
Redkar
Guidici

US $49.99

Shelve in
.NET

User level:
Intermediate-Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Windows Azure Platform
Harness one of the most sophisticated cloud computing platforms available today
with Windows Azure Platform, Second Edition. This book goes beyond the basic con-
cepts of the cloud and illustrates how the Windows Azure technology can be applied in
real-world scenarios and made to work for you. It details new features such as remote
desktop access, dynamic content caching, and secure content delivery using SSL.

With Windows Azure Platform, you’ll learn:

• Everything you need to understand the Windows Azure platform components–
 from Access Control to SQL Azure, from the Service Bus to Windows Azure Connect.
• The architectural theory behind Windows Azure and the nuts-and-bolts code that
 binds your services together.
• How to design, build, and deploy an Azure service.
• The critical new services of Azure and how they work: Windows Azure Connect,
 VMRole, SQL Azure Reporting and Windows Azure AppFabric caching.

Windows Azure Platform, like the Azure platform itself, is divided into three key
parts: Windows Azure, Windows Azure AppFabric, and SQL Azure. Using down-to-
earth, code-centric examples, this book shows precisely how all the components of
Windows Azure are employed, both separately and together, and demonstrates the
techniques and best practices you’ll need to put them to work alongside your busi-
ness’ existing systems.

So climb on board now. By the time you’re done reading, you’ll be building high-
quality end-to-end Windows Azure services of your own.

SECOND
EDITION

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

 About the Authors.. xvi
 About the Technical Reviewer .. xvii
 Acknowledgments ... xviii
 Introduction .. xx
 Chapter 1: Windows Azure Platform Overview..1

 Chapter 2: Windows Azure Compute ..49

 Chapter 3: Windows Azure Storage Part I – Blobs and Drives131

 Chapter 4: Windows Azure Storage Part II – Queues...207

 Chapter 5: Windows Azure Storage Part III – Tables..247

 Chapter 6: VM Role and Windows Azure Connect...307

 Chapter 7: AppFabric: Access Control Service ..327

 Chapter 8: AppFabric Service Bus ..381

 Chapter 9: AppFabric: Caching ...485

 Chapter 10: SQL Azure ..497

 Index ...561

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 1

1

Windows Azure Platform
Overview

In the past couple of years, cloud computing has emerged as a disruptive force in the information
technology (IT) industry. Its impact is of the same magnitude as the Internet and offshoring. Gartner
Research has identified cloud computing as one of the “top 10 disruptive technologies 2008–2012.”
According to Gartner, a disruptive technology is one that causes major change in the accepted way of
doing things. For developers, architects, and operations, cloud computing has caused a major shift in
the way of architecting, developing, deploying, and maintaining software services.

Cloud computing democratizes IT, similar to how the Internet democratized the consumer
industry. The Internet opened up a vast ocean of accessible resources to consumers, ranging from free
advertising-based searching to online banking. Cloud computing is bringing similar trends to businesses
small and big. Businesses can now reap the benefits of agility by simply deploying their software in
someone else’s datacenter for a consumption fee. Hardware costs are out of the equation because of
cloud service providers. These may sound like the hosting companies you already host your web sites
on, but the big difference is that this is now a utility model built on highly scalable datacenter platforms.
The cloud-computing wave is powerful enough for a company like Microsoft to start disrupting its own
business model to invest in the opportunity.

In this chapter, I will cover some of the basics of cloud services and then jump into an overview of
the Microsoft’s Windows Azure platform. In the previous edition of this book, I introduced the
development models of some of the cloud service providers in the market. I took that approach because
the technology was new and I wanted readers to understand the differences in the offerings. In this
edition, I do compare the cloud services providers, but not with the same detail that I did in the previous
edition. The public literature about these platforms has matured enough for it to be eliminated from the
book.

Introducing Cloud Services
As an introduction to our discussion, consider a typical scenario in today’s medium to large enterprises.
Assume a business unit has an immediate need to deploy a highly interactive niche web application (a
micro-site) for a new product that will be released in five months. The application will provide the
consumers a detailed view of the product and also the ability to customize and order the product right
from the web site. The business unit has the budget but not the time and resources to implement it, and
this deployment needs to happen in the next three months for it to be ready for the launch.

The IT hosting team understands the requirement, but to deploy an application with IT resources
requires coordination among hardware, software, operations, and support teams. Perhaps ordering
hardware and preparing the operating system build itself takes two months. After that, IT has to go

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

2

through its standard testing process and operations procedures to make sure all the operations and
support needs are identified. So, the earliest application delivery date would be in six months.

The business owner escalates the urgency of the issue, but cannot get past the process boundaries
of the enterprise. Ultimately, the business owner outsources the project to a vendor and delivers the
application in three months. Even though the application is delivered, it doesn’t have the desired
enterprise support and operations quality. It doesn’t have to go this way—the company IT department
should be the preferred and one-stop shop for all the business’ needs. Even though outsourcing gives
you a great return on investment, in the long run you lose significantly on the innovation. Your own IT
department has the ability to innovate for you, and its members should be empowered to do so instead
of forced to overcome artificial process boundaries.

I see such scenarios on a daily basis, and I don’t see a clear solution to the problem unless the entire
process and structure in which these organizations operate is revamped, or unless technology like cloud
computing is embraced wholeheartedly.

How will cloud computing help? To understand, let’s go back to the original business requirement:
the business owner has an immediate need to deploy an application, and the time frame is within three
months. Basically, what the business is looking for is IT agility, and if the application takes only one
month to develop, then is it really worth wasting six months on coordination and acquisition of the
hardware?

Cloud computing gives you an instant-on infrastructure for deploying your applications. The
provisioning of the hardware, operating system, and the software is all automated and managed by the
cloud service providers.

Industry Terminology
For standardizing the overall terminology around cloud computing, the industry has defined three main
cloud service categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS).

IaaS is a utility service that provides hardware and virtualized operating systems running in
massively scalable data centers of the cloud service provider. You can then rent this infrastructure to
deploy your own software and manage the lifecycle of not only your software applications but also the
underlying operating systems. In IaaS, you are still responsible for upgrading, patching, and maintaining
the operating systems and the software applications that run on the rented hardware. Therefore, the
target audiences for IaaS are system administrators and operations engineers. In short, IaaS abstracts
the hardware and virtualization infrastructure from you.

PaaS is a utility service that provides the hardware, operating systems, and the runtime
environment for running your applications in massively scalable data centers of the cloud service
provider. The PaaS manages the operating systems and hardware maintenance for you, but you have to
manage your applications and data. Therefore, naturally, the target audience for PaaS is typically
developers. Even though the final deployment and maintenance will be managed by the operations
teams, the platform empowers developers to make certain deployment decisions through
configurations. In short, PaaS abstracts the infrastructure and the operating system from you.

SaaS is a utility service that provides you an end-to-end software application as a service. You only
have to manage your business data that resides and flows through the software service. The hardware,
operating systems, and the software is managed by the SaaS provider for you. Therefore, the target
audience for SaaS is typically business owners who can go to the SaaS web site, sign-up for the service,
and start using it.

In its natural progression, a SaaS is built on a PaaS and a PaaS is built on an IaaS. Therefore, PaaS
providers have capabilities of IaaS built into PaaS. Whether to offer it as a separate service is mostly a
strategic decision. Figure 1-1 illustrates the typical management boundaries between IaaS, PaaS and
SaaS.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

3

Figure 1-1. IaaS, PaaS, and SaaS Management Boundaries

The management of the user identities differs in different scenarios. Some enterprises will expose
their on-premises identity provider as a federated service, while some businesses will keep SaaS and on-
premises identities separate. Some additional terms that have been floating around in the past couple of
years are Data as a Service (DaaS), IT as a Service, Security as a Service, and more. In the interest of
simplicity, I have categorized all the services into IaaS, PaaS, and SaaS.

Types of Clouds
Along with the types of cloud services, the industry also frequently talks about the types of clouds that
exist in the marketplace. A cloud is the underlying data center architecture that powers cloud services.
Then what is the difference between a hosting provider and a cloud service provider? Great question....

As per my experience and knowledge, I would define a cloud only if the data center architecture
provides you with the following services:

• Pay as you go service – A cloud must provide you with a utility service model
where you are charged only for the resources you use or by the number of users
accessing the service. The price should go down or up dynamically based on your
usage.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

4

• A self-service provisioning portal – A cloud must provide you with a self-service
portal for acquiring and releasing resources manually and programmatically.

• Server hardware abstraction – A cloud must relieve you from acquiring and/or
maintaining any hardware resources required for an application to run.

• Network hardware abstraction – A cloud must relieve you from acquiring and/or
maintaining any networking hardware resources required by your application.

• Dynamic scalability – A cloud must provide you with a manual and/or
programmatic option for dynamically scaling your application up and down to
match the demand.

• High Availability Service Level Agreement (SLA) – A cloud must clearly define an
SLA with guaranteed availability of the platform.

The location of this cloud determines its type: private or public. In the interest of keeping the topic
simple, I will define only these two types of clouds.

A public cloud is a data center that exists in the public domain and is accessible over the Internet.
The public cloud is managed by the cloud service provider. Some public cloud platforms integrate with
your company’s intranet services through federation and virtual private networks or similar
connectivity. The core application and the data still runs in the cloud service provider’s data center.

A private cloud is cloud infrastructure running in your own datacenter. Because the definition of a
cloud is wide open to interpretation, every company has carved out its own definition of a private cloud.
I use the capabilities defined previously as bare minimum requirements for defining a public or a private
cloud. If any of these services are not offered by a private cloud, then it’s merely an optimized
datacenter. And it is not necessarily a bad choice; an optimized datacenter may be a better choice than a
cloud in some scenarios. The primary difference between private and public clouds is the amount of
capital cost involved in provisioning infrastructure. Public clouds don’t require provisioning.

 Note Throughout this book, depending on the context of the conversation, I have used the terms cloud services
and cloud applications interchangeably to generally represent cloud services. A cloud service may be thought of as
a collection of cloud applications in some instances, but in the context of this book, both mean the same thing.

Defining Our Terms
Before diving deep into cloud services, I would like to introduce you to the terminology used in this
book. To be consistent, I have developed this section for defining some important terms used in this
book. Table 1-1 lists the terms and their definitions as they relate to this book.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

5

Table 1-1. Terminology in This Book

Term Definition

Azure or Windows Azure Microsoft’s Windows Azure platform

Cloud application An application deployed to a cloud services
platform and typically part of a larger cloud service

Cloud platform A PaaS offering by a cloud service provider for
deploying cloud services (e.g., Windows Azure
platform offered by Microsoft)

On-premise Refers to applications or services deployed and
managed by an enterprise in its own datacenters

Off-premise Refers to applications or services in the cloud

Solution When used on its own, refers to a collection of
applications and/or cloud services designed for a
specific business purpose (e.g., a payroll solution
consisting of three cloud services and four on-
premise applications)

Cloud Service Providers
In the past couple of years, several large software and Internet platform companies have started offering
cloud services. It was a natural transition for companies like Amazon, Google, and Microsoft who already
had a large Internet presence. VMware has been building these capabilities through acquisitions like
Springsource and Zimbra. The offerings from all the cloud services are fragmented and it can sometimes
be difficult to get a grasp of all the service offerings just from a single vendor. In Table1-2, I have listed a
few providers with mature cloud services offerings. You can apply the same capabilities table to any
cloud service provider present and future.

Table 1-2. Cloud Service Capabilities

Capability IaaS

PaaS

SaaS

Public Amazon EC2Windows
Rackspace.com

Windows Azure
platform Windows
Azure AppFabric

Force.com
Google AppEngine

Office 365

Salesforce.com

Google Apps

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

6

Private VMWare vSphere
Hyper-V

Windows Azure
Appliance (Not yet
available)

SharePoint as an IT
service

From Table 1-2, you will be able to qualify the cloud service providers that fit your specific needs.

Typically, you will not find any single cloud service provider that satisfies all your needs, which is true
even with on-premises software.

Shifting to the Cloud Paradigm
As seen in the previous section, the choices provided by these offerings can put you in a dilemma, and
most probably you will end up testing at least two cloud services before deciding on one. The move from
a traditional on-premise model to an off-premise cloud model is a fundamental paradigm shift for
businesses. Usually businesses are in their comfort zone when managing IT internally. With the cloud
services model, even though the cost savings become evident, the challenge for businesses is to get out
of their comfort zones and make the paradigm shift of moving to cloud services to stay competitive. The
shift does not happen overnight; it takes several months of rigorous analysis, planning, and
implementation. Depending on the costs, benefits, risks, and security requirements, a business can stay
on-premise, embrace cloud services fully, or settle on a hybrid model yielding cost benefits while
keeping core competencies on-site. Figure 1-2 illustrates the ownership of key enterprise assets in on-
premise, cloud, and hybrid scenarios.

The recommended migration process is to move step by step, one application at a time. When the
offshore software development model became popular in 2000, businesses faced a similar challenge in
getting aboard the outsourcing wagon. Now, many businesses have significant offshore investments and
clearly see the payoffs. It took time and learning for businesses to make the paradigm shift in offshore
software development projects. For cloud services to succeed, businesses will be required to make a
paradigm shift again.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

7

Figure 1-2. On-premise, cloud, and hybrid scenarios

In Figure 1-2, the on-premise and cloud scenarios are fairly easy to understand, because either all
the assets are on-premise or in the cloud. The user profiles asset is usually required on both sides
because of single sign-on requirements between on-premise and cloud services. In hybrid models, the
businesses and the service provider must negotiate and decide which assets and services are better
suited for locations on-premise, in cloud, or both. In the Hybrid 1 scenario, the user profiles and hosting
facilities are present on both the sides; the business applications are in the cloud, whereas the utility
applications, operating systems, data storage, and hardware are on-premise. In the Hybrid 2 scenario,
the user profiles, operating systems, data storage, and hardware are present on both sides, whereas the
business applications, utility applications, and hosting facilities are in the cloud. Most companies
typically choose some hybrid model that best suits them.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

8

Understanding the Cloud Services Ecosystem
The cloud services ecosystem consists of five major roles, as shown in Figure 1-3.

Figure 1-3. The cloud services ecosystem

Service Providers
The service providers are the companies that provide cloud services to the businesses and consumers.
These companies run giant data centers hosting massively virtualized and redundant software and
hardware systems. Service providers like Amazon, with its EC2 service, and Microsoft, with its Windows
Azure platform, fall into this category. These companies not only have expertise in data center
management, but also in scalable software management. The service providers may offer services
directly to the businesses, consumers, or ISVs.

Software Vendors
Software designed to run on-premise is very different from software designed for cloud. Even though
they both may provide the same business functionality to the end users, architecturally they may differ.
The cloud services must account for multi-tenancy, scalability, reliability and performance at a much
broader scale than on-premise architecture. Cloud services run in data centers offered by cloud service
providers. In some cases, there is a significant overlap between the service providers and the software
vendors. For example, Microsoft Windows Azure platform, Microsoft’s Office 365, and Google Apps are
cloud software running in their own datacenters. The software vendors have found it economically
feasible to package hardware and software together in the datacenters to optimize software delivery via
cloud.

Independent Software Vendors
Independent software vendors (ISVs) are going to play a key role in the success of cloud services because
of their expertise in vertical business applications. ISVs typically build vertical applications on an already
existing platform. ISVs identify the business demand for a particular solution in vertical markets and

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

9

thrive by offering the solution on existing platforms. The cloud offers a great platform for the ISVs to
build vertical solutions. For example, an ISV could build a medical billing solution in the cloud and offer
the service to multiple doctors and hospitals. The infrastructure required for building multitenant
scalable software is already provided by the service providers, so the ISVs have to focus only on building
the business solution and can enable them to penetrate new markets with lightning speed.

