performance in Action is to teach you how to create faster websites,
and through the course of this book, I’ll help you get here. The techniques you’ll learn

as you read should also come in handy for improving performance on existing websites.

Who should read this book

This book focuses heavily (though not exclusively) on improving website performance on the

client side. This means that it’s targeted toward front-end developers who have a good

command of HTML, CSS, and JavaScript. You, the reader, should be comfortable working with

these technologies.

This book occasionally strays into the server side where appropriate. For instance, some

server-side code examples are in PHP. These examples are intended to be illustrative of

a concept, and are often peripheral to the task at hand. Chapter 10 covers server compression,

including the new Brotli compression algorithm, which fits into the server-side category.

Chapter 11 explains HTTP/2, so having an interest in how this new protocol can affect how

you optimize your site can be helpful.

You should also be somewhat comfortable on the command line, but even if you’re not, you’ll

still be able to follow along in the examples provided. Now, let’s talk about how this

book is structured.

Roadmap

Unlike most other Manning titles, this book is not divided into parts, but it does follow

a logical flow of sorts. Chapter 1 is an introduction to the fundamentals of web

performance—bedrock stuff, such as minification, server compression, and so forth. If

you’re already a performance-minded developer, this chapter will feel familiar to you.

It’s intended for the front-end developer who’s new to the concept of web performance.

Chapter 2 covers performance assessment tools, both online and in the browser, with a focus

on using Chrome’s developer tools.

From there, we’ll venture into the realm of optimizing CSS. Chapter 3 is a grab bag of

topics and examples of how you can make your CSS leaner, and use native CSS features that

can help increase the responsiveness of your website to user input. Chapter 4 is about

critical CSS, a technique that can give your site’s rendering performance a real shot in

the arm.

Then, we’ll tackle image optimization. Chapter 5 focuses on different image types and how

to use them, as well as how to deliver them optimally to different devices both in CSS and

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05

inline in HTML. Chapter 6 covers how to reduce the file size of images, automating the

creation of image sprites, Google’s WebP image format, and how to lazy load images by

writing a custom lazy loading script.

After all of that, we’ll turn our focus away from images toward fonts. Chapter 7 covers

optimizing fonts. This ranges from creating an optimal @font-face cascade to font subsetting,

using the unicode-range CSS property, compressing legacy font formats on the server, and

how to control the loading and display of fonts with CSS and JavaScript.

Chapters 8 and 9 focus on JavaScript. Chapter 8 speaks more to the need for minimalism in

JavaScript by advocating the use of in-browser features, rather than relying on jQuery and

other libraries. For those who can’t abandon jQuery, I talk about jQuery-compatible

alternatives that offer a subset of what jQuery does, but with less overhead. This chapter

also talks about proper placement of the <script> tag, as well as how to use the async

attribute, and animating with the requestAnimationFrame method. Chapter 9 ventures into

the territory of JavaScript service workers. In this chapter, you’ll learn how you can

serve content to users who are offline, as well as how you can improve the performance of

pages for online users with this technology.

Chapter 10 is yet another grab bag of topics. It covers the impact of poorly configured

server compression, the new Brotli compression algorithm, resource hints, configuring

caching policies, and the benefits of using CDN-hosted resources.

Chapter 11 covers HTTP/2, the performance problems that it solves, how optimization

practices differ between it and HTTP/1, Server Push, and a proof of concept of how you can

adapt the delivery of your website’s content to accommodate both versions of the protocol.

Chapter 12 takes a good chunk of what you’ve learned and automates it with the gulp task

runner. In this chapter, you’ll learn how to automate various aspects of optimizing your

website’s performance, which will help you optimize your sites as you code them, saving

you valuable time.

There are two appendixes. Appendix A is a tools reference. Appendix B highlights common

jQuery functions and shows you how to accomplish the same tasks by native means.

Tools used in this book

While following examples in this book, you’ll have open your favorite text editor and a

command-line window. Beyond that, two tools are used consistently throughout, so you’ll

want to have them installed.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#app01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02

Node.js

Node.js, sometimes referred to as Node, is a JavaScript runtime that allows you to use

JavaScript outside of the browser. It can be used for all kinds of crazy stuff that, some

years ago, no one would have thought that JavaScript would be used for. I’m talking about

task runners, image processors, and even web servers. All these things are installed using

the Node Package Manager (npm).

In your optimization efforts throughout the book, you’ll use Node for all of that. You’ll

often use it to run local web servers using the Express framework for examples that we’ll

work through together. In chapter 11, you’ll even use it to run a local HTTP/2 server.

You’ll use Node in chapter 6 to optimize images in bulk, and in chapter 12, you’ll use

it to automate common optimization tasks with gulp. It’s used in nearly every chapter for

one kind of function or another.

If you’re serious about working your way through this book, you’ll need to have Node

installed. If you don’t have it set up, go to https://nodejs.org and head to the downloads

section. If you’re feeling trepidation because you don’t know Node, don’t worry!

Everything is explained, and if you follow the directions, you should be fine. But, if you

feel that you’d benefit from a deep dive into how Node works later on, check out Node.js
in Action, another title from Manning (https://www.manning.com/books/node-js-in-action).
Just know that a deep knowledge of Node is not necessary to navigate through this text.

Git

Git is a version control system used for keeping track of changes in software applications.

There’s a good chance you’ve used it, but if not, you’ll get to use it in this book.

Git is used to download code for examples from this book’s collection of GitHub repositories

hosted at https://github.com/webopt. You can download Git at https://git-scm.com.

Why use Git instead of downloading zip files of code examples? For one, using a version

control system like Git on the command line makes it easier to grab things and go. The biggest

advantage, though, is that you’ll be able to easily skip ahead to finished code examples

if you get stuck or just want to see the final result.

If you’ve never used Git, don’t sweat it. All the instructions for using it are delineated

clearly, and you’ll be able to follow along. If you prefer not to use Git, you can go to

https://github.com/webopt and download zip files from each repository.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12
https://nodejs.org/
https://www.manning.com/books/node-js-in-action
https://github.com/webopt
https://git-scm.com/
https://github.com/webopt

Other tools

Most of the tools you’ll use in this book will be installed by Node Package Manager, and

are thus dependent on Node. There are two instances, however, where you’ll get an

opportunity to use tools beyond Node.

In chapter 3, there’s an example where you’ll apply the DRY (don’t repeat yourself)

principle to CSS, which entails combining redundant rules under multiple selectors. A

Ruby-based tool named csscss is used in this example to detect redundancies. If you have

a Mac or you’re running any other UNIX-like operating system, this may already be available

for you. If you’re running Windows, you’ll have to download Ruby at

http://rubyinstaller.org.

In chapter 7, there’s an example where you’ll subset fonts to make them smaller. You’ll

use a Python-based tool called pyftsubset. Like Ruby, there’s a good chance that on

UNIX-like systems, Python will already be available. If you use Windows, you’ll want to

head over to www.python.org and grab the installer.

Code conventions

Code in this book is written in a fashion that most developers will be comfortable with.

All source code in the book is in a fixed-width font like this, which sets it off from the

surrounding text. In code snippets throughout the book, relevant portions are annotated

for clarity. Changed portions of an existing snippet are typically set in bold font like

this. Regarding the code you download from GitHub, indentations are done with tabs. When

it comes to how many spaces you want a tab character to represent, that’s up to you. When

I wrote the examples, I went with four spaces. The code snippets in the book follow that

convention.

Source code for all working examples is available on the publisher’s website

(www.manning.com/books/web-performance-in-action) as well as GitHub

(https://github.com/webopt).

Author Online

Purchase of Web Performance in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical questions,

and receive help from the author and from other users. To access the forum and subscribe

to it, point your web browser to www.manning.com/books/web-performance-in-action. This

page provides information on how to get on the forum once you’re registered, what kind

of help is available, and the rules of conduct on the forum.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
http://rubyinstaller.org/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07
http://www.python.org/
http://www.manning.com/books/web-performance-in-action
https://github.com/webopt
http://www.manning.com/books/web-performance-in-action

Manning’s commitment to our readers is to provide a venue where a meaningful dialog between

individual readers and between readers and the author can take place. It’s not a commitment

to any specific amount of participation on the part of the author, whose contribution to

the forum remains voluntary (and unpaid). We suggest you try asking the author challenging

questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessible from

the publisher’s website as long as the book is in print.

About the Author

Jeremy Wagner is a professional front-end web developer with over ten years of experience

in various agencies and large companies. In addition to his writings on web performance,

he also speaks at conferences on a variety of web development–related topics. He can be

found on the web at https://jeremywagner.me or @malchata on Twitter.

https://jeremywagner.me/

About the Cover Illustration

The figure on the cover of Web Performance in Action is captioned “Man from Bednja, near

Zagreb, Croatia.” The illustration is taken from a reproduction of an album of Croatian

traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the

Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a

helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core

of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace

from around AD 304. The book includes finely colored illustrations of figures from different

regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by region,

so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of different

continents, let alone of different hamlets or towns separated by only a few miles. Perhaps

we have traded cultural diversity for a more varied personal life—certainly for a more

varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business with book

covers based on the rich diversity of regional life of two centuries ago, brought back to

life by illustrations from old books and collections like this one.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1. Understanding web performance

This chapter covers

 Why web performance matters

 How web browsers talk to web servers

 How poorly performing websites can be detrimental to the user experience

 How to use basic web optimization techniques

You’ve probably heard about performance as it relates to websites, but what is it and why

should you and I care about it? Web performance refers primarily to the speed at which a
website loads. This is important because shorter load times improve the user experience

for your site on all internet connections. Because this improves the user experience, the

user is more likely to see what your website has to offer. This helps you achieve goals

as simple as getting more users to visit and read your website’s content, or as lofty as

getting users to take action. Slow websites test users’ patience and might result in them

abandoning your website before they ever see what it has to offer.

If your website is a major source of revenue, it literally pays to take stock of your site’s

performance. If you have an e-commerce site or a content portal that depends on advertising

revenue, a slow site affects your bottom line.

In this chapter, you’ll learn the importance of web performance, basic

performance-boosting techniques, and ways to apply them in order to optimize a client’s

single-page website.

1.1. Understanding web performance

You may be a developer who has heard of web performance, but you don’t know a lot about

it. Maybe you’ve used a few techniques for quick wins, or you may already be well versed

in the subject, and picked up this book to discover new techniques you can use to further

tune your own websites.

Don’t worry! Whether you have little experience in this arena or fancy yourself somewhat

of an expert on the subject, the goal of this book is to help you better understand web

performance, the methods used to improve the performance of a website, and the ways to apply

these methods to your own website.

Before we can talk about the specifics of web performance, however, it’s important to

understand the problem we’re trying to solve.

1.1.1. Web performance and the user experience

High-performing websites improve the user experience. By making sites faster, you improve

the user experience by speeding up the delivery of content. Moreover, when your site is

faster, users are more likely to care about what’s on it. Not one user cares about the

content of a site that doesn’t load quickly.

Slow websites also have a measurable effect on user engagement. On e-commerce sites in

particular, nearly half of users expect a website to load within 2 seconds. And 40% of users

will exit if it takes more than 3 seconds to load. A 1-second delay in page response can

mean a 7% reduction in users taking action (https://blog.kissmetrics.com/loading-time).

This means not only a loss of traffic, but a loss of revenue.

In addition, the performance of your website impacts not only your users, but also your

website’s position in Google search results. As early as 2010, Google indicated that page

speed is a factor in ranking websites in its search results. Though the relevance of your

site’s content is still the most important factor in your site’s search ranking, page

speed does play a role.

Let’s take the search rankings for Legendary Tones, a relatively popular blog about guitars

and guitar accessories that receives about 20,000 unique visitors a month. This site

receives much of its traffic from organic search results, and has well-written, relevant

content. Using Google Analytics, you can get data on the average speed of all pages and

correlate them to their average rankings. Figure 1.1 shows the graphed findings for a month

in 2015.

https://blog.kissmetrics.com/loading-time
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig01

Figure 1.1. The average rankings of all pages on the Legendary Tones website according

to its page download time by Google. Lower values are better.

Search rankings remain stable, but when crawl times start straying beyond a second, the

ranking slips. It pays to take performance seriously. If you’re running a content-driven

site such as a blog, your organic search rankings are the greatest source of traffic you

have. Reducing your website’s load time is one part of a formula for success.

Now that you know why performance is important, we can begin to talk about how web servers

communicate and how this process can lend itself to making websites slower.

1.1.2. How web browsers talk to web servers

To know why web optimization is necessary, you need to know where the problem lies, and

that’s in the basic nature of the way web browsers and web servers communicate. Figure

1.2 illustrates an overview of this concept.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig02

Figure 1.2. A user’s request for example.com. The user sends the request for the web

page via a browser and then must wait for the server to gather its response and send it.

After the server sends the response, the user receives the web page in the browser.

When it’s said that web performance focuses on making websites load faster, the primary

focus is on reducing load time. The most simple interpretation of load time is the time
between the instant a user requests a website and the instant it appears on the user’s

screen. The mechanism driving this is the time it takes for the server’s response to reach

the user after the user requests content.

Think of this process as being similar to walking into a coffee shop and asking for a cup

of dark roast. After a bit of a wait, you get a cup of coffee. At its most basic level,

talking with a web server isn’t much different: you request something and eventually

receive what you requested.

When a browser fetches a web page, it talks to a server in a language called Hypertext
Transfer Protocol, commonly known as HTTP. The browser makes an HTTP request, and the web
server replies with an HTTP response, which consists of a status code and the requested
content.

In figure 1.3, you see a request being made to example.com (an actual website, believe it

or not). The verb GET tells the server to locate /index.html. Because a few versions of

HTTP are in use, the server wants to know which version of the protocol is being referenced

(which in this case is HTTP/1.1). In the last step, the request is clarified with the host

of the resource.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig03

Figure 1.3. The anatomy of an HTTP request to example.com.

After making the request, you receive a response code of 200 OK, which assures you that

the resource you’ve requested exists, along with a response containing the contents of

/index.html. The content of /index.html is then downloaded and interpreted by the web

browser.

All of these steps incur what is called latency, the amount of time spent waiting for a
request to reach the web server, the amount of time for the web server to collect and send

its response, and the amount of time for the web browser to download the response. One of

the primary aims of improving performance is to reduce latency, the amount of time it takes

for a response to arrive in full. When latency occurs across a single request as in the

example of example.com, it’s trivial. But loading practically any website involves more

than a single request for content. As these requests increase in volume, the user experience

becomes increasingly vulnerable to slower load times.

In communication between HTTP/1 servers and browsers, a phenomenon known as head-of-line
blocking can occur. This occurs because the browser limits the number of requests it will
make at a single time (typically, six). When one or more of these requests are processing

and others have finished, new requests for content are blocked until the remaining request

has been fulfilled. This behavior increases page-load time.

HTTP/2, a new version of HTTP, largely solves the head-of-line blocking problem and enjoys

wide support among browsers. The responsibility is on servers to implement the protocol,

however. As of July 2016, only approximately 8.5% of all web servers are using HTTP/2

(http://w3techs.com/technologies/details/ce-http2/all/all). Because HTTP/2 has the

ability to fall back to HTTP/1 for clients that don’t support it, clients that understand

only HTTP/1 are still susceptible to the problems of the older protocol. Moreover, any

browser communicating with an HTTP/1 server will encounter the same issues, regardless of

its ability to support HTTP/2.

Because we live in a complex world, we need to be able to accommodate both versions of the

protocol for the time being. Going forward, we’ll discuss ways to optimize sites for HTTP/1,

but also call out practices that may be counterintuitive on HTTP/2. To learn more about

http://w3techs.com/technologies/details/ce-http2/all/all

HTTP/2, as well as how to conditionally implement the best workflows for each version of

the protocol, check out chapter 11.

The next section covers how websites load content and how this behavior can lend itself

to performance problems with websites.

1.1.3. How web pages load

In a boring world, all websites would be like example.com: one page with no images or

JavaScript, and with minimal styling. But in reality, websites are often more complex than

a single HTML file. Websites are an assortment of visual media that provides accompaniments

to content, style sheets that apply design to bland markup, and JavaScript that turns static

pages into applications capable of complex behaviors. It sounds neat, but these pieces come

at a cost. Figure 1.4 shows a user’s request to get index.html from a web server.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig04

Figure 1.4. Steps to get index.html from a web server

After the browser downloads index.html, it discovers a <link> tag to a style sheet, a couple

of <script> tags linking to JavaScript files, and an tag referring to an image. When

the browser discovers these references to other files, it makes new HTTP requests on the

user’s behalf to retrieve them. What started off as one request for a web page has now

turned into five requests. Although five requests aren’t much, a typical website can easily

have ten times that many, or a complex one could have even a hundred or so. As these requests

increase, so too does the amount of data downloaded. As requests and the data accompanying

them increase, so does the amount of time it takes a page to load.

Therein lies the challenge of enhancing website performance: balancing the requirements

of modern websites with the importance of serving them as fast as possible. You need to

know performance-enhancement techniques so you can keep complex web experiences from

encroaching on the most valuable part of the user experience: the ability to access content.

1.2. Getting up and running

Performance problems often signify issues in front end architecture. Although some issues

can originate from a poorly configured application back end, those issues are specific to
those application platforms (for example, PHP or .NET) and are admittedly outside the scope

of this book. In this section, you’ll investigate how to fix common performance problems

through an interactive exercise that enhances the performance of a client’s single-page

website.

This client, Coyle Appliance Repair, is an appliance repair company from the Upper Midwest.

The owners have approached you and asked whether you can make their site faster. You’ll

help them out by employing techniques that will decrease the load time of the website by

70% by the end of this chapter.

In this section, you’ll get the client’s website running on your computer. To do this,

you’ll use Node.js and Git. You’ll also use Google Chrome to simulate a network connection

to a remote server so that you can measure the results of your work in a meaningful way.

1.2.1. Installing Node.js and Git

Node.js (informally called Node) is a JavaScript runtime that allows JavaScript to be used
outside the browser. It can be used for numerous things, but in this case you’ll use a

small Node program that runs as a local web server for running the client’s website. You’ll

also use a couple of Node modules to achieve some optimization goals.

You’ll use Node instead of a traditional web server (such as Apache) for simplicity. With

Node, you can spin up a local web server quickly. It allows you to pull down exercises in

this book without having to install or configure a web server. Using Node, you can pull

down and run the example websites in this book in a matter of minutes, even if you have

little or no experience with Node.

To install Node, go to http://nodejs.org. In the Download section, find the installer for

your operating system. When running the installer, choose the standard installation option

to ensure that the Node Package Manager (npm) is installed. npm provides access to the vast

Node package ecosystem available on http://npmjs.com, and is required to complete the client

website exercise.

You also need to install Git to pull down the client website in this chapter and the example

websites later in this book. By using Git, you’ll be able to grab code in this book whenever

you need it from a centralized location. If you’re familiar with Git, that’s great, but

previous experience is unnecessary for following along in this book’s exercises. To

download Git, head over to https://git-scm.com/downloads, choose the installer for your

system, and run it. After you’ve installed Node and Git, continue on!

http://nodejs.org/
http://npmjs.com/
https://git-scm.com/downloads

1.2.2. Downloading and running the client’s website

You can download the client’s website for this chapter from GitHub. To do this, download

the repository into a folder of your choosing from the command line:

git clone https://github.com/malchata/ch1-coyle.git

cd ch1-coyle

This downloads the exercise files from the repository on GitHub into the current working

directory on the command line. If you don’t have Git installed, or you don’t feel like

cloning the repository, you can download the exercise as a zip file at

https://github.com/webopt/ch1-coyle and extract it where you like.

After the exercise has been downloaded, you’ll need to use npm to download the packages

necessary for the web server to run. Run the following command in the same folder to download

and install the needed packages:

npm install express

This command installs the Express framework to your current directory, which you can use

to create a simple web server that serves static files for this and many other examples

that you’ll run locally on your computer. You don’t need to know Express or how it works

in order to follow along. None of the examples in this book makes heavy use of this framework

beyond serving static files from your computer.

Permissions issues on UNIX-like operating systems

npm usually installs packages without a problem on most operating systems, but if you run

into problems on a Mac or any other UNIX-like environment, running the npm command with

sudo should clear up any permissions issues. In Windows, opening a new command line as an

administrator should help.

Depending on your connection speed, the installation could take 10 or more seconds. After

it finishes, you can run the following command to start the local web server:

node http.js

When you run this command, a local web server running the client website will be accessible

on your computer at http://localhost:8080 and will appear as shown in figure 1.5.

https://github.com/webopt/ch1-coyle
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig05

Figure 1.5. The client’s website in the web browser running from your local machine

If you have another service running on port 8080, you can open the http.js file in your

text editor and change the port number on line 8. To stop the server from running, press

Ctrl-C.

1.2.3. Simulating a network connection

Because you’re running the client’s website on a local machine, no latency occurs when

you make requests to localhost. Without latency, it’s difficult to measure any gains in

performance, because no network bottleneck exists in this scenario.

One way to get around this is to deploy the website to a remote web server as you complete

the steps, but this can be convoluted for our purposes. A better way is to use Google Chrome

Developer Tools.

To get started, open Chrome. To open the Developer Tools on a Windows machine, press F12.

On a Mac, press Command-Alt-I. The Developer Tools should appear within the Chrome window.

Alternately, you can choose View > Developer > Developer Tools. When the Tools menu appears,

click the Network tab that appears at the top of the window, as shown in figure 1.6.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig06

Figure 1.6. The location of the Network tab in the Google Chrome Developer Tools

window. You can simulate internet connection speeds by using the throttling menu.

Near the top and to the right of the Disable cache check box is a drop-down menu labeled

No throttling. This is the network throttling menu. When you click it, a list of options

appears. These options allow you to simulate conditions that can be useful for performance

testing. For now, select the Regular 3G profile, which simulates a slower mobile network

connection.

Don’t forget!

When you’re finished optimizing the client’s website, make sure you switch this drop-down

menu back to No throttling. If you forget, all of your web browsing will be throttled to

the selected setting while the Developer Tools are open.

With your client’s website running and your network throttling set up, you’re ready to

audit the client’s website and create a waterfall chart with Chrome’s Developer Tools.

1.3. Auditing the client’s website

To optimize a website, you have to be able to identify areas of improvement. This means

analyzing the number of requests on a page, the amount of data the page contains, and the

amount of time it takes for the page to load. This is where Chrome’s network tools come

in handy. In this section, you’ll learn how to create waterfall charts with these tools

and how to quantify aspects of your client’s website so that you have a starting point

for optimizing.

Chrome’s network tools are accessible in the same place where you chose a network throttling

profile, which is under the Network tab. To profile a site, the Record button in this pane

must enabled, as shown in figure 1.7.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig07

Figure 1.7. The Record button must be in the enabled state (red) before you can generate

a waterfall chart of assets. The Disable Cache check box should also be selected so that

no caching is done when you reload the page to measure the results of your work.

The first thing you’ll want to do in the Network tab is ensure that the Disable cache check

box is selected. When a website is first visited, none of the assets are cached, and this

is the scenario that you want to be able to replicate. Otherwise, the site’s assets will

be served from the cache. Although a site loads faster when cached, it’s best to assume

that your average user won’t have your site assets cached. For a small site such as this,

this is likely.

In the Network tab, make sure the Record button in the upper-left corner is in the enabled

state (see figure 1.7). It’s red when enabled. If you haven’t already, navigate to the

client website running on your computer at http://localhost:8080 (or reload) to generate

the waterfall chart. After the page is done loading, you can see the results. Figure 1.8

shows a waterfall chart for your client’s website.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08

Figure 1.8. A waterfall chart generated for your client’s website. At the top, you can see

the request for index.html, followed by the site’s CSS, JavaScript, and images. Each bar

represents a request for a site asset. The bars are positioned on the x-axis according to

the time they began downloading on the left, and the time they have finished

downloading on the right. The length of a bar corresponds to the amount of time it takes

for the asset to be requested and downloaded by the web browser.

The waterfall chart generated for your client’s site shows eight requests. Although this

isn’t an obscene number of requests, 536 KB of data is spread across them, and that’s

a significant amount for a small site like this. Because of the amount of data, the site

loads in about 6.15 seconds on the Regular 3G throttling profile, which means that this

site will take even longer to load on slower mobile networks than some users would like.

Because this is a responsive website, it’s important to know that differences in load times

will occur among devices. Responsive websites display differently at different screen
widths because of mechanisms called media queries that are part of the site’s CSS. These

are covered in more detail in chapter 3, but the important point to know is that this site

renders differently across three types of devices: desktop computers, tablets, and mobile

phones.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03

More than that, screens across these devices vary not only in size, but in capabilities

such as display density (the number of pixels per inch on the screen). If you’ve ever used

an Apple product, for example, you’ve seen a high DPI (dots per inch) display at work.

In order to retain high visual quality on these screens, a higher-resolution set of images

is needed than for standard DPI displays. More information on these screen types and methods

for serving images specific to them can be found in chapter 5.

Don’t worry if you don’t understand all this talk of CSS media queries and screen sizes

right now. The point is that the client website’s load time can differ not only because

of the quality of its network connection, but also because of the characteristics of the

device itself. Depending on the site visited, devices with higher display densities may

download more data than devices with standard displays. Table 1.1 lists the amount of data

transferred and website load times according to the device’s type and display density.

Table 1.1. A comparison of page-load times across various devices. Results vary

depending on the amount of data and the display density of the device.

Device type Display density Page weight Load time

Mobile (phone and tablet) Standard 378 KB 4.46 seconds

Mobile (phone and tablet) High 526 KB 6.01 seconds

Desktop Standard 383 KB 4.51 seconds

Desktop High 536 KB 6.15 seconds

As you proceed in performance-tuning the client’s website, you’ll keep tabs on load times

and the amount of data you reduce for each scenario as it pertains to the Regular 3G

throttling profile you’ve chosen. Let’s get to work!

1.4. Optimizing the client’s website

When improving the performance of a website, the goal is simple: reduce the amount of data

transferred. By pursuing this, you’ll decrease the amount of time that the site loads on

any device. The best part of this pursuit is that it benefits the user on both HTTP/1 and

HTTP/2 servers. If there’s one piece of advice that always wins out, it’s this: fewer

bytes transferred means faster load times.

Reducing requests can help, and some performance-boosting techniques that follow in this

book will encourage you to do this, but be aware that this approach works best for an HTTP/1

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table01

workflow. This client’s site is already light on requests and won’t benefit much from

it.

In these optimization efforts, you’ll start by minifying the assets of the site, which

includes the CSS, the JavaScript, and the HTML itself. Then you’ll move on to optimize

the images on the site without compromising their visual integrity. Finally, you’ll finish

by employing compression on the server for text assets.

Want to skip ahead?

If you get stuck at any point while working on the client’s website (or you’re curious

to see how it all comes together), you can skip to the final, optimized code by using the

git command. Type git checkout -f optimized in the root folder of the web project, and the

final, optimized site will be downloaded to your computer. Be aware that performing this

action overwrites any work you’ve done locally, so back up your work!

1.4.1. Minifying assets

Minification is a process by which all whitespace and unnecessary characters are stripped
from a text-based asset without affecting the way that asset functions. Figure 1.9

illustrates the basic idea of minification as it applies to CSS.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig09

Figure 1.9. Minification of a CSS rule. In this example, a CSS rule is minified from 98 bytes

down to 77, which represents a 21% reduction. When this concept is applied to all text

assets on a site, the reductions can total many kilobytes.

Many human-readable files such as CSS and JavaScript contain whitespace and characters that

are inserted by developers during development. We use line breaks and indentation in our

CSS and JavaScript to make them easier to read, as well as using comments in source code

for documentation purposes.

Web browsers need no such help when reading these files. The fewer unnecessary characters

that are in these files, the faster the web browser will download and parse them.

Tip

When minifying files, it’s important to preserve the original, unminified source. Chances

are near certain that you’ll have to edit files in a web project again after you minify

them. Chapter 12 will help you in this endeavor.

In this section, you’ll start by minifying the site’s CSS, then JavaScript, and finally

the HTML. Before you continue, you’ll download a couple of packages by using npm that will

allow you to minify files on the command line:

npm install –g minifier html-minify

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12

This installation could take a minute or so. After the packages install, you’ll be ready

to minify the site’s assets. When you’re finished with this section, you’ll have reduced

the site’s total weight by 173 KB.

Minifying the website’s CSS

The site’s CSS is 18.2 KB. By minifying it, you could reduce the weight of the page a bit.

To minify the site’s CSS, you need to do two things: run the minifier program and then

update the HTML to point to the newly minified file. To minify the CSS, run this command

inside the website’s css folder:

minify -o styles.min.css styles.css

This command’s syntax is simple. It specifies the output file (styles.min.css) with the

-o argument. After this argument, the input filename (styles.css) is specified. After the

command finishes, check the size of the output file, and you’ll notice that the minified

file is 14% smaller, at 15.6 KB. Not a huge savings, but it’s a good start. Let’s update

the reference to this file in index.html by changing the <link> tag reference from styles.css

to styles.min.css, like so:

<link rel="stylesheet" type="text/css" href="css/styles.min.css">

Next, reload the client’s website in your web browser to ensure that the website’s styles

still work. You can verify that the minified styles are in place by checking the updated

waterfall graph and looking for a reference to styles.min.css. Your client website’s CSS

is now minified!

Minifying the website’s JavaScript

The website’s JavaScript has a much larger share of data than the CSS does. This site uses

two JavaScript files: jquery.js (the jQuery library) and behaviors.js (the site’s

behaviors that are dependent on jQuery). These weigh in at 252.6 KB and 3.1 KB, respectively.

To minify these files, you run the minify command on them, as you did for the site’s CSS:

minify -o jquery.min.js jquery.js

minify -o behaviors.min.js behaviors.js

After the .js files are minified, check the size of the output files and compare them to

the unminified versions. You’ll see that behaviors.js has been reduced by 46% to 1.66 KB,

and jquery.js has been reduced by 66% to 84.4 KB. This tremendous improvement knocks off

a large chunk of the site’s total weight (which you’ll measure and compare at the end

of this section).

You need to update the references to jquery.js and behaviors.js, to jquery.min.js and

behaviors.min.js, in index.html. Locate the <script> tags that reference these files and

change them to the following:

<script src="js/jquery.min.js"></script>

<script src="js/behaviors.min.js"></script>

Then reload the page and check the Network tab to see that the minified files are referenced.

If they are, you’re ready to minify the last asset, which is the website’s HTML.

Minifying the website’s HTML

Although not as large as the savings you’ve realized by minifying the site’s JavaScript,

the site’s HTML is another asset that you can minify. Rather than using the minify Node

package (which is intended for use with CSS and JavaScript files), you’ll use the htmlminify

package instead.

Unintended consequences of minifying HTML

Minification of HTML usually goes off without a hitch, but you may notice that minor shifts

can occur to the layout. This is due to the influence of whitespace on CSS display types

such as inline and inline-block. If you indent your HTML, these CSS display types could

act a bit differently after the whitespace around them is removed. Some tweaking of your

CSS may be necessary if the effects are dramatic. Also be aware of any properties or tags

that treat whitespace literally, such as the CSS white-space property or the HTML <pre>

tag.

Before you minify the site’s HTML, you need to copy index.html in the site’s root folder

to a separate source file named index.src.html so you can preserve the original for changes.

After you copy this file, you can minify it with htmlminify, like so:

htmlminify -o index.html index.src.html

You’ll see that the minified file is 19% smaller than its original size—from 4.57 KB to

3.71 KB. Not a huge savings, but it does squeeze a bit more toothpaste out of the tube,

so to speak, and for not much more effort.

With your site assets minified, you’ve managed to slim down your website by 173 KB. Because

these assets are needed for the web page to work across all types of devices, this is a

consistent performance gain for users of any device. Figure 1.10 compares load times before

and after minification for all device types shown in table 1.1.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table01

Figure 1.10. Load times of the client’s website on the Regular 3G network throttling

profile before and after minification. Improvements range anywhere from 31% to 41%,

depending on the visitor’s device.

Through a modest effort, you were able to decrease load times by anywhere from 31% to 41%!

This is no small improvement, and more is yet to come. In the next section, you’ll further

improve the yields on text assets via a server-side mechanism called server compression.

1.4.2. Using server compression

Surely you’ve been emailed compressed files. These files are often used in online

communications as a handy way to package multiple files into a single one. Aside from the

convenience of consolidation, compressing files can also reduce their size. Server

compression works on a similar principle with respect to reduction of file sizes, and web

browsers are able to accept and decompress compressed content on behalf of the user. Figure

1.11 provides an overview of this concept.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig11

Figure 1.11. The process of server compression

Server compression works as follows: A user requests a web page from a server. The user’s

request is accompanied by an Accept-Encoding header that tells the server the compression

formats the browser is capable of using. If the server is capable of encoding the content

as indicated in the Accept-Encoding header, it will reply with a Content-Encoding header

that describes the compression method used along with the compressed content.

This is useful because much of the content that’s downloaded from websites tends to be

text, which compresses well. A compression method called gzip has nearly universal browser
support, and is very effective in reducing the size of text assets. In this step of optimizing
your client’s website, you’ll configure your server to serve compressed content. As a

result of these efforts, you’ll reduce the weight of the page by an additional 70 KB and

improve its load time by 18% to 32%, depending on the visitor’s device. Before you do this,

though, go to your command line and stop the web server by pressing Ctrl-C. Then type the

following command to install the compression module:

npm install compression

After the installation finishes, open http.js in your text editor and add the bold lines

that you see in this listing.

www.allitebooks.com

http://www.allitebooks.org

Listing 1.1. Configuring the Node HTTP server to use compression

After you’ve made these changes, restart the web server. Reload the page and view the

waterfall graph to see the results. Table 1.2 compares text assets before and after

compression.

Table 1.2. A comparison of text assets on the client’s website before and after the

application of server compression

Asset filename Size before Size after Reduction

index.html 4 KB 1.8 KB 55%

styles.min.css 15.9 KB 3.1 KB 80.5%

jquery.min.js 84.7 KB 30 KB 64.5%

behaviors.min.js 1.9 KB 1.1 KB 42.1%

Total: 106.5 KB 36 KB 66.2%

The reduction of file sizes is clearly significant. The size of all text assets prior to

applying compression was 106.5 KB. After using compression, you were able to reduce this

by about 66%, to an even lower 36 KB! So what does this do for load times? Quite a bit.

Figure 1.12 compares load times across devices.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig12

Figure 1.12. Load times of the client’s site on the Regular 3G throttling profile before and

after applying compression. Depending on the visitor’s device, load times improve

anywhere from 18% to 32%.

This simple step has significantly improved the site’s load time. It’s important to note

that different web servers require different steps to configure compression for assets.

The following listing shows how to enable compression for common asset media types in the

software’s httpd.conf configuration file.

Listing 1.2. Enabling server compression on Apache web servers

In Microsoft Internet Information Services (IIS), compression can be configured by entering

the admin panel via the inetmgr executable, going to a specific website, and editing the

compression settings through the utility’s GUI. No matter what kind of web server you use,

the benefit of compression is largely the same. Some allow more configuration than others.

With compression applied and working on your client’s website, you can move on to the final

part of this optimization plan: optimizing images.

Compression pro tip

Have you ever tried to zip a JPEG or an MP3 file? Not only does this provide no additional

savings, but the final zip file may end up being larger. This is because those types of

files are already compressed when they’re encoded. Compressing content on the web is no

different. Avoid compressing file types that already use compression when they’re encoded,

such as JPEG, PNG, and GIF images and WOFF and WOFF2 font files.

1.4.3. Optimizing images

Image compression has come a long way since the days of Photoshop’s Save for Web dialog

box. Today’s algorithms are so efficient at reducing the file size of full-color images

that the end result is usually indistinguishable from the source image. The savings in file

size, however, can be significant. Figure 1.13 compares two images, before and after

optimization.

Figure 1.13. Image optimization in action on a PNG image. Optimizing images in this

manner uses a re-encoding technique that discards unnecessary data from the image,

but doesn’t noticeably impact the image’s visual quality.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig13

If you can’t notice a difference between the two images, that’s the point. The idea behind

this type of optimization is to retain as much visual quality as possible from the source,

while discarding unnecessary data.

That’s not to say that this type of optimization can’t lead to undesirable results. Any

optimization can go too far, leading to a noticeable loss in quality. Chapter 6 delves into

image optimization not only for PNG files, but for JPEG and SVG images as well. The rule

of thumb is to compare the result of any optimization to the original source, and make sure

that you’re satisfied with the results.

Many services can compress images for you, including some command-line and automated tools

covered in chapters 6 and 12. For the sake of simplicity, though, you’ll go with a web

service named TinyPNG (http://tinypng.com), shown in figure 1.14.

Figure 1.14. TinyPNG compressing the client website’s images and reporting a 61%

reduction of total size

Despite the name, this site compresses not only PNG images, but also JPEG images. Depending

on the visitor’s device, four images show in the desktop view, and only three in the mobile

views. The size of these images depends on the kind of screen viewing them. High DPI screens

(such as Retina screens on Apple devices) need the larger set of images to provide the best

visual experience, whereas standard DPI screens can use the smaller set of images. The

differences between these screens and the ways to serve them based on a device’s capability

are covered in chapter 5. At this point, the goal is to take whatever images are in the

img folder, use the TinyPNG service to optimize them, and observe the gains.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12
http://tinypng.com/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05

To compress these images, upload them to the TinyPNG site, and the site will automatically

optimize them. When finished, download all of them and copy them to the img folder of the

website. When prompted, select the Overwrite option for any conflicts. Then reload the page

and check the waterfall graph again in Chrome’s Developer Tools to see the difference these

smaller images have made. Table 1.3 lists images on the site before and after their

optimization.

Table 1.3. A comparison of image sizes before and after their optimization using the

TinyPNG web service

Asset filename Size before Size after Reduction

bg.png 56.6 KB 32.0 KB -43%

bg@2x.jpg 147.4 KB 29.4 KB -80%

brothers.jpg 11.9 KB 9.7 KB -18%

brothers@2x.jpg 33.8 KB 29.8 KB -12%

logo.png 31.6 KB 12.0 KB -62%

logo@2x.png 70.5 KB 25.2 KB -64%

states.png 4.9 KB 1.8 KB -63%

states@2x.png 9.6 KB 3.5 KB -63%

By the looks of it, all images benefit to a varying degree from this optimization—some

more than others, certainly. But the real question is, how does this impact page-load time?

Figure 1.15 compares load times before and after this image optimization effort.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig15

Figure 1.15. Load times of the client’s website on the Regular 3G network throttling

profile before and after optimizing images. Depending on the visitor’s device, load times

improve anywhere from 23% to 53%.

Optimizing images has had a pronounced effect on your load times. Load times for all devices

have been reduced to less than 2 seconds, which is significant, especially for 3G networks!

With your work done, let’s take a look at the full impact of your efforts.

1.5. Performing the final weigh-in

With your optimization efforts in the can, you can compare the amount of data transferred

by the server before and after your efforts for each of the four scenarios in table 1.4.

Table 1.4. A comparison of page weights for the client’s website for various device types

before and after optimizations have been made

Device type Page weight before Page weight after Reduction

Mobile (high DPI) 526 KB 118 KB 77.5%

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table04

Device type Page weight before Page weight after Reduction

Mobile 378 KB 87.4 KB 76.8%

Desktop (high DPI) 536 KB 121 KB 77.4%

Desktop 383 KB 89.5 KB 76.6%

Of course, you’ll want to see how this affects load times from end to end. Figure 1.16

compares load times before and after optimizations were made.

Figure 1.16. Load times of the client’s website on the Regular 3G throttling profile before

and after all optimizations were made. Load times improve approximately 70% for all

visitors on all devices.

Your optimization efforts have improved load times for the client’s website by nearly 70%

for all users, regardless of which device they may be using to visit the site. As you can

see, even basic performance-tuning techniques can be effective and can improve the user

experience in a measurable way. We’ve only scratched the surface, and more-advanced tips

and tricks reside in the chapters ahead.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig16

1.6. Summary

You began this chapter by learning some high-level concepts indicating why web performance

is important. You then set to work by improving a client’s website through the following

techniques:

 Analyzing the weight of a page by using the Developer Tools in Google Chrome

 Reducing the size of text-based assets by a process called minification, which strips unnecessary whitespace from

assets without affecting their function

 Further reducing the size of these text assets through server compression

 Measuring the effectiveness of optimizing images

You’re well on your way but you have far more to learn. You’ll start in the next chapter

by learning how to use the developer tools in various browsers to assess performance.

Chapter 2. Using assessment tools

This chapter covers

 Using Google PageSpeed Insights

 Using network request inspectors to view timing information for assets

 Using rendering profilers to diagnose poor performance

 Benchmarking JavaScript code

 Emulating devices and internet connections

Now that you have a handle on the idea of web performance and have had a chance to optimize

a client’s site, it’s time to go deeper. That starts with learning about tools that

identify performance issues. These exist both online and in the browser, starting with

Google’s PageSpeed Insights, and ending with the tools available in Chrome and other

desktop browsers.

2.1. Evaluating with Google PageSpeed Insights

It won’t surprise you to know that Google cares about web performance. As early as 2010,

Google indicated in a blog post that performance is a factor in a site’s ranking in organic

search results. If you’re running a content-driven site that gets most of its traffic from

search engines, this should give you pause. Fortunately, Google has an assessment tool:

PageSpeed Insights.

2.1.1. Appraising website performance

Google PageSpeed Insights (https://developers.google.com/speed/pagespeed/insights/)

analyzes a website and gives tips on how to improve its performance and user experience.

When PageSpeed Insights renders its analysis, it does so twice: once with a mobile user

agent and then with a desktop user agent. It analyzes performance with two criteria in mind:

the time it takes for above-the-fold content to load, and the time it takes for the entire

page to load. Figure 2.1 illustrates this concept of above-the-fold content versus

below-the-fold content.

https://developers.google.com/speed/pagespeed/insights/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig01

Figure 2.1. Google PageSpeed Insights checks two aspects of page speed: the load time

of above-the-fold content, which is what the user sees immediately upon visiting a page,

and the load time of the entire page.

The tool gives a score for both user agents from 0 to 100, and color codes its recommendations

based on the severity of the issues it finds. Yellow indicates minor problems that you should

fix if time allows, whereas red indicates problems that you should definitely fix.

Performance aspects that pass are indicated in green. Figure 2.2 shows a sample report.

The solutions to issues that PageSpeed Insights identifies are numerous and covered

throughout this book in later chapters. Some are steps you took in optimizing the client

site from chapter 1, such as minifying assets, configuring compression, and optimizing

images.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01

Figure 2.2. Google PageSpeed Insights results for the mobile view of a website. A user

enters a URL and gets performance tips grouped by severity for both mobile and desktop

states.

One way to get your feet wet with PageSpeed Insights is to run it against the client website

from chapter 1. Because PageSpeed Insights can’t examine URLs on your local machine, I’ve

hosted the unoptimized and optimized versions of the client website on a public web server.

Enter the following URLs into PageSpeed Insights and compare the output of each report:

 http://jlwagner.net/webopt/ch01-exercise-pre-optimization

 http://jlwagner.net/webopt/ch01-exercise-post-optimization

When you enter a URL and click Analyze, generating the report takes a minute. After PageSpeed

Insights finishes, you’ll see tabs for the Mobile and Desktop profiles and scores for each.

The output from the program looks similar to figure 2.3.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
http://jlwagner.net/webopt/ch01-exercise-pre-optimization
http://jlwagner.net/webopt/ch01-exercise-post-optimization
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig03

Figure 2.3. The PageSpeed Insights report for the client website from chapter 1 prior to

(left) and after (right) your optimizations.

Most of the suggestions are aspects of performance you fixed in chapter 1. These suggestions

consist of changes including minifying text assets such as HTML, CSS, and JavaScript;

enabling compression; and so forth.

You’ll likely see a persistent issue in the report for the optimized version of the site

that prevents you from getting a higher score. This is because the <link> tag that’s used

to load the CSS blocks rendering of the page until the style sheet loads. You can fix this

by inlining the CSS in the HTML inside <style> tags so that the CSS is downloaded at the

same time as the HTML.

Inlining in general is considered somewhat of an antipattern and has a detrimental effect

on caching. But it does cut down on HTTP requests, which is good for HTTP/1 servers, and

it increases rendering speed of the document.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01

Chapter 4 covers a technique called critical CSS that increases rendering speed of a page.
It’s an effective technique for HTTP/1 client/server interactions, but a feature in HTTP/2

called server push fixes this antipattern. To learn more about it, check out chapter 10.

Next, you’ll learn how to use Google Analytics to retrieve PageSpeed Insights data for

more than one page, which gives you a broader perspective of your entire site’s performance.

2.1.2. Using Google Analytics for bulk reporting

If you’re a professional web developer, chances are good that you’ve used Google Analytics.

This reporting tool provides data on your site’s visitors, such as where they’re located,

how they got to your site, how much time they’ve spent there, and other statistics.

Pertinent to this chapter is the PageSpeed Insights data available in this tool.

If you have Google Analytics on your site already, all you have to do is log in and follow

along. If you haven’t installed it on your site, sign in with a Google account at

www.google.com/analytics and follow the instructions. The process takes little time and

involves pasting a small bit of JavaScript code into your site’s HTML. From there, you

need to wait a day or two for Google Analytics to gather data.

Legal implications

Be warned that adding Google Analytics to your site comes with legal implications. When

you install the tracking code, you’re accepting the terms of a legal agreement. If you’re

the sole owner of a site, that’s one thing, but be sure to get consent of the site’s owner

otherwise. This is important if you’re a developer in a large company, where legal review

is a common process.

After you’ve logged in, you’ll be redirected to the website’s dashboard. Go to the

Behavior section in the left-hand menu and expand it to reveal a submenu, as shown in figure

2.4.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
http://www.google.com/analytics
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig04

Figure 2.4. PageSpeed Insights reporting information can be accessed in Google Analytics

by navigating to the Behavior section on the left menu and clicking the Speed

Suggestions link.

Upon entering this section, you’ll see a dashboard with performance statistics, as shown

in figure 2.5. This includes a line graph plotting the average load times of all visits

for pages on the site in the last reporting period, as well as a table with the following

columns:

 Page— The URL of the page.

 Pageviews— The number of views a page has received in the reporting period. The reporting period is usually

the preceding month but can be changed to a custom time period.

 Avg. Page Load Time— The average number of seconds the page has taken to load.

 PageSpeed Suggestions— The number of suggestions PageSpeed Insights has to improve the performance of

the associated page URL. Clicking this value directs you to a new window containing a PageSpeed Insights report

for that specific URL.

 PageSpeed Score— The score given by the PageSpeed Insights report. This score is expressed in a range from 1

to 100, with lower scores indicating room for improvement, and higher scores indicating positive performance

characteristics.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig05

Figure 2.5. The reporting table of performance statistics in Google Analytics. Note the

two rightmost columns with PageSpeed Insights–specific data and links to reports for

associated page URLs.

Unfortunately, you can’t sort the PageSpeed Suggestions and PageSpeed Score columns, but

you can sort the other three. When tackling issues, sort by the number of page views in

descending order and fix issues for your most popular content.

Now that you’ve learned a bit about PageSpeed Insights and how to use it, you’re ready

to learn about the tools that live right in your own browser.

2.2. Using browser-based assessment tools

Numerous tools are available in your desktop browser. All browsers ship with a set of

developer tools. All of them share functionality, but each has or lacks something in

comparison to its competitors. The browsers we touch upon in this section are Google Chrome,

Mozilla Firefox, Safari, and Microsoft Edge, with a specific focus on Chrome’s Developer

Tools.

Similarities in developer tools across browsers

Unless otherwise noted, accessing similar features in different browsers is similar to

what’s shown in Chrome. Take Firefox, for example: As in Chrome, you’ll find timing details

by opening the Firefox Developer Tools, clicking the Network tab, and then clicking an entry

in the waterfall graph. The same is also true of Microsoft Edge.

Opening the developer tools in any browser is the same. On Windows systems, they can be

opened with the F12 key, and on a Mac by pressing Cmd-Alt-I.

The goal of this chapter isn’t to be an encyclopedic resource of all the nooks and crannies

of every browser’s developer tools. Such a resource could easily be its own book. Instead,

the goal is to highlight the common aspects in these tools that are available across all

browsers, starting with Chrome, while highlighting some of the notable differences in other

browsers.

2.3. Inspecting network requests

You’ll recall in the client’s website from chapter 1 that you used Chrome’s network

utility to generate a waterfall chart of the site’s assets and to measure page load time.

Most network inspection tools in the browser work similarly to Chrome’s in that they

generate waterfall charts, but the functionality only begins there. This section explains

how to use the utility to view timing information of individual assets, as well as how to

view HTTP headers.

2.3.1. Viewing timing information

At the start of chapter 1, we discussed how web browsers talk with web servers, and the

latency inherent in this exchange. All of the steps depicted in figure 2.6 incur latency.

One important metric is known as Time to First Byte (TTFB), the amount of time between the
moment a user requests a web page and the moment the first byte of the response arrives.

This is distinct from load time which is the amount of time it takes for an asset to finish

downloading altogether. Figure 2.6 (repeated from chapter 1) illustrates this concept.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01

Figure 2.6. The process of a web browser’s request to a web server. Latency occurs in

each step of the process. The amount of time between the instant the user makes a

request to the time the response arrives is known as Time to First Byte (TTFB).

Causes behind a long TTFB vary. It may be due to network conditions such as the physical

distance of the server from the user, poor server performance, or issues in the application

back end. The longer it takes for content to start downloading, the longer the user waits.

To find out how long a request is taking, you’ll look at how it’s done in Chrome, which

is similar to how this information can be found in most browsers (save for Safari, which

we’ll get to later). To start, open the Network tab in the Chrome Developer Tools and follow

these steps:

1. Populate the waterfall graph with data if you haven’t already. You can get a detailed

walk-through of this in chapter 1, but the easiest way is to reload the site while the

developer tools are open and the Network tab is active.

2. After the waterfall graph is populated, you can click any of the asset entries and

view the timing information for it.

After you do this, you’ll see something similar to figure 2.7. You can see in the figure

that the TTFB value is labeled clearly in Chrome. Prior to the request being made, a few

steps occur, such as queueing the request, DNS lookup, connection setup, and the SSL

handshake.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig07

Figure 2.7. Timing information for a site asset. The TTFB in this example is 174.56 ms.

A note on DNS lookups

To eliminate latency in DNS lookups, browsers create a DNS lookup cache. If a domain’s

corresponding IP address isn’t in the cache, the IP address lookup will incur latency.

On repeat requests, however, the IP address will be cached to eliminate latency in further

requests. In Chrome, you can look at the DNS cache by going to chrome://netinternals#dns.

Most browsers allow access to this kind of information in a similar fashion, but Safari

is a bit different. To begin with, you may have to enable the developer tools. A quick way

to see whether they’re enabled is to look for the Develop menu at the top of the screen,

shown in figure 2.8.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig08

Figure 2.8. The Safari Developer Tools can be used only if the Develop option is visible in

the menu bar when the Safari web browser window is in focus. If you don’t see this

menu, you have to enable the developer tools.

If the Develop menu isn’t visible, click the Safari menu and then Preferences. When the

window opens, go to the Advanced tab and select the Show Develop menu in menu bar check

box, as shown in figure 2.9. After you’ve toggled the Develop menu, exit the Preferences

window, and open the developer tools by pressing Cmd-Alt-I.

Figure 2.9. You can enable the Safari Developer Tools by choosing Safari > Preferences

from the menu bar. In the window that appears, click the Advanced tab and select the

check box.

In the developer tools, you can click the Network tab and go to the optimized client website

from chapter 1 at http://jlwagner.net/webopt/ch01-exercise-post-optimization. You’ll see

in figure 2.10 that the Safari version of the Network tab lacks a waterfall graph, but it

does show a table of timing data. In this case, you have the Latency, Start Time, and Duration

columns.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
http://jlwagner.net/webopt/ch01-exercise-post-optimization
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig10

Figure 2.10. The network request information for a website in the Network tab in Safari’s

Developer Tools. Note the lack of a waterfall graph in this view in favor of columns for

timing information.

The Latency column isn’t the same as the TTFB value you see in other browser tools. TTFB

doesn’t include steps such as DNS lookup and the time spent connecting to the web server.

It includes only the time it takes for the request to be made, and when the asset starts

to download. Latency includes TTFB, plus all steps in the process prior to the request being

made.

In the next section, you’ll go further with browser developer tools and use them to inspect

HTTP headers for site assets, which allows you to view detailed information in requests

for content, and how the server responds to those requests.

2.3.2. Viewing HTTP request and response headers

Another useful aspect of the developer tools across all browsers is the ability to inspect

HTTP headers that travel with browser requests for content, and the responses from web

servers. In figure 2.11, you see the typical request/response diagram, showing sample

headers that accompany the request and the response (albeit with much more brevity than

in practice).

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig11

Figure 2.11. HTTP headers are sent by the browser in the initial request and by the server

in its response. In this figure, a simplified set of headers is shown. The network

inspection utilities in the developer tools for every browser allow the user to examine

these headers.

These headers include basics such as response codes, supported media types, the host of

the request, and so on. But headers also can include performance indicators. Figure 2.12

shows how HTTP headers can be viewed in Chrome. Under the Network tab, clicking an asset

name reveals its request and response header in a separate pane to the right.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig12

Figure 2.12. Viewing HTTP headers in Chrome’s Developer Tools. Accessing HTTP headers

for an asset can be done by clicking the asset name. A new pane to the right opens, with

the header information contained within the Headers tab.

An example of a performance-related header is the Content-Encoding response header. This

header tells you whether a resource is compressed by the web server. When you set up your

own server, chances are good that you’ll know whether compression is enabled. If you’re

working in an unfamiliar hosting environment and lack certainty, response headers are the

place to check. Figure 2.13 shows response headers for jquery.js in the optimized client

website.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig13

Figure 2.13. The Content-Encoding response header from the web server lets you know

that the asset is compressed, as well as the compression algorithm used (gzip in this

example).

When the server compresses content, it replies with a Content-Encoding header. Using the

developer tools, you can inspect the response to see this in action. Of course, this isn’t

all that you’d use this tool for. It’s useful for checking headers related to caching,

cookies, and other information. Consider header inspection to be one of the many tools in

your developer tool belt!

Most tools in other browsers present this information in much the same way as Chrome does.

Firefox’s Developer Tools use the same flow as Chrome’s. Microsoft Edge uses the same

flow, but instead of opening the informational window on the right-hand side, it requires

the user to open it explicitly by clicking a small toggle button, as seen in figure 2.14.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig14

Figure 2.14. Viewing HTTP headers in Microsoft Edge requires the user to click a small

toggle button at the farright side of the window in the Network tab.

Safari also requires the user to toggle the right-hand pane through a small toggle button,

in about the same relative location as Microsoft Edge. The end result of these tools is

the same: you get to view HTTP headers for site assets, which can be useful for

troubleshooting.

In the next section, you’ll tackle the task of understanding how browsers render web pages,

and how to use the developer tools to audit pages for rendering performance issues.

2.4. Rendering performance-auditing tools

Although minimizing load time is a big concern, another aspect of performance is a page’s

rendering speed. The initial rendering of a page is important, but it’s also important

that interactions with web pages after they render are smooth. In this section, you’ll

learn the process by which pages render. You’ll also learn how to use Chrome’s Timeline

tool, how to spot poor rendering performance, and how to mark points in the timeline with

JavaScript. Finally, you’ll get an overview of similar tools in other browsers.

2.4.1. Understanding how browsers render web pages

When a user visits a website, the browser interprets the HTML and CSS and renders it to

the screen. Figure 2.15 shows a basic overview of this process.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig15

Figure 2.15. The page-rendering process.

In detailed terms, the steps in this process are:

1. Parse HTML to create the Document Object Model (DOM)—When the HTML is downloaded

from the web server, it’s parsed by the browser to build the DOM, which is a hierarchical

representation of the HTML document’s structure.

2. Parse CSS to create the CSS Object Model (CSSOM)—After the DOM is built, the browser

parses the CSS and creates the CSSOM. This is similar to the DOM, except it represents the

way that CSS rules are applied to the document.

3. Lay out elements—The DOM and CSSOM trees are combined to create a render tree. The

render tree then goes through the layout process, where CSS rules are applied and elements

are laid out on the page to create the UI.

4. Paint page—After the document has finished the layout process, the cosmetic aspects

of the page are applied from the CSS and media in the page. At the end of the painting process,

the output is converted into pixels (rasterized) and displayed on the screen.

The bulk of the rendering for many sites is done when the page first loads, but more can

occur beyond that point. As a user interacts with elements on a page, changes can occur

to the page. These changes can trigger re-rendering.

Next, you’ll learn how to use the Timeline tool to profile page activity and identify

undesirable behaviors that occur on the page.

2.4.2. Using Google Chrome’s Timeline tool

Chrome’s Timeline tool records the loading, scripting, rendering, and painting activity

of a page. It can be daunting at first glance, but this section will help you understand

this tool, make sense of the data it collects, and use it to identify performance problems.

Figure 2.16 shows an overview of the tool’s interface.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig16

Figure 2.16. The Timeline tool in the populated state.

A lot is going on in figure 2.16, so let’s take it step by step: to start, browse to an

online version of the client website from chapter 1 at

http://jlwagner.net/webopt/ch01-exercise-post-optimization and profile it. After the page

loads, access the Timeline tool in the developer tools by clicking the Timeline tab. The

timeline is empty, so you need to populate it.

Let’s start by recording what happens when the page loads. To do this, reload the page

by pressing Ctrl-R (Cmd-R on a Mac). When this is done with the Timeline tool in focus,

it’ll automatically start recording. Once the page has been loaded, you can stop recording

by pressing Ctrl-E (Cmd-E on a Mac). Once finished, the timeline populates with data.

You’re going to see a lot of data in the activity overview and in the flame chart. The

sheer amount of information can be overwhelming, but let’s start with the basics. The tool

captures four specific types of events, each of them color coded:

 Loading (Blue)— Network-related events such as HTTP requests. It also includes activity such as the parsing of

HTML, CSS, and image decoding.

 Scripting (Yellow)— JavaScript-related events. These can range from DOM-specific activity, to garbage collection,

to site-specific JavaScript, and to other activity.

 Rendering (Purple)— Any and all events relating to page rendering. Events in this category are activities such as

applying CSS to the page HTML, and events that cause re-rendering such as changes to the page’s HTML

triggered by JavaScript.

 Painting (Green)— Events related to drawing the layout to the screen, such as layer compositing and

rasterization.

Before diving into the flame chart, let’s look at the event summary. This shows the amount

of CPU time in the session that was spent in each one of the aforementioned categories.

You can see the summary at the bottom of the tool pane under the Summary tab, as shown in

figure 2.17.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
http://jlwagner.net/webopt/ch01-exercise-post-optimization
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig17

Figure 2.17. The breakdown of session activity as recorded by the Timeline tool

Narrowing things down

When the Timeline tool initially populates with data, it automatically selects a range of

time for you. If you want to tweak the range, you can do so by using your mouse wheel to

constrict or expand it, or by clicking and dragging its edges in the activity overview panel

as shown in figure 2.16. When you adjust the range, you’ll notice that the flame chart

and summary will also change to reflect the selected portion of activity.

The summary reports the CPU time spent in each event category. In this example, you’ll

notice that a significant portion of time is spent in scripting and Other activity. The

Other category is a type of activity separate from the four events types we covered, and

consists of CPU activity that Chrome is unable to break down and present in the flame chart.

Keeping tabs on visible pages

Web browsers excel at budgeting CPU time. If you’re running the Timeline tool on a browser

tab that’s not currently visible, the browser won’t spend any time rendering or painting

the page. So make sure the tab of the page you wish to profile is the one that’s currently

visible!

Now onto the flame chart itself. A flame chart is a kind of chart used to represent the
events that occur in a computer program. With Chrome’s Timeline tool, it arranges this

data in a call stack. With respect to flame charts, a call stack is a hierarchical

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig16

representation of recorded page activity. Figure 2.18 shows a call stack of the client

website’s HTML parsing and of the activity that originates from it.

Figure 2.18. An isolated call stack from the flame chart view in the Timeline tool. The top

event is a loading event where the HTML was parsed. Underneath it are events

originating from it, such as the DOMContentLoaded event that fires when the DOM is ready,

and scripting and rendering events.

When you find a call stack in the flame chart that you want to dive into, you can interact

with it by clicking its layers. When you click a layer, the summary view at the bottom of

the Timeline tool window updates with information specific to the selected event. Figure

2.19 shows information related to the site’s behaviors.js script being evaluated by the

browser.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig19

Figure 2.19. The breakdown of a scripting event. You can see information related to the

event, such as the amount of CPU time used, the event type, and its origination. This

data is also visualized in a pie chart.

With this information, you can see what the browser is up to in this specific part of the

call stack. Although this is helpful toward achieving familiarity with how the browser works

under the hood, it doesn’t show you how to identify performance problems on the page. In

the next section, you’ll look at some of the cues the Timeline tool gives you when pages

are being sluggish.

2.4.3. Identifying problem events: thy enemy is jank

Before you can identify performance issues, you have to define your primary goal with respect

to page performance. The goal is simple: to minimize the amount of time the browser spends

loading and rendering the page. To do this, you must defeat a single enemy: jank.

Jank is the effect of interactions and animations that stutter or otherwise fail to render
smoothly. Even a page that loads quickly from the network is subject to the effects of jank

if suboptimal programming techniques are used.

So what causes jank? It occurs when too much CPU time is consumed during a single frame.

A frame is the amount of work the browser does in one frame per second of display time.

When I say work, I’m talking about the events described earlier, such as loading, scripting,

painting, and rendering.

One janky frame out of many won’t cause much trouble, but when frames pile up, the frame

rate drops. This can be due to scripts that fire too often, loading events that take too

long, and any other activity that causes inefficient or superfluous rendering and painting

operations.

Spotting jank

Spotting jank is a difficult task if you’re not sure what it looks like. The nature of

the printed page doesn’t allow for a meaningful visual representation of motion, either.

Thankfully, there’s a helpful game by Google developer Jake Archibald that helps to train

your eyes to recognize jank. It’s playable at

http://jakearchibald.github.io/jank-invaders.

The optimal frame rate for a typical display is 60 frames per second (FPS), but this isn’t

always possible on all devices, depending on the hardware capabilities of the device and/or

the complexity of the page. Look at this figure as a goal, but know that it may not be possible

for every single device to reach.

Frame rate is measured in most developer tools, but the way it’s represented is different

in each browser. It’s shown as a graph in some browsers (as in the activity overview at

the top of the Timeline tool in Chrome), but others may represent it only as a number without

a visual.

The Timeline tool measures duration in milliseconds. Because there are 60 FPS and 1000

milliseconds in a second, simple math dictates a budget of 16.66 ms per frame. Because the

browser has overhead in each frame, Google recommends a 10 ms budget per frame.

To get started on your jank hunt, you’ll pick up where you left off with the client website

from chapter 1. Instead of continuing with the same codebase, you’ll download the new

starting point from GitHub. Type the following commands in a folder of your choosing:

git clone https://github.com/webopt/ch2-jank.git

cd ch2-jank

npm install

node http.js

Then navigate to http://localhost:8080 and record a new session. As the session records,

click the Schedule Appointment button to launch the scheduling modal. After the modal slides

into view, stop recording. The Timeline tool should populate with something that looks

similar to figure 2.20.

http://jakearchibald.github.io/jank-invaders
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig20

Figure 2.20. A timeline recording of the modal opening on the client website. A range of

janky frames is denoted with red markers in the activity overview, and highlighted in red

and clickable in the flame chart.

After you stop the recording, you’ll see a range of red frames in the activity overview,

and specific frame(s) marked in red in the flame chart. If you see this as a bad thing,

your instinct serves you well. When you see red on either the activity overview or the flame

chart, it’s an indicator of low frame rate, which is a precursor to jank. In the flame

chart, you can click any of the problem frames you see, and the summary at the bottom of

the page will update with a warning about jank, similar to what’s shown in figure 2.21.

Figure 2.21. The summary view of a janky frame. Note the explicit warning and the low

frame rate.

In this case, the average FPS of this frame is a measly 3. That needs fixing, sure, but

how can you figure out what’s causing the issue? You know that the modal uses an animation

to slide into position, so maybe it’s something to do with that. To drill down a bit more,

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig21

you can click the Event Log tab shown in figure 2.21. When you click the event log, you’ll

see every single event related to the frame, as seen in figure 2.22.

Figure 2.22. The event log filtered by scripting events. The text box can be used to filter

events by the contents of their activity, filtered by a specific length of time in the

duration drop-down, and/or by type.

When you go to the event log, you’ll see a lot of events labeled Timer Fired. Anytime a

setTimeout or setInterval call is recorded, it’s logged with a label of Timer Fired. Because

you’re seeing a lot of these when the modal slides in, it’s likely due to the jQuery animate

function. The Timeline tool can be somewhat inscrutable at times when it comes to pinning

down the exact origination point of an event, but you know that the appointment scheduling

modal element has a click event bound to it that calls animate to bring the modal into view.

Let’s open behaviors.js in the js folder in your text editor, and look for calls to the

animate method. You should see a single call to this method on line 10, and it will look

something like this:

$(".modal").animate({

 "top": topPlacement

}, 500);

animate invokes a timer when it animates properties, and it’s this timer that’s causing

a fair bit of jank. So you need to see what else you can use to make this work a bit better.

Because this is a simple, linear animation where the modal is sliding in from the top, it

seems a little silly to use jQuery to animate it when CSS transitions are built into the

browser. CSS transitions are a technology native to CSS that are perfect for linear

animations. Because they’re built into the browser, they also have none of the overhead

of jQuery, and can perform better than timer-based animations that use setTimeout and

setInterval, such as jQuery’s animate method.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig22

If you don’t know anything about CSS transitions, don’t worry. They’re covered in detail

in chapter 3.

Want to skip ahead?

If you get stuck or feel like skipping ahead, you can do so by entering git checkout -f

css-transition and the finished code will be downloaded to your computer. Be sure to back

up your work if you have any changes you’d like to keep.

The short version is that the CSS transition property allows you to animate changes in CSS

properties (for example, color and width) over a period of time. To fix the jank, you’ll

use a CSS transition to slide the modal into view, rather than the animate property. To

achieve this, you’ll use a CSS class that animates the modal’s position when it’s added

or removed.

To start, open styles.css in your text editor and go to line 557, which is the CSS rule

for the modal styling for desktop devices. In this rule, perform the following actions:

1. Change the top property from top: -150%; to this:

transform: translateY(-150%);

2. Add this property on the next line:

transition: transform .5s;

3. Add a new CSS rule after the one you just modified:

div.modal.open{

transform: translateY(10%);

}

4. Inside the styling breakpoint for mobile devices near line 1040, you need to add a

version of the same rule that’s styled for mobile devices:

div.modal.open{

transform: translateY(0);

}

Let’s go over these steps. Rather than use the top property to position the element, you’ve

changed this to a transform property by using the translateY method. Like the top property,

this transform method repositions the element on the y-axis. The difference, though, is

that transforms animate better, and with less jank, which is what you’re after.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03

Next, you add a transition property that works on the element’s transform property. Changes

in this property are animated with a half-second duration. To top it off, you confine the

changes on the transform property to a separate class named open. When this class is toggled

on the div.modal element, the position of the modal animates so that it enters the viewport

when the class is added, and exits the viewport when it’s removed.

All that’s left is to update the JavaScript to add/remove this class when the modal is

opened and closed. This involves changing two pieces of JavaScript in behaviors.js:

1. In the openModal function, you’ll see the following call to the animate function:

$(".modal").animate({

"top": topPlacement

}, 500);

2. This is the animate call that’s responsible for the jank you want to fix. You’ll

replace this to add the open class to the div.modal element, which causes the transition

property to kick in and slide the modal into view:

$(".modal").addClass("open");

3. Update the closeModal function to remove the open class from the element to reverse

the effect when the user dismisses the modal. To do this, replace this code

$(".modal").hide(0, function(){

$(".modal").removeAttr("style");

});

with this code:

$(".modal").removeClass("open");

Next, test to ensure that the modal still works. Then retest in the Timeline tool to see

how the new code performs. Your results should be similar to figure 2.23.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig23

Figure 2.23. Modal animation performance after CSS transitions have been implemented.

Janky frames still exist, but much less so than before, resulting in an overall improved

experience.

Do janky frames still exist in the animation? Sure, but they’re reduced, and the animation

is improved overall. Moreover, the activity summary shows reduced CPU usage. Figure 2.24

shows CPU usage with jQuery animations versus the CSS transition you’ve put in place.

Figure 2.24. CPU usage summary of jQuery animations (left) compared to CSS transitions

(right)

As a result of converting the jQuery animation to a simple CSS transition, you’ve not only

solved the jittery animation problem of the modal, but also saved CPU time in the process.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig24

Are CSS transitions always the solution for an animation requirement? Nope. At times your
requirements need more than what CSS transitions can provide, but CSS transitions are a

great solution for linear transitions. Because they’re a part of CSS, no additional

overhead is incurred. Chapter 3 goes over CSS transitions in more detail. For now, you’ll

move on to how to mark specific points in timelines by using JavaScript.

2.4.4. Marking points in the timeline with JavaScript

On websites with lots of activity, it can be hard to pry out what you’re looking for with

the Timeline tool. It can be easier to find specific events if a site doesn’t have much

going on. If a flurry of activity is taking place, however, finding what you’re after can

be a whole other story.

Thankfully, Chrome’s Developer Tools allow developers to mark parts of a timeline via

JavaScript. This can be done with the console object’s timeStamp method which takes one

argument, a string that labels the marker on the timeline. It’s akin to a mile marker on

a highway. You can invoke this method in either the console or in your site’s JavaScript.

To try this out, open behaviors.js in the js folder of the exercise you worked on, and go

to line 33. This line should contain a jQuery click event binding that opens the scheduling

modal:

$("#schedule").click(function(){

Inside the function for this event handler, add a new line with the following code:

console.timeStamp("Modal open.");

While a new session is being recorded, this method will place a marker on the timeline when

you launch the scheduling modal. When you stop recording and select the entire range of

the recording, a yellow marker above the flame chart appears, as illustrated in figure 2.25.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig25

Figure 2.25. A marker added to the timeline. The associated call stack is selected, and the

timestamp event call is shown in the event log.

By digging near this marker in the call stacks, you can find the corresponding layer in

the stack and find the marker event in the event log. By using markers, you can narrow down

what you’re looking for to a specific time without having to slog through the entire set

of data.

Next, you’ll take a quick look at rendering profilers in other browsers and compare them

to Chrome’s own profiler.

2.4.5. Rendering profilers in other browsers

Other browsers have their own equivalents of Chrome’s Timeline tool. The way you use them

is usually the same: you can either reload a page or press a key combination (usually Ctrl-E

for Windows and Cmd-E for Mac) to begin recording a session, and press the same key

combination to stop recording.

Firefox’s tool is similar, except that instead of the tool being under a tab labeled

Timeline, it’s labeled Performance. From there, it’s used the same way. A timeline

overview shows the frame rate of the application as well as useful statistics such as minimum,

maximum, and average frame rate of the session. In addition to a flame chart, the session

data is viewable as a waterfall chart.

Edge’s profiling tool is similar to both Chrome’s and Firefox’s, but boasts a bit more

specificity in a well-designed UI, as you can see in figure 2.26. Like Firefox, it too resides

under a tab labeled Performance and has a timeline overview showing the frame rate. The

major difference is that Edge breaks performance into segments, which shows you what the

CPU was doing in each rendering frame. Chrome and Firefox eschew this approach for a much

more fluid representation of the data.

Figure 2.26. An annotated overview of Microsoft Edge’s performance profiler

A big plus is that all browsers covered in this chapter support the console.timeStamp method

for marking the timeline. So no matter what tool you use, you can label a point in the session

to help you find the activity you’re looking for. Next, you’ll learn how to use the console

object in Chrome to benchmark snippets of JavaScript code.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig26

2.5. Benchmarking JavaScript in Chrome

Benchmarking JavaScript gives you the ability to compare approaches to the problems you’re

trying to solve, and tease out which is the best performing. By choosing the best-performing

solutions, you’ll be creating pages that will render faster and respond more quickly to

user input.

The console object in most browsers gives you the ability to benchmark code by using the

time and timeEnd methods. These methods accept a string that’s used to label the benchmark

session, similar to the timeStamp method. To demonstrate how to use this feature, you’ll

open the jank exercise from earlier in this chapter and play around in the console in

Chrome’s Developer Tools. To access the console, click the Console tab.

A typical use case of the time and timeEnd methods is to compare the execution time of two

pieces of code. In this example, you’ll compare the speed of jQuery’s selection of a DOM

element versus that of JavaScript’s native document.querySelector method.

To get started, reopen the jank exercise from before, and run the following two command

batches in the console:

1.

console.time("jQuery"); jQuery("#schedule"); console.timeEnd("jQuery");

2.

console.time("querySelector"); document.querySelector("#schedule");

console .timeEnd("querySelector");

Note that the string parameters sent to the time and timeEnd methods are identical for each

test. The string you enter is a label for the session. For the benchmark to terminate, the

string label you use in the time method must be the same as the one you use in the timeEnd
method. When you run these two benchmarks, the console output should look something like

figure 2.27.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig27

Figure 2.27. The results of two benchmarks you’ve run of jQuery’s DOM selection versus

that of the native document.querySelector method. Results are circled.

As you can see, the benchmark results appear in the console. In this instance, you can see

that the document.querySelector method is faster than jQuery’s own CSS selector engine.

This isn’t surprising, because native JavaScript methods are usually faster than

user-defined ones.

Benchmarking tip

When benchmarking, it’s important to understand that a single test result isn’t enough.

You should run multiple sessions and average the results for the best possible accuracy.

Benchmarking in the console is great for small tests, but it’s impractical when you have

larger pieces of code you need to evaluate. To get around this, use the time and timeEnd

methods in your application JavaScript, and the output will appear in the console when the

code executes. It’s also worth noting that this method is available across the four browsers

covered in this chapter, and the way they’re used is the same regardless of the platform.

Next, you’ll learn how to use Chrome’s Device Mode to simulate the appearance of websites

on various devices, such as tablets and phones, as well as how to inspect pages on physical

devices and monitor their behavior.

2.6. Simulating and monitoring devices

As a developer, you spend a lot of time doing the initial testing for your websites in a

desktop environment. This is typical, but further testing should be done with tools that

simulate how your pages might look on mobile devices, and finally, on actual physical devices.

This testing can range from cursory style checks across CSS breakpoints, or performance

testing on real devices. In this section, you’ll learn how to do both.

2.6.1. Simulating devices in the desktop web browser

The most simple way of checking your website’s appearance is by using device simulation

tools across desktop web browsers. These tools cover only high-level characteristics such

as device resolution and pixel density.

In Chrome, it’s easy to use Device Mode. To try it, you’ll navigate to a website—in this

case, the Manning Publications website at www.manning.com. With the developer tools open,

you can hit the Ctrl-Shift-M key combination (Cmd-Shift-M on a Mac), or click the mobile

device icon to the left of the Elements tab. When you do this, the interface changes, as

shown in figure 2.28.

http://www.manning.com/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig28

Figure 2.28. The device simulation mode in Chrome viewing the Manning Publications

website

From this interface, you can pick a device profile from the drop-down list of presets, and

simulate the characteristics of a selected preset in the current page. As you can see in

figure 2.28, you have several things to tinker with. You can switch to a canned device profile

(for example, iPhone or Galaxy Nexus), key in a custom resolution, change the device pixel

ratio to debug issues related to high-density displays, and more.

Other web browsers have similar utilities. Safari has an iOS-centric device simulation

utility called Responsive Design Mode. You invoke this mode from the Develop menu by clicking

Enter Responsive Design Mode, or by hitting Alt-Cmd-R. This utility is similar to Chrome’s

in capability, but with a different UI. Firefox’s Responsive Design Mode is similar to

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig28

Chrome’s, but with fewer options overall. Edge is similar as well, and focuses on simulating

Microsoft-centric mobile devices and Internet Explorer.

Although simulating devices in your desktop browser can be useful, don’t forget to test

on mobile devices to catch problems that browser-based tools may miss. Next, you’ll learn

how to attach Android devices and monitor their activity in the desktop version of Chrome.

2.6.2. Debugging websites remotely on Android devices

Sometimes you need to test your site on a real device. Browser-based tools such as the ones

covered in the previous section are great for debugging and performance profiling, but

desktop devices have much more memory and processing power to work with than mobile devices.

It’s important to test on the real thing to see whether performance problems exist on those

platforms.

The way to do this is to connect your mobile device to your desktop computer, and debug

it by using the developer tools in one of the browsers. The way this is accomplished depends

on the device you have. For Android devices, you’ll use Chrome.

Chrome calls this feature remote debugging. To use it, connect your Android device to your
machine with a USB cable, and open Chrome on both your mobile and desktop devices. Follow

these directions, and your Android device will show up in the device list in Chrome’s remote

debugger on your desktop, as shown in figure 2.29.

Figure 2.29. The Chrome device list showing an open web page on a connected Android

phone

To get started with remote debugging, complete the following steps:

1. Enable the developer options on the Android device—This entails choosing Settings >

About Device and tapping the build number field seven times (seriously).

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig29

2. Enable USB debugging—On the Android device, choose Settings > Developer Options and

then select the USB Debugging check box.

3. Allow device authorization—In Chrome on your desktop, go to the URL

chrome://inspect#devices and ensure that the Discover USB Devices check box is selected.

This enables you to receive an authorization request inside Chrome on the attached device.

Tap OK to accept it.

4. Inspect the web page open on the device—After a device appears in the device list

as shown in figure 2.29, click the Inspect link underneath the device in the list.

After all of this rigmarole, the developer tools will launch on the desktop machine. The

window that pops up is identical to tools you’re used to seeing, except that the device’s

screen is mirrored in a pane to the left, as shown in figure 2.30.

Figure 2.30. The Developer Tools profiling rendering activity of a page on an Android

phone. In this view, the device’s display is mirrored on the host machine, and the

Developer Tools are focused on the device’s current page rather than a session active on

the desktop.

When the remote debugging session is active, you can do anything that you normally did with

the developer tools on desktop sessions, except now context of the tools is that of a session

on your Android phone.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig29
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig30

Quick tip

When your Android device is connected and the developer tools are open on the host device,

try things like benchmarking load times on your mobile network connection, or using the

Timeline tool to see how your device performs. With the same knowledge you used throughout

this chapter for Chrome, you can do any of those things, but now for the attached device!

Next, you’ll learn how to debug mobile devices by using Safari on a Mac, and Mobile Safari

on an iOS device.

2.6.3. Debugging websites remotely on iOS devices

You can also debug pages on iOS devices, and it’s simpler than remote debugging websites

on Android phones. First, connect your iOS device to your Mac with a USB cable, and instead

of using Chrome, you’ll use Safari on both the desktop and the mobile device. After you

have Safari open on both, go to www.manning.com on the attached device and follow along:

1. Authorize your Mac to access your device—In Safari on your Mac, go to the Develop

menu and you’ll see the name of your iOS device (for example, Jeremy’s iPhone). Underneath

that menu, you’ll see the Use for Development option. Click this option and you’ll see

a prompt on your iOS device to trust the computer that it’s connected to. Tap the Trust

option to allow your Mac to communicate with the device.

2. Inspect the web page open on the device—After authorizing your Mac, go back to the

Develop menu, choose your device, and in that submenu you’ll see a list of the web pages

that are open in Safari on the attached device. Choose the device that’s focused on the

Manning Publications page.

After you choose from the list of pages on the iOS device, the developer tools will launch

for that website. As in remote debugging with Android devices in Chrome, you can use any

of the tools available for debugging pages on your desktop to find performance issues on

web pages on your iOS device.

2.7. Creating custom network throttling profiles

Early in chapter 1, you used the network throttling tool in Chrome. This tool allows you

to simulate certain internet connections, such as 3G or 4G connections. This is valuable

for determining page-load times in scenarios you may not be able to otherwise replicate.

http://www.manning.com/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01

Out of the four browsers covered in this book, Chrome is the only one that has this function.

Because chapter 1 covered how to use the throttling tool, we’ll go over how to further

extend its usefulness by defining a custom profile.

Using the presets that ship with Chrome allows you to approximate the performance of many

internet connection types. Unless you have to test for a specific scenario, the throttling

presets that are built in will suffice for most situations. It’s especially useful for

performance testing on sites running on your local computer, which run without network

bottlenecks.

If you do need to test for a specific scenario, you can add a custom profile via the Add

option, as seen in figure 2.31. Click this, and you’ll be sent to the Network Throttling

Profiles settings screen, where you can add a new profile by clicking the Add Custom Profile

button. When you do this, a screen like figure 2.32 appears.

Figure 2.31. The throttling profiles that ship with Chrome, with the option to add custom

profiles

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig31
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig32

Figure 2.32. Adding a new throttling profile in Chrome. The profile requires four bits of

information: a profile name, the download and upload speeds (inKbits/sec), and the

latency in milliseconds.

This screen displays the following set of fields:

 Profile Name— A name for the profile. What you enter here will appear by this name in the throttling profile

drop-down list.

 Throughput— The connection speed of the profile in kilobytes.

 Latency— The connection latency of the profile in milliseconds.

After the profile has been added, it’ll will be visible in the drop-down list, as shown

in figure 2.33. Now you can use your custom profile and see how it affects the load times

of websites. When you use it, watch the Network tab as sites load to see your new profile

in action.

Figure 2.33. Your new custom network throttling profile is now in the list.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig33

Now that you have a handle on how to use the performance assessment tools in different

browsers, we’ll bring this chapter to a close with a short summary of the techniques you

learned.

2.8. Summary

We covered a lot in this chapter about some of the performance assessment tools out there,

but it looks like you made it! Let’s take stock of what you’ve learned:

 Google PageSpeed Insights is a useful online tool that analyzes a URL and gives you a list of performance issues

for that URL that you can act upon to make your site faster.

 Although it’s useful, PageSpeed Insights can analyze only one URL at a time. If you need a bulk assessment of

your site, you can turn to Google Analytics, which provides PageSpeed Insights reports for all pages on a

particular site.

 Gathering timing information on network requests can be done in most every browser’s set of developer tools.

This information allows you to examine how long it takes for a given asset on a site to download, and breaks

down that period into specific stages that you can use to diagnose server performance issues.

 Developer tools in all browsers allow you to examine HTTP request and response headers. You can use this

information to examine many aspects of requests and responses, including performance indicators such as

server compression headers.

 Chrome’s Timeline tool enables you to record a period of time and examine the various types of activity that

occur. Using this information, you can identify the activity causing performance problems and then set about

fixing those issues in your code. You can also use JavaScript to mark specific points in the timeline to help you

nail down a time in a recording that you want to examine.

 Using JavaScript, you can perform simple benchmarking via the console object’s time and timeEnd methods.

This allows you to quantify the amount of time that a piece of JavaScript takes to execute.

 In various browsers, you can simulate the characteristics of mobile devices inside the browser itself. Using these

tools, you can get a quick idea of how any given page might look on a similar device.

 In Chrome and Safari, you have the ability to inspect open pages on Android and iOS devices, respectively. When

these devices are attached, you can use the developer tools on the host computer to find and diagnose

performance issues.