Enablers
Enablers (which are also called implementers or system integrators) are vendors offering services to build
end-to-end solutions by integrating software from multiple vendors. Many enterprises purchase
software licenses from vendors but never deploy the software because of lack of strategic initiative or
availability of product expertise. Enablers fill in the gap by offering consulting services for the purchased
software. Organizations like Microsoft Consulting Services and IBM Global Services offer customer-
specific services regardless of the underlying platform. Enablers play a key role by integrating on-
premise and cloud services or building end-to-end cloud services customized for a business. Cloud
platform offers enablers an opportunity to expand their service offerings beyond on-premise solutions.

Businesses
Finally, businesses drive the demand for software products and services. If businesses see value or cost
savings in a particular solution, they do not hesitate to implement it. To stay competitive in today’s
market, businesses have to keep their IT and applications portfolios up to date and take advantage of
economies of scale wherever possible. Cloud service offerings are architected to achieve economies of
scale by supporting multiple businesses on a scalable and automated platform. For cloud service
offerings to be successful, service providers, software vendors, ISVs, and enablers must work together in
creating cloud applications and services not only providing cost savings but also a competitive edge to
businesses and in-turn to consumers through these businesses.

Microsoft’s Cloud Strategy
For building a successful cloud services business, a company needs to first invest in building globally
distributed datacenters that are highly automated, efficient, and well connected. Building such
datacenters requires significant investment and support from software and operating system business
partners to help monetize them. Therefore, typically, you will only see very large companies like
Microsoft and Amazon offer such services at a global scale.

Microsoft is the largest software manufacturer in the world and its Global Foundation Services
(GFS) group has done a phenomenal job in building a global network of datacenters that can be
leveraged by software partners within the company for delivering software services. This network of
Microsoft datacenters is termed as Microsoft’s cloud. I have toured one of these datacenters and I think
they are one of the most advanced in the world. What follows is a list of the 10 largest datacenters in the
world. Four in the top 10 belong to Microsoft (I have highlighted them in bold).1

1. 350 East Cermak / Lakeside Technology Center (Digital Realty)

2. Metro Technology Center, Atlanta (Quality Technology)

1 www.datacenterknowledge.com/special-report-the-worlds-largest-data-centers/

http://www.datacenterknowledge.com/special-report-the-worlds-largest-data-centers/

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

10

3. The NAP of the Americas, Miami (Terremark)

4. NGD Europe, Newport Wales (Next Generation Data)

5. Container Data Center, Chicago (Microsoft)

6. Microsoft Dublin (Microsoft)

7. Phoenix ONE, Phoenix (i/o Datacenters)

8. CH1, Elk Grove Village, Ill. (DuPont Fabros)

9. 9A and 9B. Microsoft Datacenters in Quincy Washington and San Antonio

10. The SuperNAP, Las Vegas (Switch Communications)

As the adoption of cloud services increase in the IT industry, this list will change over time.

 Note I highly recommend you visit www.globalfoundationservices.com for more information on Microsoft’s
datacenters and GFS.

Microsoft’s cloud strategy consists of the following four main initiatives:

1. Build a network of highly available datacenters around the world as a software
platform of the future.

2. Leverage these datacenters for delivering its PaaS offerings.

3. Leverage these datacenters for delivering its SaaS offerings.

4. Leverage the partner network for delivering IaaS offerings.

PaaS and SaaS offerings will be the primary mode of delivering most of its software assets in the
future. In the past two years, Microsoft has successfully positioned Windows Azure platform as a leading
public cloud platform. Microsoft went an extra mile innovating PaaS beyond traditional IaaS. Today,
there are several Fortune 500 and Small & Medium businesses actively using the Windows Azure
platform. Ultimately Microsoft will need to provide an IaaS offering just to ease the on-boarding process
for enterprises. The current on-boarding is not as attractive for Enterprise customers because of
investment required in migrating legay applications to Windows Azure platform.

Windows Azure Platform Overview
In 2008 during the Professional Developer’s Conference (PDC), Microsoft announced its official entry
into the PaaS arena with the Windows Azure platform. Even though the SaaS offering called Business
Productivity Online Suite (BPOS) or Office 365 has been around for a few years, the Windows Azure
platform is an attempt to create a complete PaaS offering. See Figure 1-4.

http://www.globalfoundationservices.com

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

11

Figure 1-4. Platform as a service

Windows Azure platform is a key component of Microsoft’s cloud strategy. The Windows Azure
platform is a paradigm shift where unlimited resources are available at your fingertips for developing
and deploying any .NET application in a matter of minutes. It disrupts your current ways of process-
oriented sequential thinking. Microsoft has designed Windows Azure as an operating system for the data
center. You don’t have to wait for provisioning of any server or networking hardware, and then the
operating system for deploying your application. Windows Azure platform drastically reduces the time
from idea to production by completely eliminating the hardware and operating systems provisioning
steps.

Windows Azure platform is a collection of building blocks for cloud services. Microsoft has been in
the cloud business for quite some time with its consumer cloud services like MSN, Xbox Live, and
Hotmail. Microsoft has also rebranded its business productivity and collaboration suite as Office 365
that includes services like SharePoint Online, Exchange Online, and Conferencing Services (Microsoft
Office Lync). Windows Azure platform consists of three core components: Windows Azure, SQLAzure,
and Windows Azure AppFabric, as shown in Figure 1-5.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

12

Figure 1-5. Microsoft Windows Azure Platform (Source: www.microsoft.com/windowsazure/features/)

The core components are then split into several sub-components. But, the overall idea is to provide
an a-la-carte menu so you can use any individual component in your solution. The pricing is typically
based on each sub-component usage. The feature set is updated every six months, and there will be
more features released between writing and publishing of this book.

 Note Figure 1-5 only addresses the core components of the Windows Azure platform, as the platform matures;
Microsoft is slowly promoting some sub-categories into its own offerings like the Virtual Network category that

http://www.microsoft.com/windowsazure/features/

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

13

includes Windows Azure Connect and Traffic Manager. The Marketplace feature currently consists of the Windows
Azure Marketplace DataMarket where you can publish and monetize your data over standard interfaces. Covering
DataMarket goes beyond the scope of this book.

Windows Azure is the operating system for the datacenter that provides compute, storage, and
management services. SQL Azure is a relational database engine in the Windows Azure Platform.
Windows Azure AppFabric is the middleware component that consists of services like Service Bus,
Access Control, and Caching Services. Developers can either build services that span across all these
components or pick and choose the components as needed by the service architecture. The overall
concept of Windows Azure platform is to offer developers the flexibility to plug in to the cloud
environment as per the architectural requirements of the service.

In this book, I have covered all the three main components and their sub-components.
Software development today typically consists one or more of the following types of applications:

• Rich client and Internet applications – Examples are Windows Client, Windows
Presentation Foundation, HTML5, and Silverlight.

• Web services and web applications – Examples are ASP.NET, ASP.NET Web
Services, and Windows Communications Foundation.

• Server applications – Examples are Windows Services, WCF, middleware, message
queuing, and database development.

• Mobile application – Examples are .NET Compact Framework and mobile device
applications.

The Windows Azure platform provides you with development tools and the deployment platform
for developing and deploying all of these types of applications.

 Note It took me more time to write this chapter than it did to develop and deploy a high-scale compute
application on Windows Azure platform. Traditionally, the application would have taken 6–12 months to develop
and deploy in production.

Understanding Windows Azure Compute Architecture
Fundamentally, Windows Azure platform compute architecture is based on a software fabric controller
running in the data center and defining clear abstraction between server hardware and operating
systems. The fabric controller automates the deployment of virtualized operating systems images on
server hardware. In its simplest form, a typical cloud data center consists of a bank of server hardware
and massive storage for storing fully functional operating system images. The fabric controller manages
the life cycle of the deployment by allocating and decommissioning hardware and operating system
images as needed. As a user, when you deploy your service to the cloud, the fabric controller provisions
the hardware servers, deploys operating system image on those servers, provisions appropriate

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

14

networking software like routers and load-balancers, and deploys your service to those servers. Once the
service is deployed on servers, it is ready to be consumed. The numbers of service instances are
configured by the service owner and would typically depend on the demand and high availability
requirements of the service. Over the life cycle of the instance, the fabric controller is responsible for
automating the maintenance, security, operations and high availability of the instances. Figure 1-6
illustrates the Windows Azure platform compute architecture.

Figure 1-6. Windows Azure platform compute architecture

The architecture also consists of some fixed assets like switches, routers, and DNS servers that
manage the workload distribution across multiple service instances. This architecture is componentized
and deployed into several geographically dispersed datacenters for providing geo-located services. The
metering, billing and reporting components complement the infrastructure with the ability to measure
and report the usage of the service per customer.

 Note Windows Azure platform is hosted in six datacenters around the world. North Central US (1), South
Central US (1), Europe (2), Asia (2). From the administration portal, you have the ability to choose the datacenter
location for your application. Microsoft gives regular tours of these datacenters to enterprises. You will have to

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

15

poke your management to get a tour of one of these world-class datacenters. You can find more information of
these datacenters at www.globalfoundationservices.com.

Windows Azure
Windows Azure is the core operating system of the platform that provides all the necessary features for
hosting your services in the cloud. It provides a runtime environment that includes the IIS web server,
background services, storage, queues, management services, and load-balancers. Windows Azure also
provides developers with a local development fabric for building and testing services before they are
deployed to Windows Azure in the cloud. Windows Azure also integrates seamlessly with the Visual
Studio 2010 development environment by providing you with service publishing and IntelliTrace
features. Figure 1-7 illustrates the three core services of Windows Azure.

Figure 1-7: Windows Azure core services

Following is a brief description of the three core services of Windows:

Compute – The compute service offers scalable hosting of services on 64-bit
Windows Server 2008 R2. The platform is virtualized and designed to scale
dynamically based on demand. The platform runs Internet Information Server
(IIS) version 7 enabled for ASP.NET Web applications. From version 1.3 of the
SDK, you have access to Full IIS and administration features. You can also
script start-up tasks that require administration privileges like writing to a
registry or installing a COM dll library or installing third-party components like
Java Virtual machines. Developers can write managed and unmanaged services
for hosting in the Windows Azure Compute without worrying about the
underlying operating systems infrastructure.

Storage – There are three types of storage supported in Windows Azure: tables,
blobs, and queues. These storage types support direct access through REST
APIs. Windows Azure tables are not relational database like SQL Server tables.
Instead, they provide structured data storage capabilities. They have an
independent data model popularly known as the entity model. Tables are
designed for storing terabytes of small-sized highly available data objects. For
example, user profiles in a high-volume ecommerce site would be a good
candidate for tables. Windows Azure blobs are designed to store large sets of
binary data like videos, images, and music in the cloud. Windows Azure queues
are the asynchronous communication channels for connecting between
services and applications not only in Windows Azure but also from on-premises

http://www.globalfoundationservices.com

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

16

applications. Queues are also the recommended method of communication
between multiple Windows Azure role instances. The queue infrastructure is
designed to support unlimited number of messages, but the maximum size of
each message cannot exceed 8KB. Any account with access to storage can
access tables, blobs, and queues. The total storage capacity of one storage
account is 100TB and you can have multiple storage accounts. Windows Azure
Drives provides NTFS drive volumes for Windows Azure applications in the
cloud. So, you can create a drive, upload it to the blob storage and then attach it
as an external drive to the windows azure instances. Drives provide you with
durable storage access natively within your role but at the same time you lose
the broad distributed nature of storing blobs that are scaled-out across multiple
storage servers. A drive is still a single blob from Windows Azure Blob storage
perspective.

Management – The management service supports automated infrastructure and
service management capabilities to Windows Azure cloud services. These
capabilities include automatic commissioning of virtual machines and
deploying services in them, as well as configuring switches, access routers, and
load balancers for maintaining the user defined state of the service. The
management service consists of a fabric controller responsible for maintaining
the health of the service. The fabric controller supports dynamic upgrade of
services without incurring any downtime or degradation. Windows Azure
management service also supports custom logging and tracing and service
usage monitoring. You can interact with the management service using a
secure REST-API. Most of the functionality available on the Windows Azure
platform portal is available through the service management API for
programmatically executing tasks. The API is widely used for automating the
provisioning and dynamic scaling tasks. For example, the publish feature in the
Visual Studio and the Windows Azure PowerShell cmdlets use the service
management API behind the scenes to deploy cloud services to Windows Azure.

Figure 1-8 illustrates the Windows Azure architecture from available service perspective.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

17

Figure 1-8. Windows Azure

When a request from the Internet comes in for your application, it passes through the load balancer
and then to the specific Web/Worker role instance running your application. If a request for a Storage
service comes in, it passes through the load balancer to the appropriate Storage service component.

Windows Azure Traffic Manager is a cross-region (datacenter) high-availability service that allows
you to configure rules-based traffic diversions to your applications running in multiple Windows Azure
datacenters. Traffic Manager should be a key component in your disaster/recovery and business
continuity strategy. Even though Traffic Manager manages traffic diversions, it does not replicate data
across multiple datacenters; you have to replicate data across multiple-datacenters for maintaining data
consistency. At the time of writing, Traffic Manager was not available in production release. In the
current version, there were three traffic diversion rules available: Fault-tolerance, Performance-based,
and Round-Robin. In the CTP version, you could try it out for free.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

18

Compute
The Windows Azure Compute service is based on a role-based design. To implement a service in
Windows Azure, you have to implement one or more roles supported by the service. The current version
of Windows Azure supports three roles: Web Role, Worker Role, and VM Role. A role defines specific
behavior for virtual machine instances running in the cloud. A web role is used for deploying web sites, a
worker role is used for deploying background services or middle tier applications, and a VM Role is
typically used for running applications that do not fit a web or a worker role. Applications with intrusive
installation process are well suited for VM Role. Architecture of the system should dictate the types of
roles you will need in your application.

The abstraction between the roles and the hardware is managed by the Fabric Controller. Fabric
Controller manages end-to-end automation of the role instances, from hardware provisioning to
maintaining service availability. Fabric Controller reads the configuration information you provide for
your services and adjusts the deployment profile accordingly, as shown in Figure 1-9.

Figure 1-9. Fabric Controller deploys application

In the service configuration, you have to specify how many instances of a particular role you want to
start with. The provisioning portal and the service management API can give you the status of the
deployment. Once the cloud service is deployed, it is managed entirely by Windows Azure. You only
manage your application and data.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

19

Web Role
A Web role gives you the ability to deploy a web site or web service that can run in an IIS 7 environment.
Most commonly, it will be an ASP.NET web application or external facing Windows Communications
Foundation (WCF) service endpoints. Even though a Web Role can host multiple sites, it is assigned only
one external endpoint or entry point. But, you can configure different ports on the same entry point for
http, https and custom TCP connections.

 Note The UDP protocol is not supported at this time in Windows Azure services.

The Web role also supports FastCGI extension module to IIS 7.0. This allows developers to develop
web applications in interpreted languages like PHP and native languages like C++. Windows Azure
supports Full Trust execution that enables you to run FastCGI web applications in Windows Azure Web
role. To run FastCGI applications, you have to set the enableNativeCodeExecution attribute of the Web
role to true in the ServiceDefinition.csdef file. In support of FastCGI in the Web role, Windows Azure
also introduces a new configuration file called Web.roleconfig. This file should exist in the root of the
web project and should contain a reference to the FastCGI hosting application, like php.exe.

In the interest of keeping this book conceptual, I will not be covering FastCGI applications. For
more information on enabling FastCGI applications in Windows Azure, please visit the Windows Azure
SDK site at http://msdn.microsoft.com/en-us/library/dd573345.aspx.

 Caution Even though Windows Azure supports native code execution, the code still runs in the user context,
not administrator, so some WIN32 APIs that require system administrator privileges will not be accessible by
default but can be configured using the startup tasks and elevated privileges. I will cover start up tasks in detail in
the next chapter.

Can I Run Existing Java Server Applications in Windows Azure?

There are a lot of enterprises that run Java and migrating these applications to Windows Azure is a big
opportunity for Microsoft in winning and sustaining the underlying platform. Behind the scenes,
Windows Azure runs Windows Server operating systems that can run Java virtual machines. Therefore,
you can write custom scripts to install Java virtual machines on the compute instances and then run
your Java application on those instances. I have covered writing custom start-up tasks in Azure in a bit
more detail in the next chapter, but the short answer is yes, you can run Java server applications on
Windows Azure, but it’s still not the first class citizen due to tools and endpoint limitations.

Worker Role
The Worker role gives you the ability to run a continuous background process in the cloud. It is
analogous to Windows Services in the Windows platform. Technically, the only major difference
between a Web Role and a Worker Role is the presence of IIS on the Web Role. The Worker role can

http://msdn.microsoft.com/en-us/library/dd573345.aspx

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

20

expose internal and external endpoints and also call external interfaces. A Worker role can also
communicate with the queue, blob, and table storage services. A Worker role instance runs in a separate
virtual machine from a Web role instance, even though both of them may be part of the same cloud
service application. In some Windows Azure services, you may require communication between a Web
role and a Worker role. Even though the Web and Worker role expose endpoints for communication
among roles, the recommended mode of reliable communication is Windows Azure queues. Web and
Worker roles both can access Windows Azure queues for communicating runtime messages. I have
covered Windows Azure queues later in the book.

A Worker role class must inherit from the Microsoft.WindowsAzure.ServiceRuntime.RoleEntryPoint
class. RoleEntryPoint is an abstract class that defines functions for initializing, starting and stopping the
Worker role service. A Worker role can stop either when it is redeployed to another server, or you have
executed the Stop action from the Windows Azure developer portal. Figure 1-10 illustrates the sequence
diagram for the life cycle of a Worker role.

Figure 1-10. Sequence diagram for a Worker role service

In Figure 1-10, there are three objects: Fabric Controller, RoleEntryPoint, and a Worker role
implementation of your code. Fabric Controller is a conceptual object; it represents the calls that the
Windows Azure Fabric Controller makes to a Worker role application. The Fabric Controller calls the
Initialize() method on the RoleEntryPoint object. RoleEntryPoint is an abstract class so it does not
have its own instance; it is inherited by the Worker role instance to receive calls. The OnStart() method
is a virtual method, so it does not need to be implemented in the Worker role class. Typically, you would
write initialization code like starting diagnostics service or subscribing to role events in this method. The
Worker role starts its application logic in the Run() method. The Run() method should have a continuous
loop for continuous operation. If the Run() method returns, the role is restarted by the OnStart()
method. If the role is able to start successfully, the OnStart() method returns True to the Fabric
Controller; otherwise, it returns False. The Fabric Controller calls the Stop() method to shut down the

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

21

role when the role is redeployed to another server or you have executed a Stop action from the Windows
Azure developer portal.

VM Role
The VM role is specifically designed by Microsoft to reduce the barriers to entry into the Windows Azure
Platform. VM Role lets you customize a Windows Server 2008 R2 Enterprise virtual machine, based on a
virtual hard drive (VHD), and then deploy it as a base image in Windows Azure. Typical scenarios for
using VM role are as follows:

• If you want to install software in your farm that does not support silent installation

• If the installation of a specific software component required manual intervention

• If you want to install a third-party application that needs significant modifications
for deploying to the web or worker roles

• Any application that does not fit in web role or a worker role model

• Quick functional testing for specific software components that may later need to
run on-premises

VM role gives you more control over the software you can install on the virtual machine before
uploading and running in Windows Azure. Therefore, when creating a VM role, you have for first create a
VHD on your local machine, install the appropriate software on it, and then upload the operating system
image to Windows Azure. Once the operating system image is uploaded, you can then create a service
definition for the service and then deploy multiple instances of the operating system image adhering to
your service definition. In a Web role and a Worker role, the underlying operating system image is
provided to you by Windows Azure, but in the case of VM role, the service runs in the operating system
image you created. Figure 1-11 illustrates the high-level process for creating a VM role image in
Windows Azure. I have covered the entire process of creating and running VM Roles in detail later in the
book.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

22

Figure 1-11. Windows Azure VM Role

 Tip Don’t use VM role unless absolutely needed, because by acquiring more control over the underlying
operating system image, you also inherit the risks and the burden associated with maintaining it. Windows Azure
does not understand the health of your applications running on a VM role, and therefore it becomes your
responsibility to track application health. For any Windows Azure application architecture, the Web role and the
Worker role models must be preferred over VM role.

Windows Azure Connect
Windows Azure Connect (aka Project Sydney) provides you with secure network connectivity between
your on-premises machines and Windows Azure role instances. Windows Azure Connect is a new
feature launched with Windows Azure SDK 1.3. With Windows Azure Connect, you can host your
applications in Windows Azure and connect back to your data or applications that run on-premises. The
motivation behind this feature was reducing the barriers to entry into Windows Azure. There is some
data in enterprises that cannot be moved to the cloud due to various reasons like regulatory compliance,
legal holds, company policies or simply IT politics. With Windows Azure Connect, the argument is
reduced to tradeoff between latency and benefits of Windows Azure.

In the current version, Windows Azure Connect allows you to create point-to-point connectivity
between your Windows Azure role instances and on-premises machines. It also gives you the ability to
domain join the Windows Azure instances to your domain. Figure 1-12 illustrates the high-level
architecture of the Windows Azure Connect capabilities.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

23

Figure 1-12. Windows Azure Connect

In Figure 1-12, the database server, the Active Directory server, and the mail server are grouped
together for connecting with the Payment Server and Mobile Server Windows Azure role instances,
whereas the development machines are grouped together for connecting with the Video Streaming role
instance. The Windows Azure administration portal allows you to setup group-level as well as machine
level connectivity. The connectivity between the on-premises and Windows Azure instances is secured
end to end via IPsec. Windows Azure Connect also uses a cloud-based relay service for firewall and NAT
traversal of the network traffic between your on-premises machines and Windows Azure role instances.

 Note In the current version (1.3), you cannot use Windows Azure Connect to connect between your Windows
Azure role instances because they are assumed to connect with each other. For such communication, you can use
Windows Azure Queues, Input or Internal endpoints.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

24

 Tip Don’t use Windows Azure Connect unless absolutely needed because as you move data away from the
application, you will see performance degradation due to latency. If you have an interactive web application, it is
better to move the data closer to the application in Windows Azure storage or SQLAzure. In some cases, you can
separate the sensitive data and keep it on-premises and move rest of the data into the cloud and use Windows
Azure Connect for calling on-premises applications

Windows Azure Storage
Storage service offers the compute nodes access to a scalable storage system. The storage service has
built-in highly availability within a datacenter boundary. It maintains three copies of your data at any
point in time behind the scenes. You can access the storage service from anywhere through a REST API.
The open architecture of the Storage service lets you design your applications to store data using REST
APIs. Figure 1-13 illustrates the Windows Azure storage service architecture.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

25

Figure 1-13. Storage service architecture

Windows Azure storage supports four types of services: blobs, drives, queues, and tables. Blobs,
queues, and tables have independent REST APIs. Drives are a special type of storage that is different
from the other storage services. Drives are a type of page blob and are uploaded to the blob storage for
mounting them to the compute nodes. Drives don’t have a direct REST API because they behave like
other page blobs when uploaded to the blob storage. Drives do have a managed API in SDK that you can
use in your compute nodes.

Windows Azure Storage types are scoped at the account level. This means that when you open a
storage account, you get access to all the Windows Azure storage services: blobs, queues, and tables.

A blob account is a collection of containers. You can create any number of containers in an account.
A container consists of number of blobs. A blob can be further composed of a series of blocks or pages. I
have covered blocks and pages in the Blob storage chapter.

A queue account is a collection of queues. An account can have any number of queues. A queue is
composed of queue messages sent by the message sending applications.

Table 1-3 lists the commonalities and differences among the three storage types in Windows Azure.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

26

Table 1-3. Windows Azure Storage

Feature Blob Queue Table

Url Schema http://[Storage
Account].blob.core.windo
ws.net/

[Container Name]/[Blob
Name]

http://[Storage
Account].queue.core.windows.n
et/[Queue Name]

http://[Storage
Account].table.core.windows.net
/[Table Name]?$filter=[Query]

MAX Size 200GB(block blob)/1TB
(page blob)

8K (string) Designed for terabytes of data

Recommen
ded Usage

Designed for large binary
data types

Designed for cross-
service message
communication

Designed for storing smaller
structured objects like the user
state across sessions

API
Reference

http://msdn.microsoft.co
m/en-
us/library/dd135733.aspx

http://msdn.microsoft.c
om/en-
us/library/dd179363.asp
x

http://msdn.microsoft.com/en-
us/library/dd179423.aspx

Even though the Storage service makes it easy for Windows Azure compute services to store data

within the cloud, you can also access it directly from on-premises applications using the REST API. For
example, you could write a music storage application that uploads all your MP3 files from you client
machine to the blob storage, completely bypassing the Windows Azure Compute service. Compute and
Storage services can be used independently of each other in Windows Azure. There are several
customers using the storage service purely for backing up their on-premises data to the cloud. You can
create a scheduled automated utility that uploads back-up files to Windows Azure blob storage. This
gives you clear separation between your production data and disaster recovery data.

 Note The Windows Azure SDK also includes .NET-managed classes for calling storage service REST API. If you
are programming in .NET, I recommend you to use the classes in Microsoft.WindowsAzure.StorageClient
assembly.

Windows Azure, because it is a platform, does not provide you with any direct user interface for
uploading files to the storage service. You have to build your own application client for using the storage
service. There are several third-party tools like the Cloud Storage Studio from Cerebrata
(www.cerebrata.com/Products/CloudStorageStudio/Default.aspx) you can use to upload and download
files.

http://msdn.microsoft.co
http://msdn.microsoft.c
http://msdn.microsoft.com/en-us/library/dd179423.aspx
http://msdn.microsoft.com/en-us/library/dd179423.aspx
http://msdn.microsoft.com/en-us/library/dd179423.aspx
http://www.cerebrata.com/Products/CloudStorageStudio/Default.aspx

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

27

 Note The Windows Azure Storage service is independent of the SQL Azure database service offered by the
Windows Azure Platform. Windows Azure storage services are very specific to Windows Azure and unlike the
compute and SQL Azure services, there is no parity with any on-premises product offered by Microsoft.

Management
Unlike on-premise applications, the deployment of cloud services in PaaS involves only software
provisioning from the developer’s perspective. In a scalable environment for provisioning multiple
services across thousands of instances, you need more programmatic control over the provisioning
process. Manually uploading service packages and then starting and stopping services from the portal
interface works well for smaller services, but are time-consuming and error-prone for large-scale
services. The Windows Azure Service Management API allows you to programmatically perform most of
the provisioning functions via a REST-based interface to your Windows Azure cloud account. The
Service Management API is the hidden jewel of the platform. It makes Windows Azure a truly
dynamically scalable platform allowing you to scale-up and scale-down your application on-demand.
Using the Service Management API, you can automate provisioning, de-provisioning, scaling, and
administration of your cloud services. Some of the common scenarios for leveraging the Service
Management API are as follows:

• Automating the provisioning and de-provisioning of your cloud services through a
well-defined release management process. Figure 1-14 illustrates the typical
provisioning process of loading the applicationf package from blob store and
deploying it through service management API.

Figure 1-14. Provisioning using the Service Management API

• Dynamically scaling-up and down your applications based on the demand and
application performance. Figure 1-15 illustrates a typical scaling architecture
based on performance metrics of the roles instances of your application.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

28

Figure 1-15. Scaling using the Service Management API

• Service Management API also enables you to build an enterprise applications
store in Windows Azure. Combining it with other Windows Azure platform
services like Access Control and Windows Identity Foundation, you can federate
on-premises identities with applications running in Windows Azure.

 Note There are some third-party tools that offer dynamic scaling as a service. AzureWatch from Paraleap
(www.paraleap.com/AzureWatch) is one such tool and even Microsoft Consulting Services has an Auto-scale
toolkit that is offered in the context of a consulting engagement. You can also build your own using the Service
Management API.

SQL Azure
SQL Azure is a relational database service in the Windows Azure platform. It provides core relational
database management system (RDBMS) capabilities as a service, and it is built on the SQL Server
product code base. In the current version, developers can access SQL Azure using tabular data stream
(TDS), which is the standard mechanism for accessing on-premise SQL Server instances through SQL
client today. The SQL client can be any TDS-compliant client, like ADO.NET, LINQ, ODBC, JDBC, or
ADO.NET Entity Framework.

 Note At the time of writing, the maximum database size allowed per database was 50GB. There are well
known partitioning patterns (e.g., sharding) for distributing data across multiple instances of 50GB databases.
Built-in support for federation is on the roadmap for SQL Azure.

http://www.paraleap.com/AzureWatch

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

29

Figure 1-16 illustrates the core components of SQL Azure.

Figure 1-16. SQL Azure core components

The core services offered by SQL Azure are as follows:

Relational Data Storage – The relational data storage engine is the backbone of
SQL Azure and is based on the core SQL Server code base. This component
exposes the traditional SQL Server capabilities like the tables, indexes, views,
stored procedures, and triggers. From a developer’s perspective, SQL Azure is a
relational subset of SQL Server. Therefore, if you have developed for SQL Server,
you are already a SQL Azure developer. The majority of the differences are
along the physical management of the data and some middleware features like
ServiceBroker that are not offered in SQLAzure.

Data Sync – The Data Sync capabilities provide the synchronization and
aggregation of data to and from SQL Azure to enterprise, workstations, partners
and consumers devices using the Microsoft Sync Framework. The Data Sync
component has two flavors: Data Sync service between SQLAzure instances and
Data Sync services between on-premises database and SQL Azure. Both the
services are based on Microsoft Sync Framework. With the combination of the
two flavors, you can trickle down data all the way to field offices that are in
remote locations.

 Note The Microsoft Sync Framework is included in the SQL Server 2008 product
(http://msdn.microsoft.com/en-us/sync/default.aspx).

Management – The management component provides automatic provisioning,
metering, billing, load-balancing, failover, and security capabilities to SQL
Azure. Each database is replicated to one primary and two secondary servers. In
case of a failover, the switching between the primary and the secondary server
is automatic without interruptions. You can manage your SQL Azure databases
from the Windows Azure portal as well as other existing toolsets like SQL Server
Management Studio, OSQL, and BCP.

Data Access – The Data Access component defines different methods for
accessing SQL Azure programmatically. Currently, SQL Azure will support
Tabular Data Stream (TDS), which includes ADO.NET, Entity Framework,

http://msdn.microsoft.com/en-us/sync/default.aspx

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

30

ODBC, JDBC, and LINQ clients. Developers can access SQL Azure either
directly from on-premise applications or through cloud services deployed in
Windows Azure. You can also locate a Windows Azure compute cluster and a
SQL Azure instance in the same datacenter for faster data access.

Reporting Services –The Windows Azure platform is new and you should
expect it getting rich in features every year. Microsoft is committed to reducing
the parity gap between on-premises and Windows Azure platform services. SQL
Azure is no exception; during PDC 2010, Microsoft announced the availability
of SQL Reporting Services in Windows Azure platform. This brings reporting
capabilities to your applications and an essential step towards business
intelligence in the cloud.

Some of the common scenarios for leveraging the SQL Azure are as follows:

Database consolidation – If you have home-brewed databases that are sitting
under desktops or isolated islands, then having SQL Azure as one of the options
in your database consolidation strategy will greatly help you strategize you long
term goal of reducing the operations footprint. You can migrate to SQL Azure
from Access, MySQL, SQL Server, DB2, Oracle, Sybase, and pretty much any
relational database to SQL Azure with proper tools like SQL Server Migration
Assistant (SSMA) and SQL Azure Migration Wizard from Codeplex. If there is no
direct migration path to SQL Azure for a particular database, then the most
common path is from third-party database to SQL Server and then from SQL
Server to SQL Azure. SQL Azure will provide you with ability to quickly
provision databases and reduce the time to market for your solution. You don’t
have to wait for provisioning clustered hardware for running your databases.

Back-end for Windows Azure Compute – SQL Azure is the recommended
relational database for applications running in Windows Azure compute. If you
co-locate your Windows Azure compute instances and SQL Azure in the same
datacenter, you can get great performance advantage and you will also not
incur any data-transfer costs.