 Chrome’s network throttling utility comes with useful presets, but you can create your own custom profiles that

enable you to simulate specific network conditions that the canned presets may not cover.

With this chapter at an end, you can now move toward optimizing specific parts of your site.

In chapter 3, you’ll begin with some useful tips and methods for optimizing your site’s

CSS.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03

Chapter 3. Optimizing CSS

This chapter covers

 Reducing the size of your CSS by taking advantage of shorthand CSS properties, using shallow CSS selectors, and

implementing the DRY principle

 Segmenting your CSS by using unique page templates

 Understanding the importance of mobile-first responsive web design

 Knowing what makes a page mobile-friendly, and how this matters to Google search rankings

 Improving the performance of your CSS by avoiding bad practices and using higher-performing CSS selectors, the

flexbox layout engine, and CSS transitions

Now that you’ve learned how to assess performance by using developer tools available in

the browser, you can learn to optimize the various aspects of your websites. This starts

with optimizing your CSS. In this chapter, you’ll learn to write efficient CSS, understand

the importance of mobile-first responsive design, and gain tips for performance-tuning your

CSS.

3.1. Don’t talk much and stay DRY

When you begin learning a new topic in the realm of web development, the first thought is,

“What’s new and shiny?” Although the topic of web performance certainly brings new tools

to the table for CSS, the best piece of advice is to be as terse as possible when you write

CSS. Doing this requires no new tools, only the desire to learn terser expressions and the

discipline to use them consistently.

In this section, you’ll see the importance of keeping your CSS properties and selectors

terse. You’ll learn how to remove redundant CSS as part of the DRY (don’t repeat yourself)

principle, explore the potential benefits of segmenting CSS on your site, and keep your

site’s frameworks as slim as possible by customizing framework downloads.

3.1.1. Write shorthand CSS

Using shorthand CSS means using the least verbose properties and values where possible.
This approach doesn’t save you a ton in the short term, but when used consistently in large

style sheets, it can add up. In figure 3.1, for example, the rule on the left uses a set

of verbose typography styles that takes up 94 bytes, and the rule on the right combines

them into a single font property that takes up 60 bytes.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig01

Figure 3.1. An example of shorthand CSS via the font property

Although a gain of 34 bytes isn’t hugely significant on its own, consistent use of this

approach in projects with large style sheets has the potential to save considerable space.

Space saved equals fewer bytes transferred over the wire. That translates to less time the

user spends waiting for your website to load. This is especially true of mobile connections,
which tend to be slower than broadband internet connection speeds you experience in your

home or office.

Let’s look at a website that you can improve with shorthand properties. This website is,

once again, the Coyle Appliance Repair website from the previous two chapters. When you

apply shorthand properties to its CSS, you’ll further reduce its size by 28%.

Download and run the client’s website on your local machine by running these commands in

a folder of your choosing:

git clone https://github.com/webopt/ch3-css.git

cd ch3-css

npm install

node http.js

To get started, open styles.css in the css folder. You’ll start by using a couple of

shorthand properties that are easy to use and understand. In the style sheet, search for

the div.pageWrapper selector, which should look like this:

div.pageWrapper{

 width: 100%;

 max-width: 906px;

 margin-top: 0;

 margin-right: auto;

 margin-bottom: 0;

 margin-left: auto;

}

Seems reasonable enough, right? You’re setting margins for this element, but there’s a

much terser way to express this same CSS. The first shorthand property you’ll start with

is the margin property. Figure 3.2 shows this property and how it works.

www.allitebooks.com

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig02
http://www.allitebooks.org

Figure 3.2. The margin shorthand property takes one to four values: those for margin-top,

marginright, margin-bottom, and margin-left.

The margin property is a replacement for the margin-top, margin-right, margin-bottom, and

margin-left properties. The padding property works the same way with respect to its specific

properties (for example, padding-top). Not all four arguments for shorthand rules such as

margin and padding are required. The number that you can omit depends on the number of values

that are unique. The following is a guide for shorthand properties using this syntax:

 Use one value when all four sides of an element have the same value. If all four sides of an element have a

margin of 20px, you can abbreviate to margin: 20px;.

 Use two values when the top/bottom and right/left values are the same. If an element has a margin of 10px on

the top and bottom sides, and 20px on the right and left sides, you can abbreviate to margin: 10px 20px;.

 Use three values when only the right/left values are the same, but the top and bottom values are different. If an

element has a top margin of 10px, a right/left margin of 20px, and a bottom margin of 30px, you can write

margin: 10px 20px 30px;.

 Use all four values when all of the values are unique.

With this approach, you can reduce the contents of the div.pageWrapper selector as follows:

div.pageWrapper{

 width: 100%;

 max-width: 906px;

 margin: 0 auto;

}

Here you’re taking four properties that say, “Set the top/bottom margins of the

div.pageWrapper element to 0, and the left/right margins to auto” and reducing them to

one property that says the same thing. An atypical use of this property that you can apply

in styles.css would be setting three values when the margin-right and margin-left values

are the same, but the margin-top and margin-bottom values are unique. Take this CSS:

header div.phoneNumber h1.number{

 font-size: 55px;

 font-weight: normal;

 color: #fff;

 margin-top: 0;

 margin-right: 0;

 margin-bottom: -8px;

 margin-left: 0;

}

This rule can be expressed more succinctly:

header div.phoneNumber h1.number{

 font-size: 55px;

 font-weight: normal;

 color: #fff;

 margin: 0 0 -8px;

}

You can omit the last 0 in this shorthand, because the margin-left and margin-right values

are the same. This can seem unintuitive at first, but with practice, it becomes second

nature.

margin and padding are the easiest of the shorthand properties to understand, because the

only aspects they control are spacing and dimensions. Other shorthand properties exist for

visual elements such as borders. For example, take the a img selector in the client site

CSS:

a img{

 border-top: 0;

 border-right: 0;

 border-bottom: 0;

 border-left: 0;

}

You can express these border styles in a much more succinct way:

a img{

 border: 0;

}

Condensing these border properties into a single one not only culls unnecessary styles,

but also is more convenient. Be aware that unlike shorthand properties such as margin and

padding, the border property can be used only to set all borders on an element. If any side
of the element requires a different border style, you need to use the more specific

border-top, border-right, border-bottom, and border-left properties.

Overrides and shorthand properties

When overriding one part of a shorthand property for an element in a specific context, you

might be tempted to copy the original shorthand and change only the value you need. This

contributes to less-maintainable code and should be avoided. If an element has a property

of margin: 20px; and you need to override the bottom margin for the same element in a new

context, it’s best to use the more specific margin-bottom. That way, any changes to the

original context’s margin value will be inherited by the new context.

The shorthand properties you’ll use in cleaning up the client’s site CSS are margin,

padding, border, background, and border-radius. These are only a handful among many

available, and you can find a more complete list of them via Google. My preferred resource

is on the W3C wiki at www.w3.org/community/webed/wiki/CSS_shorthand_reference.

Work your way through these properties and shorten what you can. I was able to reduce the

CSS from its original size of 18.5 KB to 13.33 KB. If you get stuck and want to see how

I did the work, you can skip ahead by entering git checkout -f shorthand, and the finished

code will be downloaded to your computer.

Now that you have a sense of how to write terser CSS with shorthand properties, you’ll

be able to keep your CSS files slimmer by simple discipline. Next, you’ll learn about the

importance of shallow CSS selectors, and how they can also contribute to a leaner style

sheet.

3.1.2. Use shallow CSS selectors

If there’s ever a time where shallowness is a virtue, it’s when you write CSS. Shallowness
refers to the specificity of a CSS selector. Overly specific selectors are those that are

many levels deep, whereas shallow selectors are less so, specifying only what’s necessary

to match an element.

In big style sheets, keeping CSS selectors brief can save space. By reducing complexity,

you can keep style sheets lean and load times low, thus boosting the page’s performance.

In figure 3.3, you can see an overqualified selector compared to a shallower one for the

same element.

http://www.w3.org/community/webed/wiki/CSS_shorthand_reference
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig03

Figure 3.3. An example of an overly specific CSS selector (left) versus a more succinct one

(right). The selector at the left is 67 characters, whereas the one at the right is at 12

characters.

Although this example represents a reduction of only 55 characters, this is for only a single

selector. When applied across an entire style sheet, the benefits become more apparent.

3.1.3. Culling shallow selectors

A way to check for overqualified selectors is to scan your CSS for selectors that have more

than one element. Ideally, your selector depth should be limited to only the element you’re

targeting. Although this isn’t always practical, you should strive for as little

specificity as possible.

Continuing from where you left off, open styles.css from the css folder and poke around.

As you can see, most of the selectors are far too specific. The CSS weighs in at around

13.3 KB. This isn’t massive, but considering the specific nature of the selectors, you

can stand to whittle this down. When you finish this section, you’ll have reduced the

client’s site CSS by 38%.

An example of a selector that you can make less specific can be found by searching styles.css

for the div.marqueClass selector. The full selector on this line is written as follows:

header div.phoneNumber h3.numberHeader

This could be rewritten to something much shorter:

.numberHeader

After you make this change, save and reload the page. Note that the page looks the same.

Repeat this process throughout the entire CSS file from top to bottom, eliminating all the

specificity from the selectors that you can find without breaking the page. Whenever you

make substantial changes, reload the page in your browser and verify that nothing has been

broken. If you get stuck or want to see the end result, you can do so by entering git checkout

-f selectors; the finished code will be downloaded to your computer.

After you’ve finished, you can go a bit further by using a Node program called uncss to

remove all the unused CSS from the style sheet. With these two commands, you can install

the program globally and run it against the CSS file from the root folder of the client’s

site:

npm install -g uncss

uncss http://localhost:8080 -i .modal.open > css/styles.clean.css

This command takes an argument for a URL. In this case, you’re telling the program to look

at the client website that you’re running locally. The -i option is an argument you use

to tell the program which selectors you should keep. In this case, you want uncss to leave

alone the .modal.open class that slides the modal window into view.

When uncss finishes, you can either switch the <link> tag in index.html over to the newly

generated styles.clean.css, or copy the contents of it into styles.css. When you’ve done

this step, the client site’s CSS will have been pruned by 38%, from 13.24 KB to 8.2 KB.

3.1.4. LESS is more and taming SASS

CSS precompilers feature prominently in the front-end developer’s toolkit. Precompilers

provide features not available in plain CSS, including variables, functions (called mixins)
for reuse of styles, and importing capabilities to help make your CSS more modular. These

tools then compile files written in the precompiler language down to plain CSS that can

be understood by the browser. Popular precompilers are LESS (http://lesscss.org) and SASS

(http://sass-lang.com).

If you use these tools instead of writing plain CSS, you may be taking advantage of a nested

selector feature.

http://lesscss.org/
http://sass-lang.com/

Listing 3.1. LESS and SASS selector nesting

This looks nice, but it’s more of a service to the developer than anything else. It is
more readable, because it mimics the hierarchical structure of the HTML, but this

convenience comes at a performance cost. When this code is compiled into plain CSS, it looks

like this.

Listing 3.2. LESS/SASS nested selectors after compilation

#main{

 max-width: 1280px;

 width: 100%;

}

#main #mainColumn{

 width: 65%;

 margin: 0 2% 0 0;

 display: inline-block;

 float: left;

}

#main #sideColumn{

 width: 33%;

 display: inline-block;

 float: left;

}

After compilation, the CSS selectors are too specific because of the nesting in the original

LESS/SASS code. In this case, every child of #main is now too specific. The deeper this
nesting goes, the more problematic it’ll be. Compression and minification do mitigate this
somewhat, but these overly specific selectors can slow rendering time as well. Limit your

use of this feature as much as practically possible, because what you can’t see can hurt
you.

3.1.5. Don’t repeat yourself

Another problem that front-end developers encounter in CSS is that properties are often

duplicated across selectors. An example is multiple selectors that specify the same

background color or font style. By minimizing the number of times a property is declared,

you can cut down on bloat and make your CSS more maintainable.

3.1.6. Going DRY

The DRY principle is simple in that it seeks to reduce redundancy in CSS wherever practical

and possible. Figure 3.4 shows DRY in action.

Figure 3.4. An example of the DRY principle. Two selectors have the same background

property. To save space and eliminate redundancy, the background property and the

selectors are combined.

This example illustrates a basic application of DRY. Two selectors contain identical

background rules. DRY dictates that you should combine these not only to save space, but

also to provide increased maintainability. One method for finding redundancy is to look

at common rules and combine them under multiple selectors.

If you’re familiar with your project’s CSS, this isn’t a bad way of approaching things.

You can make a list of common properties and selectors used in the project, and group them

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig04

in a way that makes sense to you. Your approach depends on the methodology that you prefer.

Some, including myself, prefer to use selector names that describe the content (for example,

#navigation or .siteHeader) rather than those that describe the document’s structure (for

example, Bootstrap’s .col-md-1, .col-md-offset-3, and similar selector names). The HTML

5.1 draft specification encourages developers to choose selector names that describe the

nature of the content it applies to rather than its presentation.

Some developers prefer a presentational style. The popular CSS framework Bootstrap makes

heavy use of this style for selector names in its CSS. However you decide to write your

CSS, the good news is that neither method prevents you from using DRY.

Unfortunately, finding redundancies can be an unwieldy task on its own. That’s where a

CSS redundancy checker comes in handy.

3.1.7. Finding redundancies with csscss

csscss is a command-line tool that finds redundancies in your CSS. It’s a good place to

start when refactoring your CSS. To install csscss, you need Ruby’s gem installer, which

is similar to Node’s npm executable, but for Ruby packages. OS X comes preloaded with Ruby.

If you have SASS installed, gem is already available to you.

If you don’t have Ruby installed, doing so is a menial task. Moreover, the value that csscss

provides is worth the effort. To install Ruby on Windows, go to

http://rubyinstaller.org/downloads and grab the installer that’s right for your system.

Installing the software is a simple and guided process. After Ruby is installed, you can

install csscss with gem by typing in the following command:

gem install csscss

After a moment, the gem package manager will install csscss, and you’ll be able to run

it against a CSS file. Try running it on styles.css from the client’s site:

csscss styles.css –v –-no-match-shorthand

This command examines styles.css for redundant rules by using two arguments. The -v argument

tells the program to be verbose and print out the matching rules. The --no-match-shorthand

argument keeps the program from expanding any matching shorthand rules such as border-bottom

into more-explicit rules such as border-bottom-style. If you want to expand those rules,

remove that switch. The program output will show all redundant styles across multiple

elements. This listing is an example of one of these rules.

http://rubyinstaller.org/downloads

Listing 3.3. A portion of csscss output

{#okayButton}, {#schedule} AND {.submitAppointment a} share 12 declarations

 - background: #c40a0a

 - border-bottom: 4px solid #630505

 - border-radius: 8px

 - color: #fff

 - display: inline-block

 - font-size: 20px

 - font-weight: 700

 - letter-spacing: -0.5px

 - line-height: 22px

 - padding: 12px 16px

 - text-decoration: none

 - text-transform: uppercase

This rule is a good one to start with, because the CSS for these selectors is consistent

on all devices. From here, you’ll employ a lather-rinse-repeat methodology starting from

the top. By the end of this short exercise, you’ll be able to shave off an additional 10%

from styles.css. Starting with the rule in listing 3.3 as an example, do the following:

1. Combine selectors and rules—Combine the selectors #okayButton, #schedule,

and .submitAppointment a into a single, comma-separated selector, and copy/paste the

suggested rules from the program output. When you create the new rule at the end of styles.css,

it should look like this.

Listing 3.4. Combined CSS rule from csscss output

#okayButton,

#schedule,

.submitAppointment a{

background: #c40a0a;

border-bottom: 4px solid #630505;

border-radius: 8px;

color: #fff;

display: inline-block;

font-size: 20px;

font-weight: 700;

letter-spacing: -0.5px;

line-height: 22px;

padding: 12px 16px;

text-decoration: none;

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex03

text-transform: uppercase;

}

2. Clean up the matching rules from the individual selectors—Go back and remove the

redundant rules from the original #okayButton, #schedule, and .submitAppointment a

selectors.

3. Rerun csscss, examine the output, and repeat—After you’ve cleaned up the redundant

rules in the old selectors, rerun csscss to verify that the rule you’ve optimized is

stricken from the list.

In some of the suggestions that csscss makes, you’ll notice that rules are duplicated or

in conflict with one another in different breakpoints because the CSS for those elements

change as screen width does. The following listing shows a suggestion that illustrates this

problem.

Listing 3.5. Problematic csscss output

This rule returns different redundancies for the same properties. This occurs because csscss

sees a redundancy in one breakpoint for the desktop CSS, and then another in the mobile

CSS. You can attempt to combine these values, but it may be an unwieldy task to do so. The

best approach for responsive sites is to combine values that are common across all

breakpoints.

After you’ve whittled down this list and csscss runs out of suggestions, you’ll have

reduced the CSS by an additional 10% to 7.42 KB. Your mileage may vary on different projects,

but 10% saved is no small portion. As a result of your efforts since the beginning of the

chapter, you’ve reduced the site’s CSS by roughly 60%, from 18.5 KB to 7.42 KB. Not too

shabby! In the next section, you’ll learn about the importance of segmenting your CSS.

3.1.8. Segment CSS

One way to optimize your CSS is to segment it. Segmentation splits up CSS by styles specific
to particular page templates. It can make sense to combine all of your site’s CSS into

one file so that the user already has all of the site’s CSS cached on the first visit.

Serving your CSS this way can be a gamble, however, because your users may never navigate

to subpages. A portion of your users would be forced to download CSS for pages they’ll

never see. This slows the initial visit to your site. The safer bet is to spread the weight

across a few pages, but intelligently. This is shown in figure 3.5.

Figure 3.5. A user navigation flow to pages with CSS segmented by page template. The

browser downloads only the CSS it needs for the current page.

A data-driven method of determining how to segment your site’s CSS is to look at its

analytics, and look at the path users take through your website. With a tool such as Google

Analytics, you can visualize this information and use it to make informed decisions on

segmentation.

If you have Google Analytics set up for your website, you can access this information by

logging into Google Analytics. Then find the visitor-flow information by navigating to the

Behavior section in the left-hand menu, and selecting the Behavior Flow option in the submenu,

as illustrated in figure 3.6.

Figure 3.6. The Behavior section of the left-hand menu in Google Analytics. The visitor

flows can be seen by clicking the Behavior Flow link in the Behavior submenu.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig06

After clicking this option, the right-hand pane populates. In figure 3.7, you see a simple

user flow through the site, with the majority landing on the main page (index.html) and

few people proceeding to the subpages.

Figure 3.7. The visitor flow chart in Google Analytics. Starting at the left, you see where

users enter the site. In this case, you see that the vast majority of users are entering on

the site’s main page. Few visitors click through to the subpages.

With this information in hand, it’s a simple task to segment your website’s CSS for optimal

delivery. In this case, it could make sense to pull styles for the second-level pages out

of the main style sheet and into a separate file.

How you go about this depends on the site itself and how specific your CSS is. If the templates

for most of your pages are all similar and the styling is highly generalized, it makes sense

to stick with one style sheet. But if you have many distinct page templates with specific

styles, examine your users’ behaviors and decide from there.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig07

Say your site has a search results page, and only a small portion of users visit it. Logic

dictates that you should separate the CSS specific to that page, place it into a separate

file, and include it on the relevant page. Modern tools such as LESS and SASS make

modularizing your CSS a trivial task, and the performance benefits are worth considering.

3.1.9. Customize framework downloads

CSS frameworks are a big part of the front-end development sphere, and with good reason.

They can be time-saving tools that offer a tremendous service to the developer. If the

benefit of using a CSS framework translates into a benefit for the user, they’re worth

considering.

You can have too much of a good thing, though, and it makes sense to prune what you don’t

need from these libraries. Popular frameworks such as Bootstrap and Foundation allow the

developer to customize downloads, as you can see in figure 3.8. Don’t need print media

CSS in Bootstrap? Ditch it. Don’t need table styles? Delete them. These features are great,

but become performance liabilities when you force users to download code for them and then

never use them.

Figure 3.8. The download customization screen on the Twitter Bootstrap website.

Bootstrap allows the developer to specify which parts of the framework the user wants

in a custom download.

After downloading the customized framework code, don’t be afraid to go further and remove

anything else you don’t need. These frameworks can come at a significant up-front cost

to the user. If at the end of a project you find that a lot can be pruned, you’re doing

your visitors a service by removing unnecessary code from your website.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig08

Now that you know how to segment your CSS and understand the importance of pruning

unnecessary code from frameworks, we can talk about the importance of mobile-first

responsive web development.

3.2. Mobile-first is user-first

In years past, front-end development has gone from a simple discipline to a more nuanced

one. This is due in part to the emergence of the responsive web design principle pioneered

by designer Ethan Marcotte. In the past, developers would create separate sites for mobile

devices with fewer capabilities than their desktop counterparts. This approach has fallen

out of favor, with developers embracing responsive web design instead.

Responsive web design uses one set of markup and modifies its presentation via CSS with
respect to the device’s display dimensions. These dimensions (usually the width) are

examined by using a media query, and evaluated against a min-width or max-width value.
Because media queries are flexible, two methods of responsive web design arose:

desktop-first and mobile-first responsive design. In this section, you’ll learn the

differences between these two approaches, as well as the importance that Google places on

having a mobile-friendly website.

3.2.1. Mobile-first vs. desktop-first

Mobile-first and desktop-first are the two approaches to responsive web design. Figure 3.9

depicts each method.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig09

Figure 3.9. Mobile-first versus desktop-first responsive design flows

Both techniques start with a foundational set of CSS. This CSS isn’t contained within any

media queries and defines the default appearance of the website. Using the mobile-first

method, the default appearance is the mobile version of the site. In desktop-first sites,

the default appearance is the desktop version of the site.

Your choice of which technique to use should be made with users in mind, and desktop-first

responsive design isn’t user-first. Using the mobile-first method, you’re building the

least complex presentation of a website first, and adding complexity as you scale up.

Consider that an increasing number of users are accessing the web by using mobile devices,

as shown in figure 3.10.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig10

Figure 3.10. The trend of internet traffic on mobile devices versus laptop devices. Toward

the end of 2015, nearly half of all traffic on the internet occurred on mobile devices. This

trend is continuing (Data from StatCounter Global Stats).

The advantage of mobile-first CSS is that you’re serving CSS intended for the devices that

are most likely to consume it. Because mobile devices often have less processing power and

memory than desktop devices, the mobile device shouldn’t have to apply desktop styles,

interpret media queries, and then apply mobile styles.

There’s a service to the developer in the long haul, too. The benefit is in the ability

to scale up as you go, rather than scaling down. If you start from the point of least

complexity, you can optimize much more easily than if you remove pieces as you scale down.

Starting with mobile-first CSS is easy. Most of the time you’ll develop for three device

types: mobile phones, tablets, and desktops. All of these except for the foundational CSS

lie within their own media query (commonly referred to as a breakpoint). A media query is
a particular point in which new styles are applied. This point is typically a change in

the screen’s width (although height media queries do exist). In the case of mobile-first

CSS, the mobile styles are the foundation, whereas the tablet and desktop are the breakpoints

where changes in the layout occur. Figure 3.11 shows a set of breakpoints across three device

types.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig11

Figure 3.11. The flow of layout complexity across breakpoints on a mobile-first website

You’ll notice in figure 3.11 that the breakpoints are set using em units rather than px

units. An em is a relative unit that’s calculated based on the document’s default font-size

value (typically, 16px). Calculating em values is done with a simple formula:

px / default font size = em

In this case, the tablet breakpoint of 600px is divided by the default document font-size

of 16px to arrive to a value of 37.5em. The desktop breakpoint of 1000px is converted using

the same formula to a value of 62.5em.

A note on EMs and REMs

The em is a context-specific unit. In a media query, the context is the default font-size

value for the HTML document. When ems are used deeper in a document’s hierarchy, their

context can change. If an element’s parent has a font-size value of 12px, the em value

is calculated by dividing the original px value by 12. The rem unit is similar to em, except

that its context always refers to the document’s default font-size value, no matter what

its parent element’s font-size is. rems have broad support, but aren’t universal yet.

Consider passing on using rems if your project needs to support legacy browsers.

This listing shows a starting point for a simple mobile-first responsive website.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig11

Listing 3.6. Mobile-first CSS boilerplate

In this boilerplate, CSS resets go first. A popular reset is Eric Meyer’s CSS reset, which

you can download at http://meyerweb.com/eric/tools/css/reset. These are styles that reset

margins, padding, and other properties on elements to normalize inconsistent default styles

between browsers. Then come the mobile styles that act as the foundational CSS, the tablet

styles, and finally, the desktop styles.

On choosing breakpoints

It’s tempting to use common device widths when coding responsive sites. Resist the urge

to do this, and instead pick thresholds that are pertinent to your design. Don’t be afraid

to add minor breakpoints as you code. The prevailing adage is that you resize the browser

window until the layout breaks, add another breakpoint, and fix layout problems inside the

new breakpoint.

At this point, you’ll include your CSS as you normally would inside a <link> tag. To ensure

that devices properly display your fancy new responsive CSS, you should add the following

<meta> tag inside your <head> element:

<meta name="viewport" content="width=device-width,initial-scale=1">

This <meta> tag tells the browser two things: that the device should render the page at

the same width as the device’s screen, and that the initial scale of the page should be

100%. You can specify additional behaviors such as disabling zooming, but don’t prevent

your users from doing this; it could create accessibility issues for users with eyesight

problems.

With this boilerplate, you can approach your responsive web design projects with a

minimalist mindset. Remember: your users are most important. Developing visually rich and

http://meyerweb.com/eric/tools/css/reset

engaging websites isn’t a crime, but developing slow websites is! Starting from a place

of minimalism is the best way to ensure that even complex websites load as fast as possible.

3.2.2. Mobilegeddon

In February 2015, Google announced a change in its search results ranking method that took

effect two months later. This change gives preference in mobile search results to sites

that are considered mobile-friendly.

It makes sense to incentivize developers and content creators to deliver good mobile

experiences. For many, Google is the primary gateway through which content is accessed.

By emphasizing the importance of how content is delivered on mobile devices, Google is

putting the user first. This places responsibility on the developer to provide that

experience for everyone.

3.2.3. Using Google’s mobile-friendly guidelines

Google’s guidelines for mobile-friendly sites are simple. When Google looks at your site,

it’s looking for two indicators of a good mobile user experience. Let’s bring up a version

of my personal website at http://jlwagner.net/webopt/ch03-test-site to see what traits are

important in mobile-friendly websites

 A properly configured viewport— As discussed earlier, the <meta> viewport tag is used by browsers to size

content to the device’s screen. Figure 3.12 shows my website on a mobile device with and without this tag.

http://jlwagner.net/webopt/ch03-test-site
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig12

Figure 3.12. A responsive site on a mobile device without the <meta> viewport tag

(left) and the same site with it (right). Even though the site pictured is a

mobile-first responsive site, it won’t display in the proper breakpoint without this

crucial tag in place, and the user will be forced to zoom out to view the entire site.

 Responsiveness— A site needs to respond to the size of the viewport as it changes. Users are fine with vertical

scrolling, but horizontal scrolling is usually a bad user experience, and Google checks that content fits on a

device’s screen without horizontal scrolling. Although you should try to make your sites responsive in a

mobile-first fashion for performance reasons, any responsive design approach is better than none. If you resize

the browser window with my personal website pulled up, you can see that it adapts to the window size.

Google also checks for other things when determining mobile-friendliness, such as legible

type sizes and the proximity of tap targets. But by and large, the two preceding criteria

are the foundational aspects of any site with a good mobile user experience.

3.2.4. Verifying a site’s mobile-friendliness

After its announcement, Google rightly figured that businesses would want to assess the

mobile-friendly status of their websites. To help site owners, Google developed the

Mobile-Friendly Test tool, available at

https://www.google.com/webmasters/tools/mobile-friendly/. As you can see in figure 3.13,

this tool prompts the user to enter a URL to be analyzed. Let’s use my personal website

(https://jeremywagner.me/) as an example of how to use this tool and interpret its output.

Figure 3.13. The results page of Google’s Mobile-Friendly Test tool after examining a

website

After the site is analyzed, you’ll see that it passes the mobile-friendly test, and a

success message is shown. For sites that aren’t mobile-friendly, the tool will return a

list of reasons that the site failed the test, along with next steps for correcting issues.

If your site isn’t mobile-friendly, your next steps will be to add the <meta> viewport

tag to your site, and make your site responsive for all devices.

In the next section, you’ll see how to performance-tune your CSS in order to avoid common

problems that can cause delays in page loading and improve page rendering.

https://www.google.com/webmasters/tools/mobile-friendly/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig13
https://jeremywagner.me/

3.3. Performance-tuning your CSS

Beyond writing terse and mobile-first responsive CSS, it’s vital that you tune your CSS

to be as high performing as possible so that users will have a fast and smooth experience.

Achieving this starts with applying a set of techniques designed to improve loading and

rendering times.

3.3.1. Avoiding the @import declaration

You may have seen use of the @import directive in CSS. This practice should be avoided,

because unlike the <link> tag, @import directives in a style sheet aren’t processed until

the entire style sheet is downloaded. This behavior causes a delay in the total load time

for a web page.

3.3.2. @import serializes requests

One of the goals of a performance-oriented website is to parallelize as many HTTP requests

as possible. Parallel requests are those that are made at, or near, the same time. Serialized
requests are the opposite, occurring one after another. When used inside an external CSS
file, @import serializes requests, as illustrated in figure 3.14.

Figure 3.14. Downloads for two style sheets are serialized one after the other because of

an @import directive in styles.css that requests fonts.css.

When @import is used to load a CSS file from within an external style sheet, the request

for the initial style sheet must be loaded before the browser discovers the @import directive

within it. In the case of figure 3.14, styles.css contains this line:

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig14

@import url("fonts.css");

This contributes to a poor performance pattern; requests are serialized one after the other.

This increases the overall loading and rendering time for a page. Ideally, you should seek

to bundle as many files of the same type as you possibly can. But some CSS includes in your

website can come from third parties, making bundling impractical. In these cases, you should

rely on the HTML <link> tag instead of @import.

3.3.3. <link> parallelizes requests

The HTML <link> tag is the best native method for loading CSS. Rather than serializing

requests as @import does, it loads requests in parallel. After the HTML document is scanned,

all <link> tags found in the document are loaded as illustrated in figure 3.15.

Figure 3.15. Two requests for style sheets made by using the <link> tag. The <link> tags

are found by the browser after downloading the HTML, and the browser executes these

two requests at the same time.

Unlike the @import directive’s behavior in CSS files, whereby references to external files

can be discovered only after a style sheet is downloaded, the <link> tag references are

discovered when the HTML file downloads.

Technically, you can use @import inside <style> tags in HTML without any detriment to
performance, but mixing this method with the <link> tag or using @import inside a CSS file

will cause requests to become serialized. In practice, it’s better to stick with the <link>

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig15

tag, because its behavior is predictable and relegates the task of importing CSS to the

HTML.

The meaning of @import inside LESS/SASS files

In LESS/SASS, @import has a different function. In these languages, @import is read by the

compiler and used to bundle LESS/SASS files. This is so that you can take advantage of

modularizing your styles during development and bundling when compiling to CSS. The behavior

I’m talking about in this section has to do with using @import in regular CSS.

3.3.4. Placing CSS in the <head>

You should place references to your CSS as early in the document as possible, and the earliest

place you can load your CSS is in the <head> tag. By doing this, you mitigate two issues:

the Flash of Unstyled Content effect, and improving the rendering performance of the page

on load.

3.3.5. Preventing the Flash of Unstyled Content

A compelling reason to keep CSS in the <head> of the HTML is that it prevents your users

from seeing your site in an unstyled state. This phenomenon is called a Flash of Unstyled
Content, and it occurs when your users briefly (but noticeably) see your website without
any CSS applied to it. Figure 3.16 shows this unsettling effect as the CSS is loaded too

late in the document.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig16

Figure 3.16. A rendering timeline in Chrome showing the Flash of Unstyled Content effect

at left. The document eventually renders as intended, but with a brief display of the

unstyled content. In this case, the effect is due to a <link> tag referencing a style sheet

being placed at the end of the document.

This occurs because browsers read HTML from top to bottom. As the HTML document is read,

the browser finds references to external assets. In the case of CSS, browsers are so fast

at rendering that the browser has a chance to render the unstyled page before the external

CSS is loaded.

Mitigating this problem is easy: load the style sheet by using a <link> tag in your HTML’s

<head> element and you’ll avoid the problem entirely.

3.3.6. Increasing rendering speed

Placing your CSS in the <head> of your HTML does more than prevent unstyled content from

appearing; it also speeds up the rendering of your site on the initial page load. The reason

for this is that browsers are fast at rendering pages. If a style sheet is included later

in the document, the browser has to do more work than if the style sheet was loaded in the

<head>, because it has to re-render and repaint the entire DOM.

To test this, I downloaded my personal website onto my machine, pulled it up in Chrome,

and used the DSL throttling profile. I then ran 10 tests with the style sheet <link> include

in the <head> of the document, and then another 10 with the same include in the footer.

I captured the rendering summary in Chrome’s Timeline profiler and averaged the results.

Figure 3.17 shows the rendering and painting times for each scenario.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig17

Figure 3.17. Rendering performance at load time of my personal website in Chrome with

styles placed in the <head> versus at the end

The payoff is big, and all because of a small HTML adjustment. If you’re working on a site

and you see <link> tags outside the <head>, relocate them to the <head> of the document.

3.3.7. Using faster selectors

Earlier in this chapter, you simplified CSS selectors in a client’s website. Although this

saved space by removing cruft, it can also aid in faster rendering. To see which selector

types were the fastest, I compiled a benchmark pitting them against each other. This

benchmark can be seen at http://jlwagner.net/webopt/ch03-selectors and is described next.

http://jlwagner.net/webopt/ch03-selectors

3.3.8. Constructing and running the benchmark

To determine the browser’s rendering capability, you need a sound methodology. I created

several HTML files that had the same general markup structure with identical styles. In

each file, I styled the document by using different types of CSS selectors. Figure 3.18

shows the general structure of the test markup.

Figure 3.18. The structure of the test HTML document. The test markup is contained

within a div.contentContainer. Within it are four <section> elements arranged in four

columns, each containing two elements with 51 elements. The block of four

<section> elements is then repeated approximately 50 times. The total number of

elements in each test document is about 21,000.

In figure 3.18, you can see that the test markup is large. Each of these documents contains

an inline style sheet that styles the HTML with a variety of selector types. Though the

selector types used are different, the end result is an identical appearance for all of

the tests.

Viewing the test

If you want to look at the test code, you can find the tests at

http://jlwagner.net/webopt/ch03-selectors and run the benchmark in each test page by

opening the console and executing the bench() function. You can use the Timeline tool to

get data of the test’s activity. The data for all of the tests is also available at that

page as a Microsoft Excel spreadsheet.

The benchmarking was done with a JavaScript function that stores the innerHTML of the

div.contentContainer element to a variable when the document is loaded. Using a chain of

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
http://jlwagner.net/webopt/ch03-selectors

setTimeout calls, the content of that element is removed and reinserted 100 times. This

causes a huge number of rendering calculations because of the document being reflowed. This

activity was recorded using Chrome’s Timeline tool, and the rendering and painting times

were recorded.

This procedure was repeated 10 times over eight scenarios, using different selectors. Table

3.1 lists these selectors and how they’re used.

Table 3.1. Selector types used in the test, and examples of those selectors in the test

Selector type Test case example (targeted)

Tag li

Descendant section ul li

Class .listItem

Direct child section > ul > li

Overqualified div.contentContainer section.column ul.list li.listItem

Sibling li + li

Pseudo li:nth-child(odd), li:nth-child(even)

Attribute [data-list-item]

With the tests run and the results recorded, let’s examine the results.

3.3.9. Examining the benchmark results

With the tests run and the results recorded, the rendering and painting figures were combined

into one figure. I had planned to report both, but found that the amount of time Chrome

spent repainting ended up being about 200 ms on average for all tests. As a percentage of

the total time, this accounted for only 1%–2%. It’s the rendering that’s the most

CPU-intensive, and therefore the most telling. Figure 3.19 shows the results.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig19

Figure 3.19. The performance of the CSS selectors test in Chrome. On the left are the

selector types, and on the bottom is the amount of time each selector type took to

complete the test in seconds. All values are the sum of rendering and painting processes.

The conclusions you can draw from this are that overall performance for most selector types

are similar, but specialized selector types such as the sibling, pseudo class, and attribute

selector types are especially expensive.

These tests should be considered a loose guideline for the types of selectors to use, but

real-world performance is always preferable. Profile the performance of your website in

the developer toolkit of your choice and then make determinations about how to improve.

ID selectors (for example, #mainColumn) weren’t benchmarked; elements with IDs tend to
be few in practice because they’re singular and unique items in a document, whereas elements

with classes can be used repeatedly.

Continuing on in our efforts to increase rendering performance in CSS, let’s look at the

performance differences between box model layout and the newer flexbox layout engine.

3.3.10. Using flexbox where possible

For years, laying out content on the web was a combination of floating elements, manipulating

their CSS display properties, and using margins and padding. Flexbox is a new CSS layout
engine available in modern browsers. It simplifies laying out elements on a page. It

automatically takes care of spacing, alignment, and justification on both axes. It not only

is a more robust way of laying out elements on a page, but also tends to perform better

than traditional methods.

3.3.11. Comparing box model and flexbox styles

The way to test flexbox rendering performance is similar to the selector rendering tests

in the previous section. You have two test documents, and both are identically styled as

a four-column gallery of list items. The first document uses the box model to lay out elements,

and the second uses flexbox. The structure of the HTML is a single element containing

a little more than 3,000 elements. Each contains an element and a <p> element.

The benchmark is run 10 times, and the figures are averaged.

Viewing the test

If you want to view the test, it’s available at

http://jlwagner.net/webopt/ch03-box-model-vs-flexbox. As with the selectors test in the

previous section, you can run the benchmark by running the bench() function in the console

and profile activity to draw your own conclusions.

The CSS is the same, except for the way the list and list item elements are styled. In the

box model version, the styling for these elements can be seen here.

Listing 3.7. Box model styling

.list{

 margin: 0 auto;

 width: 100%;

http://jlwagner.net/webopt/ch03-box-model-vs-flexbox

 font-size: 0;

}

.item{

 width: 24.25%;

 list-style: none;

 border: .0625rem solid #000;

 margin: 0 1% 1rem 0;

 display: inline-block;

 vertical-align: top;

}

.item:nth-child(4n+4){

 margin: 0 0 1rem;

}

This is typical for a box model–styled list. To space everything out perfectly, margins

are used. A :nth-child selector on every fourth element removes the margin so that the width

and margins of all elements per row add up to 100%. In this listing, these elements are

equivalently styled using flexbox instead.

Listing 3.8. Flexbox styling with flexbox properties in bold

In the test, flexbox is applied to the .list element with a display: flex; rule. This turns

every in the list into a flex item. Using the flex-flow property, you tell the browser

to lay out the items in a row and wrap them onto new lines. The justify-content property

is then used to space the elements out to the edges of the container with the space-between

value. Finally, the flex-basis property replaces the width property from the box model

version, and instructs the browser to render the items at a specific width. You can see

that this code has no :nth-child selector to remove the right margin on every fourth item.

In fact, no items have right margins applied. Flexbox handles all of that for you.

Learn more about flexbox

This section isn’t intended to be an exhaustive resource on flexbox, but rather to cover

the performance benefits it can provide. For a quick primer on this layout engine, check

out this excellent article by Chris Coyier:

https://css-tricks.com/snip-pets/css/a-guide-to-flexbox.

With the environment for the tests defined, let’s check out the results!

3.3.12. Examining the benchmark results

Similar to the benchmarks in the CSS selectors test, the rendering and painting figures

are combined into one figure. In each test, the painting represents about 60 ms of time,

which is a tiny sliver of the overall work Chrome does. The test is run 10 times on each

rendering mode, and the results are averaged and graphed in figure 3.20.

Figure 3.20. Benchmark results of box model layout performance versus flexbox layout in

Chrome. Lower is better.

https://css-tricks.com/snip-pets/css/a-guide-to-flexbox
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig20

The conclusion you can draw is that when it comes to rendering content, flexbox tends to

be a better-performing solution. Better yet, it enjoys broad support without

vendor-specific prefixes. When used with vendor prefixes, support only increases. If

you’re not using flexbox on your websites, it’s rather trivial to retrofit in most cases.

The next section dives into CSS transitions. We briefly visited this concept in the preceding

chapter as part of using Chrome’s rendering profiler, but here we’ll delve into other

concepts that we left untouched.

3.4. Working with CSS transitions

In chapter 2, you used CSS transitions to fix a janky modal window on a client’s website.

This section covers how to use CSS transitions and the benefits they can provide.

3.4.1. Using CSS transitions

CSS transitions are a solid choice for simple, linear animations on websites with few

animation requirements. Here are a few advantages of this native CSS feature:

 Wide support— Unlike years past, CSS transitions enjoy broad browser support. All up-to-date browsers support

them, and most older browsers such as Internet Explorer (IE) 10 and above do with vendor prefixes.

 More-efficient CPU usage when reflowing complex DOMs— In large DOM structures, the CPU was more

efficient when using CSS transitions. This is owed to the reduction in thrashing during intensive DOM reflows,

and the fact that CSS transitions don’t incur scripting overhead. My tests indicated 22% overall better CPU

performance.

 No overhead— CSS transitions come with no overhead, as they ship with the browser. For websites with simple

animation requirements, it makes more sense to use a built-in feature instead of adding the overhead of a

JavaScript library to the page.

To get your feet wet, you’ll look at a simple use case of this property. Navigate to

http://jlwagner.net/webopt/ch03-transition and you’ll see a page with a blue box. Hover

over this box with your mouse to see the box turn into a circle (figure 3.21).

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02
http://jlwagner.net/webopt/ch03-transition
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig21

Figure 3.21. The .box element on the page before and after a transition on its

border-radius property

The transition effect is achieved by applying a transition property on the box’s

border-radius property. Initially, the box has no border-radius applied to it, but when

it’s hovered over, it’s given a border-radius value of 50%. Here is the CSS that drives

this effect.

Listing 3.9. Simple CSS hover state transition

Using this CSS, the transition property animates the .box element’s border-radius to a

value of 50% over a duration of 2 seconds when the user hovers over the box. This changes

the element from a square to a circle, and the animation comes to a smooth conclusion with

the ease-out timing function.

With a basic use case of this property demonstrated, let’s learn more about transition.

The property itself is shorthand that sets several CSS properties at once in the following

format:

transition: transition-property transition-duration transition-timing-function

transition-delay

The properties in this shorthand are:

 transition-property—The CSS property being animated. This can be any valid property such as color,

border-radius, and so on. Some properties can’t be animated, such as the display property.

 transition-duration—The time the transition takes to complete. Can be expressed in seconds or

milliseconds (for example, 2.5s or 250ms).

 transition-timing-function—The easing effect used in the transition. This can be expressed using

presets such as linear or ease, segmented using the steps function, or can provide more nuanced easing

behavior via the cubic-bezier function. Omitting this will animate the transition by using the default ease

preset.

 transition-delay—The delay time in seconds or milliseconds before the transition begins. Omit this if no

delay is needed.

It’s also possible to transition more than one property on an element. If you also wanted

to transition the width and the height of the .box element, you could add more to the

transition property:

.box{

 width: 64px;

 height: 64px;

 transition: width 2s ease-out, height 2s ease-out;

With these additional properties, the element will transition the width and height

properties of the .box element to whatever new width and height values are added to that

element’s hover state.

Next, you’ll observe the performance of the CSS transition versus jQuery-driven

animations.

3.4.2. Observing CSS transition performance

I prepared an animation benchmark that tests the performance of CSS transitions and

jQuery-driven animations. I created two identical HTML documents, each with a element

populated with 128 list items. In each test, I animated the list items to grow from a width

and height of 5rems to 24rems. In the first test, I used the jQuery animate() method, and

in the second test I used a CSS transition. The test is structured this way in order to

cause a massive amount of DOM reflow. I tested each of these scenarios by using Google

Chrome’s Timeline tool five times and recorded the average memory usage, CPU time, and

average frame rate of each run. Table 3.2 shows the averaged results.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03table02

Table 3.2. Benchmark results of CSS transitions vs. jQuery’s animate method in Google

Chrome

Transition type jQuery animate() CSS transition Performance gain

Avg. memory usage 5.10 MB 2.32 MB +54.51%

CPU time 2011.53 ms 1572.02 ms +22%

Avg. frames per second 44.4 41.1 +8%

The performance advantages in this scenario are clear, but they’re not ideal for all

situations. Although CSS transitions have their place and increase animation performance

at no cost to the user, they work best in simple situations and with simple UI effects such

as hovers and off-canvas navigation transitions. Depending on the website you’re building,

you may require much more complex animation behaviors, and in that case there are

better-performing JavaScript solutions that use the requestAnimationFrame() method, which

we touch on in chapter 8.

Don’t let this dissuade you from using CSS transitions, however, as they’re high

performing, work well for simple purposes, and have no overhead in the form of extra data

your user has to download. If your requirements are simple and you can implement

high-performance transitions using CSS rather than adding more weight to the page via a

JavaScript animation library, then use CSS transitions.

The next section covers how to inform the browser of the elements you intend to animate

with CSS transitions, and how this is beneficial.

3.4.3. Optimizing transitions with the will-change property

When the browser first executes a CSS transition, it must determine which aspects of that

element will change. When this happens, the browser has to do some work before the transition

executes for the first time. Although not necessarily suboptimal in and of itself, this

can have a negative impact on rendering performance.

To get around this, developers discovered a CSS hack that would promote the targeted element

to a new stacking context by using the translateZ property. When an element is given this

new status in the browser, it’s a roundabout sort of way to hint to the browser that this

element’s rendering should be handled by the GPU in the event that it’s animated with

CSS.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08

As with any useful hack, however, translateZ is now targeted for obsolescence with the new

will-change property. The problem with the translateZ hack is that it tells the browser,

“Something’s going to happen here, but I can’t tell you what.” With the will-change

property, you can inform the browser as to which aspects of the element will change.

Consider this property to be complementary to the transition property. You’ll recall with

transition that you can specify which style properties of the target element will change,

such as color, width, or height. The will-change property’s syntax works similarly:

will-change: property, [property]...

will-change accepts any valid CSS property, or a comma-separated list of properties that

can be animated. But be careful: understand that using it improperly can affect the way

that resources are allocated on a device. For example, you might be tempted to try to activate

this property on all DOM elements to optimize all transitions on a page, like so:

*,

*::before,

*::after{

 will-change: all;

}

Don’t do this. This can have a detrimental effect on page performance, especially in heavily
layered and complex pages. If you use this, what you’re doing is preparing the browser

for the possibility that every element on the page will change. This is just plain bad for

performance. The will-change property is a hint, and like all hints, it should be used with

discretion.

Another thing to consider when using will-change is that you need to give the property enough

time to work. This is a poor usage of the will-change property:

#siteHeader a:hover{

 background-color: #0a0;

 will-change: background-color;

}

The problem with this is that the browser won’t have time to apply the optimizations

necessary for any benefit to be realized. A better use of the property in this case is to

apply it to a parent element’s :hover state so that the browser can anticipate what will

happen:

#siteHeader:hover a{

 will-change: background-color;

}

This gives the browser enough time to prepare for changes to the element, because by the

time the user’s mouse enters the #siteHeader element and hovers on the link, all of the

a elements within it will have been prepared at the time of the #siteHeader element’s hover

event.

You can also use JavaScript to programmatically add will-change on demand. If a modal window

opens and there are background-color transitions on the <button> elements within it, you

could use something similar to the following code:

document.querySelector("#modal").style.display = "block";

document.querySelector("#modal button").style.willChange = "background-color";

After the modal is closed, you can remove the will-change property from the affected elements.

Working with this property is finicky, but if you’re steadfast, you can optimize

transitions on elements in an intelligent fashion without affecting overall page

performance. The key thing to remember about this property is that you anticipate potential
changes on elements rather than assuming they’ll happen.

3.5. Summary

You covered a lot of ground in this chapter, and you’ve learned the following:

 CSS shorthand properties not only are convenient, but also offer us a way to reduce the size of our style sheets

by cutting down on excessive and verbose rules.

 Using shallow CSS selectors can also significantly reduce the size of a style sheet, as well as make code more

maintainable and modular.

 Applying the DRY principle with the csscss redundancy checker can further winnow bloated CSS files by

enabling you to remove superfluous properties.

 Segmenting your CSS based on behavioral data can ensure that users who visit your site for the first time aren’t

downloading CSS for page templates they may never see.

 Mobile-first responsive web design is important, and starting with minimalism is best for creating

high-performance websites.

 A mobile-friendly website is a factor in Google search rankings. By ensuring that your site is mobile-friendly, you

can avoid detrimental effects to your site’s page rank.

 Avoiding the @import declaration, and placing your CSS in the <head> of the document, confers a positive

impact on your site’s rendering and load speed.

 Using efficient CSS selectors and the flexbox layout engine can improve the rendering speed of your website.

 CSS transitions for simple linear animations can be high performing, and are offered to the end user with no

practical overhead, because they require no external libraries to use.

 Informing the browser of element state changes with the will-change property allows you to selectively

boost the animation performance of certain elements, but only if you do so in a predictive and intelligent way.

Trying to optimize animation for all elements with will-change is not only wasteful, but also potentially

dangerous to performance.

The next chapter covers critical CSS, a technique for improving the perceived rendering

performance of pages. This technique expedites the rendering of above-the-fold content and

uses JavaScript to asynchronously load the rest of the page styles to give users the

impression that the page is loading faster.

Chapter 4. Understanding critical CSS

This chapter covers

 Understanding critical CSS and the problem that it solves

 Understanding how critical CSS works

 Using critical CSS in your projects

 Knowing the benefits of critical CSS before and after implementation

With some CSS optimization techniques under your belt, it’s a good time to learn an advanced

CSS optimization task that speeds up the rendering of a page by prioritizing rendering of

above-the-fold content. This technique is called critical CSS.

4.1. What does critical CSS solve?

Critical CSS is an optimization task that enables you to rethink how CSS is loaded by the

browser by prioritizing the CSS for above-the-fold content ahead of below-the-fold content.

When done properly, the user senses a perceived decrease in page-load time owing to faster

page rendering. But understanding critical CSS requires an understanding of what the fold
is.

4.1.1. Understanding the fold

When we talk about the fold, we think of print media. It makes sense to think of the fold

this way, because that’s where the concept originates. When newspapers are printed, the

most important story is printed at the top of the front page. This content strategy ensures

that when the papers are folded, bundled, and distributed, the lead story is seen on top.

Designers, marketers, and content strategists have long stressed the importance of placing

the most important content above the fold, and developers have been tasked with building
websites that meet this goal. The difference, though, is that the fold on the printed page

is always statically placed. After a design has been printed, the content’s job of adapting

to the medium is done. The page is folded, and the designer moves on.

The web is a much different medium. The fold changes position depending on the device’s

resolution, its orientation, and in the case of desktop devices, the size of the browser

window. Figure 4.1 illustrates this concept.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig01

Figure 4.1. A depiction of above- and below-the-fold content on an array of devices. The

above-the-fold content begins at the top of a website and ends at the bottom of the

screen. Anything that’s out of the browser’s view is below the fold.

When understanding where the fold is on the user’s screen, you anticipate as best as you

can the size of the user’s screen. This decision is informed by knowing common device

resolutions.

Why is this so important to know? Because critical CSS as a technique is dependent upon

knowing what is above and below the fold, and falls into two categories:

 The critical CSS, or above-the-fold content— These are styles for content that the user sees immediately and

that need to be loaded as fast as possible.

 The noncritical CSS, or below-the-fold content— These are styles for content that users don’t see until they

begin scrolling down the page. This CSS should be loaded as quickly as possible too, but not before the critical

CSS.

Now that you know where the fold is and how CSS is categorized in accordance with this concept,

you can begin to understand the limitations of conventional CSS delivery. This requires

a quick overview of how browser rendering is blocked when style sheets are downloaded and

parsed.

4.1.2. Understanding render blocking

Render blocking is any activity that keeps the browser from painting content to the screen
on a page’s initial load. This has often been considered an unavoidable fact of life on

the web. But as browsers and front-end development technology have matured, this undesired

behavior has become more avoidable.

In the case of CSS, render blocking began as a preferred behavior. Without it, the Flash

of Unstyled Content occurs, and we see an unstyled page for a brief moment before the CSS

is applied. Left to go on for too long, however, render blocking delays the display of a

site’s content to the screen. Knowing that time is of the essence and that your users won’t

wait for long, you should seek to minimize render blocking.

Varying degrees of render blocking occur, depending on where CSS is placed in the document,

and the method by which it’s loaded. Render blocking occurs when external CSS is loaded

with the @import directive or the <link> tag. In chapter 3, you discovered how @import can

delay rendering, and that the <link> tag is preferable. But the truth is that although <link>

is a fine way to load CSS, it too blocks rendering.

To see render blocking in action, open the Coyle Appliance Repair website from chapter 1.

While the site loads, capture the activity in Chrome’s Timeline profiler (as you learned

how to do in chapter 2). After the profiler populates with data, you can go to bottom of

the pane, click the Event Log tab, and filter out all but the painting events. If you sort

the Start Time column by ascending order, you’ll see the Time to First Paint event on the

page, as in figure 4.2.

Figure 4.2. Chrome’s Timeline profiler when the document’s first painting event occurs.

The event can be found under the Event Log tab by filtering out all but the painting

events.

Waiting about 860 ms is a tad long for the document to begin painting. So how do you fix

this? For starters, you can inline the website’s CSS directly into index.html, inside the

<style> tags. This reduces the time it takes for content to begin rendering, as you can

see in figure 4.3.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig03

Figure 4.3. Chrome’s Timeline profiler showing an improved paint time after the contents

of the site’s CSS have been inlined into the HTML

This approach cuts both ways, and the problem is that it works on only single-page websites,

where it makes sense to do away with a separate CSS file. On larger and more complex sites,

it’s only half of a cogent solution.

Inlining and HTTP/2

Although inlining is a suitable practice for HTTP/1 servers and clients, it shouldn’t be

used with HTTP/2 servers. This functionality can be achieved by using HTTP/2’s server push

feature while maintaining cachability. To learn more about server push and HTTP/2, check

out chapter 11.

4.2. How does critical CSS work?

Critical CSS separates styles into two categories: styles for above-the-fold content and

styles for the rest of the page. In this short section, you’ll learn how to load the styles

for each.

4.2.1. Loading above-the-fold styles

In the preceding section, we discussed the problem of render blocking when using the <link>

tag. By inlining CSS into the <style> tag as illustrated in figure 4.4, you can fix this

issue.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig04

Figure 4.4. Inline styles loaded for above-the-fold content. The CSS for the above-the-fold

content is inlined into the HTML for faster parsing, which translates into a faster Time to

First Paint.

If you inlined the CSS from the Coyle Appliance Repair website into the HTML in the preceding

section, congratulate yourself, because you’ve already performed half of what’s required

for the critical CSS technique to work on more-complex sites.

The reason inlining CSS works so well is that the browser doesn’t have to wait as long.

When the HTML for a page is loaded, the document is parsed, and URLs to other assets are

found. If the styles are externally loaded via a <link> tag, the rendering is blocked while

the browser has to wait for the CSS. But when the styles are inlined into the HTML, the

user needs to wait only for the HTML to load before the CSS is parsed and the page is rendered.

This is wonderful, but it comes with a detriment: when you load all of the CSS for a site

in this way, you lose its portability. You end up duplicating CSS on every page load, which

means that you’re bloating every subsequent page load with something that you’re not

caching effectively. The <link> tag takes advantage of caching to optimize return visits.

Critical CSS does account for this to a degree. You bucket only the styles for above-the-fold
content into the <style> tags and inline that into the HTML, leaving the rest of the styles

to be loaded from an external file.

Does this make some of your CSS redundant in subsequent page loads? Sure, but only for a

small portion of your site’s global above-the-fold content. The decreased Time to First

Paint will offset the detriment of that redundancy. Even if you’re using CSS frameworks,

you can still inline the portions of the framework that are being used for a particular

page. When the browser begins painting the page more quickly, the desired effect is achieved,

and the user won’t notice the performance detriment of a small amount of redundant CSS.

4.2.2. Loading below-the-fold styles

The other half of critical CSS is to load styles for below-the-fold content. These styles

are loaded using a <link> tag, but instead of using it in the usual way, you’ll use a preload

resource hint to load CSS without blocking rendering. You’ll also load a script that

polyfills preload functionality for browsers that don’t support it.

This seems like overkill, but it yields results, especially when combined with inline CSS

for above-the-fold content. The browser renders the above-the-fold CSS immediately, while

the preload resource hint grabs the styles for the rest of the page in the background.

Want to know more about resource hints?

The preload resource hint is only one of a set of hints that help you fine-tune the loading

of assets, not only critical CSS. To learn more about resource hints, see chapter 10.

You may say, “JavaScript blocks rendering, too!” In the case of externally loaded scripts,

you’re correct. In this case, though, you inline a tiny 1.5 KB script developed by the

Filament Group called loadCSS to do the job. With this, you can use preload to load CSS

for below-the-fold content by using a single syntax for all browsers, as shown in figure

4.5.

Figure 4.5. The preload resource hint loading external CSS for below-the-fold content.

This method loads an external style sheet in a way that doesn’t block rendering. When

the CSS has finished loading, an onload event fires and flips the rel value of the <link> so

that the styles render.

The way this method works is ingenious. Instead of using a <link> tag to load the CSS as

you normally do, you use a preload hint, like so:

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig05

<link rel="preload" href="css/styles.min.css" as="style"

onload="this.rel='stylesheet'">

This has the effect of loading the CSS without blocking rendering. The onload event handler

on the tag fires when the CSS finishes downloading. Once downloaded, the rel attribute’s

value is flipped from preload to a value of stylesheet. This changes the <link> tag from

a resource hint to that of a normal CSS include, which applies the CSS to the below-the-fold

content. The JavaScript polyfill is there in case the preload hint is unsupported. Easy

as pie!

With the two methods of loading CSS for above- and below-the-fold content clear, you can

now set out to implement this technique on a client’s recipe website.

4.3. Implementing critical CSS

Now you’ll learn how to implement critical CSS on a single page of a mobile-first responsive

recipe website. The work you do on the site will take you through the following steps:

1. Setting up the website to run on your local machine

2. Identifying the above-the-fold CSS in each of the breakpoints

3. Separating the above-the-fold CSS from the rest of the CSS, and inlining it into the

HTML

4. Using preload to load the rest of the site’s CSS without blocking rendering

4.3.1. Getting the recipe website up and running

To complete the work in this chapter, you’ll continue to use git, npm, and node to download

and run this website. In addition, you’ll use LESS, a popular CSS precompiler.

A note for SASS users

I understand that some developers may prefer SASS over LESS, but for clarity’s sake, this

website example uses LESS rather than trying to cater to users of both precompilers. If

you’ve used SASS, LESS will feel familiar. Even if you’ve never used a CSS precompiler,

using LESS won’t impede your progress. The precompiler used is inconsequential to the

takeaways of the work you’ll do in this chapter.

Downloading and running the recipe website

A friend of yours is running a recipe website and has asked whether you can make it render

faster. The recipe website space is filled with stiff competition, so speed is vital to

maintaining the engagement of the site’s visitors. Sounds like a job for critical CSS!

Start by using git to download and run the site on a local web server with the following

terminal commands:

git clone https://github.com/webopt/ch4-critical-css.git

cd ch4-critical-css

npm install

node http.js

As with prior examples, this installs the Node packages and runs the website on your local

machine at http://localhost:8080. After the server is up and running, the site will look

like figure 4.6.

Figure 4.6. The recipe website in Chrome. This is the tablet breakpoint at roughly 750

pixels wide.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig06

With the site running, use Chrome’s Timeline tool to discover the Time to First Paint for

the site. Because you’re running from a local web server, you’ll want to simulate an

internet connection by using the network throttling tool. This will allow you to identify

performance improvements in a consistent fashion. Use the Regular 3G throttling profile.

The Time to First Paint doesn’t differ based on which breakpoint the page is displayed

in. It’s a matter of how quickly the browser can fetch and process the CSS and the

capabilities of the device. At the end of your efforts, you can expect to see a 30–40%

improvement in the time it takes for the browser to begin painting the page.

Next, you’ll briefly review the folder structure of the website, so you can be familiar

with where all of the site assets live and what they do.

Reviewing the project structure

The structure of the site should be a familiar setup for most developers. The HTML is at

the site’s root folder and is named index.html. The js folder contains a couple of pertinent

JavaScript files, such as scripts.min.js, which has a few simple behaviors for the site,

and the minified preload resource hint polyfill in loadcss.min.js and cssrelpreload.min.js.

You’ll invoke this polyfill in section 4.3.3.

The less folder contains the LESS files for the project. The main.less file generates the

styles.min.css file that resides in the css folder. This file is already loaded via a <link>

tag in index.html. The critical.less file is used to generate the critical.min.css file

that will be inlined into index.html. Each of these files grabs componentized,

breakpoint-specific files in the components subfolder. These files are categorized as

follows:

 Global components— These initially contain all of the styles for the website:

o global_small.less

o global_medium.less

o global_large.less

 Critical components— These are initially empty but will be the destination for the critical above-the-fold CSS:

o critical_small.less

o critical_medium.less

o critical_large.less

Now that you know how the website is structured, and what files reside where, you can move

on to figuring out where the fold exists for the recipe website.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec7

4.3.2. Identifying and separating above-the-fold CSS

In this section, you’ll be tasked with separating the critical CSS for above-the-fold

content from the main CSS, and inlining it into index.html. To start, you’ll identify where

the fold exists.

Identifying the fold

Identifying and bucketing above-the-fold CSS in the document is an exercise of looking at

the page in the browser and identifying the elements that are visible on the screen when

the page first loads. Anything that’s visible is above the fold. Sounds simple, right?

That’s correct in theory, but in practice it’s a bit more complex. The devices you use

aren’t always the ones that everyone else uses. If you use a laptop that has a resolution

of 1280 x 800 and the window is maximized, your fold is 800 pixels minus the height of the

browser-interface elements (toolbars, address bar, and so forth). That doesn’t assume that

the window is sized differently, or that it’s even on a laptop to begin with. One user

may be using an iPad, and the next might be browsing on an Android phone.

Thankfully, there’s a great website with a sortable list of resolutions for various devices

at http://mydevice.io/devices. To see where the fold exists on these devices, you can sort

the CSS Height column in descending order, as illustrated in figure 4.7.

http://mydevice.io/devices
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig07

Figure 4.7. A chart of common device resolutions on mydevice.io, sorted in descending

order by CSS height. The site also offers information for devices other than mobile

phones. The physical resolution differs from CSS resolution in that they’re both

normalized to the same scale for consistency.

Using this data, you can make determinations about the location of the fold for your site.

To assist you in visualizing where this line is on a page, I’ve made a bookmarklet called

VisualFold! You can find this tool at http://jlwagner.net/visualfold. To use it, drag the

bookmarklet to your bookmarks, click it, and enter a number where you want a line drawn,

as shown in figure 4.8. You can also draw multiple guides at once by entering a

comma-separated list of numbers.

http://jlwagner.net/visualfold
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig08

Figure 4.8. The VisualFold! bookmarklet in action. The user enters a number in a dialog

box (left) indicating the desired location of a guideline to be drawn on the page (right).

This assists the user in locating the fold. By resizing the window, the user can see how

the content flows with respect to this line.

With this tool, draw guides at positions of 480, 667, 768, 800, 900, 1024, and 1280 pixels.

These are common vertical resolutions for popular devices, and most devices are covered

anywhere in between. After making these guides, resize the browser window to see where the

content falls on each breakpoint.

You’ll see that in all breakpoints, the 1280 pixel line falls somewhere within the recipe

steps section. In the medium and large breakpoints, this line also falls over the right-hand

column content. 1280 pixels seems reasonable, as it covers how the content is displayed

on all devices.

Using this approach, you now have a threshold set for your critical CSS, and can begin the

process of separating those styles from the main CSS and placing them into your critical

CSS.

Identifying the critical components

The next step is to examine the page in each breakpoint and to take inventory of the

components that are above the fold. Some of these components exist above the fold in all

breakpoints.

Automating the process

The process of determining the critical CSS on a page can be automated by using the Filament

Group’s CritcalCSS Node program at https://github.com/filament-group/criticalCSS. Using

this tool isn’t covered in this chapter, so you can learn to identify critical components

on your own. Some idiosyncrasies in the program also may break the appearance of your site.

If you decide to go this route, be sure to examine the output!

Start by resizing the viewport to the mobile breakpoint. If you haven’t placed a guide

at 1280 pixels, use VisualFold! now to do so. After the line is in place, inventory the

critical components on the page above the guideline, as shown in figure 4.9.

Figure 4.9. The mobile breakpoint of the page with labels of the critical components

Figure 4.9’s component inventory is relevant only for this site. When you do this for your

own site, your inventory will vary. With this step complete, you can enlarge the window

into the larger breakpoint and number the new critical components on the page, as shown

in figure 4.10.

https://github.com/filament-group/criticalCSS
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig10

Figure 4.10. The large breakpoint with components labeled that were below the fold on

the mobile version

Note that when you cross into the large breakpoint, the content splits into two columns.

Figure 4.10 highlights five additional critical components that appear below the fold in

the mobile breakpoint. Thus, these become critical components on larger screens.

Normally, you would take stock of the largest breakpoint, but in this case, no new critical

components appear above the fold in this breakpoint. The header changes, but the rest of

the page expands until the page container’s max-width of 1024px is satisfied.

Now that you have an inventory of the components that are above the designated fold line,

you can move on to separating the critical CSS from the main style sheet.

Separating the critical CSS

With the critical components determined, you can strip out their related styles from the

breakpoint-specific includes referenced by main.less, and place them into the includes

referenced by critical.less. With this mobile-first website, much of the default styling

is defined in the global_small.less file, and trickles up to the medium and large breakpoints.

Table 4.1 lists the inventoried components and their related parent container selectors.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04table01

Table 4.1. Critical components and their related parent container selectors. These

selectors can be used to search for styles for the components in the site’s LESS files.

Critical component Related parent container selector

Site header header

Content hubs .destinations

Recipe title .recipeName

Content container #content

Recipe image #masthead

Recipe attributes .attributes

Social buttons .actions

Recipe description .description

Section header .sectionHeader

Ingredient List .ingredientList

Banner ad .ad

Recipe steps .stepList

Main column #mainColumn

Right column aside

Content list/collection list .contentList

Right column ad .ad

Before diving into the contents of table 4.1, you’ll need to move the reference to

reset.less from line 2 of main.less to line 2 of critical.less. reset.less is a global

component derived from Eric Meyer’s CSS reset (http://meyerweb.com/eric/tools/css/reset)

that resets the default styling of many elements for more-consistent rendering across

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04table01
http://meyerweb.com/eric/tools/css/reset

browsers. Because all elements on the page inherit from this component, these styles are

definitely critical.

Once finished, save both files and compile main.less. How you compile depends on your

operating system. On UNIX-like systems such as OS X and Linux, run less.sh at the root of

the project. On Windows systems, run less.bat instead. You’ll run this script every time

you make changes to any of the project’s .less files.

A smart thing to do before you start moving styles to the critical CSS component files is

to comment out line 7 of index.html. This line is the <link> tag reference that brings in

the site’s styles. This leaves the page unstyled, but it makes visualizing the critical

CSS much easier when you begin inlining critical.min.css into the page.

With the CSS reset module moved to critical.less, the next step is to employ and repeat

a procedure for each of the critical components and their selectors listed in table 4.1.

Beginning with the header component, open the global_small.less file in the components

folder and find the header selector. Cut and paste the header selector into the

critical_small.less file in the critical folder, save all files, and rebuild main.less.

After the LESS files rebuild, open critical.min.css in the css folder in your text editor

and copy the contents of it into <style> tags in the <head> of index.html. When you do this,

the page should look something like figure 4.11.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig11

Figure 4.11. The appearance of the recipe website after you’ve inlined the header

selector CSS into the HTML. It’s partially styled, but much is still missing.

Clearly you’re still missing many styles. The <header> element on the page appears to be

somewhat styled, but it has many child elements, all with their own styles. In order for

this critical component to be fully added to the critical CSS, it’s necessary to dive into

the HTML, take an inventory of which elements are children of the <header> element, and

locate the associated CSS selectors. The following is a list of selectors in

global_small.less that contain styling for the <header> element’s children:

 #logo

 #innerHeader

 nav

 nav:hover .nav

 #navIcon

 #navIcon > div

 .nav

 .show

 .navItem

When you cut and paste the CSS for these elements from global_small.less into

critical_small.less and rebuild main.less, you’re left with what you see in figure 4.12.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig12

Figure 4.12. The critical CSS after all of the header styles have been inlined into

index.html

As you can tell, styles are looking much better for the header. After the CSS for the

component has been moved into the critical CSS in the small breakpoint, repeat the same

task across all the breakpoints. Progress into the global_medium.less and global_large.less

files and move the header-related styles into the critical_medium.less and

critical_small.less files, respectively. After you’ve done this for each of the

breakpoints, recompile main.less and re-inline the contents of critical.min.css into

index.html.

Repeat these steps until you’ve worked your way through all the critical components in

table 4.1, each time recompiling and re-inlining the critical CSS into index.html. The

finished page should appear as it did before you began your efforts, with most of the styling

missing for components below the 1280 pixel line.

Want to skip ahead?

If you’re stuck, you can skip ahead and use git to see how the critical CSS has been

implemented. To do this, open the terminal and enter git checkout -f criticalcss, and the

completed work will be downloaded.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04table01

With the critical CSS separated from the global CSS, you can go about loading the rest of

the page CSS by using the preload resource hint on the <link> tag.

4.3.3. Loading below-the-fold CSS

The last step is to asynchronously load the CSS for the below-the-fold content that’s left

in styles.min.css. You may be inclined to accomplish this with a standard <link> tag include,

but as we discussed in section 4.1.2, <link> tags block rendering of the page. You want

to avoid this, so you’ll be employing the aforementioned preload resource hint.

Loading CSS asynchronously with the preload resource hint

As discussed earlier, the preload resource hint instructs the browser to begin fetching

an asset as soon as possible. In the case of critical CSS, you use this hint to asynchronously

load the less important CSS for the below-the-fold content without blocking rendering of

the page. To do this for the recipe website, you’ll remove any <link> tag in index.html

and add the two lines in this listing right after the inlined CSS.

Listing 4.1. Using the preload resource hint to asynchronously load a CSS file

This not only asynchronously loads the CSS, but also covers users who have JavaScript

disabled by loading the noncritical CSS via traditional means from within the <noscript>

tag, shown in the last line. Those users will be afflicted by the render-blocking behavior

of the old CSS-loading behavior, but they won’t be left with an unstyled page.

Polyfilling the preload resource hint

Not all browsers support resource hints, and support for the feature is generally limited

to Chromium-based browsers such as Chrome and Opera. Therefore, this approach will fail

for a large subset of your users. To get around this, you’ll use a polyfill available from

the Filament Group called loadCSS, available at https://github.com/filamentgroup/loadcss.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04lev2sec2
https://github.com/filamentgroup/loadcss

I’ve included the scripts for this polyfill with the GitHub repo for the recipe site in

the js folder. These files are cssrelpreload.min.js, which polyfills the preload resource

hint functionality, and loadcss.min.js, which provides the asynchronous CSS-loading

behavior for when preload resource hint functionality is unavailable.

Using the polyfill is easy. You could include loadcss.min.js and cssrelpreload.min.js by

using <script> tags in that order, but that would block rendering, which is what you’re

trying to avoid. Instead, you should inline these scripts in the order indicated within

a single <script> tag, and place the inlined scripts after the code indicated in listing
4.1. When you do this, you can test the loading behavior in browsers that don’t support

the preload behavior, such as Safari. You should find that the CSS for below-the-fold content

should render (and before, without the polyfill scripts, it wouldn’t).

With the critical CSS method fully implemented into the recipe website, you can go on to

analyze the benefits of your work.

4.4. Weighing the benefits

Before we began, I claimed that you would see a 30–40% decrease in Time to First Paint.

Using Chrome, I assessed this performance indicator across several throttling profiles.

You can see the results in figure 4.13.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig13

Figure 4.13. Time to first paint performance in Google Chrome before and after

implementing critical CSS

As you can see, as connection speed increases and latency decreases, the returns diminish.

This is true of any kind of front-end optimization you make. Not every connection is created

equal, and it’s particularly important to optimize for mobile users who are the most likely

to be on low-quality internet connections.

For mobile devices accessing the recipe website from a shared host, the benefits were a

bit more modest, showing roughly a 20% improvement, as you can see in figure 4.14.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig14

Figure 4.14. Time to First Paint in Mobile Safari on an iPhone 6S over a remote shared

host before and after prioritizing critical CSS

One statistic to remember is that 0.1 seconds is the limit for a user to feel like an interface

is reacting instantaneously. Decreasing your Time to First Paint in addition to other
techniques you’ve already learned (and more that you’ll learn later) will make that user

feel like the site is responding quickly. If that’s important to you, it’s worth

considering applying critical CSS to your website. The sooner users feel that your site
can be interacted with, the more likely they’ll stick around to see what you have to offer.

4.5. Making maintainability easier

The biggest obstacle to maintainability with critical CSS is inlining. It’s not efficient

to copy and paste critical CSS into the <head> of the document every time it changes. It’s

also a pain to inline the polyfill scripts. If something changes, you’d have to re-inline

the changed code. Ideally, you want the maintainability of separate files but to have them

automatically inlined so you can reap the rendering benefits of resource inlining.

One way to cut down on the mundane work of copying and pasting code is to use a server-side

language to inline files into your HTML. PHP’s file_get_contents function is perfect for

this task. This function reads a file from the disk and allows you to inline it in a document.

This is how to inline critical CSS in the <head> of a document by using this function.

Listing 4.2. Using PHP to inline a style sheet

This approach allows you the modularity of separate files, while also enjoying the benefits

that inlining provides. PHP doesn’t have the monopoly on this capability, either. Any

widely used server-side technology will have an equivalent method you can use to achieve

the same result.

4.6. Considerations for multipage websites

This chapter walked you through implementing critical CSS on one page, but what about

multipage sites? The approach is similar, but as shown in figure 4.15, the focus is on

modularity.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig15

Figure 4.15. A modularized approach to critical CSS. Template A and Template B have

their own critical CSS that’s inlined only for those pages, but both inline globally

common critical styles.

In figure 4.15, you can see two page templates: Template A and Template B. Both are unique

in that they have different CSS for their own above-the-fold content. For greater efficiency,

it makes sense that the critical CSS for each page template is split into separate files.

Those files are then inlined for only the pages that need them.

But there are critical styles for components that exist on every page on a website, such

as the header, navigation, headline styles, and so forth. It makes sense to bucket those

styles separately and inline them on all pages across the site.

When implementing critical CSS on a large website with several templates, the idea is to

avoid combining the critical CSS for every unique page template on every page. Bucket those
styles accordingly, and inline only the CSS that you need for a particular page.

The good news is that this doesn’t change how you implement critical CSS. The process is

the same; you’re repeating it for each page template. More importantly, research your site

analytics and consider using this method on your high-value pages, where the dividends will

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig15

be greater. Critical CSS requires a good deal of effort, and the benefits are worth the

trouble, but prioritize it for your most important content pages above all else.

4.7. Summary

In this chapter, you learned the importance of critical CSS. As a part of this broad,

overarching concept, you learned these smaller concepts and methods:

 The fold is a flexible concept. It refers to the cutoff point at which content is not visible on the screen. It also

changes based on the device viewing the page.

 <link> tags block the rendering of a web page, which creates delays in document painting. Critical CSS allows

you to eliminate this behavior.

 Critical CSS works by prioritizing the loading of CSS for above-the-fold content over CSS for below-the-fold

content. The critical CSS is inlined into the site’s HTML, and the noncritical styles are loaded in deferred fashion.

When you defer the loading of the noncritical styles, you sidestep the effects of render blocking on the page.

 Implementing critical CSS not only gives the user the impression that the page is loading faster, but also is a

measurable phenomenon. A page’s Time to First Paint value decreases when critical CSS is used, and you can

compare the effect of critical CSS on this metric by using Chrome’s Timeline tool.

Now that you understand how to implement critical CSS and have witnessed the benefits it

provides to the user, you can move onto the next chapter. Next, you’ll learn the importance

of serving images according to the capabilities of the devices that are requesting them.

Chapter 5. Making images responsive

This chapter covers

 Using CSS media queries to deliver the right background images for a user’s device

 Delivering responsive images in HTML using srcset and the <picture> element

 Using Picturefill to polyfill srcset and <picture> in certain browsers

 Using SVG images in CSS and HTML

Now that you’ve learned useful CSS optimization techniques, you can dive into the

importance of managing the images on your website.

Images often compose the largest portion of a website’s total payload, and that trend shows

no sign of changing. Though internet connection speeds are continually improving, many

devices are shipping with high DPI displays. In order for images to display optimally on

these devices, higher-resolution imagery is required. Because you still need to support

devices with less-capable screens, however, you still require lower-resolution images and

must pay attention to the way images are delivered to various devices.

When you think about image delivery, the intent isn’t only to deliver the best visual

experience possible, but also to deliver images that are appropriate for a device’s

capabilities. Knowing how to properly deliver images ensures that devices with less

capability are never burdened with more than what they need, while ensuring that the most

capable devices are receiving the best possible experience. Maintaining this balance

ensures an appropriate mix of visual appeal and performance.

5.1. Why think about image delivery?

One component of web performance as it pertains to imagery means delivering the right image

sizes and types to the devices that can best use them. This section introduces the importance

of properly delivering images—in CSS as well as in HTML. When we talk about image delivery,

what we’re really talking about is serving images responsively.

Responsive images matter if you care about the performance of your website. It’s important

for your CSS to be responsive so that your site is viewable on as many devices as possible.

But it’s also important for your images to be responsive for these two reasons: scaling

and file size.

When images are served with responsiveness in mind, users are getting the best experience

that their devices are capable of. For instance, one large image can scale down well for

all devices, but it isn’t the best choice even if it looks great for all devices. The device

has to take an image that’s grossly oversized and rescale it to fit the screen. This image

will also have a larger file size, thus taking more time to download. This impairs

performance.

Instead, it makes more sense to serve images to best fit the device’s needs. This entails

maintaining multiple sets of images, but the effort is worthwhile because processing and

downloading times are minimized. Figure 5.1 illustrates inefficient versus efficient

methods of image scaling.

Figure 5.1. Two examples of scaling an image to a mobile phone. At the top, a 170-KB

image with a width of 1440 pixels is scaled down to the width of the phone’s high DPI

display. At the bottom, a 41-KB image with a width of 750 pixels is delivered to the

screen without having to be scaled; this process is more efficient.

The performance impacts of responsive imagery must be examined as well. Google Chrome’s

Timeline tool comes in handy once again in measuring the rendering and painting performance

of inefficient versus efficient image scaling. This test was run five times for each scenario

and captured two aspects: rendering and painting time. Figure 5.2 shows the results.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig02

Figure 5.2. A comparison of rendering and painting times for a single image in Chrome.

For the scaling scenario, the source image of 1440 x 900 is scaled to fit a container 375

pixels wide. In the no-scaling scenario, an image resized to fit the container is used and

triggers no scaling. Rendering and painting times are faster with no scaling.

In this scenario, I observed a 15% improvement in rendering time and a 36% improvement in

painting time. Though this represents an improvement of only a millisecond, it’s important

to remember that this measurement was taken for a single image. Implementing responsive

imagery across an entire website can help make pages feel more responsive to user input

by reducing processing time.

Is it possible to deliver perfectly scaled images for all devices? Anything is possible,

but such a goal isn’t practical. The best approach is to define an array of image widths
that covers the entire spectrum of your needs, with the understanding that some overlap

will exist between images in the array to cover the needs of different devices and display

densities. Some scaling is always going to happen. You want to minimize how much of it occurs.

How you use responsive images depends on where they’re being used. As you well know, images

are most often referenced in CSS and HTML. As you work through the rest of this chapter,

you’ll learn about the various types of images, their best uses, and ways to use them in

a responsive fashion in both CSS and HTML.

5.2. Understanding image types and their applications

Using images on the internet was once simple: a few formats existed, but all were bitmap

(also known as raster) images. Some images were better suited than others for certain tasks.
These rules hold true today, but the landscape has changed, and the playing field is larger

than it used to be. In this section, you’ll learn about the two major image types: raster

and SVG.

5.2.1. Working with raster images

As you likely know, the most common type of image used on the web is a raster. These are
sometimes called bitmap images. Typical examples are JPEG, PNG, and GIF images. These
comprise pixels aligned on a two-dimensional grid. Figure 5.3 shows an example of a YouTube

favicon enlarged from 16 x 16 pixels to 512 x 512 pixels to illustrate the concept.

Figure 5.3. A 16 x 16 raster image of a YouTube favicon. On the left is the native size of

the image, and on the right is the enlarged version. Each pixel is part of a

two-dimensional grid.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig03

Raster images are used to depict many things on the web: logos, icons, photos, and so on.

In HTML, they’re displayed using tags. In CSS, they’re often used in the background

property, but also find use in other lesser-used properties such as list-style-image.

Raster images come in a few formats, and each is best suited to a particular kind of content.

In this section, you’ll categorize these images by the way they’re compressed. Recall

that in chapter 1 you used server compression to achieve smaller file sizes for style sheets,

scripts, and HTML assets. In this section, you’ll learn about compression as it pertains

to raster images, which fit into two categories: lossy and lossless.

Lossy images

Lossy images use compression algorithms that discard data from an uncompressed image source.
The idea behind these image types is that some level of quality loss is acceptable in exchange

for smaller file sizes.

A good example of lossy images happens right in your digital camera. When you download photos

from a digital camera’s storage card, you’re typically downloading them as JPEGs. When

the camera takes a photo, it stores an uncompressed version of the photograph in memory

and uses lossless compression to convert the uncompressed source to a JPEG image.

JPEG images are nearly everywhere on the web. A prolific example of the JPEG format put

to use is on the popular photo-sharing website Flickr, shown in figure 5.4.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig04

Figure 5.4. JPEG images in use on the popular photo cataloging and sharing site Flickr.

Photographic content is best suited to the JPEG format.

A drawback of this format is that extreme compression can be noticeable. These file types

are also susceptible to generational loss if they’re not saved from an uncompressed source

such as a PSD file. Generational loss occurs when an already-compressed file is recompressed,

resulting in further visual degradation. In practice, however, the degradation shouldn’t

be noticeable if compression is used with care, and these image types are saved from an

uncompressed source.

Figure 5.5 shows two versions of a photograph. The left image is the uncompressed source,

and the right image is a copy after a reasonable amount of JPEG compression has been applied

to it.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig05

Figure 5.5. A comparison of the same image in uncompressed (TIFF) and compressed

(JPEG) formats with their respective file sizes. The JPEG version has some subtle

degradation at a quality setting of 30, but is acceptable for this scenario.