Geo-replication of Data – SQL Azure and Data Sync services for SQL Azure give
you the ability to synchronize two-way synchronizations across multiple
geographies and also trickle down data to remote hubs. This kind of data
movement allows you to move data closer to the application for better user
experience. Figure 1-17 illustrates a common geo-replication pattern in SQL
Azure.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

31

Figure 1-17. Geo-replication in SQL Azure

Quick Application Migrations – SQL Azure allows you to quickly migrate the
relational database component of your on-premises application to Windows
Azure. This is a big differentiator for Microsoft in comparison to its competitors.
With minimal efforts, you can quickly move your existing relational data to
Windows Azure and then focus on migrating the application. Once the data is
moved to SQL Azure, you can just change the connection string of your
application to point to the SQL Azure database.

 Tip SQLAzure runs a labs program where you can try out upcoming features for free and provide feedback to
the Microsoft product teams. You can find more information about the labs program here www.sqlazurelabs.com.

http://www.sqlazurelabs.com

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

32

Windows Azure AppFabric
Windows Azure AppFabric is the cloud-based middleware platform hosted in Windows Azure. Windows
Azure AppFabric is the glue for connecting critical pieces of a solution in the cloud and on-premises. You
must have heard several times from industry speakers and even cloud enthusiasts that “everything is
moving to the cloud.” I firmly believe that everything is not moving to the cloud. The disruptive effect of
cloud computing is similar to the disruption created by cell phones. Cell phones gave users quick
provisioning and anywhere access to communications. But, some critical functions like building security
still run over landlines and have no plans for switching to a cell phone network. Windows Azure
AppFabric provides you with components for integrating Windows Azure applications with on-premises
applications. The core components of the Windows Azure AppFabric are as follows:

1. An Internet service bus, called Service Bus, for connecting applications
running in Windows Azure (and other domains) and on-premises

2. A claims-mapping service, called Access Control Service, for supporting
claims-based authorization in your applications running in Windows Azure
and on-premises

3. A distributed caching service within the Windows Azure platform, called
Windows Azure AppFabric Cache

 Note Windows Azure AppFabric and Windows Server AppFabric are two different products. In the long run,
Microsoft’s goal is to bring services available in Windows Server AppFabric to Windows Azure AppFabric. Some of
the features like ACS and Service Bus will always remain exclusive to Windows Azure AppFabric.

I think of Azure AppFabric as the integration middleware of the Windows Azure platform, because it
provides connectivity, caching, identity claims federation, and messaging capabilities among distributed
applications. You can leverage these capabilities not only for cloud services but also for on-premises
applications. Microsoft’s strategy is to provide Windows Azure AppFabric as a middleware and building
blocks for building and deploying distributed applications on Windows Azure. Figure 1-18 illustrates the
three core services of Windows Azure AppFabric.

Figure 1-18. Windows Azure AppFabric core services

Access control – The access control service provides rules-driven, claims-based
access control for distributed applications. The access control service is

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

33

designed to abstract identity providers from your application. It maps input
claims from different types of identity providers to a standard set of output
claims known to your application. This architecture provides a model for
dynamically adding and removing identity providers without changing a single
line of code in your application. The most common uses of Access Control
service are:

• Providing identity federation between multiple partner identity providers
and partner portals

• Providing enterprise identity federation using ADFS 2.0 and enterprise
applications running in Windows Azure

Service bus – The service bus is a generic Internet service bus based on the
Windows Communications Foundations (WCF) programming model. It is
analogous to the Enterprise Service Bus (ESB) popularly seen in large
enterprises. Unlike the ESB, the Azure AppFabric Service Bus is designed for
Internet scale and messaging with cross-enterprise and cross-cloud scenarios
in mind. The service bus provides key messaging patterns like
publish/subscribe, point-to-point, and durable buffers for message exchanges
across distributed applications in the cloud as well as on-premise. You can
expose an on-premises line-of-business application interface as a Service Bus
endpoint and then consume that endpoint from a Windows Azure application
or any other application. The most common uses of Service Bus are:

• Accessing line-of-business data from Windows Azure applications

• Providing connectivity to data residing in on-premises applications at the
web service level (Windows Azure Connect provides connectivity at the
network level)

Caching – The caching service was announced during PDC 2010. It is a late
comer to the Azure AppFabric family, but one of the most valuable. The caching
service provides distributed caching for applications running Windows Azure.
Caching is an essential component for any internet-scale application. Before
the caching service, developers either built custom caching components or
modified third-party components like memcached (http://memcached.org/
)to run on Windows Azure. The Azure AppFabric caching service makes caching
a first-class citizen of the Windows Azure platform. It provides in-memory as
well as external datacenter co-located caching service. The most common uses
of the caching service in Windows Azure are:

• In-memory caching of SQLAzure database data

• Caching on-premises data to be consumed by Windows Azure applications

• Caching multi-tenant user interface data for providing high-performance
interactive applications

• Caching user state in multi-player gaming applications

• Caching location-based usage information

• Caching session state of users

http://memcached.org/
http://memcached.org/

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

34

 Tip Like SQLAzure, Windows Azure AppFabric also runs a labs program where you can try upcoming features
for free. You can login and start playing with these features here https://portal.appfabriclabs.com.

Now that we have covered the Windows Azure technology fundamentals, let’s see how the pricing
for all these features is structured. In the cloud, every feature you use is metered based on usage like
your electricity bill, therefore architects and developers needs to choose appropriate features and are
naturally forced to not over-architect an application.

Windows Azure Platform Pricing
Each Windows Azure platform component is priced differently and within each component there are
further pricing choices. Typically, architects are used to designing applications assuming capital
investment for supporting maximum capacity. But, cloud platforms give you the flexibility for designing
applications for minimum capacity and scale up dynamically based on demand. Such flexibility adds a
new variable “operating cost” to your design. Every cloud resource you plan to utilize in your design has
a cost associated with it. Cloud computing gives rise to a new architecture paradigm I call cost-driven
architecture (CDA). In CDAs, an architect iteratively evaluates the operating cost of the architecture and
modifies the architecture according to the cost boundaries of the application as shown in Figure 1-19.

Figure 1-19. Cost driven architecture

CDAs are tied directly to the pricing of the cloud services. The pricing for Windows Azure platform
components are available publicly at:

www.microsoft.com/windowsazure/pricing/default.aspx

Figure 1-20 illustrates the pricing for Windows Azure Compute and Storage services.

https://portal.appfabriclabs.com
http://www.microsoft.com/windowsazure/pricing/default.aspx

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

35

Figure 1-20. Windows Azure compute and storage pricing

A couple of things to observe in Figure 1-20 are as follows:

The compute service charges are per hour of consumption and the price is
based on the size of the virtual machine instance. You will be charged not only
for a running application but also for an application that is deployed but not
running. You have to unload the application to avoid any charges.

The Storage service charges are for data storage per GB as well as transactions
(ingress and egress) in and out of the datacenter. So, if your compute instances
and storage are located in the same datacenter, there will be no transaction cost
for data transfer between the two, but if the compute instances access storage
service from another datacenter, you will incur transaction costs.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

36

 Note Microsoft no longer charges for input data bandwidth (ingress). There is network bandwidth charge for
only egress (data-out); therefore it is easier to migrate your data into Windows Azure.

Figure 1-21 illustrates the pricing for SQL Azure.

Figure 1-21. SQL Azure pricing

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

37

A few things to observe in Figure 1-21 are:

• There are two types of database editions: Web and Business (5GB or more is the
Business Edition).

• The maximum size per database is 50GB, but you can create multiple 50GB
databases and partition data between those instances.

• “The database fee is amortized over the month and charged on a daily basis.” If
you dynamically create and delete databases frequently, you have to make sure
you factor-in this daily cost.

• Similar to storage service, SQL Azure also charges for data transfer between
datacenters. There will be no charge for data transfer within the same datacenter.

Figure 1-22 illustrates the pricing for Windows Azure AppFabric.

Figure 1-22. Windows Azure AppFabric pricing

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

38

 Tip For quick cost estimation, there is a nice pricing calculator on the Windows Azure web site at
www.microsoft.com/windowsazure/pricing-calculator/. I encourage you to try it out by mapping any of your
on-premise application to Windows Azure.

All of the Windows Azure platform components can be managed from the Windows Azure platform
management portal. Let’s review that now.

Management Portal – Let’s Provision

 Note By the time this book will be released, the portal experience will be much different, but the concepts will
still remain the same.

Microsoft has designed the Windows Azure platform management portal in Silverlight, providing better
interactivity and a central place for managing all the Windows Azure platform components. You can
access the portal via the following URL https://windows.azure.com. Before accessing the portal, you will
need to create a subscription using your Live Id. Microsoft offers several introductory specials that can
be found here www.microsoft.com/windowsazure/offers/. Sometimes there are one month free trials. If
you have MSDN subscription, you also receive some free hours per month. After you create a
subscription, you can log in to the management portal using the same Live Id you used for creating the
subscription.

Once you create a subscription, you get access to all the Windows Azure platform components. After
you login to the management portal, you will be taken to the main portal page. Figure 1-23 illustrates the
screenshot of the main portal page.

http://www.microsoft.com/windowsazure/pricing-calculator/
https://windows.azure.com
http://www.microsoft.com/windowsazure/offers/

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

39

Figure 1-23. Windows Azure platform management portal

The management portal user interface is highly interactive and gives you the feeling of interacting
with the desktop software. The left navigation list all the services from the Windows Azure platform and
the top navigation bar lists commands in context of your navigation. For example, on the main page you
can create new services: Hosted Service, Storage Service, Database Server, and Windows Azure Connect
service. When you navigate to the Database tab, you will see the commands change in the context of the
SQL Azure database server, as shown in Figure 1-24.

Figure 1-24. Management portal commands in Database context

For running examples from this book, you will need a provisioned account. Even though some of
the applications you can run in the Windows Azure development fabric, for experiencing the real cloud
environment, you will need a Windows Azure platform account.

Figure 1-25 illustrates a typical developer workflow on the Windows Azure Platform.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

40

Figure 1-25. Windows Azure platform developer workflow

The typical developer workflow steps for Windows Azure Platform follow:

1. Create a Windows Azure account (i.e., an account for Windows Azure,
AppFabric, or SQL Services).

2. Download and prepare the development fabric to create a local cloud
platform.

3. Create an application in the development fabric.

4. Test the application in the development fabric.

5. Package the application for cloud deployment.

6. Test the application on Windows Azure in the cloud.

7. Stage the application in the Windows Azure staging environment in the cloud.

8. Deploy the application in the production farm.

Windows Azure platform is a living platform; new features are added every few weeks. One such
feature that I have not covered in detail is the Windows Azure Marketplace DataMarket. I will give you a
brief overview of the topic on this subject that will conceptually understand the service offering.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

41

Windows Azure Marketplace DataMarket
Windows Azure Marketplace DataMarket is a data service broker that runs on Windows Azure. It
standardizes the data consumption and data publishing interfaces with a standard web protocol called
Open Data Protocol (OData). Let’s say you want to build a mobile application that gives end users
insights into real estate sales and rental rates in relationship to local crime statistics. What would be your
process for building such an application? The application is completely driven by public domain data
and three different data sources: Real Estate Sales, Rental Data, and Crime Statistics. Then you realize
that the programmatic interfaces for these data sources are different. Ultimately, you end up building
your own service that transforms and aggregates the data from these three sources and presents it to the
user. It would have been ideal if all the three data sources had a standardized interface so that you don’t
have to transform the data and only worry about aggregating and presenting it in the user’s context.

The DataMarket standardizes this conversation by brokering such data feeds in OData format.
OData is a web protocol that standardizes data publishing and consumption so that tightly integrated
data can be exposed as standardized cross-platform feeds. You can find more information on OData at
www.odata.org. The web site also provides client (consumption) and server (publisher). As an ISV or a
developer, DataMarket provides you with a single point for consuming public domain as well as
premium commercial data in a standard format. You maintain a single billing relationship with
Microsoft and not worry about signing multiple checks for data providers. As a data provider,
DataMarket provides you with a global brokerage service for monetizing your data by delivering it
anywhere in the world. DataMarket also provides an authorization model for delivering your data only to
your customers. You don’t have to worry about maintaining separate customer relationships and
separate infrastructure for publishing your data globally. You can find more information on the
DataMarket on its web site https://datamarket.azure.com/. Figure 1-26 illustrates the high-level
architecture of the DataMarket platform.

http://www.odata.org
https://datamarket.azure.com/

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

42

Figure 1-26. Windows Azure Marketplace DataMarket

As shown in Figure 1-26, you can expose your custom data source, SQL Azure data source or a data
source from Windows Azure Storage to the DataMarket. The DataMarket itself does not store your data,
but provides you with a marketplace for your data. The DataMarket connectors provide the API services
for publishing your data to the DataMarket. The DataMarket in turn exposes the data to the consumers
as OData feeds. The services layer manages the billing, security, reporting, and provisioning.

Knowledge is best applied in the context of real-world scenarios. In the next section, you will see
some common scenarios in the context of all the Windows Azure platform components I have covered
so far. This section will help set the stage for all the following chapters and will give you a broader picture
from a solution perspective.

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

43

Windows Azure Platform Common Scenarios
After working with several customers over the past few years on the Windows Azure platform, I have
compiled a list of most commonly used scenarios. I have grouped these scenarios into three primary
categories: Foundational, Enterprise, and ISV.

Foundational Scenarios
Foundational scenarios are core scenarios commonly found in the architectures of the cloud
applications. These scenarios leverage the core features of PaaS offerings. Table 1-4 lists the descriptions
of these foundational scenarios.

Table 1-4. Foundational Scenarios

Foundational
Scenarios

Description

Dynamic Scaling This is a core capability of PaaS. Windows Azure platform offers this
capability through APIs. In this scenario, a scaling engine keeps track
of the performance of your instances and then based on a business
rule like performance threshold or time, dynamically increases or
decreases the number of instances in your cloud application.

Distributed Caching Cloud applications run on shared hardware in Microsoft’s
datacenter. You do not have access to server and network hardware
for optimizing performance at the hardware layer. Therefore, you
have optimize software for performance by employing techniques
like distributed caching. Windows Azure AppFabric caching provides
such a service that you can use in your cloud applications.

Multi-tenancy For serving multiple customers from a single application, you have to
implement multi-tenancy in all the tiers of your application. Every
tier has its own design patterns for building multi-tenant
applications. You can also deploy separate application per tenant if
your business model dictates that. Billing and metering per tenant is
the biggest challenge in building multi-tenant applications. You need
to provide data capture hooks within the application for capturing
each tenant’s usage of the application.

Geo-replication With the spread of consumer and enterprise applications at a global
scale, replicating data around the world and also employing bi-
directional synchronizations for that data has become a necessity.
SQL Azure DataSync and Microsoft Sync Framework are two
technologies you can use to not only replicate data across the globe
but also trickle down the data all the way to consumer devices for
optimal performance and pleasant user experiences.

Identity Identity management is one of the core requirements for building an
extensible and backwards-compatible cloud application. Integrating

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

44

Management enterprise and consumer identities seamlessly in your cloud
application is important to make it pervasive and backwards
compatible without modifying any code. Windows Azure AppFabric
Access Control Service and Windows Identity Foundation (WIF)
provide you with a service and framework for integrating different
kinds of identity providers in your application.

Storage
Management

Even though Windows Azure platform provides you with storage
service and SQL Azure, you have to architect security and the flow of
data from data sources to cloud storage and back. You have to
explicitly storage management solution in your cloud applications.

Enterprise Scenarios
Enterprise scenarios are typically seen in enterprise cloud applications. Enterprises are business entities
that manage a business and also interact with other businesses called partners. Enterprise scenarios are
tightly bound to enterprise boundaries like enterprise identities and enterprise security policies. Table 1-
5 lists the descriptions of these enterprise scenarios.

Table 1-5. Enterprise Scenarios

Enterprise
Scenarios

Description

Enterprise Identity
Integration

Enterprise cloud applications need access to enterprise identities for
authentication and authorization. Windows Azure platform currently
does not provide you with Active Directory Service; therefore you
have to leverage tools like ADFS 2.0 and WIF for integrating
enterprise on-premises identities into your cloud applications. These
tools also enable you to integrate with identities of your business
partners seamlessly (Partner portals, Disaster Recover Application,
etc.).

Application
Migrations

Application migration is a common scenario in enterprises. Windows
Azure platform provides you with a runtime for running consolidated
sets of applications. Enterprises build application consolidation
strategies around Windows Azure platform in order to reap the
benefits of cost, agility and high-availability.

Data Migrations Lot of enterprises would like to relieve themselves of managing any
non-sensitive data. Typically, data in enterprises reside in structured
and unstructured sources. Enterprises leverage Blob storage and SQL
Azure for storing their unstructured and relational data. Once the
data is migrated and organized in the cloud, any application from
anywhere can access this data securely.

Third-party
applications

Enterprises are seeing VMRole as an attractive option for deploying
third-party applications in Windows Azure. Typically, these

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

45

applications have lengthy installation process and do not need to
scale.

Business
Intelligence (BI) in
the cloud

With unlimited storage and compute capacity in the cloud,
enterprises have the opportunity to mine business data without
worrying about the computing power needed for it. SQL Reporting
Services in the cloud and Silverlight are popular BI presentation tools
available in the Windows Azure platform. I commonly see
departmental BI reporting applications using SQL Azure and
Silverlight built on the Windows Azure platform. SQL Server Analysis
Services (SSAS) and SQL Server Integration Services (SSIS) are still
not available in the cloud to move the end-to-end BI process in the
cloud, but I do see it coming in the next couple of years.

Hybrid Applications Large enterprise applications like line-of-business applications are
not yet available in the cloud, and enterprises have to settle down
running them on-premises. There are also scenarios where 90% of
the application can run comfortable in the cloud, but the 10%
requires access to sensitive data that cannot be moved to the cloud
or the data resides in a line-of-business application. In this case,
enterprises leverage either Windows Azure AppFabric ServiceBus or
Windows Azure Connect for retrieving the 10% data from the on-
premises source.

ISV Scenarios
Windows Azure platform is very attractive for ISVs because they can deploy their software service and
offer it to multiple customers through same of different endpoints. They don’t have to manage any
hardware and can dynamically scale as the number of customers increase. Table 1-6 lists the
descriptions of these foundational scenarios.

Table 1-6. ISV Scenarios

ISV
Scenarios

Description

High Scale/Batch
Compute

High Scale compute requires dynamically scaling compute power
and the ability to turn the capacity off once the workload completes
for avoiding too much idle time. Similarly, any batch processing
system only requires a specific timeslot for processing the load. The
system usually runs idle till the next workload is initiated. Windows
Azure platform provides you with unlimited compute power,
dynamic scalability, and you can stop the system after the workload
finishes so that you don’t have to run any idle capacity.

High-Growth Sites Startup companies or new initiatives in larger companies leverage
the dynamic scaling capability of the Windows Azure platform by
quickly building and deploying a new application scale up

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

46

dynamically as the demand grows. If the demand goes down, the
application can be easily scales-down or removed. There is no capital
investment required upfront for designing the system for maximum
capacity.

Software
Modernization

There are a lot of ISV packaged software installations that run as
islands within enterprises and small businesses. With the wave of
mobile applications, the demand for these packaged software
applications is going down. Some ISVs are modernizing these
existing software installations by providing Windows Azure
AppFabric Service Bus interfaces and providing mobile access to
these service interfaces.

Cloud Bursts
(Predictable/

Un-
predictable)

Bursts are sudden change in the usage demand of the application.
For example, during super-bowl season, there is a sudden change in
demand for Pizza orders. If the system is not designed to handle
these bursts, the company may lose business. Bursts can be
predictable or unpredictable. In Windows Azure, you can detect
these bursts by monitoring performance of the instances or input
queues to the application. Then, based on business rules, you can
increase the capacity of your application by dynamically starting
more instances.

These categories are just a guidance and not specifically driven by either ISV or Enterprise

applications. In real-world, you will see a mix and match of these scenarios across different types of
businesses.

Summary
Windows Azure platform is the most comprehensive PaaS offering in the industry today. In this chapter,
I gave you a high-level overview of all the Windows Azure platform features. I also went over some of the
common scenarios and trends I am observing in the cloud computing industry. In the next few years,
you will clearly see the disruptive effect of the cloud in enterprises. I always recommend my customers
to have a top-down strategy in handling this disruption rather than jumping on it on a per-application
basis. As the platform matures in features, more and more enterprises will be moving their applications
to the cloud.

In the next chapter, I will go over the Windows Azure Compute service in detail. You will also learn
to build applications for the Windows Azure Compute service.

Bibliography
Apache Software Foundation. (n.d.). Apache Hadoop . Retrieved from http://hadoop.apache.org

Factor, A. (2001). Analyzing Application Service Providers. Prentice Hall.

Google. (n.d.). Google AppEngine. Retrieved from Google: http://code.google.com/appengine

http://hadoop.apache.org
http://code.google.com/appengine

CHAPTER 1 WINDOWS AZURE PLATFORM OVERVIEW

47

Google. (n.d.). Google Apps. Retrieved from Google Apps:

http://www.google.com/apps/intl/en/business/index.html

Mario Barbacci, M. H. (1995). Quality Attributes. Pittsburgh, Pennsylvania 15213: Software Engineering

Institute, Carnegie Mellon University.

Microsoft Corporation. (n.d.). About Windows Azure. Retrieved from Windows Azure:

http://www.azure.com/

Microsoft Corporation. (n.d.). Windows Azure Pricing. Retrieved from Windows Azure:

http://www.microsoft.com/azure/pricing.mspx

Open ID Foundation. (n.d.). Retrieved from http://openid.net/foundation/

Staten, J. (2008). Is Cloud Computing Ready For The Enterprise? Forrester Research, Inc.

www.allitebooks.com

http://www.google.com/apps/intl/en/business/index.html
http://www.azure.com/
http://www.microsoft.com/azure/pricing.mspx
http://openid.net/foundation/
http://www.allitebooks.org

C H A P T E R 2

49

Windows Azure Compute

Enterprises today run on several flavors of operating systems such as Windows, UNIX, and mainframes.
As businesses grow, enterprises have to expand their data and processing capacities by buying more
servers and operating systems to support the new capacity. Typically, businesses have to plan for growth
well in advance to budget the expenses. The tipping point, where investments in new server systems
may not justify the value they provide to the business, is not far away. This is because server systems are
expensive to provision and maintain, and they become obsolete before they provide any return on
investment (ROI) to the business. As a result, IT managers face constant struggle in justifying server
upgrades. On the other hand, businesses should also plan for shrinking capacity and should be able to
quickly reduce costs and expenses to compete better in the marketplace.

By adopting Windows Azure, businesses can outsource their infrastructure elasticity to Microsoft,
and thus dynamically adjust to the real-time business needs.

In this chapter, I will discuss Windows Azure compute architecture and service management
components in detail.

Compute Service
In Chapter 1, you learnt the high-level compute service architecture. In this chapter, I will discuss some
of the details of the compute service.

Figure 2-1 illustrates the key components of the Windows Azure compute service.

CHAPTER 2 WINDOWS AZURE COMPUTE

50

Figure 2-1. Windows Azure compute service components

CHAPTER 2 WINDOWS AZURE COMPUTE

51

Networking Components

The networking hardware and software forms the networking backbone for all the internal and
external communications. Typical hardware components include gateways, routers, switches, hubs, and
fiber optic cables across datacenters. Typical software networking components include software load-
balancers and virtual routers. The hardware networking components are fixed, whereas the software
networking components are dynamic and therefore can be provisioned on demand. From previous
experience, the hardware networking components are more difficult to replace than software ones and
therefore need to be redundant. One of the common mistakes is deploying two instances of the load-
balancer (or router) from the same vendor as a redundancy mechanism. So, if there is a defect in the
product version that freezes the device, the redundant device is also likely to fail, because it is identical.
If the networking backbone fails, everything above the stack fails. Therefore, designing network
redundancy with multi-vendor products is critical for maintaining high-availability of the datacenter
services.

Blade Servers

The server farm in Windows Azure datacenters consists of commodity-grade blade servers. The
server hardware is low cost and is replaced instead of repaired in case of failures. This is because the
replacement cost of the hardware is less than the repair cost. All the hardware is capable of running
Windows Server 2008 64-bit compatible operating systems.

Windows Azure Hypervisor

The Windows Azure Hypervisor is a customized version of Hyper-V for Windows Azure. It is
specifically tailored for Windows Azure.

Fabric Controller

The Fabric Controller is the heart of Windows Azure and is responsible for the following:

• Provisioning operating systems on server hardware.

• Allocating resources for cloud services.

• Managing cloud service lifecycle.

• Maintaining the cloud service quality attributes defined by the service level
agreement (SLA).

Operating Systems

Table 2-1 shows the versions of guest operating systems supported by Windows Azure.

CHAPTER 2 WINDOWS AZURE COMPUTE

52

Table 2-1. Windows Azure Operating System Support

Windows Azure Operating System Windows Server OS version Roles

Guest OS 1.x Windows Server 2008 (64 bit) Web role, Worker role

Guest OS 2.x Windows Server 2008 R2 (64 bit) Web role, Worker role, VM
role

Application Runtimes

Application runtimes, like .NET Framework and Java Runtime, are responsible for running your
applications on Windows Azure. By default, .NET Framework is installed on these instances, but you can
also install Java runtime or any runtime that runs on Windows Server 2008.

Service Model

A service model contains the metadata for your service. It describes the behavior of the service after
it is deployed in Windows Azure. The Fabric Controller reads the service model definition of your service
and deploys it to the desired end state. You can modify the configuration portion of the service model,
such as the number of instances at runtime. Any modification to the definition portion of the service
mode like the number of endpoints requires a restart. The service model must contain at least one role
definition.

Application Roles

Application roles abstract the dependency of specific operating features from your application. For
example, if you build a Web role, the web server in which the Web role is hosted is abstracted from you.
The underlying web server in Windows Azure is IIS, but your application does not have to know about it.
Windows Azure deploys your Web role to an IIS server transparently, thus relieving you of web
application deployment task. Similarly, a Worker role is deployed as a background service in Windows
Azure without requiring you to specifically install and deploy the service on each individual instance.
The compute service follows a role-based model in which the provisioned instances run the roles
defined by your application.

 Note In Windows Azure terminology, an application is called as a cloud service. A cloud service is a grouping of
one or more roles into a single packaged solution that can be deployed to Windows Azure as a distributed
application farm.

Windows Azure supports three types of roles: Web role, Worker role, and VM role. When you design
your cloud service, you define your architecture in terms of roles. Then, you group multiple roles as a
cloud service and deploy to Windows Azure. Windows Azure deploys each of these roles into a separate
virtual machine instance but within the same cloud service. Figure 2-2 illustrates the concept of cloud
service and roles.

CHAPTER 2 WINDOWS AZURE COMPUTE

53

Figure 2-2. Windows Azure roles and cloud service

Each role can be deployed to Windows Azure as multiple instances, and can also be scaled up and
down dynamically via the service management API.

Upgrade Domains and Fault Domains
The Service Level Agreement (SLA) for Windows Azure states, “For compute, we guarantee that when
you deploy two or more role instances in different fault and upgrade domains your Internet facing roles
will have external connectivity at least 99.95% of the time.” 1

1 Windows Azure SLA http://www.microsoft.com/windowsazure/sla/

http://www.microsoft.com/windowsazure/sla/

CHAPTER 2 WINDOWS AZURE COMPUTE

54

One of the value propositions of Windows Azure is the ability to automatically update instances in
your service. But, if the update requires a server reboot, it directly affects the availability of your service.

Upgrade Domains are a logical separation of your role instances, ensuring your service does not go
down during upgrades. There are five upgrade domains by default, but you have control over the
number of upgrade domains your application will use through the service model definition.

Fault domains are logical separation of your role instances for avoiding single point of failure due to
software and hardware failures. The Fabric Controller always deploys more than one instances of your
service in two separate fault domains. Therefore, the SLA specifically requires you to have at least two
instances of a role for 99.95% availability. The SLA also states, “Additionally, we will monitor all of your
individual role instances and guarantee that 99.9% of the time we will detect when a role instance’s
process is not running and initiate corrective action.” You don’t have any control over the number of
Fault Domains and the assignment process. The Fabric Controller internally defines a unit of failure and
never deploys two instances of the same role in the same unit of failure. Therefore, if there is a hardware
failure in a rack on which one instance is running, the second instance still remains available. After
detecting failure, the Fabric Controller then restarts a new instance in a third fault domain. All this
happens automatically without any user intervention. If there are three instances of the role: the Fabric
Controller decides which Fault Domain to place these instances. It may even place two instances in the
same Fault Domain and the third in another. This is not an ideal configuration, but it may occur. By
default, your service gets two Fault Domains, therefore the likelihood of the first and the third instance
running in the same Fault Domain is high. Windows Azure SDK provides you with a method call to get
the Upgrade Domain and the Fault Domain of the role instance. I have covered this later in the chapter.
The Fabric Controller also makes sure that one Upgrade Domain spans more than one Fault Domain as
shown in Figure 2-3.

CHAPTER 2 WINDOWS AZURE COMPUTE

55

Figure 2-3. Upgrade Domain and Fault Domain

Understanding Domains in the Application Context
To further understand the concept of Upgrade and Fault Domains, let’s take an example of a Windows
Azure cloud service named “MyFirstService” that has only one web role, “MyWebRole.” Initially, let’s
assume that MyWebRole has two instances, and that you are using two Upgrade Domains. The Fabric
Controller will deploy each instance of MyWebRole into different Upgrade Domains and different Fault
Domains as shown in Figure 2-4.

CHAPTER 2 WINDOWS AZURE COMPUTE

56

Figure 2-4. Two Web role instances in Upgrade and Fault Domains

Now, if you increase instances to three and add one more upgrade domain, then even though the
Fabric Controller may deploy three instances in three different Upgrade Domains, there is no guarantee
that the third instance will be deployed in a different Fault Domain. It may deploy the third instance to
the same Fault Domain as the second instance, as shown in Figure 2-5.

CHAPTER 2 WINDOWS AZURE COMPUTE

57

Figure 2-5. Three Web role instances in Upgrade and Fault Domain

While designing highly available services, it is important to understand the functioning of Upgrade
and Fault Domains and to deploy the services with appropriate numbers of Upgrade domains for
avoiding any downtime. Windows Azure SDK provides you with method calls to find out the Upgrade
and Fault Domain numbers in which a role instance is running. I cover these later in this chapter.

Compute Service Security
When you run services in someone else’s datacenter, there is always a concern about the security of
application and data. In Compute, the instances of your service run in dedicated virtual machines. These
virtual machines are managed by the hypervisor. Your deployed service runs as a least privileged
account in the dedicated virtual machine. The root virtual machine is trusted by the hypervisor, but the
guest virtual machine, in which your service runs, is not trusted. The root virtual machine and the
hypervisor also have network packet filters that prevent unauthorized traffic to the virtual machines
running the service. The isolation of virtual machines from one another is managed by the hypervisor
and does not depend on Windows security. For avoiding side channel attacks, each virtual machine is
isolated into a separate core. Figure 2-6 illustrates the virtual machine isolation and some security
features of the compute service.

CHAPTER 2 WINDOWS AZURE COMPUTE

58

Figure 2-6. Compute service security.

The commonly exposed attack surface for a Web role is the external endpoint. Therefore, it is
important to secure the external endpoints exposed by your service using secure channels like https or
transport/message security in case of web services. You still have to manage any denial of service attacks
in your application if they are not detected by the Windows Azure platform infrastructure.

Developing Windows Azure Services
Windows Azure and Windows Azure AppFabric have separate software development kits (SDKs), but
Visual Studio and the .NET Framework are the common programming tools used for building
applications for all the Windows Azure components.