Photo credit: NASA Jet Propulsion Laboratory.

The visual quality shows subtle signs of degradation from the uncompressed source to the

compressed JPEG. Considering that the JPEG is about 96% smaller than its uncompressed TIFF

version, this loss in visual quality is an acceptable trade-off. The output quality of the

JPEG algorithm is expressed on a scale of 1 to 100, where 1 is the lowest and 100 is the

highest.

JPEG isn’t the sole lossy image format used on the web. Other such formats exist, such

as Google’s new WebP image format (covered in chapter 6). Now let’s look at lossless image

types.

Lossless images

On the other end of the spectrum are lossless images. These image types use compression
algorithms that don’t discard data from the original image source. A good example of a

lossless image in action is the Facebook logo on the desktop version of its site, as shown

in figure 5.6.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig06

Figure 5.6. The Facebook logo is a PNG image, which is a lossless image format. PNG

images are well suited for lossless formats.

Unlike lossy image formats, lossless formats are perfect when image quality is important.

This makes lossless formats a great candidate for content such as icons. Lossless image

types usually fall into two categories:

 8-bit (256-color) images— These are formats such as the GIF and 8-bit PNG formats and support only 256 colors

and 1-bit transparency. Despite their color limitations, they’re great candidates for icons and pixel art images

that don’t require a lot of colors or sophisticated transparency. The 8-bit PNG format tends to be more efficient

than GIF images. Unlike GIFs, however, PNGs have no support for animation.

 Full-color images— The only formats that support more than 256 colors are the full-color PNG format and the

lossless version of the WebP format. Both support full alpha transparency and up to 16.7 million colors. The

full-color PNG format enjoys wider support than WebP. These image types are well suited for icons and photos,

but their lossless nature means that photographic content is usually best left to the JPEG format unless

transparency support is a must.

Results of lossless image formats depend on the subject of the image. Figure 5.7 provides

a generalized comparison of lossless image compression methods.

Figure 5.7. A comparison of lossless image-compression methods. The differences

between the uncompressed and full-color PNG and WebP versions are imperceptible,

whereas the 8-bit lossless image is throttled down to 256 colors.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig07

Photo credit: NASA Jet Propulsion Laboratory.

The various lossless formats have their advantages in certain types of content, and are

overall well-suited for line art, iconography, and photography. The trick to finding the

right fit requires experimentation, but the basic rules of using these formats are generally

simple: Simple images with few colors should use 8-bit lossless formats. Images not suitable

for lossy formats and/or in need of full transparency should use the full-color PNG format.

The next section covers an entirely different class of image aside from raster images:

scalable vector graphics.

5.2.2. Working with SVG images

Another type of image format used on the web is Scalable Vector Graphics, commonly referred
to as SVG. These images use a vector artwork format. They’re different from raster images

in that they can be scaled to any size, because they’re composed of mathematically

calculated shapes and sizes. Figure 5.8 demonstrates this effect.

Figure 5.8. A cartoon vector image at different sizes. Notice that the larger version

doesn’t lose any visual quality as it scales up. This is the primary advantage of vector

images over raster images.

Vector images scale so well because of the way they’re rendered. Although all device screens

are pixel-driven, and thus all display output eventually ends up being represented by pixels,

vector images go through a different process than raster images when they’re displayed

on a screen. They’re parsed, their mathematical properties are evaluated, and then they’re

mapped to the pixel-based display through a process called rasterization. This occurs every
time the image is scaled, ensuring the best possible visual integrity every time.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig08

If you’re familiar with creating vector artwork, you’re familiar with programs such as

Adobe Illustrator. Although file formats native to these programs are expressed in binary,

the SVG format is expressed as XML, which is a text format. The SVG media type image/svg+xml

reflects its roots in XML. This characteristic allows you to edit SVG files in a text editor,

place SVG files inline in HTML, and even to use CSS and media queries in SVG files.

Although SVG has been a W3C standard since 1999, its use in websites has been only relatively

recent. The fact that SVG works so flawlessly across different device resolutions and

display densities makes it a popular image format.

SVG isn’t a silver bullet, however, and it’s limited in its applications. SVG images

aren’t suitable for photographs, and are most effective when used to depict logos,
iconography, or line art. Images with solid colors and geometric shapes are well served

by this flexible image format.

5.2.3. Knowing what image formats to use

With all of the image types available, knowing which type makes the most sense for a certain

kind of content can be daunting. Although vector images are a standalone category with SVG

as the prevailing format, raster images are classified by the two categories of compression

(lossy and lossless) and within them are a slew of formats. Table 5.1 should give you some

ideas on the kinds of content that fit best with each image type

In the next section, you’ll optimize image delivery in CSS for a website’s masthead image.

Table 5.1. You can choose an Image format based on the type of content for your site.

Each image for mat varies in color restrictions, image type, and compression category.

(Full color indicates a range of 16.7 million or more colors, 24/32-bit.)

Image

format

Colors Image

type

Compression Best fit

PNG Full Raster Lossless Content that may or may not require a full range of colors.

Quality loss is unacceptable, and/or the content requires full

transparency. Accommodates any image format, but may not

compress as well as JPEG for photographs.

PNG

(8-bit)

256 Raster Lossless Content that doesn’t require a full range of colors but might

require single-bit transparency—such as icons and pixel art.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table01

Image

format

Colors Image

type

Compression Best fit

GIF 256 Raster Lossless Same as 8-bit PNG with somewhat lower-compression

performance, but supports animation.

JPEG Full Raster Lossy Content that requires a full range of colors and for which

quality loss and lack of transparency are acceptable—such as

photographs.

SVG Full Vector Uncompressed Content that may or may not require a full range of colors, and

for which quality loss is unacceptable when scaled. Best for line

art, diagrams, and other generally nonphotographic content.

Requires the least amount of development effort for optimal

display on all devices.

WebP

(Lossy)

Full Raster Lossy Same as JPEG, but also supports full transparency, with the

potential for better compression performance.

WebP

(Lossless)

Full Raster Lossless Same as full-color PNG, with the potential for better

compression performance.

5.3. Image delivery in CSS

Image delivery in CSS is a great place to start, because it involves CSS properties and

features that you’re familiar with if you’ve ever developed responsive websites. The main

CSS feature you’ll use to properly deliver images is the media query.

This time around, you’ll optimize the delivery of a masthead image for Legendary Tones,

a website introduced in chapter 1 that publishes articles of interest to guitarists. The

images in this site are poorly managed, resulting in low quality on larger screens. You

want to deliver higher-quality images to these users, but you want to do so in a way that

doesn’t overburden them with images that are too large, no matter the device they could

using. You also want to ensure that users with high DPI displays are getting the best possible

experience on their screens.

You’ll start by downloading this website and running it locally. To do this, you need to

perform these commands in a folder of your choosing:

git clone https://github.com/webopt/ch5-responsive-images.git

cd ch5-responsive-images

npm install

node http.js

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01

After the website has been downloaded, you can pull it up on your local machine at

http://localhost:8080. It should look something like figure 5.9.

Figure 5.9. The Legendary Tones website as it appears in the browser

When the website is running on your local machine, you can segment images and form a plan

for targeting displays by device width, device DPI, as well as how to use SVGs in CSS.

5.3.1. Targeting displays in CSS by using media queries

The goal of this section is for you to improve the visual quality of the Legendary Tones

website masthead image by using a set of background images supplied in the img folder to

create an experience that’s optimal for all devices.

When implementing responsive images using CSS, the best tool for the job is the media query.

With media queries, you can decide at which screen width you should change a background-image

rule for a particular selector.

On the Legendary Tones website, only one selector has a background-image property set, and

that’s the #masthead selector. It sets the styling for the top of the page, which has a

large background image, logo, and site tagline. The CSS for this selector is shown here.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig09

Listing 5.1. The #masthead styling for the Legendary Tones website

The #masthead element spans the width of the browser window and has a background-image value

of masthead-xxxsmall.jpg. If you load this website on large screens, you’ll immediately

notice how poor the visual quality of the background image is. This is because the default

styling is mobile-first, so the smallest image meant for mobile devices is served.

Let’s take stock of the images in the img folder which contains an array of masthead

background images that you’ll plug into media query breakpoints for the #masthead selector.

Table 5.2 lists these images and the media queries they’ll be targeted for.

Table 5.2. Images, their resolutions, and their target media query breakpoints in the

website’s CSS

Image name Image resolution Media query

masthead-xxxsmall.jpg 320 x 135 None (default image)

masthead-xxsmall.jpg 640 x 269 (min-width: 30em)

masthead-xsmall.jpg 768 x 323 (min-width: 44em)

masthead-small.jpg 1024 x 430 (min-width: 56em)

masthead-medium.jpg 1440 x 604 (min-width: 77em)

masthead-large.jpg 1920 x 805 (min-width: 105em)

masthead-xlarge.jpg 2560 x 1073 (min-width: 140em)

masthead-xxlarge.jpg 3840 x 1609 Not used

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table02

As you can see, each image falls into a specific device-resolution range that allows it

to be scaled without being stretched to the point of being pixelated. The first image,

masthead-xxxsmall.jpg, starts at a width of 320 pixels and stretches up to 479 pixels. At

the 480-pixel breakpoint, the 640-pixel version of the image kicks in and scales larger

and larger to a width of 703 pixels. At 704 pixels, a new breakpoint kicks in and a

higher-resolution image is substituted. This continues until the maximum resolution is hit.

Note that the masthead-xxlarge.jpg file isn’t used. You’ll use it later on this section

when you target high DPI screens. For now, you’ll ignore it.

Open the styles.css file from the css folder in your text editor. You’ll notice that it’s

a mobile-first example, and that a slew of media queries exist at the bottom of the file.

The styles in these media queries serve to change the size of the site logo, the site tagline

copy, and the height of the #masthead container. The first breakpoint set on line 183 at

480px (or 30em, because you’re using ems instead of pixels) looks like the following

listing.

Listing 5.2. Media query breakpoint

What you want to do with this code is modify the #masthead selector’s content to provide

a higher-resolution background image than masthead-xxxsmall.jpg when this breakpoint kicks

in. So go ahead and change the content of the #masthead selector to the following:

#masthead{

 height: 12rem;

 background-image: url("../img/masthead-xxsmall.jpg");

}

After you add the background-image property for the new image, save the document and reload

the page. Then observe the improvement in image quality, as illustrated in figure 5.10.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig10

Figure 5.10. The masthead background image at the 480-pixel (30em) breakpoint before

(left) and after (right) adding the new background image. Note the improved visual

quality in the after image.

All that’s left to do from here is to repeat this process for each breakpoint listed in

table 5.2. When you’re finished, you should have a masthead with a background image that

transitions well from a mobile phone resolution all the way to a large desktop device

resolution.

Want to skip ahead?

Having a bit of trouble? Or want to skip ahead and see how everything works? You can do

this by using git to switch to the finished state of the project, where you can view the

code. Enter git checkout responsive-images -f at the command line to skip ahead. Be warned

that any changes you have in your local copy may be lost!

In the next section, you’ll learn how to target high DPI displays and use media queries

to deliver higher-resolution images to those more capable devices.

5.3.2. Targeting high DPI displays with media queries

One aspect of implementing responsive images that you must keep in mind are high DPI displays,
such as 4K and 5K ultra HD displays. One well-known example of this technology is Apple’s

Retina Display, but it’s certainly not limited to Apple devices. Most devices now ship

with screens that can be considered high DPI. A comparison of standard versus high DPI

displays can be seen from our masthead in figure 5.11.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig11

Figure 5.11. An enlarged visual representation of graphics on standard displays versus

high DPI displays

High DPI displays deliver enhanced visual experiences but present a new challenge for the

developer: delivering images efficiently for them. Figure 5.12 provides a comparison of

properly delivering images to these displays.

Figure 5.12. A comparison of two versions of a background image on two display types.

On the left, a background image intended for use on standard displays appears on a high

DPI display. On the right, the proper resolution image is used for the high DPI display,

creating a better visual experience.

In a continuation of the efforts you began earlier in this section, you’ll implement

background images for the #masthead element, but this time for high DPI screens. All this

requires is to target not only device widths as you did earlier, but also their pixel density

with a combination of media queries. Here’s an example of a basic high DPI screen media

query:

@media screen (-webkit-min-device-pixel-ratio: 2),

 (min-resolution: 192dpi){

 /* Put High DPI Styles Here */

}

Here you see two media queries in action: the vendor-prefixed –

webkit-min-device-pixel-ratio media query is the WebKit implementation for high DPI display

support for older browsers, whereas the min-resolution media query is used for modern

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12

browser support (although newer browsers tend to recognize the vendor-prefixed media query

as well).

The –webkit-min-device-pixel-ratio media query checks for a simple ratio of pixel density

in which 1 equals 96 pixels. In this case, you’re making sure that the display has at least

192 DPI of pixel density before you have it download the higher-resolution images. The

min-resolution media query takes a more straightforward value of 192dpi.

At this point, you need to assign the proper background image for each new breakpoint. This

means taking the background images in table 5.2 and reworking them so that you’re adjusting

the background images on the #masthead element for high DPI screens. Table 5.3 is the result

of this effort.

Table 5.3. Background images for the #masthead selector in the CSS, their resolution, and

the high DPI screen media queries

Image name Image

resolution

Standard DPI

media query

High DPI media query

masthead-xxxsmall.jpg 320 x 135 None (default) Not used

masthead-xxsmall.jpg 640 x 269 (min-width:

30em)

(-webkit-min-device-pixel-ratio: 2), (min-resolution:

192dpi)

masthead-xsmall.jpg 768 x 323 (min-width:

44em)

(-webkit-min-device-pixel-ratio: 2), (min-resolution:

192dpi), and (min-width: 30em)

masthead-small.jpg 1024 x 430 (min-width:

56em)

(-webkit-min-device-pixel-ratio: 2), (min-resolution:

192dpi), and (min-width: 44em)

masthead-medium.jpg 1440 x 604 (min-width:

77em)

@media screen(-webkit-min-device-pixel-ratio: 2),

(min-resolution: 192dpi), and (min-width: 56em)

masthead-large.jpg 1920 x 805 (min-width:

105em)

@media screen (-webkit-min-device-pixel-ratio: 2),

(min-resolution: 192dpi), and (min-width: 77em)

masthead-xlarge.jpg 2560 x 1073 (min-width:

140em)

@media screen (-webkit-min-device-pixel-ratio: 2),

(min-resolution: 192dpi), and (min-width: 105em)

masthead-xxlarge.jpg 3840 x 1609 Not Used (-webkit-min-device-pixel-ratio: 2), (min-resolution:

192dpi), and (min-width: 140em)

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table03

If you compare table 5.3 to table 5.2, it looks similar at first, except each image has

been shifted up so that higher-resolution images are used for smaller screen widths. You

might remember that masthead-xxxsmall.jpg was used as the default background image for the

masthead. For higher-resolution screens, this has been bumped up to the next largest image,

which is masthead-xxsmall.jpg. For standard DPI displays, the image masthead-xxlarge.jpg

was left unused. This image has now been put into play at the largest breakpoint to cover

high DPI displays on large-screen devices.

To begin using the higher-resolution background images, find the start of the high DPI media

queries in styles.css. This starts on line 280. You’ll see a media query that looks like

this:

@media screen (-webkit-min-device-pixel-ratio: 2),

 (min-resolution: 192dpi){ /* High DPI Default */

 #masthead{

 }

}

This media query is similar to your mobile-first styles, except that it defines the default

styles for the page on high DPI screens. Within this media query, you’ll need to change

the content of the #masthead selector to include a new background-image property:

#masthead{

 background-image: url("../img/masthead-xxsmall.jpg");

}

When you make this change, the increase in quality will be noticeable, as it is in figure

5.12. After you’ve made this adjustment, you need only to work through the list of images

in table 5.3 and apply them to their respective media queries.

Want to skip ahead?

If you’re having some trouble or want to skip ahead to see how the code works, you can

do so by going to your terminal or command line and using git. Go to the folder that the

website is running in and enter the command git checkout hi-dpi-images-f. Be wary that you

could lose any changes you have in your local copy!

In the next section, you’ll learn about using SVG images in your CSS, and the advantage

this vector image format has over raster images when it comes to efficiently delivering

high-resolution images to all types of displays.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table03

5.3.3. Using SVG background images in CSS

Sometimes it may be preferable to use SVGs in background images, depending on the content

of the image. As I said earlier in this chapter, if you have an image that contains a lot

of line art, SVGs are perfect. When using these image types in CSS, no media queries are

required for the image to display flawlessly across all resolutions and display densities.

Find the SVG file in the img folder named masthead.svg. Open styles.css in your text editor

and go to line 66 to the #masthead selector and change the background-image property in

this selector to the following:

background-image: url("../img/masthead.svg");

Then remove all the media queries in the document, starting from line 180, so the background

image overrides in those media queries don’t override the SVG background you’ve set. After

you make these changes, save and reload the page to see the new background image.

When the new SVG goes into effect, resize the window and observe how the image scales

flawlessly at all resolutions. This is the primary advantage of SVG files at work. No media

queries required, the image scales properly at all device widths and screen types, high

DPI or otherwise.

Again, it’s important to remember that this image type isn’t suitable for all kinds of

content. You’ll still be better served by JPEGs and full-color PNG files for photographs.

SVGs are best used for content such as logos, line art, and patterns. If in doubt, try SVG

to see whether it works. Be sure to take note of the file size and see whether it’s efficient

for the intended device. If a user can be better served by a smaller raster image, consider

switching. Most of the time, the SVG will be the most efficient if the content of the image

is well suited to the format.

In the next section, you’ll learn about various techniques for implementing responsive

images in HTML.

5.4. Image delivery in HTML

Although CSS is useful for managing images in a responsive manner, it doesn’t solve the

problem of making images responsive when they’re referenced from HTML. Since the birth

of HTML, the tag has been the vehicle for images on the web. Because responsive web

design is ubiquitous, it makes sense that there should be a solution to make images

responsive when they’re used in HTML.

In this section, you’ll learn about two approaches to using responsive images in HTML,

both useful for different scenarios. These are the <picture> element and the tag’s

srcset attribute. Although these features are native to HTML, they aren’t fully supported

in all browsers, so you’ll also learn how to polyfill these features in older browsers

that don’t support them.

Before you do that, however, we have to cover an important CSS rule that should be added

to your style sheets.

5.4.1. The universal max-width rule for images

The one rule you should always have in your CSS for any website, responsive or not, is this

simple code.

Listing 5.3. The universal max-width rule for all img elements

img{

 max-width: 100%;

}

This terse rule does a whole lot of good. It says that any element will render to

its natural width, except when it exceeds its container. If it does, this rule will limit
its width to that of its container. Figure 5.13 is an example of this in action.

Figure 5.13. A comparison of image behaviors with and without max-width restrictions.

The example on the left is the default behavior: If the image is larger than its container,

it’ll exceed the boundaries. On the right is an image with a max-width of 100%, which

constricts the image to the width of the container.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig13

With this rule in place, you’re ensuring that images will behave as they normally do, except

when they’re larger than their parent containers. With a solid starting point in place,

you can move on to using responsive images in HTML in earnest.

5.4.2. Using srcset

One method for displaying responsive images is an HTML5 feature baked into the tag,

and it goes by the name of srcset. This optional attribute for the tag doesn’t replace

the src attribute but is used in addition to it.

Specifying images with srcset

One example of srcset in action follows:

<img src="image-small.jpg"

 srcset="image-medium.jpg 640w,

 image-large.jpg 1280w">

In this example, the src attribute is used for the default image, which in mobile-first

sites, should be the smallest in the image set. This acts as a fallback for browsers that

don’t support srcset. The srcset attribute here refers to two higher-resolution images

(in bold in the preceding example). The format that the srcset attribute takes is the image

URL, and the width of the image, separated by a space. Image names are in the format you’d

normally use in an tag’s src attribute, and the width is denoted using the suffix

w. For example, an image 512 pixels in width would be denoted as 512w. Additional images

and dimensions can be added. Just separate them with a comma!

The strength of srcset is that it doesn’t need media queries to work. The browser takes

the information it’s given and chooses the best image based on the current state of the

viewport. This makes srcset great for circumstances where all of your images used in a given

 tag have the same treatment but are in different aspect ratios. That’s an important

bit to remember. If you provide images that aren’t in the same aspect ratio as one another,

srcset isn’t going to work well and will produce unexpected results. If you need a
responsive image approach that allows you to have different treatments at different screen

sizes, you can use media queries in CSS, or skip ahead and read about the <picture> element.

In this section, you’ll continue with your image delivery optimization efforts, and

implement srcset for an article image on the Legendary Tones website. But first you need

to update your working copy of the website to a new branch by using git. To do this, run

the following command:

git checkout srcset -f

Next, you can open index.html in your text editor and see on line 26 that a new feature

image has been added. If you navigate to the website in your browser, you’ll see something

similar to figure 5.14.

Figure 5.14. The new feature image as it appears on the Legendary Tones website

The annotated feature image displayed in figure 5.14 resides in the img folder, and its

filename is amp-xsmall.jpg. The goal of the work on this website at this stage is to get

this image to scale to the width of the container while maintaining a reasonable resolution.

Before you go about using srcset to achieve what you want, you’ll take an inventory of

images in the img folder and their widths so you can craft the value for the srcset attribute.

This inventory is in table 5.4.

Table 5.4. An inventory of images in the website’s img folder and their widths, which will

be used for the srcset attribute

Image name Image width (pixels)

amp-xsmall.jpg 320w (already referenced in src attribute)

amp-small.jpg 512w

amp-medium.jpg 768w

amp-large.jpg 1280w

Using the information in table 5.4, you can construct the content for the srcset attribute.

In line 26 of index.html, change the tag to the following:

<img src="img/amp-xsmall.jpg" class="articleImageFull"

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table04

 srcset="img/amp-small.jpg 512w,

 img/amp-medium.jpg 768w,

 img/amp-large.jpg 1280w">

With this srcset value, you’ll have a feature image that will span all breakpoints in

browsers that support it. The best part is that you don’t have to write any media queries

to make this work. The browser makes the best choice it can, and does all the leg work for

you.

Where optimization is concerned, srcset is efficient. This is because the browser downloads

only what’s needed for the best visual quality. In this example, if you load the page at

a large screen size, the browser will load amp-large.jpg, but if you scale down, the browser

won’t request amp-medium.jpg, amp-small.jpg, and so forth. The browser will adapt the image

that has already been loaded. This prevents unnecessary fetching of image assets.

Optimization win!

If you load the page at a smaller screen size and scale upward, the browser will download

what it needs to ensure good image quality. So you get to have your cake and eat it too.
Bottom line: srcset grabs only what it needs when it needs it.

Getting more granular with sizes

You may need more flexibility than what srcset alone provides. Maybe you need an image to

change sizes depending on the screen’s width. This is where the sizes attribute comes in.

Like srcset, the sizes attribute is used in the tag. It accepts a set of media queries

and widths. The media query, like a typical CSS media query, defines a point at which an

image should change. The width that comes after it sets how wide the image should appear

when that media query takes place. Multiple pairs of these media queries and image sizes

can be separated by commas. An example is shown here:

<img src="image-small.jpg"

 srcset="image-medium.jpg 640w, image-large.jpg 1280w"

 sizes="(min-width: 704px) 50vw, 100vw">

The content of the sizes attribute in this example does two things. On screens 704px and

wider, the image is instructed to take up 50% of the width of the viewport. To tell the

browser this, you use viewport width (vw) units, which are a percentage of the viewport’s

current width. The next comma-separated rule after this, without the media query, is the

default width of the image. If none of the media queries match, the image will be instructed

to fill the viewport. Because of the max-width: 100% rule on all images (covered earlier

in this section), the image will never exceed the width of the its container. To try the

sizes attribute out for yourself, change the tag on line 26 of index.html to the

following:

<img src="img/amp-xsmall.jpg" class="articleImageFull"

 srcset="img/amp-small.jpg 512w,

 img/amp-medium.jpg 768w,

 img/amp-large.jpg 1280w"

 sizes="(min-width: 704px) 50vw, (min-width: 480px) 75vw, 100vw">

With the sizes attribute added to this tag, the image behavior is affected in different

breakpoints, as shown in figure 5.15.

Figure 5.15. The effect of the sizes attribute on the article image in Google Chrome. On

the 704 px breakpoint, the image takes up 50% of the viewport, at the 480 px breakpoint

the image takes up 75%, and the default image behavior below 480 px is to occupy the

entire viewport.

After you make this change, resize the browser window and see how the image adapts to the

viewport as you progress through the media queries. As with any responsive image approach,

tweaking yields the best results. One rule that’s helpful to follow in using sizes is that

your media queries should be congruent with what you’re using in your CSS. You can deviate,
but always be sure to test, test, test!

Most of the time, srcset (and maybe sizes) ought to be fine, but in some cases you may need

a responsive image approach that allows you to have different treatments at varying screen

sizes. This is where the <picture> element comes in handy.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig15

5.4.3. Using the <picture> element

srcset is capable, but it falls short when you need art direction for your images. Art
direction is a technique that applies to responsive images, and refers to the practice of
giving an image a different cropping and focal point for different screens. This is done

when an image for a larger screen isn’t optimal for smaller screens, for example. Figure

5.16 is an example of art direction in action, with my neurotic cat as the subject of the

image set.

Figure 5.16. An example of art direction across a trio of images. In the largest version, the

subject has more context and surrounding details, because larger screens can

accommodate more. As the screen width decreases, the image is cropped differently so

the subject is still visible on smaller screens.

The srcset feature as used on the tag isn’t a good fit for images that need different

treatments in different breakpoints, because it requires that a set of images maintain the

same aspect ratio. The <picture> element has no such requirement, and will display any image

at any defined transition point.

Before you embark on learning how to use the <picture> element, you need to switch to a

new branch of the website’s code by using git. If you have work that you’d like to keep,

save it before switching. Then run this command:

git checkout picture -f

This switches you over to a new branch of code, where you’ll get to experiment with the

<picture> element. With the new code in place, you can start using the <picture> element

to give an article image varying treatment across different devices.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig16

Using art-directed images on the Legendary Tones website

Reload the Legendary Tones website in your browser and scroll down. You’ll see a new article

image of a guitar amplifier, as shown in figure 5.17. On screens smaller than 704 pixels,

the image sits between the paragraphs and is centered in the viewport. On screens 704 pixels

and wider, the image floats to the right, and the text wraps around it.

Figure 5.17. Image behaviors on the Legendary Tones website. On small screens (left),

the image centers in the viewport and breaks between paragraphs. On large screens

(right), the image floats to the right, and the text wraps around it.

The image in figure 5.17 is set in a <picture> element, which you can find on line 30 of

index.html.

Listing 5.4. The <picture> element on the Legendary Tones website

What you want to add to this setup are higher-resolution images for displays that can use

them, and provide an alternate cropping of the image for smaller devices. To accomplish

this, you add a few <source> tags to the <picture>, thereby defining more images for the

browser to use. The code added to the <picture> element is annotated next.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig17

Listing 5.5. Adding new image treatments for different devices via <picture>

To achieve your goal, you add two <source> tags for different images. The first <source>

tag contains a media attribute that takes effect when the screen is 704px or wider. When

this condition is met, the srcset attribute will provide an image 384px in width, and render

it at a third of the viewport size.

When the screen width is less than 704px, the second <source> tag kicks in. This <source>

has an srcset attribute to bring in a different image treatment 320px in width, and sizes

it to 75% of the viewport width. Figure 5.18 shows the effect of your new code.

Figure 5.18. Image behaviors of the website after modifications to the <picture> element.

Note that small screens (left) offer a different treatment of the image based on the

screen resolution.

The power of the <picture> element isn’t necessarily in itself. It’s merely a container

for other elements that dictate responsive image behavior, namely the <source> and

elements. The <source> elements are where the image configuration is done, and the

tag is a fallback for browsers that don’t support the <picture> element. Though the

tag provides the fallback behavior, it’s also necessary for the <picture> element to work,

so it should never be omitted.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig18

What you’ve done works well enough for some lower DPI displays, but you should pump this

up a bit so that high DPI displays can benefit from higher-quality images.

Targeting high DPI displays

You can target high DPI displays with the <picture> element quite easily. Doing so requires

a bit more tweaking of the srcset attributes on the <source> tags. For this website, you

can modify the contents of the <picture> element to provide a better experience for these

displays. Modifications are in bold in the following listing.

Listing 5.6. Adding images for high-DPI displays by using <picture>

These small tweaks do two things: on larger screens, the browser will choose between an

image 384px or 512px in width, and on smaller screens, the browser will choose between an

image appropriate for low-DPI displays (amp-cropped-small.jpg) and an image appropriate

for high-DPI displays (amp-cropped-medium.jpg).

In order to signal to the browser which image should be for which type of display, an x

value is used in place of a width value in the srcset attribute. Think of it as a simple

multiplier. 1x marks images appropriate for standard DPI screens, and 2x or higher signals

images that are appropriate for higher DPI screens. If you wanted to, you could even use

multipliers of 3x or higher, since 5K displays are out in the wild now.

Next, you’ll use the <picture> element to specify fallbacks for different file types, and

see how this can be used to take advantage of new image formats while maintaining

compatibility with browsers that don’t support them.

Using the type attribute for fallback images

The <picture> element also has the ability to reference a series of fallback images based

on their type. This is useful when you want to take advantage of any up-and-coming image

formats, but want to ensure that less-capable browsers will still be able to use common

formats.

You can see a good example of this feature in action with Google’s WebP format. WebP is

a capable format that, depending on the image content, offers lower file sizes than

equivalent formats.

To create a series of fallbacks in the <picture> element, you use the type attribute on

<source> elements. type accepts an image’s file type as an argument for an image specified

in the srcset attribute.

Continuing on, you’ll use the type attribute within <picture> to establish a preference

for a WebP image, and fall back to a JPEG image for browsers that don’t support WebP. In

your text editor, go to line 30 and change the content of the <picture> element to the

following:

<picture>

 <source srcset="img/amp-small.webp" type="image/webp">

</picture>

With this, you get the best of both worlds: browsers that can handle WebP get WebP, and

browsers that can’t will fall back to JPEG. Furthermore, because the tag in the

<picture> element is the fallback, it’ll work in browsers that don’t support <picture>

itself, making this method a great way to use any kind of format without having to worry

about incompatibility.

Now that you’ve explored the usefulness of the <picture> element, you’ll cover how to

polyfill the <picture> element and the srcset attribute for older browsers by using the

Picturefill library.

5.4.4. Polyfilling support with Picturefill

Although srcset and <picture> are both useful, their browser support isn’t universal.

Thankfully, you can take advantage of these markup patterns in browsers that don’t support

them by using a small 11 KB script called Picturefill.

Using Picturefill

Like any good polyfill, the strength of Picturefill is in its transparency. You get to use

new browser features the way they were intended to be used, and all browsers will play nice.

Browsers that support <picture> and srcset will use the native implementation, and other

less capable browsers will use Picturefill.

Download Picturefill from https://scottjehl.github.io/picturefill and place it into your

project. To see how Picturefill is used firsthand, you can switch to a new branch that already

has it in place by entering this command:

git checkout picturefill -f

After the branch has loaded, open index.html in your text editor and take a peek at lines

7 and 8. You’ll see these two <script> blocks in the <head>:

<script>document.createElement("picture");</script>

<script src="js/picturefill.min.js" async></script>

The first <script> block is for browsers that don’t recognize the <picture> element, and

prevents problems from occurring if the browser parses them in the HTML before Picturefill

has finished loading. The second block then loads the Picturefill library, but does so

without blocking page rendering with the async attribute (async is covered in detail in

chapter 8).

Believe it or not, this is all it takes for Picturefill to work. After the script is loaded,

browsers that didn’t support these new image-delivery features in HTML will now support

them just fine.

Unfortunately, this approach doesn’t prevent browsers that support <picture> and srcset

from unnecessarily downloading Picturefill. Next, you’ll see how to use Modernizr to check

for <picture> and srcset support, and load Picturefill for only the browsers that need it.

Conditionally loading Picturefill with Modernizr

Modernizr (http://modernizr.com) is a robust feature-detection library that provides a
simple way to detect browser support for an array of features. In this section, I’ve created

a 1.8 KB custom Modernizr build that contains only feature-detection code for <picture>

and srcset.

You’ll use Modernizr to avoid loading the 11 KB Picturefill library in modern browsers,

by first checking to see whether the browser needs it. If tests for either feature fail,

you load Picturefill. If they both succeed, you don’t load Picturefill, and save those

browsers the hassle of downloading unnecessary code.

To start, you remove line 8 of index.html, which is the <script> block that loads

picturefill.min.js. You then add the following code just before the closing </body> tag:

<script src="js/modernizr.custom.min.js"></script>

<script>

 if(Modernizr.srcset === false || Modernizr.picture === false){

https://scottjehl.github.io/picturefill
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
http://modernizr.com/

 var picturefill = document.createElement("script");

 picturefill.src = "js/picturefill.min.js";

 document.body.appendChild(picturefill);

 }

</script>

The preceding code begins by including the custom Modernizr build. Then, in a separate

<script> tag, you write a bit of code that checks for srcset and <picture> support in the

Modernizr object. If either of these checks fails, you create another <script> tag, set
its src attribute to point to Picturefill, and inject it into the DOM. When you examine

the network tab in the developer tools in different browsers, you can see that the

less-capable browser downloads picturefill.min.js, whereas the modern browser doesn’t

load it. This is seen in figure 5.19.

Figure 5.19. Conditional loading of Picturefill as seen in two browsers’ network request

inspectors. On the left is a version of Safari that doesn’t support the <picture> or srcset

features and therefore loads Picturefill. On the right is Chrome, which fully supports

these features and therefore skips loading Picturefill.

With this little bit of code, you’re saving those users with better browsers the trouble

of having to download Picturefill if they don’t need it. Fewer requests and less code mean

faster load times for users who can support these newer features.

The next section covers how to use SVG in HTML, and the inherent flexibility of the format

when it comes to responsive imagery.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig19

5.4.5. Using SVG in HTML

Similar to the way SVG behaves when used in CSS, SVG in HTML is the best choice when it

comes to responsive imagery, assuming that what you want to depict translates well to the

format.

Warning: An HTTP/2 antipattern is discussed in this section!

This section briefly discusses inlining SVGs, which is an appropriate optimization

technique for sites hosted on HTTP/1 servers, but should be avoided on HTTP/2. Always ensure

that the optimization techniques you choose are appropriate for the protocol version your

site runs on.

As with SVG in CSS, the advantages for using SVG in HTML are in the format’s flexibility.

If you have image content that comports well to the format, you should seriously consider

using it, because it’ll save you the trouble of having to configure multiple image sources

for optimal display across different devices. It’s a one-size-fits-all format.

You know how to use the tag, so you’ll feel right at home using SVG in HTML. You

have two nearly universally supported options when it comes to using this image format in

HTML, and both methods provide the same benefits that you’ve seen when placing SVGs into

your CSS, in terms of visual quality and ease of use in responsive web pages. The two options

are:

 Use the tag—This is the most simple method, and you can try it for yourself in index.html. The logo in the

masthead points to a PNG version:

.

An SVG version of the logo exists alongside logo.png in the img folder, named logo.svg. To use it, point to

img/logo.svg in the tag’s src attribute:

.

When you make this change and reload the page, you’ll see the SVG version of the logo in use. When you use an

SVG file in an HTML tag, there’s rarely any reason to use it in a <picture> element or with srcset,

unless you’re using it in a <picture> element as a part of a series of image fallbacks.

 Inline the SVG file—SVGs are XML, which is syntactically similar to and compatible with HTML. Therefore, it’s

possible to copy and paste SVG files directly into HTML. Option 2 has a pro and a con. The pro is that inlining an

SVG could help reduce page-load time by removing an HTTP request, provided that your site isn’t hosted on an

HTTP/2-enabled server. The downside is that this also makes the resource less cacheable from page to page.

Weigh the benefits to see which approach is better. You’ll try inlining the contents of logo.svg into index.html as

an example. To get started, switch to the inline-svg branch with this command:

git checkout -f inline-svg

Inlining an SVG image is easy. For this website, all you need to do is open logo.svg in

your text editor from the img folder, copy the contents of the file to your clipboard, and

replace the logo’s tag with the SVG file contents. Ensure that the only thing you’re

copying are the <svg> tag and its contents. Leave out anything else, such as the <?xml>

header at the top of the file. The final result should look like the following listing,

only without truncation.

Listing 5.7. Inlined SVG in HTML

This scenario isn’t the most optimal but illustrates the concept. A good scenario for

inlining an SVG is a resource that appears on one page as part of some content. Vectorized

infographics are a potential use case for inlining SVG, for example.

Even so, it’s crucial to remember that the typical bottleneck of an internet connection

is its latency. Inlining reduces load time by spreading latency across fewer requests. Still,

effective caching is important too. Weigh your options and see what makes sense for your

site.

5.5. Summary

In this chapter, you learned the importance of delivering images to devices that can best

use them. As a part of this concept, you learned about these smaller, related topics:

 Delivering responsive images in CSS with media queries, and how supplying the correct image sources to the

proper devices can positively impact loading and processing time

 Delivering responsive images in HTML by using the srcset attribute and the <picture> element

 Providing polyfill support for the <picture> element and srcset attribute for older browsers in an optimal

fashion

 Using SVG images in both CSS and HTML, and the convenience and flexibility inherent to the format when it

comes to optimal display on all devices

With these concepts under your belt, you’re optimizing your projects so that your users

are downloading only the image content that they need, while ensuring that they’re

receiving the best possible experience. Now it’s time to learn image-optimization concepts

and methods, such as image spriting, new image compression methods, and using the WebP

format.

Chapter 6. Going further with images

This chapter covers

 Creating image sprites from multiple image files by using automated tools

 Reducing the file size of images without significantly degrading their visual quality

 Using the WebP image format from Google, and understanding how it compares to older formats

 Deferring the loading (lazy loading) of images that aren’t in the viewport

In the preceding chapter, you learned the importance of optimal image delivery. This

entailed using media queries to deliver images in CSS according to the user’s device

capabilities, as well as using new features in HTML to accomplish the same goal.

In this chapter, you’ll go a step further in working with images. This entails reducing

HTTP requests by combining images into sprites, reducing the size of raster and vector images

through new compression methods, using Google’s WebP image format, and understanding the

benefits of lazy loading images.

6.1. Using image sprites

As a front-end developer, you’re constantly looking for ways to improve your site’s

performance. With images representing a large portion of your page weight, it makes sense

to want to tame these unruly critters and make them more manageable.

Warning: This section discusses an HTTP/2 antipattern!

Image sprites combine images to reduce HTTP requests, which is a form of concatenation.

Although you should use image sprites on HTTP/1 to improve page-load times, you should avoid
using them on HTTP/2. Check out chapter 11 for more information.

Surely you’ve noticed the iconography peppered throughout the sites you visit: images such

as stars for ratings, social media icons, action icons that encourage the user to share

content, and so on. Chances are good that these images are part of what’s called an image
sprite.

So, what is an image sprite? An image sprite is a collection of previously separate image
files used throughout a website that have been assembled into one image file. These images

are often global elements such as icons. Figure 6.1 shows an example image sprite.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig01

Figure 6.1. An image sprite of various social media icons

Once created, an image sprite is referenced by the CSS background-image property, and

manipulated by the background-position property to reveal only the relevant portion of that

image within an element. The element’s bounding box excludes the rest of the sprite from

view, giving the impression that the element is displaying only a single image in the

background.

The benefit is that you’re taking what would normally be a larger number of images and

reducing them to a single image. This results in more-efficient delivery of those resources

and reduces the load time of the page by opening fewer connections to the web server.

In this section, you’ll create an image sprite for a recipe website that has six SVG icons.

Four are social media icons, and two are star icons used to represent recipe ratings. Using

a command-line utility, you’ll generate a sprite and the CSS necessary to use it. You’ll

then place this CSS into the project and replace all of the icons with the new sprite, to

bring the request count of the page down from 25 to 20, and a load time of roughly 500 ms

(using Chrome’s Good 3G throttling profile) for these icons down to about 90 ms. After

you’re finished, you’ll create a PNG fallback for older browsers that don’t support SVG.

6.1.1. Getting up and running

Before you create the sprite, you need to download a utility to generate it. Then you’ll

download the website code with git. You can install the sprite generator with this command:

npm install -g svg-sprite

After this finishes installing, download the website code and run it on your local machine

with the following commands in a folder of your choosing:

git clone https://github.com/webopt/ch6-sprites.git

cd ch6-sprites

npm install

node http.js

This launches a web server running the recipe website at http://localhost:8080.

Want to skip ahead?

If you want to skip ahead to see how the image sprite was generated and implemented in this

section, you can enter git checkout svg-sprite -f. As always, be aware that you will lose

any changes that you may have in your local repository.

Let’s get started!

6.1.2. Generating the image sprite

In the img folder is a subfolder named icon-images. This contains the six separate SVG images

that you’ll combine into a sprite. Table 6.1 details these images.

Table 6.1. SVG icons in the recipe website that you’ll combine into an image sprite

Image name Image function Image size (bytes)

icon_facebook.svg Facebook icon 600

icon_google-plus.svg Google Plus icon 938

icon_pinterest.svg Pinterest icon 563

icon_star-off.svg Rating star (inactive) 299

icon_star-on.svg Rating star (active) 302

icon_twitter.svg Twitter icon 759

These images represent six requests. By the end of this section, you’ll have whittled this

down to one. To generate the sprite, you’ll use the svg-sprite command as follows from

the root of the recipe website folder:

svg-sprite --css --css-render-less --css-dest=less

 --css-sprite=../img/icons.svg

 --css-layout=diagonal img/icon-images/*.svg

A lot is going on here, so let’s go through each argument, diagrammed in figure 6.2.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig02

Figure 6.2. The anatomy of the svg-sprite command as used to generate an SVG sprite

with LESS mixins

When this command finishes, the generated sprite will be in the img folder, and a new LESS

file named sprite.less will be in the less folder. The generated sprite should look like

figure 6.3.

Figure 6.3. The newly generated image sprite with annotations showing the names of the

standalone files prior to being added to the sprite

Image sprites can be used for more than icons (although this is a common use of the technique).

You can sprite other elements such as nonrepeatable backgrounds, button images, or other

imagery that’s not content-specific. With this step completed, you’ll continue by

updating the recipe website’s CSS to use the generated sprite.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig03

6.1.3. Using the generated sprite

The next step is to include the generated sprite.less file into main.less, both of which

are in the less folder. At the beginning of main.less, add this line:

@import "sprite.less";

This adds LESS mixins for the sprite to the CSS. From here, you can replace the individual

image icon references with these LESS mixins to put the sprite to use. You need to make

six changes. What you’ll do is search for the string .svg in your text editor, and replace

each background-image reference with the corresponding LESS mixins shown in table 6.2.

Table 6.2. Icon images and the LESS mixins needed to replace them

Image name LESS mixin

icon_facebook.svg .svg-icon_facebook;

icon_google-plus.svg .svg-icon_google-plus;

icon_pinterest.svg .svg-icon_pinterest;

icon_star-off.svg .svg-icon_star-off;

icon_star-on.svg .svg-icon_star-on;

icon_twitter.svg .svg-icon_twitter;

To help you with this, I’ll walk you through replacing one of the images with the new sprite.

Take the Facebook icon image in the first row of table 6.2, and do the following:

1. Search for icon_facebook.svg in global_small.less in your text editor, and replace

the line it appears on with the .svg-icon_facebook mixin. In this example, the line you’re

replacing looks like this:

background-image: url("../img/icon-images/icon_facebook.svg");

Replace this line with the .svg-icon_facebook mixin:

.svg-icon_facebook;

2. Compile the LESS files. On UNIX-like systems, run less.sh. On Windows, run less.bat.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table02

After completing these steps, reload the page. You’ll notice that the Facebook icon looks

the same as it did which is exactly what you want. Now look to see that the image sprite

is in use by inspecting the image element in the browser’s developer tools, and check its

CSS.

At this point, it’s a matter of repeating this process for the rest of the images listed

in table 6.2. When finished, you’ll have reduced the total number of requests from 25 to

20, and the load time for the sprite assets down from approximately 500 ms to about 90 ms.

Although the gains aren’t as pronounced in this instance with just six icons, the positive

effects on performance scale up as the number of images added to the sprite increase. A

good example of image sprites at work is with Facebook, which uses image sprites to serve

many images, such as the icons used through the site, button images, backgrounds, and so

forth. If all of these icons were served separately, performance could be diminished.

6.1.4. Considerations for image sprites

So far, you’ve learned how to create sprites by using an SVG sprite generator. But you

should keep some considerations in mind when creating them.

As I said earlier in this section, sprites are used to combine global visual elements of

a page, such as iconography. Creating sprites for content-specific images isn’t a fruitful

endeavor. Content-specific images are usually relegated to the page they’re relevant to,

whereas global images appear on every page on the site. Creating sprites that contain

content-specific imagery penalizes users by forcing them to download content for pages that

may not use it. Figure 6.4 shows the recipe website for which you created the image sprite

in this section, and annotates the images that are suitable for inclusion in sprites.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig04

Figure 6.4. An overview of images on the recipe website that are or aren’t candidates for

inclusion in an image sprite. Iconography is marked for inclusion, whereas imagery such

as recipe images and ads isn’t.

You shouldn’t be too strict as far as deciding what constitutes global imagery. Some
iconography may not be used on all pages, but these kinds of images should still be included,

because they add little to the sprite’s file size. Loading them up front speeds the loading

of subsequent pages, because the images will be in the browser cache by the time they’re

used. Each scenario is unique, so do an inventory of images and create a sprite that best

fits your website.

6.1.5. Falling back to raster image sprites with Grumpicon

Earlier in this section, you created an SVG sprite by using a command-line utility. Most

of the time when you’re creating sprites, the images you’re working with (icons and so

forth) are good candidates for SVG, because they tend to comport with the capabilities of

the format.

Although most browsers have SVG support, it may be necessary to specify a fallback to a

more traditional format that’s more widely supported. That’s where Grumpicon comes in

handy.

Grumpicon is a web-based tool that accepts SVG files and generates a PNG version of the
sprite with fallback options. What you’re interested in is converting your icons.svg sprite

to a PNG version for older browsers. To get started, you’ll switch to a new branch of code

with the following command:

git checkout -f png-fallback

After the new code is downloaded to your computer, head over to http://grumpicon.com and

upload icons.svg from the img folder. You can do this by browsing to the file on your computer,

or by dragging and dropping the file on the Grumpicon beast shown in figure 6.5.

Figure 6.5. SVG files can be converted to PNG by dragging and dropping SVG files on the

Grumpicon beast (or by browsing to them).

After you upload icons.svg, a zip file automatically begins downloading. Open this file

and go to the png folder inside it. A file named icons.png is there. Copy this file to the

img folder of the recipe website.

From here, you’ll tweak the LESS mixin in sprite.less to fall back to this file in the

event that SVGs aren’t supported. The way you achieve this fallback is by using a cascade

of background-image declarations. Open sprite.less in your text editor and find

http://grumpicon.com/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig05

the .svg-common() mixin on line 1. Change the content of this mixin to what you see in this

listing.

Listing 6.1. Fallback to PNG for browsers without SVG support

This code does two things: In the first background-image declaration, you specify your

fallback to icons.png. On the next line, you specify multiple backgrounds, the last of which

is your SVG image sprite. After you’ve made the change to incorporate the fallback image,

recompile your LESS files by running less.sh (or less.bat for Windows machines).

This fallback works because older browsers will read the first background property and apply

it to the page. When an older browser attempts to interpret the second background property,

it will fail because older browsers can’t parse multiple backgrounds. These less-capable

browsers will then default to the initial reference to icons.png. More-capable browsers

will pick up and use icons.svg just fine, and ignore the icons.png file. This works because

the browser will anticipate that icons.png isn’t needed because it’s overridden by the

reference to icons.svg, and the browser will choose to not download the PNG file.

Now that you understand image sprites, their benefits, and how to create them for all

browsers, you can learn how to reduce the file size of your images.

6.2. Reducing images

Imagine a client who has a website with a recipe collections page that’s heavy with image

content. This client has noticed that on all devices, this page takes a long time to load,

even though the images are responsive. These pages are strong when it comes to driving

traffic to other pages on the site, but the client knows that if you can cut the load time

of this page, you may be able to coax the client’s more-impatient users further into the

site.

Reduce the size of your images automatically!

This section teaches you how to write Node scripts that will perform bulk optimizations

on images in an example project. If you’re interested in automating the techniques taught

in this section, check out chapter 12 on using gulp.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12

That’s where image reduction comes in. This process reduces the file size of images without
significantly degrading their visual quality. Many image-editing programs don’t produce

output that’s optimal for the web. A good example is Photoshop’s ironically named Save

for Web dialog box. Although Save for Web has useful presets and options, it doesn’t quite

compare to what’s possible with modern image-reduction algorithms.

To get started, you need to download the client’s recipe website and get it running on

your machine with these commands:

git clone https://github.com/webopt/ch6-image-reduction.git

cd ch6-image-reduction

npm install

node http.js

Next, browse to http://localhost:8080 and you should see the client’s recipe website, as

shown in figure 6.6.

Figure 6.6. The client’s recipe website as it appears in the tablet breakpoint

With the website up and running, you’ll optimize JPEG images by using a Node program called

imagemin. Then, you’ll go further and learn how to use it to optimize PNG images. Finally,

you’ll learn how to use the svgo Node program to optimize an SVG image.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig06

6.2.1. Reducing raster images with imagemin

The tool of choice for optimizing images on this site is imagemin, which is a generalized

image-optimization module written in Node. It’s capable of optimizing all types of images

used on the web. In this section, you’ll write a small Node program that uses imagemin

to optimize all the JPEG images in the recipe website’s img folder.

Mind your role

Maybe this goes without saying, but whether you apply these techniques to the sites you

work on depends on the responsibilities that come with your role. If you play the part of

both designer and developer, you have more latitude in the choices you can make. But if

your organization’s roles are more granular, and your responsibilities are relegated to

development, loop in the project’s designer on optimizations you want to make.

Unlike the work you’ve done up to this point, this tool requires you to write a little

bit of JavaScript for Node, rather than running command-line tools installed by npm. Don’t

worry, though! The process is simple, and I’ll walk you through it step-by-step.

Optimizing JPEG images

Before you start, let’s take an inventory of the project’s images. If you peek in the

site’s img folder, you’ll see 34 recipe images ending with either -1x.jpg or -2x.jpg.

The comes out to 17 pairs of JPEGs. You might have correctly guessed that these signify

images intended for standard DPI and high DPI screens, respectively. This page uses the

srcset attribute you learned about in chapter 5 to deliver images according to a device’s

capabilities.

You don’t have a single baseline for how much of your page weight is represented by images,

but rather two. It changes based on the type of screen and the device resolution. Table

6.3 lists screen DPI, total image payload, and the corresponding load time on the Good 3G

network throttling profile in Chrome’s network utility for the website.

Table 6.3. Screen DPI as it relates to the size of images and the total load time of the

page

Screen DPI Image payload Load time

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table03

Screen DPI Image payload Load time

High 2089 KB 11.5 seconds

Standard 732 KB 4.38 seconds

Although devices with standard screens load the site in a somewhat expedient fashion, high

DPI devices are definitely suffering. Let’s give them a shot in the arm with our pal imagemin.

To install imagemin for this project, run the following commands:

npm install imagemin imagemin-jpeg-recompress

mkdir optimg

The first command installs two packages: the imagemin module, and a JPEG optimization plugin

for imagemin named jpeg-recompress. The second command creates a new folder named optimg

that the imagemin code will write the optimized images to. After these are installed, you’ll

write a small Node program that does the work. In the root folder of the website, create

a new file named reduce.js and add the following contents.

Listing 6.2. Using imagemin to optimize all JPEGs in a folder

The preceding code is simple: The require statements import the imagemin modules. You use

these modules to create an imagemin object that processes all of the JPEGs in img and writes

the optimized output to optimg. When you’re finished, save reduce.js and run it with Node:

node reduce.js

This can take a little time. On my laptop, this command took about 10 to 15 seconds. Setting

the accurate flag in listing 6.2 to false can cut processing time if the script is taking

too long.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex02

After the program finishes, you’ll see that the optimg folder is populated with optimized

images. Let’s look at the unoptimized and optimized output of chicken-tacos-2x.jpg in each

folder. Figure 6.7 depicts the two side by side.

Figure 6.7. A comparison of the unoptimized (left) and optimized versions of

chicken-tacos-2x.jpg. The optimized version is about 55% smaller, but the visual

differences are virtually imperceptible.

With the JPEGs optimized, you need to point index.html to them. To do this, you can copy

and paste images from the optimg folder to the img folder, and choose to overwrite for all

conflicts. This method involves no changes to index.html. If you want to preserve the

unoptimized files, you can change the tag references to point to files in the optimg

folder.

After you open the page and check its load time in Chrome’s Network tab, you’ll notice

that the load speed of the page should improve drastically, while none of the images should

look much, if at all, different from their unoptimized versions.

Because of your imagemin script, you’ve achieved a 59% reduction of file sizes for images

in both categories. The performance improvements are noted in figure 6.8, which represent

about a 50% reduction in page-load times.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig08

Figure 6.8. Website load times before and after the optimization of images for the recipe

website using the Good 3G networking throttling profile in Google Chrome

With these results, you’ve achieved far beyond your client’s expectations. All but the

most impatient users ought to be satisfied with the site’s improved performance, which

offers them unimpeded access to more recipes through this content portal.

It’s possible to further tweak the output of this program by adding and tweaking

imagemin-jpeg-recompress options in reduce.js. All options are documented at the

imagemin-jpeg-recompress npm package page at

www.npmjs.com/package/imagemin-jpeg-recompress. Be aware that aggressive optimizations

can cause noticeable degradation of images, so always compare the optimized output with

the unoptimized input to ensure that the results are up to your standards.

Additionally, imagemin-jpeg-recompress isn’t the only JPEG optimization library out there.

You can learn more about many others at www.npmjs.com/browse/keyword/imageminplugin.

http://www.npmjs.com/package/imagemin-jpeg-recompress
http://www.npmjs.com/browse/keyword/imageminplugin

Optimizing PNG images

Optimization of PNGs with imagemin is largely the same as optimizing JPEGs, but it’s

beneficial to get hands-on with optimizing these image types as well. To get started, you’ll

pull down a new branch of code by entering this command:

git checkout -f pngopt

Other than bringing in the optimized JPEGs from earlier in this section, the only thing

this command changes is that the site logo is swapped out from an SVG to a PNG image set.

Two PNG files are added, logo.png for standard DPI screens and logo-2x.png for high DPI

screens, which are 4.81 KB and 8.83 KB, respectively. To start optimizing, you’ll need

to download the imagemin-optipng plugin with this command:

npm install imagemin-optipng

After installation finishes, open reduce.js and change it to the content in this listing.

Listing 6.3. Using imagemin to optimize PNGs

This code works similarly to the JPEG optimizer, except you’re processing PNG files instead.

To test it, run reduce.js with node, like so:

node reduce.js

You should then see the optimized PNG files in the optimg directory. Figure 6.9 shows the

file sizes before and after the optimizer runs.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig09

Figure 6.9. A comparison of the logo.png and logo-2x.png files before and after

optimization

Because of your optimizations, the file sizes of logo.png and logo-2x.png are reduced by

about 33% to 37%, respectively. The visual quality of the images didn’t suffer in the

process.

It’s possible to coax more out of this program by using the optimizationLevel option in

the imagemin-optipng plugin. This option is the only one available in this plugin, and

accepts an integer from 0 to 7. Higher values can further reduce file sizes. After a certain
point, though, this will fail to yield better results. The default value for

optimizationLevel is 2, and even when raised to the maximum value of 7 in this instance,

no more gains were realized than with the default. Different images may yield different

results, so experiment to see what’s possible.

Other PNG optimization plugins are available at

www.npmjs.com/browse/keyword/imageminplugin.

http://www.npmjs.com/browse/keyword/imageminplugin

6.2.2. Optimizing SVG images

The mechanism behind optimizing SVG images is a bit different than it is with raster images.

The reason behind this is that whereas raster images are binary files, SVG files are text

files—so optimizations such as minification and server compression can be used on them.

The client is happy with the work you’ve done and has let you off the hook. Your colleague,

sensing that you have time to kill, emails you about an SVG logo she’s designed for her

client, a timber and pulp company named Weekly Timber. She has designed a great logo, but

it’s 40 KB. She’d like to see if anything can be done to trim it down.

Fortunately for you, a command-line tool in Node named svgo is also available as an imagemin

plugin. Because you’re optimizing one file, the command-line tool will be more convenient

than writing a JavaScript routine. To install svgo on your system, use npm:

npm install -g svgo

This installs svgo globally on your system so that you can use it anywhere. Then you need

to grab the SVG at http://jlwagner.net/webopt/ch06/weekly-timber.svg. After it’s

downloaded, go to the folder it resides in at your terminal and try the following command:

svgo -o weekly-timber-opt.svg weekly-timber.svg

The format of this command is simple. It starts with the -o parameter, which is the name

of the file that svgo will write the optimized output to. After that is the name of the

unoptimized SVG file. When you run this command, you’ll receive this output:

39.998 KiB - 28.4% = 28.656 KiB

Not too bad! Turns out svgo’s default behavior optimizes a lot by simplifying the SVG’s

content as well as minifying it. This yields about a 28% savings compared to the original.

Let’s see how this impacts image quality by opening the optimized and unoptimized versions

in the browser, and comparing the two. You can see this comparison in figure 6.10.

http://jlwagner.net/webopt/ch06/weekly-timber.svg
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig10

Figure 6.10. The Weekly Timber logo before (left) and after optimization with svgo using

the default options

The image quality is virtually unaffected. You can open both files in a program such as

Photoshop or Illustrator and compare. If you don’t have imaging software, you can open

SVGs in any modern browser. You shouldn’t notice much, if any, difference between the two.

If you do notice any differences, they should be minor. Aggressively optimized SVG images

are characterized by a lack of fine details, particularly in the quality of Bézier curves.

svgo is a powerful program with a lot of options. Maybe we should dive in to see if you

can further optimize this image. Type svgo -h to see additional options. One that sticks

out is the -p argument, which you can use to control the precision of floating-point numbers.

Try setting this value to 1, and see what the output looks like with this command:

svgo -p 1 -o weekly-timber-opt.svg weekly-timber.svg

When this command runs, you should see the following output:

39.998 KiB - 53.9% = 18.42 KiB

This yields another 25%! Let’s not get too hasty in declaring victory, though. You should

observe the output to see whether any anomalies have been introduced. Figure 6.11 compares

the output of the original unoptimized image and your further optimized version.

Figure 6.11. The Weekly Timber logo before (left) and after (right) optimizing even

further by reducing decimal precision with svgo to a value of 1

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig11

You can observe some noticeable differences by inspecting these images more closely, but
they’re still relatively minor. You can go too far, though. Figure 6.12 provides a closer
look at what happens when you remove all precision from the same unoptimized SVG.

Figure 6.12. An examination of the unoptimized logo.svg (left) compared to an

overoptimized version. All precision is stripped from the SVG shapes, resulting in a loss of

fidelity, especially with Bézier curves.

This version of the SVG weighs in at 10.81 KB, which is the smallest yet, but the lower

file size isn’t worth the degradation. Optimizing too aggressively has drawbacks, so always,

always ensure that the results are satisfactory to you, and especially to your client! You
can usually identify any detrimental effects of SVG optimization by zooming in on the artwork

and comparing it to the unoptimized version.

With image optimization techniques for all types of web images under your belt, you’re

ready to discover the usefulness of Google’s WebP image format.

6.3. Encoding images with WebP

Since the early days of the commercial internet, the only available options for raster images

were the JPG, GIF, and PNG formats. Little has changed in this landscape as far as new formats

until somewhat recently, when Google introduced WebP.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig12

Your recipe website client has caught wind of this new image format and wonders whether

any gains can be made by using it. The client wants you to check out what gains could be

made on the recipe collections page in particular.

Luckily for you, the imagemin program you’ve been using has a plugin for converting images

to the WebP format, appropriately named imagemin-webp. Using this plugin involves using

the same pattern as you’ve used before, so this won’t be anything new for you at all.

Unlike other image formats, WebP can be encoded in both lossy and lossless formats. In this

section, you’ll use the imagemin-webp plugin to encode both lossy and lossless WebP images.

You’ll also use the <picture> element to provide a fallback for WebP-incapable browsers.

6.3.1. Encoding lossy WebP images with imagemin

Encoding lossy WebP images is easy with imagmein. It’s the same pattern you used before

to optimize JPEGs, except in this case, you’re using it to convert JPEGs into WebP images.

To get started, switch over to a new branch of the recipe client’s website with this command:

git checkout -f webp

When this command finishes, you’ll need to install imagemin and the imagemin-webp plugin:

npm install imagemin imagemin-webp

Now you’ll write the WebP image-conversion code, which is like the other imagemin programs

you’ve written. Create a file called reduce-webp.js and enter the following code into it.

Listing 6.4. Encoding JPEG images into lossy WebP with imagemin

Run this script by typing node reduce-webp.js. After it runs, all the JPEGs in the img folder

will be encoded to WebP and saved to the optimg folder. Next, you’ll compare the quality

of one of the optimized JPEGs from section 6.2.1 to the WebP output. Figure 6.13 shows the

comparison.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec6
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig13

Figure 6.13. A JPEG optimized by using imagemin’s jpeg-recompress plugin (left)

compared to a WebP image encoded from the unoptimized JPEG at a quality setting of

40.

There doesn’t appear to be much in the way of huge differences. WebP has some drawbacks

in that lower-quality settings can produce visual artifacts, but this is also true of JPEGs.

After all images have been converted to WebP, switch all the references to JPEGs in

index.html over to the WebP files. Using the Good 3G throttling profile in Chrome, let’s

compare the loading performance of the WebP files to the optimized and unoptimized JPEGs.

Figure 6.14 shows this comparison.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig14

Figure 6.14. A comparison of load times on the recipe website of JPEG and WebP images

on standard and high DPI screens. The WebP images offer better loading performance in

comparison to both the optimized and unoptimized JPEG images.

These optimizations have yielded a 35% and 20% decrease in page-load time for high-DPI and

standard DPI screens, respectively, when compared to load times for the optimized JPEGs.

This definitely signifies that WebP is worth the effort, even if the support for it isn’t

universal.

But you haven’t yet investigated the potential of WebP when it comes to lossless images.

In the next section, you’ll investigate how WebP stacks up against PNG files.

6.3.2. Encoding lossless WebP Images with imagemin

WebP also supports lossless encoding similar to the full-color PNG format, supporting 24-bit

color with full transparency. In this short section, you’ll convert the PNG version of

the recipe website’s logo to WebP. You need to tweak only a few parts of your reduce-webp.js

script. Modified lines are annotated and in bold in the following listing.

Listing 6.5. Encoding PNG images into lossless WebP with imagemin

All you’ve changed here is the file wildcard in the first argument in the imagemin call

to point to PNG files in the img folder, and replaced the options in the webp object with

the lossless: true option, which tells imagemin to losslessly encode WebP images. After

making the changes, rerun the script.

When the script finishes converting the PNG images, they’ll be placed into the optimg folder.

Figure 6.15 compares the file sizes of the lossless WebP files to the optimized PNG files

from section 6.2.1 and the original unoptimized PNG files.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06lev2sec6

Figure 6.15. A comparison of unoptimized PNGs, optimized PNGs, and lossless WebP

images

Without sacrificing the visual quality of the logo, you’ve managed to further optimize

these images by about 40% and 33% for logo.png and logo-2x.png, respectively. Next you’ll

learn how to instruct browsers that don’t support WebP to gracefully fall back to images

they can support by using the <picture> element.

6.3.3. Supporting browsers that don’t support WebP

Although WebP is a great image format that you can start using today, its support isn’t

as wide as with established image formats. If you have an audience reliant on browsers such

as Firefox or Safari, they’ll see something similar to figure 6.16.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig16

Figure 6.16. Safari failing to display a WebP image

That’s no good! You need to specify a fallback that other browsers can handle. That’s

where the <picture> element’s ability to fall back to images based on their type comes

in handy.

You learned about this method in chapter 5, but here, you’ll apply it to the recipe website

so that browsers that support WebP can benefit. Those that can’t will be able to fall back

to a JPEG image. To start, you’ll switch to a new branch of code for the website by using

git:

git checkout webp-fallback

After the code downloads, open the site in Chrome, and open it again in another browser

that doesn’t support WebP (such as Safari or Firefox). You’ll notice that the images work

in Chrome but fail to load in the other browser, as shown in figure 6.16.

At this time, open index.html in your text editor and look for the reference to the logo.webp

file. The line will look something like the following code:

<img src="optimg/logo.webp"

 srcset="optimg/logo.webp 1x, optimg/logo-2x.webp 2x"

 alt="AllTheFoods" id="logo">

You’ll take this tag and rework it by using the <picture> element with type attribute

fallbacks, as you see in the following listing.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig16

Listing 6.6. Establishing fallbacks with <picture>

Note that the element still retains the id attribute value of logo. This is nothing

more than to make sure that the styling given to the #logo selector applies to the image.

When styling <picture> elements, you should direct styles to the tag, because that

tag is what <picture> assigns the chosen <source> element’s image to.

Using this pattern, work your way through index.html, and rework the tags for the

hero and collection gallery images.

Want to skip ahead?

If you’d like to skip ahead and see the end result, you can do so by entering git checkout

-f webp-picture-fallback.

After you’ve worked your way through all the images in the HTML, open the Network tab in

the developer tools for each of the browsers, and note what happens when you reload the

page. Chrome will download the WebP images, and Firefox will fall back to the image types

it supports. Figure 6.17 shows this in action.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig17

Figure 6.17. The network request inspector for two web browsers for our recipe

collection page. Chrome (left) can use the WebP images, but Firefox (right) can’t, so it

falls back to image types it supports.

Here, you’re doing two things: you’re serving a beneficial image format to a significant

slice of users on Chrome, and you’re still giving image content to those with other

browsers.

Now that you know how to use WebP images, and how to provide fallbacks to browsers that

don’t support them, you’re ready to learn about deferred image loading, also known as

lazy loading.

6.4. Lazy loading images

Your client appreciates the strides you’ve made in optimizing the images on the website

but they have one last request. The client has noticed that a competitor’s website loads

images only when they’re in the viewport. Your client is wondering whether that’s

something you can do, too.

The client doesn’t want this functionality just because it’s something shiny and new.

It’s a well-established technique that loads images only when they’re needed. When you

lazy load images, you’re preventing the unnecessary loading of images in situations where

users may not even see them. This saves bandwidth and decreases the site’s initial load

time.

In this section, you’ll learn how to write a simple lazy loader in JavaScript, implement

it in the client’s recipe collection page, and then add basic functionality for browsers

without JavaScript support. To get started writing your lazy loader, you’ll download a

new repository of code via git. Run these commands to download the code and start the local

web server:

git clone https://github.com/webopt/ch6-lazyload.git

cd ch6-lazyload

npm install

node http.js

When everything is running, you’ll start by defining a pattern for images in your markup.

If you get stuck at any point, you can type git checkout -f lazyload to view the complete

index.html and lazyloader.js files. Let’s begin by setting up the markup.

6.4.1. Configuring the markup

Setting up the markup for the lazy loader is the least time-consuming part of the task,

but it’s crucial. You need a pattern that prevents the browser from loading images by

default.

To start, let’s look at the page and see what images you should lazy load. You should look

at what’s above and below the fold on the page, and lazy load those images that fall or

could fall below the fold. To identify where the fold is for your users, consider using
the VisualFold! bookmarklet from chapter 4 at http://jlwagner.net/visualfold. Figure 6.18

shows which images you want to load normally, and has suggestions for what images you should
lazy load.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
http://jlwagner.net/visualfold
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig18

Figure 6.18. An audit of which images make sense to lazy load and which ones don’t

When you audit the page, you can immediately see two images that aren’t candidates for

lazy loading: the logo image and the large main image, known as a hero image in marketing
parlance. These will be above the fold no matter what. The recipe collection thumbnails

in the .collection elements, however, are perfect; they’re likely to lie underneath the

fold on most devices because of the space the large hero image occupies. Even if they are
above the fold, the lazy loader will grab them on page load when the script initializes

and load them anyway. You can choose to tweak which elements to lazy load later, if need

be.

Four .collection elements are on the page, each with four image thumbnails in <picture>

elements. One of these elements looks like this:

<picture>

 <source srcset="img/fish-and-chips-2x.webp 2x,

 img/fish-and-chips-1x.webp 1x"

 type="image/webp">

 <source srcset="img/fish-and-chips-2x.jpg 2x,

 img/fish-and-chips-1x.jpg 1x"

 type="image/jpeg">

</picture>

You need to do two things: move the srcset and src attributes to data attributes so that

the images don’t load, and add a class to the element that the lazy loader script

can attach to. Let’s change this markup as shown here.

Listing 6.7. Preparing images for the lazy loading script

The changes to the markup are simple. You take all srcset and src attributes on the <source>

and elements, and change them into data-srcset and data-src attributes. Storing the

image URLs in these placeholder attributes keeps track of the image sources and keeps them

from loading until you want them to.

Then, you create a new src attribute on the tag that points to a 16 x 9 pixel placeholder

PNG with a gray background color. This keeps shifting of the layout to a minimum by

introducing a placeholder that occupies the same amount of space. The last step is to add

the class lazy to the tag. This is what the lazy loader script will target when it

needs to load the image.

From here, you’ll want to make the same changes to every other <picture> element inside

the .collection elements. When you’re finished, you’re ready to write the lazy loading

script.

6.4.2. Writing the lazy loader

With the markup pattern defined on your collection page, you can now begin writing the lazy

loader script. If you have trepidation, don’t worry. I’ll explain every step of the way

in a series of listings. Let’s begin!

Laying the foundations

You’ll begin by getting the foundations together. This involves creating a closure for

your lazyLoader object, which isolates the scope of the script from other scripts on the

page.

Create a new JavaScript file in the js folder named lazyloader.js. Then enter the contents

of the following listing into the file.

Listing 6.8. Beginning the lazy loader

Okay, so there’s already a quite a bit going on here. You’re building an object for the

lazy loader that you assign to the lazyLoader variable, and encapsulating everything inside

a closure. This object will be a collection of properties and functions that facilitate

the lazy loading behavior. You’ll use the contents of the lazyClass property to select

all image elements with a class of lazy, and store that collection later in the images

property.

The processing property signifies whether the lazy loader is scanning the document for

images, which is checked against later to prevent excessive script activity. The throttle

property is the amount of time in milliseconds that the lazy loader needs to wait before

it can scan for images again. The buffer property tops it off by specifying the number of

pixels beyond the bottom edge of the viewport that will trip the lazy loading behavior for

a particular image. Figure 6.19 demonstrates this property’s effect.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig19

Figure 6.19. The buffer property specifies how far out of the viewport the lazy loader will

look for images to load. By extending what the lazy loader looks for beyond the viewport,

you can begin loading images as you approach them to give the browser a head start.

After you have the skeleton of this structure in place, you can build the methods that

initialize and destroy the lazy loader’s behavior.

Building the initializer and destroyer

That heading seems a little bit like a self-important progressive metal album. The Alpha

and The Omega: The Initializer and The Destroyer! All feeble attempts at humor aside,

they’re important parts of this script. Without them, the script doesn’t have an origin

from where it can perform its lazy loading goodness. Without a function to destroy the lazy

loading behavior, the script will just keep going, uselessly burning up CPU time even after

all the images have been loaded.

Continuing on, you’ll write two new object properties. These are the init and destroy

properties, each tied to a method that initializes and destroys the lazy loader,

respectively. This code is shown next, leaving off from where the buffer property was

defined.

Listing 6.9. The initializing and destroying functions

With these additions, you’re pulling up to the gas pump, so to speak. You’re getting the

framework laid down for the lazy load behavior to be attached to the appropriate image

elements. The next piece of the puzzle is the scanImages method.

Scanning the document for images

The previous snippet of code refers to the scanImages method in many places, but you have

yet to write that method. This method is fired from the scroll event (and touchmove event

on mobile devices) and checks whether images with the lazy class are within 50 pixels of

the viewport’s bottom edge. This listing illustrates how to define the scanImages method.

Listing 6.10. Defining the scanImages method

This method first checks whether any more images need to be lazy loaded. If there aren’t

more, the destroy method is run and the lazy loader is finished. If there are more images

to process, a setTimeout call is run with a for loop that uses the inViewport method to

go through all the images and see whether they’re in the viewport. If this method returns

true for an image, it then loads the image. This behavior is protected from excessive calls

from the scroll event listener by setting the processing property to true. From here, you’ll

need to write the inViewport and loadImage methods that the scanImages references.

Writing the core lazy loading methods

To trigger the lazy loading behavior, you need a cross-browser-compatible method to be able

to determine whether a given image element is within the viewport. This is the inViewport

method.

Listing 6.11. Defining the inViewport method

The inViewport method is simple. It checks to see how far the user has scrolled down the

page. It does this by conditionally tapping into either the document.body.scrollTop or the

document.documentElement.scrollTop properties. The reason you check either one of these

is that IE 9 has a compatibility problem with document.body.scrollTop always returning 0,

so you fall back to a similar property using the || operator. This value is then added to

the height of the window to track the bottom of the user’s viewport, and then an additional

buffer value is added to trigger loading of images when they’re near, but not quite in,

the viewport. Figure 6.20 shows how these calculations relate to the browser viewport and

the image element passed to inViewport.

Figure 6.20. The position calculations of the inViewport method, and how they relate to

the viewport and the targeted image element. In this case, the calculation of the

viewport height plus the amount of buffer space given exceeds the top boundary of the

image element, resulting in a return value of true.

From here, you continue on to write the central piece of the program that drives the lazy

loading behavior itself: the loadImage method, shown next.

Listing 6.12. Defining the loadImage method

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig20

The loadImage method first checks whether it’s a direct child of a <picture> element. If

this is true, the neighboring <source> elements are scanned, and their data-src and

data-srcset attributes are flipped to src and srcset attributes. After this completes, the

 element’s data-src and data-srcset attributes are processed and flipped to src and

srcset attributes. The browser then sends a request to the web server for those assets.

The way this function is written allows the lazy loader to work on images specified by the

<picture> element, as well as standard with optional support for srcset. After the

attributes are changed and the image loading starts, the lazy class is removed using a new

method that you must define, called the removeClass method, which you can see in the next

listing.

Listing 6.13. Defining the removeClass property

This method converts the image element’s className string into an array and iterates over

it. If the lazy class is found, it’s removed, and the array is converted back into a string

and assigned back to the image element’s className property.

Turning the key and running the script

Now that everything in the object is defined, you can fire the init method inside an

onreadystate change event after the lazyLoader object, like so:

document.onreadystatechange = lazyLoader.init;

This event waits for the DOM to load, and after it does, the lazy loading behavior is attached

to the specified image elements. All that’s left to do is to load the script by placing

a <script> tag referencing lazyloader.js after the reference for scripts.min.js:

<script src="js/lazyloader.js"></script>

After the script is loaded, and assuming no syntax errors exist, you should be able to scroll

down the page and see images load as they scroll into view. To see how the lazy loader works,

try opening the network tab of the browser you’re using and reload the page. Wait for the

page to load and scroll the page. You should see new network requests appear in the waterfall

graph as images lazy load. Figure 6.21 shows this behavior.

Figure 6.21. The network waterfall graph showing lazy loaded images

With the lazy loader written and finished, one last piece of the puzzle remains: providing

a fallback to users who have JavaScript turned off.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig21

6.4.3. Accommodating users without JavaScript

As small of a segment as they may seem, there are users who have JavaScript turned off or

otherwise don’t have it available. With the lazy loader script in place, those users won’t

see anything other than the image placeholders. Figure 6.22 shows this effect.

Figure 6.22. The effect of lazy loading a script on browsers with JavaScript turned off. The

images never load because the JavaScript never runs.

This isn’t acceptable, even if it affects such a small segment of users. The good news

is that the fix is easy, thanks to your friend <noscript>. You can modify your markup by

adding a <noscript> tag with the image sources set explicitly in the src and srcset

attributes, like so:

<noscript>

 <picture>

 <source srcset="img/fish-and-chips-2x.webp 2x,

 img/fish-and-chips-1x.webp 1x"

 type="image/webp">

 <source srcset="img/fish-and-chips-2x.jpg 2x,

 img/fish-and-chips-1x.jpg 1x"

 type="image/jpeg">

 </picture>

</noscript>

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig22

You’ll note that the contents of the <noscript> tag are the <picture> elements as they

were before you modified them for the lazy loader. When you add this code, you should add

it immediately after the <picture> element that’s lazy loaded. Try turning off JavaScript

in your browser and then reload the page. You’ll see something that looks like figure 6.23.

Figure 6.23. The <noscript> tag at work. Both the image placeholder and the image

loaded in the <noscript> tag are visible because the image placeholder is never hidden

when JavaScript is disabled.

Both the lazy loader image placeholder and the image loaded via the <noscript> tag are

visible. This isn’t going to fly with your client, so you need to make sure that the image

placeholder is hidden when JavaScript is turned off. The solution to this is simple. First,

add a class of no-js to the <html> element:

<html class="no-js">

You’ll use this class to target the lazy loaded images in the markup with CSS. To do this,

you add a simple rule at the end of global_small.less in the less/components folder:

.no-js .lazy{

 display: none;

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig23

}

After adding this, recompile the LESS files via less.sh (or less.bat for Windows users).

So what’s going on here? By adding a no-js class to the <html> tag, and adding a style

that hides the .lazy elements in the DOM, you’re ensuring that you don’t see both the

image placeholder and the recipe image when JavaScript is turned off.

But this means that those elements will be hidden for browsers that do have JavaScript
enabled! To fix this, you add a small bit of inline script that removes the no-js class

from the <html> tag when JavaScript is available. Open index.html in your text editor, and

add this one-liner script right before the closing </head> tag:

<script>document.getElementsByTagName("html")[0].className="";</script>

The end result is that browsers with JavaScript available will benefit from lazy loading,

and those that have JavaScript disabled will still display the images. Those users won’t

benefit from the lazy loading script, but they’ll receive an acceptable experience.

A note on removing HTML element classes

The preceding method employs a scorched-earth policy in removing the no-js class by emptying

the entire <html> class attribute. If you have other classes you need to preserve (Modernizr

classes, for example), you can use a jQuery function such as removeClass() to selectively

remove the no-js class. Better yet, consider using the native classList method, which is

covered in chapter 8.

With your client happy, let’s summarize what you’ve learned and get ready to move on to

the next chapter.

6.5. Summary

In this chapter, you learned the following image-optimization techniques and their

performance benefits:

 Image sprites are a method of concatenating multiple images into a single file, which can save on HTTP requests.

SVG sprites can easily be generated from a set of individual SVG images by using the svg-sprite Node utility.

 Not all browsers support SVG images. If you have a segment of users in your audience who can’t use SVG, you

can provide a PNG fallback by using the Grumpicon online utility at www.grumpicon.com.

 Images can account for a large portion of the data that your users download when they visit your site. You can

reduce the size of your site’s images via the imagemin Node utility, along with imagemin plugins specific to

various image formats.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
http://www.grumpicon.com/

 If you have a large segment of users using Chrome or Chrome-derived browsers, you can serve even smaller

images with equivalent visual quality by using Google’s WebP image format. Using the imagemin-webp plugin

in Node, you can even generate lossy WebP versions in place of JPEGs, and lossless WebP versions in place of

PNGs.

 Not everyone uses Chrome, so you can’t just slap WebP images up on your site and expect them to work for

everyone. Using the <picture> element in conjunction with the <source> element’s type attribute, you can

specify fallbacks to established image types for browsers that don’t support WebP.

 Deferred loading of images, or lazy loading, is a great way to reduce the initial load time of your site. This

technique also saves bandwidth by avoiding loading images that your visitors may never see. By writing your own

lazy loading script, you can implement this behavior on your own site. You also can accommodate users with

JavaScript turned off by coming up with a solution that uses the <noscript> tag.

With these techniques under your belt, you’ll be able to ensure that your websites

accommodate rich visual content without sacrificing the speed and compatibility your site

visitors demand. You’re now ready to move on to the world of fonts, and learn how to optimize

their delivery to the user!

Chapter 7. Faster fonts

This chapter covers

 Limiting the number of fonts through selection

 Rolling your own @font-face cascade

 Understanding the benefits of server compression for older font formats

 Limiting the size of fonts by subsetting

 Using the unicode-range CSS property to serve font subsets

 Managing the loading of fonts through JavaScript APIs

In the preceding chapter, you learned how to optimize images, but as it turns out, many

other aspects of a page benefit from optimization as well. In this chapter, you’ll explore

yet another asset type commonly found in websites: fonts. Fonts can represent a significant

portion of the payload of many websites, and the manner in which they’re delivered is worth

careful consideration.

The state of support for fonts has been somewhat fractured since their introduction into

the developer’s toolkit. Although support for the CSS @font-face property is ubiquitous,

the font formats available for embedding have varying degrees of support.

The TrueType and Embedded OpenType formats enjoy wide support in browsers both antiquated

and modern, so you may be tempted to call it a day and go with one of these. But these font

formats aren’t optimal for the web, because they’re uncompressed. Newer formats such as

WOFF and WOFF2 have a smaller footprint and are the most optimal for embedding. This doesn’t

mean that you shouldn’t use older font formats. They should be part of a @font-face cascade,
but only as last resorts for browsers that don’t support newer and more optimal formats.

As you work your way through this chapter, you’ll start with the basics and learn to select

the fewest fonts and font variants necessary for a given page, and how to create an optimal

@font-face cascade. You’ll also explore how server compression can reduce the size of older

font formats, and how to reduce the size of all font formats through subsetting. Finally,

you’ll take on the task of controlling the way fonts are displayed by using the CSS

font-display property, as well as falling back to the native font-loading API in JavaScript,

and then finally to the Font Face Observer library for older browsers. Let’s begin!

7.1. Using fonts wisely

An optimal use of fonts begins with selection. Although font providers such as Google Fonts

and Adobe Typekit do a lot to guide you in selecting fonts, at times you’ll need to host

fonts yourself—either because the font you need isn’t available on these services, or

your client has specific requirements that may prohibit you from using them.

Speaking of clients, your client from Legendary Tones is back. They’ve bought advertising

for one of their more popular articles, and they want to spruce up that page with some nicer

typefaces. In the course of this section, you’ll choose the fonts and font variants you

need for the site, convert them to the proper formats, and roll your own @font-face cascade.

Before you start, you need to download the client’s site and run it locally with these

commands:

git clone https://github.com/webopt/ch7-fonts.git

cd ch7-fonts

npm install

node http.js

With the site downloaded and the web server running, point your browser to

http://localhost:8080 and you’ll get started!

7.1.1. Selecting fonts and font variants

At a glance, the client’s website design could be improved by adding fonts. The designer

on the project has recommended a nice sans serif font named Open Sans. To help out, the

designer placed the Open Sans font family in a subfolder of the css folder named open-sans.

A glance into this folder reveals 10 styles. Clearly, you need to be choosy; otherwise,

page-load times could be significantly increased.

Want to skip ahead?

If you get stuck and want to skip ahead (or you’re impatient and want to see the results),

you can use the git command. Type git checkout -f fontface and you’ll see the end result

of the work done in this section.