 Note If you are a Java or a PHP developer, you can also build services in Windows Azure. Check out the
following web sites:

www.interoperabilitybridges.com/projects/windows-azure-tools-for-eclipse.

www.interoperabilitybridges.com/projects/windows-azure-sdk-for-java

www.windowsazure4j.org

http://www.interoperabilitybridges.com/projects/windows-azure-tools-for-eclipse
http://www.interoperabilitybridges.com/projects/windows-azure-sdk-for-java
http://www.windowsazure4j.org

CHAPTER 2 WINDOWS AZURE COMPUTE

59

Windows Azure SDK has a local development fabric that simulates the cloud environment at a
miniature scale. Developers can utilize their existing .NET development skills for developing services for
Windows Azure platform. The development fabric gives you a local environment to test your code. The
development fabric is not meant for running any production applications.

Windows Azure API Structure
Windows Azure SDK provides a set of APIs to complement the core services offered by Windows Azure.
These APIs are installed as part of Windows Azure SDK, and can be used locally for developing Windows
Azure applications. The Microsoft.WindowsAzure.ServiceRuntime assembly and namespace consists of
classes used for developing applications in the compute service. The
Microsoft.WindowsAzure.Diagnostics namespace consists of classes used for diagnostics and logging in
the compute service.

The Microsoft.WindowsAzure.StorageClient assembly and namespace consists of classes used for
developing applications to interact with the storage service. The assembly makes REST calls to the
storage service REST interface.

The service management API is exposed as a REST interface, and the csmanage.exe application in
Windows Azure code samples (http://code.msdn.microsoft.com/windowsazuresamples) can be used to
call the service management APIs.

Developer Environment
The development environment of Windows Azure consists of two main components: Windows Azure
Tools for Visual Studio and the Windows Azure SDK. In this section, I will cover these in detail.

Windows Azure Tools for Visual Studio
Windows Azure Tools for Visual Studio is a Visual Studio extension supporting Windows Azure
development. You can download it from the Azure SDK web site at www.microsoft.com/azure/sdk.mspx.

Visual Studio Project Types
The Windows Azure Tools for Visual Studio creates a project type named Cloud Service containing
project templates for Web role and Worker role. After you install Windows Azure Tools for Visual Studio,
open Visual Studio and create a new Project by selecting File New Project. Figure 2-7 shows the New
Project Dialog box.

http://code.msdn.microsoft.com/windowsazuresamples
http://www.microsoft.com/azure/sdk.mspx

CHAPTER 2 WINDOWS AZURE COMPUTE

60

Figure 2-7. New project

The Windows Azure Cloud Service template defines the cloud service project. Click OK to choose
from the available roles (see Figure 2-8).

Figure 2-8 Cloud service roles

CHAPTER 2 WINDOWS AZURE COMPUTE

61

The available cloud service roles are as follows:

• ASP.NET and ASP.NET MVC Web role: As the name suggests, this role consists of
an ASP.NET project. You can build any ASP.NET compatible project for deploying
to the cloud.

• WCF Service Web role: This role consists of a WCF project with basic HTTP
binding.

• Worker role: The Worker role project is a background process application. It is
analogous to a Windows service. A Worker role has start and stop methods in its
super class and can expose internal and external endpoints for direct access.

• CGI Web role: The CGI Web role is a FastCGI-enabled Web role. It does not consist
of a Cloud Service project.

Choose the roles you want, as shown in Figure 2-9. I have selected a Web role, a WCF Web role, and
a Worker role.

Figure 2-9. Selected roles

Click OK to create the cloud service project, as shown in Figure 2-10.

CHAPTER 2 WINDOWS AZURE COMPUTE

62

Figure 2-10. Empty cloud service project

In Figure 2-10, the HelloAzureCloud cloud service project holds references in the Roles subfolder to
all the role projects in the solution. The cloud service project also contains ServiceDefinition.csdef and
ServiceConfiguration.cscfg files that define the configuration settings for all the roles in the cloud
service.

The WCF service Web role project includes a sample service and its associated configuration in the
web.config file. The WebRole.cs file implements the start and configuration changing events fired by the
Windows Azure platform. This file is created for all the roles with default start and configuration
changing event handlers. You can handle additional events like StatusCheck and Stopping depending on
your application needs. The WebRole class inherits the RoleEntryPoint class from the
Microsoft.WindowsAzure.ServiceRuntime namespace. The WebRole.cs class is the background class that
instantiates a background processing object at runtime. The Web Role does not need to have this class,
but it is beneficial for performing background and startup tasks within the Web role.

CHAPTER 2 WINDOWS AZURE COMPUTE

63

The ASP.NET Web role project consists of a Default.aspx file and its associated code-behind and
web.config file.

 Caution Even though Windows Azure supports native code execution, the code still runs with Windows user,
not administrator, privileges. Therefore, some WIN32 APIs that require system administrator privileges will not be
accessible

Finally, the Worker role project consists of WorkerRole.cs file and its associated app.config file. In
addition to inheriting the RoleEntryPoint class, it also overrides the Run() method in which you add your
continuous processing logic. A Worker role class must inherit from the
Microsoft.WindowsAzure.ServiceRuntime. RoleEntryPoint class. RoleEntryPoint is an abstract class that
defines functions for initializing, starting and stopping the Worker role service. A Worker role can stop
either when it is redeployed to another server or when you have executed the Stop action from the
Windows Azure developer portal. Because a Worker role is not designed to have any external interface by
default, it does not contain any ASP.NET or WCF files.

In summary, the cloud service defined in this project consists of a WCF service, an ASP.NET web
application, and a Worker role service. The entire package constitutes a Windows Azure cloud service.

 Note In the interest of keeping this book conceptual, I will not be covering FastCGI applications.

Role Settings and Configuration
In the cloud service project, you can configure each role’s settings by double-clicking the role reference
in the Roles subdirectory of the cloud service project. Figure 2-11 shows the role settings page in Visual
Studio.

CHAPTER 2 WINDOWS AZURE COMPUTE

64

Figure 2-11. Role settings (the default is Configuration)

 Note The Role Settings UI actually updates the ServiceDefinition.csdef and
ServiceConfiguration.cscfg files behind the scenes. You can achieve the same effect by directly modifying
these XML files. The concept is important if you want to dynamically modify these files for auto-scaling of auto-
deployments.

The role settings page has six tabs: Configuration, Settings, Endpoints, Local Storage, Certificates,
and Virtual Network.

• Configuration: The Configuration tab is selected by default and displays the
following configuration options:

CHAPTER 2 WINDOWS AZURE COMPUTE

65

• .NET Trust Level: The .NET Trust Level specifies the trust level under which this
particular role runs. The two options are Full Trust and Windows Azure Partial
Trust. Full Trust options gives the role privileges to access certain machine
resources and execute native code. Even in Full Trust, the role still runs in the
standard Windows Azure user’s context and not the administrator’s context. In the
Partial Trust option, the role runs in a partially trusted environment and does not
have privileges for accessing machine resources and native code execution.

• Instances: The instance count defines the number of instances of each role you
want to run in the cloud. For example, you can run two instances of ASP.NET Web
role and one instance of the Worker role for background processing. The two
instances of ASP.NET Web role will give you automatic load-balancing across the
instances. By default, all the roles run as single instance. This option gives you the
ability to scale-up and scale-down your role instances on demand.

The VM size option gives you the ability to choose from a list of virtual machines preconfigured in
the Windows Azure virtual machine pool. You can choose from the following list of predefined virtual
machines depending on your deployment needs:

• Extra small: 1x1.0 GHz core processor, 768GB RAM, 20GB hard disk (low IO)

• Small: 1x1.6 GHz core processor, 1.75GB RAM, 225GB hard disk (moderate IO)

• Medium: 2 core processors, 3.5GB RAM, 500GB hard disk (high IO)

• Large: 4 core processors, 7GB RAM, 1000GB hard disk (high IO)

• Extra large: 8 core processors, 15GB RAM, 2000GB hard disk (high IO)

 Note For any operations that require moderate to high I/O, I recommend using VM sizes of medium or higher.
The I/O may include disk I/O, network I/O or even memory I/O like caching. I have also seen specific situations
where 16 small VMs performed better than 2 extra large instances.

The Web roles have a startup action that defines the endpoint on which the browser should launch.
This is not a cloud service setting, but a project setting for launching the Web role in the development
fabric. The HTTPS checkbox will be disabled until you add an HTTPS endpoint to the role.

In the Diagnostics section, you can enable or disable the diagnostics capabilities for the role and
also specify the destination of the diagnostics logs. By default, the destination points to the development
storage: “UseDevelopmentStorage=true.” If you have a Windows Azure storage service created, you can
add the connection string pointing to that storage service. The format for the storage service connection
string is
DefaultEndpointsProtocol=https;AccountName=[Your storage service account name];AccountKey=[You
can get this from the management portal]

• Settings: The Settings tab, shown in Figure 2-12, defines any custom settings you
can add to the role configuration.

CHAPTER 2 WINDOWS AZURE COMPUTE

66

Figure 2-12. Settings tab

These custom name-value pairs are analogous to the name-value appSettings in an app.config or
web.config file. You can retrieve the values of these settings in your code by calling the
RoleEnvironment.GetConfigurationSettingValue. If you enable diagnostics or remote desktop access
plug-ins, custom settings are created for these plug-ins in the Settings section. You can add your custom
settings like the database connection string to this section.

• Endpoints: The Endpoints tab contains endpoints your role will expose when it is
deployed. There is a hard limit of five endpoints you can expose from a role.
Figure 2-13 shows the Endpoints tab for a Web role and a Worker role respectively.

Figure 2-13. Endpoints tab

The roles can have Input Endpoints and an internal endpoint. Input endpoints are exposed
externally, whereas the Internal endpoints are exposed internally within the cloud service role instances.
The port number defines the port your will use while accessing the endpoint. In case of an HTTPS

CHAPTER 2 WINDOWS AZURE COMPUTE

67

endpoint, you can upload the X.509 certificate for accessing the web page or service using an HTTPS
encrypted connection.

The internal endpoint is accessible to other roles within the cloud service. For example, a Web role
can get a reference to the internal endpoint of a worker role in the same cloud service for making web
service method calls to it.

By default, a Worker role has no defined endpoints like a Web role, because it is intended to be used
as a background process. To define an endpoint, you have to add one to the list and select its type (input
or internal), protocol (tcp, http, and, https), port, and, optionally, an SSL certificate name.

• Local Storage: The Local Storage tab defines local directories that will be created
on the server machine of the role for storing files locally. Figure 2-14 shows the
settings on the Local Storage tab.

Figure 2-14. Local storage

The name of the local storage will be the names of directories created on the server. The size column
defines the maximum size of the folder contents and the “Clean on Role Recycle” column defines
whether you want the contents of the directory cleaned up when a role recycles. You can use this option
for creating sticky storage for maintaining state of the role across reboots and failures. The local storage
uses the overall hard disk capacity available for the role instance and therefore you have to make sure
you don’t exceed the maximum capacity available for the virtual machine to avoid any errors.

• Certificates: The Certificates tab is used for referencing the certificates in your
role. You can use the certificates referenced here for configuring HTTPS in your
Web role and also for remote desktop connections and virtual network. The
certificates listed here can be referenced throughout the role configuration. At the
time of this writing, you still had to use the Windows Azure management portal or
the service management API for uploading the certificate to the server and then
reference the certificate in the settings as shown in Figure 2-15.

CHAPTER 2 WINDOWS AZURE COMPUTE

68

Figure 2-15. Certificate configuration

• Virtual Network: The Virtual Network tab allows you create a virtual network
between the Windows Azure role instances and your on-premises servers by
adding a Windows Azure Connect activation token. You acquire the token from
the Windows Azure Management portal and copy it in this section. Once you
activate the Virtual Network, Visual Studio creates several settings elements in
ServiceConfiguration.cscfg for configuring the network, as shown in Figure 2-16.

Figure 2-16. Virtual network

The settings configuration elements allow you to not only configure point-to-point connectivity, but
also join the Windows Azure role instances to your on-premises domain. I cover Windows Azure
Connect in the next chapter.

CHAPTER 2 WINDOWS AZURE COMPUTE

69

Visual Studio Project Actions
Once you have created a Windows Azure cloud service project, you can work with the cloud service roles,
work with storage services, or work on the debug and deployment of the cloud service.

Working with Cloud Service Roles

You can associate an existing Web role or a Worker role from a solution to the cloud service project, or
create a new role by right-clicking on the Roles subdirectory and selecting Add, as shown in Figure 2-17.

Figure 2-17. Adding associate roles to cloud service

By selecting New Web Role or New Worker Role project, you can create a new Web role project in
the solution that is associated with the cloud service project. By selecting a Web role or Worker role
project in the solution, you can associate an existing project in the solution to the cloud service project.
Figure 2-18 shows option for adding a new role to the existing cloud service.

Figure 2-18. Adding new roles

CHAPTER 2 WINDOWS AZURE COMPUTE

70

Working with Storage Services

The Windows Azure development fabric includes a local storage environment that resembles the cloud
storage service. It has development-specific blob, queue, and table services that simulate the ones in the
Windows Azure cloud. These services depend on SQL Server 2005 or 2008 database. So, you need to have
SQL Server 2005 or 2008 installed on your machine to work with storage services development
environment (also called Development Storage).

To start the development storage:

• Select Start All Programs Windows Azure SDK Storage Emulator, as shown in
Figure 2-19.

Figure 2-19. Development storage

When you debug your service within Visual Studio, it starts the development storage, which you can
access by right-clicking the Windows Azure system tray icon and selecting Show Storage Emulator UI.
Figures 2-20 and 2-21 illustrate the system tray options and the development storage user interface.
Figure 2-21 shows the local machine endpoints for each storage service.

Figure 2-20. Windows Azure system tray options

CHAPTER 2 WINDOWS AZURE COMPUTE

71

Figure 2-21. Developer storage user interface

Debugging in Visual Studio
In the Windows Azure Cloud environment, no direct debugging is available. You have two options:
IntelliTrace and logging. IntelliTrace is available only in Visual Studio Ultimate, but it’s worth the
investment when developing for Windows Azure. IntelliTrace records a series of events and allows you to
playback that recording with the existing code on your machine. This suits perfectly in cloud
environments, because you cannot directly debug services running Windows Azure from Visual Studio. I
have covered IntelliTrace later in the chapter. In the development fabric, you can debug by adding
breakpoints in the code and by viewing the logging information in the development fabric user interface.
As with any .NET application, Visual Studio attaches the debugger to the application when run in debug
mode in the development fabric. The debugger will break to the breakpoint set in the Web and Worker
role projects. In the Windows Azure cloud, Visual Studio debugging environment is not available, so one
of the best options is to log. Logs can be automatically transferred to Windows Azure storage and then
collected via tools. I will discuss diagnostics and logging later in this chapter. Figure 2-22 illustrates the
Development Fabric UI used for logging.

Figure 2-22. Development Fabric UI used for logging

CHAPTER 2 WINDOWS AZURE COMPUTE

72

 Tip I recommend inserting logging statements to the Windows Azure application right from the beginning. This
way, you can debug the application in the development fabric as well as in the Windows Azure cloud without
making any code changes.

To enable native code debugging in a Web role project, right-click the Web role project, select
Properties, go to the Web tab, and select the Native Code checkbox in the Debuggers section, as shown
in Figure 2-23.

Figure 2-23. Web role unmanaged code debugging

CHAPTER 2 WINDOWS AZURE COMPUTE

73

To enable native code debugging in a Worker role project, right-click the Worker role project, select
Properties, go to the Debug tab, and select the “Enable unmanaged code debugging” checkbox, as
shown in Figure 2-24.

Figure 2-24. Worker role unmanaged code debugging

Packaging the Service
To deploy the Windows Azure cloud service in the cloud, you have to package it into a .cspkg file
containing all the assemblies and components, and upload the package to Windows Azure developer
portal. To package a service, right-click the cloud service project, and select Publish, as shown in
Figure 2-25.