So how do you tease out what font variants you need? The first step is easy. The Open Sans

font family comes in two styles: italic and normal. For this site’s content, you need only

the normal, nonitalicized variants, so this narrows the field to a slimmer selection of

five fonts of varying weights, from Light to Extra Bold.

Five isn’t terribly excessive, but you can weed out some of the unnecessary font weights.

This requires talking with the designer to find out what the client needs. Fortunately,

they’ve been pretty clear about their needs and have given you a small diagram showing

you what font variants you should use. Figure 7.1 shows this diagram, which annotates all

of the font variants (font weights, in this case).

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig01

Figure 7.1. The client’s content page with all of the font weights annotated

As you can see, the variants are determined by their CSS font-weight property value.

font-weight specifies how “heavy” the affected text should be. This specification can

be made in presets such as normal, bold, bolder, or lighter, or through more-specific integer

values in increments of 100, starting at the lightest value of 100, and ending at the heaviest

value of 900. The default value for most elements is normal, which is equivalent to a value

of 400. Table 7.1 maps font-weight values with their corresponding Open Sans font variants

and indicates whether you’ll use them on the page.

Table 7.1. The available font variants in the Open Sans font family, their font-weight

values, and whether they’ll be used on the page

Font weight value Font variant filename Use on page?

300 OpenSans-Light.ttf Yes

400 OpenSans-Regular.ttf Yes

600 OpenSans-SemiBold.ttf No

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table01

Font weight value Font variant filename Use on page?

700 OpenSans-Bold.ttf Yes

800 OpenSans-ExtraBold.ttf No

Knowing which font variants you need, you can discard those you don’t and use these three:

OpenSans-Light.ttf, OpenSans-Regular.ttf, and OpenSans-Bold.ttf.

By being choosy and selecting only what you need, you’re lightening the load for the user

by serving the necessities. Fonts aren’t always diminutive assets, so it behooves you to

be selective. When you’re finished, you can move on to writing your own @font-face cascade.

7.1.2. Rolling your own @font-face cascade

With your font variants identified and the corresponding font files selected, you can begin

embedding them into the client’s website. But before you can write your @font-face

declarations, you need to convert the TrueType font files to the other formats that you

need.

Converting fonts

Because you have only the TrueType (TTF) fonts for Open Sans available, you need to convert

them to the three other formats you need. Table 7.2 lists those formats and their browser

support.

Table 7.2. Font formats, along with their file extensions and browser support. Opera Mini

doesn’t support custom fonts.

Font format Extension Browser support

TrueType ttf All except for and IE8 and below

Embedded

OpenType

eot IE6+

WOFF woff All except for Android Browser 4.3 and below, and IE8 and below

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table02

Font format Extension Browser support

WOFF2 woff2 Firefox 39+, Chrome 36+, Opera 23+, Android Browser 4.7+, Chrome and Firefox for

Android, and Opera Mobile 36+

You can use various tools, available as web services or via download, for conversion.

Conveniently enough, you can acquire some command-line utilities with npm. These are as

follows:

 ttf2eot—Converts TTF to Embedded OpenType (EOT)

 ttf2woff—Converts TTF to WOFF

 ttf2woff2—Converts TTF to WOFF2

If fonts for your website are available only in OpenType (OTF) format, you can download

the otf2ttf Node package to convert your OTF files to TTF prior to continuing. In the case

of Open Sans, however, you’re starting off with TTF, so you don’t need this utility. To

install these utilities globally so that you can use them anywhere on your system, you run

this command:

npm install -g ttf2eot ttf2woff ttf2woff2

This could take a minute or so, depending on your internet connection and, but after it’s

finished, you’ll be able to run these commands from any folder. After npm finishes, you

can begin converting fonts.

Warning: Mind the licensing agreement!

The terms of use for fonts you want to use can vary from font to font, so you need to read
the licensing agreements that come with them. Open Sans is free in every sense of the word

and gives clear permissions about its use. Other font creators may require you to pay use

rights. Even then, restrictions may exist on embedding. Always check the terms of use on
the fonts you want to use and make sure that you’re in compliance!

To convert the Open Sans fonts, go to the css/open-sans folder in your terminal, and start

by generating EOT files for IE:

ttf2eot OpenSans-Light.ttf OpenSans-Light.eot

ttf2eot OpenSans-Regular.ttf OpenSans-Regular.eot

ttf2eot OpenSans-Bold.ttf OpenSans-Bold.eot

This should generate all of the EOT fonts you need. To generate the WOFF fonts with ttf2woff,

the process and syntax are the same as with ttf2eot:

ttf2woff OpenSans-Light.ttf OpenSans-Light.woff

ttf2woff OpenSans-Regular.ttf OpenSans-Regular.woff

ttf2woff OpenSans-Bold.ttf OpenSans-Bold.woff

Finally, you’ll create the WOFF2 files by using tt2woff2, which has a somewhat different

syntax:

cat OpenSans-Light.ttf | ttf2woff2 >> OpenSans-Light.woff2

cat OpenSans-Regular.ttf | ttf2woff2 >> OpenSans-Regular.woff2

cat OpenSans-Bold.ttf | ttf2woff2 >> OpenSans-Bold.woff2

UNIX-like systems vs. Windows systems

In the preceding example, the cat command is used to output the contents of font files via

the pipe operator to the ttf2woff2 program. The equivalent of cat on a Windows system is

type.

With these commands, you’ve generated all of the fonts you need for an optimal @font-face

cascade. Let’s move on to embedding these fonts!

Building the @font-face cascade

How you build the @font-face cascade is important. When done right, it hints to the browser

which formats are available and provides the optimal format. For modern browsers, you can

reap the benefits of highly compressed formats such as WOFF and WOFF2, and for older browsers,

you can safely fall back to less-optimal EOT and TTF formats.

A caveat on SVG fonts

If you’ve had experience with embedding fonts, you might be wondering where SVG fonts fit

in. The short answer is that they no longer do. SVG fonts are deprecated or in the process

of deprecation in future releases of major browsers. It’s best to avoid them altogether.

Let’s get started with writing the @font-face code by opening styles.css in the css folder.

The following listing shows the @font-face code for the first font you need, which is the

regular font weight for Open Sans. You’ll want to place this at the start of styles.css.

Listing 7.1. @font-face declaration for Open Sans Regular

In this @font-face cascade, you’re specifying the most optimal scenario to the least

optimal one. Let’s look at the src property: this property takes a comma-separated list

of sources for the specified font. The sources are loaded in the order they are specified.

You start with a local() declaration that checks for the font on the user’s system. This

is the most optimal outcome, because it saves the browser from having to download anything

altogether.

If a local source isn’t found, the browser downloads one out of a set of font formats that

you converted earlier in this section. Which format is downloaded is based on the capability

of the browser. You want to start off on the right foot, so you begin with the best format,

which is the WOFF2 version. To achieve greater support, you need to fall back to increasingly

less-optimal formats for less-capable browsers. Figure 7.2 details this process.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig02

Figure 7.2. The process of a user’s browser processing a @font-face cascade. The browser

searches for a locally installed version (if specified,) and if it can’t find one, it will iterate

through all of the @font-face src() calls for various formats of the same font.

When the request for the WOFF2 font format fails, the browser will check for the next format

in the list, which is the slightly less optimal WOFF version. Most browsers succeed by this

point and load the WOFF version. Other browsers will fall back to the EOT or TTF files.

After the @font-face declaration is written, you’ll want to modify the font-family property

on the body selector to reference this font as the default for the document, like so:

font-family: "Open Sans Regular", Helvetica, Arial, sans-serif;

This property specifies a number of fonts in order of preference. Open Sans Regular is

specified first, and is thus the preferred font. The next few are fallbacks in case the

@font-face you’re depending on doesn’t load. After you’ve specified the font, you can

reload the document in different browsers and notice that the font is now in use.

If you check the network tab in various browsers, you’ll see that Firefox and Chrome use

the WOFF2 file. Safari uses the WOFF file. Older browsers such as IE8 download the EOT file.

If you install the TTF font files to your system, you’ll notice that no fonts at all download,

and are instead referenced from your computer. This behavior can be circumvented by removing

all local() sources, but this approach isn’t optimal for production websites. Always be

sure to test that your remote font files work properly by removing all local() source

references, and add them before you deploy your site to production.

The last thing you need to do is to create @font-faces for the other two font weights, shown

here.

Listing 7.2. @font-face declarations for remaining Open Sans font variants

@font-face{

 font-family: "Open Sans Light";

 font-weight: 300;

 font-style: normal;

 src: local("Open Sans Light"),

 local("OpenSans-Light"),

 url("open-sans/OpenSans-Light.woff2") format("woff2"),

 url("open-sans/OpenSans-Light.woff") format("woff"),

 url("open-sans/OpenSans-Light.eot") format("embedded-opentype"),

 url("open-sans/OpenSans-Light.ttf") format("truetype");

}

@font-face{

 font-family: "Open Sans Bold";

 font-weight: 700;

 font-style: normal;

 src: local("Open Sans Bold"),

 local("OpenSans-Bold"),

 url("open-sans/OpenSans-Bold.woff2") format("woff2"),

 url("open-sans/OpenSans-Bold.woff") format("woff"),

 url("open-sans/OpenSans-Bold.eot") format("embedded-opentype"),

 url("open-sans/OpenSans-Bold.ttf") format("truetype ");

}

After these @font-faces are written, you need to search styles.css for font-weight

properties of 300 and 700. For selectors with font-weight properties of 700, add this rule:

font-family: "Open Sans Bold";

For selectors with font-weight properties of 300, add this rule:

font-family: "Open Sans Light";

Now the site should have the Open Sans font family displaying all text in the document in

your varying font weights. Congratulations! You embedded fonts in a way that favored the

smallest and best-performing font formats first, which lowers load times for your users.
Even though older browsers receive less-optimal formats, they’ll still display the custom

typeface. Of course, these older formats aren’t trivial to load. That’s where server

compression comes in!

7.2. Compressing EOT and TTF font formats

You may recall that your @font-face cascade starts off fine with high-performing formats

such as WOFF2 and WOFF. But the two formats after that, although well-supported, are less

optimal. The reason behind this is that the WOFF2 and WOFF formats are internally compressed.

A compression algorithm is intrinsic to those formats, and server compression isn’t

necessary.

TTF and EOT font formats aren’t compressed, so they’re great candidates for server

compression. Server compression can carry overhead for binary file types, but the process

is worth it to speed the delivery of these less-optimized formats.

By default, these formats are compressed when you use the local Node web server with the

compression module. But different web servers may or may not compress these formats by

default, and may require further configuration. For instance, Apache web servers need to

use mod_deflate to compress these files. This listing shows a portion of an Apache server

configuration that specifies compression for TTF and EOT fonts.

Listing 7.3. Apache server configured to compress TTF and EOT fonts

This is just one example of a web server being configured to compress fonts. Configuring

other web servers to enable this same functionality requires research. The point of this

section is to point out the performance gains in compressing these file types. The benefits

of compressing these formats can be seen in figure 7.3, where the OpenSans-Regular.ttf and

OpenSans-Regular.eot font files are compared before and after their compression.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig03

Figure 7.3. The size of the Open Sans Regular font before and after compression. The

gains in this example are about 45%, from 212.26 KB to 113.76 KB, over the

uncompressed versions. EOT compression ratios are similar.

There’s a clear benefit in using server compression on these older formats. Compressing

them achieves a file size similar to WOFF equivalents, so it’s something of an equalizer

for browsers that don’t support WOFF. WOFF2 still beats out compressed TTF and EOT files,

but again, not every browser supports WOFF2. The goal is to deliver the best result possible

for every browser, and this is another method that gets you closer to achieving that goal.

For smaller assets, compression is efficient, but for larger ones such as TTF and EOT fonts,

compression can take longer, resulting in a longer TTFB. Always be sure to test to see which

scenario yields lower load times. For smaller files, compression may not be worth the

processing time.

7.3. Subsetting fonts

Your client is happy that the site looks spiffier, but is curious about whether there’s

a way to lighten the load that these fonts are adding. The unfortunate reality of adding

fonts to any site is that more data is going to end up being transferred over the wire.

By adding three fonts, you’ve added around 185 KB of extra weight on browsers that download

the WOFF2 fonts. Less-capable browsers fall back to WOFF, and other versions that represent

approximately 260 KB of extra data. That’s a lot, and there must be a way to trim the fat.

Fortunately, you can use a technique to reduce font size: subsetting. Subsetting is the
practice of selecting only the characters you need in a font file and discarding the rest.

A practical application of this technique involves subsetting a font by language. For

example, if a site’s content is in English, Latin characters should suffice. If you’ve

ever used Google Fonts, you’ve taken advantage of subsetting, because it’s part of the

service’s settings dialog box after you choose a font, as shown in figure 7.4.

Figure 7.4. Google subsetting fonts by language

Though services like Google Fonts and Adobe Typekit offer subsetting, some scenarios prevent

the use of third-party services, particularly if a site’s design calls for fonts not found

on font services or if a font requires a subscription fee. For these and any number of

potential reasons, it’s good to know how to subset fonts on your own so that you can be

in charge of optimal font delivery for a website in your care. In this section, you’ll

learn how to manually subset fonts by using a command-line tool, as well as how to use the

unicode-range CSS property to serve fonts for multilingual websites.

7.3.1. Manually subsetting fonts

Subsetting fonts can be done on the command line with a Python-based set of utilities named

fonttools. In this section, you’ll learn about Unicode ranges, install Python (if it is

not preloaded), and use the pip package manager to install the fonttools library. You’ll

also use the pyftsubset command-line utility to generate subsets for your fonts.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig04

Understanding Unicode ranges

To understand the mechanism by which subsetting works, you need to know what Unicode is

and how glyphs for various languages exist in predefined Unicode ranges.

If you’ve spent any time in web development, you’ve heard of Unicode, but maybe you don’t

know exactly what it is. Unicode is a standard that normalizes the way that characters for
all languages are represented. More than 120,000 Unicode reservations exist for characters

across various languages, and the standard is continually evolving to accommodate more.

The idea of Unicode isn’t just to accommodate such a large range of characters; it’s to

reserve space for them in a consistent way when a Unicode character set is used. The best

example of a widely used Unicode character set is UTF-8, which is the de facto standard

used on the web. When a Unicode character set is used, the reserved space for a letter is

the same in all documents. For example, a lowercase p is always located at a Unicode code
point of U+0070. Figure 7.5 shows this code point among others in a table.

Figure 7.5. A portion of a table of Unicode characters from unicode.org, showing glyphs

and their code points. The lowercase p is identified by its Unicode code point of U+0070.

You need an understanding of Unicode characters because fonts use Unicode code points to

reserve spaces for specific characters.

You also use Unicode code points to subset fonts. Some fonts contain far more characters

than are necessary for most uses cases. If you write your content in English, it stands

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig05

to reason that you don’t need the Cyrillic characters that a font may provide. By subsetting,

you export only the glyphs appropriate for a website’s content. This results in smaller

font file sizes, and as you know by now, smaller assets translate to lower page-load times.

The typical way of subsetting a font is by using a Unicode range. This range is expressed
as two Unicode code points and includes all code points between them. A popular Unicode

range is the Basic Latin range, which includes lower and uppercase characters from the

English alphabet, numbers zero through nine, and a multitude of special symbols such as

punctuation marks. This range is specified as U+0000 to U+007F. When this range is fed into

a subsetting tool, it exports the specified range to a smaller file.

Finding other Unicode ranges

The Unicode Consortium’s official site for the Unicode standard (unicode.org) contains

an exhaustive listing of all the languages that the standard reserves space for. To find

a Unicode range, go to http://unicode.org/charts and browse the listing. Click the language

you’re looking for, and the PDF chart for that language will have the range in the upper-left

and upper-right corners of the document. For example, the range for Armenian characters

is U+0530-058F.

Later in this section, you’ll subset the Open Sans font to the Basic Latin Unicode range

by using a command-line tool named pyftsubset, which is a part of the fonttools library.

But before you can use this tool, you need to install it.

Installing fonttools

Installing fonttools is easy. In chapter 3, you downloaded and installed Ruby so you could

use the gem package manager to install the uncss utility. In this short section, you’ll

do something similar, only you’ll be installing Python, which gives access to the pip

package manager that you can use to install the fonttools package. This package is host

to a command-line font subsetting utility named pyftsubset.

If you’re a Mac user, Python comes preinstalled. Many distributions of Linux also have

Python preinstalled. The easiest way to see whether Python is already installed on any system

is to run the python --version command. If Python is installed, the version number will

display on the screen, and you’re good to go. The developer of fonttools states that the

program requires Python 2.7, or 3.3 or later.

Windows users won’t have the convenience of Python being preinstalled, but this is a minor

obstacle. To install Python, go to http://python.org/downloads and get the installer. The

installer will simplify the process for you, and requires nothing more than going through

a series of steps.

http://unicode.org/charts
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
http://python.org/downloads

After Python is installed, ensure that the pip package manager is available by typing pip

-V at the command line. If you receive an error and don’t see a version number, you need

to install pip. Because Python is available by this point, this is easily remedied by running

the easy_install pip command. After it’s finished, the pip installer will be available,

and you can install the fonttools package by typing pip install fonttools.

After fonttools is installed, you can check whether the pyftsubset utility is available

by entering pyftsubset --help at the command line. If your screen buffer fills up with help

text, the utility is installed, and you’re ready to start subsetting fonts!

Subsetting fonts with pyftsubset

Now that fonttools is installed and pyftsubset is working, it’s time to get down to business.

Because the content is in English, you want to subset the Basic Latin Unicode range. This

range contains all the letters and numbers used in the English alphabet, as well as all

the symbols you’ll need, such as punctuation. When you look up the Basic Latin range on

the official Unicode website, you find that the range is U+0000 to U+007F. This is the

information you’ll feed to the pyftsubset utility to generate your subsets.

To begin subsetting fonts with this utility, open a terminal window and traverse to the

css/open-sans directory within the client website folder. In order to work, pyftsubset

requires TTF, OTF, or WOFF files. For simplicity, you’ll subset the original TTF files

and use the converters from section 7.1 to reconvert the subsetted TTF fonts to the other

formats that you need.

After you’re in the correct folder, you’ll start by subsetting the OpenSans-Regular.ttf

font file with the following command:

pyftsubset OpenSans-Regular.ttf --unicodes=U+0000-007F

--output-file=OpenSans-Regular-BasicLatin.ttf --name-IDs='*'

Quite a bit is going on in this command, so let’s break it down. Figure 7.6 diagrams each

of these options.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07lev1sec1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig06

Figure 7.6. Subsetting a font with pyftsubset. The input file is specified first, followed by

the Unicode range of characters you want to subset from the input font, and then the

output filename. The last option is used to preserve all name table entries, which

ensures better compatibility with the font converters.

After a short wait, the program will finish and output OpenSans-Regular-BasicLatin.ttf as

specified in the --output-file flag. If you look at the size of this file as compared to

OpenSans-Regular.ttf, you’ll observe that you’ve shrunk the file by about 90%, from 212.26

KB to 17.68 KB. This is a huge reduction in the font’s overall size. What’s more, this

isn’t even the optimal font format; Open Sans has a lot of characters because of its broad

support for many languages. You won’t always get this kind of mileage from subsetting your

fonts, but it can pay to take time to see what’s possible.

Before you declare victory, you still have to convert this subsetted font to EOT, WOFF,

and WOFF2 formats with these commands:

ttf2eot OpenSans-Regular-BasicLatin.ttf OpenSans-Regular-BasicLatin.eot

ttf2woff OpenSans-Regular-BasicLatin.ttf OpenSans-Regular-BasicLatin.woff

cat OpenSans-Regular-BasicLatin.ttf | ttf2woff2 >>

 OpenSans-Regular-BasicLatin.woff2

After you finish converting all fonts, repeat the same subsetting procedure by using

pyftsubset for OpenSans-Bold.ttf and OpenSans-Light.ttf, and convert those files to their

respective EOT, WOFF, and WOFF2 versions. Then you need to update the @font-face sources

in styles.css to reference the new subsetted font files.

On special symbols

When subsetting a font, bear in mind the content of the site that the font is destined for.

A site about coffee and coffee products may use words from other languages—such as café,
which has an accented e character. The Basic Latin range lacks these characters, so you
may want to take care to include the glyphs you may need down the road.

With this effort, you’ve managed to peel quite a bit off the fonts’ file sizes. Depending

on the font’s format, you’ve slimmed your fonts down anywhere from 85% to 90% of their

original size. This translates into a rather large improvement in page-load time, as you

can see in figure 7.7.

Figure 7.7. Load times before and after subsetting fonts. Load times are improved by well

over 200%. Load times include load times for all assets on site. True-Type fonts were

compressed by the server in these trials. (EOT omitted due to incompatibility; file sizes

are nearly identical to TTF.)

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig07

By now, you’re probably feeling unstoppable. The next challenge is subsetting by language

with the unicode-range property in your @font-face cascade. With this property, you can

target specific languages via Unicode ranges as you did with pyftsubset.

7.3.2. Delivering font subsets by using the unicode-range property

The client wants to present the content in more than one language. The site is, for whatever

reason, particularly popular in some Eurasian countries, especially Russia.

This presents a bit of a challenge, because the client needs to get the content translated.

But you can work while the content translators do their thing, because the client has given

you Russian placeholder copy to work with.

The problem is that this site needs to be able to serve the Cyrillic characters that the

Russian language uses. You can achieve this in one of two ways:

 You can serve up the entire unsubsetted font file so that all languages will have the characters they need at their

disposal, no matter the circumstances.

 You can serve up only the subsets that are needed by that page.

Which way do you think is better? If you guessed option two, you’re correct. As you saw

in the previous section on manual subsetting, serving the unsubsetted font hinders

performance, so you’ll want to subset for other languages appropriately. In this case,

you don’t want to force English-speaking users to download the Cyrillic subset of the font.

This is where the unicode-range CSS property comes in. This property is specified within

a @font-face definition, and its value is a range and/or set of Unicode code points in the

same format as those you fed into the pyftsubset program. If the browser detects that the

content of the page contains characters that fall into this range, it’ll download the font.

If it doesn’t, it won’t download the font.

This property doesn’t have universal browser support, so if you intend to use it, you may

need to have a fallback strategy. No well-maintained polyfills exist for unicode-range at

this time, so fallbacks often require an alternate approach rather than a fallback. I’ll

demonstrate an alternate approach later in this section.

In this section, you’ll learn how to use pyftsubset to generate a new font subset containing

the Cyrillic characters you need. After you convert them, you’ll then embed them in a new

@font-face and use the unicode-range property to inform the browser of which characters

the associated @font-face applies to. Then, you’ll discuss a fallback method using

JavaScript.

To get started in this subsetting exercise, you need to switch over to a new branch of code

by using git. Type in the command git checkout -f unicoderange. The first thing you’ll

see is that there are two HTML files: the English version of the article that you’ve seen

before (index-en.html), and a Russian version (index-ru.html) using Cyrillic characters.

Let’s get started!

Generating the Cyrillic font subsets

Before you can use unicode-range to deliver the proper font subset to Russian viewers, you

need to create the subset of those characters by using pyftsubset.

As you may suspect, the method for generating the Cyrillic subset with this program is much

the same as it was when you generated the Basic Latin subset. The only difference is that

you need a different Unicode point range to grab the characters.

Whereas the Basic Latin Unicode range is simple, the Cyrillic Unicode range is complex.

It’s three distinct comma-separated ranges that you pass to pyftsubset’s --unicodes

option. I’ll provide these ranges for you in this example, but they can be found on the

Unicode website. To create the Cyrillic subsets for the OpenSans-Regular.ttf font file,

type in this command from within the css/open-sans folder at the command line:

pyftsubset OpenSans-Regular.ttf --unicodes=U+0400-045F,U+0490-0491,U+04B0-04B1

--output-file=OpenSans-Regular-Cyrillic.ttf --name-IDs='*'

The only differences between this command and the one you used to generate the Basic Latin

subset for Open Sans Regular are the Unicode ranges you pass to the --unicodes option and

the output filename. After this finishes, you’ll see that a new file by the name of

OpenSans-Regular-Cyrillic.ttf will be in the folder. As before, you need to convert this

font into the EOT, WOFF, and WOFF2 versions:

ttf2eot OpenSans-Regular-Cyrillic.ttf OpenSans-Regular-Cyrillic.eot

ttf2woff OpenSans-Regular-Cyrillic.ttf OpenSans-Regular-Cyrillic.woff

cat OpenSans-Regular-Cyrillic.ttf | ttf2woff2 >> OpenSans-Regular-Cyrillic.woff2

After these conversions finish, repeat the process of generating Cyrillic subsets for

OpenSans-Light.ttf and OpenSans-Bold.ttf to OpenSans-Light-Cyrillic.ttf and

OpenSans-Bold-Cyrillic.ttf, respectively. Then convert those files to the formats you need

for their respective @font-face definitions. Now you’re ready to learn about the

unicode-range property and use it in your new Cyrillic @font-faces!

Using the unicode-range property

Using the unicode-range property in CSS isn’t much different from passing Unicode ranges

to the --unicodes option when you subset fonts with pyftsubset. If you open styles.css from

the client’s website in a text editor and look at the @font-face declarations, you’ll

notice that unicode-range has already been used for the Basic Latin subsets:

unicode-range: U+0000-007F;

The format for this property is simple but flexible. It accepts any number of single Unicode

code points, ranges, and/or wildcards. Variations of this property’s use are shown here.

Listing 7.4. unicode-range values

With a Unicode range specified for the Latin subset, it stands to reason that if you visit

the Russian version of the page in your browser at http://localhost:8080/index-ru.html,

the Basic Latin subset shouldn’t load at all, correct? As you can see in figure 7.8, this

isn’t the case.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig08

Figure 7.8. The Basic Latin font subsets are loaded on the Russian version of the page,

despite having a unicode-range property set to use these fonts only for pages displaying

characters from the Basic Latin subset.

“Wait a minute! What gives?” might be your first thought, but the fact is that this version

of the site is using characters from the Basic Latin subset you created. This font subset
contains things that are common not just in English but in Russian, too—things like

punctuation and numerical characters. For numerous reasons, characters in the Basic Latin

Unicode range are common in many languages. So the unicode-range property in this instance

is working exactly as it ought to: it’s getting the font subset only when it’s needed!

What you want to do is prevent the Cyrillic font subsets from being downloaded on pages

that don’t need them. To do this, you need to establish a new @font-face for each of the
new Cyrillic font subsets with their own unicode-range value. The following listing shows

a @font-face declaration for the Cyrillic subset of Open Sans Regular that you’ll add to

styles.css.

Listing 7.5. @font-face for Open Sans Regular Cyrillic subset

After adding this new font to styles.css, add the remaining @font-face declarations for

the Cyrillic subsets of Open Sans Light and Open Sans Bold. When adding this, make sure

to update the font-family and local() source names appropriately. They’ll be the same as

the values for the Basic Latin subsets of those font variants.

When you complete the remaining @font-faces, you’ll be able to see how unicode-range

affects font delivery. You have index-ru.html open, so open index-en.html in another tab

and check the network utility in the Developer Tools for each page in Chrome. A comparison

of the Network tab output for the English and Russian versions of the page can be seen in

figure 7.9.

Figure 7.9. The fonts downloaded by the Russian version of the page (left) as compared

to the English version (right), even though they both use the same style sheet. The

unicode-range property detects whether any characters in the document exist in the

defined ranges, and if so, the related @font-face resource is served up.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig09

You’ll notice that the Russian page pulls down the Cyrillic subsets with the Basic Latin

ones, whereas the English page, not having any need for Cyrillic characters, heeds the

unicode-range property and ignores that subset.

This technique has utility for any multilingual website with languages that use different

character ranges. Most western languages such as German, Spanish, and French do fine with

a more inclusive Latin subset, but languages such as Greek and Russian benefit from

subsetting because of their different alphabets. Asian languages especially benefit from

this method, because Asian languages can have thousands of characters.

Not all browsers support this property, so it pays to think about how to fall back to methods

that are more compatible with older browsers.

Fallbacks for older browsers

Although unicode-range is a great feature, its overall support isn’t universal. Although

well supported in newer WebKit browsers and Firefox, others may not have support for it

by the time you read this. These browsers will ignore the unicode-range property and download

all of the font subsets found in a CSS file without discretion. Figure 7.10 shows Safari

9’s behavior with the English version of the page; all fonts load on the page as though

the unicode-range property never existed.

Figure 7.10. Cyrillic subsets loading on the English version of the page, regardless of the

unicode-range property. The behavior shown is in Safari.

So what can you do for browsers that don’t support unicode-range? One possible approach

is to create broader subsets if the increased number of glyphs won’t be too detrimental

to page performance. Both versions of the page would still download the extra characters,

but instead of six requests over three font variants, the weight would be spread across

three requests over the same number of font variants.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig10

This approach doesn’t work for content in languages such as Japanese, in which the number

of glyphs can push font file sizes into the massive category. Although developers who code

for sites in these languages may expect to have a large amount of a site’s payload dedicated

to fonts, it’s not okay to push these subsets onto users who don’t need them. It’s not

a nice thing to do to your visitors. The solution, therefore, lies in JavaScript.

For multilingual sites, developers use the <html> tag’s lang attribute to define the

document’s language. These language codes conform to the ISO 639-1 standard. In

index-ru.html, this looks like <html lang="ru">. You can write a small bit of inline

JavaScript that checks the language code in this tag. If the language code is what you’re

looking for, you load a separate, smaller style sheet that contains the @font-face

declarations for the subsets that you want to defer loading.

To implement this for Russian content, you start by moving the Cyrillic @font-face

definitions into a separate CSS file named ru.css. You then reference ru.css with a <link>

tag containing a placeholder data-href attribute that stores its location, along with a

data-lang attribute that stores the content language code it’s intended for. This prevents

the CSS from being loaded at all until it’s evaluated by the following <script> block.

If the script determines that the <html> lang attribute’s value matches that of the <link>

tag’s data-lang attribute, it’ll download and parse that style sheet immediately. This

listing shows this mechanism in action.

Listing 7.6. Deferring loading of font subsets with JavaScript

Because this <script> block is near the beginning of the document, the browser will discover

it almost immediately, so it’s executed sooner. This keeps delays to a minimum.

The script also has the capability of handling multiple <link> tags that follow the data-href

pattern. This gives the code the flexibility to contain references to as many <link> tags

as necessary for additional font subsets. You could place this code in the <head> of every

single page of a multilingual website, and only the CSS and font subsets you need for that

page’s language would be loaded.

You should consider users who may have JavaScript disabled. To cover this, you’ll serve

the font subset via a <link> tag nested in a <noscript> element. This fallback isn’t optimal

because it won’t discriminate based on the <html> lang attribute’s value, but it’ll

ensure that users get the font subset necessary for the page.

The effect on your client’s website is that you can have the same end result as with the

unicode-range property, only in every browser. Figure 7.11 illustrates the effect of this

script on both the Russian and English versions of the article as loaded in Safari.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig11

Figure 7.11. The contents of the network tab in Safari on both the English (left) and

Russian (right) versions of the content page, with your fallback script enabled on each

page. The English version downloads only the fonts it needs, whereas the Russian

version grabs the additional ru.css and the font subsets contained therein.

Is this solution remotely as optimal as unicode-range? Nope! It simply illustrates that

JavaScript solutions can be crafted if there’s a genuine concern. Simpler JavaScript

solutions for simpler scenarios could be written. A server-side approach may make more sense

to you as well. For example, you could store the language code in a cookie, and use a

server-side language such as PHP to inject the <link> element for the font subset into the

document based on a condition.

As time marches on, unicode-range will gain more support until it’s eventually preferable

to allow older browsers less-optimal experiences. The idea is that you have options in case

unicode-range isn’t one of them.

In the next and final section of this chapter, you’ll learn to control the way fonts are

displayed via CSS and JavaScript mechanisms.

7.4. Optimizing the loading of fonts

Loading any asset on a website involves pitfalls that vary based on the asset’s type. For

instance, loading CSS with the <link> tag blocks rendering until the style sheet is

downloaded and parsed and the styles are applied to the document. <script> tags that

reference external JavaScript files similarly block rendering of the page when they’re

placed toward the top of the document.

Fonts are no different, and loading them causes no shortage of issues that can have

ramifications on the readability of your site. In this section, you’ll learn about the

visual anomalies that can occur as fonts load. You’ll then learn how to control the way

fonts are displayed by using the font-display CSS property, and then fall back to using

the JavaScript-based font-loading API when font-display is unavailable. If neither method

is available to the browser, you’ll learn how to fall back to a third-party script to achieve

the same results.

7.4.1. Understanding font-loading problems

The Legendary Tones owners have sent an email saying that, although they’re happy with

the way the fonts look, they’re noticing that text on the page seems to take a while to

render on slow connections. This is understandable, but the reality is that this is how

some browsers work when it comes to downloading fonts. The phenomenon the client is referring

to is called the Flash of Invisible Text.

Flash of Invisible Text (henceforth referred to as FOIT) is similar to the Flash of Unstyled
Content (FOUC) anomaly, only instead of unstyled content, you’re dealing with text being

invisible until the document’s fonts are fully loaded. It’s noticeable on even fast

connections if you pay close attention. As connection speed decreases and network latency

increases, the problem becomes more evident. Mobile devices on slow mobile networks such

as 2G and 3G are more susceptible to this phenomenon. You can see this problem in figure

7.12.

Figure 7.12. As a page loads embedded fonts, the text is initially invisible (left) until the

fonts fully load, at which point the text styled in those font faces appears.

This seems like an annoying bug, but it’s how browsers are designed to behave. Browsers

wait to render text while downloading fonts in order to avoid an effect known as the Flash
of Unstyled Text (FOUT). FOUT is similar to FOUC talked about in chapter 3, except that
instead of an unstyled page, text initially loads in a system typeface and then suddenly

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03

re-renders with the custom typeface applied. The browser will hide text for only so long

while a font loads, and when this period of time is exceeded, the unstyled text shows up

before the font has finished loading. After the font has loaded, the unstyled text is styled.

This is shown in figure 7.13.

Figure 7.13. When the download time for a font is too long, the text will eventually

become visible, but is unstyled because of the still-loading font resource (left). After all

of the fonts load, the text will become styled (right). This is known as FOUT.

The browser’s intentions are good, but if a connection stalls, the user could be left

waiting for 3 seconds or longer to see text on the page. In browsers such as Safari, the

content may never show if the request stalls. If the user aborts loading the page, or the

font assets otherwise fail to load, the content may remain permanently invisible until the

page is refreshed. This holds true even if the developer of the website has specified

fallbacks to system fonts in the font-family properties. Newer versions of Chrome try to

mitigate this issue automatically, but it’s not perfect, nor does every browser try to

remedy the issue under the hood.

So what can you do? You embrace the FOUT on page load, and use the CSS font-display property.

This property lets you ensure that your content will appear as soon as possible, and won’t

leave your users in a lurch with hidden text. Let’s get started!

7.4.2. Using the CSS font-display property

The font-display property in CSS provides a convenient way to control the display of fonts

with a minimum of effort. Though this approach is limited to Chrome browsers at the time

of this writing, it’s the best first resort in your plan to control the display of fonts.

To get started, let’s check out a new branch of the website code with git:

git checkout font-display

Want to skip ahead?

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig13

If you get stuck or want to skip ahead to see how the completed font-loading API code looks

and behaves, you can do so by entering git checkout -f font-display-complete at the command

line.

After the code has downloaded to your computer from GitHub, open index.html and styles.css

in your text editor.

Controlling how and when fonts display

To get started, open the Developer Tools in Chrome and change your network throttling profile

to Regular 3G. You’ll be able to see the FOIT effect quite easily. As a general rule, the

slower the connection, the more noticeable this effect. To pinpoint the moment when fonts

become visible on the screen, you can toggle the Capture Screenshots button in the Network

tab, as shown in figure 7.14.

Figure 7.14. The toggle button to capture screenshots in Chrome Developer Tools

When this button is toggled and the page is reloaded, a roll of screenshots of the page

load populates above the network request waterfall chart. With this, you can pinpoint the

exact moment that fonts appear on the page. With the Regular 3G throttling profile selected,

the text doesn’t appear until about 875 milliseconds from the time the page begins to

download. This is okay, but depending on connection speed and latency, this could fluctuate.

The goal is to allow the user to see content as soon as possible.

Learn a bit more about font-display on the web!

You can learn a little bit more about the font-display property, including how to detect

support for the property, by checking out an article I wrote for CSS-Tricks at

https://css-tricks.com/font-display-masses.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig14
https://css-tricks.com/font-display-masses

One way to control this behavior is via the font-display property in CSS. Although not

universally supported, this property gives you a great degree of control over the way fonts

are displayed. This property is placed inside a @font-face declaration and accepts one of

the following values:

 auto—The default value. In most browsers, this is analogous to block.

 block—Blocks the rendering of text until the associated font is loaded. This is the effect described in the

previous section, and what you’re trying to overcome.

 swap—Fallback text is shown first. After the font is loaded, the custom typeface is swapped in.

 fallback—A compromise between auto and swap. For a short time (roughly 100 ms), text is invisible. If this

elapses and the font isn’t yet loaded, the fallback text appears. After the font is loaded, the custom typeface is

swapped in.

 optional—Exactly like fallback, except that the browser is given more latitude to decide whether a font is

downloaded or applied. This setting kicks in when the user’s internet connection is sufficiently slow. This setting

is particularly useful for sites where custom typefaces are considered entirely optional.

On the Legendary Tones article page, you’ll use a font-display value of swap. To set this

property, open styles.css in the css folder and locate the @font-face declarations at the

top of the file. Inside the first @font-face declaration, add the font-display property.

Listing 7.7. Using the font-display property

With this one property in place, reload the page on a slower network-throttling profile

and you’ll see that the text displays progressively without being hidden by the browser.

This setting represents the easiest possible solution for controlling the rendering of fonts

when you have control over the CSS that delivers them, but it doesn’t have wide support

in browsers, nor does it allow you to control the way that fonts are displayed when they’re

referenced from third-party providers such as Typekit or Google Fonts. That’s when you

can fall back to a more widely supported JavaScript solution, known as the font-loading

API.

7.4.3. Using the font-loading API

The font-loading API is a JavaScript-based tool that controls how fonts are loaded. Its
open-ended nature gives you a lot of latitude in determining how to apply typefaces to a

document, whether they’re hosted on your own server or with a font provider such as Google

Fonts. To use the font-display CSS property discussed in the previous section, you need

to have control over the CSS that serves fonts. This is a luxury you don’t have when you

use third-party font providers. The font-loading API gives you a similar ability to control

the display of fonts regardless of their origin, but through JavaScript rather than CSS.

Before you get started, you need to use git to switch to a new branch of code. Go into your

terminal window and type git checkout -f font-loader-api. When this is complete, you’re

ready to go

Want to skip ahead?

If you want to skip ahead and see the work at the end of this section, you can do so by

typing git checkout –f font-loader-api-complete.

To get started, look in styles.css for font-family definitions that use custom typefaces.

For this site, you have three font variants: Open Sans Light, Open Sans Regular, and Open

Sans Bold. Table 7.3 lists these font-family definitions and the selectors they apply to.

Table 7.3. Embedded fonts’ font-family property values and their associated CSS

selectors

font-family Associated CSS selectors

Open Sans Light .navItem a

Open Sans Regular body

Open Sans Bold .articleTitle.sectionHeader

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table03

You’ll use this information to do two things. The first is to replace the font-family

properties for all of these with system fonts. For this website, you’ll use the following

property and value for the associated selectors in table 7.3:

font-family: "Helvetica", "Arial", sans-serif;

This removes the Open Sans font families from the page, which allows the content to be seen

immediately, because these fonts aren’t downloaded from the web server.

Second, you nest these selectors under a class that you’ll put on the <html> element when

the fonts have been loaded. But before you write the font-loading script, you’ll write

the CSS for applying the Open Sans fonts after this class is applied to the <html> element.

This is shown next.

Listing 7.8. Controlling font display by using the fonts-loaded class

.fonts-loaded body{

 font-family: "Open Sans Regular";

}

.fonts-loaded .navItem a{

 font-family: "Open Sans Light";

}

.fonts-loaded .articleTitle,

.fonts-loaded .sectionHeader{

 font-family: "Open Sans Bold";

}

By placing this small snippet of CSS at the end of styles.css, you can control when you
apply the typefaces you’re loading with the font-loading API. Because you’ve specified

the system fonts as the initial font set, the unstyled text will be immediately visible

when the page first renders, and the custom typefaces will be applied after they’ve loaded.

Open index.html in your text editor to start writing your font-loading script. After the

<link> tag that imports styles.css (which imports our fonts,) add the code in the following

listing.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table03

Listing 7.9. Using the font-loading API

Because you’re managing three font variants, you initiate a separate call to load each

typeface. The core property of the font-loading API that you’re using to achieve this is

the font object’s load method. Rather than using the API to explicitly load a font by its

URL, you rely on CSS to define @font-faces for the document. But just because the @font-faces

are defined doesn’t mean that the browser downloads those fonts. Browser behavior is well

optimized, and modern browsers will inspect the document to see whether any defined

@font-faces are in use. If they are, they’ll be downloaded, but because you initially set

all of your font-family values to use system fonts, none of the font variants are downloaded

until you tell the browser to do so via the load() method shown in listing 7.9.

When all of the fonts have loaded, the fonts-loaded class is added to the <html> element.

This defeats the browser’s initial FOIT, allowing the content to be read as soon as the

document is loaded and the CSS is applied. Then the fonts are applied to the document when
they’re available. This ensures that no matter what may happen on the user’s end, the

text will be visible as soon as possible, and if a font fails to load, the text will remain

that way.

One drawback of this method is that it does cause a repainting of text elements on the page,
but the increased accessibility is worth the trade-off. If you choose system fonts that

are similar to custom typefaces, document reflow can be minimized.

Optimizing for repeat visitors

Our solution works great for first-time visitors, but you need to optimize for repeat visits

when the fonts are already in the user’s browser cache. With the code as it is now, the

FOUT occurs on subsequent page visits even with the font in the cache. You can overcome

this by using a cookie and modifying your font-loading code slightly.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex09

Let’s modify two parts of the code you’ve written. On the line where you check for the

font-loading API, you add a condition to check for the presence of a cookie:

if(document.fonts && document.cookie.indexOf("fonts-loaded") !== -1){

This change adds a check for a cookie you’ll define later. This cookie’s name is

fonts-loaded and it has no particular value. You check for its existence by using the indexOf

string method, which returns (somewhat unintuitively) a value of -1 if the search string

isn’t found. This ensures that the font-loading code you’ve written runs only if the

font-loading API is available and a fonts-loaded cookie hasn’t been set.

But now you need to set that cookie somewhere. To do that, you add this bit of code after
the line where you add the fonts-loaded class to the <html> element:

document.cookie = "fonts-loaded=";

This adds an empty cookie by the name of fonts-loaded for the current domain. When this

cookie is set, and the user navigates to subsequent pages, the font-loading code doesn’t

run again. The else condition therefore takes effect immediately and adds the fonts-loaded

class to the <html> element.

This reintroduces the FOIT, but the risks of the effect are now mitigated because the fonts

are in the user’s browser cache. This is okay so long as you can be assured that the fonts

will load. Now that the fonts are in the cache, the assurance can be made that the effect

won’t block the user from ever seeing the content on the page.

JavaScript is a fine way to check for the cookie and apply the fonts-loaded class. If you

really want to be speedy about it, you could use a back-end language (for example, PHP)
to modify the document so that the fonts-loaded class is on the <html> element when the

content is sent by the server. You remove the else condition that adds the class in the

JavaScript, and modify the output by checking for the cookie on the back end. Here’s how

this is done in PHP.

Listing 7.10. Conditionally adding the fonts-loaded class via PHP

By using a back-end language to modify the response, you’re changing the <html> element

before it’s sent to the client. That said, the JavaScript solution is serviceable, so both

approaches are reasonable solutions. It all depends on the tools you have at your disposal,

your skill set, and the time available to you.

Accommodating users with JavaScript disabled

As always, it comes back to users with JavaScript disabled. Because of the way you’ve

developed this solution, the @font-faces you’ve specified will never take effect because

the font-loading scripts never run and apply the fonts-loaded class to the document. As

a result, the content will be displayed using the system fonts you specified as the first

to appear.

If you or your organization doesn’t care that this small segment of users never gets to

see your fancy new font faces in action, feel free to call it a day. But you or your

organization may well take umbrage with this, so let’s go over a quick fix that involves

our old friend the <noscript> tag. You can use <noscript> to trigger the default

browser-loading behavior by nesting an inline <style> tag that applies the Open Sans font

families as the default.

Listing 7.11. <noscript> alternative to JavaScript font loading

By adding this little bit of inline CSS, you’re returning the user without JavaScript to

the browser’s default font-loading behavior. This means that although they won’t be able

to reap the benefits of the font-loading API, they’ll at least be provided with a base

level of functionality. Continuing on, you’ll learn about the Font Face Observer library

to polyfill what the font-loading API provides.

7.4.4. Using Font Face Observer as a fallback

The unfortunate reality is that the font-loading API isn’t yet universally supported. It

has strong support in modern browsers, but some browsers (for example, IE) are lacking.

Your client would appreciate it if you could make sure that more browsers receive an optimal

font-loading experience. This is where a polyfill such as Font Face Observer comes in.

Font Face Observer (https://github.com/bramstein/fontfaceobserver) is a font-loading
library by Danish developer Bram Stein. Although it’s not a direct polyfill in the sense

that you can drop it into a page and have your existing font-loading API code work without

a hitch, it gives the developer similar ability to manage font loading.

In this section, you’ll write a script that kicks in when the font-loading API isn’t

available and that loads two external scripts: the Font Face Observer script, and a script

that loads the fonts via Font Face Observer. To get started, you need to download new code

from GitHub. Type git checkout -f fontface-observer, and after the code has downloaded,

you’ll be ready to start!

Conditionally loading the external scripts

After downloading the new branch with git, you’ll notice a js folder containing two scripts:

fontfaceobserver.min.js, which is the minified Font Face Observer library, and

fontloading.js, which contains an empty closure where you’ll place the alternative

font-loading behavior. Because you don’t want to invoke the overhead of the Font Face

Observer script in all browsers, you want to load it and the script with your

fallback-loading behavior only when the font-loading API isn’t available. To do this, you

add the code in the following listing between the initial if conditional that checks for

the document.fonts object and the fonts-loaded cookie, and the else conditional that follows

it.

https://github.com/bramstein/fontfaceobserver

Listing 7.12. Conditionally loading Font Face Observer and font-loading scripts

The preceding code is simple. If the font-loading API isn’t available and the fonts-loaded
cookie hasn’t been set, you then create new <script> elements for both Font Face Observer

and the font-loading script, and set their src attributes to their respective locations.

To ensure that they don’t block page rendering, you set the defer attribute for both. To

set everything up, you instruct the browser to load these scripts by appending them to the

end of the <head> element.

Writing the font-loading behavior

Open js/fontloading.js in your text editor and you’ll notice that the content of this file

is an empty JavaScript closure. Starting at line 2, add the contents of this listing to

the file.

Listing 7.13. Using Font Face Observer to control the loading of fonts

Font Face Observer’s syntax is similar to that of the font-loading API, but with slight

differences. You define a FontFaceObserver object for each font variant you want to load.

Then, through a JavaScript promise, you wait until all fonts have loaded. After the fonts

have loaded, you apply the fonts-loaded class to the <html> element and set the fonts-loaded

cookie. This allows you to reuse the mechanism by which you control the display of your

fonts that you used in the font-loading API.

The result of this effort is an effective and widely compatible method that uses a native

API where available, but then falls back to a capable polyfill. With this code in place,

your client is happy with the font rendering, and as you know, a happy client is the only

kind that you want.

7.5. Summary

In this chapter, you learned the following font optimization and delivery techniques:

 You can proactively lighten page weight by selecting only the font variants you need. Although it seems like

common sense, it pays to audit your font selections. Doing so can improve your site’s load times.

 Building an optimal @font-face cascade can help your site’s performance by preferring locally installed fonts

first, and then falling back to a set of the most optimal formats to the least optimal.

 You can compensate somewhat for the shortcomings of the TTF and EOT formats by compressing them on the

server.

 Subsetting fonts can reduce the size of font files by limiting them to only the characters you need for the

language of your site’s content.

 Using the unicode-range property in modern browsers can assist you in using only the necessary font subsets

as per your site’s content language.

 If you need to selectively serve font subsets, you can write a script that can be used to serve subsets when

unicode-range isn’t an option.

 You can control how fonts are displayed by using the font-display property in CSS. Failing that, you can use

the font-loading API to control how fonts display when font-display isn’t available, or if you don’t have

control of the CSS that serves fonts, as in the case of third-party font providers such as Google Fonts or Typekit.

 If the font-loading API isn’t available, you still have the ability to control how fonts are loaded and displayed

through the use of the third-party Font Face Observer library.

Now that you’re comfortable with these techniques, you can go forward in your web projects

and apply them for the benefit of your clients (with your team’s blessing, of course).

In the next chapter, you’ll learn how to optimize your application’s JavaScript through

techniques such as controlling the loading behavior of <script> elements, using

high-performance native JavaScript APIs, working with leaner alternatives to jQuery, and

more.

Chapter 8. Keeping JavaScript lean and fast

This chapter covers

 Affecting the loading behavior of the <script> tag

 Replacing jQuery with smaller and faster API-compatible alternatives

 Using native JavaScript methods to replace jQuery functionality

 Animating with the requestAnimationFrame method

The world of JavaScript has exploded into a mélange of libraries and frameworks, leaving

us with a slew of options for developing websites. In our excitement to use learn and use

them, we often forget that the surest path to a fast website is a willingness to embrace

minimalism.

This isn’t to say these tools don’t have a place in the web development landscape. They

can be quite useful and can save developers hours of writing code. The goal of this chapter,

however, is to promote minimalism in your website’s JavaScript for the benefit of your

users.

In this chapter, you’ll dive into what you can do to improve the performance of script
loading on your website. You’ll also spend time learning about jQuery-compatible libraries

that do much of what jQuery does, but with smaller file sizes and better performance. You’ll

go one step further and investigate how to replace jQuery with in-browser APIs that deliver

much of what jQuery provides, but without the overhead. Finally, you’ll learn to use the

requestAnimationFrame method to code high-performance animations. Let’s get started!

8.1. Affecting script-loading behavior

As with the <link> tag when loading CSS, the <script> tag can hinder the rendering of a

page, depending on the tag’s placement in the document. You can also modify script-loading

behavior via the element’s async attribute. Let’s look at these aspects of script loading,

and get a feel for how they can impact performance. You’ll start by revisiting the Coyle

Appliance Repair website. Download and run it from GitHub with the following commands:

git clone https://github.com/webopt/ch8-javascript.git

cd ch8-javascript

npm install

node http.js

Let’s start by experimenting with the placement of the <script> tag.

8.1.1. Placing the <script> element properly

As you may recall from chapters 3 and 4, the placement, and even the presence, of the <link>

tag can block rendering of a page when loading CSS. The <script> tag is responsible for

this same kind of behavior as well, but because scripts don’t impact the appearance of

a page like CSS imports, you have more flexibility in placing <script> tags. Figure 8.1

diagrams this behavior.

Figure 8.1. Browsers read HTML documents from top to bottom. When links to external

resources (such as scripts, in this case) are found, the browser stops to parse them.

When parsing occurs, rendering is blocked.

This behavior can have an impact on when the browser first paints the page. If the browser

detects a <script> tag in the <head>, for example, it pauses what it’s doing to download

and parse the script. As this goes on, the browser puts the rendering of the page on the

back burner. In your client website’s code, the <script> tags for jquery.min.js and

behaviors.js will be in the document’s <head> tag, which induce render blocking. You can

measure this effect by checking the document’s Time to First Paint. The way to measure

this was first described in chapter 4, but let’s recap the process.

To measure the Time to First Paint for the client’s website, select the Regular 3G

throttling profile to simulate page loading on a slower connection. Then go to the Timeline

tab and head to http://localhost:8080. When the page loads and the timeline populates, go

to the bottom of the Timeline pane and switch to the Event Log tab. Once there, filter out

all event types except for painting events. The first event to appear in the list is the

Time to First Paint, which should look something like figure 8.2.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig02

Figure 8.2. The Time to First Paint in Chrome for the Coyle Appliance Repair website with

<script> tags in the <head> of the document.

The average Time to First Paint for the client’s website is roughly 830 ms when the <script>

tags are in the <head>. This seems like a long time for the page to start painting. Experiment

and see how that figure changes when you move these scripts to the end of index.html, just

before the closing </body> tag, as shown in figure 8.3.

Figure 8.3. The Time to First Paint in Chrome for the Coyle Appliance Repair website with

the <script> tags at the end of the document

In my testing, I was able to achieve an approximate Time to First Paint of 500 ms, which

translates to roughly a 40% reduction overall. Well, in this example, anyway. As with most

optimizations, your mileage will vary. The size and number of scripts as well as the length

of the HTML document can play a role.

The good news about this approach is that it’s consistent in nearly all browsers, so it’s

an easy fix that requires minimal effort. There are other things you can do with the <script>

tag to influence how scripts load, such as the async attribute.

8.1.2. Working with asynchronous script loading

Modern browsers support a method for changing the loading behavior of external scripts.

This change is via the <script> tag’s async attribute. async (short for asynchronous) tells
the browser to execute a script as soon as it loads, rather than loading each script in

order and waiting to execute them in sequence. Figure 8.4 compares these behaviors.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig04

Figure 8.4. A comparison of loading scripts with and without the user of the async

attribute. The main difference is that scripts loaded with async won’t wait for other

scripts to finish loading before they execute.

<script> tags with the async attribute behave differently than those without it in that

they’ll execute immediately on download. They also won’t block rendering while they

download.

8.1.3. Using async

To use async, add it to <script> tags that you want to execute asynchronously. In this case,

doing this will slash your client website’s Time to First Paint by approximately 40%. Try

it on the jquery.min.js and behaviors.js scripts, as shown in bold here:

<script src="js/jquery.min.js" async></script>

<script src="js/behaviors.js" async></script>

Seems easy enough, right? You can reload the page and check whether things still work. Except

that they don’t. After reloading, you’ll see a console error, as shown in figure 8.5.

Figure 8.5. The async attribute creates a problem in which behaviors.js fails because it

executes before its dependency jquery.min.js is available.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig05

Well, this is awful, isn’t it? What’s the point of async if it breaks stuff? There is

a benefit in using async, but things get hairy when scripts are dependent on each other.

When you use async with interdependent scripts, they enter into what’s called a race

condition, where two scripts can run out of sequence. In this example, a race condition

occurs between jquery.min.js and behaviors.js. Because behaviors.js is much smaller than

jquery.min.js, it’ll always win the race and run first. Because behaviors.js is dependent

on jquery.min.js, behaviors.js will always fail due to an unavailable jQuery object. This

is because jquery.min.js hasn’t loaded and executed before behaviors.js does. Figure 8.6

illustrates this race condition.

Figure 8.6. A race condition between jquery.min.js and behaviors.js always results in a

failure, because behaviors.js loads and executes before its dependency is available.

This doesn’t always occur. For example, if none of your scripts have dependencies, you

can use async freely. It’s when scripts have dependencies that things get tricky.

A way of getting around this is to combine your dependent scripts so that those dependencies

are wrapped into a single asset. In this case, you can combine jquery.min.js and behaviors.js,

in that order. From your command line, you can run this command to combine both scripts

into scripts.js:

cat jquery.min.js behaviors.js > scripts.js

Because cat is available only on UNIX-like systems, Windows users will go this route:

type jquery.min.js behaviors.js > scripts.js

This command will finish quickly, and when it does, you get rid of both <script> tags in

index.html and replace them with one <script> tag pointing to scripts.js:

<script src="js/scripts.js" async></script>

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig06

When you reload, you’ll notice that the page works again, but you’re probably thinking,

“What’s the benefit?” The benefit is quite noticeable. Figure 8.7 shows a further

improved Time to First Paint after using async.

Figure 8.7. The Time to First Paint value in Chrome for the Coyle Appliance Repair

website with scripts bundled and loaded using the async attribute

In my testing, async yielded an average Time to First Paint of roughly 300 ms with the scripts

bundled, which outperforms placing the independent scripts without async at the bottom of

the page by about 200 ms. There’s a clear benefit in using async, but it doesn’t end there.

Without async, the DOM isn’t available until about 1.4 seconds after the page begins to

load. With async, this figure falls to 300 ms.

If you can manage your dependencies, it pays to use async. It’s also highly supported,

being available in all major browsers, even in IE10 and above. If async isn’t supported,

you can leave your <script> tags in the footer and they’ll load in older browsers the normal

way. Everyone wins! Except only sort of, which we’ll discuss shortly.

8.1.4. Using async reliably with multiple scripts

You may take issue with bundling, but it’s a good optimization practice for HTTP/1 servers

and clients, because it can help alleviate the head-of-line blocking issue inherent to that

protocol version.

HTTP/2 connections, however, benefit from assets being served in a more granular fashion

as opposed to bundling them. More-granular resources make caching more effective. You can

get away with this because HTTP/2 solves the head-of-line blocking problem by being able

to serve more concurrent requests than HTTP/1. The particulars of this are explored in

chapter 11. The point of this short section is to show you how to load scripts asynchronously

while maintaining dependencies. To do this, you’ll use a module loader called Alameda.

Alameda is an Asynchronous Module Definition (AMD) module loader written by Mozilla

developer James Burke. Despite its capability of supporting complex projects with many

dependencies, it’s a small script, weighing in at only about 4.6 KB after minification

and compression. As far as overhead goes, that’s not adding too much to ensure that scripts

load asynchronously while respecting their dependencies.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11

Wait, what are AMD modules?

AMD stands for Asynchronous Module Definition. This specification defines scripts as

modules, and provides a mechanism for loading scripts asynchronously with respect to their

dependencies on one another.

Using Alameda for this task is easy, and because it’s part of the GitHub repository you

downloaded at the beginning of this section, you can use it without tracking it down. The

GitHub repository for Alameda is at https://github.com/requirejs/alameda. The first thing

you should do is remove any <script> tags from index.html and add the following <script>

right before the closing </body> tag:

<script src="js/alameda.min.js" data-main="js/behaviors" async></script>

Here you see three attributes:

 src loads the Alameda script.

 data-main includes the behaviors.js script. Alameda refers to scripts without their .js extensions, which is the

syntax for AMD modules.

 async asynchronously loads Alameda, preventing blocking of page rendering.

It’s not enough to slap this script on the page and assume everything’s going to work.

You need to open behaviors.js, add configuration code, and define your jQuery behaviors

as an AMD module.

Listing 8.1. Configuring Alameda and defining behaviors.js as an AMD module

You’re doing two things here: you define a configuration that tells Alameda where

jquery.min.js lives, and then you wrap the behaviors.js script in a module definition that

specifies jQuery as a dependency in the first argument. The dependent code in the second

argument then runs when its dependencies are met.

https://github.com/requirejs/alameda

When you reload the page with these changes and check the page’s Time to First Paint, you’ll

notice that you’re still hovering around the same mark as when you bundled scripts and

used async. The big difference, though, is that you’re keeping your scripts separate while

still respecting the dependency of behaviors.js on jquery.min.js.

Alameda requires a modern browser!

Alameda is an update of RequireJS that requires functionality native to modern browsers

to work, such as JavaScript promises. If you need support on a wider array of browsers,

you can use RequireJS in place of Alameda. RequireJS and Alameda share a fully compatible

API, so you can drop either in place of the other and they should work. Plus, RequireJS

is only about 2 KB larger than Alameda when minified and gzipped. Check it out at

http://requirejs.org.

Now that you know how to optimize script loading, let’s look at alternatives to jQuery

that provide a compatible API but offer less overhead and faster execution.

8.2. Using leaner jQuery-compatible alternatives

jQuery burst onto the scene years ago, during a time when accomplishing simple tasks such

as selecting DOM elements and binding events required complex code to check for different

methods available across browsers. Few methods were unified, and jQuery capitalized on this

by providing a consistent API that worked regardless of the browser that used it.

Understandably, jQuery persists because of its utility and convenient syntax. But there

are many reasons to consider alternatives that share portions of jQuery’s API, but provide

a smaller footprint and greater performance.

This section presents alternatives to jQuery. You’ll compare their size and performance,

and choose one of these options to use on the Coyle Appliance Repair website, as well as

cover caveats of these alternatives.

8.2.1. Comparing the alternatives

Many JavaScript libraries are jQuery-compatible. jQuery-compatible doesn’t mean that

every single jQuery method is provided in these alternatives; it means that numerous methods

present in jQuery are available in the alternative, and with the same syntax. The idea is

that some measure of file size is traded off for less functionality. Some of these libraries

also provide better performance.

http://requirejs.org/

8.2.2. Exploring the contenders

Here you’ll compare three distinct jQuery-compatible libraries: Zepto, Shoestring, and

Sprint. Here’s a rundown of each:

 Zepto is described as a lightweight jQuery-compatible JavaScript library. Of all the jQuery alternatives, it’s the

most feature-rich out of the box and can be extended to do more. It’s the most popular alternative in this field.

Find out more at http://zeptojs.com.

 Shoestring is written by the Filament Group. It offers less capability than Zepto, but it provides most of the core

DOM traversal and manipulation methods that jQuery does, as well as limited support for the $.ajax method.

Find out more about Shoestring at https://github.com/filamentgroup/shoestring.

 Sprint is the lightest and most feature-bare alternative to jQuery, but it’s high performing. Although it doesn’t

provide nearly as much functionality, it’s great when you want to start out with very little, but are open to adding

a more capable library when the need arises. Find out more about Sprint at https://github.com/bendc/sprint.

When comparing these libraries, you’ll consider the size of each and the performance of

equivalent methods.

8.2.3. Comparing file size

The biggest motivation for using these alternatives lies in the savings that they offer

in file size. As you know from earlier in this book, the best thing you can do to decrease

the load time of a website is to limit the amount of data that you send to the user. If

you use jQuery in your web projects, these libraries are a perfect place to start cutting

the fat. Figure 8.8 compares the file size of these libraries to jQuery. All file sizes

assume minification and server compression.

http://zeptojs.com/
https://github.com/filamentgroup/shoestring
https://github.com/bendc/sprint
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig08

Figure 8.8. A comparison of file sizes of jQuery and its alternatives

jQuery isn’t huge, but its alternatives are far smaller. If you could lighten the load

of your jQuery-dependent website by at least 20 KB, wouldn’t you? Of course you would.

The benefits don’t stop there, though. Benefits also exist in performance.

8.2.4. Comparing performance

In this short section, you’ll compare the execution times of common jQuery tasks: selecting

elements by class name, toggling a class on an element with the addClass and removeClass

methods, and toggling an attribute via the attr and removeAttr methods.

To measure performance in these cases, I selected a JavaScript library named Benchmark.js,

which you can find out more about at https://benchmarkjs.com/. This library allows you to

see the number of executions per second that a snippet of JavaScript is capable of.

I won’t get into how Benchmark.js works under the hood. It’s a highly accurate tool, and

if you want to see how I wrote the test scripts, check out the GitHub repo for these tests

at https://github.com/webopt/ch8-benchmark. I only want to show how the alternatives

selected compare to jQuery for a handful of commonly used methods.

In the element selection test, you select an element of div.myDiv on the page by its class

name. Figure 8.9 shows how the gallery fares with this simple task.

https://benchmarkjs.com/
https://github.com/webopt/ch8-benchmark
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig09

Figure 8.9. Performance of jQuery versus its alternatives when selecting an element by

its class

Sprint is the definite winner here, with jQuery outperforming both Zepto and Shoestring.

Figure 8.10 shows how everything stacks up when you toggle a class on an element.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig10

Figure 8.10. Performance of jQuery versus its alternatives when toggling a class on an

element

Things are more nuanced here. Sprint is still the clear winner. jQuery comes in third, losing

to Shoestring, but still beats out Zepto. You can see how the gallery fares in figure 8.11

when you toggle attributes.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig11

Figure 8.11. Performance of jQuery versus its alternative when toggling an attribute on

an element

Again, Sprint dominates. Zepto loses, with jQuery in third and Shoestring in second. It

should be noted that this is an arbitrary sampling of methods. Each method will compare

differently, but some trends do persist. Sprint seems to be the fastest, but it’s worth

noting that Sprint’s API isn’t 100% compatible with jQuery’s. Zepto covers most jQuery

methods, and has plugins to further extend its capability. Although Sprint seems attractive

performance-wise, it’s not the easiest of the alternatives to retrofit into your

jQuery-centric web project.

Now that you have a taste of what these libraries offer in weight and capability, let’s

go one step further by retrofitting the Coyle Appliance Repair website with one of these

alternatives.

8.2.5. Implementing an alternative

Using a jQuery alternative is simple for sites that make light use of it: just drop the

alternative in jQuery’s place. In this short section, you’ll do just that. Before you

start, you may need to undo any changes you made earlier in the chapter. To do this, type

git reset --hard.

8.2.6. Using Zepto

The alternative that you’ll go with for Coyle is Zepto. Though not the highest-performing

library of the alternatives, it has support for everything you need, and it’s a little

less than a third of the size of jQuery. You can take the site’s payload down from 122

KB to 102 KB easily.

Another good reason to use Zepto in this case is that it represents the least amount of

effort because it’s the most compatible with jQuery, whereas libraries such as Shoestring

and Sprint require refactoring to work. In environments where time is key (and when is that

never true?), you can drop in Zepto in most cases with less effort than the alternatives.

Included in the repository’s js folder is a copy of Zepto. To change out jQuery and replace

it with Zepto, you need only to update the src attribute from js/jquery.min.js to this:

js/zepto.min.js

When you reload the page, you’ll notice that there are no console errors, and all of the

functionality on the page should be present, including the jQuery AJAX-driven form

submission for the appointment-scheduling modal.

8.2.7. Understanding caveats on using Shoestring or Sprint

“That’s it? Nothing else?” is likely what you’re thinking. In this case, yes, that’s

pretty much it. Remember we picked Zepto because it’s the most compatible with jQuery out

of all the alternatives.

If you drop in Shoestring or Sprint, you’ll need to refactor to make them work. The Coyle

Appliance Repair website uses jQuery’s $.ajax method to send an appointment-scheduling

email to the site owner, and Shoestring’s implementation of the $.ajax method isn’t fully

jQuery-compatible. Because Sprint has no $.ajax implementation, it can’t make the cut.

It’s not just the $.ajax method that can be problematic. jQuery alternatives don’t support

everything that jQuery does. Shoestring doesn’t support the toggleClass method, but Sprint

does. Sprint doesn’t support the bind method, but Shoestring does. Many of these

incompatibilities can be refactored by using workarounds or native JavaScript methods.

This is fine, though! The idea is that if you’re beginning development of a new website

with jQuery in mind, you should start with a minimalist library such as Sprint. If Sprint

eventually fails to provide what you need, you can try Shoestring or Zepto. If you get to

a point where those options are no longer cutting it, then you should go to jQuery.

If you start with minimalism in mind, you can ensure that you’re keeping things as lean

as possible. This mindset contributes to a faster site for your users. This isn’t true

of only jQuery, but also all aspects of web development. Always ask, “Do I need that hot
new library for this site?” Chances are that this may lead you down a different path than

what you initially intended.

In the next section, you’ll go one step further and remove the need for jQuery and any

alternatives altogether, and use native JavaScript to accomplish your goals. This is a

significant undertaking if you’re used to jQuery’s methods, but it will allow you to

eliminate all overhead associated with the library and to provide an even faster experience

for your client.

8.3. Getting by without jQuery

jQuery and its alternatives are great, but many methods have been implemented (or are being

implemented) into browsers that provide much of the same functionality. Tasks such as

element selection and event binding that were once a burden to write for cross-browser

compatibility now have a unified syntax, thanks to tstandardization efforts.

This section covers how to check for DOM readiness, select elements with query-Selector

and querySelectorAll, bind events with addEventListener, manipulate classes on elements

using classList, modify attributes and element contents with setAttribute and innerHTML,

and use the Fetch API to make AJAX calls.

Want to skip ahead?

If you get stuck at any time doing the work in this section, you can skip ahead by typing

git checkout -f native-js at the command line to see the finished work.

Before you start, you need to undo any work you’ve done on the client website in your local

repository by entering git reset --hard at the command line. This reverts all local changes.

You’ll convert all of the code piece by piece, leaving jQuery in place until everything

is replaced by native JavaScript. When done, you’ll be able to remove the reference to

jquery.min.js, load behaviors.js by using the async attribute, and subsequently benefit

from faster load times. Let’s open behaviors.js in your text editor and get to work!

8.3.1. Checking for the DOM to be ready

If you’re familiar with jQuery, you know that you must check for the DOM to be ready before

you can execute code. This isn’t true of only jQuery, but also DOM-dependent scripts in

general. You need to do this because the DOM doesn’t fully load before the scripts run,

resulting in events not being bound to elements and critical behaviors not functioning.

The following listing provides a truncated version of behaviors.js, showing how jQuery

checks for the DOM to be ready.

Listing 8.2. jQuery checking for DOM readiness

In jQuery, anything encapsulated in $(function(){}); isn’t executed until the document

is loaded and ready. To achieve this in native JavaScript, you’ll use addEvent-Listener

(which you’ll also use to bind other events later) to check for DOM readiness. The following

listing shows this in action.

Listing 8.3. Checking for DOM readiness with addEventListener

That’s it! The addEventListener method is available in IE9 and above, so this has a high

level of compatibility.

Getting deeper support

If you need to support IE versions prior to 9, you can use the document.onreadystatechange

method to monitor for DOM readiness. This method works in newer browsers as well.

Next, you’ll investigate how to use the querySelector and querySelectorAll methods to

select elements on a page, as well as how to take the addEventListener method further by

binding events to these elements.

8.3.2. Selecting elements and binding events

The lion’s share of jQuery’s usefulness is in its ability to select elements and bind

events to them. When it comes to selecting elements natively, the querySelector and

querySelectorAll methods are the go-to solution. Like jQuery’s core $ method, these two

methods accept a CSS selector string as an argument. That string is used to return a node

in the DOM that you can work with. The difference between the two is that querySelector

returns the first element that matches the expression, whereas querySelectorAll returns

all elements that match.

Both methods have strong support across browsers, including IE9 and above, with partial

support in IE8. This listing compares these two methods to their jQuery equivalents.

Listing 8.4. querySelector and querySelectorAll vs. jQuery’s core $ method

/* Selecting one element. */

var element = document.querySelector("div.item");

var jqElement = $("div.item").eq(0);

/* Selecting a set of elements */

var elements = document.querySelectorAll("div.item");

var jqElements = $("div.item");

The first line in listing 8.4 selects the first matching div.item element querySelector

and the second line selects the first matching div.item element via jQuery. Line 3 selects

all matching div.item elements via querySelectorAll and the final line selects all matching

div.item elements via jQuery.

When element(s) are returned with either of these methods, you can then use the

addEventListener method to attach events to those elements. The next listing shows a simple

use of addEventListener to bind a click event on an item returned with querySelector.

Listing 8.5. Binding a click event on an item with addEventListener

document.querySelector("#schedule").addEventListener("click", function(){

 /* Code to execute on click. */

});

Using a combination of these methods will help you eliminate most of the jQuery-dependent

code in behaviors.js. This code fires the appointment-scheduling modal.

Listing 8.6. jQuery-centric appointment scheduling modal launch code

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex04

The part of the code you want to focus on here is the first line, which selects the

appointment-scheduling button element (#schedule) and the bind method that binds a click

event to that element. Using a combination of querySelector and add-EventListener, you can

convert this to what you see next.

Listing 8.7. Appointment-scheduling modal event binding using native JavaScript

When you reload, you’ll still be able to trigger the modal by clicking the scheduling button.

Although the code within the event handler is still driven by jQuery, you’re getting closer

to your goal of removing jQuery altogether.

In your text editor, switch out the remaining bind events to use addEventListener, as in

listing 8.7. There should be three remaining calls to bind that you’ll be able to replace.

Next, you’ll replace calls to jQuery’s addClass and removeClass methods with the native

JavaScript classList method.

8.3.3. Using classList to manipulate classes on elements

The client website’s JavaScript makes extensive use of jQuery’s addClass and removeClass

methods to add and remove classes. A native method called classList gives you this same

functionality. This listing shows this method compared to its jQuery counterparts.

Listing 8.8. classList vs. jQuery’s removeClass and addClass methods

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex07

Although your client’s website doesn’t use the toggleClass method, it’s important to

note that classList has a toggle method. Unfortunately, this method isn’t supported well

in IE. Support for the classList method otherwise is good overall, with IE10 and above

supporting it. This listing shows the openModal function that opens the scheduling modal.

Listing 8.9. The jQuery-dependent openModal function

Achieving the same result with the classList method is a bit more involved. You need to

convert the jQuery element selection code to use the querySelector method instead. This

listing shows how to transform the code from listing 8.9 into fully jQuery-independent code.

Listing 8.10. The jQuery-independent openModal function

Next, you need to search for all uses of the removeClass and addClass methods in behaviors.js,

and update them to use classList. When you do, be sure to update the jQuery $ selection

methods to use the querySelector method.

What if classList isn’t supported?

It’s possible that you may need to support IE9 or below. If this is the case, you can use

the className property instead. This property doesn’t have methods for adding, removing,

or toggling classes. Instead, it’s a string that you can use to assign whatever classes

you need to the targeted element—not as convenient as classList, but it works in a pinch.

After you’ve changed all the code to use the classList method, it’s time to replace the

jQuery attribute and content modification methods with their native JavaScript

counterparts.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex09

8.3.4. Reading and modifying element attributes and content

Another piece of functionality that the client’s website relies on jQuery to accomplish

is the reading and modifying of attributes of elements, as well as modifying element contents.

These behaviors can be replaced by native JavaScript methods easily. The next listing

compares jQuery’s attribute manipulation methods to their native JavaScript equivalents.

Listing 8.11. Modifying attributes with jQuery vs. native JavaScript

You’ll also need to be able to know how to read and/or modify the contents of an element,

because the client’s website also uses this method. Here’s how jQuery reads the contents

of an element as compared to JavaScript’s innerHTML property.

Listing 8.12. jQuery’s html method vs. JavaScript’s innerHTML property

The syntax between jQuery’s html method and the native innerHTML property is different,

in that the html method is a function, whereas innerHTML is a property that you assign a

value to.

There aren’t a whole lot of places in the client website’s JavaScript that need to modify

attributes or set content on elements, but it does happen during a key moment: when the

user submits an appointment request, and the confirmation modal appears. This is in a success

callback in a jQuery ajax call.

Listing 8.13. Attribute and element content modification via jQuery

In the listing, the message text from the appointment-scheduling emailer is placed into

the status text area. The data-status attribute is set on the okay button, which is used

to determine what the button does in the context of success or failure. The header of the

status modal is updated to reflect the success or failure of appointment submission.

With some modifications, you can take what you’ve learned so far and turn this into

something like this listing, which runs without jQuery.

Listing 8.14. Attribute and element content modification via native JavaScript

You need to update one more spot that uses jQuery’s attr method to read an attribute. This

occurs when the user clicks the okay button in the status modal. Here are the relevant lines

of this code.

Listing 8.15. Getting an attribute via jQuery’s attr method

This spot is a little tricky because jQuery’s $(this) object is used inside the click

binding’s code to refer to the #okayButton element. When you convert this to the

addEvent-Listener syntax that you used earlier, this code will break. You need to use the

event object (assigned to e in the function call) to replace the reference to the $(this)

object, and use the getAttribute method to retrieve the value of the data-status attribute

instead. Here is a working replacement of both methods.

Listing 8.16. Getting an attribute via the getAttribute method

document.querySelector("#okayButton").addEventListener("click", function(e){

 if(e.target.getAttribute("data-status") === "failure"){

The top line is the converted click binding with the event object in the function call.

In the last line, the e.target attribute refers to the element that the click binding was

attached to, with the getAttribute method retrieving the data-status attribute’s value.

In the absence of jQuery’s $(this) object, you can use the event object’s target method

to refer to the element that the event was bound to inside the event code itself. It’s

weird to get used to if you’ve been used to jQuery, but it’ll quickly become second nature.

Before you can wrap things up and remove jQuery from the project, you’ll replace the last

bit of jQuery-dependent functionality left, which is the $.ajax call used to send an AJAX

request to the server to schedule an appointment. You’ll replace the jQuery AJAX

functionality with a native JavaScript version called the Fetch API.

8.3.5. Making AJAX requests with the Fetch API

In the old days of AJAX requests, you had to use the XMLHttpRequest request object. It was

an unwieldy way of making AJAX requests, and different browsers required different

approaches. jQuery made AJAX requests a much more convenient task by wrapping its own AJAX

functionality around the XMLHttpRequest object. It still works great to this day, but some

browsers have implemented a native resource-fetching API called the Fetch API.

8.3.6. Using the Fetch API

The most basic use of the Fetch API is for a GET request of a resource. A good example is

interacting with an API that gives access to a database of movies and returns JSON data.

This shows such a request using fetch.

Listing 8.17. Fetch API–driven AJAX request with a JSON response

fetch("https://api.moviemaniac.com/movies/the-burbs")

 .then(function(response){

 return response.json();

}).then(function(data){

 console.log(data);

});

In the listing, the fetch method takes a minimum of one argument, which is the URL to the

resource. On success, a promise is returned that allows you to work with the JSON data.

The raw response object has a json method that you can return to the next promise in the

chain. Another promise is returned with the encoded JSON data. The console.log (data); line

outputs the data from the response to the console.

This is only a basic use of the Fetch API. The client’s website uses the jQuery $.ajax

method to send form data using a POST request. Accomplishing this takes a bit more work

but uses a bit less code than if you used jQuery’s $.ajax function.

To be fair, you’ve been submitting the form to a mock location that returns a JSON response

for illustrative purposes. If you try this approach in your own websites with a back-end

script, you’ll find that it should work fine. This listing shows the Fetch API at work

in place of jQuery.

Listing 8.18. Fetch API–driven AJAX request

When this code runs, test the appointment-scheduling modal and you should see that it works

fine. Not bad for a native API, and it’s much more attractive than the usual XMLHttpRequest

tango that we’ve done in years past.

None of this is meant to pick on jQuery’s $.ajax API. It’s an awesome wrapper around

XMLHttpRequest, but as browsers pick up more support for the Fetch API, it makes sense to

abandon $.ajax. Of course, if you’re going to rely on fetch, you need to be able to polyfill

those browsers that don’t support it yet.

8.3.7. Polyfilling the Fetch API

As could be expected, not every browser supports the Fetch API. At this point, you have

a few options:

 You can avoid using fetch altogether and use a standalone implementation of jQuery’s $.ajax API, such as

this one at https://github.com/ForbesLindesay/ajax.

 You can sniff for the fetch method in the window object. If the method is found, you can use fetch. If not,

you can use the standard XMLHttpRequest object. Or use the XMLHttpRequest object no matter what,

because it’s well supported (albeit a pain to use).

 You can sniff for the fetch method, and if not found, asynchronously load a polyfill.

In this short section, you’ll opt for the third method because it’s the most optimal.

Browsers that support the Fetch API will rely on a native browser method without the overhead

https://github.com/ForbesLindesay/ajax

of an external script. Browsers that don’t will incur the overhead of the polyfill, but

the syntax will be unified.

A decently robust polyfill of the Fetch API can be found at https://github.com/github/fetch.

For the sake of simplicity, a minified version of this script is bundled in the repo for

the client’s website as fetch.min.js in the js folder.

Using a familiar approach to loading polyfills in prior chapters, you can load this script

conditionally based on the presence of the fetch object. You’ll do this by placing an inline

<script> at the bottom of index.html before the closing </body> tag.

Listing 8.19. Conditionally loading the Fetch API polyfill

You might be thinking about dependencies, because behaviors.js depends on fetch. The key

here is that the call to fetch isn’t executed on page load. Plenty of time is afforded

for the polyfill to load before the user has a chance to open the scheduling modal, fill

out the form, and hit Submit. It’s a soft sort of dependency in that time and logistics

work in your favor, and you can see how this plays out in figure 8.12.

Figure 8.12. The loading of the fetch API polyfill and its timing with the user’s intentions

to fire the scheduling modal

Test this approach in a browser that doesn’t support the Fetch API, such as IE, and see

how it works. You’ll be able to tell whether fetch.min.js has been loaded by examining

the network requests for that browser.

https://github.com/github/fetch
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig12

With all jQuery methods firmly replaced with native JavaScript, you can now remove the

reference to jquery.min.js, and use the async attribute to asynchronously load behaviors.js.

Now that your client’s website is running optimally, you can move onto learning about

animating elements with JavaScript by using requestAnimationFrame.

8.4. Animating with requestAnimationFrame

Animation in the earlier days of JavaScript was less perfect than it is now. You’d usually

have to use a timer function such as setTimeout or setInterval in order to achieve the effect.

As time has passed, and the capability of browsers has increased, we have a newer and

higher-performing method that helps us animate elements with JavaScript.

This section discusses traditional timer-based animations and how to use

requestAnimationFrame in their place. From there, you’ll see how requestAnimationFrame

compares in performance to its timer-based ancestors and CSS transitions, and then put the

method to work on the Coyle Appliance Repair website.

8.4.1. requestAnimationFrame at a glance

Animation is different when done in JavaScript as compared to CSS. In CSS, you’d apply

a transition property to an element that tells the browser that a specific property (or

properties) will change. When that property changes, the browser animates the transition

between the start and end points. The underlying logic that runs the animation is all handled

by the browser. With JavaScript, you have to perform this work yourself. Let’s take a look

at how animation has traditionally been achieved in JavaScript and compare that to

requestAnimationFrame.

8.4.2. Timer function-driven animations and requestAnimationFrame

When animating in JavaScript, you’re changing an element’s appearance or position on a

screen through the element’s style object via a timer function to give the appearance of

motion. In the days of old, so to speak, setTimeout and setInterval were the timer functions

used to animate elements on an interval, usually by an interval of 1000 ms / 60, which aims

to animate effects at roughly 60 frames per second. Typical code for this kind of animation

looks something similar to this.

Listing 8.20. Animating with a timer function (setTimeout)

Timers themselves aren’t expensive, but they’re not optimal for animation code. To solve

this problem, the requestAnimationFrame method was developed. Using this method is similar

to the code in listing 8.20, and is shown here.

Listing 8.21. Animating with requestAnimationFrame

At first glance, this code seems somewhat lacking, because unlike setTimeout,

requestAnimationFrame doesn’t allow the user to specify an interval in milliseconds. So

how does it even work, then? Simple: The interval is handled within request-AnimationFrame,

and it acts according to the refresh rate of the display, which tends to be 60 Hz on most

devices; requestAnimationFrame aims for 60 FPS on a typical device. If a device has a

different refresh rate, requestAnimationFrame will animate accordingly.

Admittedly, this example has limitations in that it animates the element’s left property

for an infinite amount of time, but it illustrates the concept. In a bit, I’ll show a

realistic implementation of this on the client’s website, but not before you take a look

at the performance of requestAnimationFrame versus its traditional timer-based animations

and CSS transitions.