CHAPTER 2 WINDOWS AZURE COMPUTE

74

Figure 2-25. Packaging a Windows Azure service

When you select Publish, Visual Studio opens up Deploy Windows Azure project dialog box, as
shown in Figure 2-26.

CHAPTER 2 WINDOWS AZURE COMPUTE

75

Figure 2-26. Deploy Windows Azure

CHAPTER 2 WINDOWS AZURE COMPUTE

76

Visual Studio lets you deploy the project directly from Visual Studio. Though it is not recommended
to deploy production cloud services from a developer’s desktop, this is a handy feature for deploying
cloud services in testing and staging environments. To deploy cloud services from Visual Studio, you
need to create an X.509 certificate and upload it to your account in the management portal. Visual
Studio uses the Windows Azure Service Management API for deploying cloud services, and X.509
certificate is required for accessing the Service Management API. Visual Studio lets you create a new
certificate or choose an already existing one from the Credentials dropdown. Once you create or select a
certificate, you can then provide a subscription ID of your account, which is needed by the Service
Management API. Once you specify the credentials, you can choose your hosted service from the
dropdown with the deployment slot (staging or production), the storage account for uploading the
deployment package and a deployment label. You can also select if you want to enable IntelliTrace.
When you click OK, Visual Studio opens up a Windows Azure Activity Log window, as shown in Figure 2-
27, and shows displays the status of your deployment.

Figure 2-27. Windows Azure Activity Log

Once the deployment is complete, the activity log will display the URL of the service, as shown in
Figure 2-28.

Figure 2-28. Windows Azure Activity Log on completion

On the Deploy Windows Azure Project dialog box, you also have the option to only create the service
package. Visual Studio creates two files: [Service Name].cspkg and ServiceConfiguration.cscfg. The
[Service Name].cspkg is the service package containing all the service components required by
Windows Azure to run the service in the cloud. The .cspkg file is a zip archive, and you can explore its
contents by renaming it to .zip and extracting it. The ServiceConfiguration.cscfg file is the
configuration file for the service instances. It is a copy of the ServiceConfiguration.cscfg file from the
cloud service project. You can deploy the .cspkg either by manually uploading to the management
portal or through PowerShell scripts that use the Service Management API. In a typical software
development lifecycle, the release management team will deploy the package using custom scripts that
call the Service Management API.

You can also configure Remote Desktop Connections for your roles from the Deploy Windows Azure
Project dialog box. As shown in Figure 2-29, the remote desktop configuration requires an X.509
certificate, username, and password for remote login, and an expiration date for the login.

CHAPTER 2 WINDOWS AZURE COMPUTE

77

Figure 2-29. Remote desktop configuration

 Note The password accepted by the Remote Desktop Connection needs to be encrypted. The procedure for
encrypting the passwords is listed here http://msdn.microsoft.com/en-us/library/gg432965.aspx.

http://msdn.microsoft.com/en-us/library/gg432965.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

78

Windows Azure SDK Tools
The Windows Azure SDK tools are located in the directory C:\Program Files\Windows Azure
SDK\v1.0\bin for a default Windows Azure installation. Table 2-2 lists the tools included in the Windows
Azure SDK.

Table 2-2. Windows Azure SDK Tools

Tool Description

CSPack.exe This tool is used to package a service for deployment. It takes in a
ServiceDefinition.csdef file and outputs a .cspkg file.

CSRun.exe This tool deploys a service into the local development fabric. You can
also control the run state of the development fabric from this tool.
This tool depends on the service directory structure created by the
CSPack.exe /copyonly option.

Csupload.exe CSUpload.exe is used for uploading VHD images to the Windows
Azure management portal. I have cover this tool in Chapter X.

DSInit.exe This tool initializes the development storage environment. It is
automatically called by Visual Studio and DevelopmentStorage.exe
when you run a cloud application in the development fabric for the
first time.

Service Models
A service model of Windows Azure cloud service consists of two main configuration files:
ServiceDefinition.csdef and ServiceConfiguration.cscfg. ServiceDefinition.csdef defines the
metadata and configuration settings for the service. ServiceConfiguration.cscfg sets the values of
configuration settings for the runtime instance of the service. You can modify the
ServiceConfiguration.cscfg while the service is running, but modification to ServiceDefinition.csdef
requires an update to the service package. The overall service model defines the metadata and
configuration parameters and the end state of the service. Windows Azure reads these files when
deploying instances of your service in the cloud and the Fabric Controller takes appropriate deployment
actions.

ServiceDefinition.csdef
The ServiceDefinition.csdef file defines the overall structure of the service. It defines the roles
available to the service, the input/external endpoints, web sites, local storage, plug-in modules, and
certificates. With Windows Azure SDK version 1.3, Microsoft introduced a plug-in model for Windows
Azure features. For example, diagnostics, remote desktop, and Windows Azure Connect are plug-in
modules specified in the <Imports> elements in Listing 2-1. It also defines the custom configuration
settings for the service. The values of these configuration parameters are set in the
ServiceConfiguration.cscfg file. Listing 2-1 shows the contents of a ServiceDefinition.csdef file.

CHAPTER 2 WINDOWS AZURE COMPUTE

79

Listing 2-1. ServiceDefinition.csdef

<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="HelloAzureCloud"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition">
 <WebRole name="HelloWebRole" enableNativeCodeExecution="true">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="HttpIn" endpointName="HttpIn" />
 </Bindings>
 </Site>
 </Sites>
 <LocalResources>
 <LocalStorage name="HelloAzureWorldLocalCache" sizeInMB="10" />
 </LocalResources>
 <ConfigurationSettings>
 <Setting name="PerformanceCounters" />
 <!--This is the current logging level of the service -->
 <Setting name="LogLevel" />
 <Setting name="ThrowExceptions" />
 <Setting name="EnableOnScreenLogging" />
 </ConfigurationSettings>
 <Endpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="8080" />
 </Endpoints>
 <Imports>
 <Import moduleName="Diagnostics" />
 <Import moduleName="RemoteAccess" />
 </Imports>
 <Certificates>
 </Certificates>
 </WebRole>
 <WorkerRole name="HelloWorkerRole" enableNativeCodeExecution="true">
 <Endpoints>
 <!-- Defines an internal endpoint for inter-role communication that can be used to
communicate between worker or Web role instances -->
 <InternalEndpoint name="MyInternalEndpoint" protocol="tcp" />
 <!-- This is an external endpoint that allows a role to listen on external
communication, this could be TCP, HTTP or HTTPS -->
 <InputEndpoint name="MyExternalEndpoint" port="9001" protocol="tcp" />
 </Endpoints>

 <Imports>
 <Import moduleName="Diagnostics" />
 <Import moduleName="RemoteAccess" />
 <Import moduleName="RemoteForwarder" />
 <Import moduleName="Connect" />
 </Imports>

 <ConfigurationSettings>
 <Setting name="PerformanceCounters" />

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition

CHAPTER 2 WINDOWS AZURE COMPUTE

80

 </ConfigurationSettings>
 <Startup>
 <Task commandLine="Startme.cmd" executionContext="limited" taskType="simple">
 </Task>
 </Startup>
 </WorkerRole>
</ServiceDefinition>

Listing 2-1 is the service definition for the HelloAzureCloud. It has a Web role and a Worker role
instance defined. The <LocalStorage> element defines the local storage space for the service role. The
<ConfigurationSettings> element defines some custom settings for the service role.

 Note The ServiceDefinition.csdef file of a service cannot be changed at runtime, because it defines the
shape and non-changeable parameters of the service. You have to republish the service after changing its
ServiceDefinition.csdef for the changes to take effect. For more details on the ServiceDefinition.csdef
schema, please visit http://msdn.microsoft.com/en-us/library/dd179395.aspx.

Endpoints

Windows Azure roles can have two types of endpoints: internal and input. The internal endpoints are
used for inter-role communications within the same cloud service, whereas the input endpoints can be
accessed from anywhere. Figure 2-30 illustrates an example of internal endpoints.

Figure 2-30. Internal endpoints for interrole communication

http://msdn.microsoft.com/en-us/library/dd179395.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

81

In Figure 2-30, there are two Web roles with one instance each and two instances of a Worker role.
The Worker role exposes an endpoint that is consumed by both the Web roles. Note that each Web role
can communicate with the exact instance of the Worker role. The Web role also exposes an HTTP
endpoint that can be consumed by any of the roles in the cloud service. The endpoint only publishes the
IP address and port of the instance; you still have to write TCP or HTTP service code for sending and
receiving requests. You can get a reference to the internal endpoint of an instance as follows:

IPEndPoint internale = RoleEnvironment.Roles["HelloWorkerRole"].Instances[0]
.InstanceEndpoints["MyInternalEndpoint"].IPEndpoint;

where HelloWorkerRole is the name of the Worker role and MyInternalEndpoint is the name of the
endpoint. You can get the IP address of an internal instance end point in the following manner:

string ipaddress = RoleEnvironment.Roles["HelloWorkerRole"].Instances[0]
.InstanceEndpoints["MyInternalEndpoint"].IPEndpoint.ToString();

Figure 2-31 illustrates the input endpoints of a Web role and a Worker role.

CHAPTER 2 WINDOWS AZURE COMPUTE

82

Figure 2-31. Input endpoints for external communication

The Web role instances have default HTTP input endpoints for accepting Internet requests.
Windows Azure also allows Worker roles to have HTTP and TCP input endpoints for accepting
connections over the Internet. Like the internal endpoint, the access to input endpoint is not limited
within the cloud service; any external application can communicate with the input endpoint of the role.
In Figure 2-31, Web Role 1 and Worker Role 1 have input endpoints available for communication. Any

CHAPTER 2 WINDOWS AZURE COMPUTE

83

application can now communicate with endpoints of these roles over the Internet. Because the input
endpoints are exposed externally, they are automatically load-balanced by Windows Azure between
instances. In some documentation, input endpoints are also referred to as external endpoints. You can
get a reference to the input endpoint of an instance as follows:

IPEndPoint inpute = RoleEnvironment.Roles["HelloWorkerRole"].Instances[0]
.InstanceEndpoints["MyInputEndpoint"].IPEndpoint;

where HelloWorkerRole is the name of the Worker role and MyInputEndpoint is the name of the endpoint.
Once you have the IPEndPoint object, you can get the IP address and port number of the endpoint to
initiate communications.

 Note You can run multiple web sites on one Web Role instance. For more information, below are two blogs
I recommend:

By Wade Wegner, www.wadewegner.com/2011/02/running-multiple-websites-in-a-windows-azure-web-role/

By Andy Cross, blog.bareweb.eu/2011/01/azure-running-multiple-web-sites-in-a-single-webrole/

Local Storage

Windows Azure runtime provides a static function LocalResource GetLocalResource (string
localResourceName) in the Microsoft.WindowsAzure..ServiceRuntime.RoleEnvironment class to get
reference to the LocalResource class, which represents the local storage space reserved for the service.
The localResourceName function parameter is the name of storage space defined as the name attribute of
<LocalStorage> element. In Listing 3-1, I am allocating a space of 10MB for the storage space named L1
on local machine of the service role instance. I can now get a reference to the local storage space by
calling the function LocalResource resource = RoleEnvironment.GetLocalResource("L1"); and calls
System.IO file operations on the local path.

 Caution Local storage space allocated on the local machine is local for that instance. If the
cleanOnRoleRecycle attribute is set to false, the data from local directory will be lost on role recycle. So, while
developing applications, you should consider local storage purely for unreliable caching purposes with data loss
checks built into the application.

Startup Tasks

The <Startup> element defines startup tasks that can be executed while the role is starting. Typical
scenarios for using startup tasks are as follows:

http://www.wadewegner.com/2011/02/running-multiple-websites-in-a-windows-azure-web-role/

CHAPTER 2 WINDOWS AZURE COMPUTE

84

• Pre-installation of custom software before the role starts (e.g., anti-virus software,
Java virtual machine, and so on)

• Installation of COM DLLs

• Making changes to the IIS or any Windows Service before the cloud service is
deployed

 Note It is important to understand that role configurations do not survive upgrades and reboots. Therefore,
startup tasks will be executed during every startup cycle for maintaining the consistency of instance configuration.

Listing 2-2 illustrates the format for using the startup tasks.

Listing 2-2. ServiceDefinition.csdef

<WebRole name=" HelloWebRole ">

 <Startup>
 <Task commandline="[relative path of the executable file]"
 executionContext="limited|elevated"
 taskType="simple|foreground|background"/>
 </Startup>
</WebRole>

The executionContext attribute defines the permissions under which the command will be run. The
value “limited” indicates the task will be run under the same permission sets as the role, i.e., in user
context. The value “elevated” indicates the task will be run under administrator’s privileges. Elevated
tasks are typically used for modifying system-level resources like registry and Windows Services. The
taskType attribute specifies the behavior of the role while the task is executing. Simple task type is the
default value and blocks the role till the task finishes its execution. This task type is commonly used in
installing pre-requisite applications like anti-virus software or application frameworks. The background
task type does not block the role instantiation while the task is in progress. The task is executed as a
background task. The foreground task does not block the role instantiation but blocks the recycle of the
role until the task finishes.

 Note In Windows Azure SDK 1.5 (September 2011), new features were included for specifically for launching
executables and including local folder contents in application packages.

Sample schema for adding these to your ServiceDefinition file is listed below.

<Runtime executionContext="[limited/elevated]"> <Environment> <Variable name="<variable-name>"

value="<variable-value>"> <RoleInstanceValue

CHAPTER 2 WINDOWS AZURE COMPUTE

85

xpath="<xpath-to-role-environment-settings>"/> </Variable> </Environment> <EntryPoint>

<NetFxEntryPoint assemblyName="<name-of-assembly-containing-

entrypoint>"targetFrameworkVersion="<.net-framework-version>"/> <ProgramEntryPoint

commandLine="<application>" setReadyOnProcessStart="[true/false] ""/> </ EntryPoint></Runtime>

You can find more information on these features here msdn.microsoft.com/en-
us/library/gg441573(MSDN.10).aspx

Nathan Totten also has a good blog article on this topic. ntotten.com/2011/09/running-processes-in-windows-
azure/

 Tip You can also run an entire role with elevated privileges by adding the Runtime element with elevated
execution context in your role definition. This is not recommended, but there might be some background
applications that need elevated privileges. Make sure you don’t have any input endpoints defined on such role
instances.

<WebRole name="WebRole1">

 <Runtime executionContext="elevated" />

 </WebRole>

Full IIS Support

From Windows Azure 1.3 SDK, you have access to Full IIS running on Windows Azure web roles. You can
run multiple web sites pointing to the same physical directory but separated by host headers. For
example, in Listing 2-3, there are two sites names, A1 and A2, that are bound to the same HttpIn
endpoint, but separated by different host headers. You can also create a virtual applications and virtual
directories under the site for further separating the applications within the site.

Listing 2-3. Full IIS Virtual Directories

<WebRole name="MyWebApp">
 <Sites>
 <Site name="A1" physicalDirectory="..\MyWebApp">
 <Bindings>
 <Binding name="HttpIn"
 endpointName="HttpIn"

CHAPTER 2 WINDOWS AZURE COMPUTE

86

 hostHeader="www.a1.com" />
 </Bindings>
 </Site>
 <Site name="Contoso" physicalDirectory="..\MyWebApp">

<VirtualApplication name="myapp"
 physicalDirectory="..\..\..\..\apps\myapp">

<VirtualDirectory name="Styles"
 physicalDirectory="..\MyWebApp\Styles" />
 </VirtualApplication>
 <Bindings>
 <Binding name="HttpIn"
 endpointName="HttpIn"
 hostHeader="www.a2.com" />
 </Bindings>
 </Site>
 </Sites>
 ...
</WebRole>

Full Trust Execution

By default, Windows Azure applications run under full trust in the cloud environment. When running
under partial trust, the code has access only to limited resources and libraries. When running under full
trust, cloud services can access certain system resources and can call managed assemblies as well as
native code. To enable Full Trust in your application, set the enableNativeCodeExecution attribute of the
<WebRole> or <WorkerRole> element in the ServiceDefinition.csdef file to true:

 <WebRole name="<role name>" enableNativeCodeExecution="true|false">

Table 2-3 lists the permissions for a cloud application role running in partial and full trust execution
modes.

http://www.a1.com
http://www.a2.com

CHAPTER 2 WINDOWS AZURE COMPUTE

87

Table 2-3. Partial and Full Trust Permissions

Resource Partial Trust Full Trust

Call managed code assemblies Assemblies with
AllowPartiallyTrustedCallers
attribute

All assemblies

System registry No access Read access to
HKEY_CLASSES_ROOT
HKEY_LOCAL_MACHINE
HKEY_USERS
HKEY_CURRENT_CONFIG

32-bit P/Invoke Not supported Not supported

64-bit P/Invoke Not supported Supported

32-bit native sub-process Not supported Supported

64-bit native sub-process Not supported Supported

Local storage Full access Full access

System root and its
subdirectories

No access No access

Windows (e.g., C:\Windows) and
its subdirectories

No access Read access

Machine configuration files No access No access

Service configuration file
(ServiceConfiguration.cscfg)

Read access Read access

 Note You can find more information on the Windows Azure partial trust policy in the Windows Azure SDK
documentation at http://msdn.microsoft.com/en-us/library/dd573355.aspx.