8.4.3. Comparing performance

Earlier I said that requestAnimationFrame boasts better performance than its timer-based

ancestors setTimeout and setInterval. To test these methods, I wrote a simple animation

for each. The animation is of a box that travels a distance of 256 pixels from left to right,

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex20

while doubling in width and height and shifting to 50% opacity. You can try each of these

tests for yourself at http://jlwagner.net/webopt/ch08-animation if you’re so inclined.

Figure 8.13 compares the performance of these two methods using setTimeout,

requestAnimationFrame, and CSS transitions as profiled in Google Chrome’s timeline

profiler.

Figure 8.13. Normalized performance of various animation methods in Chrome’s

Timeline tool

One thing to remember about both setTimeout and requestAnimationFrame is that because

they’re dependent on JavaScript, they require more scripting time than CSS transitions,

and this is normal. But requestAnimationFrame spends less time both painting and rendering

than either of the other two methods.

Now that you know how to use requestAnimationFrame and how it performs, let’s fire up the

Coyle Appliance Repair website again and animate the scheduling modal.

8.4.4. Implementing requestAnimationFrame

You’ve had a little bit of downtime since the Coyle Appliance Repair website launched,

and so now it might be fun to experiment with requestAnimationFrame. On Coyle, the only

animation that occurs is when the scheduling modal is opened. This used a CSS transition

in the past, but now you’re experimenting with a timer-based animation that you want to

transition over to use requestAnimationFrame. You’ll need to grab the latest code for that,

so type in this command to switch over to a new branch:

http://jlwagner.net/webopt/ch08-animation
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig13

git checkout -f requestanimationframe

I’ve written a flexible function for the client’s website to test setTimeout and

requestAnimationFrame for animating the modal in behaviors.js.

Listing 8.22. Animation function using setTimeout

Though not as complete as something like jQuery’s animate function, this is a much more

flexible implementation than what was shown in listing 8.20.

In the invocation illustrated in figure 8.14, you’re telling animate to select the .modal

element and animate its top property from -150% to 10% over a duration of 500 milliseconds.

If you click the Schedule an Appointment button and launch the modal, you’ll see that it

opens fine with your JavaScript animation code. What kind of work is involved in turning

this function over to use requestAnimationFrame, though? Surprisingly little. The next

listing shows the animate function’s draw method modified to use requestAnimationFrame,

with modifications in bold.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig14

Figure 8.14. The animate function in use, with arguments labeled

Listing 8.23. Substituting requestAnimationFrame in place of setTimeout

draw = function(){

 if(endTime > +new Date()){

 element.style[property] = progress() + units;

 requestAnimationFrame(draw);

 }

 else{

 element.style[property] = to + units;

 return;

 }

};

That’s it, for the most part. You remove the call to setTimeout and replace it with a call

to requestAnimationFrame. Everything should work as before, only with a higher-performing

animation method. If you want to do a little cleanup, you can also remove the interval

variable, because requestAnimationFrame doesn’t need it.

requestAnimationFrame isn’t universally supported, so what can you do to ensure better

support? For one, you can create a placeholder that allows you to use requestAnimationFrame

first but then fall back to setTimeout when it no longer exists. The next listing shows

how to do just that.

Listing 8.24. requestAnimationFrame fallback using setTimeout

If you use this approach, you’ll need to update your code to use the custom raf method

in place of the requestAnimationFrame method, but this will give your application’s

animation methods the broadest possible support. With this approach, you get the benefits

of requestAnimationFrame when it’s available, and you fall back to setTimeout when it’s

unavailable. Not too shabby.

Next, you’ll briefly cover how to use Velocity.js, a simple requestAnimationFrame-driven

JavaScript animation library.

8.4.5. Dropping in Velocity.js

This foray into requestAnimationFrame may leave you with more questions than answers. It

can be challenging to use this method in place of CSS transitions or jQuery animations,

especially if requirements are complex. This short section briefly introduces Velocity.js,

which makes animation as convenient as jQuery’s animate method.

Velocity.js is an animation library that uses an API similar to jQuery’s animate method.

You can learn more about it at http://velocityjs.org. The best part about Velocity is that

it’s jQuery-independent. But if you have a project using jQuery that relies heavily on

its animate method, dropping in Velocity.js makes the process of animating the same as with

jQuery. For example, consider this jQuery animation code:

$(".item").animate({

 opacity: 1,

 left: 8px

}, 500);

You can port this animation code to use Velocity.js, like so (changes in bold):

$(".item").velocity({

 opacity: 1,

 left: 8px

}, 500);

http://velocityjs.org/

This simple change from animate to velocity will use the Velocity animation engine instead

of jQuery’s, which gives you silky smooth requestAnimationFrame-powered performance, as

well as easing functions to give your animations a sense of natural movement. Unlike

jQuery’s animate method, it allows you to animate colors, transforms, and scrolling.

If you use Velocity.js without jQuery, the syntax does change somewhat. As Velocity loads,
it’ll check whether jQuery is loaded. If jQuery isn’t present, the syntax for animating

the same element as shown in the examples changes to the following:

Velocity(document.querySelector(".item"), {

 opacity: 1,

 left: 8px

}, {

 duration: 500

});

Aside from semantics, this syntax doesn’t differ all that much. With or without jQuery,

Velocity.js can make your JavaScript-driven animations much more fluid and efficient,

without getting into the weeds of writing your own animation code.

Be warned that this library is about 13 KB minified and compressed, so consider using it

only if animation features prominently on your website and performance is paramount. Adding

13 KB of overhead to a site that doesn’t feature much in the way of animation will contribute

to a suboptimal experience for your users, and may be better served by writing your own

animation code or using CSS transitions instead.

8.5. Summary

You learned many concepts in this chapter about how to keep your JavaScript lean and fast:

 Depending on its position, the <script> tag can block rendering, which delays the display of the page in the

browser. Placing <script> tags toward the bottom of the document can speed up the rendering of a page.

 The async attribute can provide further performance benefits if you can manage the execution of scripts that

use it.

 Managing the execution of interdependent scripts that use async can be challenging. A third-party

script-loading library such as Alameda or RequireJS can provide a convenient interface for managing script

dependencies, while also providing the benefit of asynchronous script loading and execution.

 Although jQuery is useful, it has a relatively large footprint. A portion of its functionality can be better served by

jQuery-compatible alternatives that are smaller in file size, and in some cases, better performing.

 Browsers are providing more jQuery-like functionality as time goes on. You can select elements with

querySelector and querySelectorAll, and bind events to them by using addEventListener. You can

also manipulate element classes by using classList, get and set attributes on them by using getAttribute

and setAttribute, and modify their contents by using innerHTML. For a cheat sheet of jQuery methods and

their native browser equivalents, check out appendix B.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02

 The Fetch API provides a convenient native interface for requesting remote resources via AJAX. It can also be

effectively polyfilled for browsers that don’t support it.

 The requestAnimationFrame API is a newer JavaScript function that you can animate in lieu of

setTimeout or setInterval. It’s higher-performing than those older timer-based methods, and renders and

paints faster than CSS transitions.

In the next chapter, you’ll learn about service workers in JavaScript. You’ll see how

to use them to serve offline experiences to users with limited or no internet connectivity,

and to improve the performance of your site.

Chapter 9. Boosting performance with service workers

This chapter covers

 Understanding what service workers are and what they allow you to do

 Installing a service worker on a simple site

 Caching network requests inside a service worker

 Updating a service worker

As the web has matured, so too has the technology that it relies on. No longer are we tied

to our desks while browsing the web. With the advent of mobile devices, people are accessing

content on Wi-Fi and data networks of varying degrees of quality and reliability. This

introduces challenges in the way we access content, particularly in the case of poor or

absent internet connections that may leave the user in a lurch.

Sometimes we go offline—in an airplane without Wi-Fi, or passing through a tunnel in a

car or train, for example. It’s a fact of life. When this happens, we’re somewhat used

to being unable to view content on websites. But it doesn’t have to be this way, and this

is where service workers enter the picture.

In this chapter, you’ll learn about service workers: how they work, how to use them to

intercept network requests, and how they can be used to cache site assets for times when

your device is offline. Beyond the mere convenience of providing an offline experience to

your users, you’ll also learn of the performance benefits that can come with using service

workers, which can make repeat visits to your website even faster than before.

As with any code you write, sometimes changes are necessary. Changing a service worker isn’t

as straightforward as changing other components of a website, so we’ll cover what you need

to do when you make changes to one. Let’s get started learning about service workers!

9.1. What are service workers?

Service workers are a kind of worker—an evolving standard of scripts that operate in a

separate and special scope from ordinary scripts. Workers perform tasks in the background,

on a separate processing thread than typical JavaScript code that you’d write and reference

with <script> tags. Figure 9.1 shows a service worker operating on its own thread.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig01

Figure 9.1. A service worker operating on its own thread labeled ServiceWorker Thread

can be seen at the bottom in this view of Chrome’s Timeline tool.

Because service workers operate on a separate thread, they behave differently than

JavaScript loaded via the <script> tag. Service workers don’t have direct access to the

window object on the owner page. Although they can communicate with the parent page, they
must do so indirectly through an intermediary, such as the postMessage API.

The problems that workers solve depend on the kind of worker we’re talking about. Web

workers, for example, allow the browser to perform CPU-intensive tasks without slowing or

halting the browser’s UI. Service workers, which we cover specifically in this chapter,

allow the user to intercept network requests and conditionally store items in a special

cache via the CacheStorage API. This cache is separate from the native browser cache, and

by using it, we can serve content to the user from a CacheStorage cache when they’re offline.

We can also use this special cache to boost the rendering performance of a page.

A theoretical example of a service worker in use is on a popular blog. If the page caches

articles via CacheStorage as the user reads them, they’d be available for offline viewing

in the event that a user somehow loses connectivity. This could be useful in various

situations, such as when a cellular or Wi-Fi connection is weak, or when a network connection

isn’t available.

Service workers can help us deal with this problem, not by overcoming the problem of poor

or absent connectivity, but by presenting cached content that the user has already seen

so that they have something to look at, rather than nothing at all. It doesn’t fix the

inability to access updated content, but rather solves the problem of a broken web-browsing

experience.

The service worker interface itself is light, and consists of events that are triggered

in specific instances, such as when a service worker is installed, or when a network request

is made. These events are listened for with the addEventListener method that you learned

about in chapter 8. The workhorse of the service worker you’ll write in this chapter is

the fetch event. This is the event you’ll use to intercept network requests, and store

or request items from a CacheStorage cache. Figure 9.2 illustrates this process.

Figure 9.2. A service worker communicating as a proxy between a user and a web server.

The user makes requests, which the service worker can intercept. Depending on how the

service worker code is written, assets can be retrieved from the service worker’s

CacheStorage cache, or passed through to the web server. The service worker can also

write to the cache in specific instances.

With this event-driven interface, service workers can help create offline experiences for

when an internet connection is poor or absent altogether. This is done through an interface

that intercepts network requests, and reads from or writes to a CacheStorage cache. You’ll

use CacheStorage when you write your first service worker in the next section.

Now that you have a little background on what service workers do at a higher level, there’s

no time like the present to dive in and learn how to use them. In the next section, you’ll

do exactly that.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig02

9.2. Writing your first service worker

In this section, you’ll embark on writing your first service worker. First, you’ll learn

how to check whether a browser supports service workers, and if so, go about installing

one. Then, you’ll write the guts of your service worker and use it to intercept network

requests. Finally, you’ll measure the performance benefits that your service worker

affords.

The project you’ll write a service worker for is a static version of my blog. I’ve been

trying to find new ways to squeeze more performance out of my site, while also allowing

readers to read old content if they’re offline. First, you’ll grab a copy of the code

from GitHub and get it running on your computer. To do this, enter the following commands:

git clone https://github.com/webopt/ch9-service-workers.git

cd ch9-service-workers

npm install

node http.js

Service workers require HTTPS!

For convenience, service workers can run on localhost without HTTPS. But because of the

level of access that service workers have in terms of being able to intercept network

requests and run in the background, HTTPS is required on a production web server. You have

some leeway on localhost, but when you go to production, you’ll need a valid SSL
certificate.

When finished, the site will be running on your local machine at http://localhost:8080.

After you verify that the site is running, you’ll be ready to write your first service

worker!

9.2.1. Installing the service worker

The installation process of a service worker requires little code. You need to check whether

the browser supports service workers at all. If the browser supports them, you can continue

with the installation. If the browser doesn’t support service workers, nothing will happen.
This ensures that your site will continue to function, even if the user’s browser isn’t

capable of using service workers. Figure 9.3 illustrates this behavior flow.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig03

Figure 9.3. The service worker installation process. The code checks for the status of

service worker support. If the browser supports it, the service worker is installed. If not,

the browser does nothing.

The first part of installing your service worker involves registering it via the

sw-install.js script referenced via a <script> tag in the footer of each page.

9.2.2. Registering the service worker

To get started with installing your service worker, you’ll see a file named sw-install.js

in the htdocs folder. Open this file in your text editor and enter the contents of this

listing into it.

Listing 9.1. Service worker support detection and installation code

if("serviceWorker" in navigator){

 navigator.serviceWorker.register("/sw.js");

}

Sniffing out service worker support is easy. In the first line, we use the in operator to

check for the existence of the serviceWorker object within the navigator object. If service

workers are supported, the script in /sw.js is registered via the serviceWorker object’s

register method as shown in the second line.

A note on service worker scope

If you’re curious as to why the service worker code isn’t in the js directory, it’s because

of scoping. By default, a service worker is scoped to work only in the directory it resides

in and its subdirectories. If you want it to work across the entire site, you need to place

it in the site’s root folder, which is what you’ll do in this chapter’s example. If you

want to place your service worker in a more logical location, you can overcome this issue

by setting the Service-Worker-Allowed HTTP response header to a value of /, which allows

the service worker to work across the entire domain.

Don’t reload the page and test your changes just yet! For your service worker to do anything,
you need to write some of your service worker behavior, particularly what should occur when

the service worker is first installed.

Writing the service worker’s install event

As I said earlier in this chapter, the service worker interface is light and consists of

events that you can attach code to by using the addEventListener method. When a service

worker is first installed, the install event is fired.

When you install your first service worker, you want to immediately cache the global assets

for the site. These are items such as the site’s CSS, JavaScript, images, and any other

asset that’s common across all pages and devices. Figure 9.4 depicts this caching process.

Figure 9.4. The behavior that you want to occur when the service worker’s install event

is fired

To get started writing the installation behavior of your service worker, open sw.js in the

htdocs folder. The first thing you want to do is cache the page assets that are necessary

for the site to run offline. These are usually the static pieces, such as CSS, JavaScript,

and images. The following listing shows how to accomplish this important step.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig04

Listing 9.2. Caching assets in the service worker’s install event

The installation code is a little tricky at first glance, but easy to grasp once you walk

through it. First, you define a cache identifier in the cacheVersion string. This allows

you to give your cache a name, and you can update it when the cache is changed in future

versions of the service worker. The assets you want to cache up front in the service worker

are then specified in the cachedAssets array.

Next, you write the install event code, which is executed as soon as the service worker

is installed by sw-install.js. Here, you return a promise for opening a new caches object

by the identifier you’ve set in the cacheVersion variable, and then add all of your assets

specified in the cachedAssets array to it. The promise is chained with a then call that

returns the result of the service worker’s skipWaiting method. This instructs the service

worker to immediately fire the activate event after the install event is complete. The

activate event code then executes the service worker’s claim method, which allows the

service worker to begin working immediately.

With this code in place, now you can reload the page. When the page reloads, it seems like
nothing has happened. So how can you tell whether the service worker is, well, working?

You can verify in Chrome by opening the Developer Tools and navigating to the Application

tab. Click the Service Workers item in the left pane, and you’ll see something similar

to figure 9.5.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig05

Figure 9.5. The Application tab in Chrome’s Developer Tools showing active service

workers for the current site. Click the Service Workers item in the left pane to access this

panel.

When you open this panel in the Application tab, you’ll be able to view the service workers

currently running on the page, as well as perform actions such as stop a service worker,

unregister it, and more important, force it to update on reload. During your work in this

chapter, you should select the Update on Reload check box, which forces updates on page

reload. Service workers can be tricky to work with as you develop them, and selecting this

option simplifies the process.

Looking at the service worker cache

Now that you’ve verified that the service worker is installed, how can you tell whether

the assets you’ve specified have been cached? The answer to this burning question is once

again in the Application tab. In the left pane, expand the Cache Storage item and click

the cache for your site, which is labeled v1, as specified in the install event code. You

can see this in figure 9.6.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig06

Figure 9.6. The v1 cache created by your service worker. You can see that the assets

you’ve specified in the service worker’s cachedAssets array are present.

When you look at your v1 cache under the Cache Storage item in the Application tab, you

can see all of the items that you’ve specified in the cachedAssets array. With these in

your cache, let’s see what happens if you go offline. To go offline, you could turn off

your network connection on your machine by turning off Wi-Fi or unplugging your network

cable, but there’s an easier way. In Chrome’s Developer Tools, go to the Network panel

and locate the Offline check box, shown in figure 9.7.

Figure 9.7. Selecting the Offline check box in Chrome’s Network panel allows you to

simulate what it’s like to be offline without having to disable your network connection.

Select the Offline check box and reload the page. You’ll notice that, although you’ve

cached all the necessary page assets for offline viewing, you still get a connection error

and not the offline version of the site. Why is that?

In this case, it’s because you haven’t cached the HTML document itself. Even if you did
do that, though, you’d still need a mechanism that intercepts network requests, and then

you’d need to figure out what to do with them. Indiscriminately adding every asset to the
CacheStorage cache up front isn’t a viable strategy, because it loads a ton of stuff that
the user may end up never needing. You first cache global assets common on all pages up

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig07

front in the install event, and then use the fetch event to intercept and cache assets on
an as-needed basis. This ensures that your visitors are efficiently caching everything you

know they’ll need up front, and then you can programmatically add assets to the cache after

they request them.

9.2.3. Intercepting and caching network requests

To control what happens when you’re offline, you need a mechanism that sits between you

and the server that allows you to cache content for offline viewing. The fetch event allows

this functionality via a behavior flow defined in figure 9.8.

Figure 9.8. The behavior of the service worker’s fetch event. The user makes a request

for an asset, and the service worker steps in to intercept it to see whether the asset is

already in the cache. If not, the asset is fetched from the network, and the service

worker caches it. If it’s in the cache, it’s pulled from the cache.

You might be wondering why you bothered to cache assets during the install event. You’re

priming the cache up front with assets that you know you’ll need. Whether or not you’ve

cached an asset, however, you still need to define behavior for a fetch event that deals
with the user’s requests and caches assets for use later on. For assets that you’ve cached

up front, the service worker will serve them from that cache. For assets that you’re less

certain about, such as HTML documents, images specific to articles, fonts, and so on, you

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig08

want to subject them to a more rigorous check: a check that goes and fetches them from the

network, and then places them into the cache for later use.

One good reason for this is that the assets you request may not be consistent across all

devices, and thus shouldn’t be added to the cache up front. A device with a high-density

display will download images appropriate for that device, and should be cached
programmatically according to the device’s needs. A less capable device should download

and cache assets appropriate to its own limitations.

You need to write your own logic to accomplish this goal. This logic is written in this

listing. Add it to your local copy of sw.js.

Listing 9.3. Intercepting and caching additional assets in the fetch event

With this code, you can fetch items from the cache that you’ve primed in the service

worker’s install event code. If you come across a request for an asset that isn’t in the

cache, you use the fetch method (covered in chapter 8) to retrieve it from the network.

After the asset is downloaded, you place it in the service worker cache. Then that asset

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08

is retrieved from there instead of from the network. Force a reload of the page by using

Ctrl-Shift-R (or Cmd-Shift-R on a Mac), and your changes should take effect.

Tip for stubborn service workers

Even when the Update on Reload check box is selected in the Application tab of Chrome’s

Developer Tools, a service worker can fail to update. This may be because of a lax caching

policy that instructs the browser to hold the service worker in the cache. In our example,

you have a Cache-Control header value of no-cache, which instructs the browser to revalidate

the stored copy with the server for changes. To learn more about Cache-Control and how it

works, check out chapter 10.

With the updated service worker running, open the Network tab and check out the asset

information in the Size column. Those that have been intercepted by your service worker

will read (from ServiceWorker), as shown in figure 9.9.

Figure 9.9. Network requests intercepted by the service worker will be indicated by a

value of “(from ServiceWorker)” in the Size column in Chrome’s network utility.

Now that you’ve verified that items are being cached by the service worker by way of the

CacheStorage API, select the Offline check box in the network utility next to the network

throttling drop-down, and then reload the page. Rather than receiving a network error,

you’ll notice that the site is now available offline. Congratulations! You just wrote your

first offline web experience! Now let’s look at how these changes have affected the

performance of the page.

9.2.4. Measuring the performance benefits

When you retrieve assets from the service worker cache, you can achieve better performance

than the browser cache. This means that you can further accelerate rendering performance

for the user by lowering the amount of time it takes for the browser to begin painting the

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig09

page. Figure 9.10 tracks the Time to First Paint of three scenarios: when the browser has

nothing in its cache, when the cache is populated, and when the service worker cache is

used instead of the browser cache.

Figure 9.10. A comparison of the Time to First Paint performance of various caching

scenarios on Chrome’s Regular 3G throttling profile. The scenarios are an uncached page,

the page when retrieved by the browser cache, and the page when retrieved from the

service worker cache.

This was somewhat surprising to me, but the numbers show that when service workers are used

to enhance performance, you can see a 50% improvement over the browser’s caching behavior.

That’s a sizeable decrease in rendering time!

This doesn’t mean the browser cache is dead. You still need it, because it works so well

and because you can fall back to it in browsers that don’t support service workers. Even

in browsers that do support service workers, you can configure your fetch event code to

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig10

ignore requests that you don’t want to intercept, at which point your requests will fall
to the browser cache.

Next, you’ll take another look at your service worker code, and see how to tweak it to

be a little more flexible.

9.2.5. Tweaking network request interception behavior

So you’ve written your first service worker, and it works pretty well. Except for one thing:

If you try to change any of your assets, those changes won’t be seen unless you force a

reload of the entire page. This is problematic. In particular, it’s important that your

site’s HTML be as up-to-date as possible, so that if you update references to things like

CSS or JavaScript, you’ll be able to see those changes as well as updates to content.

That’s not to say that service workers are inherently problematic, or that using

CacheStorage over the browser cache is a bad idea. If you want to provide an offline

experience, it’s the only real way to do so. When you intercept and change the way network

requests are fulfilled, however, you’re writing behavior that supersedes the browser’s

own built-in cache. You must be mindful of how you choose to fulfill these requests.

How you fulfill these requests depends on the nature of your website. In the case of the

blog example in this chapter, the strategy is basic: assets that don’t change often (such

as images, scripts, and CSS), you don’t worry about right now. When you do need to change
them, there’s a mechanism for doing so that’s covered in the next section.

For HTML, you adopt a different strategy in your service worker’s fetch event code that

will allow you to get the latest page content every time when you’re online. You can still

accommodate offline viewing for your user as a part of a fallback strategy.

Your current service worker fetch event code is straightforward: if a request for an asset

matches something that’s already in the service worker cache, you serve the asset from

the cache. If the request doesn’t match anything in the cache, you grab the latest copy

from the network, and then add it to the cache.

This is an excellent strategy for performance, but it can negatively impact content

freshness. You don’t want to abandon this strategy altogether, because some assets rarely

ever change. You want to adopt a new approach for HTML documents. Figure 9.11 shows how

to adopt a two-pronged approach to intercepting network requests in the service worker’s

fetch event.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig11

Figure 9.11. A two-pronged approach for intercepting a network request in a service

worker’s fetch event. If the requested asset is an HTML document, you always fetch it

from the network and place it in the cache, and serve it from the service worker cache

only if you’re offline. If the resource isn’t an HTML document, you always serve from the

cache and retrieve it from the network if it’s not in the service worker cache.

With this flow, you’re maintaining the performance advantages that service workers give

us for assets such as images, CSS, and JavaScript, but giving priority to the freshness

of HTML content. This gives you the ability to update site assets by changing their URLs,

which you can later point to in the cache that you populate in the service worker’s install

event code.

To implement this new flow, you need to update the service worker’s fetch event code. First,

you need to add a new regular expression to check whether the incoming request is an HTML

document. Changes are in bold.

Listing 9.4. Adding a regular expression to check for HTML requests

This regular expression will be used later to check whether the request URL is for an HTML

document, and will be what your network interception request behavior hinges on. From there,

you’ll create a new condition with this regular expression. If the regular expression test

passes for the current request, and you’re dealing with an HTML document, you’ll handle

the request in your pattern of network first/serve from cache for offline. If the test fails,

you’ll use your initial pattern of cache first/populate cache from the network.

Listing 9.5. Handling HTML requests with a network first/cache for offline pattern

After you reload the page and try the new code, go ahead and modify index.html. You’ll

notice that updates to it should be reflected immediately.

This method slows rendering performance of the page slightly as compared to your earlier
fetch event code, because the document needs to be fetched from the network rather than

read from the service worker cache. Testing under the Regular 3G throttling profile in Chrome

shows an average Time to First Paint of 120 ms. Although slower than the average time of

90 ms that your earlier service worker code yielded, it’s still faster than the browser

cache’s average Time to First Paint of approximately 175 ms.

The results you get will depend on your specific project. Keep in mind that you don’t need
to intercept every network request, nor should you. Remember that network requests in your
fetch event code are intercepted only if you pass a response object to the event object’s

respondWith method. If a request isn’t passed to this method, the browser’s default

behavior will kick in. The server worker specification doesn’t prescribe any method for

handling requests; it only provides an interface for you to do so. You dictate the logic
with respect to whether a request is intercepted. In this chapter’s example, you’ve

already done quite a bit of this by creating regular expressions to filter out requests

that you don’t want to intercept.

Your service worker and CDN-hosted assets

CDN-hosted assets are another aspect of request interception, and so is caching them with

CacheStorage. Generally speaking, you’ll be able to save CDN-hosted assets to your service

worker cache without trouble. CDN hosts configure their servers to serve assets with an

Access-Control-Allow-Origin: * header, which allows any origin to access those resources

without restriction. If you’re having trouble caching a CDN asset, check for the presence

of this header. All properly configured CDNs supply this header, so adding special logic

in your service worker to work with these assets is something you won’t need to worry about.

For further information on CDNs and how they work, check out chapter 10.

Back to your service worker: even though you’re sacrificing performance a bit by hitting

the network for HTML requests, the net effect over the browser cache is positive. Better

yet, this method still lets you serve content to users when they’re offline. It’s the

best of both worlds.

Of course, if you modify the site’s CSS, JavaScript, or images, those will still be served

from the service worker cache, and updates won’t be reflected. There’s a good approach

to dealing with those assets, and next we cover how to update your service worker cache

to include changes to your site assets.

9.3. Updating your service worker

So far, you’ve written a service worker that caches site assets such as CSS, JavaScript,

and images, and always fetches a fresh copy of HTML files from the server. Let’s imagine

that you’ve pushed this service worker code to production, and it’s working great.

Unfortunately, you’ve hit a snag in that you have new CSS that you need to make sure your

users see, but the old CSS file cached by the service worker is stubbornly persistent, and

updates only if you force a reload of the entire page. This is problematic, because it’s

not a good solution to tell your users, “Just force a reload of the page to see the new

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10

styles!” You need to be able to usher in the changed CSS and automatically put it in the

user’s service worker cache.

In this short section, you’ll learn how to version files on your site so that the service

worker picks those files up instead. Because you want to keep your caches lean out of respect

for your user’s device storage quota, I’ll then show you how to clear out the old cache.

Let’s begin!

9.3.1. Versioning your files

You’ll recall that you wrote your service worker fetch event code to always serve files

such as CSS, JavaScript, and images from the service worker cache, but to always prefer

fetching HTML from the network if the user is online. One good reason for this is so that

you can force updating of other asset types by versioning the references to them in the

HTML file. Because the HTML will always be fetched from the server, you can ensure that

any new references to assets will be downloaded by the user.

In regards to caching, versioning occurs when you take a file and modify the reference to

it. Take global.css, for example, which is included in index.html via the <link> tag:

<link rel="stylesheet" href="/css/global.css" type="text/css">

This approach is familiar to you by now. It’s a useful one-liner that instructs the browser

to download global.css. What happens if you make a change to global.css, though? Your service

worker will never pick up on it, because it’s already been cached. In fact, depending on

the caching policy for that file, even the native browser cache may never pick up new changes.

This is where the concept of versioning comes in. By adding a query string to the filename

as shown here in bold, you can differentiate the asset from its previous version:

<link rel="stylesheet" href="/css/global.css?v=1" type="text/css">

Even though the asset’s filename is the same, the query string is enough of a differentiator

for the browser to trigger it to download the file again, and treat it differently than

the asset that doesn’t have the query string.

Query strings in browser caches

The query string trick isn’t handy only when trying to bust the service worker cache; it

also works for the browser’s native cache. Chapter 10 covers this trick in more depth,

as well as automating this process to make repeated changes a lot less tedious.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10

To test this out, make a small but noticeable change in global.css—something like changing

the background-color of the <body> element. If you open index.html and change the <link>

tag reference to global.css to add the query string as shown previously, you’ll notice

that the new styles kick in immediately. Success! Or so you think? Maybe you should check

out the Cache Storage section under the Application tab in Chrome’s Developer Tools and

look at your v1 cache. You’ll see something like figure 9.12.

Figure 9.12. An orphaned cache entry after updating the style sheet reference.

global.css?v=1 is in the cache, whereas the unused global.css entry remains.

Although leaving this orphaned entry in the cache isn’t going to kill anyone’s user

experience, it’s not a good idea to leave it and move on. Think of it like littering. Is

one candy bar wrapper tossed on the ground going to kill the world? Obviously not, but it’s

a bad thing to do, and you should always clean up after yourself.

Think of orphaned cache entries such as these as being like candy bar wrappers and bottles

alongside the highway. Over time, your service worker cache will become bloated and take

up unnecessary space on the user’s device. In the next section, you’ll learn how to clean

up after yourself like a proper person.

9.3.2. Cleaning up old caches

Now that you’ve found out how to bypass a stubborn service worker cache, you need to learn

how to remove outdated caches from it. The first thing you need to do is bump up the

cacheVersion variable from v1 to v2, and replace your reference to global.css to read

global.css?v=1 in your cachedAssets array. These changes are in bold.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig12

Listing 9.6. Updating the cache name and the assets to cache

These changes alone are enough for the new cache to take effect, but it’s not enough for

the old v1 cache to be removed. You’ll take care of that by rewriting the entire activate

event code, which you can see in the following listing.

Listing 9.7. Removing old caches in the activate event

With this new activate event code, your service worker will process everything in your new

cache. If any of the caches in the service worker don’t go by any name specified in the

cacheWhitelist variable, they’ll be removed. After you run this code, go to the Cache

Storage section in the left pane of Chrome’s Application tab in the Developer Tools. You

should be able to see that the only cache left is the new v2 cache, as shown in figure 9.13.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig13

Figure 9.13. Your new v2 cache. If you click this, you’ll be able to see the updated cache

contents, particularly the global.css?v=1 entry.

At this point, you’d proceed to update every reference to global.css to global.css?v=1.

If you fail to do this, navigating to a subsequent page would store a separate cache entry

for the old URI. This isn’t a step you need to complete as part of the work in this chapter;

it’s more of a caveat for when you implement service worker changes on your own site.

You’re are the end of your work in this chapter. Let’s quickly recap what you’ve learned

before moving on to the next chapter.

Going further with service workers

Covering all capabilities of service workers is outside the performance-oriented scope of

this chapter. In fact, service workers are capable of more than creating offline experiences

and boosting site performance. Although the patterns in this chapter are useful for

content-driven sites such as blogs and the like, a few resources out there can help you

take service workers a little (or a lot) further:

 Jake Archibald, a developer advocate for Google, has written a great article titled “The Offline Cookbook”

available at https://jakearchibald.com/2014/offline-cookbook. It’s a resource for patterns that you can use in

your service worker. Some patterns are performance-oriented, some favor flexibility for offline experiences, and

quite a few others fall in between. If you’re wondering where to begin writing a service worker that makes the

most sense for your website, this is a great place to start.

 Mozilla has created its own service workers cookbook at https://serviceworke.rs. It covers a broad spectrum of

possibilities with the technology, including how to use service workers to send push notifications to mobile

devices (for real!).

Throughout this chapter, you’ve made heavy use of the CacheStorage object, particularly

methods such as caches.match and caches.open, which match items in a local cache and open

caches by name, respectively. Although it works great with service workers, this API is

a standalone piece of functionality with many methods available for use. To learn more about

CacheStorage, check out the Mozilla Developer Network reference at http://mng.bz/NVXR.

https://jakearchibald.com/2014/offline-cookbook
https://serviceworke.rs/
http://mng.bz/NVXR

In the first section of this chapter, recall that I said that communication between a service

worker and its parent page isn’t possible unless you use the postMessage API. Learn about

this technology at Google Chrome’s GitHub site at http://mng.bz/De31.

9.4. Summary

As you’ve witnessed in this chapter, service workers can be a tool used to enhance the

performance of a website. Specifically, you learned the following key concepts:

 Service workers are a kind of JavaScript worker that operates on a thread separate from the main processing

thread on which all other scripting activity occurs.

 Installing a service worker is easily done in browsers that support service workers. You check for the

serviceWorker member in the navigator object. If a browser doesn’t support the technology, the page

experience will continue on without the service worker functionality.

 Because progressive enhancement is necessary to provide a level of functionality to all users, it’s important that

your site doesn’t explicitly depend on service workers. Service workers are an enhancement, and should not be a

requirement for a site to work.

 Service workers require HTTPS to be used. Although you can develop and use a service worker over HTTP on

localhost in development, make sure you have a valid SSL certificate for when you push your service worker to a

production server.

 Using CacheStorage in tandem with the service worker’s fetch event, you have a vast amount of power and

flexibility in intercepting and caching network requests. The marriage of these two pieces of functionality allows

you to enhance page performance by serving items directly from the service worker cache, as well as fall back to

an offline experience when a user’s internet connection is absent or intermittent.

 Although the service worker cache operates similarly to the browser cache, it’s a separate entity. If you don’t

intercept and send network requests to the fetch event’s event.respondWith method, the responses to

those requests will be handled according to the browser’s default behavior.

 Service workers can provide a performance boost when it comes to rendering. In the case of my blog, it provided

nearly a 50% boost in rendering speed over the browser cache!

 Aggressive caching of HTML documents can create a scenario where it becomes difficult to update HTML content

on a page, as well as the assets referenced on the page, such as CSS, JavaScript files, and images. For

content-driven sites such as a blog, it makes more sense to fetch these assets from the network and then cache

them in case the user goes offline later.

 Sometimes site assets change, and you need to invalidate your service worker’s cache. If this happens, you can

invalidate a service worker cache by adopting a new name for the cache, and dropping it into a white list. From

here, you can use the service worker’s activate event to eliminate all caches that aren’t a part of your white

list, ensuring easy updates and cleanup when assets are changed on your site.

In the next chapter, you’ll explore methods you can use to fine-tune the delivery of assets

on your website, ranging from configuring your site’s browser caching policy, providing

resource hints, working with CDNs, and more.

http://mng.bz/De31

Chapter 10. Fine-tuning asset delivery

This chapter covers

 Understanding compression basics, the impacts of poor compression configuration, and the new Brotli

compression algorithm

 Using caching to improve the performance of your website for repeat visitors

 Exploring the benefits of CDN-hosted assets

 Verifying the integrity of CDN resources by using Subresource Integrity

Until now, we’ve spent much of this book talking about techniques specific to the

constituent parts of web pages, such as CSS, images, fonts, and JavaScript. Understanding

how to fine-tune the delivery of these assets on your website can give it an added performance

boost.

In this chapter, we’ll spend time investigating the effects of compression, both for good

and ill, as well as a new compression algorithm named Brotli. We’ll also touch on the

importance of caching assets, an optimal caching plan for your website, and how to invalidate

stubborn caches when you update your content or release new code.

Moving away from web server configuration, we’ll learn how your website can benefit from

using assets hosted on Content Delivery Networks (CDNs), which are geographically dispersed

servers. You’ll also learn how to fall back to locally hosted assets in the unlikely event

that a CDN fails, and how to verify the integrity of CDN assets using Subresource Integrity.

Finally, we’ll enter the realm of resource hints, which are enhancements you can use in

some browsers via the <link> tag in your HTML, or via the Link HTTP header. Resource hints

give you the power to prefetch DNS information for other hosts, preload assets, and prerender

entire pages. Without any further ado, let’s dive in!

10.1. Compressing assets

Recall that chapter 1 showed the performance benefits of server compression. To review,

server compression is a method in which the server runs content through a compression
algorithm prior to transferring it to the user. The browser sends an Accept-Encoding request

header that indicates the compression algorithm(s) supported by the browser. If the server

replies with compressed content, the Content-Encoding response header will specify the

compression algorithm used to encode the response. Figure 10.1 shows this process in action.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig01

Figure 10.1. The user makes a request to the server for index.html, and the browser

specifies the algorithms that are supported in the Accept-Encoding header. Here, the

server replies with the compressed content of index.html, and the compression

algorithm used in the response’s Content-Encoding header.

As you delve further into this section, you’ll learn basic compression guidelines and the

pitfalls of poorly compressed configurations. You’ll then learn about the new Brotli

compression algorithm that’s gaining support, and how it stacks up to the venerable gzip

algorithm.

10.1.1. Following compression guidelines

Compressing assets isn’t as simple as “compress all of the things!” You need to consider

the types of files you’re dealing with and the level of compression you apply. Compressing

the wrong types of files or applying too much compression can have unintended consequences.

I have a client named Weekly Timber whose website seems like a good subject for

experimentation. You’ll start by tinkering with compression-level configuration. Let’s

grab Weekly Timber’s website code and install its Node dependencies:

git clone https://github.com/webopt/ch10-asset-delivery.git

cd ch10-asset-delivery

npm install

You aren’t going to run the http.js web server at this time, as you have in chapters past.

You need to make some tweaks to the server code first.

Configuring compression levels

You may remember the compression module that you downloaded with npm when you compressed

assets for a client’s website in chapter 1. This module uses gzip, which is the most common

compression algorithm in use. You can modify the level of compression that this module

applies by passing options to it. Open http.js in the root directory of the Weekly Timber

website and locate this line:

app.use(compression());

This is where the compression module’s functionality kicks in. You’ll notice that the

invocation of this module is an empty function call. You can modify the compression level

by specifying a number from 0 to 9 via the level option, where 0 is no compression and 9

is the maximum. The default is 6. Here’s an example of setting the compression level to

7:

app.use(compression({

 level: 7

}));

Now you can start the web server by typing node http.js, and start testing the effects of

this setting. Be aware that anytime you make a change, you need to stop the server (typically

by pressing Ctrl-C) and restart it.

From here, experiment with the level setting and see the effect it has on the total page

size. If you set level to 0 (no compression), the total page size of

http://localhost:8080/index.html will be 393 KB. If you max it out to 9, the page size will

be 299 KB. Bumping the setting from 0 to 1 will lower the total page size to 307 KB.

Setting the compression level to 9 isn’t always the best policy. The higher the level

setting, the more time the CPU requires to compress the response. Figure 10.2 illustrates

the effects of compression levels on TTFB and general load times as it applies to the jQuery

library.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig02

Figure 10.2. The effects of the compression-level setting on overall load times and TTFB

when requesting jquery.min.js. Tests were performed on Chrome’s Regular 3G network

throttling profile.

You can see that the most dramatic improvement occurs when compression is turned on. But

the TTFB seems to creep up steadily as you increase the level toward 9. Overall load times

seem to hit a wall around 5 or 6 and start to increase slightly. There’s a point of

diminishing returns, and worse yet, a threshold at which raising the compression level any

further doesn’t help matters any.

It’s also worth noting that these tests aren’t “in the wild” per se, but on a local

Node web server, where the only traffic is from my local machine. On a busy production web

server, extra CPU time spent compressing content can compound matters and make overall

performance worse. The best advice I can give is to strike a balance between payload size

and compression time. Most of the time, the default compression level of 6 will be all you

need, but your own experimentation will be the most authoritative source of information.

Furthermore, any server that uses gzip should provide a compression-level setting that falls

in the 0 to 9 range. On an Apache server running the mod_deflate module, for example, the

DeflateCompressionLevel is the appropriate setting. Refer to your web server software’s

documentation for the relevant information.

Compressing the right file types

In chapter 1, my advice on which types of files to compress was twofold: always compress

text file types (because they compress well), and avoid files that are internally compressed.

You should avoid compressing most image types (except for SVGs, which are XML files) and

font file types such as WOFF and WOFF2. The compression module you use on your Node web

server doesn’t try to compress everything. If you want to compress all assets, you have

to tell it to do so by passing a function via the filter option, as shown here.

Listing 10.1. Compressing all file types with the compression module

If you change your server configuration to reflect the preceding code, restart your server

for changes to take effect. Navigate to http://localhost:8080, look in your Network panel,

and you’ll see that compression is now applied to everything. In my testing, I compared

the compression ratios of JPEG, PNG, and SVG images across all compression levels. Figure

10.3 shows the results.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig03

Figure 10.3. Compression ratios of PNG, JPEG, and SVG images across all gzip

compression levels.

As you can see, PNGs and JPEGs don’t compress at all. SVGs compress well because they’re

composed of compressible text data. This doesn’t mean that only text-based assets compress

well. As discussed in chapter 7, TTF and EOT fonts compress very well, and those are binary
types. Because JPEGs and PNGs are already compressed when they’re processed, compression

confers no advantage. When it comes to these types of images, the best savings you’ll get

will be through the image optimization techniques you learned in chapter 6.

Worse yet, compressing internally compressed file types is detrimental to performance
because more CPU time is required to compress uncompressible files. This delays the server

from sending the response, which results in a lower TTFB for that asset. On top of that,
the browser still has to decode the encoded asset, expending CPU time on the client side

to perform work that has no benefit.

If you encounter a file type that you’re not sure is compressible, do a bit of rudimentary

testing. If you get little to no yield, it’s a safe bet that compressing that type of file

isn’t likely to improve performance for your website’s visitors.

Next, you’ll look at the new Brotli compression algorithm, and how it compares to the

venerable gzip.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06

10.1.2. Using Brotli compression

gzip has been the preferred method of compression for years, and that doesn’t appear to

be changing anytime soon. But a promising new contender has appeared on the scene, and its

name is Brotli. Although its performance is comparable to that of gzip in some aspects,

Brotli shows promise and is continually being developed. With this in mind, Brotli is worth

your consideration. But before you look at Brotli performance, let’s see how to check for

Brotli support in the browser.

Want to learn more about Brotli?

Although this section covers Brotli with some depth, it’s not complete. You can learn more

about this emerging compression algorithm in an article I’ve written for Smashing Magazine
at http://mng.bz/85Y1.

Checking for Brotli support

How do you know whether your web browser supports Brotli? The answer is in the

Accept-Encoding request header. Brotli-capable browsers will compress content only with

this algorithm over HTTPS connections. If you have Chrome 50 or later, open the Developer

Tools, go to the Network tab on any HTTPS-enabled website, and look at the value of the

Accept-Encoding request header for any asset. It’ll look like figure 10.4.

Figure 10.4. Chrome showing support for Brotli compression with the br token

If a browser supports Brotli, it’ll say so in the Accept-Encoding request header by

including the br token in the list of accepted encodings. When a capable server sees this

token, it’ll reply with Brotli-compressed content. If it doesn’t, it should fall back

to the next supported encoding scheme.

Next, you’ll write a web server in Node that uses Brotli via the shrink-ray package. If

you want to skip ahead, enter the command git checkout -f brotli in your terminal window

in the root folder where you checked out the ch10-asset-delivery repository. Otherwise,

continue on!

http://mng.bz/85Y1
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig04

Writing a Brotli-enabled web server in Node

Until this point in the book, you’ve been using the compression package to compress assets.

Unfortunately, this package doesn’t support Brotli. A fork of this package called

shrink-ray does, however. Because Brotli also requires SSL, you need to install the https

package as well:

npm i https shrink-ray

When this finishes, create a new file in the project’s root directory named brotli.js,

and enter the this content.

Listing 10.2. A Brotli-capable web server written in Node

As usual with Node programs, the first part of your script imports everything you need,

including your newly installed shrink-ray and https packages. From here, you create an

Express-powered static web server much the same way you have in the past, except on an HTTPS

server instead.

One thing you’ll notice that’s different with this server is that you’re placing your

assets in a separate subfolder named htdocs, below the project root. You do this because

your certificate files are being held in the project root in the crt folder. If you serve

your website files from a folder that also allows public access to the crt folder, that’s

pretty terrible for security. Although this is only a local website test, adhering to good

security practices can’t hurt.

After you’ve written this code, you can launch the server by typing node brotli.js. Provided

there aren’t any errors, you should be able to navigate to https://localhost:8443 and see

the client’s website come up.

Creating a security exception

When browsing to your local web server, you may receive a security warning. This is because

the provided certificate isn’t signed by a recognized authority. You can ignore this

warning in this case, but always ensure that you’re using a signed certificate on production

web servers.

If you enabled Brotli encoding in Chrome, you can open the network request panel in the

Developer Tools and look in the Content-Encoding column to see which requests are being

compressed with Brotli, as shown in figure 10.5.

Figure 10.5. Brotli-encoded files can be seen in the network request panel in Chrome by

looking for the br token in the Content-Encoding column.

Now that your local web server is compressing content with Brotli, you can go on to compare

its performance to gzip.

Comparing Brotli performance to gzip

It’s not enough to compare the default level of performance of Brotli to gzip. You have

to compare the two along the entire spectrum of compression levels. As you may recall from

earlier in this section, gzip’s compression level is configurable by specifying an integer

from 0 to 9. With Brotli, you do something similar, except the range is from 0 to 11. The

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig05

way you do this is by passing in the quality parameter to the shrinkRay object in brotli.js,

as shown in the following listing.

Listing 10.3. Configuring the Brotli compression level

Like the level setting with gzip, the quality setting adjusts the Brotli compression level.

Higher values yield lower file sizes. Figure 10.6 compares gzip to Brotli when compressing

a minified version of jQuery.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig06

Figure 10.6. Performance of compressing the jQuery library with gzip versus Brotli

compression across all comparable compression levels. (A gzip compression level of 0 is

the same as no compression, and so is omitted.) Gzip’s maximum compression level is 9,

so comparisons to Brotli’s quality settings of 10 and 11 aren’t available.

In my testing, Brotli provided anywhere from a 3% to 10% improvement at comparable

compression levels (except at a quality setting of 4, where the result was the same as with

gzip). The lowest size gzip could deliver was 29.4 KB, whereas Brotli’s is 26.5 KB. This

seems like a decent enough improvement for such a commonly used asset, but what does Brotli

do to your TTFB? Compression is a CPU-intensive task, so it makes sense to measure Brotli’s

effect on this important metric. Figure 10.7 shows the average TTFB at all compression levels

for both algorithms for the same jQuery asset.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig07

Figure 10.7. TTFB performance of gzip versus Brotli when compressing the jQuery library

The performance of Brotli and gzip are roughly similar until you hit the quality settings

of 10 and 11. At this point, Brotli gets a bit sluggish. Although these two settings yield

lower file sizes, they do so at the expense of the user. The best setting in this instance

is 9.

That said, this is a performance comparison on a small JavaScript web server. Many web

servers don’t yet support Brotli. Nginx (https://www.ngnix.com) has a Brotli-encoding

module at https://github.com/google/ngx_brotli, and a mod_brotli module for Apache is being

developed, but you have to know how to compile it on your own. If you’re interested, you

can check it out at https://github.com/kjdev/apache-mod-brotli.

Compression caching mechanisms

shrink-ray has a caching mechanism that you’re disabling so that you can test compression

performance. If your web server caches compressed content to speed up its delivery to the

browser, you should take advantage of it. Be aware, though, that many compression modules,

such as the popular Apache module mod_deflate, don’t cache compressed content.

https://www.ngnix.com/
https://github.com/google/ngx_brotli
https://github.com/kjdev/apache-mod-brotli

Support for this compression technology, although somewhat limited, is growing and shows

promise for outperforming gzip. If you decide to provide it to your users, do a lot of testing
on your website to ensure that you’re not creating any performance issues. It’s also

important to remember that this is an ongoing project, and its performance can change in

the future. It’s, at the very least, worth looking into at the present.

10.2. Caching assets

Most of this book hasn’t directly addressed caching, but not without reason: the first

impression is the most important. You should optimize with the assumption that any one visit

to your website is the first time that a particular user has been to your site. A bad first

impression may be enough to prevent someone from returning.

Although this is a good assumption to operate under, it’s also important to remember that

a significant portion of your users could be returning visitors or are navigating to

subsequent pages. In both scenarios, your site will benefit from a good caching policy.

In this section, you’ll learn about caching. You’ll see how to develop a caching strategy

that provides the best performance for your website, as well as how to invalidate cached

assets when you update your website’s content. Let’s begin by learning how caching works.

10.2.1. Understanding caching

Caching isn’t difficult to understand. When the browser downloads an asset, it follows

a policy dictated by the server to figure out whether it should download that asset again

on future visits. If a policy isn’t defined by the server, browser defaults kick in—which

usually cache files only for that session. Figure 10.8 illustrates this process.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig08

Figure 10.8. A basic overview of the caching process. The user requests index.html, and

the server checks whether the asset has changed since the time the user last requested it.

If the asset hasn’t changed, the server responds with a 304 Not Modified status and the

browser’s cached copy is used. If it has changed, the server responds with a 200 OK

status along with a new copy of the requested asset.

Caching is a powerful performance improvement that has an immense effect on page-load times.

To see this effect, open Chrome’s Developer Tools, go to the Network panel, and disable

caching. Then go to the Weekly Timber website you downloaded from GitHub earlier and load

the page. When you do, take note of the load time and the amount of data transferred. Then,

re-enable caching, reload the page, and take note of the same data points. You’ll see

something similar to figure 10.9.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig09

Figure 10.9. The load times and data payload of a website on the first uncached visit and

on a subsequent visit. The page weight is nearly 98% smaller, and the load time is much

faster, all due to caching.

The behavior that you see here can be divided into two cache states: unprimed and primed.

When a cache is unprimed, the page is being visited by a user for the first time. This occurs
when the user has an empty browser cache, and everything must be downloaded from the server

to render the page. The primed state exists when the user visits a page again. In this state,
the assets are in the browser cache, and thus aren’t downloaded again.

Naturally, you’re curious about what drives this behavior. The answer to your burning

curiosity is the Cache-Control header. This header dictates caching behavior in nearly every

browser in use, and its syntax is easy to understand.

Using the Cache-Control header’s max-age directive

The easiest way to use Cache-Control is through its max-age directive, which specifies the

life of the cached resource in seconds. A simple example of this in action is illustrated

here:

Cache-Control: max-age=3600

Let’s say that this response header is set on an asset named behaviors.js. When the user

visits a page for the first time, behaviors.js is downloaded because the user doesn’t have

it in the cache. On a repeat visit the requested resource is good for the amount of time

specified in the max-age directive, which is a 3,600 seconds (or, more intuitively, an hour).

A good way to test this header is to set it to a low value, something like 10 seconds or

so. For our client’s website, you can specify a Cache-Control max-age value by modifying

http.js, and editing the line that invokes the express.static call to something like this:

app.use(express.static(__dirname, {

 maxAge: "10s"

}));

The value 10s is shorthand for 10 seconds. When you start/restart the server with this
modification, reload the page at http://localhost:8080. Then, rather than reload the page
again, place your cursor into the address bar and hit Enter, or click the logo at the top

of the page that links to index.html. Look at the request for jquery.min.js in the network

request listing and you’ll see something similar to figure 10.10.

Figure 10.10. A copy of jQuery being retrieved from the local browser cache

When you navigate to a page as opposed to reloading it (such as when you click the reload
icon), the value of the Cache-Control header’s max-age directive influences whether the

browser grabs something from the local cache. If the item is present in the local cache,

a request is never made to the server for that item.

If you reload, or the time specified in the max-age directive elapses, the browser contacts

the server to revalidate the cached asset. When the browser does this, it checks whether

the asset has changed. If it has, a new copy of the asset is downloaded. If not, the server

responds with a 304 Not Modified status without sending the asset. Figure 10.11 illustrates

this process.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig11

Figure 10.11. The effect of the Cache-Control header’s max-age directive and the

browser/server interaction that results in its use

The way the server checks to see whether an asset has changed can vary. A popular method

uses an entity tag, or ETag for short. This is a checksum generated from the contents of
the file. The browser sends this value to the server, which validates it to see whether

the asset has changed. Another method checks the time the file was last modified on the

server, and serves a copy of the asset based on its last modification time. You can modify

this behavior with the Cache-Control header, so let’s cover those options briefly.

Controlling asset revalidation with no-cache, no-store, and stale- e-while-revalidate

The max-age directive is fine for most websites, but at times you’ll need to put limits

on caching behavior or abolish it altogether. For example, you might have applications with

data that needs to be as fresh as possible, such as online banking or stock market sites.

Three Cache-Control directives are at your disposal to help limit caching behavior:

 no-cache—This says to the browser that any asset downloaded can be stored locally, but that the browser

must always revalidate the resource with the server.

 no-store—This directive goes one further than no-cache. no-store indicates that the browser shouldn’t

store the affected asset. This requires the browser to download any affected asset every time you visit a page.

 stale-while-revalidate—Like max-age, stale-while-revalidate accepts a time measured in

seconds. The difference is that when an asset’s max-age has been exceeded and becomes stale, this header

defines a grace period during which the browser is allowed to use the stale resource in the cache. The browser

should then fetch a new copy of the stale asset in the background and place it into the cache for the next visit.

This behavior isn’t guaranteed, but it can boost cache performance in limited scenarios.

Obviously, these directives affect or remove the performance benefits that caching provides,

but at times you need to ensure that assets are never stored or cached. Use these directives

sparingly and with good cause.

Cache-Control and CDNs

You might use a CDN in front of your site. A CDN is a proxy service that sits in front of
your site and optimizes the delivery of your content to your users. Figure 10.12 illustrates

the basic CDN concept.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig12

Figure 10.12. The basic concept of a CDN. A CDN is a proxy that sits in front of your

website and distributes your content to users across the world. The CDN can do this

through a network of geographically distributed servers that host your content. Users

have their content requests fulfilled by servers that are closest to them.

A CDN has the power to distribute your content across the globe. Your site assets and content

can be served from computers that are closer to your users than if you served content solely

from your own host. The shorter distance can result in lower latency for those assets, which

in turn boosts performance.

To accomplish this, the CDN hosts your assets on their network of servers, so your content

is effectively cached by the CDN. You can use two Cache-Control directives in combination

with max-age—public and private—and they can help you control the way that your content

is cached by CDNs.

Using a Cache-Control directive of public in conjunction with max-age can be done like so:

Cache-Control: public, max-age=86400

This instructs any intermediary (such as a CDN) to cache the resource on its server. You

generally shouldn’t need to specify public if you’re using Cache-Control, because it’s

implied.

The private directive is used in the same syntax as public, but instructs any intermediary

to not cache the resource. Using this header treats the resource as if the CDN isn’t in

play at all. This directive passes the asset through to the user. The user’s browser still

caches the resource according to the header’s max-age value, but only with respect to the

origin web server behind the CDN, and not to the CDN itself.

From here, you’ll take all of this knowledge of the Cache-Control header and learn how

to create a caching strategy that makes sense for your website.

10.2.2. Crafting an optimal caching strategy

Now that you have all of this knowledge about the Cache-Control header, how do you apply

it to your website? As with any new piece of information, you’ll apply it to something

practical, such as the Weekly Timber website you downloaded earlier in this chapter. You’ll

begin by categorizing assets, choosing a good max-age policy for each category as well as

relevant directives that make sense. Then, you’ll apply this policy in your web server.

Categorizing assets

When categorizing assets, the best criteria to use is how often an asset is likely to change.

HTML documents are likely to change often, for example, and assets such as CSS, JavaScript,

and images are somewhat less likely to change.

The client’s website has basic caching requirements, which makes it a great introduction

to using Cache-Control. The asset categorization for this website is simple: HTML, CSS,

JavaScript, and images. The fonts are loaded via Google Fonts, so caching is handled by

Google’s servers, leaving you with just the basics to consider. Table 10.1 is a breakdown

of these asset types and the caching policy I’ve selected for them.

Table 10.1. Asset types for the Weekly Timber website, their modification frequencies,

and the Cache-Control header value that should be used

Asset type Frequency of modification Cache-Control header value

HTML Potentially frequently, but needs to be as fresh

as possible

private, no-cache, max-age=3600

CSS and

JavaScript

Potentially monthly public, max-age=2592000,

stale-while-revalidate=86400

Images Almost never public, max-age=31536000,

stale-while-revalidate=86400

The rationale behind these choices is nuanced, but easy to understand when you break it

down by asset:

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10table01

 HTML files or server-side languages that output HTML (for example, PHP or ASP.NET) can benefit from a

conservative caching policy. You never want the browser to assume that the page should be read only from the

browser cache without ever revalidating its freshness.

o no-cache ensures that the resource will always be revalidated, and if it has changed, a new copy will

be downloaded. The revalidation of the asset does lessen the load on the server if the content of the file

hasn’t changed, but no-cache never caches the HTML so aggressively that content is stale.

o A max-age of one hour ensures that no matter what, a new copy of the asset will be fetched after the

max-age period expires.

o Using the private directive tells any CDN in front of the origin web server that this resource shouldn’t

be cached on their server(s) at all, only between the user and origin web server.

 CSS and JavaScript are important resources, but don’t need to be so aggressively revalidated. Therefore, you can

use a max-age of 30 days.

o Because you’d benefit from a CDN distributing this content for you, you should use the public directive

to allow CDNs to cache the asset. If you need to invalidate a cached script or style sheet, you can do so

easily. That process is explained in the next section.

 Images and other media files such as fonts rarely (if ever) change and are often the largest assets you’ll serve.

Therefore, a long max-age time (such as a year) is appropriate.

o As with CSS and JavaScript files, you want CDNs to be able to cache this asset for you. Using the public

directive makes sense here as well.

o Because these assets don’t change often, you want to have a grace period in which a certain amount of

staleness is okay. Therefore, a stale-while-revalidate period of one day is appropriate while the

browser asynchronously validates the freshness of the resource.

The caching strategy that’s best for your website may vary. You may decide that no caching

should ever occur whatsoever with your HTML files, and this isn’t necessarily a bad approach

if your site constantly updates its HTML content. In this case, it may be preferable for

you to use the no-store directive, which is the most aggressive measure that assumes you

never want to cache anything or bother with revalidation.

You may also decide that your CSS and JavaScript should have a long expiration time, as

for images. This is also fine, but unless you invalidate your caches, this could result

in asset staleness when you make updates. You might go the other way and decide that the

browser should revalidate a cached asset’s freshness with the server on every request.

In any case, the next section covers how to properly invalidate your cached assets. For

now, though, you need to implement your caching strategy on your Node web server!

Implementing the caching strategy

Putting your caching strategy into effect on the local web server is simple. You add a request

handler that allows you to set response headers before assets are sent to the client. In

this section, you’ll open http.js and use the mime module to inspect the types of the assets

requested, and set a Cache-Control header based on their type. If you want to skip ahead,

you can do so by entering git checkout -f cache-control in your terminal window. Otherwise,

the following listing shows the changed portions of http.js in bold, with annotations.

Listing 10.4. Setting Cache-Control headers by file type

When you’re finished, start or restart the server. Testing cache policy changes can be

tricky, but here’s a four-step process you can use in Chrome to see how things are working:

1. Open a new tab and open the Network panel. Make sure the Disable Cache check box is

selected so that you get a fresh copy of the page.

2. Navigate to a web page that you want to test (http://localhost:8080, in this case).

3. When the loading has finished, uncheck the Disable Cache box.

4. Don’t reload the page, as this will cause the browser to contact the server to
revalidate assets. Instead, navigate to the page. To do this on a page you’re already on,

click in the address bar and hit Enter.

When you do this, you can then see the effects of your Cache-Control headers at work. Figure

10.13 shows a partial listing of assets in the Network panel.

Figure 10.13. The effects of your cache policy on the Weekly Timber website. The HTML

is revalidated from the server on every request, and the server returns a 304 status if the

document hasn’t changed on the server. Items reading from the browser cache don’t

trigger a return trip to the web server.

This caching strategy is optimal for our purposes. When the cache is primed, only one request

is made to validate the HTML file’s freshness with the server on a return visit. If the

locally cached document is still fresh, the total page weight is less than half a kilobyte.

This makes subsequent visits to this page fast, and the assets shared on all pages are cached

on subsequent pages, decreasing the load time of those pages as well.

Of course, at times you’ll update your website and need to invalidate assets in your browser

cache. In the next section, I explain how to do exactly that.

10.2.3. Invalidating cached assets

You’ve been in a scenario like this: You’ve worked hard on a project for the folks at

Weekly Timber for weeks and finally deployed the site to production, only to find out hours

later that there’s a bug. This bug might be in your CSS or JavaScript, or perhaps a content

problem in an image or your HTML. The bugs have been fixed and deployed to production, but

the site still isn’t updating for your users because their browser cache is preventing

them from seeing your changes.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig13

Although advice such as “reload the page” or “clear your cache” may pacify nervous

marketers and business clients, this isn’t how users normally interact with web pages.

It may not occur to users to reload a page in typical circumstances. You need to find a

way to force the page’s assets to be downloaded again.

Although possibly tedious, this is an easy problem to overcome. If you’re using the caching

strategy outlined in the previous section, your browser will always validate the freshness

of the HTML with the server. As long as this occurs, you have a good shot at getting updated

assets out to users who have outdated ones in their browser cache.

Invalidating CSS and JavaScript assets

Just your luck: The Weekly Timber website has a CSS or JavaScript bug in production that

made it past QA somehow. With the bug identified and the fix deployed, you’re able to verify

that it’s in production because you reloaded the page, but your project manager is insistent

that users aren’t seeing see the updated content. The concern is warranted, and you need

to do something.

The fix here is simple. Remember that with your current caching policy in place, the browser

always validates the HTML document’s freshness with the server. You can make a small change

in the HTML that will not only trigger it to download again, but also trigger the modified

assets to download again. All it requires is adding a query string to a CSS or JavaScript

reference. If you need to force the CSS to update, you can update the <link> tag reference

to the CSS to something like this (change bolded):

<link rel="stylesheet" href="css/styles.min.css?v=2" type="text/css">

Adding a query string to the asset causes the browser to download the asset again because

the URL of the asset has changed. After this change in the HTML is uploaded to the server,

site visitors with the old version of styles.min.css in their cache will now receive the

new version of styles.min.css. This same method can be used to invalidate any asset,

including JavaScript and images.

This can come off as a hacky way of solving the problem. It’s a fine stopgap when you need

to make sure something won’t be cached, but you don’t want to have to be responsible for

versioning your own files, either. A more convenient way around this is to use a server-side

language such as PHP to handle this problem for you automatically whenever you update a

file. The following listing shows one way of handling this problem.

Listing 10.5. Automated cache invalidation in PHP

This solution works well because the file_md5 function generates an MD5 hash based on the

contents of the file. If the file never changes, the hash stays the same. If just one byte

of the file changes, however, the hash changes.

You can accomplish this in other ways, of course. You can use the language’s filemtime

function to check for the file’s last modification time and use that instead. Or you can

write your own versioning system. The point is that this is illustrative of a concept: no

matter what language you’re working with, tools are available that can automate this piece

for you.

Invalidating images and other media files

Sometimes the problem isn’t with your CSS or JavaScript; it’s with media files such as

images. You could use the query string method as explained earlier, but the sensible option

may be to point to a new image file.

If you’re running a small website such as Weekly Timber’s, it doesn’t make much of a

difference whether you use the query string trick or not. But if your site uses a content

management system (CMS), pointing to an entirely new file is the easiest way to avoid caching

issues altogether. Upload a new image, and the CMS will point to it. The new image URL,

never having been previously cached by users before, will be reflected in the HTML and be

immediately visible to your users.

With our adventures in caching coming to a close, you’ll now venture into the territory

of CDN-hosted assets, and how they can help your website’s performance.

10.3. Using CDN assets

The preceding section briefly touched on CDNs and their effect on caching. But we didn’t

dive into how a CDN can help your website’s performance. This section covers CDNs that

host commonly used JavaScript and CSS libraries, and the benefits they can provide. It then

goes on to explain how to fall back to a locally hosted copy of a library if a CDN fails,

as well as how to verify the authenticity of the assets you’re referencing with Subresource

Integrity.

10.3.1. Using CDN-hosted assets

CDNs can provide a performance boost by distributing assets such as JavaScript and CSS files

across the world, and serving them to users based on their proximity. These assets are hosted

on an origin server, and then distributed to servers that are closest to potential end users.

These servers are called edge servers. Figure 10.14 illustrates this concept.

Figure 10.14. In a CDN, assets hosted on an origin server are distributed to edge servers,

which are servers that are located closer to potential website visitors.

Although CDNs are comprehensive services that you can place in front of your server to serve

and cache your content for you, the cost of these services range anywhere from free to

expensive. Moreover, documenting their ever-changing features and offerings would be a

fool’s errand in a printed book such as this. The scope of this section is to cover the

benefits of CDNs that host common libraries that you can link to in order to avoid serving

this content from your own server. These services are offered freely and can improve the

performance of your website with little effort.

Referencing a CDN asset

Using a CDN-hosted asset is as simple as it gets. A good example of a CDN-hosted asset is

jQuery. The developers of jQuery offer a CDN-hosted version of this asset through MaxCDN,

a fast CDN service. The Weekly Timber website uses a local copy of jQuery v2.2.3. Open

index.html in the website’s root folder and locate the line where jQuery is included:

<script src="js/jquery.min.js"></script>

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig14

You can change this <script> tag’s src attribute to point to a CDN-hosted version of the

library provided for free by MaxCDN:

<script src="https://code.jquery.com/jquery-2.2.3.min.js"></script>

Okay, so now what? How is this helping you? I could ramble on for a whole paragraph about

how the CDN transfers the asset faster, and how much lower the latency is than serving this

from the shared host that Weekly Timber is on at http://weeklytimber.com, but I’ll let

the graph in figure 10.15 do the talking instead.

Figure 10.15. A comparison of load times and TTFB for jQuery over several CDNs versus a

low-cost shared hosting environment

Any CDN is more capable than the low-cost shared host that Weekly Timber is hosted on in

both TTFB and total load time. Two caveats on this test: It was done from the Upper Midwest

on a 1 gigabit fiber connection, with the shared host operating on the West Coast. Don’t

accept this as a comprehensive evaluation of CDN speed. Always do your own testing. Even

with these caveats, however, the benefits are clear. You’re likely to realize some benefit
unless you have incredible infrastructure behind your website. Still, even enterprise

applications use CDN-hosted resources because of the speed and convenience they provide.

The benefits aren’t limited to speed. CDNs manage asset caching for you, leaving you with

one less thing to worry about. The CDN will invalidate assets when it needs to, saving you

the hassle of having to update your code. Moreover, if a CDN asset such as jQuery is widely

used, there’s a good chance that if a user visits a site prior to visiting yours that uses

http://weeklytimber.com/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig15

the same asset, it will already be in that user’s cache. This translates into a lower overall

load time for your page. Performance for free!

It isn’t just for jQuery

You’re not using just jQuery, and heck, maybe you’re not even using jQuery at all. Many

CDNs are out there that host a variety of resources for you, not just one popular library.

Here’s a short list of CDNs that host all kinds of goodies for you:

 cdnjs (https://cdnjs.com) is a CDN that hosts almost any popular (or not so popular) library in existence. It

provides a clean interface that enables you to search for any commonly used CSS or JavaScript asset you can

think of, such as widely used MVC/MVVM frameworks, jQuery plugins, or anything else your project depends on.

 jsDelivr (http://jsdelivr.com) is another CDN similar to cdnjs. Try searching here if cdnjs doesn’t provide what

you’re looking for.

 Google CDN (https://developers.google.com/speed/libraries) is much less comprehensive than cdnjs or jsDelivr,

but it does provide popular libraries such as Angular and others. In my testing, this was the fastest CDN.

 ASP.NET CDN (http://www.asp.net/ajax/cdn) is Microsoft’s CDN. It’s less comprehensive than cdnjs or jsDelivr,

but slightly more so than Google. In my testing, this was the slowest option, but was still three to four times

faster than my shared hosting, making it a viable option.

A piece of advice if you’re going to go whole hog referencing CDNs for all of your common

libraries: use as few distinct CDNs as possible. Every new CDN host you point to will incur

another DNS lookup, which can increase latency. If all of your assets can be found on one

CDN, use that one. Don’t point to three or four hosts if one will do the job.

Another piece of advice: If you’re using a library such as Modernizr or Bootstrap that

can be configured to deliver a specific part of that library’s functionality, configure

your own build instead of pointing to the entire library on the CDN. Sometimes it’s faster

to configure a smaller build and host it on your own server than it is to reference the

full build from a CDN. Figure out your needs, and do your homework on which method performs

better.

Next, we’ll dive into what happens when a CDN fails, and how to work around this unlikely

(but possible) event.

10.3.2. What to do if a CDN fails

Perhaps the largest criticism I see against CDNs is, “What happens if the CDN fails?”

Although the smug among us are quick to dismiss this scenario as unlikely (and I’ve been

guilty of this in the past myself), the truth is that it does happen. Like any service,

CDNs can’t practically guarantee 100% uptime. They’re available the vast majority of the

time, but service interruptions can and do happen.

https://cdnjs.com/
http://jsdelivr.com/
https://developers.google.com/speed/libraries
http://www.asp.net/ajax/cdn

More likely than service interruptions, however, are networks that are configured to block

particular hosts. These networks can be security-conscious corporations, public facilities,

military organizations, or even governments that block entire domains as part of internet

censorship efforts. Having a backup plan to address these situations makes sense.

You can fall back to a local copy of an asset by using a simple JavaScript function. The

following listing shows a fallback loader function that you can place in index.html of the

Weekly Timber site in order to provide a fallback copy when a CDN-hosted library fails to

load.

Listing 10.6. A reusable fallback script loader

To test this, you can disable your network connection so that the page can’t access the

CDN asset, or change the URL to something bogus. When you do this, reload the page and check

your network panel and you’ll see the locally hosted asset being loaded as the fallback,

as shown in figure 10.16.

Figure 10.16. The Network panel in Chrome showing the CDN asset failing to load and

the page falling back to the locally hosted version

This works because of the nature of the <script> tag. Multiple <script> tags parse and

execute in the order they’re defined in the markup, each waiting for the one before it

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig16

to finish. The <script> tag that attempts to load the fallback won’t run until the one

before it that references the CDN version of jQuery fails to load.

Of course, this isn’t limited to jQuery. To conditionally load fallbacks, test for the

JavaScript library’s global object. For example, if you need to fall back to a locally

hosted version of Modernizr, you can use the fallback function like so:

fallback(window.Modernizr, "js/modernizr.min.js");

Next, I’ll cover how to verify the integrity of CDN assets via Subresource Integrity, so

you know that the assets you request are what you expect them to be.

10.3.3. Verifying CDN assets with Subresource Integrity

When you’ve downloaded software from the web, you’ve likely seen a checksum string near

the download link. Checksums are a sort of signature that helps you ensure that the file
you’ve downloaded is what the publisher of the program has intended for you to run. This

is done for your own safety so you don’t unwittingly run malicious code. If the checksum

of the file doesn’t match what the publisher has given you, the file isn’t safe to use.

This same kind of integrity check can now be done in HTML in some browsers to make sure

that an asset included via a <script> or <link> element from a CDN is what the publisher

has intended for you to use. This process, called Subresource Integrity, is illustrated
in figure 10.17.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig17

Figure 10.17. The process of verifying assets by using Subresource Integrity. A user

requests an asset from a CDN, and the asset’s safety is determined via a checksum

verification process. If the asset is safe, it’s used. If not, the asset is discarded.

Although this feature doesn’t impact the performance of your website, it does provide a

safeguard against tampered assets for your users, and bears mentioning in the context of

using CDN assets.

Using Subresource Integrity

The syntax for Subresource Integrity uses two attributes on either a <script> or <link>

tag referencing a resource on another domain. The integrity attribute specifies two things:

the hash algorithm used to generate the expected checksum (for example, MD5 or SHA-256),

and the checksum value itself. Figure 10.18 shows the format of this attribute value.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig18

Figure 10.18. The format of the integrity attribute. This value starts off with the hashing

algorithm (SHA-256, in this case) and is followed by the checksum value for the

referenced resource.

The second attribute is crossorigin, which always has a value of anonymous for CDN assets

to indicate that the resource doesn’t require any user credentials in order to be accessed.

When combined and used on a <script> tag for version 2.2.3 of jquery.min.js, it looks

something like this:

<script src="https://code.jquery.com/jquery-2.2.3.min.js"

 integrity="sha256-a23g1Nt4dtEYOj7bR+vTu7+T8VP13humZFBJNIYoEJo="

 crossorgin="anonymous">

</script>

In compliant browsers, everything will work when the checksum of the CDN asset matches what

the browser expects. If the checksum match fails, you’ll see an error message in your

console that alerts you that the affected asset fails the integrity check. When this happens,

the asset won’t be loaded. If you specify a fallback mechanism shown in the previous section,

however, you’ll be covered and a local copy can be loaded.

This verification method isn’t supported in all browsers, but those that do support it,
such as Firefox, Chrome, and Opera, are widely used. Browsers that don’t support

Subresource Integrity will ignore the integrity and crossorigin attributes and load the

referenced assets.

Generating your own checksums

Some CDNs provide code snippets that have Subresource Integrity already set up for you,

but this isn’t a standard practice yet. You might have to generate your own checksums.

The easiest way to do this is to use the checksum generator at https://srihash.org, but

if you prefer to generate your own checksums, you can rely on the openssl command-line

utility. To generate a SHA-256 checksum for a file, use this syntax at the command line:

openssl dgst -sha256 -binary yourfile.js | openssl base64 -A

This generates a checksum for the file you provide and outputs it to the screen. If you’re

running Windows, you can download an OpenSSL binary for Windows or use the certutil command.

Your best bet in both instances is to use the online tool, as it’s more convenient and

generates the same output. If you do decide to generate your own checksums, use a reliable

hash algorithm such as SHA-256 or SHA-384. Algorithms such as MD5 or SHA-1 aren’t secure

enough for today’s needs. If you have any doubts about what you’re doing, allow the online

tool at https://srihash.org to do the work for you. It’s less of a hassle anyway, right?

In the final section of this chapter, you’ll learn how to fine-tune the delivery of

resources on your website with resource hints, which can be used in HTML or in HTTP headers.

10.4. Using resource hints

As HTML has matured, features have been added to the language that assist in the delivery

of assets to the user. These features are called resource hints, which are a collection
of behaviors driven by the HTML <link> tag or the Link HTTP response header that perform

tasks such as DNS prefetching and preconnecting to other hosts, prefetching and preloading

resources, and prerendering pages. This section covers all of these techniques and the

pitfalls that can be associated with their use.

10.4.1. Using the preconnect resource hint

As I said in chapter 1, one component of poor application performance can be due to latency.

One way to limit the effects of latency is through the preconnect resource hint, which

connects to a domain that hosts an asset that the browser hasn’t started downloading.

This doesn’t provide a benefit when used to point to the host that the current page is

being accessed from. Doing this doesn’t improve performance, because the DNS lookup to

the requested document would’ve already occurred by the time the document loads and

discovers the preconnect resource hint.

preconnect works best when you’re referencing assets on different domains (such as CDNs).

Because HTML documents are read from top to bottom by browsers, a connection is established

to an asset’s domain when the reference to the asset is discovered by the browser. If this

asset reference is in a <script> tag, say, in the footer, placing a preconnect resource

hint in the header can give the browser a head start on connecting to the domain that hosts

the resource.

The Weekly Timber website has a reference to the jQuery library hosted on code.jquery.com.

You can use the <link> tag to establish an early connection to the domain the resource is

hosted on:

<link rel="preconnect" href="https://code.jquery.com">

https://srihash.org/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01

Alternately, you can configure the web server to send a Link response header along with

an HTML document:

Link: <https://code.jquery.com>; rel=preconnect

Both methods accomplish the same task, but the level of effort varies. Using a <link> tag

in HTML involves little effort. Adding a Link response header is more involved, but the

resource hint will be discovered sooner than if it were in the document. I tested both methods

in index.html to instruct the browser to establish a connection to code.jquery.com as soon

as possible. Figure 10.19 shows the impact of this test on loading jQuery from the CDN.

Figure 10.19. The effects of the preconnect resource hint when loading jQuery from a CDN

on both HTTP and HTTPS

This technique has the potential to improve your website’s performance, but as always,

perform your own testing to determine the benefit to your specific situation. Although well

supported in Firefox and Chromium browsers (Chrome, Opera, and Android browsers),

preconnect isn’t supported everywhere, so not all of your users will realize its benefits.

The dns-prefetch resource hint

A less effective but more widely supported resource hint is dns-prefetch. It’s used in

the same way, except instead of using the preconnect keyword in your rel attribute or Link

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig19

header, you replace it with dns-prefetch. This resource hint doesn’t perform a full

connection to the specified domain, but rather a DNS lookup to resolve the domain’s IP

address. I didn’t realize any benefits when using this header in my own testing, but it

could provide some benefits in situations where latency is a serious problem.

Next, we’ll discuss the performance enhancements of the prefetch and preload resource hints,

and how to use them to more quickly load assets on your website.

10.4.2. Using the prefetch and preload resource hints

Two resource hints exist for downloading specific assets: prefetch and preload. Both are

similar in what they do but have distinct differences. We’ll start by covering prefetch.

Using the prefetch resource hint

In capable browsers, prefetch tells the browser to download a specific asset and store it

in the browser cache. This resource hint can be used to prefetch resources on the same page

as the request, or you can make an intelligent guess as to what pages the user may visit

next and request assets from that page. Be especially careful with the second approach,

as it could force the user to unnecessarily download an asset. The syntax for prefetch is

just like that of preconnect; the only difference is the value in the rel attribute of the

<link> tag:

<link rel="prefetch" href="https://code.jquery.com/jquery-2.2.3.min.js">

It can also be specified in an HTTP header much the same way as preconnect:

Link: <https://code.jquery.com/jquery-2.2.3.min.js>; rel=prefetch

For example, you can improve the load time of the Weekly Timber home page by including this

resource hint in index.html for jQuery as shown previously. When you do this, you can cut

the load time of the page by nearly 20%, as shown in figure 10.20.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig20

Figure 10.20. Page load times for the Weekly Timber home page when prefetching

jQuery versus no prefetching using Chrome’s Regular 4G network throttling profile

As you can see, there’s a noticeable benefit in using prefetch in this scenario. Because

the <script> element that includes jQuery is at the bottom of the page, it’s not discovered

and downloaded until the page is nearly done parsing the HTML. By adding a prefetch hint

in the HTML’s <head>, the browser gets a head start on downloading the file. By the time

the reference to jQuery is found, the prefetch hint has already grabbed it and stored it

in the browser cache, reducing the load time of the site.

prefetch testing tip

Testing prefetch can be tricky. If you use Chrome and have the Disable Cache check box

selected in the Network panel, it can appear that prefetch results in a performance penalty

because a prefetched asset will download twice. To see and measure the benefit, you need

to clear your cache, re-enable caching, and monitor performance with an unprimed cache.

There are limitations to prefetch, and the browser makes no guarantee that it’ll prefetch

the resource as specified. Each browser has its own rules about prefetch, so be aware that

the browser may not always honor the resource hint. This feature is well supported, but

like any unsupported HTML feature, browsers that don’t understand it will ignore it. This

ensures normal behavior for noncompliant browsers.

Using the preload resource hint

The preload resource hint is much like prefetch, except that it guarantees that the specified

resource will be downloaded. It’s like prefetch, but without the ambiguity. Unlike prefetch,

though, preload enjoys less browser support, with only Chromium-based browsers supporting

the feature at the time of this writing.

Predictably, preload is used in the same fashion as prior resource hints:

<link rel="preload" href="https://code.jquery.com/jquery-2.2.3.min.js" as="script">

It’s also used in a similar fashion when in an HTTP header:

Link: <https://code.jquery.com/jquery-2.2.3.min.js>; rel=preload; as=script

The major difference here with preload is that you can use the as attribute to describe

the type of content being requested. Values of script, style, font, and image can be used

for JavaScript, CSS, fonts, and images, respectively. This attribute is entirely optional,

and causes no ill effects when omitted.

A quick side note: an HTTP/2 feature called Server Push uses the same HTTP header syntax
to preemptively “push” a resource to the user along with the HTML document response. This

functionality and its performance benefits are covered in depth in chapter 11.

In the preceding example, you use preload to grab the CDN copy of jQuery much as you did

in the preceding section with prefetch. The performance advantages are largely the same

as they are with prefetch, except that you can count on compliant browsers to honor your

request with preload. Figure 10.21 shows the preload hint at work in Chrome’s Network panel.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig21

Figure 10.21. The Network panel showing jquery-2.2.3.min.js loaded with the preload

resource hint. The first line for the jQuery library is from the preload hint, whereas the

second occurs when the item is retrieved from the cache. Note the size of 0 bytes on the

second entry for jquery-2.2.3.min.js.

As with any resource hint, you should always test the performance of your page before and

after its addition. If you need the broadest possible browser support and have to choose

between preload and prefetch, choose prefetch. If browser support isn’t as important, and

you want your request to preemptively load content to be honored no matter what, choose

preload.

To wrap up this section, you’ll investigate the prerender resource hint, and how it can

be used to render an entire page before the user even navigates to it.

10.4.3. Using the prerender resource hint

The last resource hint we’ll cover here is prerender, and it’s the most powerful of all.

Rather than point to a specific asset such as a JavaScript file, style sheet, or image,

the target of the prerender hint must be a URL to a web page. When used, this hint suggests

that the browser download and render the entire document specified. If the user clicks
through to the prerendered document, the page will appear instantaneously. This can occur

when the browser discovers the resource hint in either an HTML <link> tag or in a Link HTTP

header.

Clearly, you need to be conservative in using this feature. If you’re not sure whether

you should use prerender, I have one piece of advice for you: don’t. An improperly used

prerender hint has high potential to saddle the user with the unnecessary downloading of

data. For mobile users on restricted data plans, this is tantamount to abuse.

But in some limited instances, using prerender makes sense. For example, let’s say your

organization is sponsoring a promotion, and you know that a vast majority of your visitors

are going to click through to a specific page to sign up. Or perhaps you have multipage

content such as articles that you want to load in advance for the user. Intranet applications

are possibly the best use of this feature, because bandwidth used on a local network isn’t

as consequential to users as bandwidth used on the internet at large.

These situations aren’t always candidates for prerender, however. Do your homework. Look

at your analytics and see how your users are behaving, and accept that any use of prerender
on a sufficiently large audience will result in wasted bandwidth for some portion of your

users.

Using prerender is just like using any other resource hint. The following is an example

of this hint used on index.html of the Weekly Timber website to prerender the contact-us.html

document:

<link rel="prerender" href="http://localhost:8080/contact-us.html">

This can also be specified by using the Link HTTP header:

Link: <http://localhost:8080/contact-us.html>; rel=prerender

If you employ this technique, remember that because a prerender hint can kick off an

expensive operation, any browser that supports it reserves the right to ignore it. When

used judiciously, prerender can provide the feeling that a navigation event is occurring

instantaneously, so it’s worth your consideration in some limited applications.

With your journey through the world of resource hints complete, you’re ready to wrap up

this chapter with a review of what you’ve learned.

10.5. Summary

Unlike previous chapters, this chapter zigged and zagged through several seemingly

unrelated concepts, but they’re all focused on the same goal: helping you to fine-tune

the delivery of assets for your website. Let’s review what we’ve covered:

 Poorly configured compression can increase latency for users when you either apply too much compression or

compress file types that are already internally compressed.

 Brotli compression is a new algorithm that can provide some benefits over gzip but can also increase latency at

its highest settings. The future of this compression algorithm looks promising, and currently enjoys decent

browser support.

 Configuring caching behaviors for your website through use of the Cache-Control header can improve

performance for return visitors to your website.

 Cache-Control settings can make for stubborn caches. You learned how to invalidate cached assets when you

update your website with new content.

 By using assets hosted on CDNs, you can improve overall load times for your website. Sometimes these services

fail, however, so it’s good form to provide fallbacks to local copies so that your users aren’t left in a lurch when

the unthinkable happens.

 Using CDN-hosted assets means that you’re relinquishing some control of the content you’re loading in exchange

for better performance, but you don’t have to sacrifice your users’ safety if you verify the integrity of these

assets with Subresource Integrity.

 Resource hints can be used to speed up the loading of web pages, fine-tune the delivery of specific page assets,

and prerender pages that the user hasn’t even visited yet.

In the next chapter, you’ll explore new frontiers by investigating the new HTTP/2 protocol.

You’ll learn how it can bring further performance improvements to your websites and the

effect this protocol will have on your optimization techniques.

Chapter 11. Looking to the future with HTTP/2

This chapter covers

 Learning the history of HTTP/1 and its problems

 Exploring the evolution of HTTP/2

 Understanding request multiplexing and header compression, new in HTTP/2

 Exploring how optimization practices differ between HTTP/1 and HTTP/2

 Speeding the delivery of crucial page assets by using Server Push

 Optimizing for HTTP/1 and HTTP/2 clients on the same server

The web is changing. For years, users and developers have been vexed by the limitations

of the HTTP/1 protocol. Although developers have been squeezing every last drop of

performance from this aging protocol, we must accept that it’s time to move on and adopt

HTTP/2.

This chapter covers the problems inherent in HTTP/1 as well as the benefits of HTTP/2, such

as request multiplexing and header compression. We also cover how these benefits solve the

problems that exist in HTTP/1 client/server interactions. In the course of all of this,

you’ll write a small HTTP/2 server in Node and see these benefits in action.

HTTP/2 offers more than cheaper requests and compressed headers. It also offers an optional

feature called Server Push, which can be used to send specific assets to visitors without

them having to ask. When used intelligently, Server Push speeds up the loading and rendering

of your website. You’ll learn how this feature works and how to use it.

HTTP/2 also has an impact on how you optimize your website, so this chapter covers how to
change your optimization practices to be better performing on HTTP/2 connections. Because

many of your visitors may still be working with browsers that use HTTP/1, I’ll show a proof

of concept of how you can serve content optimally for both HTTP/1 and HTTP/2 users from

the same web server. Let’s get started!

11.1. Understanding why we need HTTP/2

The need for HTTP/2 is due to the shortcomings of HTTP/1, which is now a legacy protocol

that’s ill-equipped to handle the demands of modern websites. To know why we need a new

protocol, we need to understand the problems inherent in HTTP/1. In this section, you’ll

explore those problems and how HTTP/2 solves them. Then you’ll go on to write an HTTP/2

server in Node.

11.1.1. Understanding the problem with HTTP/1

HTTP originated in 1991 with the invention of HTTP/0.9. This protocol, which was capable

of using only a single method (GET), was originally designed for a much simpler “web”

of electronic documents. These documents, written in HTML, were imbued with the ability

to link to other documents via anchor tags. The HTTP 0.9 protocol achieved this goal

admirably.

As time marched on, two new implementations of HTTP with additional capabilities and methods

(such as POST for submitting form data) were added. These versions were v1.0 and v1.1, which

were standardized in 1996, with support added in most browsers shortly thereafter.

HTTP/1 thus became the workhorse of the web for many years since. What occurred next, however,

was that the web transformed from serving simple HTML documents to complex sites and

applications, a phenomenon illustrated in figure 11.1.

Figure 11.1. The 1996 (left) and 2016 (right) incarnation of the Los Angeles Times

The increasing complexity of the web means that richer experiences are possible through

higher-quality media and content. The problem, however, is that an ongoing race between

this complexity of content and the ability to serve it in a high-performing way has been

raging since the first web developer dared to believe that the web was for more than serving

static text documents. Although developers have come up with ingenious ways around common

performance problems in HTTP/1, three significant problems still plague the protocol:

head-of-line blocking, uncompressed headers, and nonsecure websites.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig01

Head-of-line blocking

The biggest problem plaguing HTTP/1 client/server interactions is a phenomenon known as

head-of-line blocking. This manifests from the HTTP/1 protocol’s inability to handle more

than a small batch of requests at the same time (typically, six at once). Requests are

responded to in the order that they’re received, and new requests for content can’t begin

downloading until all requests in the initial batch have finished. Figure 11.2 illustrates

this problem.

Figure 11.2. The head-of-line blocking problem as shown in a batch of nine requests. The

first batch of six requests is fulfilled in parallel, but the remaining batch can’t start

downloading until the largest file (masthead.jpg) in the first batch finishes downloading.

This problem can cause delays in load times.

One way to ameliorate this problem on the front end is to bundle files. Reducing requests

minimizes the negative effects of the head-of-line blocking problem, but it’s a rather

hacky sort of antipattern in that when one piece of the bundled content changes, the entire

bundled asset must be downloaded again rather than only the relevant portion of it that

has changed.

Another rather hacky way around this request limit is to use a technique called domain
sharding. This technique gets around the maximum simultaneous request limit of six per
domain by spreading requests across domains. With two domains serving content, twelve

requests can be fulfilled at once. With three, up to eighteen requests could be accommodated

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig02

simultaneously. Although this technique is effective, it requires a significant investment
of resources, both temporal and financial, to implement. It’s not an option for every

organization.

Some success has been achieved in mitigating this problem on the server side. For example,

persistent HTTP connections (keep-alive connections) lighten the load by reusing a single

connection to fulfill multiple batches of requests. This method falls short, however, in

that it doesn’t solve the head-of-line blocking problem. A technique called HTTP pipelining
was designed to address this problem by serving all requests in parallel rather than in

batches, but its implementation was met with significant challenges that prevented it from

being successful.

Uncompressed headers

As you know by now, when you request assets from a web server, headers accompany the request

to and response from the web server. These headers describe many aspects of the request

and response for an asset, most of which are expressed in redundant fashion.

A perfect example of this is the Cookie request header. Cookies are often used to track

user sessions, and as such, contain session IDs. Imagine a web page that comprises around

60 assets, each carrying a cookie with a session ID of 128 bytes in length. Every single

request must upload an additional 128 bytes of data to the server indicating the domain

for which the cookie is valid. This isn’t much when spread across a few requests, but imagine

a page with 60 requests with this cookie attached. The client must send 7.5 KB of extra

data to the server across all of those requests. Figure 11.3 illustrates this concept.

Figure 11.3. A session ID cookie of 128 bytes distributed across 60 requests, adding up to

a total of 7.5 KB of extra data sent to the web server

This doesn’t occur with just request headers. It also occurs with response headers, so

the data that these headers can pile up occurs on both the trip to and from the web server.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig03

“Doesn’t server compression fix this?” is a question you may have as a result of reading

earlier chapters. The answer is an emphatic no. Server compression compresses only the body
of the response, not its response headers. Although the body of a response is undoubtedly
the largest part of the payload, the uncompressed data present in response headers is

certainly an aspect worthy of consideration. HTTP/1 fails to address this problem—yet

another ill that plagues web developers who care about making websites faster.

Nonsecure web sites

Although not necessarily a performance issue per se, HTTP/1 servers aren’t required to

implement SSL for their visitors. In an increasingly dangerous world in which data is

regularly stolen and used by hackers to impersonate people, securing your website is

necessary to ensure privacy and a safer web-browsing experience for your visitors.

Because HTTP/1 doesn’t mandate implementation of SSL, it’s entirely optional to implement.

If security measures are optional, people likely won’t implement them. People are reluctant

to change, and will usually do so only when forced to, or when an adverse event occurs.

Although this failure couldn’t be foreseen when HTTP was first developed, this requirement

can’t be retroactively applied to force site owners to secure their websites. The cat is

already out of the bag, so to speak.

These aren’t the only problems that HTTP/1 causes, but they’re major issues worthy of

concern. Fortunately, solutions to these problems are inherent to HTTP/2 because of the

way the protocol was designed.

11.1.2. Solving common HTTP/1 problems via HTTP/2

HTTP/2 didn’t appear out of thin air. It was preceded in 2012 by a protocol named SPDY
(pronounced speedy), which was developed by Google to address the limitations of HTTP/1.
When the first draft of the HTTP/2 specification was written, its writers capitalized on

the advances of SPDY and used it as a starting point. Now that HTTP/2 support has grown

considerably, Google has removed SPDY support from Chrome 51 and later, and other browsers

will follow suit. Let’s see how HTTP/2 fixes the two problems outlined earlier in HTTP/1.

No more head-of-line blocking

Unlike HTTP/1, which has a limit on the number of requests it can satisfy before it can

begin responding to other requests in the queue, HTTP/2 can satisfy many more requests in

parallel by implementing a new communication architecture. Unlike HTTP/1, which uses

multiple connections to transfer assets, HTTP/2 uses one connection capable of handling

many, many more requests in parallel. A connection consists of these components in the

following hierarchy:

 Streams are bidirectional communication channels between the server and the browser. A single stream

consists of a request to and a response from the server. Because streams are encapsulated by the connection,

many assets can be downloaded in parallel within the same connection by using multiple streams.

 Messages are encapsulated by streams. A single message is the rough equivalent of an HTTP/1 request to or

response from the server, providing the mechanism needed to request assets, and to receive the content of

those assets from a web server.

 Frames are encapsulated by messages. A frame is a delimiter in a message that indicates the type of data that

follows. For example, a HEADERS frame in a response message indicates that the following data represents the

HTTP headers for the response. A DATA frame in a response message indicates that the following data is the

content of the requested asset. Other frame types exist, such as the PUSH_PROMISE frame that’s used for

Server Push, which is covered later in this chapter.

When you visualize this process, you get something like figure 11.4.

Figure 11.4. The anatomy of an HTTP/2 request. One connection houses multiple

bidirectional streams, which in turn contain multiple messages that request and receive

assets. These messages are delimited by frames, which in turn describe the content of

messages (headers, response bodies, and so forth).

Because of this design, requests to HTTP/2 servers are cheap. Cheap enough, in fact, that

bundling isn’t worth the effort and could even lead to slower load times in some scenarios.

The next main section covers the specifics, but the bottom line is that you no longer have

to resort to antipatterns such as image spriting and bundling (though those techniques are

useful in HTTP/1 clients and servers, many of which are still in the wild).

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig04

Header compression

Headers in HTTP/1 are uncompressed, even when server compression is used, as I said in the

preceding section. Server compression transforms only the asset, and not the headers that

accompany it. Although headers don’t make up the bulk of a page’s total payload, they

can add up quickly.

HTTP/2 fixes this problem by incorporating a compression algorithm called HPACK. HPACK not
only compresses header data, but also strips redundant headers by creating a table to store

duplicates. In HTTP/1 request headers, you’ll notice that headers with longer content,

such as Cookie and User-Agent, are unnecessarily attached to every single request, creating

a potentially huge set of redundant data that must be transferred along with the request

to the server (as illustrated in figure 11.3).

HPACK deduplicates headers via a table that uses indexes to keep track of duplicate header

data found across requests. This is structured like a typical database table with indexes.

When new header values are discovered, they’re compressed, stored in the table, and given

a unique identifier. If additional headers are discovered that match any previously indexed

headers, the relevant identifier in the table’s index is referenced rather than redundantly

stored. Figure 11.5 shows this behavior.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig05

Figure 11.5. HPACK header compression in action. Headers are stored in an indexed table.

Identical headers discovered in later requests for the same page are tied to an index in

the table to avoid duplication of that data, whereas headers with new data are stored as

new entries in the table.

This process is done on the client side when requests are made, and the table is transferred

to and disassembled by the server and used to build the response. The server then repeats

this process for the response headers, replies, and the client disassembles the

server-generated response table, and applies the headers to the responses for each

downloaded asset. The result is deduplicated headers and compressed data that’s presented

in the same way HTTP/1 headers are, making the process transparent. Your website loads a

little faster for the trouble.

HTTPS is guaranteed

Although not necessarily specific to performance, browsers that support HTTP/2 are doing

so with the de facto mandate that any communication over HTTP/2 must be secure. This has

been a somewhat controversial requirement, but the mandate isn’t without benefits. As more

servers adopt HTTP/2 and implement SSL, the internet as a whole will become increasingly

secure.

SSL performance overhead

A common complaint of SSL is that it has a measurable performance impact on TTFB due to

the time it takes to set up an SSL connection between the server and client. Because HTTP/2

carries all data over one connection rather than several, this process needs to occur only

once, rather than multiple times as in HTTP/1. Modern hardware has also made this process

rather trivial. The result? You can stop worrying about SSL performance and worry instead

about providing a secure browsing experience to your users. For more information, check

out https://istlsfastyet.com.

The cost of SSL certificates couldn’t be any cheaper. Certificate providers are offering

reliable signed certificates for as little as $5 a year for one domain. If that price is

still too steep for you, you can get free certificates through Let’s Encrypt

(https://letsencrypt.org). I’ve found that the process is a bit more involved than setting

up purchased certificates (depending on the hosting environment).

The point is this: You no longer have an excuse to deny your users a secure browsing

experience, nor do you have a choice if you want to use HTTP/2. Get on board and encrypt!

Next, you’ll get your feet wet with HTTP/2 by writing your own HTTP/2 server in Node.

11.1.3. Writing a simple HTTP/2 server in Node

Your client contact from Weekly Timber has asked whether you can do anything further to

make the site faster than it is now. You know you can’t make any promises, but you have

a pretty good hunch that HTTP/2 might be an option.

Of course, downloading and installing an HTTP/2 server such as Apache or Nginx locally is

a bit of a pain, and your current hosting provider doesn’t offer the service. So how can

you test the Weekly Timber site on an HTTP/2 server if one isn’t readily available? Easy.

You can use the spdy package from npm to write a simple HTTP/2 server in Node!

“Wait, SPDY?” I know, but don’t worry! The name of the package is somewhat of a misnomer.

Although SPDY is one of the protocols this package supports, it also supports HTTP/2, which
is what you need for these purposes. To get started, you need to download some code with

git, as you’ve done many times before in this book:

git clone https://github.com/webopt/ch11-http2.git

cd ch11-http2

npm install

This downloads all the source code and installs the Node packages you need for the HTTP/2

server you’re going to write, including the spdy package. Once everything is good to go,

https://istlsfastyet.com/
https://letsencrypt.org/

open your text editor, and create a new file named http2.js in the root folder of the website.

In this file, enter what you see here.

Listing 11.1. Importing modules needed for the HTTP/2 server

Here you import the Node modules you need in order to write the server behavior. You also

establish the root directory from which you’ll be serving files. Unlike past examples,

you’ll serve the files out of a separate nested folder called htdocs, which contains the

Weekly Timber website. With your modules imported, you need to set up the SSL certificates,

because HTTP/2 requires SSL. The code you downloaded already comes with the certificate

files you need in the crt folder. This listing shows you how to configure the server to

point to these files.

Listing 11.2. Setting up SSL certificates on the server

The JavaScript written here sends the locations of the certificate files to the HTTP/2 server,

which enables it to securely communicate with the browser. The next listing provides the

bulk of the work that the server will do.

Listing 11.3. Writing the HTTP/2 server behavior

After you enter this code into your text editor, run the script in your terminal with the

following command:

node http2.js

When this script runs, you can head to https://localhost:8443/index.html in your browser

and see that the client’s website loads for you.

Making an exception

The certificate that’s provided with the source code you downloaded from GitHub is unsigned.

Therefore, when you go to view the client’s website on your local server, you’ll be

prompted with an SSL warning in your browser. Make an exception or ignore the warning, and

you’ll be able to proceed just fine. Just remember that you should always use a valid signed
certificate on a production web server!

So that’s all fine and dandy, but how can you tell whether the protocol is HTTP/2? Easy!

Open your Network tab in Chrome’s Developer Tools and right-click the column headers to

ensure that the Protocol column is selected. You’ll then see something like figure 11.6.

Figure 11.6. The Network panel in Chrome’s Developer Tools indicating assets transferred

over HTTP/2. Assets transferred over HTTP/1 will have the value http/1.1 in this field.

11.1.4. Observing the benefits

The benefits at first may not seem so obvious on a site such as Weekly Timber. Discerning

what the benefits are, even on your local machine where you’re not experiencing any network

bottlenecks, can be difficult. One thing you can see is that requests now execute in parallel,
as opposed to serialized batches, as shown in figure 11.7.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig07

Figure 11.7. The effect on asset downloads on HTTP/1 (left) versus HTTP/2 (right):

downloads in HTTP/2 are parallelized more than in HTTP/1, meaning that they begin

roughly at the same time.

You can observe this phenomenon yourself by running the http1.js script in the root folder

of the website, navigating to https://localhost:8080/index.html, and comparing its

behavior in the Network tab to the HTTP/2 server you’ve just written. One thing you might

notice is that if you use a throttling profile to compare the performance of the two protocols

on your local machine, the load time of the client’s website is about the same for each.

This occurs because although creating an artificial bottleneck is good for testing some

scenarios, it’s not a good tool for comparing the performance of one protocol over another.

Both of these servers run on your local machine rather than on a remote server somewhere,

and are serving no other traffic than the requests you’re making to them. The best way

to get an idea of the performance of HTTP/2 versus HTTP/1 is to run two servers on a remote

host somewhere: one running HTTP/2 and the other running HTTP/1. From there, you can observe

the differences.

That’s an unreasonable thing to ask, so I’ve done the hard work for you. I set up two

versions of the client’s website: one running on HTTP/1 at https://h1.jeremywagner.me and

another running on HTTP/2 at https://h2.jeremywagner.me. Feel free to visit those URLs and

do your own testing to see how they perform in the wild as opposed to in the comparatively

clinical setting of your local machine. Figure 11.8 shows my testing on each protocol across

all five pages of the client’s website.

https://h1.jeremywagner.me/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig08

Figure 11.8. Comparing page-load times on the Weekly Timber website on HTTP/1 versus

HTTP/2

I saw a 24% improvement in total load time on pages with many assets, such as in the

our-work.html and our-process.html pages. On typical pages such as index.html and

contact-us.html, I saw improvements of 15% and 7%, respectively. The one page that didn’t

improve in performance was locations.html, which had few assets in comparison to other

pages.

The gains from header compression are harder to quantify. But if you open

chrome://net-internals#timeline in Chrome, you can see the effect of header compression

on request size. Uncheck every option on the left except for Bytes Sent, load the page for

each protocol, and you’ll see a comparison of request sizes. Figure 11.9 shows this tool

at work.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig09

Figure 11.9. A comparison of the bytes sent during an HTTP/2 session versus that of an

HTTP/1 session

As you can see in figure 11.9, fewer bytes are sent to the server when you use HTTP/2, due

to header compression. Although the tool in the net internals panel doesn’t reveal the

exact size, you can see that the improvement is about 50%. This smaller request payload

means that the user will spend less time waiting for that first byte of content to arrive.

All of these benefits are realized by switching to HTTP/2. They don’t require any special

optimization techniques or changes in your code. They’re simply a benefit of implementing

the protocol.

Next, you’ll learn how optimization techniques that you currently know change when running

your site over HTTP/2, and why your approach needs to be different.

11.2. Exploring how optimization techniques change for HTTP/2

“Oh great,” you’re thinking. “I got this book on web performance, and everything I

learned in it is wrong.” Not necessarily. Although some techniques covered in this book

are antipatterns when applied to HTTP/2 client/server interactions, they don’t necessarily

impede the protocol’s performance—but they can affect the effectiveness of your caching

policy. The rules of optimization techniques on HTTP/2 are this simple:

 Techniques that reduce the size of assets are things you should still do on HTTP/2. These are techniques such as

minification, server compression, and image optimization. Reducing the size of an asset contributes to lower load

times, always and forever.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig09

 Techniques that combine files are things you should stop doing on HTTP/2. Although useful in alleviating latency

in HTTP/1 client/server interactions, requests are much cheaper in HTTP/2, and combining files can have an

adverse effect on your caching effectiveness.

The first rule speaks for itself, but we need to talk a bit more about the second rule,

how caching is affected by concatenating resources, and what antipatterns fit under

concatenating.

11.2.1. Asset granularity and caching effectiveness

When you set out to squeeze every last drop of performance out of HTTP/1, you adopted many

techniques that, albeit effective, are hacky in HTTP/2 environments. The main category of

techniques that hurt HTTP/2 performance are those that rely on concatenation. Concatenation
is the process of combining files in order to reduce the number of HTTP requests that are

sent. As I said before, this is great for HTTP/1, but it could harm performance on HTTP/2.

Why is this, exactly? The answer is in caching. As you learned in chapter 10, caching helps
reduce the payload of a page on visits subsequent to the first. The problem isn’t in caching

itself, however, because a properly configured caching policy will operate whether or not

we concatenate files. The problem is that when you concatenate files, you’re reducing the

efficiency of your caching when assets change. This is true of both protocols, but when

using HTTP/1, you were willing to forego a certain level of efficiency to minimize load

times for users visiting a site for the first time.

Here’s a good example of how concatenation hurts caching: Say you have an image sprite

of icons, and you need to update just one icon in the set. Even though you’ve changed only

one of the icons, the asset is monolithic, and must thus be purged from browser caches.

This creates an issue as the entire file must be invalidated and retrieved, even though

only a portion of it has changed. This is illustrated in figure 11.10.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig10

Figure 11.10. Concatenation can reduce caching efficiency. One of four icons in the image

sprite is modified, but even though 75% of the file content remains unmodified, the user

will be forced to download the entire asset instead of just the changed portion.

In HTTP/1 optimization workflows, we accepted this suboptimization as just a bump on the

road to building fast websites. Now that HTTP/2 affords us cheaper connections, you don’t

have to make the choice between shorter page-load times for first-time visitors and

efficient caching. You can have your cake and eat it, too! Next up, let’s look at techniques

you should avoid when your site is on HTTP/2.

11.2.2. Identifying performance antipatterns for HTTP/2

As I said before, the only detriment to performance on HTTP/2 servers occurs when you

concatenate assets in one fashion or another, which will reduce the efficiency of your

caching policy. But concatenation isn’t relegated to only one technique. This section

enumerates the techniques that fall under this category and the reasons you should avoid

them.

Bundling CSS and JavaScript

A common use of concatenation is in bundling CSS and JavaScript files. This serves a few

purposes on HTTP/1 connections. The first is the obvious one outlined already: fewer

requests benefit HTTP/1 client/server interactions. The second is that it can aid in making

subsequent page loads faster by loading all of your assets up front.

The second reason also works the same way for HTTP/2-powered websites, but because requests

are cheaper, it makes more sense to make your CSS and JavaScript more granular. For CSS,

this is simple: create different CSS files for each unique page template. That way, you

can segment and load your CSS on pages that need it, and you can limit the impact of any

CSS updates to a particular template, which will maximize the effectiveness of your caching

policy.

As for splitting up JavaScript files, that depends on your website and the functionality

it requires. You can split these scripts by what page template they apply to, but that may

not work for all websites, because pages may share common functionality. Do what seems

logical. There’s no right answer that works for every single website, except that bundling

on HTTP/2-driven websites isn’t optimal.

Image sprites

Yes, I did cover and recommend this technique in chapter 6, but only if you’re going to

be stuck hosting your website on an HTTP/1 server. Otherwise, image sprites carry the same

consequences as any other form of concatenation.

One odd scenario you may run into is that an image sprite may be slightly smaller than the

sum of its individual image files. If you find this to be the case, stick to keeping your

images separate rather than spriting them for HTTP/1. The benefit you’ll realize from your

caching policy when you need to update an image later will be worth the trade-off when your

visitors won’t be forced to download an entire sprite of images to get one image that’s

been changed.

Asset inlining

This one is slightly trickier to explain, but it still falls under the umbrella of

concatenation: asset inlining occurs when you take a CSS, JavaScript, or binary asset and

embed it in your HTML and/or CSS. For text assets, this means you’re copying and pasting

some CSS inside <style> tags, or doing the same with JavaScript inside <script> tags. You

can also inline SVG images straight into HTML.

Inlining binary assets can be achieved using something called the data URI scheme. This
method encodes data into a base64 string and combines it with a content type. This string

can then be used in something like an tag, as demonstrated in figure 11.11.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig11

Figure 11.11. An example of a data URI. The scheme begins with the data URI, followed

by the encoded data’s content type, the name of the encoding scheme, and the encoded

data (truncated in this example).

The encoded string is truncated in the preceding example, but you get the gist. The data

URI scheme can be used in many places, such as <link> tags, tags, in CSS url references,

basically any place that allows you to reference an external asset. If you’re interested

in encoding files of your own, numerous sites on the web enable you to do so. An example

of such a site is Base64 Decode and Encode (https://www.base64encode.org).

Using data URI schemes seems like a good idea and may have some usefulness in a few scenarios,

but they’re inefficient. The encoded string is often larger than its source, sometimes

by 33% or more.

Worse yet, all methods of asset inlining suffer from an inability to be cached effectively.

Inlined data that’s used across more than one document is redundantly downloaded and is

cached only in the context of the document it’s contained within.

When we discussed the critical CSS technique in chapter 4, we recommended inlining the CSS

for the above-the-fold content in <style> tags. This is still an effective technique to

promote faster paint times on HTTP/1 client/server interactions and should be considered

in those cases. With HTTP/2, however, you don’t need it. In fact, an HTTP/2 feature covered

in the next section, called Server Push, allows you to gain the benefits of inlining while

maintaining high effectiveness of your browser cache.

I know that I sound like a broken record, but you don’t inline assets in HTTP/2 for the

same reason you shouldn’t use image sprites or bundle your CSS and JavaScript. The simple

way to break this down is that if you’re aiming to reduce requests, do so only for websites

running on HTTP/1. For HTTP/2, keep your assets as granular as is practical for your

workflow.

https://www.base64encode.org/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04

11.3. Sending assets preemptively with Server Push

In the past, if you wanted to speed up page rendering, you’d inline assets into your HTML.

It wouldn’t appreciably decrease the size or overall load time of the page, but it would

have the potential benefit of decreasing the rendering time of a web page.

Of course, as said before, asset inlining is an antipattern that, although effective for

sites running on HTTP/1, ruins the effectiveness of a good caching policy for the inlined

content. We’re willing to accept this shortcoming on HTTP/1 for the trade-off of a lower

perceived load time.

So if you’re not supposed to inline assets on HTTP/2, how do you achieve the benefits of

inlining? With a new featured called Server Push! In this section, you’ll learn about this

feature, how it works, how to use it in your Node-driven HTTP/2 server, and the benefits

of its use.

11.3.1. Understanding Server Push and how it works

Server Push is a feature available in HTTP/2 that enables you to realize the benefits of

asset inlining while still maintaining the granularity of your page assets. It’s a

mechanism that allows the server to “push” assets the user hasn’t explicitly requested

but needs in order to render a page.

When Server Push is used, the user makes a request for a page. Then, depending on its

configuration, the server can reply with the contents of the requested document, along with

assets that the server was configured to “push” to the client.

Imagine that a user goes to the Weekly Timber website (which runs on an HTTP/2 server for

the purpose of this example) and requests index.html. Predictably, the server receives the

request for index.html and constructs a response for it. But let’s also imagine that the

owner of the web server has configured the server to also respond with a copy of
styles.min.css, which is the site’s style sheet. This reduces the amount of time that the

user has to wait for the styles to download, because the server doesn’t have to wait for

the client to request styles.min.css. The server sends it in parallel along with the response

for index.html. Figure 11.12 shows this process in action.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig12

Figure 11.12. The anatomy of a Server Push event: the user requests index.html, and the

server responds with a PUSH_PROMISE frame that contains the pushed copy of

styles.min.css, as per its configuration.

You can see how this feature behaves like asset inlining, because the two assets are pushed

to the client at the same time when the server responds with the contents of the HTML. Of

course, you’re not limited to a single asset at a time. You can push as many assets as

you’d like.

With a rudimentary understanding of the way Server Push works, you can now go on to learn

how various servers implement it, including how to write your own Server Push behavior in

your Node HTTP/2 server!

11.3.2. Using Server Push

Using Server Push can be challenging if you’re not sure how your web server implements

it. This short section explains how Server Push is used on some commonly used web servers,

how to use Server Push on your Node web server, as well as how to tell whether it’s working.

How Server Push is typically invoked

For web servers such as Apache that are running HTTP/2, Server Push is invoked by setting

up a Link HTTP response header when a specific asset is requested:

Link: </css/styles.min.css>; rel=preload; as=style

If this looks familiar to you, it’s because the preload resource hint HTTP header covered

in chapter 10 takes on the same format. That said, don’t confuse this with the <link> tag

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10

used for resource hints! You don’t need to modify your site’s HTML to use Server Push,

as it’s a server-driven behavior. If you’re modifying your HTML to add a preload resource

hint via the <link> tag, and expecting Server Push to just magically work, you’re mistaken,

It’ll just preload the resource for the user; it won’t invoke a Server Push event.

For web servers that implement Server Push in the fashion shown previously, it’ll take

the asset specified inside the angle brackets and serve it simultaneously with the asset

that the header was set for (usually an HTML file). The as attribute is there only to inform

the browser of the nature of the pushed content, and isn’t necessary for Server Push to

work. In this case, a value of style is used to indicate that the pushed resource is a CSS

file.

Informing the browser of other pushed content types

If you want to inform the browser of the nature of the pushed content for content types

other than style, you can find a full list of content types to use with as in the W3C

specification for this feature at http://mng.bz/r84O.

This implementation is convenient and works well. The following listing shows how to push

a CSS file to a client that requests index.html on a server.

Listing 11.4. Pushing content in Apache when a user requests an HTML file

<Location /index.html>

 Header add Link "</ch11-http2/htdocs/css/styles.min.css>; rel=preload;

 as=style"

</Location>

This configuration directive is pretty straightforward: When the user navigates to

index.html on the server, the Link header is set, and styles.min.css is pushed. The specific

way you set this header for web servers that implement Server Push depends on the server

software you use. For instance, our Node example does it quite differently, and you have

to implement the Server Push behavior on your own.

Writing Server Push behavior in Node

Because you’re responsible for implementing all of your own behavior for your Node HTTP/2

server, you can’t set a Link header and expect Server Push to work. You need to write the

logic that pushes content to the client.

http://mng.bz/r84O

Mercifully, this logic isn’t much different from the typical way you serve assets to the

user. The only difference is that you create a separate push response on requests for

specific assets. For example, the Weekly Timber website has a style sheet named

styles.min.css, and maybe it would make sense to push that CSS to the client whenever it

requests an HTML file. Makes sense, especially because every HTML file on Weekly Timber’s

site references this CSS.

So let’s do just that. Pull up the http2.js web server you wrote earlier in this chapter,

navigate to the request handler function that serves assets to the client, and enter the

code in the following listing right before the response.writeHead call that sends the 200

response to the client.

Listing 11.5. Writing a Server Push response in a Node HTTP/2 server

With this code, you push styles.min.css to users whenever they request an HTML file. It

can be a bit tricky to tell whether assets are being pushed. Since version 53, Chrome

indicates whether an asset has been pushed in the Network panel’s Initiator column. If

you restart the server and go to https://localhost:8443/index.html, you’ll see something

like figure 11.13.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig13

Figure 11.13. The Network tab in Chrome indicating a pushed asset by way of the Push

keyword in the asset’s Initiator column

Other browsers are less obvious about it. Firefox shows the asset as being read from the

browser cache, and Edge shows assets with the TTFB measurement omitted. These

representations are technically true, but not obvious. These browsers will likely be updated

in the future to indicate explicitly whether an asset has been pushed.

Profiling HTTP/2 Server Push on the command line

A solid way of finding out whether an asset is being pushed is to use the nghttp command-line

client, which shows you all of the frames in an HTTP/2 session. If you see a PUSH_PROMISE

frame and the contents of the pushed asset, you’ll know for sure that Server Push is working.

You can learn more about nghttp at https://nghttp2.org/documentation/nghttp.1.html.

With Server Push working properly for the client website’s CSS, let’s measure performance.

11.3.3. Measuring Server Push performance

Measuring Server Push performance is tricky. Locally, it can be difficult. Possible ways

to measure performance include disabling throttling, or hosting the website on a remote

HTTP/2 server, and measuring performance under real network conditions. The problem in

testing locally without throttling is that it’s not a realistic scenario.

In my case, I set the website on a remote HTTP/2 server to test Server Push. To test, I

set up a version of the client’s website with Server Push enabled at

https://serverpush.jeremywagner.me, which pushes the site’s CSS to the user on all HTML

pages. A version of the same site without Server Push was set up for comparison at

https://h2.jeremywagner.me. The test results between the two can be seen in figure 11.14.

https://nghttp2.org/documentation/nghttp.1.html
https://serverpush.jeremywagner.me/
https://h2.jeremywagner.me/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig14

Figure 11.14. Time to First Paint comparison with and without Server Push for the client

website’s CSS

When the CSS was pushed to the user, the page began painting about 19% faster than when

not pushed. On my broadband connection, this translated to about an 80 ms increase in

rendering speed. This is nothing to sneeze at, especially when you consider that devices

on slower mobile networks will realize a proportionately larger increase in rendering speed.

Considering that it takes little effort on most servers to use, it’s practically a gimme

for the performance-minded web developer.

Although Server Push is difficult to use “incorrectly,” so to speak, you need to remember

a few basic guidelines when you use it:

 You’re not limited to pushing just one asset. You can modify your Node HTTP/2 server code to push more than

one asset, or add more Link headers for other HTTP/2 servers to push multiple assets at a time.

 Don’t push what you don’t need. Makes sense, right? It may be tempting to push everything and the kitchen

sink to the client, but push only what makes sense. A good rule of thumb is to push assets that are used on all

pages of your site.

 You can push assets that aren’t on the current page. Yes, you can push an asset that isn’t even needed by the

current HTML document. You may decide to do this in order to preload an asset that’s on a page you anticipate

that the user may navigate to. Of course, this can be dicey, and you may end up wasting the user’s bandwidth. If

you don’t have a good reason for doing this, then don’t do it.

A note on server push and browser caches

Sometimes server push can end up pushing content that’s already been cached by the client.

For a possible server side mechanism that can help you mitigate this potential problem,

check out an article I’ve written at CSS-Tricks at

https://csstricks.com/cache-aware-server-push/.

Now that you’ve had a chance to play with Server Push and have witnessed its benefits,

you’re ready to cap off this chapter by learning to simultaneously optimize for both HTTP/2

and HTTP/1 on the same server!

11.4. Optimizing for both HTTP/1 and HTTP/2

You’ve heard the expression having your cake and eating it too. This section is all about
allowing your website’s visitors to have all the benefits of your optimization techniques,

whether or not their browser can support HTTP/2.

This section covers what happens when a visitor arrives at your HTTP/2-powered site using

an HTTP/2-incapable browser. You’ll learn how to use Google Analytics to determine the

segment of your users incapable of using HTTP/2, and how to transform your Node server to

accommodate optimization techniques for both protocols.

It should be made clear before we proceed that this section is illustrating a proof of concept.

The methods in this section aren’t necessarily designed to be a robust way of solving this

problem, but rather that a solution to the problem exists. If you discover a more efficient
approach using tools apart from those used here, give it a go and see how it works. Let’s

begin!

11.4.1. How HTTP/2 servers deal with HTTP/2-incapable browsers

Up to this point, you may have been curious about how browsers that don’t support HTTP/2

can communicate with HTTP/2 servers. The fact is that under the hood of every HTTP/2 server

is an HTTP/1 server waiting for a client to come along that doesn’t support HTTP/2.

It’s like those alarms you see in buildings that read, “In case of emergency, break glass.”

Except here, it’s more apt to say, “In case of HTTP/2-incapable browser, downgrade to

HTTP/1.”

When a user with an older browser comes by your HTTP/2-powered site, the connection initially

begins as an HTTP/2 conversation. But if the client hints to the server that it wants to

downgrade the connection to HTTP/1, the server will comply and use the older version of

the protocol. Figure 11.15 illustrates this process.

https://csstricks.com/cache-aware-server-push/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig15

Figure 11.15. The anatomy of an HTTP/2 negotiation. The client requests an asset, and

the server then checks whether the browser is capable of using HTTP/2. If so, it proceeds

accordingly. If not, the connection downgrades to HTTP/1.

You can use the dual nature of this design to serve optimized web experiences to both classes

of user: the one who can use HTTP/2, and the one who can’t. You can do so reliably because

this is a part of the specification for HTTP/2. In order for a server to be considered fully

compliant with the specification, it needs to be able to downgrade the protocol for older

browsers.

Of course, you need to be able to see whether a two-pronged effort is worth your time. After

all, it’s no small effort to optimize for both protocol versions. To do this, you’ll lean

on data from Google Analytics to help inform your decision.

11.4.2. Segmenting your users

Statistics are your friends, especially in a case like this when you want to see whether

it’s worth the trouble to adopt two sets of optimization practices. This means combining

two sources: Can I Use (caniuse.com) and Google Analytics.

Can I Use is an exhaustive resource for determining the browser support for certain features,

of which HTTP/2 is one. If you navigate to the site and enter HTTP/2 in the top search box

and click the Usage Relative toggle button, you’ll see something like figure 11.16.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig16

Figure 11.16. The Can I Use website displaying support of HTTP/2 by browser

With this tool, you can determine the browser support for features. Browsers that support

HTTP/2 appear in green, those that don’t appear in red, and those with partial support

appear in a muted green color. For example, IE11 shows partial support. When you hover over

the IE11 entry, you’ll see that HTTP/2 support is limited to IE11 only on Windows 10.

This isn’t all you can do with this tool. You can import visitor data from your Google

Analytics account, and see what segments of your audience support or don’t support a

particular feature (such as HTTP/2!). To import data, click the Settings button at the top

of the page. This opens a menu on the left side of the page. Beneath that is a section where

you can import your data from Google Analytics, which looks like figure 11.17.

Figure 11.17. The section to import your site data from Google Analytics

When you click the Import button, you have to authorize Can I Use to access your analytics

data. After you authorize, you then choose the website you want to import data from. When

you do this, the visuals representing the level of support for a feature change to reflect

the capabilities of your site visitors. In this case, you can see the segment of your users

who can support HTTP/2. In the upper-right corner of the box containing this data, you see

a percentage showing the level of support that looks like figure 11.18.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig18

Figure 11.18. The support formula for a feature on Can I Use after Google Analytics data

has been imported. All Web Site Data is the data imported from Google Analytics.

When I import the data for Weekly Timber, I can see that around 18% of the site’s visitors

are using browsers that don’t support HTTP/2. This is a conservative estimate too, because

partial support in this case doesn’t imply that every user in that segment can use HTTP/2,

either.

With this data in hand, a decision has to be made. If roughly 20% of users visiting Weekly

Timber can’t use HTTP/2, it seems rational to optimize for both segments of users. That

said, it’s important to remember that this data will change depending on the site, and

at the time you import it. Make informed decisions with the data you have for your site!

With data in hand, you can now move on to serving assets in a way that benefit users of

both protocols. Let’s optimize!

11.4.3. Serving assets according to browser capability

How you serve content to users based on their HTTP/2 support hinges on detecting the protocol

version in use. If you can do this, you can modify the way the HTML is sent to the browser.

Remember that the only real difference in optimization techniques between HTTP/1 and HTTP/2

is that the former performs better when assets are concatenated. The latter performs best

when assets are more granular. When you can change the HTTP response containing the HTML

in flight and modify the way assets are loaded, you’ll have full control over which assets

are delivered for each segment of users.

Before you get started, you need to install a package for Node called jsdom. This package

allows you to modify the content of HTML on the server in Node, much as you would in the

browser using familiar methods available in the window.document object. To install this

plugin, go to the root folder of the client’s website and type npm i jsdom, and then git

checkout -f protocol-detection to update your code, and you’ll be ready to start tinkering.

If you want to skip ahead to the finished code, you can do so by typing git checkout -f

protocol-detection-complete in your terminal.

Detecting the protocol version

The first step in all of this is to determine which version of the protocol is running in

the request. To test this, you need a modern browser such as Chrome or Firefox that supports

HTTP/2, and another older browser that can’t use HTTP/2. In my case, I went to

https://modern.ie and grabbed a free Windows 7 virtual machine with IE10 installed on it.

If you don’t have a paid virtualization program such as VMWare, you can grab a free program

called VirtualBox at www.virtualbox.org. If you have an older web browser installed on your

computer, use that to test instead.

Detecting the protocol version is trivial. The spdy package you used to make the HTTP/2

server in Node has a member in the request object called isSpdy. Although the name of this

property isn’t as straightforward as you’d like, it indicates whether the current

connection is using HTTP/2. Open http2.js in your text editor, and after the contentType

variable is declared, add the following bold line from the following listing.

Listing 11.6. Detecting the HTTP version

var filename = path.join(pubDir, request.url),

 contentType = mime.lookup(filename),

 protocolVersion = request.isSpdy ? "http2" : "http1";

This single line of code is the piece of logic you’ll use from here on out to determine

how to adjust the HTML in order to accommodate users of both protocols. We check the value

of the request.isSpdy object member, and based on its Boolean value, we assign a string

value of "http2" or "http1". Next, you use the jsdom package to add a class to the <html>

tag when the user has downgraded to HTTP/1.

Why would you do this? Simple: When you add a class to the <html> tag that identifies when

the user’s protocol has downgraded, you can change the way assets are delivered in our

CSS. By default, your CSS is written to deliver assets in an optimal fashion for HTTP/2

first, so you’ll need to make modifications only if the protocol is downgraded.

Adding the HTTP/1 class

Adding the HTTP/1 class to the document with jsdom requires a little bit of shuffling around

of our HTTP/2 server’s code. When you switched to the protocol-detection branch of code,

the Server Push logic should have been erased, which will make things much simpler than

if you wanted to accommodate everything.

https://modern.ie/
http://www.virtualbox.org/

Look for the response.writeHead call in the code that sets the headers for each request.

After that, you can insert the code in the following listing.

Listing 11.7. Adding a class to the <html> tag when the HTTP version downgrades

This puts you on the right path, but you need to make further modifications to the server

code. Because you’re intercepting and modifying the contents of the request if the request

has downgraded to HTTP/1, and if the requested asset is an HTML document, problems will

arise when requests come in that don’t match that criteria. You need to isolate other

requests with an else condition.

Listing 11.8. Isolating other requests that don’t require modification

else{

 var fileStream = fs.createReadStream(filename);

 fileStream.pipe(response);

 fileStream.on("finish", response.end);

}

Be sure to place this else condition right after the initial if that checks for the protocol

version, and HTML asset request. Failure to do this will trigger a server error.

When you’ve finished, run the server with Node and pull up the site in a modern browser.

You’ll see that the response is unchanged. But if you pull up the website in a browser

that doesn’t support HTTP/2, you’ll notice that the <html> tag has the http1 class added

to it, as shown in figure 11.19.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig19

Figure 11.19. The <html> tag is modified on the server when the web server downgrades

to HTTP/1.

With this in place, you now have full control over the way you deliver assets based on the

presence of this protocol version class. If you open styles.min.css in the htdocs/css folder

and scroll to the bottom, you’ll see that some styles are written that use an image sprite

(sprite.svg) when the protocol version is HTTP/1. If you go to

https://localhost:8443/index.html and compare the number of requests between a modern

browser (such as Chrome) that’s capable of using HTTP/2 versus that of a browser that can’t

(such as IE10), you’ll notice that the HTTP/2-capable browser processes four more requests

for SVG images. The HTTP/2-incapable browser will have used the image sprite instead,

lowering its number of requests for images by three.

This isn’t the only way to reduce requests on the server side. Next, you’ll use jsdom

to further reduce requests for HTTP/1 clients by replacing the numerous scripts with a single,

concatenated version that will comport to the optimization requirements of HTTP/1.

Replacing multiple scripts with concatenated ones for HTTP/1 users

The Weekly Timber site has quite a few scripts in it. Seven, in fact. One of these is a

CDN-hosted copy of jQuery, though, so you should look to optimize the delivery of really

just six.

Consider that the client-imposed maximum number of parallel requests in HTTP/1

server/client communications is usually six. If you can replace these six scripts with one

concatenated version for your HTTP/1 users, you may be able to improve the delivery of site

assets for those users. The following listing shows the <script> tags that are on each page.

Listing 11.9. Scripts on the Weekly Timber site

The first script is the CDN-hosted copy of jQuery, which you want to keep referencing from

the CDN. The last six, however, can be concatenated for the benefit of your HTTP/1 visitors.

I’ve already provided a concatenated version of these scripts in the js folder called

scripts.min.js. The goal is to use jsdom to transform this markup on the server to look

like the contents of the next listing when the site is accessed over HTTP/1.

Listing 11.10. Optimal handling of scripts for HTTP/1 on the Weekly Timber website

Seems easy enough, but you first need to write a little code to change this markup on the

server. Because your code is HTTP/2-first, in that your scripts are referenced more

granularly by default, you need to transform the markup shown in listing 11.9 to that in

listing 11.10. This will be done in the section of your server code where you transform

the response in the event that the user is requesting an HTML document over an HTTP/1

connection. This code is in the following listing, which shows added lines in bold.

Listing 11.11. Transforming the delivery of scripts based on the HTTP version

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex10

After making this change, restart the server. Then, open the site in an HTTP/2-capable

browser and see that your scripts are granular as they were. If you open the site in an

older browser such as IE10, you’ll see something like figure 11.20.

Figure 11.20. The scripts for the client website delivered in concatenated fashion for

HTTP/1 browsers

This approach, though not robust and only a proof of concept, illustrates the fact that

you can serve assets in a way that benefits everyone. If this is an approach you want to

take, you need to keep in some considerations in mind.

Considerations

If you decide to embark on this errand, you have to make some decisions about how you want

to implement optimizations tailored for various protocol versions.

The first decision depends on whether you even need to tailor your website to accommodate
all segments of user capability. Some sites are simple enough that both protocol versions

will serve them equally well, but some are decidedly more complex. Another aspect to consider

depends on the capabilities of your audience, which we covered earlier in this section.

The second decision depends on the technologies available to you. For instance, on a PHP

server, you can use the $_SERVER["SERVER_PROTOCOL"] environment variable to discover the

protocol version. The following listing shows the use of this variable to affect how assets

are served.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig20

Listing 11.12. Serving assets by protocol in PHP

How you do this depends on the server-side language you use. Some implementations of this
logic will be more or less straightforward, depending on the language.

Now that you’ve learned about HTTP/2, how it differs from its predecessor, and had a chance

to get your hands dirty with it, it’s time to go over some of the knowledge you’ve picked

up in this chapter.

11.5. Summary

This chapter exposed you to a few concepts regarding HTTP/2 and the ways it contrasts with

its predecessor, HTTP/1. While reading this chapter, you’ve learned the following key

concepts:

 HTTP/1 was designed to serve a much simpler function in its infancy than what web developers eventually forced

it to do. As a result, problems such as a lack of connection multiplexing and uncompressed headers contributed

to performance degradation.

 HTTP/2 evolved out of Google’s experimental SPDY protocol, and grew to address the problems of limitations in

parallel connections and uncompressed headers.

 You got a chance to get your feet wet and witness the benefits of HTTP/2 firsthand by writing a Node-powered

HTTP/2 server.

 HTTP/2 necessitates some changes in the way we approach optimization. Optimization practices that encouraged

developers to combine assets such as bundling, image sprites, and asset inlining are now antipatterns in this new

version of the protocol.

 Server Push allows you to enjoy the performance benefits of asset inlining, but with none of the icky problems

that come with inlining, such as maintainability and caching.

 If you’re running an HTTP/2 server, and a significant segment of your users are using browsers that support only

HTTP/1, you can tune your asset delivery to be optimal for everyone.

You’re nearing the end of this book. Before we part ways, we’ll spend the last bit of

our time together on how to automate many of the optimization practices you learned so far

by using a JavaScript task runner called gulp. By the time you close this book, you’ll

not only be armed with knowledge of techniques to make your websites blazing fast, but also

able to automate those techniques!

Chapter 12. Automating optimization with gulp

This chapter covers

 Understanding how gulp works and why you should use it

 Structuring your project for use with gulp

 Installing gulp plugins

 Understanding how gulp tasks work

 Writing tasks for your project

 Testing your gulp-based build system on a client’s website

The worst part of optimizing your website for performance is the sheer repetitiveness of

it. Minify this CSS, uglify that JavaScript, optimize those images, and so on. The prospect

of doing all of this important (yet mind-numbing) work puts a damper on your enthusiasm

for the job.

Thankfully, there’s a tool out there that automates all of these tedious tasks for you,

and its name is gulp (http://gulpjs.com). gulp is a Node-based build system that makes your

workflow much more efficient and saves you time.

In this chapter, you’ll learn about gulp and how it works. You’ll create a folder structure

that works best for using gulp with your front-end development project. Once this structure

is defined, you’ll install the gulp plugins required for automating your optimization

tasks.

Speaking of tasks, you’ll learn about the anatomy of a gulp task, and then write tasks

to help you automate optimization techniques you’ve learned throughout this book. These

include things like minifying HTML, compiling and minifying your CSS from LESS files,

uglifying JavaScript, and optimizing images. You’ll also write tasks that watch your

project’s files for changes, and automatically run relevant tasks whenever files are

changed or added to your project. Then you’ll cap it off by writing a build task for

compiling your project for deployment.

Once these tasks are written and defined, you’ll fire everything up and try it out on the

Weekly Timber website so you can see how it all works. Finally, we’ll end this chapter

and the entire book by highlighting other gulp plugins that exist in the gulp ecosystem,

and where you can find even more plugins to automate all sorts of tasks (even though they

might not have anything to do with improving your website’s performance!). Let’s get

started with gulp!

http://gulpjs.com/

12.1. Introducing gulp

When Node went mainstream, it became the conduit through which all sorts of useful tools

were created by and for web developers. Before long, it was used to create complex tools

such as unit-testing software, package managers, and even build systems. gulp is a

Node-based build system. In this section, you’ll learn why you should consider gulp, as

well as how gulp works.

Warning: This chapter assumes you’re using gulp 4

As it turns out, writing a technical book can pose interesting challenges. At the time of

this writing, the release of gulp 4 was pending, and gulp 3 was the “latest” release.

When you read this chapter, that may yet be true. This may change how you need to install

the gulp package with npm. Don’t worry, though! I’ll guide you through these choppy waters

when the time comes.

12.1.1. Why should I use a build system?

gulp bills itself as a streaming build system. It automates tasks for you that you’d

otherwise have to do yourself. When you use a build system, you’re free to focus on being

productive.

“But why should I use a build system? The way I do stuff now works good enough for me!”

This is the kind of thing I said to myself when tools like this started to become more common,

and for the most part, the way I was doing my work was fine.

Except that it was extremely repetitive. I use LESS in many of my projects, and whenever

I’d make changes to my LESS files, I’d go through a process like the one in figure 12.1.

Figure 12.1. An unautomated workflow for compiling LESS into CSS

Does this work? Sure! Does it drive you crazy the 500th time you do it? It should! It doesn’t

take long, but think of how much wasted time adds up when you repeat this process ad infinitum:

You make a change. You save the file. You switch over to the terminal and run the command

to compile your CSS. You switch over to the browser and reload the page. Repeat until your

hands have turned into gnarled little claws at the tender age of 30. Okay, that’s too

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig01

dramatic, but it is repetitive. With a build system, you can change your workflow as shown
in figure 12.2.

Figure 12.2. An automated workflow for compiling LESS into CSS. The only tasks the

developer has to perform are making and saving changes, while the build system builds

the CSS and reloads the page for us.

This new workflow frees you to focus on being more productive. Instead of having to

constantly rerun commands in a terminal, you launch the build system once and focus on

editing your CSS and seeing the changes appear in your browser window as you make them.

Of course, you’re not limited to using a build system to compile LESS files to CSS. You

can use it to minify your CSS in the process, as well as minify other assets, optimize images,

and generally do whatever the build system’s plugin ecosystem allows you to do. In the

case of gulp, this is a virtually limitless number of tasks you can automate, as the gulp

ecosystem has approximately 2,500 plugins that you can download and use at the time of this

writing.

So now that you know some of the benefits that a build system such as gulp can lend to your

workflow, you’ll probably want to know how gulp works. Let’s find out!

12.1.2. How gulp works

As I said before, gulp bills itself as a streaming build system, but what does that even
mean? Streams are points in gulp’s build process where data is transformed. Multiple

streams can be chained to create tasks. Let’s start by talking about how streams work.

How streams work

Streams are an old concept of I/O, and in gulp, they allow you to transform the input of

data via plugins, and then pipe that transformed input as output. This process of a single

point in a stream as it relates to compiling LESS files is shown in figure 12.3.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig03

Figure 12.3. The concept of a stream. In this example, the input is composed of LESS files

that are piped into the stream, which then compiles the LESS into CSS and pipes that

completed output into a CSS file.

This is the simplest representation of data I/O as it works in gulp. Some input data, usually

a file on disk, is piped into a stream that’s transformed by a plugin of some sort. The

transformed data is then output by the stream, which can then either be written to disk

or passed into further streams prior to that step. Figure 12.4 shows a chain of streams

connected to transform data multiple times.

Figure 12.4. An example of data being piped in and out of multiple streams. The first

stream compiles the LESS file into CSS, which is then piped into another stream that

minifies it.

Chaining streams lets us take the same input and transform it multiple times. You can chain

as many streams as necessary, and when finished, pass it to a handler that will write the

output to a file on the disk. In the preceding example, you take the input of a LESS file

and pass it to a stream that compiles it into CSS. Then you take that output and pipe it

as input into yet another stream that will minify it.

Now that you understand streams, let’s talk about the bigger picture of where they belong,

which leads us to gulp tasks.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig04

How tasks work

Streams—any number of them—are the building blocks of what’s called a task. In gulp,
a task accomplishes a specific thing (or set of things) that begins with reading the data

from the disk. The outline of a simple task with a single stream is shown in figure 12.5.

Figure 12.5. The outline of a task. The task is identified by its name, buildCSS, and begins

with a LESS source file named main.less that resides on the disk. This file is piped into a

stream that compiles main.less into a CSS file that is outputted from the stream and

saved to the disk as styles.css.

That’s all a task is. It’s a wrapper for streams that begin with input from the filesystem,

and ends with stream output that’s written back to the filesystem in another location.

A single task is usually relegated to a single concern. In this case, the buildCSS task

shown in figure 12.5 deals with the CSS-related aspect of the project. For minifying your

HTML, you’d write a separate task. The same goes for other things such as optimizing images

and uglifying your JavaScript.

As many tasks as necessary can be defined for a project. When the code for these tasks is

assembled, this creates the project’s build system, also known as a gulpfile. Before you
can embark on writing your gulpfile, however, you need to create a folder structure for

your project, and then install gulp and your plugins.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig05

12.2. Laying down the foundations

Before you can get started writing the gulpfile for the project, you need to do a couple

of things. You need to set up a folder structure for your project, and then you install

all the plugins you need. Let’s start by getting your folders in order.

12.2.1. Structuring your project’s folders

When you begin a new project, the first thing you want to do is set up a folder structure

for it. This is true even when you use a build system, but it does change things a bit.

As I said in the previous section, tasks begin with input data from a source file, and end

with output data that’s written to the disk. Because of how this works, you’re going to

edit your files in a source directory, and use the build system to compile everything to

a distribution directory. Figure 12.6 shows this process.

Figure 12.6. The build system processes files from a source folder (src in this example)

and processes them and writes the output to the distribution folder (named dist)

To get started, create a new folder on your computer. Name it anything you like. Then go

into it and make a folder named src. This folder is where you’ll edit your files. You likely

don’t have a project of your own to work on, so you’ll populate this folder with the Weekly

Timber website files. To do this, you use the git command to pull the website down from

a remote repository:

git clone https://github.com/webopt/ch12-weekly-timber.git ./src

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig06

This gives your build system something to build. After this command finishes, you need to

create a folder in the root of the project named dist. When finished, you’ll have a folder

structure that should look something like this:

/

src

 img

 js

 less

dist

When your folder structure is set up like this, you’re ready to go. Note that your projects

don’t necessarily need to follow this exact structure. The general idea is to separate
the folder that you do your work in from the folder that the build system outputs files

to. Next, you’ll install gulp and the plugins you need for gulp to do its job.

12.2.2. Installing gulp and its plugins

Before you can do anything with gulp, you need to globally install the gulp command-line
interface on your system. This will enable you to process gulpfiles with the gulp command.

Use this command for the installation:

npm install -g gulp-cli

You’ll never need to run this command again, as the gulp program will then be globally

accessible on your system. Then, you initialize your project directory with npm:

npm init

When you execute this command, you’ll be asked your project’s name, version number, and

other things. What you enter here isn’t terribly important as far as the work in this chapter

is concerned, so enter the values you feel are necessary, and omit those that you’re unsure

of or don’t care about. They’re mostly relevant for projects of your own, or npm modules

that you intend to publish on npmjs.com.

What this command does do that’s convenient, however, is create a file named package.json

that keeps track of all the modules that you install for your project. This makes the project

portable so that you won’t need to distribute the modules that you install for it using

npm. When you use the --save flag with npm’s install command, it will write the module

information to package.json. Now you can commence with installing gulp itself!

http://npmjs.com/

Installing gulp itself

Earlier in this chapter, I said that, depending on the status of gulp, version 3 may be

the latest release but that this won’t be the case in the future. On the off chance that

gulp already has updated as you read this, you need to make sure that you’re getting gulp

4 instead of gulp 3. Let’s first check for the latest version of gulp available in the

remote package repository by using npm:

npm show gulp version

When this command finishes, you’ll get the version number of the package. If you receive

a response starting with 4 (for example, 4.0.0 or something similar), then you’re golden,

and you can install the gulp package normally by using npm:

npm install gulp --save

If you receive a response starting with a 3 (for example, 3.9.1), then things get a little

trickier. You’ll need to use npm to install the gulp package from GitHub, and point to

the repository’s 4.0 branch. This is easily done with the following command:

npm install gulpjs/gulp#4.0 --save

This syntax may seem unfamiliar, but what you’re doing here is pointing to a GitHub user

(gulpjs), a repository (gulp), and then a specific branch (#4.0). This allows you to install

version 4 of the gulp package from GitHub without it being available yet via npm. Depending

on when you read this chapter, the #4.0 branch of this repository may cease to exist after

gulp 4 is tagged as the latest version. In this case, you’d simply install the gulp package

with the npm install gulp command as usual.

Now you can get started with installing the plugins you’ll need for your project. You’ll

categorize these plugin installations by the functions they provide, and describe what each

one will do.

Essential plugins

This category of plugins is what you’ll need for gulp to work and do the basic stuff for

you. To install these plugins, type in the following command:

npm install gulp-util del gulp-livereload gulp-ext-replace --save

These plugins fulfill the purposes shown in table 12.1.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table01

Table 12.1. Essential gulp plugins

Plugin name Purpose

gulp-util Used by some plugins to output information to the terminal, such as errors and diagnostic

information.

del Deletes files and folders. Useful for when we want to perform “clean” builds that involve deleting the

distribution folder and building from scratch.

gulp-livereload Automatically reloads the browser when you change files. This involves installing the LiveReload

plugin for your browser, which we’ll cover when we finish writing the build system.

gulp-ext-replace Allows us to specify a different file extension for the destination output than what exists in the source

input. When we convert our PNG and JPEG files to WebP by using imagemin-webp, you’ll need this to

save files with a .webp extension.

HTML minification plugin

One optimization task you can automate is the minification of HTML. This requires only one

plugin named gulp-htmlmin that you install like so:

npm install gulp-htmlmin --save

When this finishes installing, the HTML minification plugin will be ready for use by your

gulpfile. This plugin takes all of the whitespace and unnecessary characters out of our

HTML for you, which results in fewer bytes transferred to the client. Fewer bytes means

faster page load times.

CSS-related plugins

The Weekly Timber site uses LESS as the precompiler of choice for building CSS, as well

as PostCSS and a set of PostCSS-centric plugins. To install these plugins, you enter the

following:

npm install gulp-less gulp-postcss autoprefixer autorem cssnano --save

Table 12.2 describes these plugins.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table02

Table 12.2. CSS-related gulp plugins

Plugin

name

Purpose

gulp-less Compiles LESS into CSS that the browser can understand. If you’re a SASS user, don’t despair! You can

use the gulp-sass plugin if your project depends on SASS (which is mentioned in section 12.4.) Weekly

Timber uses LESS, so you’ll go with this plugin for this chapter.

gulp-postcss A library that transforms CSS. PostCSS accomplishes tons of tasks via plugins in the PostCSS ecosystem.

Learn more at http://postcss.org.

autoprefixer PostCSS plugin that automatically adds vendor prefixes to CSS for you. Useful for backward compatibility

without using LESS/SASS mixins, or awful copy/paste workflows. Write CSS, and autoprefixer will take

care of the vendor prefixing minutiae.

autorem Another PostCSS plugin (written by me!) that converts px units into rem units. Useful for making your

pages more accessible without the pain of having to manually convert every single px unit to rem.

cssnano A PostCSS plugin that minifies and makes many focused optimizations to your CSS that results in a lower

file size. Learn more about cssnano at http://cssnano.co.

JavaScript-related plugins

Your JavaScript requires two plugins for optimization purposes. To install them, enter the

following command:

npm install gulp-uglify gulp-concat --save

Table 12.3 describes the functionality of these plugins.

Table 12.3. JavaScript-related gulp plugins

Plugin

name

Purpose

gulp-uglify Uglifies JavaScript files. If you’re not familiar with uglification, it’s like minification in that it removes all

unnecessary whitespace from a JavaScript file, but also shortens code, while preserving functionality, to

yield even smaller file sizes.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12lev1sec4
http://postcss.org/
http://cssnano.co/
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table03

Plugin

name

Purpose

gulp-concat Concatenates JavaScript files. While concatenation is a no-no with HTTP/2 connections, you can easily

generate a concatenated version of site scripts that can be conditionally used for HTTP/1 connections.

Image-processing plugins

You may recall in chapter 6 that the largest asset type tends to be images. So it stands

to reason that you’ll want to find a way to automate the optimization of images. It turns

out that gulp gives you a lot to work with to achieve this. You’ll need to install these

plugins:

npm install gulp-imagemin imagemin-webp imagemin-jpeg-recompress

 imagemin-pngquant imagemin-gifsicle imagemin-svgo --save

Table 12.4 describes the functionality of these plugins.

Table 12.4. Plugins related to image optimization

Plugin name Purpose

gulp-imagemin Provides the base imagemin functionality. You’ll recall from chapter 6 that this was the

Node module you used to optimize images. You can use this gulp extension to automate

that behavior for us.

imagemin-webp Allows you to convert images into WebP, which are usually smaller than their PNG and JPG

counterparts. WebP support in Chromium-derived browsers means that a large segment of

users can use them.

imagemin-jpegrecompress An imagemin plugin used for optimizing JPEG images.

imagemin-pngquant An imagemin plugin used for optimizing PNG images.

imagemin-gifsicle An imagemin plugin used for optimizing GIF images.

imagemin-svgo An imagemin plugin used for optimizing SVG images.

With all of these plugins installed, you’re now ready to write your gulpfile, which you’ll

tackle in the next section.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06

12.3. Writing gulp tasks

gulp tasks are basic in their composition. They consist of many chained parts that pipe

data from one stream to another. In this section, you’ll learn the anatomy of a gulp task

and then you’ll go about building your gulpfile.

12.3.1. The anatomy of a gulp task

gulp tasks are terse expressions of the objectives you want to achieve as a part of a build

process. Think of tasks as wrappers around the functionality you seek. Each task is

encapsulated by the gulp.task method. This method generally takes one argument, which is

a pointer to a function that performs the task. The following code shows the shell of a

task:

function minifyHTML(){

 // Task code

}

gulp.task(minifyHTML);

Here you can see a function named minifyHTML. You can set up your task code within it, and

subsequently bind it to the task method, which will define it. There are other aspects to

using the task method, but this is its simplest use. We’ll cover other scenarios, such

as running tasks in series or in parallel, later.

Reading source files

As I said earlier in this chapter, streams in gulp require an input source. The vehicle

for providing input to a stream is gulp.src. This method takes an argument that accepts

a string (or array of strings) for files that you want to read as input. The following is

an example of the gulp.src method:

function minifyHTML(){

 return gulp.src("src/*.html");

}

Here you use the gulp.src method to read all HTML files that are in the src folder (the

location of which is relative to the location of the gulpfile). The file pattern of

“src/*.html” you use here is what’s known as a file glob. If you’ve worked with files

in a terminal for any length of time, you’ve had some exposure to this concept. Here are

a few example patterns to get you up to speed if you’re not too familiar with globbing:

 img/* matches everything in the img folder.

 img/** matches everything in the img folder and its subfolders.

 img/*.png matches all PNG images in the img folder.

 img/**/*.png matches all PNG images in the img folder and its subfolders.

 img/**/*.{png,jpg} matches all PNG and JPEG images in the img folder and its subfolders.

 !img/**/*.svg excludes all SVG images in the img folder and its subfolders.

Most of the work you do in Node will use patterns that are largely similar to these, but

file globbing is much more powerful than only these patterns. For a primer on globbing,

check out https://github.com/isaacs/node-glob#glob-primer.

Moving data through a stream

Once input is read from the disk via gulp.src, you need a mechanism that helps you ferry

that data to plugins. This is done by using the pipe method. In the following example, you

use the pipe method to move data along from the source to the htmlmin plugin, which minifies

HTML:

function minifyHTML(){

 return gulp.src("src/*.html")

 .pipe(htmlmin());

}

This example is more abstract, because it doesn’t show where or how the htmlmin() instance

is created, but we’ll cover that soon. The important piece here is the pipe method. When

operating on a stream, you use pipe and chain it after gulp.src. The pipe method takes an

argument for a function that you want to pass data to. In this case, you’re taking the

data you’ve read with gulp.src, and then you pipe that data to htmlmin(). When htmlmin()

finishes its job, it will return the minified HTML data that you can then pipe again to

another point in the stream, such as writing the minified output to files on the disk.

Writing data to the disk

The final part of a task’s journey is to take the data you’ve transformed from a source

file, and write it to files on the disk. To do this, you use pipe and pass gulp.dest to

it.

gulp.dest is a method that takes an argument specifying what the destination of the

transformed data should be. Rather than a glob, this is a string that identifies a specific

folder or file to write to on the disk. The following is an example of the pipe method ferrying

minified HTML output to gulp.dest:

function minifyHTML(){

https://github.com/isaacs/node-glob#glob-primer

 return gulp.src("src/*.html")

 .pipe(htmlmin())

 .pipe(gulp.dest("dist"));

}

The sample task is complete: it reads HTML files from the disk by using gulp.src, then pipes

the data to htmlmin(), and then pipes the minified HTML to the dist folder via gulp.dest.

See how simple gulp tasks are? Most are usually short, requiring little to no configuration

for most tasks. Armed with your new knowledge of gulp’s methods, you’re ready to write

a gulpfile.

12.3.2. Writing the core tasks

gulp works via the gulp command, which you installed on your system when you installed the

gulp-cli Node package earlier in this chapter. When executed, gulp looks for a file in the

current working directory named gulpfile.js. If no gulpfile is found, nothing happens and

gulp will exit. If a gulpfile is found, however, gulp will run any task you’ve specified

within it.

Want to skip ahead?

If you’re stuck and want to skip ahead, or you’d like to grab the finished gulp boilerplate

and start using it right away, clone the GitHub repository that contains the finished build

system by typing git clone https://github.com/webopt/ch12-gulp.git in your terminal

window.

In this section, you’ll begin writing your gulpfile by importing modules, and then working

your way through each of the core tasks. Once finished, you’ll have the meat of the gulpfile

written.

Importing modules

Let’s start by creating a new file named gulpfile.js in the root folder of your project.

Before you can do anything with gulp and the myriad plugins you’ve installed for it, you

need to import them into your gulpfile. Using your text editor, enter the contents of this

listing into your gulpfile.

Listing 12.1. Importing all modules needed for the gulpfile

This code imports all of the modules necessary for gulp to work its magic. When finished

with this step, you can now create your very first gulp task.

Exploring the general structure of a task

Most of the tasks you’ll write in this section will follow a predictable pattern. Some

may differ slightly, but the basic structure should start to look familiar as you proceed.

Figure 12.7 shows the general structure that your tasks will follow.

Figure 12.7. The general structure of gulp tasks you’ll write for this chapter’s gulpfile

Tasks written in this chapter will almost always start by reading source files from the

disk. From there, you’ll pipe data to the plugin relevant to the task’s goal. These are

behaviors such as minifying HTML, optimizing images, and so forth. After this completes,

you’ll write the files to the disk by using the gulp.dest method.

Not every single task is going to follow this pattern in lockstep. For example, the utility

tasks you use to make clean builds and watch files for changes will be markedly different.

We’ll tackle those and explain them as needed.

Ready to start writing gulp tasks? Let’s start by writing the HTML minification task.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig07

Minifying HTML

Minification is one of the foundational optimization methods in the web developer’s toolbox.

Although minifying HTML doesn’t save gobs of bandwidth in all scenarios, it’s super easy

to do, and gulp makes it even easier.

In listing 12.1, you imported the gulp-htmlmin plugin into the htmlmin variable. With this,

you can write the HTML minification task. Enter the contents of this listing into the

gulpfile.

Listing 12.2. The HTML minification task

There’s a bit here to process, but most of it is common to the rest of the tasks that you’ll

write. First, you read from HTML files on the disk by using gulp.src. From there, the data

is piped to the gulp-htmlmin plugin, which minifies your HTML. You’ve passed two options

to it: removeComments, which removes all comments in the HTML, and collapseWhitespace, which

safely removes all of the whitespace in the file without impacting the integrity of the

content. A full list of options is available at

https://github.com/kangax/html-minifier#options-quick-reference.

After minification has completed, you write the changes to the dist directory via gulp.dest,

and then pipe the stream to the livereload module, which signals to a listening LiveReload

instance to reload the browser page. (We’ll talk later in this section about how to set

up your browser to listen for changes.) Finally, you bind the minifyHTML function to gulp’s

task method, which sets up the HTML minification task. If you haven’t already, save your

gulpfile. At the command line in the same directory as the gulpfile, run this command:

gulp minifyHTML

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex01
https://github.com/kangax/html-minifier#options-quick-reference

This runs the minifyHTML task that you wrote. When it runs, you should see output similar

to this:

[13:47:33] Using gulpfile /var/www/ch12-gulp/gulpfile.js

[13:47:33] Starting 'minifyHTML'...

[13:47:33] Finished 'minifyHTML' after 64 ms

Your output will vary a little, but it should look pretty much the same. When the task

finishes, you’ll notice that all of the HTML from the src directory has been minified and

saved to the dist folder.

Congratulations! You wrote your first task. The rest of the tasks are mostly similar in

terms of effort, but with varying degrees of complexity. Let’s tackle the CSS-related task

next.

Building LESS files and using PostCSS

The next task is more involved than the HTML minification one you wrote. You’ll be using

the gulp-less plugin to compile LESS files from the src/less folder,

transforming/optimizing the compiled CSS by using the gulp-postcss plugin, and then writing

it to the dist/css folder. The modules involved in this task are gulp-less, gulp-postcss,

autoprefixer, autorem, and cssnano. To continue, enter the contents of the following listing

into your gulpfile.

Listing 12.3. The LESS compilation/CSS optimization task

This task, though more complex than the HTML minification one you wrote before, is simple.

All of the styles for Weekly Timber are written in LESS, and the main file is the main.less

file, which you read from the disk and pipe into the gulp-less plugin instance. This compiles

the LESS into CSS. Additionally, an error handler is used to catch errors if they occur,

and logs them to the console via the gulp-util plugin’s log method.

From here, it’s more involved. We use three PostCSS plugins in this project, all of which

are passed into the gulp-postcss plugin instance: autoprefixer, autorem, and cssnano. These

plugins add vendor prefixes to your CSS automatically, convert px units to rem units, and

minify/optimize your CSS, respectively. When this all finishes, the minified CSS is written

to the dist/css directory. When you finish this task, you test it out by running the task

like so:

gulp buildCSS

If you go to the dist/css folder, you’ll see the optimized CSS file as main.css. You’ve

finished writing your CSS optimization task! Next, you’ll take on your JavaScript tasks.

Uglifying and concatenating scripts

The JavaScript optimization tasks for your build system are twofold: uglifying your

JavaScript to reduce its size and then concatenating them. You’ll provide a concatenated

and unconcatenated set of scripts for flexibility’s sake in the event that you’d have

the ability to provide optimal asset delivery for both HTTP/1 and HTTP/2. Let’s start by

first writing the uglify task by entering the contents of the following listing into your

gulpfile.

Listing 12.4. The JavaScript uglification task

This task looks for JavaScript files recursively inside of the src/js folder and feeds them

into the gulp-uglify module instance. When finished, it will write the uglified scripts

into the dist/js directory.

Next, you should write the concatenation task that bundles scripts. This one is as simple

as the uglifyJS task. Enter the contents of the following listing into your gulpfile.

Listing 12.5. The script concatenation task

The concatJS task will become interesting to use later, because it’s dependent upon files

being processed by the uglifyJS task first. You’ll use a special function when you later

define the watch and build tasks that will ensure that the uglifyJS task is run before the

concatJS task, because they are dependent on one another.

Another point of interest lies in the src file glob in that you want to exclude scripts.js,
which will be the file containing the concatenated scripts. If you don’t make this exclusion,

the concat task will recursively bundle scripts.js every time it’s run. This is obviously

not an optimal outcome, so you want to avoid it.

From here, this task proceeds similarly to the ones you’ve written before: You pipe the

data read from the src file glob, process it with gulp-concat, and output it to the dist/js

directory as scripts.js. Now you’re ready to move onto your image-processing tasks.

Performing image optimization

As you recall from chapter 6, you can save space if you’re willing to optimize images.

In most cases, you can do this without any noticeable drop in visual quality. Because image

optimization can be incredibly tedious when done manually, a gulp plugin instance of

imagemin called gulp-imagemin provides all of the functionality that you learned in chapter

6.

In this section, you’ll write two imagemin-related tasks: The main image-processing task

that optimizes your PNGs, JPEGs, and SVGs, and a separate task that converts PNGs and JPEGs

to WebP images. Let’s start by writing the main image-optimization task that processes

your standard image types by entering the contents of this listing into the gulpfile.

Listing 12.6. Optimizing your PNGs, JEPGs, and SVGs with imagemin

This task is more on the complicated side than some others, but is still relatively

straightforward. You’re reading all PNG, JPEG, SVG, and GIF files from the src/img

directory and passing them to the gulp-imagemin plugin instance. imagemin has its own plugin

defaults that it will go with if no plugins are supplied, but because an abundance of imagemin

plugins are out there, I’ve selected some that I’ve found perform a bit better than the

default.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06

Imagemin plugins galore

When it comes to optimizing images with imagemin, it turns out that there is an obscene

number of plugins available for every image format you can imagine. A list of plugins can

be found at https://www.npmjs.com/browse/keyword/imageminplugin. Each has a wealth of

options you can use to squeeze out every last drop of performance you can.

In this task, you rely on the imagemin-jpeg-recompress, imagemin-pngquant, imagemin-svgo,

and imagemin-gifsicle plugins to optimize your images. When the images are optimized,

they’ll be written to the dist/img folder.

This takes care of your common image formats, but what if you want to leverage the WebP

format? Turns out there’s a plugin for that, and you’ve installed it: the imagemin-webp

plugin. You can use this plugin to convert your existing PNG and JPEG image to WebP. To

add this task to your build system, add this listing to the gulpfile.

Listing 12.7. The WebP conversion task

To try both these tasks, run the following command:

gulp imageminMain imageminWebP

With these tasks done, look in your dist/img folder and you’ll see not only optimized images,

but also WebP versions of them. Congratulations! You’ve written a task that converts all

of your images for you on the fly, and it’s also the last of the core tasks in the gulpfile.

https://www.npmjs.com/browse/keyword/imageminplugin

In the next section, you’ll write the build task that builds everything in the src directory

for you, and the watch task, which watches your files for changes.

12.3.3. Writing the utility tasks

So you’ve written all of the core tasks for your build system. The meat on the bone, so

to speak. These are the tasks that perform the heavy lifting for you: minification,

uglification, image optimization, and building CSS—all of the important things you need.

Of course, you haven’t really automated anything. These tasks, although useful, still
require you to run ad hoc commands in your terminal to do anything. What you need are two
more tasks:

 A task that watches files for changes, and when changes occur, runs tasks automatically and reloads the browser

page for you

 A task that performs a clean build of all the site functions to the dist folder when the project is complete and

ready for production

Let’s start by writing the watch task!

Writing the watch task

As with other tasks, the watch task is defined via the gulp.task method. Inside it, though,

you use a new method called gulp.watch. This method takes two arguments: a file glob pattern

that specifies the files that are to be watched, and an array of one or more tasks that

should run when changes in files are detected. The following listing shows the entirety

of the watch task, which you define as the default task.

Listing 12.8. The watch task

This task is somewhat more linear than the ones you’ve written before. The first thing

to note is that this task is bound to a label of default, which is a reserved label in gulp.

Any task with this label doesn’t need to be explicitly called by the gulp command. It’s

executed when the user enters gulp into the terminal in the same directory as the gulpfile

that defines it.

Next, you tell the gulp-livereload plugin instance to start a server that listens for file

changes. When a browser that’s configured with a LiveReload plugin receives a signal from

this server that a file has changed, it reloads the page.

The way you configure LiveReload for your browser depends on which browser you use. Chrome

has a LiveReload extension that you can install by visiting the Chrome Web Store at

https://chrome.google.com/webstore and searching for the LiveReload extension. When this

plugin is installed, you’ll see a small toolbar icon next to the address bar, as shown

in figure 12.8.

Figure 12.8. The LiveReload extension icon in the Chrome toolbar. Clicking this icon

enables the LiveReload listener that receives signals from the local LiveReload server to

reload when files change.

LiveReload is also available for Firefox, Opera, and Safari. Search your browser’s

extension repository, or go to livereload.com for more information on alternative setup

methods for unsupported browsers.

With your watch task written and the LiveReload extension installed for your browser, you

can launch the watch task by entering the gulp command in your terminal. You’ll see output

in your terminal window that looks like this:

[22:36:46] Using gulpfile /private/var/www/ch12-gulp/gulpfile.js

[22:36:46] Starting 'default'...

https://chrome.google.com/webstore
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig08
http://livereload.com/

Instead of being returned to the command line, the task listens for changes to files

specified in the watch task function. To test this, you can run an http.js web server as

you have in chapters past in the root folder to serve content from dist, and enable the

LiveReload browser extension for that page. To do this, you can take code from any of the

example web servers from earlier in the book, or clone the repo from

https://github.com/webopt/ch12-gulp.git. Then in your text editor, modify files in the src

directory and you’ll see that tasks run automatically as you make changes. When a task

finishes, piped calls to the gulp-livereload plugin instance in each task will signal the

browser to reload the page.

You may take issue with this task blocking your ability to do anything else in the terminal.

You could run this in the background, but depending on your terminal, you may not see any

program output, and that’s not ideal for development in case you run into errors. Open

another terminal window if you need one, and if you need to quit gulp, press Ctrl+C and

the program will stop.

A couple of new methods you’ll notice are series and parallel. Both accept any number of

tasks that you want to run, but the difference ends there. series runs the specified tasks

one after the other, whereas parallel runs all of the specified tasks at the same time.

You’ll notice that you run the imagemin-related tasks in parallel when changes occur, and

you run the uglifyJS and concatJS tasks in series because the concatJS task is dependent

on the uglifyJS task.

You now have a fully automated workflow. Changes occur as you make them, and the browser

automatically reloads the page for you to display your changes. This not only generates

optimized web pages for you, but also increases your efficiency as a developer. Now you’re

cooking with gas. All that’s left is to define two remaining tasks for performing builds,

and you’ll be set.

Writing the build task

The build task is by far the most succinct of any you’ve written so far. It’s a small

piece of code that accepts a name for the task, and specifies a set of tasks that you want

to run in series. The build task looks like this:

gulp.task("build", gulp.parallel(minifyHTML, buildCSS, uglifyJS,

 imageminMain, imageminWebP, gulp.series(uglifyJS, concatJS)));

Writing the clean task

Sometimes you’ll need to destroy the dist folder prior to performing a build. This could

be because you have assets that you’ve created in src at one point but then removed, and

https://github.com/webopt/ch12-gulp.git

so still have some files in dist from previous builds that are orphaned. That’s when you

need to invoke a task to clean out the dist folder to perform clean builds.

Earlier, you installed a plugin by using npm named del. This isn’t a gulp plugin per se,
but rather a Node module that removes folders for you. Because of the nature of gulp, you

can write any valid Node code and run it. The only caveat is that any code you write needs

to return a Vinyl file object. If you’re interested in going down this road, you’ll need

to learn a bit about Vinyl, which you can do at https://github.com/gulpjs/vinyl. For the

purposes of this chapter, however, we’ll eschew any exploration into Vinyl and continue.

Our clean task is another short and sweet one:

function clean(){

 return del(["dist"]);

}

gulp.task(clean);

The del module takes one argument, which is an array of one or more directories to delete.

So now when you want to generate clean, pristine builds, you need to enter only two commands

in your terminal window:

gulp clean

gulp build

This gives you a spotless build in the dist folder that’s now production-ready. With this,

you’re fully automated and ready for any new web project that comes your way. Before

bringing this book to a close, however, let’s talk about the gulp plugin ecosystem, and

point out a few other plugins that may be of use to you and your organization.

12.4. Going a little further with gulp plugins

Although you can execute any valid Node code inside a gulp task, it’s clear that much of

gulp’s convenience and functionality is provided by the many gulp plugins that are

available. I’ve shown you only a small handful of plugins that are available, and many

more are out there for your consideration. You can peruse and use any of the 2,500 plugins

available by going to http://gulpjs.com/plugins. This section highlights a few that caught

my eye:

 gulp-changed is a plugin that allows you to process only files that have changed since the last build. This can be

particularly useful for tasks that have a tendency to run for a long time, such as those that perform

image-optimization. By processing only changed files, you can reduce build time, especially as you work.

 gulp-nunjucks is a plugin for Mozilla’s Nunjucks templating engine. You can use it to do things as simple as

separating your HTML into reusable pieces that you can programmatically import as partials (think something

https://github.com/gulpjs/vinyl
http://gulpjs.com/plugins

similar to PHP’s include and require functions.) Or, you can go full-on nuts with it and use it for templating

and inserting content into HTML files by using a Handlebars-like syntax. This plugin is useful for developers who

want to serve static site files but want to have the flexibility of some CMS-like features. Learn more about

Nunjucks at https://mozilla.github.io/nunjucks.

 gulp-inline is a plugin that automatically inlines files for you. Although not a recommended practice for

HTTP/2-capable servers, plenty of HTTP/1 clients and servers are out there yet that benefit from this useful

(albeit hacky) performance improvement. This plugin allows you to maintain editability and modularity for assets

destined for inlining, but handles the mundane part of that process for you.

 gulp-spritesmith is a plugin that generates image sprites from separate image files, and generates CSS for them.

Although image sprites are an HTTP/2 no-no (because it’s really concatenation, but for images), the practice

provides performance benefits for HTTP/1.

 gulp-sass is a plugin that generates CSS from SASS files. We used LESS in this example, and perhaps you’re not

the biggest fan of it and prefer SASS instead. That’s totally fine, and this plugin will accommodate your wishes.

gulp-sass uses a syntax that’s similar to gulp-less, so once you’re familiar with one, you’ll be familiar with the

other.

 gulp-uncss is a wrapper for the uncss tool we used in chapter 3. It will remove the unused CSS from your

project, only this time in an automated fashion!

There’s likely a plugin for any tool that you can think of. Covering every single useful

gulp plugin could be a book in itself, so we can’t cover every one, obviously.

What if you can’t find a gulp plugin for your task? If you know how to write the task by

using JavaScript in Node, you can wrap it in a gulp.task and run it anyway. gulp doesn’t

limit you to plugins. If you want to help the community and write a plugin for a task that

you feel is useful, go for it! Guidelines for writing gulp plugins are available in the

gulp docs at http://mng.bz/109I. Now that you’ve had a chance to check out some other useful

plugins in the gulp ecosystem, it’s that time. We’ve hit the end of this chapter, as well

as this book. Let’s cap it all off with a summary of the things you’ve learned.

12.5. Summary

This chapter represents a milestone in your ability to apply your optimization knowledge

to your projects. You can now automate common optimization tasks that otherwise would have

taken you significant time to perform manually. As a part of this effort, these are the

ideas and concepts that you picked up along the way:

 gulp is a streaming build system. Streams are a way for us to read data from a source on the disk, process and

transform it, and then write the result back to the disk again. These streams are the foundations of gulp tasks.

 Folder structures help you organize your projects so that you can be more productive. With gulp, a proper folder

structure can ensure that you separate your source files from the files that you deploy to a production server.

This allows you to maintain editability while achieving the highest possible level of optimization.

 gulp doesn’t explicitly rely on plugins to fulfill common tasks, but they add expediency in completing them.

Knowing how to install plugins for your project enables you access to an entire ecosystem of tools that can boost

your productivity.

https://mozilla.github.io/nunjucks
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03
http://mng.bz/109I

 Writing gulp tasks takes little effort, and they’re usually short. You can achieve a variety of goals with them, such

as building CSS, minifying HTML, uglifying JavaScript, optimizing images, and anything else that you can think of.

Beyond these foundational tasks, you can also write tasks that watch files for changes and automatically reload

the browser for you whenever a file is changed.

 You can write utility tasks that build project files for you. These build tasks can help you to create a clean build of

your site that you can take to production.

 gulp’s plugin ecosystem is expansive, with over 2,500 plugins for your perusal. Whatever tasks you’re seeking to

accomplish, there’s an extremely good chance a gulp plugin can help!

Your time spent with this book has taken you across many subjects. You’ve learned many

ways to tune your site for higher performance, from winnowing down your CSS, writing leaner

JavaScript, optimizing the delivery of your images and fonts, and more.

Increasing the performance of your website isn’t merely a pursuit of convenience; it’s

also crucial to the user experience. By making your website better performing, you’re

making your website easier to access. When your site is easier to access, the user will

stick around to see what it is you have to offer. Whatever the goal is, be it a larger

readership or more sales for your e-commerce website, a faster website can only help you

achieve that goal.

Wherever your goals take you, know that this book is only the starting point in your quest

for a higher-performing website. The topic is so broad and shifting in focus that no book

can cover the entire breadth of it, but some aspects of the discipline never really change.

Reduce the footprint of your website as much as humanly possible, use the latest technologies

(HTTP/2, for example), and rely on techniques that can give the perception of higher

performance.

Good luck to you. May your websites always be lean, your network latency always be low,

your rendering always be fast, and your goals always be within your reach.

Appendix A. Tools reference

Many tools are used throughout this book, and this appendix collects them all in one handy

spot. Use this reference when you’ve completed this book but still need a reference for

the tools you’ve used.

Note

Browser-based developer tools aren’t listed in this appendix. You can invoke these tools

in most browsers by pressing F12 on Windows systems, or Cmd-Alt-I on Mac systems. Tools

are listed in the order they appear in this book.

A.1. Web-based tools

This section collects all of the web-based tools used throughout the book:

 TinyPNG (http://tinypng.com) An image optimizer on the web. Shrinks PNGs and JPEGs via a user-friendly

interface.

 PageSpeed Insights (https://developers.google.com/speed/pagespeed/insights) Analyzes a URL and gives advice

on how to improve page performance.

 Google Analytics (https://www.google.com/analytics) Provides data on your site visitors.

 Jank Invaders (http://jakearchibald.github.io/jank-invaders) Not so much a tool per se, but rather a game that

helps you identify what jank looks like. Great for training the eye to catch sluggish animations.

 Mobile-Friendly Test (https://www.google.com/webmasters/tools/mobile-friendly) Analyzes a URL and reports

whether its design is mobile-friendly.

 mydevice.io (http://mydevice.io) A comprehensive listing of devices, their screen resolutions, and pixel densities.

 VisualFold! (http://jlwagner.net/visualfold) A bookmarklet (by me!) that places guides on the page at locations

you specify.

 Grumpicon (http://grumpicon.com) Generates PNG from SVG sprites (and a whole lot more).

 Can I Use (http://caniuse.com) A comprehensive listing of browser features and their level of support.

A.2. Node.js-based tools

This section collects all the packages that require Node.js. You can install any of these

tools by using the npm install <package-name> syntax. You can also get info on any of these

tools by searching for its name at https://www.npmjs.com.

http://tinypng.com/
https://developers.google.com/speed/pagespeed/insights
https://www.google.com/analytics
http://jakearchibald.github.io/jank-invaders
https://www.google.com/webmasters/tools/mobile-friendly
http://mydevice.io/
http://jlwagner.net/visualfold
http://grumpicon.com/
http://caniuse.com/
https://www.npmjs.com/

A.2.1. Web servers and related middleware

 express (http://expressjs.com)

o A small web server framework. Used throughout the book to spin up servers on localhost for example

code.

o compression (http://expressjs.com)

o Provides gzip compression for Express-based web servers.

o shrink-ray (https://www.npmjs.com/package/shrink-ray)

o A fork of the compression Express middleware that supports Brotli compression.

o mime (https://github.com/broofa/node-mime)

o A module for detecting content types of files on the local filesystem.

o spdy (https://github.com/indutny/node-spdy)

o An HTTP/2-enabled web server module.

A.2.2. Image processors and optimizers

 svg-sprite (https://github.com/jkphl/svg-sprite) Generates SVG sprites on the command line.

 imagemin (https://github.com/imagemin/imagemin) An image-optimization library.

 imagemin-jpeg-recompress (https://github.com/imagemin/imagemin-jpeg-recompress) An imagemin

plugin for reducing the size of JPEGs.

 imagemin-optipng (https://github.com/imagemin/imagemin-optipng) An imagemin plugin for reducing the

size of PNGs.

 svgo (https://github.com/svg/svgo) A command-line utility for reducing the size of SVGs.

 imagemin-webp (https://github.com/imagemin/imagemin-webp) An imagemin plugin for converting images

to WebP format.

 imagemin-svgo (https://github.com/imagemin/imagemin-svgo) imagemin wrapper for svgo.

 imagemin-pngquant (https://github.com/imagemin/imagemin-pngquant) Yet another imagemin plugin for

reducing the size of PNGs.

 imagemin-gifsicle (https://github.com/imagemin/imagemin-gifsicle) An imagemin plugin for reducing the

size of GIFs.

A.2.3. Minifiers/reducers

 html-minify (https://github.com/yize/html-minify) Minifies HTML files on the command line.

 minifier (https://github.com/fizker/minifier) Minifies CSS and JavaScript files on the command line.

 uncss (https://github.com/giakki/uncss) Removes unused rules from a CSS file by analyzing a website.

A.2.4. Font conversion tools

 tt2eot (https://github.com/fontello/ttf2eot) Converts TrueType fonts to Embedded OpenType.

 tt2woff (https://github.com/fontello/ttf2woff) Converts TrueType fonts to WOFF.

http://expressjs.com/
http://expressjs.com/
https://www.npmjs.com/package/shrink-ray
https://github.com/broofa/node-mime
https://github.com/indutny/node-spdy
https://github.com/jkphl/svg-sprite
https://github.com/imagemin/imagemin
https://github.com/imagemin/imagemin-jpeg-recompress
https://github.com/imagemin/imagemin-optipng
https://github.com/svg/svgo
https://github.com/imagemin/imagemin-webp
https://github.com/imagemin/imagemin-svgo
https://github.com/imagemin/imagemin-pngquant
https://github.com/imagemin/imagemin-gifsicle
https://github.com/yize/html-minify
https://github.com/fizker/minifier
https://github.com/giakki/uncss
https://github.com/fontello/ttf2eot
https://github.com/fontello/ttf2woff

 tt2woff2 (https://github.com/nfroidure/ttf2woff2) Converts TrueType fonts to WOFF2.

A.2.5. gulp and gulp plugins

 gulp (http://gulpjs.com) A streaming JavaScript task runner.

 gulp-cli (https://github.com/gulpjs/gulp-cli) The command-line interface for gulp.

 gulp-util (https://github.com/gulpjs/gulp-util) Utilities for gulp plugins.

 gulp-changed (https://github.com/sindresorhus/gulp-changed) A gulp plugin that checks for changed files.

 del (https://github.com/sindresorhus/del) Deletes files and folders.

 gulp-livereload (https://github.com/vohof/gulp-livereload) Automatically reloads the browser when files

change on the disk.

 gulp-ext-replace (https://github.com/tjeastmond/gulp-ext-replace) Changes a files extension.

 gulp-htmlmin (https://github.com/jonschlinkert/gulp-htmlmin) Minifies HTML files.

 gulp-less (https://github.com/plus3network/gulp-less) A gulp plugin for compiling LESS files.

 gulp-postcss (https://github.com/postcss/gulp-postcss) A gulp plugin wrapper for PostCSS functionality.

 gulp-uglify (https://github.com/terinjokes/gulp-uglify) Uglifies JavaScript files. Uglification not only minifies

JavaScript, but also reduces variable and function names to save the greatest amount of space possible.

 gulp-concat (https://github.com/contra/gulp-concat) Bundles multiple files into a single file.

 gulp-imagemin (https://github.com/sindresorhus/gulp-imagemin) A gulp plugin wrapper for imagemin.

A.2.6. PostCSS and PostCSS plugins

 PostCSS (https://github.com/postcss/postcss) A Node program that transforms CSS.

 Autoprefixer (https://github.com/postcss/autoprefixer) Automatically adds vendor prefixes for CSS properties.

 cssnano (http://cssnano.co) A CSS optimizer. It doesn’t just minify; it reduces CSS via many focused

optimizations.

 autorem (https://github.com/malchata/node-autorem) A PostCSS plugin (by me!) that changes px units in CSS to

rem units.

A.3. Other tools

These tools don’t belong under any other classification, but bear mentioning here:

 csscss (https://zmoazeni.github.io/csscss) A Ruby-based command-line tool that identifies redundancies in

CSS.

 loadCSS (https://github.com/filamentgroup/loadcss) A library by the Filament Group for loading CSS without

blocking rendering.

 Picturefill (https://scottjehl.github.io/picturefill) A polyfill for the <picture> element and the srcset and

sizes attributes by Scott Jehl of the Filament Group.

 Modernizr (https://modernizr.com) A JavaScript feature-detection library. Can be customized to detect as many

(or as few) features as necessary.

https://github.com/nfroidure/ttf2woff2
http://gulpjs.com/
https://github.com/gulpjs/gulp-cli
https://github.com/gulpjs/gulp-util
https://github.com/sindresorhus/gulp-changed
https://github.com/sindresorhus/del
https://github.com/vohof/gulp-livereload
https://github.com/tjeastmond/gulp-ext-replace
https://github.com/jonschlinkert/gulp-htmlmin
https://github.com/plus3network/gulp-less
https://github.com/postcss/gulp-postcss
https://github.com/terinjokes/gulp-uglify
https://github.com/contra/gulp-concat
https://github.com/sindresorhus/gulp-imagemin
https://github.com/postcss/postcss
https://github.com/postcss/autoprefixer
http://cssnano.co/
https://github.com/malchata/node-autorem
https://zmoazeni.github.io/csscss
https://github.com/filamentgroup/loadcss
https://scottjehl.github.io/picturefill
https://modernizr.com/

 fontTools (https://github.com/behdad/fonttools) A Python-based library of font utilities. Contains the font

subsetting tool pyftsubset.

 Font Face Observer (https://github.com/bramstein/fontfaceobserver) A library by Bram Stein that controls the

loading and display of fonts, similar in functionality to the browser-based Font Loading API.

 Alameda (https://github.com/requirejs/alameda) A compact AMD module/script loader built to use JavaScript

promises.

 RequireJS (http://requirejs.org) An older (albeit more compatible) version of Alameda.

 Zepto (http://zeptojs.com) A lightweight jQuery-compatible alternative. This library is the most feature rich of all

jQuery alternatives.

 Shoestring (https://github.com/filamentgroup/shoestring) An even lighter jQuery-compatible alternative by the

Filament Group.

 Sprint (https://github.com/bendc/sprint) Yet another lightweight jQuery-compatible alternative that’s very fast.

 $.ajax Standalone Implementation (https://github.com/ForbesLindesay/ajax) A standalone implementation of

jQuery’s $.ajax method.

 Fetch API (https://github.com/github/fetch) A polyfill for the Fetch API.

 Velocity.js (http://velocityjs.org) A requestAnimationFrame-driven implementation of jQuery’s animate

method. Provides fast animation in a familiar API.

https://github.com/behdad/fonttools
https://github.com/bramstein/fontfaceobserver
https://github.com/requirejs/alameda
http://requirejs.org/
http://zeptojs.com/
https://github.com/filamentgroup/shoestring
https://github.com/bendc/sprint
https://github.com/ForbesLindesay/ajax
https://github.com/github/fetch
http://velocityjs.org/

Appendix B. Native equivalents of common jQuery functionality

In chapter 8, I discussed the importance of embracing minimalism in your website’s

JavaScript. A way of getting there is to drop jQuery altogether and use what’s available

in the browser. This appendix highlights some common jQuery functions and then shows you

how to accomplish the same tasks by native means. This isn’t a complete reference. Such

a thing would be far beyond the scope of an appendix. This is to get you started.

B.1. Selecting elements

jQuery’s core $ method selects DOM elements by using a CSS selector string like so:

$("div");

This selects all <div> elements on a page. Generally speaking, whatever valid CSS selector

that works in the $ method will work with document.querySelector and

document.querySelectorAll (excluding any custom selectors specific to jQuery). The

difference between them is document.querySelector returns only the first matching element,
whereas document.querySelectorAll returns all matched elements in an array object, even
if only one element is returned. This listing shows examples, with return values annotated.

Listing B.1. Using querySelector and querySelectorAll

Although these two methods are useful, other methods are more widely supported and are faster

when it comes to selecting elements. They’re shown in table B.1.

Table B.1. jQuery versus native element selection methods

Selector jQuery code Native equivalent

ID $("#element"); document.getElementById("element");

Tag $("div"); document.getElementsByTagName("div");

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02table01

Selector jQuery code Native equivalent

Class name $(".element"); document.getElementsByClassName("element");

These core element selection methods are supported in virtually all browsers, and are great

for selecting elements when their presence in the DOM is known and predictable. More-complex

selections should be made using the aforementioned querySelector methods.

B.2. Checking DOM readiness

This is covered in chapter 8, but I’ll recap it here for reference purposes. Before you

can do anything in jQuery, you must check whether the DOM is ready. Otherwise, jQuery code

will fail to execute properly. The common way to check for DOM readiness in jQuery is shown

here:

$(document).ready(function(){

 // Code goes here

});

You can use an equivalent shorthand method if you want to save a few bytes:

$(function(){

 // Code goes here

});

If you prefer to use plain old JavaScript instead of jQuery, you can check for DOM readiness

by listening for the DOMContentLoaded event via addEventListener, like so:

document.addEventListener("DOMContentLoaded", function(){

 // Code goes here

});

This is supported since IE9. In older browsers, though, you need to go a different route:

document.onreadystatechange = function(){

 if(document.readyState === "interactive"){

 // Code goes here

 }

};

If you’re going to go without jQuery and you don’t know which DOM readiness method to

use, go with document.onreadystatechange. It has wide support and works much the same way

as listening for the DOMContentLoaded event with addEventListener.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08

B.3. Binding events

Next to element selection, jQuery’s biggest strength is its event-binding syntax. This

little section shows common jQuery event-binding methods, and how to achieve similar

functionality without jQuery.

This section isn’t an event reference!

This section isn’t an exhaustive reference of all events you can use in either jQuery or

in native JavaScript APIs. For a reference of available events to plug into

addEvent-Listener, check out this event reference from MDN:

https://developer.mozilla.org/en-US/docs/Web/Events.

B.3.1. Simple event binding

jQuery listens for events on elements by using the bind method (which has been deprecated

since jQuery v3 in favor of on, which is shown later in this section). Here’s a simple

example of executing some code when an element is clicked:

$(".click-me").bind("click", function(){

 // Click event code goes here

});

jQuery also has shorthand methods that look a bit cleaner than using bind. The following

code accomplishes the same task:

$(".click-me").click(function(){

 // Click event code goes here

});

You can achieve the same thing by using querySelector and addEventListener like so:

document.querySelector(".click-me").addEventListener("click", function(){

 // Click event code goes here

});

Most of the time, you should be able to take the same event names used in jQuery’s bind

syntax and plug them into addEventListener, but don’t assume that you can for anything

but the most basic events. Check out the Mozilla Developer Network’s web event reference

for a list of events you can use.

https://developer.mozilla.org/en-US/docs/Web/Events

B.3.2. Triggering events programmatically

Sometimes you’ll have event code bound to an element that you want to trigger

programmatically within your JavaScript code. Let’s assume that you still have the same

click event code bound to the .click-me element, and you want to run the click event code

bound to it on demand. Using jQuery’s trigger method, you can do that:

$(".click-me").trigger("click");

This statement will run the click event code bound to the .click-me element—nice if you

need to run event code attached to an element on demand. You can accomplish the same task

without jQuery via the dispatchEvent method.

Listing B.2. Triggering events programmatically without jQuery

This syntax isn’t as compact as jQuery’s, but it works. You could shorten this by creating
a helper function that eliminates the tediousness of creating new Event objects.

Listing B.3. An event-triggering helper function

function trigger(selector, eventType)

 document.querySelector(selector).dispatchEvent(new Event(eventType));

}

trigger(".click-me", "click");

The triggering function in the listing selects the element with a given selector, and

triggers a specified event. It’s not often that you’d need to trigger events outside the

context in which they were bound to elements, but it’s possible to achieve this

functionality without jQuery.

B.3.3. Targeting elements that don’t exist yet

jQuery can bind to elements that don’t exist by using the on method. This is useful when

you need to impart functionality to elements that don’t exist now but may exist in the
future. Here’s an example of this method executing code on elements within a

element:

$(".list").on("mouseover", ".list-item", function(){

 // Mouseover code goes here

});

With this code, any .list-item elements added to the .list element in the future will still

execute the code bound to the mouseover element. You can imagine all sorts of scenarios

where this would be useful, and you can do the same thing without jQuery via the following

code.

Listing B.4. Binding behavior to elements that don’t exist yet without jQuery

Again, not as compact as jQuery, but functional. Of course, if you’re targeting child

elements with something other than a class, you may need to poke around in the event.target

object for other methods to target child elements by. For example, you can use the

event.target.id property to target elements by ID, or the event.target.tagName property

to target elements by their tag name. It’s not as convenient or compact as jQuery’s syntax,

but it works.

B.3.4. Removing event bindings

jQuery can remove bindings from an element by using the unbind and off methods like so:

$(".click-me").unbind("click");

$(".list").off("mouseover", ".list-item");

Like bind, unbind has been deprecated since version 3 of jQuery, so using off is preferable

going forward. In either case, you can use removeEventListener in regular JavaScript to

remove an event binding on an element:

$(".click-me").removeEventListener("click", boundFunctionReference);

When you remove an event binding with removeEventListener, you have to provide the function

that you bound to it in the first place. In this case, boundFunction-Reference is a

placeholder for the function you’d have bound to an element with addEventListener.

B.4. Iterating over a set of elements

jQuery gives you a super helpful method for iterating over a set of matched elements in

the form of the each method. You can run it on any set of matched elements:

$("ul > li").each(function(){

 $(this); // The current element in the iteration

});

Doing this without jQuery is easy. Just use a for loop as shown next.

Listing B.5. Iterating over a set of elements without jQuery

Another way of looping over a set of matched elements also uses the for construct, but in

a different way:

for(var i in listElements){

 listElements[i]; // The current member in the iteration

}

Beware of this syntax, however: it loops over not only all elements in the set, but also

object members such as the length property. Most of the time, you won’t want to use this

syntax, but you may conceive of scenarios where it’s desirable.

B.5. Manipulating classes on elements

jQuery allows you to manipulate classes on elements by using the addClass, removeClass,

and toggleClass methods.

Listing B.6. Manipulating element classes with jQuery

A native class-manipulation API called classList provides much of this functionality. The

following are classList-driven equivalents of the jQuery methods shown previously.

Listing B.7. Manipulating element classes without jQuery

You can also supply a condition as a second argument to the toggle method. If the condition

evaluates to true, the class is added. If the condition evaluates to false, the class is

removed.

Listing B.8. Conditionally toggling classes using classList

classList doesn’t have universal support, however, and all versions of IE since IE10 only

partially support it. For example, the second argument for the toggle method shown in the

preceding code isn’t supported in any version of IE. In this case, you can always manipulate
the selected element’s className property. You can easily add a class to an element just

by concatenating a string to that property:

item.className += " new-class";

Removing/toggling classes is more involved. It usually involves using a regular expression

or expanding a className property into an array and manipulating it that way. If you need

to do more than simple class addition in the absence of classList, consider using a polyfill.

One is available at https://github.com/eligrey/classList.js that weighs in at a little over

2 KB minified. Server compression can reduce the weight of this polyfill even further.

Sometimes you might need to check whether an element has a particular class. jQuery features

the hasClass method, which affords you this ability:

$(".item").hasClass("item"); // Returns true

The easiest way to do this is to use the classList contains method.

https://github.com/eligrey/classList.js

Listing B.9. Checking for an existing class with classList.contains

For browsers without classList support, use the polyfill noted previously. Otherwise, you

could write your own code to check for the existence of a class.

B.6. Accessing and modifying styles

jQuery allows you to access and modify element styles by way of the css method. You can

get or set a single CSS property in jQuery.

Listing B.10. Setting styles with jQuery

You can also set multiple CSS properties on an element with the CSS method:

$(".item").css({

 color: "#f00",

 border: "1px solid #0f0",

 fontSize: "24px"

});

Note

When setting CSS properties on elements, remember that properties with dashes aren’t

expressed the same way when used in the context of an object. font-size becomes fontSize,

border-bottom becomes borderBottom, and so on. The hyphen character isn’t a legal character

in variable names because it’s a language operator. This convention also exists in native

JavaScript, not only jQuery, so be wary.

Getting/setting styles without jQuery is more involved. If you want to retrieve a CSS

property set on an element, you need to use the getComputedStyle method.

Listing B.11. Getting an element’s style without jQuery

Setting styles requires using the style object:

item.style.fontSize = "24px";

What if you want to set multiple styles? You could set them all at once via the HTML style
attribute:

item.setAttribute("style", "font-size: 24px; border-bottom: 1px solid #0f0;");

This may seem a bit unsightly for some, but it’s high-performing. If you don’t care, and

still want something a bit nicer looking, you could create a helper function like the one

shown in the following listing that uses a similar syntax to the way jQuery’s css method

sets multiple CSS rules.

Listing B.12. A helper function for setting multiple CSS properties without jQuery

You can read properties set by the style object, but they’ll be populated only if they’ve

been previously set. If they haven’t been, you’ll get an empty string. In this case, use

getComputedStyle as shown previously.

B.7. Getting and setting attributes

jQuery’s attr method allows you get and set attribute values like so.

Listing B.13. Setting attributes with jQuery

Setting them in plain old JavaScript couldn’t be much simpler.

Listing B.14. Setting attributes without jQuery

If you want to set multiple attributes in one go, you can use something similar to the code

shown in listing B.8:

function setAttrs(element, attrs){

 for(var attr in attrs){

 element.setAttribute(attr, attrs[attr]);

 }

}

setAttrs(document.querySelector(".item"), {

 style: "color: #333;",

 id: "uniqueItem"

});

The setAttribute and getAttribute methods have nearly ubiquitous support, so they can be

used without too much concern over compatibility.

B.8. Getting and setting element contents

jQuery has two methods for getting and setting element contents: html and text. The

difference between the two is that html retrieves element contents with markup, and when

used to set element contents, will treat markup literally. text strips out markup, and when

used to set element contents, will treat text literally and encode any markup-related

characters as HTML entities. The following listing shows how jQuery gets and sets element

contents with these methods.

Listing B.15. Getting and setting element contents with jQuery

These methods have similar equivalents in native JavaScript: innerHTML and innerText, and

they’re used as shown in the following listing.

Listing B.16. Getting and setting element contents without jQuery

A caveat: innerHTML is considered a standard property, but innerText isn’t (even though

a lot of browsers support it). innerText is aware of styling in that if elements with another

element are hidden by CSS, innerText won’t include the hidden element’s contents in its

return value. If this is problematic for you, you can use the text-Content property instead.

Listing B.17. Setting an element’s text content

innerHTML is the gold standard of getting or setting element contents if you want to include

HTML, but if you’re in doubt over which to use for getting or setting element text, default

to textContent. It’s well supported, with the exception of IE8 and below; innerText is

supported in IE6 and above.

B.9. Replacing elements

jQuery has a replaceWith method that, unlike html, allows you to replace the entire element

itself with whatever content you’d like, rather than just its inner contents:

$(".list").replaceWith("<p>I don't like lists.</p>");

With this code, the .list element is replaced with a new <p> element. As it turns out, an

outerHTML element has been supported in browsers for a while that does the same thing:

document.querySelector(".list").outerHTML = "<p>I don't like lists.</p>";

Doesn’t get much easier than that. outerHTML has been supported since IE4. Yes, you read

correctly: Internet Explorer 4. Other browsers have supported it either since their

inception, or many moons ago, so use it with confidence. An outerText property works like

innerText, but replaces an element with whatever text you provide:

document.querySelector(".list").outerText = "<p>I don't like lists.</p>";

This replaces an element entirely with the supplied text, and will encode HTML characters

so that they appear literally, with no interpretation made by the browser. Unlike outerHTML,

however, outerText isn’t a standard property. It’s supported in every browser except for

Firefox, so use it with care.

B.10. Hiding and showing elements

This one is super easy. jQuery has two methods for hiding and showing elements, named hide

and show, respectively. They work like so:

$(".item").hide();

$(".item").show();

You can achieve the same functionality by using the element’s style object.

Listing B.18. Hiding and showing elements with the style object

Of course, you should bear in mind that using a display value of block may not always be

the best idea. Maybe you’re toggling an element that uses a display type of flex,

inline-flex, inline, or inline-block rather than block. In cases like these, it’s best

to have a global utility class that hides elements like this:

.hide{

 display: none;

}

Then you can just use a classList method to add or remove this class. When the hide class

is added to an element, it will hide it. When it’s removed, the element’s original display

property value will kick in. This prevents unintended layout problems.

B.11. Removing elements

Sometimes an element just needs to go. jQuery gives you a nice method for it named remove.

It works like this:

$(".item").remove();

This removes every element with a class of item from the DOM. A method in native JavaScript

goes by the same name and works similarly. Try this on for size:

document.querySelector(".item").remove();

The problem here is that querySelector returns only the first item that matches the query.

You can use querySelectorAll, but the return value for it is an object array. Therefore,

if you want to remove all items that match the query, you need to iterate over the set of

matched elements as shown in the following listing.

Listing B.19. Removing multiple elements from the DOM without jQuery

The same code must be used with any element selection method that returns an object array

(for example, getElementsByTagName, getElementsByClassName), not just querySelectorAll.

Things are much more straightforward if you need to use only getElementById or querySelector,

as you can call the remove method directly on the selected element rather than having to

iterate over a set of them.

B.12. Going further

You can achieve a lot more via native JavaScript means in lieu of jQuery than what’s

documented here. A great place to check out is the You Might Not Need jQuery website at

http://youmightnotneedjquery.com. It has a slew of code snippets of common (and not so

common) jQuery behaviors and their native equivalents. It also allows you to specify the

level of browser compatibility you need. If something is missing here, give that site a

look. Failing that, look to Google! Someone out there has figured it out, and it’s out

there!

http://youmightnotneedjquery.com/

Index

[SYMBOL][A][B][C][D][E][F][G][H][I][J][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

SYMBOL

$ method

304 Not Modified status

A

above-the-fold styles

 identifying and separating, 2
nd

 identifying critical components

 identifying fold

 separating critical CSS, 2nd

 loading

Accept-Encoding header, 2nd, 3rd

Access-Control-Allow-Origin

activate event, 2nd, 3rd

ad hoc commands

addClass method, 2nd, 3rd

addEventListener method, 2nd, 3rd

$.ajax method, 2nd, 3rd, 4th

AJAX requests, making with Fetch API

$.ajax Standalone Implementation

Alameda, 2nd

AMD (Asynchronous Module Definition)

Android devices, debugging websites remotely on

animate function, 2nd

animation

 requestAnimationFrame

 implementing

 overview

 performance comparison

 timer function-driven animations and

 Velocity.js

antipatterns, performance

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexSYMBOL
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexA
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexB
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexC
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexD
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexE
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexF
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexG
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexH
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexI
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexJ
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexL
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexM
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexN
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexO
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexP
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexQ
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexR
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexS
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexT
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexU
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexV
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexW
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexX
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_024.html#MainIndexZ
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1001
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1002
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1003
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1004
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1005
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1006
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1007
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1009
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1010
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1011
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1012
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1013
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1014
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1015
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1016
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1017
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1018
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1019
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1020
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1021
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1022
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1023
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1024
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1025
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1026
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1027
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1028
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1029
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1030
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1031
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1032
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1033
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1034
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1035
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1036
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1037
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1038
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1039
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1040
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1041

 asset inlining

 bundling CSS and JavaScript

 identifying for HTTP/2

 image sprites

Application tab, Chrome’s Developer Tools

Archibald, Jake

art direction

ASP.NET CDN

assessment tools

 benchmarking JavaScript in Chrome

 browser-based assessment tools

 inspecting network requests

 viewing HTTP request and response headers

 custom network throttling profiles, creating

 debugging websites remotely

 on Android devices

 on iOS devices

 Google PageSpeed Insights

 appraising website performance

 Google Analytics, using for bulk reporting

 rendering performance-auditing tools

 browsers, how render web pages

 Google Chrome’s Timeline tool

 jank

 marking points in timeline with JavaScript

 rendering profilers in other browsers

 simulating devices in desktop web browser

assets

 caching

 Cache-Control header

 controlling asset revalidation with no-cache, no-store, and stale-while-revalidate

 invalidating cached assets

 strategy for

 CDNs

 overview

 referencing

 verifying with Subresource Integrity

 compressing

 Brotli compression

 configuring compression levels

 of right file types

 granularity

 inlining

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1042
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1043
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1044
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1045
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1046
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1047
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1048
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1049
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1050
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1051
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1052
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1053
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1054
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1055
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1056
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1057
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1058
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1059
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1060
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1061
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1062
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1063
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1064
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1065
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1066
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1067
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1068
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1069
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1070
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1071
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1072
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1073
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1074
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1075
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1076
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1077
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1078
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1079
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1080
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1081
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1082

 minifying

 CSS

 HTML

 JavaScript

 resource hints

 preconnect resource hint

 prefetch resource hint

 preload resource hint

 prerender resource hint

 sending preemptively with Server Push

 serving.

 See also caching.

async attribute, 2nd, 3rd, 4th, 5th, 6th

Asynchronous Module Definition.

 See AMD.

asynchronous script-loading

attr method, 2nd

attributes

 in jQuery

 reading and modifying

auditing client’s website

autoprefixer plugin, 2nd

autorem plugin, 2nd

B

background-image property, 2nd, 3rd, 4th

background-position property

Behavior Flow link, Google Analytics

Behavior section, Google Analytics, 2nd

below-the-fold styles, loading

 asynchronously with preload resource hint

 polyfilling preload resource hint

bench() function

benchmarking

 constructing and running

 examining benchmark results, 2
nd

 JavaScript in Chrome

Bézier curves

bind method, 2nd, 3rd

binding events, in jQuery

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1083
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1084
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1085
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1086
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1087
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1088
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1089
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1090
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1091
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1092
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1093
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1094
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1095
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1096
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1097
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1098
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1099
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1100
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1101
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1102
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1103
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1104
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1105
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1106
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1107
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1108
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1109
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1110
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1111
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1112
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1113
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1114
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1115
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1116
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1117
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1118
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1119
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1120
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1121
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1122
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1123
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1124
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1125
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1126
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1127
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1128
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1129
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1130
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1131

 overview

 removing event bindings

 simple event binding

 targeting elements that don’t exist yet

 triggering events programmatically

blocking head-of-line

<body> element, 2nd

Bootstrap

border property

border-bottom property

border-left property

border-radius property

border-right property

border-top property

boundFunctionReference

.box element

box model, comparing flexbox styles and

breakpoints, 2nd

Brotli compression

 checking for support

 comparing to GZIP

 writing Brotli-enabled web server in Node

browser caches

browsers

 capability

 HTTP/2-incapable

buffer property

build task, 2nd, 3rd

buildCSS task, 2nd

bulk reporting, using Google Analytics for

bundling CSS and JavaScript

C

Cache Storage section, Application tab

Cache-Control header

 CDNs and

 max-age directive

 overview

Cache-Control max-age value

cachedAssets array, 2nd

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1132
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1133
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1134
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1135
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1136
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1137
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1138
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1139
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1140
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1141
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1142
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1143
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1144
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1145
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1146
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1147
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1148
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1149
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1150
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1151
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1152
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1153
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1154
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1155
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1156
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1157
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1158
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1159
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1160
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1161
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1162
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1163
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1164
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1165
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1166
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1167
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1168
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1169
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1170
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1171
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1172
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1173

caches.match method

caches.open method

CacheStorage API, 2nd

cacheVersion variable, 2nd

cacheWhitelist variable

caching

 Cache-Control header

 CDNs and

 max-age directive

 controlling asset revalidation with no-cache, no-store, and stale-while-revalidate

 invalidating cached assets

 CSS and JavaScript assets

 images and other media files

 network requests

 strategy for

 categorizing assets

 implementing.

 See assets.

Can I Use website

Capture Screenshots button, Network tab

Cascading Style Sheets.

 See CSS.

CDN-hosted assets

cdnjs

CDNs (Content Delivery Networks)

 assets

 overview

 referencing

 verifying with Subresource Integrity

 Cache-Control header and

 troubleshooting

certutil command

checksums, generating

claim event

classes

 adding HTTP/1

 in jQuery, manipulating

 using classList to manipulate on elements

classList API

 overview, 2
nd

 using to manipulate classes on elements

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1174
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1175
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1176
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1177
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1178
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1179
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1180
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1181
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1182
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1183
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1184
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1185
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1186
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1187
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1188
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1189
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1190
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1191
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1192
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1193
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1194
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1195
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1196
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1197
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1198
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1199
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1200
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1201
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1202
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1203
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1204
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1205
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1206
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1207
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1208
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1209
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1210
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1211

className property, 2nd

clean builds

click event, 2nd

.click-me element

client’s website

 auditing

 downloading

 optimizing

 minifying assets

 optimizing images

 using server compression

 running

closeModal function

CMS (content management system)

collapseWhitespace

.collection elements

compression, 2nd

 Brotli compression

 checking for support

 comparing to GZIP

 writing Brotli-enabled web server in Node

 font formats

 levels of, configuring

 of headers, solving via HTTP/2

 of right file types

 web servers

compression module, 2nd, 3rd

concatenating scripts

concatJS task, 2nd

Content Delivery Networks.

 See CDNs.

content management system.

 See CMS.

content property

Content-Encoding header, 2nd, 3rd

content-specific images

contents of elements, in jQuery

converting fonts, @font-face cascades

Coyle Appliance Repair website, 2nd, 3rd, 4th, 5th

critical components

critical CSS

 above-the-fold styles, identifying and separating

 identifying critical components

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1212
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1213
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1214
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1215
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1216
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1217
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1218
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1219
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1220
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1221
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1222
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1223
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1224
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1225
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1226
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1227
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1228
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1229
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1230
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1231
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1232
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1233
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1234
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1235
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1236
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1237
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1238
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1239
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1240
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1241
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1242
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1243
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1244
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1245
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1246
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1247
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1248
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1249
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1250
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1251
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1252
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1253
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1254
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1255
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1256
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1257
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1258
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1259
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1260
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1261
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1262
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1263

 identifying fold

 separating critical CSS

 above-the-fold styles, loading

 below-the-fold styles, loading, 2
nd

 asynchronously with preload resource hint

 polyfilling preload resource hint

 maintainability

 multipage websites and

 overview

 recipe website

 downloading and running

 reviewing project structure

 render blocking

 weighing benefits

critical_medium.less file

critical_small.less file

crossorigin attribute

crt folder

CSS (Cascading Style Sheets)

 above-the-fold styles, identifying and separating

 identifying critical components

 identifying fold

 loading

 separating critical CSS

 below-the-fold styles, loading, 2
nd

 asynchronously with preload resource hint

 polyfilling preload resource hint

 bundling with JavaScript

 culling shallow selectors

 customizing framework downloads

 DRY principle

 finding redundancies with csscss

 images in

 media queries

 using SVG background images in

 invalidating assets of

 LESS precompiler

 maintainability

 minifying

 mobile-first approach to responsive web design

 Google’s mobile-friendly guidelines

 verifying site’s mobile-friendliness

 vs. desktop-first

 multipage websites and

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1264
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1265
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1266
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1267
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1268
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1269
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1270
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1271
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1272
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1273
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1274
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1275
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1276
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1277
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1278
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1279
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1280
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1281
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1282
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1283
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1284
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1285
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1286
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1287
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1288
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1289
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1290
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1291
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1292
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1293
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1294
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1295
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1296
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1297
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1298
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1299
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1300
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1301
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1302
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1303
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1304
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1305
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1306
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1307
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1308
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1309

 overview

 performance-tuning CSS

 @import serializes requests

 avoiding @import declaration

 comparing box model and flexbox styles

 constructing and running benchmark

 examining benchmark results, 2nd

 flexbox, using where possible

 increasing rendering speed

 <link> parallelizes requests

 placing CSS in

 preventing Flash of Unstyled Content phenomenon

 transitions

 using faster selectors

 plugins related to

 recipe website

 downloading and running

 reviewing project structure

 render blocking

 segmenting CSS

 using shallow CSS selectors

 weighing benefits

 writing shorthand CSS.

 See also critical CSS; optimizing CSS.

CSS font-display property

css method

csscss command-line tool

 finding redundancies with

 overview

cssnano plugin, 2nd

CSSOM (CSS Object Model)

cssrelpreload.min.js file

culling shallow selectors

custom network throttling profiles

customizing framework downloads

D

data-href attribute

data-lang attribute

data-src attribute, 2nd

data-srcset attribute, 2nd

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1310
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1311
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1312
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1313
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1314
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1315
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1316
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1318
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1319
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1320
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1321
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1322
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1323
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1324
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1325
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1326
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1327
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1328
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1329
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1330
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1331
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1332
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1333
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1334
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1335
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1336
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1337
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1338
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1339
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1340
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1341
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1342
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1343
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1344
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1345
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1346
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1347
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1348
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1349
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1350

data-status attribute

debugging websites, remotely

 on Android devices

 on iOS devices

DeflateCompressionLevel

del module

del plugin

desktop-first approach to responsive web design

detection code, service workers

Develop option, Safari Developer Tools

Disable Cache check box, Chrome, 2nd

Discover USB Devices check box, Chrome

dispatchEvent method

div.item element

div.marqueClass selector

div.modal element

div.pageWrapper element

DNS lookups

dns-prefetch resource hint

document.fonts object

document.onreadystatechange

document.querySelector method, 2nd

document.querySelectorAll

DOM (Document Object Model), 2nd, 3rd

DOMContentLoaded event

downloading

 client’s website

 image sprite generator

 recipe website

DPI (dots per inch)

DRY (don’t repeat yourself) principle, 2nd

E

e.target attribute

each method

easy_install pip command

edge servers

elements, in jQuery

 contents of

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1351
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1352
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1353
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1354
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1355
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1356
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1357
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1358
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1359
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1360
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1361
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1362
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1363
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1364
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1365
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1366
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1367
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1368
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1369
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1370
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1371
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1372
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1373
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1374
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1375
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1376
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1377
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1378
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1379
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1380
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1381
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1382
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1383
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1384
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1385
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1386
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1387
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1388
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1389

 hiding

 removing

 replacing

 selecting

else condition

em units

encoding images, with WebP

 browsers that don’t support WebP

 lossless images, with imagemin

 lossy images, with imagemin

EOT (Embedded OpenType), 2nd

ETag

Event Log tab, Timeline profiler

event.target.id property

express

F

Fetch API

 making AJAX requests with

 overview

 polyfilling

 using

fetch event, 2nd, 3rd, 4th, 5th

fetch.min.js file

Filament Group, 2nd

file glob

file size, jQuery alternatives and

file_get_contents function

file_md5 function

filemtime function

filter option

Firefox, 2nd

flame chart

Flash of Unstyled Content phenomenon

flexbox

 comparing box model and flexbox styles

 using

Flickr

FOIT (Flash of Invisible Text)

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1390
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1391
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1392
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1393
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1394
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1395
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1396
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1397
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1398
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1399
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1400
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1401
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1402
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1403
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1404
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1405
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1406
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1407
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1408
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1409
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1410
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1411
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1412
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1413
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1414
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1415
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1416
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1417
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1418
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1419
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1420
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1421
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1422
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1423
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1424
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1425
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1426
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1427
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1428
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1429
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1430
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1431

Font Face Observer, 2nd

 external scripts

 font-loading behavior

font-display property

@font-face cascades

font-family property, 2nd

font-loading API

 for repeat visitors

 with JavaScript disabled

font-size value

fonts

 @font-face cascades

 building

 converting fonts

 compressing EOT font formats

 compressing TTF font formats

 converting

 formats of

 loading

 CSS font-display property

 Font Face Observer

 font-loading API

 problems with

 selecting

 subsets

 subsetting

 manually

 with unicode-range property

 variants of

fonts-loaded class, 2nd

fontTools, 2nd

for construct

formats, for images

Foundation

FOUT (Flash of Unstyled Text)

FPS (frames per second)

frame

framework downloads, customizing

G

gem installer, Ruby

generating

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1432
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1433
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1434
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1435
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1436
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1437
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1438
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1439
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1440
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1441
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1442
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1443
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1444
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1445
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1446
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1447
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1448
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1449
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1450
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1451
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1452
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1453
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1454
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1455
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1456
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1457
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1458
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1459
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1460
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1461
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1462
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1463
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1464
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1465
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1466
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1467
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1468
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1469
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1470
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1471
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1472
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1473
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1474
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1475

GET verb

getAttribute method, 2nd

getComputedStyle method

getElementById

getElementsByClassName

getElementsByTagName

git command, 2nd, 3rd

Git, installing

global components

global imagery

global_large.less file

global_medium.less file

global_small.less file, 2nd

Google

 benchmarking JavaScript in

 mobile-friendly guidelines

 Timeline tool

 using for bulk reporting

Google CDN

Google Fonts, 2nd

Google PageSpeed Insights

 appraising website performance

 Google Analytics, using for bulk reporting

Grumpicon

 falling back to raster image sprites with

 overview

gulp tool

 installing

 plugins, 2
nd

 CSS-related plugins

 essential plugins

 HTML minification plugin

 image-processing plugins

 JavaScript-related plugins

 reasons for using build system

 streams and

 structuring project’s folders

 tasks

 anatomy of

 overview

 writing core tasks

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1476
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1477
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1478
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1479
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1480
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1481
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1482
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1483
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1484
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1485
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1486
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1487
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1488
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1489
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1490
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1491
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1492
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1493
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1494
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1495
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1496
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1497
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1498
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1499
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1500
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1501
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1502
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1503
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1504
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1505
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1506
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1507
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1508
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1509
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1510
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1511
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1512
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1513
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1514
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1515
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1516
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1517
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1518
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1519

 writing utility tasks

gulp-changed plugin, 2nd

gulp-cli

gulp-concat plugin, 2nd

gulp-ext-replace plugin, 2nd

gulp-htmlmin plugin, 2nd

gulp-imagemin plugin, 2nd, 3rd

gulp-inline plugin

gulp-less plugin, 2nd

gulp-livereload plugin, 2nd, 3rd

gulp-nunjucks plugin

gulp-postcss plugin, 2nd

gulp-sass plugin, 2nd

gulp-spritesmith plugin

gulp-uglify plugin, 2nd

gulp-uncss plugin

gulp-util plugin, 2nd

gulp.dest method, 2nd

gulp.src method

gulp.task method, 2nd

gulpfile

GZIP compression, comparing to Brotli

H

hasClass method

hash algorithms

<head> tag, placing CSS in

head-of-line blocking

 problems with

 solving via HTTP/2

<header> element

headers

 compression of

 uncompressed

hero image

hiding elements, in jQuery

high DPI displays

htdocs folder

HTML

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1520
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1521
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1522
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1523
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1524
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1525
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1526
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1527
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1528
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1529
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1530
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1531
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1532
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1533
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1534
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1535
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1536
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1537
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1538
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1539
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1540
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1541
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1542
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1543
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1544
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1545
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1546
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1547
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1548
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1549
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1550
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1551
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1552
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1553
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1554
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1555
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1556
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1557
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1558
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1559
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1560
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1561
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1562
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1563
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1564
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1565
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1566
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1567
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1568

 images in

 <picture> element

 Picturefill script

 sizes attribute

 srcset attribute

 SVG in

 universal max-width rule for images

 minifying, 2
nd

html method

HTML minification plugin

html-minify

htmlmin plugin, 2nd

htmlmin() function

HTTP (Hypertext Transfer Protocol)

HTTP headers, viewing

HTTP/1

 optimizing for HTTP/2 and

 HTTP/2 servers with HTTP/2-incapable browsers

 segmenting users

 serving assets according to browser capability

 problems with

 head-of-line blocking

 nonsecure web sites

 solving via HTTP/2

 uncompressed headers

 replacing granular scripts with concatenated scripts

HTTP/2

 optimization technique changes

 asset granularity

 caching effectiveness

 identifying performance antipatterns

 optimizing for both HTTP/1 and

 HTTP/2 servers with HTTP/2-incapable browsers

 segmenting users

 serving assets according to browser capability

 reasons for using

 Server Push

 invoking

 measuring performance

 overview

 sending assets preemptively with

 writing behavior of in Node

 servers

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1569
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1570
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1571
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1572
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1573
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1574
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1575
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1576
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1577
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1578
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1579
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1580
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1581
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1582
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1583
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1584
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1585
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1586
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1587
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1588
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1589
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1590
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1591
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1592
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1593
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1594
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1595
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1596
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1597
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1598
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1599
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1600
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1601
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1602
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1603
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1604
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1605
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1606
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1607
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1608
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1609
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1610
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1611

 solving HTTP/1 problems with

 head-of-line blocking

 header compression

 HTTPS

 writing server in Node

HTTPS

 guaranteed with HTTP/2

 service workers

Hypertext Transfer Protocol.

 See HTTP.

I

icon images

iconography

IIS (Internet Information Services)

image sprites

 downloading and installing install sprite generator

 falling back to raster image sprites

 generating

 using

image-compression methods

imagemin plugin, reducing raster images with

 optimizing JPEG images

 optimizing PNG Images

imagemin script

imagemin-gifsicle plugin, 2nd

imagemin-jpeg-recompress plugin, 2nd, 3rd

imagemin-optipng plugin, 2nd

imagemin-pngquant plugin, 2nd

imagemin-svgo plugin, 2nd

imagemin-webp plugin, 2nd, 3rd

images

 encoding images with WebP

 browsers that don’t support WebP

 lossless images, with imagemin

 lossy images, with imagemin

 formats for

 in CSS

 media queries

 using SVG background images in

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1612
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1613
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1614
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1615
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1616
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1617
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1618
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1619
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1620
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1621
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1622
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1623
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1624
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1625
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1626
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1627
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1628
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1629
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1630
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1631
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1632
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1633
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1634
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1635
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1636
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1637
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1638
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1639
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1640
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1641
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1642
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1643
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1644
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1645
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1646
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1647
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1648
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1649
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1650
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1651
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1652
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1653
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1654

 in HTML

 <picture> element

 Picturefill script

 sizes attribute

 srcset attribute

 SVG in

 universal max-width rule for images

 invalidating

 lazy loading of

 optimizing, 2
nd

 overview

 processing, 2
nd

 raster images

 lossless images

 lossy images

 reducing with imagemin

 reducing

 optimizing SVG images

 raster images with imagemin

 sprites of

 SVG images

 element

img folder, TinyPNG

@import declaration

 avoiding

 serializied requests and

inetmgr executable

inlining, 2nd, 3rd

innerHTML property, 2nd, 3rd

innerText

install event, 2nd

installation code, service workers

installing

 fontTools

 Git

 gulp tool

 image sprite generator

 Node.js

 service workers

integrity attribute

intercepting, network requests

Internet Information Services.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1655
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1656
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1657
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1658
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1659
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1660
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1661
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1662
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1663
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1664
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1665
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1666
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1667
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1668
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1669
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1670
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1671
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1672
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1673
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1674
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1675
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1676
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1677
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1678
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1679
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1680
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1681
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1682
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1683
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1684
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1685
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1686
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1687
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1688
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1689
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1690
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1691
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1692
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1693
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1694
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1695
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1696
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1697
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1698
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1699
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1700
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1701

 See IIS.

invalidating cached assets

 CSS and JavaScript assets

 images and other media files

inViewport method

invoking Server Push

iOS devices, debugging websites remotely on

item class

iterating over set of elements

J

Jank

Jank Invaders

JavaScript

 accommodating users without

 benchmarking in Chrome

 bundling with CSS

 invalidating assets of

 marking points in timeline with

 minifying

 plugins related to

 requestAnimationFrame

 implementing

 overview

 performance comparison

 timer function-driven animations and

 script-loading

 async attribute

 asynchronous

 <script> element placement

 Velocity.js

JPEG format

JPEG images, optimizing

jpeg-recompress plugin

jQuery

 alternatives to

 file size in

 implementing

 overview

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1702
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1703
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1704
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1705
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1706
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1707
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1708
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1709
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1710
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1711
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1712
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1713
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1714
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1715
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1716
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1717
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1718
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1719
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1720
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1721
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1722
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1723
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1724
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1725
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1726
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1727
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1728
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1729
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1730
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1731
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1732
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1733
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1734

 performance in

 Shoestring

 Sprint

 Zepto

 getting by without

 checking for DOM to be ready

 reading and modifying element attributes and content

 selecting elements and binding events

 using classList to manipulate classes on elements

 native equivalents of common functionality

 accessing and modifying styles

 binding events

 checking DOM readiness

 getting and setting attributes

 getting and setting element contents

 hiding and showing elements

 iterating over set of elements

 manipulating classes on elements

 removing elements

 replacing elements

 selecting elements

jquery.min.js file

jsDelivr

jsdom package

json method

L

lang attribute

latency

lazy loading images

 accommodating users without JavaScript

 configuring markup

 writing lazy loader

 building initializer and destroyer

 core methods

 laying foundations

 running script

 scanning document for images

lazyClass property

lazyLoader variable

legal agreements

Legendary Tones website, 2nd, 3rd, 4th

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1735
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1736
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1737
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1738
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1739
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1740
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1741
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1742
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1743
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1744
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1745
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1746
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1747
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1748
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1749
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1750
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1751
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1752
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1753
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1754
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1755
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1756
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1757
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1758
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1759
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1760
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1761
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1762
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1763
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1764
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1765
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1766
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1767
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1768
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1769
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1770
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1771
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1772
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1773
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1774
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1775
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1776
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1777

length property

LESS files, building

LESS precompiler

level option

 elements

licensing agreements

Link header, 2nd, 3rd

<link> tag, 2nd, 3rd, 4th, 5th, 6th

.list element

list-style-image property

livereload module

LiveReload plugin, 2nd

load method

load time

loadCSS group, 2nd, 3rd

loadcss.min.js file

loadImage method

loading

 above-the-fold styles

 below-the-fold styles

 asynchronously with preload resource hint

 polyfilling preload resource hint

 fonts

 CSS font-display property

 Font Face Observer

 font-loading API

 problems with

 of web pages

Loading event, Timeline tool

local() function

log method

lossless images, 2nd

lossy images, 2nd

M

main.less file

Marcotte, Ethan

margin property

margin-bottom property

margin-left property

margin-right property

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1778
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1779
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1780
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1781
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1782
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1783
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1784
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1785
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1786
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1787
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1788
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1789
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1790
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1791
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1792
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1793
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1794
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1795
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1796
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1797
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1798
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1799
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1800
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1801
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1802
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1803
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1804
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1805
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1806
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1807
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1808
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1809
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1810
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1811
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1812
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1813
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1814
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1815
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1816
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1817
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1818
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1819
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1820
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1821
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1822
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1823
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1824
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1825
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1826
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1827

margin-top property

marking points in timeline, with JavaScript

#masthead selector

max-age directive

max-width rule

max-width value

media files, invalidating

media queries, 2nd, 3rd, 4th

<meta> tag

Microsoft Edge

mime module, 2nd

min-width value

minification, 2nd, 3rd

minifiers

minifyHTML function, 2nd

minifying

 assets

 CSS

 HTML

 JavaScript

 HTML

mixins

mobile-first approach to responsive web design

 Google’s mobile-friendly guidelines

 verifying site’s mobile-friendliness

 vs. desktop-first

Mobile-Friendly Test, 2nd

mod_brotli module

mod_deflate module, 2nd

.modal.open class

Modernizr, 2nd

mouseover element

Mozilla

mydevice.io

N

network connection, simulating

Network panel, Chrome’s Developer Tools

network requests

 caching

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1828
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1829
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1830
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1831
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1832
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1833
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1834
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1835
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1836
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1837
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1838
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1839
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1840
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1841
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1842
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1843
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1844
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1845
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1846
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1847
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1848
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1849
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1850
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1851
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1852
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1853
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1854
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1855
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1856
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1857
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1858
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1859
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1860
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1861
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1862
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1863
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1864
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1865
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1866
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1867
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1868
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1869
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1870
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1871
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1872
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1873

 inspecting

 intercepting

network throttling profiles

Network Throttling Profiles settings screen, Chrome

no-cache directive

--no-match-shorthand argument

no-store directive

node http.js

Node.js

 installing

 writing Brotli-enabled web server in

 writing HTTP/2 server in

 writing Server Push behavior in

Node.js-based tools

 font conversion tools

 gulp and gulp plugins

 image processors and optimizers

 minifiers and reducers

 PostCSS and PostCSS plugins

 web servers and related middleware

nonrepeatable backgrounds

nonsecure web sites

<noscript> tag, 2nd, 3rd

npm (Node Package Manager)

npm modules

:nth-child selector

O

Offline check box, Chrome’s Network panel

#okayButton element

on method

openModal function, 2nd

OpenSans-Bold-Cyrillic.ttf

OpenSans-Bold.ttf, 2nd, 3rd, 4th

OpenSans-Light-Cyrillic.ttf

OpenSans-Light.ttf, 2nd, 3rd, 4th

OpenSans-Regular.ttf

optimg folder

optimizationLevel option

optimizing client’s website

 minifying assets

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1874
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1875
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1876
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1877
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1878
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1879
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1880
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1881
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1882
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1883
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1884
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1885
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1886
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1887
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1888
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1889
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1890
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1891
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1892
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1893
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1894
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1895
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1896
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1897
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1898
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1899
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1900
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1901
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1902
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1903
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1904
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1905
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1906
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1907
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1908
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1909
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1910
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1911
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1912
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1913
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1914
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1915
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1916
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1917
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1918
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1919
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1920

 optimizing images

 using server compression

optimizing CSS

 culling shallow selectors

 customizing framework downloads

 DRY principle

 finding redundancies with csscss

 LESS precompiler

 mobile-first approach to responsive web design

 Google’s mobile-friendly guidelines

 verifying site’s mobile-friendliness

 vs. desktop-first

 performance-tuning CSS

 @import serializes requests

 avoiding @import declaration

 comparing box model and flexbox styles

 constructing and running benchmark

 examining benchmark results, 2nd

 flexbox, using where possible

 increasing rendering speed

 <link> parallelizes requests

 placing CSS in

 preventing Flash of Unstyled Content phenomenon

 transitions

 using faster selectors

 SASS precompiler

 segmenting CSS

 using shallow CSS selectors

 writing shorthand CSS

OTF (OpenType format)

outerText property

--output-file flag

P

padding property

PageSpeed Insights

Painting event, Timeline tool

parallel method

parallelized requests

performance antipatterns

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1921
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle1922
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1923
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1924
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1925
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1926
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1927
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1928
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1929
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1930
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1931
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1932
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1933
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1934
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1935
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1936
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1937
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1939
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1940
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1941
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1942
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1943
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1944
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1945
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1946
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1947
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1948
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1949
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1950
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle1951
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle1952
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1953
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1954
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1955
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1956
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1957

 asset inlining

 bundling CSS and JavaScript

 identifying for HTTP/2

 image sprites

performance, jQuery alternatives and

<picture> element, 2nd

 art-directed images

 type attribute

 targeting high DPI displays

Picturefill script, 2nd

 conditionally loading with Modernizr

 using

pipe method

plugins, gulp tool

 CSS-related plugins

 essential plugins

 HTML minification plugin

 image-processing plugins

 JavaScript-related plugins

PNG Images, optimizing

polyfilling Fetch API

PostCSS plugin, 2nd, 3rd

postMessage API, 2nd

precompilers

preconnect keyword

preconnect resource hint

prefetch resource hint

preload resource hint, 2nd, 3rd

prerender resource hint

primed cache

private directive

processing property, 2nd

profiling tool, Microsoft Edge

protocol version, detecting

public directive

px units, 2nd

pyftsubset, subsetting fonts with

Q

quality setting

query strings, in browser caches

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1958
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1959
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1960
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1961
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1962
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1963
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1964
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1965
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1966
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1967
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1968
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1969
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1970
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle1971
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1972
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1973
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1974
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1975
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1976
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1977
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1978
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle1979
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1980
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle1981
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle1982
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1983
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle1984
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle1985
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1986
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1987
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1988
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1989
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle1990
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1991
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1992
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1993
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1994
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1995
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle1996
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle1997
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle1998
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle1999
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2000
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2001
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2002
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2003
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2004

querySelector method, 2nd, 3rd, 4th

querySelectorAll method, 2nd

R

ranges, Unicode

raster images

 falling back to

 lossless images

 lossy images

rasterization

recipe website

 downloading and running

 reviewing project structure

Record button, Chrome

reducers

reducing images

 optimizing SVG images

 raster images with imagemin

reducing requests

redundancies, finding with csscss tool

registering service workers

 service worker cache

 writing service worker’s install event

regular expressions

rel attribute

reload, forcing

rem units, 2nd

remote debugging

remove method

removeAttr method

removeClass method, 2nd, 3rd, 4th

removeEventListener

render blocking

Rendering event, Timeline tool

rendering performance-auditing tools

 browsers, how render web pages

 Google Chrome’s Timeline tool

 jank

 marking points in timeline with JavaScript

 rendering profilers in other browsers

rendering speed, increasing

replacing elements, in jQuery

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2005
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2006
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2007
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2008
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2009
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2010
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2011
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2012
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2013
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2014
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2015
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2016
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2017
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2018
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2019
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2020
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2021
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2022
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2023
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2024
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2025
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2026
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2027
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2028
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2029
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2030
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2031
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2032
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2033
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2034
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2035
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2036
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2037
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2038
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2039
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2040
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2041
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2042
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2043
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2044
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2045
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2046
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2047
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2048
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2049
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2050
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2051
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2052

requestAnimationFrame

 implementing

 overview

 performance comparison

 timer function-driven animations and

requestAnimationFrame() method, 2nd, 3rd, 4th

RequireJS, 2nd

resource hints

 preconnect resource hint

 prefetch resource hint

 preload resource hint

 prerender resource hint

respondWith method, 2nd, 3rd

response.writeHead call

responsive web design

responsive websites

responsiveness

Retina Display, Apple

S

Safari, 2nd

SASS precompiler

--save flag

Save for Web dialog box, Photoshop

scanImages method

scheduling modal

<script> tag, 2nd, 3rd

script-loading

 async attribute

 asynchronous

 <script> element placement

Scripting event, Timeline tool

scripts

 concatenating

 replacing granular with concatenated

 for HTTP/1 users

 uglifying

scripts.min.js

scroll event

<section> elements

security exception

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2053
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2054
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2055
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2056
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2057
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2058
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2059
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2060
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2061
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2062
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2063
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2064
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2065
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2066
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2067
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2068
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2069
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2070
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2071
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2072
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2073
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2074
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2075
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2076
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2077
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2078
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2079
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2080
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2081
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2082
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2083
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2084
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2085
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2086
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2087
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2088
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2089
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2090
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2091
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2092
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2093
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2094
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2095
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2096
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2097
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2098

segmenting

 CSS

 users

separating critical CSS, 2nd

serialized requests, @import declaration and

series method

server compression, 2nd

Server Push

 invoking

 measuring performance

 overview

 sending assets preemptively with

 writing behavior in Node

servers, HTTP/2

 with HTTP/2-incapable browsers

 writing in Node

service workers

 installing

 intercepting and caching network requests

 measuring performance benefits

 overview

 registering

 service worker cache

 writing service worker’s install event

 tweaking network request interception behavior

 updating

 cleaning up old caches

 versioning files

setAttribute method, 2nd

setInterval function, 2nd

setTimeout function, 2nd, 3rd, 4th, 5th

shallow selectors

 culling

 using

Shoestring library, 2nd, 3rd

shorthand CSS, writing

showing elements, in jQuery

shrink-ray package, 2nd

simulating devices, in desktop web browser

simulating network connection

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2099
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2100
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2101
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2102
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2103
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2104
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2105
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2106
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2107
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2108
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2109
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2110
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2111
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2112
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2113
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2114
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2115
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2116
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2117
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2118
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2119
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2120
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2121
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2122
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2123
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2124
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2125
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2126
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2127
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2128
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2129
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2130
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2131
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2132
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2133
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2134
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2135
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2136
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2137
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2138
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2139
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2140
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2141
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2142
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2143
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2144
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2145

#siteHeader element

Size column, Chrome’s network utility

sizes attribute

<source> tag

space-between value

spdy package, 2nd

Speed Suggestions link, Google Analytics

Sprint library, 2nd, 3rd

src attribute, 2nd

src directory, 2nd, 3rd

src folder

src property

srcset attribute, 2nd, 3rd

stale-while-revalidate directive, 2nd

streams, gulp tool and

style object, 2nd

<style> tag, 2nd

styles in jQuery, accessing and modifying

styles.css file

styles.min.css, 2nd

Subresource Integrity, verifying CDNs assets with

subsetting fonts

 fontTools, installing

 manually

 fontTools, installing

 with pyftsubset

 with unicode ranges

 unicode ranges, understanding

 with pyftsubset

 with unicode-range property

 generating Cyrillic font subsets

 in older browsers

sudo command

SVG (Scalable Vector Graphics) images

 overview

 using in CSS

SVG fonts

svg-sprite command, 2nd

svgo, 2nd

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2146
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2147
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2148
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2149
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2150
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2151
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2152
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2153
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2154
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2155
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2156
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2157
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2158
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2159
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2160
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2161
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2162
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2163
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2164
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2165
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2166
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2167
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2168
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2169
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2170
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2171
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2172
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2173
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2174
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2175
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2176
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2177
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2178
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2179
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2180
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2181
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2182
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2183
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2184
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2185
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2186
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2187
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2188
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2189
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2190
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2191
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2192
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2193
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2194
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2195
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2196
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2197
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2198

T

target method

task method, 2nd

tasks, gulp tool

 anatomy of

 overview

 writing core tasks

 building LESS files and using PostCSS

 general structure of task

 importing modules

 minifying HTML

 performing image optimization

 uglifying and concatenating scripts

 writing utility tasks

 build task

 clean task

 watch task

text method

textContent property

throttle property

throttling profiles, in Chrome

TIFF format

time method

Time to First Byte.

 See TTFB.

Time to First Paint

timeEnd method

Timeline profiler, Chrome

timeline, marking points in

timer function-driven animations

timeStamp method, 2nd

TinyPNG, 2nd

toggle method

toggleClass method, 2nd, 3rd

tools

 Node.js-based

 font conversion tools

 gulp and gulp plugins

 image processors and optimizers

 minifiers and reducers

 PostCSS and PostCSS plugins

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2199
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2200
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2201
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2202
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2203
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2204
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2205
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2206
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2207
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2208
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2209
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2210
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2211
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2212
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2213
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2214
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2215
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2216
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2217
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2218
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2219
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2220
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2221
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2222
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2223
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2224
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2225
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2226
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2227
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2228
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2229
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2230
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2231
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2232
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2233
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2234
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#iddle2235
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2236
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2237
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2238
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2239
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2240
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2241

 web servers and related middleware

 web-based

top property

touchmove event

transform property

transition property, 2nd, 3rd

transition-delay

transition-duration

transition-timing-function

transitions

translateY method

translateZ property

tt2eot

tt2woff

tt2woff2

TTF (TrueType fonts)

 compressing

 overview

ttf2woff2 program

TTFB (Time to First Byte)

Twitter Bootstrap website

type attribute

Typekit

U

uglifying scripts

uglifyJS task, 2nd

 elements

uncompressed headers

uncss tool, 2nd, 3rd

unicode ranges, subsetting fonts with, 2nd

 generating Cyrillic font subsets

 in older browsers

 overview

unicode-range property, 2nd

unoptimized files

unprimed cache

Unstyled Content

updating service workers

 cleaning up old caches

 versioning files

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2242
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2243
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2244
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2245
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2246
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2247
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2248
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2249
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2250
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2251
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2252
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2253
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2254
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2255
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2256
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2257
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2258
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2259
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2260
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2261
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2262
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2263
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2264
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2265
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2266
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2267
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2268
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2269
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2270
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2271
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2272
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2273
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2274
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2275
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2276
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2277
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2278
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2279
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2280
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2281
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2282
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2283
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2284
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2285
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2286

user experience, web performance and

users, segmenting

V

-v argument

vector images scale

Velocity.js, 2nd

verification, of mobile-friendliness of websites

verifying CDNs assets

--version command

versioning files

viewport tags

visitor flow chart, Google Analytics

VisualFold!, 2nd, 3rd

vw (viewport width) units

W

watch task

web browsers

 browser-based assessment tools

 inspecting network requests

 viewing HTTP request and response headers

 how render web pages

 talking to web servers

web pages, loading of

web performance

 client’s website, auditing

 client’s website, optimizing

 minifying assets

 optimizing images

 using server compression

 downloading and running client’s website

 final weigh-in

 installing Node.js and Git

 simulating network connection

 user experience and

 web browsers, talking to web servers

 web pages, loading of

web servers

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2287
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2288
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2289
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2290
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2291
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2292
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2293
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2294
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#iddle2295
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#iddle2296
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2297
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2298
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#iddle2299
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2300
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2301
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#iddle2302
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#iddle2303
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2304
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2305
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2306
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#iddle2307
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2308
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2309
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2310
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2311
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2312
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2313
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2314
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2315
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2316
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2317
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2318
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2319
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2320
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2321
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2322

 compressing

 web browsers talking to

web sites, nonsecure

web-based tools

WebP format, encoding images with

 browsers that don’t support WebP

 lossless images, with imagemin

 lossy images, with imagemin

Weekly Timber website, 2nd, 3rd, 4th, 5th, 6th, 7th

width property

will-change property, optimizing transitions with

writing

 HTTP/2 server, in Node

 Server Push behavior, in Node

 shorthand CSS

X

XMLHttpRequest object

Z

Zepto

Zepto library, 2nd, 3rd

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2323
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#iddle2324
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2325
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2326
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2327
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2328
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2329
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#iddle2330
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2331
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2332
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2333
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2334
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2335
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2336
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#iddle2337
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2338
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2339
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2340
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#iddle2341
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#iddle2342
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2343
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2344
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2345
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#iddle2346
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_022.html#iddle2347

List of Figures

Chapter 1. Understanding web performance

Figure 1.1. The average rankings of all pages on the Legendary Tones website according to

its page download time by Google. Lower values are better.

Figure 1.2. A user’s request for example.com. The user sends the request for the web page

via a browser and then must wait for the server to gather its response and send it. After

the server sends the response, the user receives the web page in the browser.

Figure 1.3. The anatomy of an HTTP request to example.com.

Figure 1.4. Steps to get index.html from a web server

Figure 1.5. The client’s website in the web browser running from your local machine

Figure 1.6. The location of the Network tab in the Google Chrome Developer Tools window.

You can simulate internet connection speeds by using the throttling menu.

Figure 1.7. The Record button must be in the enabled state (red) before you can generate

a waterfall chart of assets. The Disable Cache check box should also be selected so that

no caching is done when you reload the page to measure the results of your work.

Figure 1.8. A waterfall chart generated for your client’s website. At the top, you can

see the request for index.html, followed by the site’s CSS, JavaScript, and images. Each

bar represents a request for a site asset. The bars are positioned on the x-axis according

to the time they began downloading on the left, and the time they have finished downloading

on the right. The length of a bar corresponds to the amount of time it takes for the asset

to be requested and downloaded by the web browser.

Figure 1.9. Minification of a CSS rule. In this example, a CSS rule is minified from 98

bytes down to 77, which represents a 21% reduction. When this concept is applied to all

text assets on a site, the reductions can total many kilobytes.

Figure 1.10. Load times of the client’s website on the Regular 3G network throttling profile

before and after minification. Improvements range anywhere from 31% to 41%, depending on

the visitor’s device.

Figure 1.11. The process of server compression

Figure 1.12. Load times of the client’s site on the Regular 3G throttling profile before

and after applying compression. Depending on the visitor’s device, load times improve

anywhere from 18% to 32%.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig12

Figure 1.13. Image optimization in action on a PNG image. Optimizing images in this manner

uses a re-encoding technique that discards unnecessary data from the image, but doesn’t

noticeably impact the image’s visual quality.

Figure 1.14. TinyPNG compressing the client website’s images and reporting a 61% reduction

of total size

Figure 1.15. Load times of the client’s website on the Regular 3G network throttling profile

before and after optimizing images. Depending on the visitor’s device, load times improve

anywhere from 23% to 53%.

Figure 1.16. Load times of the client’s website on the Regular 3G throttling profile before

and after all optimizations were made. Load times improve approximately 70% for all visitors

on all devices.

Chapter 2. Using assessment tools

Figure 2.1. Google PageSpeed Insights checks two aspects of page speed: the load time of

above-the-fold content, which is what the user sees immediately upon visiting a page, and

the load time of the entire page.

Figure 2.2. Google PageSpeed Insights results for the mobile view of a website. A user enters

a URL and gets performance tips grouped by severity for both mobile and desktop states.

Figure 2.3. The PageSpeed Insights report for the client website from chapter 1 prior to

(left) and after (right) your optimizations.

Figure 2.4. PageSpeed Insights reporting information can be accessed in Google Analytics

by navigating to the Behavior section on the left menu and clicking the Speed Suggestions

link.

Figure 2.5. The reporting table of performance statistics in Google Analytics. Note the

two rightmost columns with PageSpeed Insights–specific data and links to reports for

associated page URLs.

Figure 2.6. The process of a web browser’s request to a web server. Latency occurs in each

step of the process. The amount of time between the instant the user makes a request to

the time the response arrives is known as Time to First Byte (TTFB).

Figure 2.7. Timing information for a site asset. The TTFB in this example is 174.56 ms.

Figure 2.8. The Safari Developer Tools can be used only if the Develop option is visible

in the menu bar when the Safari web browser window is in focus. If you don’t see this menu,

you have to enable the developer tools.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig08

Figure 2.9. You can enable the Safari Developer Tools by choosing Safari > Preferences from

the menu bar. In the window that appears, click the Advanced tab and select the check box.

Figure 2.10. The network request information for a website in the Network tab in Safari’s

Developer Tools. Note the lack of a waterfall graph in this view in favor of columns for

timing information.

Figure 2.11. HTTP headers are sent by the browser in the initial request and by the server

in its response. In this figure, a simplified set of headers is shown. The network inspection

utilities in the developer tools for every browser allow the user to examine these headers.

Figure 2.12. Viewing HTTP headers in Chrome’s Developer Tools. Accessing HTTP headers for

an asset can be done by clicking the asset name. A new pane to the right opens, with the

header information contained within the Headers tab.

Figure 2.13. The Content-Encoding response header from the web server lets you know that

the asset is compressed, as well as the compression algorithm used (gzip in this example).

Figure 2.14. Viewing HTTP headers in Microsoft Edge requires the user to click a small toggle

button at the farright side of the window in the Network tab.

Figure 2.15. The page-rendering process.

Figure 2.16. The Timeline tool in the populated state.

Figure 2.17. The breakdown of session activity as recorded by the Timeline tool

Figure 2.18. An isolated call stack from the flame chart view in the Timeline tool. The

top event is a loading event where the HTML was parsed. Underneath it are events originating

from it, such as the DOMContentLoaded event that fires when the DOM is ready, and scripting

and rendering events.

Figure 2.19. The breakdown of a scripting event. You can see information related to the

event, such as the amount of CPU time used, the event type, and its origination. This data

is also visualized in a pie chart.

Figure 2.20. A timeline recording of the modal opening on the client website. A range of

janky frames is denoted with red markers in the activity overview, and highlighted in red

and clickable in the flame chart.

Figure 2.21. The summary view of a janky frame. Note the explicit warning and the low frame

rate.

Figure 2.22. The event log filtered by scripting events. The text box can be used to filter

events by the contents of their activity, filtered by a specific length of time in the

duration drop-down, and/or by type.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig22

Figure 2.23. Modal animation performance after CSS transitions have been implemented. Janky

frames still exist, but much less so than before, resulting in an overall improved

experience.

Figure 2.24. CPU usage summary of jQuery animations (left) compared to CSS transitions

(right)

Figure 2.25. A marker added to the timeline. The associated call stack is selected, and

the timestamp event call is shown in the event log.

Figure 2.26. An annotated overview of Microsoft Edge’s performance profiler

Figure 2.27. The results of two benchmarks you’ve run of jQuery’s DOM selection versus

that of the native document.querySelector method. Results are circled.

Figure 2.28. The device simulation mode in Chrome viewing the Manning Publications website

Figure 2.29. The Chrome device list showing an open web page on a connected Android phone

Figure 2.30. The Developer Tools profiling rendering activity of a page on an Android phone.

In this view, the device’s display is mirrored on the host machine, and the Developer Tools

are focused on the device’s current page rather than a session active on the desktop.

Figure 2.31. The throttling profiles that ship with Chrome, with the option to add custom

profiles

Figure 2.32. Adding a new throttling profile in Chrome. The profile requires four bits of

information: a profile name, the download and upload speeds (inKbits/sec), and the latency

in milliseconds.

Figure 2.33. Your new custom network throttling profile is now in the list.

Chapter 3. Optimizing CSS

Figure 3.1. An example of shorthand CSS via the font property

Figure 3.2. The margin shorthand property takes one to four values: those for margin-top,

marginright, margin-bottom, and margin-left.

Figure 3.3. An example of an overly specific CSS selector (left) versus a more succinct

one (right). The selector at the left is 67 characters, whereas the one at the right is

at 12 characters.

Figure 3.4. An example of the DRY principle. Two selectors have the same background property.

To save space and eliminate redundancy, the background property and the selectors are

combined.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig24
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig24
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig25
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig25
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig26
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig27
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig27
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig28
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig29
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig30
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig30
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig30
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig31
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig31
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig32
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig32
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig32
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_011.html#ch02fig33
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig04

Figure 3.5. A user navigation flow to pages with CSS segmented by page template. The browser

downloads only the CSS it needs for the current page.

Figure 3.6. The Behavior section of the left-hand menu in Google Analytics. The visitor

flows can be seen by clicking the Behavior Flow link in the Behavior submenu.

Figure 3.7. The visitor flow chart in Google Analytics. Starting at the left, you see where

users enter the site. In this case, you see that the vast majority of users are entering

on the site’s main page. Few visitors click through to the subpages.

Figure 3.8. The download customization screen on the Twitter Bootstrap website. Bootstrap

allows the developer to specify which parts of the framework the user wants in a custom

download.

Figure 3.9. Mobile-first versus desktop-first responsive design flows

Figure 3.10. The trend of internet traffic on mobile devices versus laptop devices. Toward

the end of 2015, nearly half of all traffic on the internet occurred on mobile devices.

This trend is continuing (Data from StatCounter Global Stats).

Figure 3.11. The flow of layout complexity across breakpoints on a mobile-first website

Figure 3.12. A responsive site on a mobile device without the <meta> viewport tag (left)

and the same site with it (right). Even though the site pictured is a mobile-first responsive

site, it won’t display in the proper breakpoint without this crucial tag in place, and

the user will be forced to zoom out to view the entire site.

Figure 3.13. The results page of Google’s Mobile-Friendly Test tool after examining a

website

Figure 3.14. Downloads for two style sheets are serialized one after the other because of

an @import directive in styles.css that requests fonts.css.

Figure 3.15. Two requests for style sheets made by using the <link> tag. The <link> tags

are found by the browser after downloading the HTML, and the browser executes these two

requests at the same time.

Figure 3.16. A rendering timeline in Chrome showing the Flash of Unstyled Content effect

at left. The document eventually renders as intended, but with a brief display of the

unstyled content. In this case, the effect is due to a <link> tag referencing a style sheet

being placed at the end of the document.

Figure 3.17. Rendering performance at load time of my personal website in Chrome with styles

placed in the <head> versus at the end

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig17

Figure 3.18. The structure of the test HTML document. The test markup is contained within

a div.contentContainer. Within it are four <section> elements arranged in four columns,

each containing two elements with 51 elements. The block of four <section> elements

is then repeated approximately 50 times. The total number of elements in each test document

is about 21,000.

Figure 3.19. The performance of the CSS selectors test in Chrome. On the left are the selector

types, and on the bottom is the amount of time each selector type took to complete the test

in seconds. All values are the sum of rendering and painting processes.

Figure 3.20. Benchmark results of box model layout performance versus flexbox layout in

Chrome. Lower is better.

Figure 3.21. The .box element on the page before and after a transition on its border-radius

property

Chapter 4. Understanding critical CSS

Figure 4.1. A depiction of above- and below-the-fold content on an array of devices. The

above-the-fold content begins at the top of a website and ends at the bottom of the screen.

Anything that’s out of the browser’s view is below the fold.

Figure 4.2. Chrome’s Timeline profiler when the document’s first painting event occurs.

The event can be found under the Event Log tab by filtering out all but the painting events.

Figure 4.3. Chrome’s Timeline profiler showing an improved paint time after the contents

of the site’s CSS have been inlined into the HTML

Figure 4.4. Inline styles loaded for above-the-fold content. The CSS for the above-the-fold

content is inlined into the HTML for faster parsing, which translates into a faster Time

to First Paint.

Figure 4.5. The preload resource hint loading external CSS for below-the-fold content. This

method loads an external style sheet in a way that doesn’t block rendering. When the CSS

has finished loading, an onload event fires and flips the rel value of the <link> so that

the styles render.

Figure 4.6. The recipe website in Chrome. This is the tablet breakpoint at roughly 750 pixels

wide.

Figure 4.7. A chart of common device resolutions on mydevice.io, sorted in descending order

by CSS height. The site also offers information for devices other than mobile phones. The

physical resolution differs from CSS resolution in that they’re both normalized to the

same scale for consistency.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig07

Figure 4.8. The VisualFold! bookmarklet in action. The user enters a number in a dialog

box (left) indicating the desired location of a guideline to be drawn on the page (right).

This assists the user in locating the fold. By resizing the window, the user can see how

the content flows with respect to this line.

Figure 4.9. The mobile breakpoint of the page with labels of the critical components

Figure 4.10. The large breakpoint with components labeled that were below the fold on the

mobile version

Figure 4.11. The appearance of the recipe website after you’ve inlined the header selector

CSS into the HTML. It’s partially styled, but much is still missing.

Figure 4.12. The critical CSS after all of the header styles have been inlined into

index.html

Figure 4.13. Time to first paint performance in Google Chrome before and after implementing

critical CSS

Figure 4.14. Time to First Paint in Mobile Safari on an iPhone 6S over a remote shared host

before and after prioritizing critical CSS

Figure 4.15. A modularized approach to critical CSS. Template A and Template B have their

own critical CSS that’s inlined only for those pages, but both inline globally common

critical styles.

Chapter 5. Making images responsive

Figure 5.1. Two examples of scaling an image to a mobile phone. At the top, a 170-KB image

with a width of 1440 pixels is scaled down to the width of the phone’s high DPI display.

At the bottom, a 41-KB image with a width of 750 pixels is delivered to the screen without

having to be scaled; this process is more efficient.

Figure 5.2. A comparison of rendering and painting times for a single image in Chrome. For

the scaling scenario, the source image of 1440 x 900 is scaled to fit a container 375 pixels

wide. In the no-scaling scenario, an image resized to fit the container is used and triggers

no scaling. Rendering and painting times are faster with no scaling.

Figure 5.3. A 16 x 16 raster image of a YouTube favicon. On the left is the native size

of the image, and on the right is the enlarged version. Each pixel is part of a

two-dimensional grid.

Figure 5.4. JPEG images in use on the popular photo cataloging and sharing site Flickr.

Photographic content is best suited to the JPEG format.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig04

Figure 5.5. A comparison of the same image in uncompressed (TIFF) and compressed (JPEG)

formats with their respective file sizes. The JPEG version has some subtle degradation at

a quality setting of 30, but is acceptable for this scenario.

Figure 5.6. The Facebook logo is a PNG image, which is a lossless image format. PNG images

are well suited for lossless formats.

Figure 5.7. A comparison of lossless image-compression methods. The differences between

the uncompressed and full-color PNG and WebP versions are imperceptible, whereas the 8-bit

lossless image is throttled down to 256 colors.

Figure 5.8. A cartoon vector image at different sizes. Notice that the larger version

doesn’t lose any visual quality as it scales up. This is the primary advantage of vector

images over raster images.

Figure 5.9. The Legendary Tones website as it appears in the browser

Figure 5.10. The masthead background image at the 480-pixel (30em) breakpoint before (left)

and after (right) adding the new background image. Note the improved visual quality in the

after image.

Figure 5.11. An enlarged visual representation of graphics on standard displays versus high

DPI displays

Figure 5.12. A comparison of two versions of a background image on two display types. On

the left, a background image intended for use on standard displays appears on a high DPI

display. On the right, the proper resolution image is used for the high DPI display, creating

a better visual experience.

Figure 5.13. A comparison of image behaviors with and without max-width restrictions. The

example on the left is the default behavior: If the image is larger than its container,

it’ll exceed the boundaries. On the right is an image with a max-width of 100%, which

constricts the image to the width of the container.

Figure 5.14. The new feature image as it appears on the Legendary Tones website

Figure 5.15. The effect of the sizes attribute on the article image in Google Chrome. On

the 704 px breakpoint, the image takes up 50% of the viewport, at the 480 px breakpoint

the image takes up 75%, and the default image behavior below 480 px is to occupy the entire

viewport.

Figure 5.16. An example of art direction across a trio of images. In the largest version,

the subject has more context and surrounding details, because larger screens can accommodate

more. As the screen width decreases, the image is cropped differently so the subject is

still visible on smaller screens.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig16

Figure 5.17. Image behaviors on the Legendary Tones website. On small screens (left), the

image centers in the viewport and breaks between paragraphs. On large screens (right), the

image floats to the right, and the text wraps around it.

Figure 5.18. Image behaviors of the website after modifications to the <picture> element.

Note that small screens (left) offer a different treatment of the image based on the screen

resolution.

Figure 5.19. Conditional loading of Picturefill as seen in two browsers’ network request

inspectors. On the left is a version of Safari that doesn’t support the <picture> or srcset

features and therefore loads Picturefill. On the right is Chrome, which fully supports these

features and therefore skips loading Picturefill.

Chapter 6. Going further with images

Figure 6.1. An image sprite of various social media icons

Figure 6.2. The anatomy of the svg-sprite command as used to generate an SVG sprite with

LESS mixins

Figure 6.3. The newly generated image sprite with annotations showing the names of the

standalone files prior to being added to the sprite

Figure 6.4. An overview of images on the recipe website that are or aren’t candidates for

inclusion in an image sprite. Iconography is marked for inclusion, whereas imagery such

as recipe images and ads isn’t.

Figure 6.5. SVG files can be converted to PNG by dragging and dropping SVG files on the

Grumpicon beast (or by browsing to them).

Figure 6.6. The client’s recipe website as it appears in the tablet breakpoint

Figure 6.7. A comparison of the unoptimized (left) and optimized versions of

chicken-tacos-2x.jpg. The optimized version is about 55% smaller, but the visual

differences are virtually imperceptible.

Figure 6.8. Website load times before and after the optimization of images for the recipe

website using the Good 3G networking throttling profile in Google Chrome

Figure 6.9. A comparison of the logo.png and logo-2x.png files before and after optimization

Figure 6.10. The Weekly Timber logo before (left) and after optimization with svgo using

the default options

Figure 6.11. The Weekly Timber logo before (left) and after (right) optimizing even further

by reducing decimal precision with svgo to a value of 1

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig11

Figure 6.12. An examination of the unoptimized logo.svg (left) compared to an overoptimized

version. All precision is stripped from the SVG shapes, resulting in a loss of fidelity,

especially with Bézier curves.

Figure 6.13. A JPEG optimized by using imagemin’s jpeg-recompress plugin (left) compared

to a WebP image encoded from the unoptimized JPEG at a quality setting of 40.

Figure 6.14. A comparison of load times on the recipe website of JPEG and WebP images on

standard and high DPI screens. The WebP images offer better loading performance in

comparison to both the optimized and unoptimized JPEG images.

Figure 6.15. A comparison of unoptimized PNGs, optimized PNGs, and lossless WebP images

Figure 6.16. Safari failing to display a WebP image

Figure 6.17. The network request inspector for two web browsers for our recipe collection

page. Chrome (left) can use the WebP images, but Firefox (right) can’t, so it falls back

to image types it supports.

Figure 6.18. An audit of which images make sense to lazy load and which ones don’t

Figure 6.19. The buffer property specifies how far out of the viewport the lazy loader will

look for images to load. By extending what the lazy loader looks for beyond the viewport,

you can begin loading images as you approach them to give the browser a head start.

Figure 6.20. The position calculations of the inViewport method, and how they relate to

the viewport and the targeted image element. In this case, the calculation of the viewport

height plus the amount of buffer space given exceeds the top boundary of the image element,

resulting in a return value of true.

Figure 6.21. The network waterfall graph showing lazy loaded images

Figure 6.22. The effect of lazy loading a script on browsers with JavaScript turned off.

The images never load because the JavaScript never runs.

Figure 6.23. The <noscript> tag at work. Both the image placeholder and the image loaded

in the <noscript> tag are visible because the image placeholder is never hidden when

JavaScript is disabled.

Chapter 7. Faster fonts

Figure 7.1. The client’s content page with all of the font weights annotated

Figure 7.2. The process of a user’s browser processing a @font-face cascade. The browser

searches for a locally installed version (if specified,) and if it can’t find one, it will

iterate through all of the @font-face src() calls for various formats of the same font.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06fig23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig02

Figure 7.3. The size of the Open Sans Regular font before and after compression. The gains

in this example are about 45%, from 212.26 KB to 113.76 KB, over the uncompressed versions.

EOT compression ratios are similar.

Figure 7.4. Google subsetting fonts by language

Figure 7.5. A portion of a table of Unicode characters from unicode.org, showing glyphs

and their code points. The lowercase p is identified by its Unicode code point of U+0070.

Figure 7.6. Subsetting a font with pyftsubset. The input file is specified first, followed

by the Unicode range of characters you want to subset from the input font, and then the

output filename. The last option is used to preserve all name table entries, which ensures

better compatibility with the font converters.

Figure 7.7. Load times before and after subsetting fonts. Load times are improved by well

over 200%. Load times include load times for all assets on site. True-Type fonts were

compressed by the server in these trials. (EOT omitted due to incompatibility; file sizes

are nearly identical to TTF.)

Figure 7.8. The Basic Latin font subsets are loaded on the Russian version of the page,

despite having a unicode-range property set to use these fonts only for pages displaying

characters from the Basic Latin subset.

Figure 7.9. The fonts downloaded by the Russian version of the page (left) as compared to

the English version (right), even though they both use the same style sheet. The

unicode-range property detects whether any characters in the document exist in the defined

ranges, and if so, the related @font-face resource is served up.

Figure 7.10. Cyrillic subsets loading on the English version of the page, regardless of

the unicode-range property. The behavior shown is in Safari.

Figure 7.11. The contents of the network tab in Safari on both the English (left) and Russian

(right) versions of the content page, with your fallback script enabled on each page. The

English version downloads only the fonts it needs, whereas the Russian version grabs the

additional ru.css and the font subsets contained therein.

Figure 7.12. As a page loads embedded fonts, the text is initially invisible (left) until

the fonts fully load, at which point the text styled in those font faces appears.

Figure 7.13. When the download time for a font is too long, the text will eventually become

visible, but is unstyled because of the still-loading font resource (left). After all of

the fonts load, the text will become styled (right). This is known as FOUT.

Figure 7.14. The toggle button to capture screenshots in Chrome Developer Tools

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07fig14

Chapter 8. Keeping JavaScript lean and fast

Figure 8.1. Browsers read HTML documents from top to bottom. When links to external resources

(such as scripts, in this case) are found, the browser stops to parse them. When parsing

occurs, rendering is blocked.

Figure 8.2. The Time to First Paint in Chrome for the Coyle Appliance Repair website with

<script> tags in the <head> of the document.

Figure 8.3. The Time to First Paint in Chrome for the Coyle Appliance Repair website with

the <script> tags at the end of the document

Figure 8.4. A comparison of loading scripts with and without the user of the async attribute.

The main difference is that scripts loaded with async won’t wait for other scripts to finish

loading before they execute.

Figure 8.5. The async attribute creates a problem in which behaviors.js fails because it

executes before its dependency jquery.min.js is available.

Figure 8.6. A race condition between jquery.min.js and behaviors.js always results in a

failure, because behaviors.js loads and executes before its dependency is available.

Figure 8.7. The Time to First Paint value in Chrome for the Coyle Appliance Repair website

with scripts bundled and loaded using the async attribute

Figure 8.8. A comparison of file sizes of jQuery and its alternatives

Figure 8.9. Performance of jQuery versus its alternatives when selecting an element by its

class

Figure 8.10. Performance of jQuery versus its alternatives when toggling a class on an

element

Figure 8.11. Performance of jQuery versus its alternative when toggling an attribute on

an element

Figure 8.12. The loading of the fetch API polyfill and its timing with the user’s intentions

to fire the scheduling modal

Figure 8.13. Normalized performance of various animation methods in Chrome’s Timeline tool

Figure 8.14. The animate function in use, with arguments labeled

Chapter 9. Boosting performance with service workers

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08fig14

Figure 9.1. A service worker operating on its own thread labeled ServiceWorker Thread can

be seen at the bottom in this view of Chrome’s Timeline tool.

Figure 9.2. A service worker communicating as a proxy between a user and a web server. The

user makes requests, which the service worker can intercept. Depending on how the service

worker code is written, assets can be retrieved from the service worker’s CacheStorage

cache, or passed through to the web server. The service worker can also write to the cache

in specific instances.

Figure 9.3. The service worker installation process. The code checks for the status of

service worker support. If the browser supports it, the service worker is installed. If

not, the browser does nothing.

Figure 9.4. The behavior that you want to occur when the service worker’s install event

is fired

Figure 9.5. The Application tab in Chrome’s Developer Tools showing active service workers

for the current site. Click the Service Workers item in the left pane to access this panel.

Figure 9.6. The v1 cache created by your service worker. You can see that the assets you’ve

specified in the service worker’s cachedAssets array are present.

Figure 9.7. Selecting the Offline check box in Chrome’s Network panel allows you to simulate

what it’s like to be offline without having to disable your network connection.

Figure 9.8. The behavior of the service worker’s fetch event. The user makes a request

for an asset, and the service worker steps in to intercept it to see whether the asset is

already in the cache. If not, the asset is fetched from the network, and the service worker

caches it. If it’s in the cache, it’s pulled from the cache.

Figure 9.9. Network requests intercepted by the service worker will be indicated by a value

of “(from ServiceWorker)” in the Size column in Chrome’s network utility.

Figure 9.10. A comparison of the Time to First Paint performance of various caching scenarios

on Chrome’s Regular 3G throttling profile. The scenarios are an uncached page, the page

when retrieved by the browser cache, and the page when retrieved from the service worker

cache.

Figure 9.11. A two-pronged approach for intercepting a network request in a service

worker’s fetch event. If the requested asset is an HTML document, you always fetch it from

the network and place it in the cache, and serve it from the service worker cache only if

you’re offline. If the resource isn’t an HTML document, you always serve from the cache

and retrieve it from the network if it’s not in the service worker cache.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig11

Figure 9.12. An orphaned cache entry after updating the style sheet reference.

global.css?v=1 is in the cache, whereas the unused global.css entry remains.

Figure 9.13. Your new v2 cache. If you click this, you’ll be able to see the updated cache

contents, particularly the global.css?v=1 entry.

Chapter 10. Fine-tuning asset delivery

Figure 10.1. The user makes a request to the server for index.html, and the browser specifies

the algorithms that are supported in the Accept-Encoding header. Here, the server replies

with the compressed content of index.html, and the compression algorithm used in the

response’s Content-Encoding header.

Figure 10.2. The effects of the compression-level setting on overall load times and TTFB

when requesting jquery.min.js. Tests were performed on Chrome’s Regular 3G network

throttling profile.

Figure 10.3. Compression ratios of PNG, JPEG, and SVG images across all gzip compression

levels.

Figure 10.4. Chrome showing support for Brotli compression with the br token

Figure 10.5. Brotli-encoded files can be seen in the network request panel in Chrome by

looking for the br token in the Content-Encoding column.

Figure 10.6. Performance of compressing the jQuery library with gzip versus Brotli

compression across all comparable compression levels. (A gzip compression level of 0 is

the same as no compression, and so is omitted.) Gzip’s maximum compression level is 9,

so comparisons to Brotli’s quality settings of 10 and 11 aren’t available.

Figure 10.7. TTFB performance of gzip versus Brotli when compressing the jQuery library

Figure 10.8. A basic overview of the caching process. The user requests index.html, and

the server checks whether the asset has changed since the time the user last requested it.

If the asset hasn’t changed, the server responds with a 304 Not Modified status and the

browser’s cached copy is used. If it has changed, the server responds with a 200 OK status

along with a new copy of the requested asset.

Figure 10.9. The load times and data payload of a website on the first uncached visit and

on a subsequent visit. The page weight is nearly 98% smaller, and the load time is much

faster, all due to caching.

Figure 10.10. A copy of jQuery being retrieved from the local browser cache

Figure 10.11. The effect of the Cache-Control header’s max-age directive and the

browser/server interaction that results in its use

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig11

Figure 10.12. The basic concept of a CDN. A CDN is a proxy that sits in front of your website

and distributes your content to users across the world. The CDN can do this through a network

of geographically distributed servers that host your content. Users have their content

requests fulfilled by servers that are closest to them.

Figure 10.13. The effects of your cache policy on the Weekly Timber website. The HTML is

revalidated from the server on every request, and the server returns a 304 status if the

document hasn’t changed on the server. Items reading from the browser cache don’t trigger

a return trip to the web server.

Figure 10.14. In a CDN, assets hosted on an origin server are distributed to edge servers,

which are servers that are located closer to potential website visitors.

Figure 10.15. A comparison of load times and TTFB for jQuery over several CDNs versus a

low-cost shared hosting environment

Figure 10.16. The Network panel in Chrome showing the CDN asset failing to load and the

page falling back to the locally hosted version

Figure 10.17. The process of verifying assets by using Subresource Integrity. A user

requests an asset from a CDN, and the asset’s safety is determined via a checksum

verification process. If the asset is safe, it’s used. If not, the asset is discarded.

Figure 10.18. The format of the integrity attribute. This value starts off with the hashing

algorithm (SHA-256, in this case) and is followed by the checksum value for the referenced

resource.

Figure 10.19. The effects of the preconnect resource hint when loading jQuery from a CDN

on both HTTP and HTTPS

Figure 10.20. Page load times for the Weekly Timber home page when prefetching jQuery versus

no prefetching using Chrome’s Regular 4G network throttling profile

Figure 10.21. The Network panel showing jquery-2.2.3.min.js loaded with the preload

resource hint. The first line for the jQuery library is from the preload hint, whereas the

second occurs when the item is retrieved from the cache. Note the size of 0 bytes on the

second entry for jquery-2.2.3.min.js.

Chapter 11. Looking to the future with HTTP/2

Figure 11.1. The 1996 (left) and 2016 (right) incarnation of the Los Angeles Times

Figure 11.2. The head-of-line blocking problem as shown in a batch of nine requests. The

first batch of six requests is fulfilled in parallel, but the remaining batch can’t start

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10fig21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig02

downloading until the largest file (masthead.jpg) in the first batch finishes downloading.

This problem can cause delays in load times.

Figure 11.3. A session ID cookie of 128 bytes distributed across 60 requests, adding up

to a total of 7.5 KB of extra data sent to the web server

Figure 11.4. The anatomy of an HTTP/2 request. One connection houses multiple bidirectional

streams, which in turn contain multiple messages that request and receive assets. These

messages are delimited by frames, which in turn describe the content of messages (headers,

response bodies, and so forth).

Figure 11.5. HPACK header compression in action. Headers are stored in an indexed table.

Identical headers discovered in later requests for the same page are tied to an index in

the table to avoid duplication of that data, whereas headers with new data are stored as

new entries in the table.

Figure 11.6. The Network panel in Chrome’s Developer Tools indicating assets transferred

over HTTP/2. Assets transferred over HTTP/1 will have the value http/1.1 in this field.

Figure 11.7. The effect on asset downloads on HTTP/1 (left) versus HTTP/2 (right): downloads

in HTTP/2 are parallelized more than in HTTP/1, meaning that they begin roughly at the same

time.

Figure 11.8. Comparing page-load times on the Weekly Timber website on HTTP/1 versus HTTP/2

Figure 11.9. A comparison of the bytes sent during an HTTP/2 session versus that of an HTTP/1

session

Figure 11.10. Concatenation can reduce caching efficiency. One of four icons in the image

sprite is modified, but even though 75% of the file content remains unmodified, the user

will be forced to download the entire asset instead of just the changed portion.

Figure 11.11. An example of a data URI. The scheme begins with the data URI, followed by

the encoded data’s content type, the name of the encoding scheme, and the encoded data

(truncated in this example).

Figure 11.12. The anatomy of a Server Push event: the user requests index.html, and the

server responds with a PUSH_PROMISE frame that contains the pushed copy of styles.min.css,

as per its configuration.

Figure 11.13. The Network tab in Chrome indicating a pushed asset by way of the Push keyword

in the asset’s Initiator column

Figure 11.14. Time to First Paint comparison with and without Server Push for the client

website’s CSS

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig14

Figure 11.15. The anatomy of an HTTP/2 negotiation. The client requests an asset, and the

server then checks whether the browser is capable of using HTTP/2. If so, it proceeds

accordingly. If not, the connection downgrades to HTTP/1.

Figure 11.16. The Can I Use website displaying support of HTTP/2 by browser

Figure 11.17. The section to import your site data from Google Analytics

Figure 11.18. The support formula for a feature on Can I Use after Google Analytics data

has been imported. All Web Site Data is the data imported from Google Analytics.

Figure 11.19. The <html> tag is modified on the server when the web server downgrades to

HTTP/1.

Figure 11.20. The scripts for the client website delivered in concatenated fashion for

HTTP/1 browsers

Chapter 12. Automating optimization with gulp

Figure 12.1. An unautomated workflow for compiling LESS into CSS

Figure 12.2. An automated workflow for compiling LESS into CSS. The only tasks the developer

has to perform are making and saving changes, while the build system builds the CSS and

reloads the page for us.

Figure 12.3. The concept of a stream. In this example, the input is composed of LESS files

that are piped into the stream, which then compiles the LESS into CSS and pipes that completed

output into a CSS file.

Figure 12.4. An example of data being piped in and out of multiple streams. The first stream

compiles the LESS file into CSS, which is then piped into another stream that minifies it.

Figure 12.5. The outline of a task. The task is identified by its name, buildCSS, and begins

with a LESS source file named main.less that resides on the disk. This file is piped into

a stream that compiles main.less into a CSS file that is outputted from the stream and saved

to the disk as styles.css.

Figure 12.6. The build system processes files from a source folder (src in this example)

and processes them and writes the output to the distribution folder (named dist)

Figure 12.7. The general structure of gulp tasks you’ll write for this chapter’s gulpfile

Figure 12.8. The LiveReload extension icon in the Chrome toolbar. Clicking this icon enables

the LiveReload listener that receives signals from the local LiveReload server to reload

when files change.

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11fig20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12fig08

List of Tables

Chapter 1. Understanding web performance

Table 1.1. A comparison of page-load times across various devices. Results vary depending

on the amount of data and the display density of the device.

Table 1.2. A comparison of text assets on the client’s website before and after the

application of server compression

Table 1.3. A comparison of image sizes before and after their optimization using the TinyPNG

web service

Table 1.4. A comparison of page weights for the client’s website for various device types

before and after optimizations have been made

Chapter 3. Optimizing CSS

Table 3.1. Selector types used in the test, and examples of those selectors in the test

Table 3.2. Benchmark results of CSS transitions vs. jQuery’s animate method in Google

Chrome

Chapter 4. Understanding critical CSS

Table 4.1. Critical components and their related parent container selectors. These

selectors can be used to search for styles for the components in the site’s LESS files.

Chapter 5. Making images responsive

Table 5.1. You can choose an Image format based on the type of content for your site. Each

image for mat varies in color restrictions, image type, and compression category. (Full

color indicates a range of 16.7 million or more colors, 24/32-bit.)

Table 5.2. Images, their resolutions, and their target media query breakpoints in the

website’s CSS

Table 5.3. Background images for the #masthead selector in the CSS, their resolution, and

the high DPI screen media queries

Table 5.4. An inventory of images in the website’s img folder and their widths, which will

be used for the srcset attribute

Chapter 6. Going further with images

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01table04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05table04

Table 6.1. SVG icons in the recipe website that you’ll combine into an image sprite

Table 6.2. Icon images and the LESS mixins needed to replace them

Table 6.3. Screen DPI as it relates to the size of images and the total load time of the

page

Chapter 7. Faster fonts

Table 7.1. The available font variants in the Open Sans font family, their font-weight values,

and whether they’ll be used on the page

Table 7.2. Font formats, along with their file extensions and browser support. Opera Mini

doesn’t support custom fonts.

Table 7.3. Embedded fonts’ font-family property values and their associated CSS selectors

Chapter 10. Fine-tuning asset delivery

Table 10.1. Asset types for the Weekly Timber website, their modification frequencies, and

the Cache-Control header value that should be used

Chapter 12. Automating optimization with gulp

Table 12.1. Essential gulp plugins

Table 12.2. CSS-related gulp plugins

Table 12.3. JavaScript-related gulp plugins

Table 12.4. Plugins related to image optimization

Appendix B. Native equivalents of common jQuery functionality

Table B.1. jQuery versus native element selection methods

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12table04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app02table01

List of Listings

Chapter 1. Understanding web performance

Listing 1.1. Configuring the Node HTTP server to use compression

Listing 1.2. Enabling server compression on Apache web servers

Chapter 3. Optimizing CSS

Listing 3.1. LESS and SASS selector nesting

Listing 3.2. LESS/SASS nested selectors after compilation

Listing 3.3. A portion of csscss output

Listing 3.4. Combined CSS rule from csscss output

Listing 3.5. Problematic csscss output

Listing 3.6. Mobile-first CSS boilerplate

Listing 3.7. Box model styling

Listing 3.8. Flexbox styling with flexbox properties in bold

Listing 3.9. Simple CSS hover state transition

Chapter 4. Understanding critical CSS

Listing 4.1. Using the preload resource hint to asynchronously load a CSS file

Listing 4.2. Using PHP to inline a style sheet

Chapter 5. Making images responsive

Listing 5.1. The #masthead styling for the Legendary Tones website

Listing 5.2. Media query breakpoint

Listing 5.3. The universal max-width rule for all img elements

Listing 5.4. The <picture> element on the Legendary Tones website

Listing 5.5. Adding new image treatments for different devices via <picture>

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_010.html#ch01ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_012.html#ch03ex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_013.html#ch04ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex05

Listing 5.6. Adding images for high-DPI displays by using <picture>

Listing 5.7. Inlined SVG in HTML

Chapter 6. Going further with images

Listing 6.1. Fallback to PNG for browsers without SVG support

Listing 6.2. Using imagemin to optimize all JPEGs in a folder

Listing 6.3. Using imagemin to optimize PNGs

Listing 6.4. Encoding JPEG images into lossy WebP with imagemin

Listing 6.5. Encoding PNG images into lossless WebP with imagemin

Listing 6.6. Establishing fallbacks with <picture>

Listing 6.7. Preparing images for the lazy loading script

Listing 6.8. Beginning the lazy loader

Listing 6.9. The initializing and destroying functions

Listing 6.10. Defining the scanImages method

Listing 6.11. Defining the inViewport method

Listing 6.12. Defining the loadImage method

Listing 6.13. Defining the removeClass property

Chapter 7. Faster fonts

Listing 7.1. @font-face declaration for Open Sans Regular

Listing 7.2. @font-face declarations for remaining Open Sans font variants

Listing 7.3. Apache server configured to compress TTF and EOT fonts

Listing 7.4. unicode-range values

Listing 7.5. @font-face for Open Sans Regular Cyrillic subset

Listing 7.6. Deferring loading of font subsets with JavaScript

Listing 7.7. Using the font-display property

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_014.html#ch05ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_015.html#ch06ex13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex07

Listing 7.8. Controlling font display by using the fonts-loaded class

Listing 7.9. Using the font-loading API

Listing 7.10. Conditionally adding the fonts-loaded class via PHP

Listing 7.11. <noscript> alternative to JavaScript font loading

Listing 7.12. Conditionally loading Font Face Observer and font-loading scripts

Listing 7.13. Using Font Face Observer to control the loading of fonts

Chapter 8. Keeping JavaScript lean and fast

Listing 8.1. Configuring Alameda and defining behaviors.js as an AMD module

Listing 8.2. jQuery checking for DOM readiness

Listing 8.3. Checking for DOM readiness with addEventListener

Listing 8.4. querySelector and querySelectorAll vs. jQuery’s core $ method

Listing 8.5. Binding a click event on an item with addEventListener

Listing 8.6. jQuery-centric appointment scheduling modal launch code

Listing 8.7. Appointment-scheduling modal event binding using native JavaScript

Listing 8.8. classList vs. jQuery’s removeClass and addClass methods

Listing 8.9. The jQuery-dependent openModal function

Listing 8.10. The jQuery-independent openModal function

Listing 8.11. Modifying attributes with jQuery vs. native JavaScript

Listing 8.12. jQuery’s html method vs. JavaScript’s innerHTML property

Listing 8.13. Attribute and element content modification via jQuery

Listing 8.14. Attribute and element content modification via native JavaScript

Listing 8.15. Getting an attribute via jQuery’s attr method

Listing 8.16. Getting an attribute via the getAttribute method

Listing 8.17. Fetch API–driven AJAX request with a JSON response

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_016.html#ch07ex13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex17

Listing 8.18. Fetch API–driven AJAX request

Listing 8.19. Conditionally loading the Fetch API polyfill

Listing 8.20. Animating with a timer function (setTimeout)

Listing 8.21. Animating with requestAnimationFrame

Listing 8.22. Animation function using setTimeout

Listing 8.23. Substituting requestAnimationFrame in place of setTimeout

Listing 8.24. requestAnimationFrame fallback using setTimeout

Chapter 9. Boosting performance with service workers

Listing 9.1. Service worker support detection and installation code

Listing 9.2. Caching assets in the service worker’s install event

Listing 9.3. Intercepting and caching additional assets in the fetch event

Listing 9.4. Adding a regular expression to check for HTML requests

Listing 9.5. Handling HTML requests with a network first/cache for offline pattern

Listing 9.6. Updating the cache name and the assets to cache

Listing 9.7. Removing old caches in the activate event

Chapter 10. Fine-tuning asset delivery

Listing 10.1. Compressing all file types with the compression module

Listing 10.2. A Brotli-capable web server written in Node

Listing 10.3. Configuring the Brotli compression level

Listing 10.4. Setting Cache-Control headers by file type

Listing 10.5. Automated cache invalidation in PHP

Listing 10.6. A reusable fallback script loader

Chapter 11. Looking to the future with HTTP/2

Listing 11.1. Importing modules needed for the HTTP/2 server

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex19
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex20
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex21
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex22
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex23
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_017.html#ch08ex24
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_018.html#ch09ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_019.html#ch10ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex01

Listing 11.2. Setting up SSL certificates on the server

Listing 11.3. Writing the HTTP/2 server behavior

Listing 11.4. Pushing content in Apache when a user requests an HTML file

Listing 11.5. Writing a Server Push response in a Node HTTP/2 server

Listing 11.6. Detecting the HTTP version

Listing 11.7. Adding a class to the <html> tag when the HTTP version downgrades

Listing 11.8. Isolating other requests that don’t require modification

Listing 11.9. Scripts on the Weekly Timber site

Listing 11.10. Optimal handling of scripts for HTTP/1 on the Weekly Timber website

Listing 11.11. Transforming the delivery of scripts based on the HTTP version

Listing 11.12. Serving assets by protocol in PHP

Chapter 12. Automating optimization with gulp

Listing 12.1. Importing all modules needed for the gulpfile

Listing 12.2. The HTML minification task

Listing 12.3. The LESS compilation/CSS optimization task

Listing 12.4. The JavaScript uglification task

Listing 12.5. The script concatenation task

Listing 12.6. Optimizing your PNGs, JEPGs, and SVGs with imagemin

Listing 12.7. The WebP conversion task

Listing 12.8. The watch task

Appendix B. Native equivalents of common jQuery functionality

Listing B.1. Using querySelector and querySelectorAll

Listing B.2. Triggering events programmatically without jQuery

Listing B.3. An event-triggering helper function

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_020.html#ch11ex12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex03
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_021.html#ch12ex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex01
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex02
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex03

Listing B.4. Binding behavior to elements that don’t exist yet without jQuery

Listing B.5. Iterating over a set of elements without jQuery

Listing B.6. Manipulating element classes with jQuery

Listing B.7. Manipulating element classes without jQuery

Listing B.8. Conditionally toggling classes using classList

Listing B.9. Checking for an existing class with classList.contains

Listing B.10. Setting styles with jQuery

Listing B.11. Getting an element’s style without jQuery

Listing B.12. A helper function for setting multiple CSS properties without jQuery

Listing B.13. Setting attributes with jQuery

Listing B.14. Setting attributes without jQuery

Listing B.15. Getting and setting element contents with jQuery

Listing B.16. Getting and setting element contents without jQuery

Listing B.17. Setting an element’s text content

Listing B.18. Hiding and showing elements with the style object

Listing B.19. Removing multiple elements from the DOM without jQuery

https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex04
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex05
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex06
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex07
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex08
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex09
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex10
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex11
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex12
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex13
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex14
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex15
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex16
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex17
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex18
https://www.safaribooksonline.com/library/view/web-performance-in/9781617293771/kindle_split_023.html#app0Bex19

	Web Performance in Action: Building Fast Web Pages
	Book Description
	Copyright
	Brief Table of Contents
	Table of Contents
	Foreword
	Preface
	Acknowledgments
	About this Book
	Who should read this book
	Roadmap
	Tools used in this book
	Node.js
	Git
	Other tools

	Code conventions
	Author Online

	About the Author
	About the Cover Illustration
	Chapter 1. Understanding web performance
	1.1. Understanding web performance
	1.1.1. Web performance and the user experience
	Figure 1.1. The average rankings of all pages on the Legendary Tones website according to its page download time by Google. Lower values are better.

	1.1.2. How web browsers talk to web servers
	Figure 1.2. A user’s request for example.com. The user sends the request for the web page via a browser and then must wait for the server to gather its response and send it. After the server sends the response, the user receives the web page in the br...
	Figure 1.3. The anatomy of an HTTP request to example.com.

	1.1.3. How web pages load
	Figure 1.4. Steps to get index.html from a web server

	1.2. Getting up and running
	1.2.1. Installing Node.js and Git
	1.2.2. Downloading and running the client’s website
	Figure 1.5. The client’s website in the web browser running from your local machine

	1.2.3. Simulating a network connection
	Figure 1.6. The location of the Network tab in the Google Chrome Developer Tools window. You can simulate internet connection speeds by using the throttling menu.

	1.3. Auditing the client’s website
	Figure 1.7. The Record button must be in the enabled state (red) before you can generate a waterfall chart of assets. The Disable Cache check box should also be selected so that no caching is done when you reload the page to measure the results of you...
	Figure 1.8. A waterfall chart generated for your client’s website. At the top, you can see the request for index.html, followed by the site’s CSS, JavaScript, and images. Each bar represents a request for a site asset. The bars are positioned on the x...
	Table 1.1. A comparison of page-load times across various devices. Results vary depending on the amount of data and the display density of the device.

	1.4. Optimizing the client’s website
	1.4.1. Minifying assets
	Figure 1.9. Minification of a CSS rule. In this example, a CSS rule is minified from 98 bytes down to 77, which represents a 21% reduction. When this concept is applied to all text assets on a site, the reductions can total many kilobytes.
	Tip
	Minifying the website’s CSS
	Minifying the website’s JavaScript
	Minifying the website’s HTML
	Figure 1.10. Load times of the client’s website on the Regular 3G network throttling profile before and after minification. Improvements range anywhere from 31% to 41%, depending on the visitor’s device.

	1.4.2. Using server compression
	Figure 1.11. The process of server compression
	Listing 1.1. Configuring the Node HTTP server to use compression
	Table 1.2. A comparison of text assets on the client’s website before and after the application of server compression
	Figure 1.12. Load times of the client’s site on the Regular 3G throttling profile before and after applying compression. Depending on the visitor’s device, load times improve anywhere from 18% to 32%.
	Listing 1.2. Enabling server compression on Apache web servers

	1.4.3. Optimizing images
	Figure 1.13. Image optimization in action on a PNG image. Optimizing images in this manner uses a re-encoding technique that discards unnecessary data from the image, but doesn’t noticeably impact the image’s visual quality.
	Figure 1.14. TinyPNG compressing the client website’s images and reporting a 61% reduction of total size
	Table 1.3. A comparison of image sizes before and after their optimization using the TinyPNG web service
	Figure 1.15. Load times of the client’s website on the Regular 3G network throttling profile before and after optimizing images. Depending on the visitor’s device, load times improve anywhere from 23% to 53%.

	1.5. Performing the final weigh-in
	Table 1.4. A comparison of page weights for the client’s website for various device types before and after optimizations have been made
	Figure 1.16. Load times of the client’s website on the Regular 3G throttling profile before and after all optimizations were made. Load times improve approximately 70% for all visitors on all devices.

	1.6. Summary

	Chapter 2. Using assessment tools
	2.1. Evaluating with Google PageSpeed Insights
	2.1.1. Appraising website performance
	Figure 2.1. Google PageSpeed Insights checks two aspects of page speed: the load time of above-the-fold content, which is what the user sees immediately upon visiting a page, and the load time of the entire page.
	Figure 2.2. Google PageSpeed Insights results for the mobile view of a website. A user enters a URL and gets performance tips grouped by severity for both mobile and desktop states.
	Figure 2.3. The PageSpeed Insights report for the client website from chapter 1 prior to (left) and after (right) your optimizations.

	2.1.2. Using Google Analytics for bulk reporting
	Figure 2.4. PageSpeed Insights reporting information can be accessed in Google Analytics by navigating to the Behavior section on the left menu and clicking the Speed Suggestions link.
	Figure 2.5. The reporting table of performance statistics in Google Analytics. Note the two rightmost columns with PageSpeed Insights–specific data and links to reports for associated page URLs.

	2.2. Using browser-based assessment tools
	2.3. Inspecting network requests
	2.3.1. Viewing timing information
	Figure 2.6. The process of a web browser’s request to a web server. Latency occurs in each step of the process. The amount of time between the instant the user makes a request to the time the response arrives is known as Time to First Byte (TTFB).
	Figure 2.7. Timing information for a site asset. The TTFB in this example is 174.56 ms.
	Figure 2.8. The Safari Developer Tools can be used only if the Develop option is visible in the menu bar when the Safari web browser window is in focus. If you don’t see this menu, you have to enable the developer tools.
	Figure 2.9. You can enable the Safari Developer Tools by choosing Safari > Preferences from the menu bar. In the window that appears, click the Advanced tab and select the check box.
	Figure 2.10. The network request information for a website in the Network tab in Safari’s Developer Tools. Note the lack of a waterfall graph in this view in favor of columns for timing information.

	2.3.2. Viewing HTTP request and response headers
	Figure 2.11. HTTP headers are sent by the browser in the initial request and by the server in its response. In this figure, a simplified set of headers is shown. The network inspection utilities in the developer tools for every browser allow the user ...
	Figure 2.12. Viewing HTTP headers in Chrome’s Developer Tools. Accessing HTTP headers for an asset can be done by clicking the asset name. A new pane to the right opens, with the header information contained within the Headers tab.
	Figure 2.13. The Content-Encoding response header from the web server lets you know that the asset is compressed, as well as the compression algorithm used (gzip in this example).
	Figure 2.14. Viewing HTTP headers in Microsoft Edge requires the user to click a small toggle button at the farright side of the window in the Network tab.

	2.4. Rendering performance-auditing tools
	2.4.1. Understanding how browsers render web pages
	Figure 2.15. The page-rendering process.

	2.4.2. Using Google Chrome’s Timeline tool
	Figure 2.16. The Timeline tool in the populated state.
	Figure 2.17. The breakdown of session activity as recorded by the Timeline tool
	Figure 2.18. An isolated call stack from the flame chart view in the Timeline tool. The top event is a loading event where the HTML was parsed. Underneath it are events originating from it, such as the DOMContentLoaded event that fires when the DOM is...
	Figure 2.19. The breakdown of a scripting event. You can see information related to the event, such as the amount of CPU time used, the event type, and its origination. This data is also visualized in a pie chart.

	2.4.3. Identifying problem events: thy enemy is jank
	Figure 2.20. A timeline recording of the modal opening on the client website. A range of janky frames is denoted with red markers in the activity overview, and highlighted in red and clickable in the flame chart.
	Figure 2.21. The summary view of a janky frame. Note the explicit warning and the low frame rate.
	Figure 2.22. The event log filtered by scripting events. The text box can be used to filter events by the contents of their activity, filtered by a specific length of time in the duration drop-down, and/or by type.
	Figure 2.23. Modal animation performance after CSS transitions have been implemented. Janky frames still exist, but much less so than before, resulting in an overall improved experience.
	Figure 2.24. CPU usage summary of jQuery animations (left) compared to CSS transitions (right)

	2.4.4. Marking points in the timeline with JavaScript
	Figure 2.25. A marker added to the timeline. The associated call stack is selected, and the timestamp event call is shown in the event log.

	2.4.5. Rendering profilers in other browsers
	Figure 2.26. An annotated overview of Microsoft Edge’s performance profiler

	2.5. Benchmarking JavaScript in Chrome
	Figure 2.27. The results of two benchmarks you’ve run of jQuery’s DOM selection versus that of the native document.querySelector method. Results are circled.

	2.6. Simulating and monitoring devices
	2.6.1. Simulating devices in the desktop web browser
	Figure 2.28. The device simulation mode in Chrome viewing the Manning Publications website

	2.6.2. Debugging websites remotely on Android devices
	Figure 2.29. The Chrome device list showing an open web page on a connected Android phone
	Figure 2.30. The Developer Tools profiling rendering activity of a page on an Android phone. In this view, the device’s display is mirrored on the host machine, and the Developer Tools are focused on the device’s current page rather than a session act...

	2.6.3. Debugging websites remotely on iOS devices

	2.7. Creating custom network throttling profiles
	Figure 2.31. The throttling profiles that ship with Chrome, with the option to add custom profiles
	Figure 2.32. Adding a new throttling profile in Chrome. The profile requires four bits of information: a profile name, the download and upload speeds (inKbits/sec), and the latency in milliseconds.
	Figure 2.33. Your new custom network throttling profile is now in the list.

	2.8. Summary

	Chapter 3. Optimizing CSS
	3.1. Don’t talk much and stay DRY
	3.1.1. Write shorthand CSS
	Figure 3.1. An example of shorthand CSS via the font property
	Figure 3.2. The margin shorthand property takes one to four values: those for margin-top, marginright, margin-bottom, and margin-left.

	3.1.2. Use shallow CSS selectors
	Figure 3.3. An example of an overly specific CSS selector (left) versus a more succinct one (right). The selector at the left is 67 characters, whereas the one at the right is at 12 characters.

	3.1.3. Culling shallow selectors
	3.1.4. LESS is more and taming SASS
	Listing 3.1. LESS and SASS selector nesting
	Listing 3.2. LESS/SASS nested selectors after compilation

	3.1.5. Don’t repeat yourself
	3.1.6. Going DRY
	Figure 3.4. An example of the DRY principle. Two selectors have the same background property. To save space and eliminate redundancy, the background property and the selectors are combined.

	3.1.7. Finding redundancies with csscss
	Listing 3.3. A portion of csscss output
	Listing 3.4. Combined CSS rule from csscss output
	Listing 3.5. Problematic csscss output

	3.1.8. Segment CSS
	Figure 3.5. A user navigation flow to pages with CSS segmented by page template. The browser downloads only the CSS it needs for the current page.
	Figure 3.6. The Behavior section of the left-hand menu in Google Analytics. The visitor flows can be seen by clicking the Behavior Flow link in the Behavior submenu.
	Figure 3.7. The visitor flow chart in Google Analytics. Starting at the left, you see where users enter the site. In this case, you see that the vast majority of users are entering on the site’s main page. Few visitors click through to the subpages.

	3.1.9. Customize framework downloads
	Figure 3.8. The download customization screen on the Twitter Bootstrap website. Bootstrap allows the developer to specify which parts of the framework the user wants in a custom download.

	3.2. Mobile-first is user-first
	3.2.1. Mobile-first vs. desktop-first
	Figure 3.9. Mobile-first versus desktop-first responsive design flows
	Figure 3.10. The trend of internet traffic on mobile devices versus laptop devices. Toward the end of 2015, nearly half of all traffic on the internet occurred on mobile devices. This trend is continuing (Data from StatCounter Global Stats).
	Figure 3.11. The flow of layout complexity across breakpoints on a mobile-first website
	Listing 3.6. Mobile-first CSS boilerplate

	3.2.2. Mobilegeddon
	3.2.3. Using Google’s mobile-friendly guidelines
	Figure 3.12. A responsive site on a mobile device without the <meta> viewport tag (left) and the same site with it (right). Even though the site pictured is a mobile-first responsive site, it won’t display in the proper breakpoint without this crucial...

	3.2.4. Verifying a site’s mobile-friendliness
	Figure 3.13. The results page of Google’s Mobile-Friendly Test tool after examining a website

	3.3. Performance-tuning your CSS
	3.3.1. Avoiding the @import declaration
	3.3.2. @import serializes requests
	Figure 3.14. Downloads for two style sheets are serialized one after the other because of an @import directive in styles.css that requests fonts.css.

	3.3.3. <link> parallelizes requests
	Figure 3.15. Two requests for style sheets made by using the <link> tag. The <link> tags are found by the browser after downloading the HTML, and the browser executes these two requests at the same time.

	3.3.4. Placing CSS in the <head>
	3.3.5. Preventing the Flash of Unstyled Content
	Figure 3.16. A rendering timeline in Chrome showing the Flash of Unstyled Content effect at left. The document eventually renders as intended, but with a brief display of the unstyled content. In this case, the effect is due to a <link> tag referencin...

	3.3.6. Increasing rendering speed
	Figure 3.17. Rendering performance at load time of my personal website in Chrome with styles placed in the <head> versus at the end

	3.3.7. Using faster selectors
	3.3.8. Constructing and running the benchmark
	Figure 3.18. The structure of the test HTML document. The test markup is contained within a div.contentContainer. Within it are four <section> elements arranged in four columns, each containing two elements with 51 elements. The block of fou...
	Table 3.1. Selector types used in the test, and examples of those selectors in the test

	3.3.9. Examining the benchmark results
	Figure 3.19. The performance of the CSS selectors test in Chrome. On the left are the selector types, and on the bottom is the amount of time each selector type took to complete the test in seconds. All values are the sum of rendering and painting pro...

	3.3.10. Using flexbox where possible
	3.3.11. Comparing box model and flexbox styles
	Listing 3.7. Box model styling
	Listing 3.8. Flexbox styling with flexbox properties in bold

	3.3.12. Examining the benchmark results
	Figure 3.20. Benchmark results of box model layout performance versus flexbox layout in Chrome. Lower is better.

	3.4. Working with CSS transitions
	3.4.1. Using CSS transitions
	Figure 3.21. The .box element on the page before and after a transition on its border-radius property
	Listing 3.9. Simple CSS hover state transition

	3.4.2. Observing CSS transition performance
	Table 3.2. Benchmark results of CSS transitions vs. jQuery’s animate method in Google Chrome

	3.4.3. Optimizing transitions with the will-change property

	3.5. Summary

	Chapter 4. Understanding critical CSS
	4.1. What does critical CSS solve?
	4.1.1. Understanding the fold
	Figure 4.1. A depiction of above- and below-the-fold content on an array of devices. The above-the-fold content begins at the top of a website and ends at the bottom of the screen. Anything that’s out of the browser’s view is below the fold.

	4.1.2. Understanding render blocking
	Figure 4.2. Chrome’s Timeline profiler when the document’s first painting event occurs. The event can be found under the Event Log tab by filtering out all but the painting events.
	Figure 4.3. Chrome’s Timeline profiler showing an improved paint time after the contents of the site’s CSS have been inlined into the HTML

	4.2. How does critical CSS work?
	4.2.1. Loading above-the-fold styles
	Figure 4.4. Inline styles loaded for above-the-fold content. The CSS for the above-the-fold content is inlined into the HTML for faster parsing, which translates into a faster Time to First Paint.

	4.2.2. Loading below-the-fold styles
	Figure 4.5. The preload resource hint loading external CSS for below-the-fold content. This method loads an external style sheet in a way that doesn’t block rendering. When the CSS has finished loading, an onload event fires and flips the rel value of...

	4.3. Implementing critical CSS
	4.3.1. Getting the recipe website up and running
	Downloading and running the recipe website
	Figure 4.6. The recipe website in Chrome. This is the tablet breakpoint at roughly 750 pixels wide.
	Reviewing the project structure

	4.3.2. Identifying and separating above-the-fold CSS
	Identifying the fold
	Figure 4.7. A chart of common device resolutions on mydevice.io, sorted in descending order by CSS height. The site also offers information for devices other than mobile phones. The physical resolution differs from CSS resolution in that they’re both ...
	Figure 4.8. The VisualFold! bookmarklet in action. The user enters a number in a dialog box (left) indicating the desired location of a guideline to be drawn on the page (right). This assists the user in locating the fold. By resizing the window, the ...
	Identifying the critical components
	Figure 4.9. The mobile breakpoint of the page with labels of the critical components
	Figure 4.10. The large breakpoint with components labeled that were below the fold on the mobile version
	Separating the critical CSS
	Table 4.1. Critical components and their related parent container selectors. These selectors can be used to search for styles for the components in the site’s LESS files.
	Figure 4.11. The appearance of the recipe website after you’ve inlined the header selector CSS into the HTML. It’s partially styled, but much is still missing.
	Figure 4.12. The critical CSS after all of the header styles have been inlined into index.html

	4.3.3. Loading below-the-fold CSS
	Loading CSS asynchronously with the preload resource hint
	Listing 4.1. Using the preload resource hint to asynchronously load a CSS file
	Polyfilling the preload resource hint

	4.4. Weighing the benefits
	Figure 4.13. Time to first paint performance in Google Chrome before and after implementing critical CSS
	Figure 4.14. Time to First Paint in Mobile Safari on an iPhone 6S over a remote shared host before and after prioritizing critical CSS

	4.5. Making maintainability easier
	Listing 4.2. Using PHP to inline a style sheet

	4.6. Considerations for multipage websites
	Figure 4.15. A modularized approach to critical CSS. Template A and Template B have their own critical CSS that’s inlined only for those pages, but both inline globally common critical styles.

	4.7. Summary

	Chapter 5. Making images responsive
	5.1. Why think about image delivery?
	Figure 5.1. Two examples of scaling an image to a mobile phone. At the top, a 170-KB image with a width of 1440 pixels is scaled down to the width of the phone’s high DPI display. At the bottom, a 41-KB image with a width of 750 pixels is delivered to...
	Figure 5.2. A comparison of rendering and painting times for a single image in Chrome. For the scaling scenario, the source image of 1440 x 900 is scaled to fit a container 375 pixels wide. In the no-scaling scenario, an image resized to fit the conta...

	5.2. Understanding image types and their applications
	5.2.1. Working with raster images
	Figure 5.3. A 16 x 16 raster image of a YouTube favicon. On the left is the native size of the image, and on the right is the enlarged version. Each pixel is part of a two-dimensional grid.
	Lossy images
	Figure 5.4. JPEG images in use on the popular photo cataloging and sharing site Flickr. Photographic content is best suited to the JPEG format.
	Figure 5.5. A comparison of the same image in uncompressed (TIFF) and compressed (JPEG) formats with their respective file sizes. The JPEG version has some subtle degradation at a quality setting of 30, but is acceptable for this scenario.
	Lossless images
	Figure 5.6. The Facebook logo is a PNG image, which is a lossless image format. PNG images are well suited for lossless formats.
	Figure 5.7. A comparison of lossless image-compression methods. The differences between the uncompressed and full-color PNG and WebP versions are imperceptible, whereas the 8-bit lossless image is throttled down to 256 colors.

	5.2.2. Working with SVG images
	Figure 5.8. A cartoon vector image at different sizes. Notice that the larger version doesn’t lose any visual quality as it scales up. This is the primary advantage of vector images over raster images.

	5.2.3. Knowing what image formats to use
	Table 5.1. You can choose an Image format based on the type of content for your site. Each image for mat varies in color restrictions, image type, and compression category. (Full color indicates a range of 16.7 million or more colors, 24/32-bit.)

	5.3. Image delivery in CSS
	Figure 5.9. The Legendary Tones website as it appears in the browser
	5.3.1. Targeting displays in CSS by using media queries
	Listing 5.1. The #masthead styling for the Legendary Tones website
	Table 5.2. Images, their resolutions, and their target media query breakpoints in the website’s CSS
	Listing 5.2. Media query breakpoint
	Figure 5.10. The masthead background image at the 480-pixel (30em) breakpoint before (left) and after (right) adding the new background image. Note the improved visual quality in the after image.

	5.3.2. Targeting high DPI displays with media queries
	Figure 5.11. An enlarged visual representation of graphics on standard displays versus high DPI displays
	Figure 5.12. A comparison of two versions of a background image on two display types. On the left, a background image intended for use on standard displays appears on a high DPI display. On the right, the proper resolution image is used for the high D...
	Table 5.3. Background images for the #masthead selector in the CSS, their resolution, and the high DPI screen media queries

	5.3.3. Using SVG background images in CSS

	5.4. Image delivery in HTML
	5.4.1. The universal max-width rule for images
	Listing 5.3. The universal max-width rule for all img elements
	Figure 5.13. A comparison of image behaviors with and without max-width restrictions. The example on the left is the default behavior: If the image is larger than its container, it’ll exceed the boundaries. On the right is an image with a max-width of...

	5.4.2. Using srcset
	Specifying images with srcset
	Figure 5.14. The new feature image as it appears on the Legendary Tones website
	Table 5.4. An inventory of images in the website’s img folder and their widths, which will be used for the srcset attribute
	Getting more granular with sizes
	Figure 5.15. The effect of the sizes attribute on the article image in Google Chrome. On the 704 px breakpoint, the image takes up 50% of the viewport, at the 480 px breakpoint the image takes up 75%, and the default image behavior below 480 px is to ...

	5.4.3. Using the <picture> element
	Figure 5.16. An example of art direction across a trio of images. In the largest version, the subject has more context and surrounding details, because larger screens can accommodate more. As the screen width decreases, the image is cropped differentl...
	Using art-directed images on the Legendary Tones website
	Figure 5.17. Image behaviors on the Legendary Tones website. On small screens (left), the image centers in the viewport and breaks between paragraphs. On large screens (right), the image floats to the right, and the text wraps around it.
	Listing 5.4. The <picture> element on the Legendary Tones website
	Listing 5.5. Adding new image treatments for different devices via <picture>
	Figure 5.18. Image behaviors of the website after modifications to the <picture> element. Note that small screens (left) offer a different treatment of the image based on the screen resolution.
	Targeting high DPI displays
	Listing 5.6. Adding images for high-DPI displays by using <picture>
	Using the type attribute for fallback images

	5.4.4. Polyfilling support with Picturefill
	Using Picturefill
	Conditionally loading Picturefill with Modernizr
	Figure 5.19. Conditional loading of Picturefill as seen in two browsers’ network request inspectors. On the left is a version of Safari that doesn’t support the <picture> or srcset features and therefore loads Picturefill. On the right is Chrome, whic...

	5.4.5. Using SVG in HTML
	Listing 5.7. Inlined SVG in HTML

	5.5. Summary

	Chapter 6. Going further with images
	6.1. Using image sprites
	Figure 6.1. An image sprite of various social media icons
	6.1.1. Getting up and running
	6.1.2. Generating the image sprite
	Table 6.1. SVG icons in the recipe website that you’ll combine into an image sprite
	Figure 6.2. The anatomy of the svg-sprite command as used to generate an SVG sprite with LESS mixins
	Figure 6.3. The newly generated image sprite with annotations showing the names of the standalone files prior to being added to the sprite

	6.1.3. Using the generated sprite
	Table 6.2. Icon images and the LESS mixins needed to replace them

	6.1.4. Considerations for image sprites
	Figure 6.4. An overview of images on the recipe website that are or aren’t candidates for inclusion in an image sprite. Iconography is marked for inclusion, whereas imagery such as recipe images and ads isn’t.

	6.1.5. Falling back to raster image sprites with Grumpicon
	Figure 6.5. SVG files can be converted to PNG by dragging and dropping SVG files on the Grumpicon beast (or by browsing to them).
	Listing 6.1. Fallback to PNG for browsers without SVG support

	6.2. Reducing images
	Figure 6.6. The client’s recipe website as it appears in the tablet breakpoint
	6.2.1. Reducing raster images with imagemin
	Optimizing JPEG images
	Table 6.3. Screen DPI as it relates to the size of images and the total load time of the page
	Listing 6.2. Using imagemin to optimize all JPEGs in a folder
	Figure 6.7. A comparison of the unoptimized (left) and optimized versions of chicken-tacos-2x.jpg. The optimized version is about 55% smaller, but the visual differences are virtually imperceptible.
	Figure 6.8. Website load times before and after the optimization of images for the recipe website using the Good 3G networking throttling profile in Google Chrome
	Optimizing PNG images
	Listing 6.3. Using imagemin to optimize PNGs
	Figure 6.9. A comparison of the logo.png and logo-2x.png files before and after optimization

	6.2.2. Optimizing SVG images
	Figure 6.10. The Weekly Timber logo before (left) and after optimization with svgo using the default options
	Figure 6.11. The Weekly Timber logo before (left) and after (right) optimizing even further by reducing decimal precision with svgo to a value of 1
	Figure 6.12. An examination of the unoptimized logo.svg (left) compared to an overoptimized version. All precision is stripped from the SVG shapes, resulting in a loss of fidelity, especially with Bézier curves.

	6.3. Encoding images with WebP
	6.3.1. Encoding lossy WebP images with imagemin
	Listing 6.4. Encoding JPEG images into lossy WebP with imagemin
	Figure 6.13. A JPEG optimized by using imagemin’s jpeg-recompress plugin (left) compared to a WebP image encoded from the unoptimized JPEG at a quality setting of 40.
	Figure 6.14. A comparison of load times on the recipe website of JPEG and WebP images on standard and high DPI screens. The WebP images offer better loading performance in comparison to both the optimized and unoptimized JPEG images.

	6.3.2. Encoding lossless WebP Images with imagemin
	Listing 6.5. Encoding PNG images into lossless WebP with imagemin
	Figure 6.15. A comparison of unoptimized PNGs, optimized PNGs, and lossless WebP images

	6.3.3. Supporting browsers that don’t support WebP
	Figure 6.16. Safari failing to display a WebP image
	Listing 6.6. Establishing fallbacks with <picture>
	Figure 6.17. The network request inspector for two web browsers for our recipe collection page. Chrome (left) can use the WebP images, but Firefox (right) can’t, so it falls back to image types it supports.

	6.4. Lazy loading images
	6.4.1. Configuring the markup
	Figure 6.18. An audit of which images make sense to lazy load and which ones don’t
	Listing 6.7. Preparing images for the lazy loading script

	6.4.2. Writing the lazy loader
	Laying the foundations
	Listing 6.8. Beginning the lazy loader
	Figure 6.19. The buffer property specifies how far out of the viewport the lazy loader will look for images to load. By extending what the lazy loader looks for beyond the viewport, you can begin loading images as you approach them to give the browser...
	Building the initializer and destroyer
	Listing 6.9. The initializing and destroying functions
	Scanning the document for images
	Listing 6.10. Defining the scanImages method
	Writing the core lazy loading methods
	Listing 6.11. Defining the inViewport method
	Figure 6.20. The position calculations of the inViewport method, and how they relate to the viewport and the targeted image element. In this case, the calculation of the viewport height plus the amount of buffer space given exceeds the top boundary of...
	Listing 6.12. Defining the loadImage method
	Listing 6.13. Defining the removeClass property
	Turning the key and running the script
	Figure 6.21. The network waterfall graph showing lazy loaded images

	6.4.3. Accommodating users without JavaScript
	Figure 6.22. The effect of lazy loading a script on browsers with JavaScript turned off. The images never load because the JavaScript never runs.
	Figure 6.23. The <noscript> tag at work. Both the image placeholder and the image loaded in the <noscript> tag are visible because the image placeholder is never hidden when JavaScript is disabled.

	6.5. Summary

	Chapter 7. Faster fonts
	7.1. Using fonts wisely
	7.1.1. Selecting fonts and font variants
	Figure 7.1. The client’s content page with all of the font weights annotated
	Table 7.1. The available font variants in the Open Sans font family, their font-weight values, and whether they’ll be used on the page

	7.1.2. Rolling your own @font-face cascade
	Converting fonts
	Table 7.2. Font formats, along with their file extensions and browser support. Opera Mini doesn’t support custom fonts.
	Building the @font-face cascade
	Listing 7.1. @font-face declaration for Open Sans Regular
	Figure 7.2. The process of a user’s browser processing a @font-face cascade. The browser searches for a locally installed version (if specified,) and if it can’t find one, it will iterate through all of the @font-face src() calls for various formats o...
	Listing 7.2. @font-face declarations for remaining Open Sans font variants

	7.2. Compressing EOT and TTF font formats
	Listing 7.3. Apache server configured to compress TTF and EOT fonts
	Figure 7.3. The size of the Open Sans Regular font before and after compression. The gains in this example are about 45%, from 212.26 KB to 113.76 KB, over the uncompressed versions. EOT compression ratios are similar.

	7.3. Subsetting fonts
	Figure 7.4. Google subsetting fonts by language
	7.3.1. Manually subsetting fonts
	Understanding Unicode ranges
	Figure 7.5. A portion of a table of Unicode characters from unicode.org, showing glyphs and their code points. The lowercase p is identified by its Unicode code point of U+0070.
	Installing fonttools
	Subsetting fonts with pyftsubset
	Figure 7.6. Subsetting a font with pyftsubset. The input file is specified first, followed by the Unicode range of characters you want to subset from the input font, and then the output filename. The last option is used to preserve all name table entr...
	Figure 7.7. Load times before and after subsetting fonts. Load times are improved by well over 200%. Load times include load times for all assets on site. True-Type fonts were compressed by the server in these trials. (EOT omitted due to incompatibili...

	7.3.2. Delivering font subsets by using the unicode-range property
	Generating the Cyrillic font subsets
	Using the unicode-range property
	Listing 7.4. unicode-range values
	Figure 7.8. The Basic Latin font subsets are loaded on the Russian version of the page, despite having a unicode-range property set to use these fonts only for pages displaying characters from the Basic Latin subset.
	Listing 7.5. @font-face for Open Sans Regular Cyrillic subset
	Figure 7.9. The fonts downloaded by the Russian version of the page (left) as compared to the English version (right), even though they both use the same style sheet. The unicode-range property detects whether any characters in the document exist in t...
	Fallbacks for older browsers
	Figure 7.10. Cyrillic subsets loading on the English version of the page, regardless of the unicode-range property. The behavior shown is in Safari.
	Listing 7.6. Deferring loading of font subsets with JavaScript
	Figure 7.11. The contents of the network tab in Safari on both the English (left) and Russian (right) versions of the content page, with your fallback script enabled on each page. The English version downloads only the fonts it needs, whereas the Russ...

	7.4. Optimizing the loading of fonts
	7.4.1. Understanding font-loading problems
	Figure 7.12. As a page loads embedded fonts, the text is initially invisible (left) until the fonts fully load, at which point the text styled in those font faces appears.
	Figure 7.13. When the download time for a font is too long, the text will eventually become visible, but is unstyled because of the still-loading font resource (left). After all of the fonts load, the text will become styled (right). This is known as ...

	7.4.2. Using the CSS font-display property
	Controlling how and when fonts display
	Figure 7.14. The toggle button to capture screenshots in Chrome Developer Tools
	Listing 7.7. Using the font-display property

	7.4.3. Using the font-loading API
	Table 7.3. Embedded fonts’ font-family property values and their associated CSS selectors
	Listing 7.8. Controlling font display by using the fonts-loaded class
	Listing 7.9. Using the font-loading API
	Optimizing for repeat visitors
	Listing 7.10. Conditionally adding the fonts-loaded class via PHP
	Accommodating users with JavaScript disabled
	Listing 7.11. <noscript> alternative to JavaScript font loading

	7.4.4. Using Font Face Observer as a fallback
	Conditionally loading the external scripts
	Listing 7.12. Conditionally loading Font Face Observer and font-loading scripts
	Writing the font-loading behavior
	Listing 7.13. Using Font Face Observer to control the loading of fonts

	7.5. Summary

	Chapter 8. Keeping JavaScript lean and fast
	8.1. Affecting script-loading behavior
	8.1.1. Placing the <script> element properly
	Figure 8.1. Browsers read HTML documents from top to bottom. When links to external resources (such as scripts, in this case) are found, the browser stops to parse them. When parsing occurs, rendering is blocked.
	Figure 8.2. The Time to First Paint in Chrome for the Coyle Appliance Repair website with <script> tags in the <head> of the document.
	Figure 8.3. The Time to First Paint in Chrome for the Coyle Appliance Repair website with the <script> tags at the end of the document

	8.1.2. Working with asynchronous script loading
	Figure 8.4. A comparison of loading scripts with and without the user of the async attribute. The main difference is that scripts loaded with async won’t wait for other scripts to finish loading before they execute.

	8.1.3. Using async
	Figure 8.5. The async attribute creates a problem in which behaviors.js fails because it executes before its dependency jquery.min.js is available.
	Figure 8.6. A race condition between jquery.min.js and behaviors.js always results in a failure, because behaviors.js loads and executes before its dependency is available.
	Figure 8.7. The Time to First Paint value in Chrome for the Coyle Appliance Repair website with scripts bundled and loaded using the async attribute

	8.1.4. Using async reliably with multiple scripts
	Listing 8.1. Configuring Alameda and defining behaviors.js as an AMD module

	8.2. Using leaner jQuery-compatible alternatives
	8.2.1. Comparing the alternatives
	8.2.2. Exploring the contenders
	8.2.3. Comparing file size
	Figure 8.8. A comparison of file sizes of jQuery and its alternatives

	8.2.4. Comparing performance
	Figure 8.9. Performance of jQuery versus its alternatives when selecting an element by its class
	Figure 8.10. Performance of jQuery versus its alternatives when toggling a class on an element
	Figure 8.11. Performance of jQuery versus its alternative when toggling an attribute on an element

	8.2.5. Implementing an alternative
	8.2.6. Using Zepto
	8.2.7. Understanding caveats on using Shoestring or Sprint

	8.3. Getting by without jQuery
	8.3.1. Checking for the DOM to be ready
	Listing 8.2. jQuery checking for DOM readiness
	Listing 8.3. Checking for DOM readiness with addEventListener

	8.3.2. Selecting elements and binding events
	Listing 8.4. querySelector and querySelectorAll vs. jQuery’s core $ method
	Listing 8.5. Binding a click event on an item with addEventListener
	Listing 8.6. jQuery-centric appointment scheduling modal launch code
	Listing 8.7. Appointment-scheduling modal event binding using native JavaScript

	8.3.3. Using classList to manipulate classes on elements
	Listing 8.8. classList vs. jQuery’s removeClass and addClass methods
	Listing 8.9. The jQuery-dependent openModal function
	Listing 8.10. The jQuery-independent openModal function

	8.3.4. Reading and modifying element attributes and content
	Listing 8.11. Modifying attributes with jQuery vs. native JavaScript
	Listing 8.12. jQuery’s html method vs. JavaScript’s innerHTML property
	Listing 8.13. Attribute and element content modification via jQuery
	Listing 8.14. Attribute and element content modification via native JavaScript
	Listing 8.15. Getting an attribute via jQuery’s attr method
	Listing 8.16. Getting an attribute via the getAttribute method

	8.3.5. Making AJAX requests with the Fetch API
	8.3.6. Using the Fetch API
	Listing 8.17. Fetch API–driven AJAX request with a JSON response
	Listing 8.18. Fetch API–driven AJAX request

	8.3.7. Polyfilling the Fetch API
	Listing 8.19. Conditionally loading the Fetch API polyfill
	Figure 8.12. The loading of the fetch API polyfill and its timing with the user’s intentions to fire the scheduling modal

	8.4. Animating with requestAnimationFrame
	8.4.1. requestAnimationFrame at a glance
	8.4.2. Timer function-driven animations and requestAnimationFrame
	Listing 8.20. Animating with a timer function (setTimeout)
	Listing 8.21. Animating with requestAnimationFrame

	8.4.3. Comparing performance
	Figure 8.13. Normalized performance of various animation methods in Chrome’s Timeline tool

	8.4.4. Implementing requestAnimationFrame
	Listing 8.22. Animation function using setTimeout
	Figure 8.14. The animate function in use, with arguments labeled
	Listing 8.23. Substituting requestAnimationFrame in place of setTimeout
	Listing 8.24. requestAnimationFrame fallback using setTimeout

	8.4.5. Dropping in Velocity.js

	8.5. Summary

	Chapter 9. Boosting performance with service workers
	9.1. What are service workers?
	Figure 9.1. A service worker operating on its own thread labeled ServiceWorker Thread can be seen at the bottom in this view of Chrome’s Timeline tool.
	Figure 9.2. A service worker communicating as a proxy between a user and a web server. The user makes requests, which the service worker can intercept. Depending on how the service worker code is written, assets can be retrieved from the service worke...

	9.2. Writing your first service worker
	9.2.1. Installing the service worker
	Figure 9.3. The service worker installation process. The code checks for the status of service worker support. If the browser supports it, the service worker is installed. If not, the browser does nothing.

	9.2.2. Registering the service worker
	Listing 9.1. Service worker support detection and installation code
	Writing the service worker’s install event
	Figure 9.4. The behavior that you want to occur when the service worker’s install event is fired
	Listing 9.2. Caching assets in the service worker’s install event
	Figure 9.5. The Application tab in Chrome’s Developer Tools showing active service workers for the current site. Click the Service Workers item in the left pane to access this panel.
	Looking at the service worker cache
	Figure 9.6. The v1 cache created by your service worker. You can see that the assets you’ve specified in the service worker’s cachedAssets array are present.
	Figure 9.7. Selecting the Offline check box in Chrome’s Network panel allows you to simulate what it’s like to be offline without having to disable your network connection.

	9.2.3. Intercepting and caching network requests
	Figure 9.8. The behavior of the service worker’s fetch event. The user makes a request for an asset, and the service worker steps in to intercept it to see whether the asset is already in the cache. If not, the asset is fetched from the network, and t...
	Listing 9.3. Intercepting and caching additional assets in the fetch event
	Figure 9.9. Network requests intercepted by the service worker will be indicated by a value of “(from ServiceWorker)” in the Size column in Chrome’s network utility.

	9.2.4. Measuring the performance benefits
	Figure 9.10. A comparison of the Time to First Paint performance of various caching scenarios on Chrome’s Regular 3G throttling profile. The scenarios are an uncached page, the page when retrieved by the browser cache, and the page when retrieved from...

	9.2.5. Tweaking network request interception behavior
	Figure 9.11. A two-pronged approach for intercepting a network request in a service worker’s fetch event. If the requested asset is an HTML document, you always fetch it from the network and place it in the cache, and serve it from the service worker ...
	Listing 9.4. Adding a regular expression to check for HTML requests
	Listing 9.5. Handling HTML requests with a network first/cache for offline pattern

	9.3. Updating your service worker
	9.3.1. Versioning your files
	Figure 9.12. An orphaned cache entry after updating the style sheet reference. global.css?v=1 is in the cache, whereas the unused global.css entry remains.

	9.3.2. Cleaning up old caches
	Listing 9.6. Updating the cache name and the assets to cache
	Listing 9.7. Removing old caches in the activate event
	Figure 9.13. Your new v2 cache. If you click this, you’ll be able to see the updated cache contents, particularly the global.css?v=1 entry.

	9.4. Summary

	Chapter 10. Fine-tuning asset delivery
	10.1. Compressing assets
	Figure 10.1. The user makes a request to the server for index.html, and the browser specifies the algorithms that are supported in the Accept-Encoding header. Here, the server replies with the compressed content of index.html, and the compression algo...
	10.1.1. Following compression guidelines
	Configuring compression levels
	Figure 10.2. The effects of the compression-level setting on overall load times and TTFB when requesting jquery.min.js. Tests were performed on Chrome’s Regular 3G network throttling profile.
	Compressing the right file types
	Listing 10.1. Compressing all file types with the compression module
	Figure 10.3. Compression ratios of PNG, JPEG, and SVG images across all gzip compression levels.

	10.1.2. Using Brotli compression
	Checking for Brotli support
	Figure 10.4. Chrome showing support for Brotli compression with the br token
	Writing a Brotli-enabled web server in Node
	Listing 10.2. A Brotli-capable web server written in Node
	Figure 10.5. Brotli-encoded files can be seen in the network request panel in Chrome by looking for the br token in the Content-Encoding column.
	Comparing Brotli performance to gzip
	Listing 10.3. Configuring the Brotli compression level
	Figure 10.6. Performance of compressing the jQuery library with gzip versus Brotli compression across all comparable compression levels. (A gzip compression level of 0 is the same as no compression, and so is omitted.) Gzip’s maximum compression level...
	Figure 10.7. TTFB performance of gzip versus Brotli when compressing the jQuery library

	10.2. Caching assets
	10.2.1. Understanding caching
	Figure 10.8. A basic overview of the caching process. The user requests index.html, and the server checks whether the asset has changed since the time the user last requested it. If the asset hasn’t changed, the server responds with a 304 Not Modified...
	Figure 10.9. The load times and data payload of a website on the first uncached visit and on a subsequent visit. The page weight is nearly 98% smaller, and the load time is much faster, all due to caching.
	Using the Cache-Control header’s max-age directive
	Figure 10.10. A copy of jQuery being retrieved from the local browser cache
	Figure 10.11. The effect of the Cache-Control header’s max-age directive and the browser/server interaction that results in its use
	Controlling asset revalidation with no-cache, no-store, and stale- e-while-revalidate
	Cache-Control and CDNs
	Figure 10.12. The basic concept of a CDN. A CDN is a proxy that sits in front of your website and distributes your content to users across the world. The CDN can do this through a network of geographically distributed servers that host your content. U...

	10.2.2. Crafting an optimal caching strategy
	Categorizing assets
	Table 10.1. Asset types for the Weekly Timber website, their modification frequencies, and the Cache-Control header value that should be used
	Implementing the caching strategy
	Listing 10.4. Setting Cache-Control headers by file type
	Figure 10.13. The effects of your cache policy on the Weekly Timber website. The HTML is revalidated from the server on every request, and the server returns a 304 status if the document hasn’t changed on the server. Items reading from the browser cac...

	10.2.3. Invalidating cached assets
	Invalidating CSS and JavaScript assets
	Listing 10.5. Automated cache invalidation in PHP
	Invalidating images and other media files

	10.3. Using CDN assets
	10.3.1. Using CDN-hosted assets
	Figure 10.14. In a CDN, assets hosted on an origin server are distributed to edge servers, which are servers that are located closer to potential website visitors.
	Referencing a CDN asset
	Figure 10.15. A comparison of load times and TTFB for jQuery over several CDNs versus a low-cost shared hosting environment
	It isn’t just for jQuery

	10.3.2. What to do if a CDN fails
	Listing 10.6. A reusable fallback script loader
	Figure 10.16. The Network panel in Chrome showing the CDN asset failing to load and the page falling back to the locally hosted version

	10.3.3. Verifying CDN assets with Subresource Integrity
	Figure 10.17. The process of verifying assets by using Subresource Integrity. A user requests an asset from a CDN, and the asset’s safety is determined via a checksum verification process. If the asset is safe, it’s used. If not, the asset is discarded.
	Using Subresource Integrity
	Figure 10.18. The format of the integrity attribute. This value starts off with the hashing algorithm (SHA-256, in this case) and is followed by the checksum value for the referenced resource.
	Generating your own checksums

	10.4. Using resource hints
	10.4.1. Using the preconnect resource hint
	Figure 10.19. The effects of the preconnect resource hint when loading jQuery from a CDN on both HTTP and HTTPS

	10.4.2. Using the prefetch and preload resource hints
	Using the prefetch resource hint
	Figure 10.20. Page load times for the Weekly Timber home page when prefetching jQuery versus no prefetching using Chrome’s Regular 4G network throttling profile
	Using the preload resource hint
	Figure 10.21. The Network panel showing jquery-2.2.3.min.js loaded with the preload resource hint. The first line for the jQuery library is from the preload hint, whereas the second occurs when the item is retrieved from the cache. Note the size of 0 ...

	10.4.3. Using the prerender resource hint

	10.5. Summary

	Chapter 11. Looking to the future with HTTP/2
	11.1. Understanding why we need HTTP/2
	11.1.1. Understanding the problem with HTTP/1
	Figure 11.1. The 1996 (left) and 2016 (right) incarnation of the Los Angeles Times
	Head-of-line blocking
	Figure 11.2. The head-of-line blocking problem as shown in a batch of nine requests. The first batch of six requests is fulfilled in parallel, but the remaining batch can’t start downloading until the largest file (masthead.jpg) in the first batch fin...
	Uncompressed headers
	Figure 11.3. A session ID cookie of 128 bytes distributed across 60 requests, adding up to a total of 7.5 KB of extra data sent to the web server
	Nonsecure web sites

	11.1.2. Solving common HTTP/1 problems via HTTP/2
	No more head-of-line blocking
	Figure 11.4. The anatomy of an HTTP/2 request. One connection houses multiple bidirectional streams, which in turn contain multiple messages that request and receive assets. These messages are delimited by frames, which in turn describe the content of...
	Header compression
	Figure 11.5. HPACK header compression in action. Headers are stored in an indexed table. Identical headers discovered in later requests for the same page are tied to an index in the table to avoid duplication of that data, whereas headers with new dat...
	HTTPS is guaranteed

	11.1.3. Writing a simple HTTP/2 server in Node
	Listing 11.1. Importing modules needed for the HTTP/2 server
	Listing 11.2. Setting up SSL certificates on the server
	Listing 11.3. Writing the HTTP/2 server behavior
	Figure 11.6. The Network panel in Chrome’s Developer Tools indicating assets transferred over HTTP/2. Assets transferred over HTTP/1 will have the value http/1.1 in this field.

	11.1.4. Observing the benefits
	Figure 11.7. The effect on asset downloads on HTTP/1 (left) versus HTTP/2 (right): downloads in HTTP/2 are parallelized more than in HTTP/1, meaning that they begin roughly at the same time.
	Figure 11.8. Comparing page-load times on the Weekly Timber website on HTTP/1 versus HTTP/2
	Figure 11.9. A comparison of the bytes sent during an HTTP/2 session versus that of an HTTP/1 session

	11.2. Exploring how optimization techniques change for HTTP/2
	11.2.1. Asset granularity and caching effectiveness
	Figure 11.10. Concatenation can reduce caching efficiency. One of four icons in the image sprite is modified, but even though 75% of the file content remains unmodified, the user will be forced to download the entire asset instead of just the changed ...

	11.2.2. Identifying performance antipatterns for HTTP/2
	Bundling CSS and JavaScript
	Image sprites
	Asset inlining
	Figure 11.11. An example of a data URI. The scheme begins with the data URI, followed by the encoded data’s content type, the name of the encoding scheme, and the encoded data (truncated in this example).

	11.3. Sending assets preemptively with Server Push
	11.3.1. Understanding Server Push and how it works
	Figure 11.12. The anatomy of a Server Push event: the user requests index.html, and the server responds with a PUSH_PROMISE frame that contains the pushed copy of styles.min.css, as per its configuration.

	11.3.2. Using Server Push
	How Server Push is typically invoked
	Listing 11.4. Pushing content in Apache when a user requests an HTML file
	Writing Server Push behavior in Node
	Listing 11.5. Writing a Server Push response in a Node HTTP/2 server
	Figure 11.13. The Network tab in Chrome indicating a pushed asset by way of the Push keyword in the asset’s Initiator column

	11.3.3. Measuring Server Push performance
	Figure 11.14. Time to First Paint comparison with and without Server Push for the client website’s CSS

	11.4. Optimizing for both HTTP/1 and HTTP/2
	11.4.1. How HTTP/2 servers deal with HTTP/2-incapable browsers
	Figure 11.15. The anatomy of an HTTP/2 negotiation. The client requests an asset, and the server then checks whether the browser is capable of using HTTP/2. If so, it proceeds accordingly. If not, the connection downgrades to HTTP/1.

	11.4.2. Segmenting your users
	Figure 11.16. The Can I Use website displaying support of HTTP/2 by browser
	Figure 11.17. The section to import your site data from Google Analytics
	Figure 11.18. The support formula for a feature on Can I Use after Google Analytics data has been imported. All Web Site Data is the data imported from Google Analytics.

	11.4.3. Serving assets according to browser capability
	Detecting the protocol version
	Listing 11.6. Detecting the HTTP version
	Adding the HTTP/1 class
	Listing 11.7. Adding a class to the <html> tag when the HTTP version downgrades
	Listing 11.8. Isolating other requests that don’t require modification
	Figure 11.19. The <html> tag is modified on the server when the web server downgrades to HTTP/1.
	Replacing multiple scripts with concatenated ones for HTTP/1 users
	Listing 11.9. Scripts on the Weekly Timber site
	Listing 11.10. Optimal handling of scripts for HTTP/1 on the Weekly Timber website
	Listing 11.11. Transforming the delivery of scripts based on the HTTP version
	Figure 11.20. The scripts for the client website delivered in concatenated fashion for HTTP/1 browsers
	Considerations
	Listing 11.12. Serving assets by protocol in PHP

	11.5. Summary

	Chapter 12. Automating optimization with gulp
	12.1. Introducing gulp
	12.1.1. Why should I use a build system?
	Figure 12.1. An unautomated workflow for compiling LESS into CSS
	Figure 12.2. An automated workflow for compiling LESS into CSS. The only tasks the developer has to perform are making and saving changes, while the build system builds the CSS and reloads the page for us.

	12.1.2. How gulp works
	How streams work
	Figure 12.3. The concept of a stream. In this example, the input is composed of LESS files that are piped into the stream, which then compiles the LESS into CSS and pipes that completed output into a CSS file.
	Figure 12.4. An example of data being piped in and out of multiple streams. The first stream compiles the LESS file into CSS, which is then piped into another stream that minifies it.
	How tasks work
	Figure 12.5. The outline of a task. The task is identified by its name, buildCSS, and begins with a LESS source file named main.less that resides on the disk. This file is piped into a stream that compiles main.less into a CSS file that is outputted f...

	12.2. Laying down the foundations
	12.2.1. Structuring your project’s folders
	Figure 12.6. The build system processes files from a source folder (src in this example) and processes them and writes the output to the distribution folder (named dist)

	12.2.2. Installing gulp and its plugins
	Installing gulp itself
	Essential plugins
	Table 12.1. Essential gulp plugins
	HTML minification plugin
	CSS-related plugins
	Table 12.2. CSS-related gulp plugins
	JavaScript-related plugins
	Table 12.3. JavaScript-related gulp plugins
	Image-processing plugins
	Table 12.4. Plugins related to image optimization

	12.3. Writing gulp tasks
	12.3.1. The anatomy of a gulp task
	Reading source files
	Moving data through a stream
	Writing data to the disk

	12.3.2. Writing the core tasks
	Importing modules
	Listing 12.1. Importing all modules needed for the gulpfile
	Exploring the general structure of a task
	Figure 12.7. The general structure of gulp tasks you’ll write for this chapter’s gulpfile
	Minifying HTML
	Listing 12.2. The HTML minification task
	Building LESS files and using PostCSS
	Listing 12.3. The LESS compilation/CSS optimization task
	Uglifying and concatenating scripts
	Listing 12.4. The JavaScript uglification task
	Listing 12.5. The script concatenation task
	Performing image optimization
	Listing 12.6. Optimizing your PNGs, JEPGs, and SVGs with imagemin
	Listing 12.7. The WebP conversion task

	12.3.3. Writing the utility tasks
	Writing the watch task
	Listing 12.8. The watch task
	Figure 12.8. The LiveReload extension icon in the Chrome toolbar. Clicking this icon enables the LiveReload listener that receives signals from the local LiveReload server to reload when files change.
	Writing the build task
	Writing the clean task

	12.4. Going a little further with gulp plugins
	12.5. Summary

	Appendix A. Tools reference
	Note
	A.1. Web-based tools
	A.2. Node.js-based tools
	A.2.1. Web servers and related middleware
	A.2.2. Image processors and optimizers
	A.2.3. Minifiers/reducers
	A.2.4. Font conversion tools
	A.2.5. gulp and gulp plugins
	A.2.6. PostCSS and PostCSS plugins

	A.3. Other tools

	Appendix B. Native equivalents of common jQuery functionality
	B.1. Selecting elements
	Listing B.1. Using querySelector and querySelectorAll
	Table B.1. jQuery versus native element selection methods

	B.2. Checking DOM readiness
	B.3. Binding events
	B.3.1. Simple event binding
	B.3.2. Triggering events programmatically
	Listing B.2. Triggering events programmatically without jQuery
	Listing B.3. An event-triggering helper function

	B.3.3. Targeting elements that don’t exist yet
	Listing B.4. Binding behavior to elements that don’t exist yet without jQuery

	B.3.4. Removing event bindings

	B.4. Iterating over a set of elements
	Listing B.5. Iterating over a set of elements without jQuery

	B.5. Manipulating classes on elements
	Listing B.6. Manipulating element classes with jQuery
	Listing B.7. Manipulating element classes without jQuery
	Listing B.8. Conditionally toggling classes using classList
	Listing B.9. Checking for an existing class with classList.contains

	B.6. Accessing and modifying styles
	Listing B.10. Setting styles with jQuery
	Note
	Listing B.11. Getting an element’s style without jQuery
	Listing B.12. A helper function for setting multiple CSS properties without jQuery

	B.7. Getting and setting attributes
	Listing B.13. Setting attributes with jQuery
	Listing B.14. Setting attributes without jQuery

	B.8. Getting and setting element contents
	Listing B.15. Getting and setting element contents with jQuery
	Listing B.16. Getting and setting element contents without jQuery
	Listing B.17. Setting an element’s text content

	B.9. Replacing elements
	B.10. Hiding and showing elements
	Listing B.18. Hiding and showing elements with the style object

	B.11. Removing elements
	Listing B.19. Removing multiple elements from the DOM without jQuery

	B.12. Going further

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	List of Figures
	List of Tables
	List of Listings