Table 2-3 clearly shows that in partial trust you cannot call native code and the access to the
machine resources are limited. Even in full trust execution, the access has been limited to prevent any
system-related damage. Partial trust application roles can call only managed code assemblies that have
AllowPartiallyTrustedCallers attribute, whereas a full trust application role can all any managed code

http://msdn.microsoft.com/en-us/library/dd573355.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

88

assembly. A partial trust application role cannot make any P/Invoke native calls. A full trust application
role can make P/Invoke calls to a 64-bit library. P/Invoke calls to a 32-bit library are not directly
supported in Windows Azure. Instead, you could spawn a 32-bit sub-process from your application role
and make P/Invoke calls to 32-bit library from within that sub-process. The system root directory
(usually C:\Windows\system32) is not accessible in Windows Azure. A full trust application role has only
read access to the Windows directory (usually C:\Windows). Both, full and partial trust roles have full
access to the local storage. Local storage is the recommended temporary file and data storage for
Windows Azure applications.

 Caution The resource access works differently in the Windows Azure cloud and the development fabric. In the
Windows Azure cloud, the application role runs under the privileges of a standard Windows Azure account,
whereas the application role in the development fabric runs under the logged-in user account. So, the application
role running in the local development fabric may behave differently to the same application role running in the
Windows Azure cloud environment.

Certificate Management
In Windows Azure, you can use certificates not only for encrypting the HTTPS endpoints of your web
and Worker roles but also for custom message level encryption. You can upload X.509 certificated to
your Windows Azure service either from the Windows Azure portal or using the service management
API. You can upload any number of certificates for the service and these certificates will be installed in
the Windows certificate stores of the role instances.

Once a certificate is uploaded to the service, it can be referenced in the ServiceDefinition.csdef
and ServiceConfiguration.cscfg. The ServiceDefinition.csdef defines the name, store location, and
store name of the certificate on the instance as shown here:

<Certificate name="C1" storeLocation="LocalMachine" storeName="My" />

The ServiceConfiguration.cscfg file defines the thumbprint and the thumbprint algorithm of the
certificate as shown here.

<Certificate name="Certificate1" thumbprint="5CA27AF00E1759396Cxxxxxxxxxxxxxx"
thumbprintAlgorithm="sha1" />

ServiceConfiguration.cscfg
The ServiceConfiguration.cscfg file contains the values for the configuration parameters that apply to
one or more instance of the service. It also consists of the <Instances> element for scaling your service
up and down. For each <Import moduleName=””>, a series of configuration elements are automatically
created in the configuration file for configuring the specific plug-in. You have to configure each plug-in
by setting the values of these configuration elements. The service configuration file can be changed
dynamically either from the management portal or calling the Service Management API. Listing 2-4
shows the contents of the ServiceConfiguration.cscfg file corresponding to the
ServiceDefinition.csdef file from Listing 2-1.

CHAPTER 2 WINDOWS AZURE COMPUTE

89

Listing 2-4. ServiceConfiguration.cscfg

<?xml version="1.0"?>

<ServiceConfiguration serviceName="HelloAzureCloud"
xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration">
 <Role name="HelloWebRole">

 <Instances count="2" />

 <ConfigurationSettings>
 <!--This is the current logging level of the service -->
 <!--Supported Values are Critical, Error,Warning,Information,Verbose-->
 <Setting name="LogLevel" value="Information" />
 <Setting name="ThrowExceptions" value="true" />
 <Setting name="EnableOnScreenLogging" value="true" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
value="UseDevelopmentStorage=true" />
 <Setting name="PerformanceCounters" value="\Processor(_Total)\% Processor
Time,\Memory\Available MBytes" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername"
value="tredkar" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword"
value="zBT3zHKb" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration"
value="2011-01-13T23:59:59.0000000-08:00" />
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption"
thumbprint="AD2D6E79DF99F3C5A55CD98FDBD7DB92F91BE4A7" thumbprintAlgorithm="sha1" />
 </Certificates>
 </Role>
 <Role name="HelloWorkerRole">

 <Instances count="1" />

 <ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
value="UseDevelopmentStorage=true" />
 <Setting name="PerformanceCounters" value="\Processor(_Total)\% Processor
Time,\Memory\Available MBytes" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername"
value="tredkar" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword"
value="MIIBH" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration"
value="2011-01-13T23:59:59.0000000-08:00" />
 <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="0042eeb8-
e1a4-40e3-9141-3dbc7a24f135" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" />

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration

CHAPTER 2 WINDOWS AZURE COMPUTE

90

 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Diagnostics" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DNSServers" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" />
 </ConfigurationSettings>
 <Certificates>
 <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption"
thumbprint="AD2D6E79DF99F3C5A55CD98FDBD7DB92F91BE4A7" thumbprintAlgorithm="sha1" />
 </Certificates>
 </Role>
</ServiceConfiguration>

In Listing 3-2, there are three roles defined, two Web roles and a Worker role. Each role one has only
one instance.

 Note For more details on the ServiceConfiguration.cscfg and ServiceDefinition.csdef schemas, please visit
http://msdn.microsoft.com/en-us/library/dd179398.aspx.

Web.config Versus ServiceConfiguration.cscfg

The web.config file is the configuration file for an ASP.NET web application. It defines the behavior of the ASP.NET
application and also custom configuration setting values. Configuration setting values in web.config, or
app.config, for that matter, cannot be dynamically changed at runtime and made available to the application
without redeploying the application. Similarly, the ASP.NET behavior defined in a web.config file cannot be included
in a ServiceConfiguration.cscfg file.

ServiceConfiguration.cscfg is meant purely for storing configuration-setting values used by the service at
runtime; it is not meant to define the behavior of the ASP.NET runtime or the .NET Runtime.
ServiceConfiguration.cscfg is the configuration file for one or more instances of a Windows Azure service
deployed in the cloud. You can change the configuration values in ServiceConfiguration.cscfg at runtime, and
they will be available to the application without redeploying the application to the cloud.

Development Fabric
The development fabric simulates the Windows Azure cloud runtime environment on your local
machine. The development fabric is specifically designed for development and testing in your local

http://msdn.microsoft.com/en-us/library/dd179398.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

91

environment. You cannot attach a development fabric with the Windows Azure cloud service. The
development fabric user interface can be started in any of the following manners:

• By debugging or running a cloud service from within Visual Studio

• By running CSRun.exe from the command line with valid parameters

• By running DFUI.exe from the Windows Azure SDK bin directory

• From the Windows Azure SDK programs Start menu

Once the development fabric starts, you can access it from the development fabric system tray icon.
Figure 2-32 illustrates the development fabric user interface hosting a cloud service.

Figure 2-32. Development fabric UI

The development fabric UI shows the service deployments in the local environment and allows you
to alter the state of a running service. You can run, suspend, restart, or remove a service deployment
from within the development fabric UI.

In the development fabric, you can attach a debugger to the running instance at runtime by right-
clicking one of the instance and selecting Attach Debugger, as shown in Figure 2-33.

CHAPTER 2 WINDOWS AZURE COMPUTE

92

Figure 2-33. Development fabric’s Attach Debugger button

The development fabric UI will give you the option of selecting the available debuggers on the local
machine. It also allows you to set the logging levels at the service, role, and instance levels.

Development Storage
Development storage simulates the Windows Azure blobs, queues, and table storage services on your
local computer over SQL Server Express 2005/2008. Development storage provides a user interface to
start, stop, reset, and view the local storage services, as shown in Figure 2-34.

Figure 2-34. Development storage UI

CHAPTER 2 WINDOWS AZURE COMPUTE

93

Figure 2-34 shows the name of the service, its status, and the endpoint it is listening on. From Tools
 Table Service Properties, you can change the database to be used by the table storage service.

 Note In Windows Azure SDK 1.3 the Development Storage was renamed to Storage Emulator.

You can change the development storage to point to another database using the DSInit.exe tool
that you saw in Table 2-2, with a /sqlInstance parameter.

 Note Use SQL instance name without the server qualifier or use . (a period) for the default instance. To see all
the parameters for DSInit.exe, go to the bin directory of the Windows Azure SDK installation, and run
DSInit.exe /? from the command prompt.

Table 2-4 lists some key limitations of development storage compared to Windows Azure cloud
storage.

Table 2-4. Development Storage Limitations

Attribute Limitation

Authentication Development storage only supports a single fixed developer
account with a well-known authentication key.

Encryption Development storage does not support HTTPS.

Scalability Development storage is not designed to support a large
number of concurrent clients. You should use development
storage only for functional testing, not for performance or
stress testing.

Flexibility In the CTP version of Windows Azure, the development table
storage required a fixed schema to be created before using
the table service. The cloud table service did not have this
constraint. You can use the table service directly without
configuring the schema. The development storage does not
require fixed schema any more. String properties in the
development table cannot exceed 1,000 characters.

Size The development blob service supports only 2GB of storage,
whereas the cloud Block Blob supports 200GB of storage and
Page Blob supports 1TB or storage.

CHAPTER 2 WINDOWS AZURE COMPUTE

94

In the case of authentication, the account name, and account key are as follows:

Account name: devstoreaccount1
Account key:
Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==

 Caution Before deploying storage service application to Windows Azure cloud, please make sure to change the
development account information to your cloud account. You cannot use the development storage account to
access the Windows Azure storage service in the cloud. Usually, I create two configuration files—one for the
development environment and one for the Windows Azure cloud environment—and then I swap based on the
deployment destination.

Diagnostics
Logging support in the cloud is one of the biggest concerns of the developer community. With highly
interactive integrated design environment (IDE) tools like Visual Studio and runtime environments like
the .NET Framework, you can pinpoint problems in you code even in deployed environments when
applications are running on-premise. However, the Visual Studio domain is limited to the access it has
to the application’s runtime environment. Visual Studio communicates with the runtime environment
of the application to gather debug information of the application. The application needs to have debug
symbols loaded in runtime for Visual Studio to debug. The Windows Azure development fabric has
access to the local runtime environment, so you can debug your local Windows Azure application like
any other .NET application by adding breakpoints.

Unfortunately, Visual Studio cannot access Windows Azure runtime directly. Once the service is
deployed to Windows Azure, it is totally managed by Windows Azure, and you do not have access to its
runtime. The Windows Azure team realized this and has added logging capabilities to the Windows
Azure runtime and also added IntelliTrace support for Windows Azure deployments from Visual Studio
Ultimate edition. The diagnostics service runs along with your role instance, collects diagnostics data as
per the configuration, and can save the data to your Windows Azure storage service if configured to do
so. You can also communicate with the diagnostics service remotely from an on-premise application or
configure it to persist the diagnostics data on a periodic basis. The diagnostics service supports logging
of the following data types from your cloud service:

• Windows Azure Trace logs: These are the application logs that you dump from
your application. These can be any messages emitted from your code.

• Diagnostic Infrastructure logs: Infrastructure logs dumped by the diagnostics
service.

• Windows event logs: These are the Windows event logs generated on the machine
on which the role instance is running.

• Windows performance counters: These refer to the subscriptions to the
performance counters on the machine on which the role instance is running.

• IIS logs and failed request traces: These are the IIS logs and the IIS failed request
traces generated on the Web role instance.

CHAPTER 2 WINDOWS AZURE COMPUTE

95

• Application crash dumps: These are the crash dumps generated when an
application crashes.

The diagnostics engine aggregates all the logs together and transfers them to the appropriate
storage. Windows Azure role instances are stateless and therefore you may lose locally stored logs on
recycle. The diagnostics engine named “MonAgentHost.exe” runs on all the role instances by default.
Figure 2-35 illustrates the logical architecture of the diagnostics process in one Windows Azure role
instance.

Figure 2-35. Diagnostics in one role instance

Table 2-5 lists the log data sources available in Windows Azure role instances and their respective
destinations in the Windows Azure storage.

Table 2-5. Development Storage Limitations

Data Source
(on Azure Role
instance)

Is it enabled by
default
in Azure?

Destination Type
(in Windows Azure

Storage)

Destination Name

Windows Azure
Trace Logs

Yes Table Storage WADLogsTable

Diagnostic
Infrastructure Logs

Yes Table Storage WADDiagnosticInfrastructureLogsTable

IIS Logs Yes Blob Storage wad-iis-logfiles \<deployment ID>

\<web role name>\

4

CHAPTER 2 WINDOWS AZURE COMPUTE

96

<role instance>\W3SVC1

Performance
Counters

No Table Storage WADPerformanceCountersTable

Windows Event
Logs

No Table Storage WADWindowsEventLogsTable

IIS Failed Request
Logs

No Blob Storage wad-iis-failedreqlogfiles\<deployment
ID>\<web role name>\<role
instance>\W3SVC1

Crash Dumps No Blob Storage wad-crash-dumps

You can use the diagnostics management API from outside of the Windows Azure cloud

environment (e.g., on-premise) to interact with the diagnostics service on your role instance. Next, using
the same API, you can perform scheduled or on-demand transfers of the diagnostics information from
role instance machines to your Windows Azure storage account. The diagnostics API is present in the
Microsoft.WindowsAzure.Diagnostics assembly.

 Note You can find more information about the Windows Azure Runtime API at the Windows Azure MSDN
reference site: http://msdn.microsoft.com/en-us/library/dd179380.aspx.

Logging
Windows Azure Runtime API consists of a managed code library and an unmanaged code library. In this
book, I will cover only the managed code library. The managed code library namespace for diagnostics is
Microsoft.WindowsAzure.Diagnostics. Associating diagnostics with your cloud service is a three-step
process:

1. Configure the trace listener.

2. Define the storage location for the diagnostics service.

3. Start the diagnostics service.

Configuring the Trace Listener
When you create a new role using the role templates template in Visual Studio, the app.config and
web.config files get created automatically in the role project and it consists of a trace listener provider, as
shown in Listing 2-5.

http://msdn.microsoft.com/en-us/library/dd179380.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

97

Listing 2-5. Diagnostics Trace Listener Configuration

<system.diagnostics>

<trace>
 <listeners>
 <add type=
"Microsoft.WindowsAzure.Diagnostics.DiagnosticMonitorTraceListener,
Microsoft.WindowsAzure.Diagnostics, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"
name="AzureDiagnostics">
<filter type="" />
 </add>
 </listeners>
 </trace>

</system.diagnostics>

The DiagnosticMonitorTraceListener enables you to use the .NET Tracing API for logging within the
code. You can use the Write() and WriteLine() methods of the System.Diagnostics.Trace class for
logging from your code as shown here:

Trace.WriteLine("INFORMATION LOG", "Information");
Trace.WriteLine("CRITICAL LOG", "Critical");

Defining the Storage Location for the Diagnostics Service
In the ServiceDefinition.csdef and ServiceConfiguration.cscfg files, you have to define the
diagnostics connection string pointing to the storage location of your choice (development storage or
cloud storage), and custom settings like the list of PerformanceCounters. Visual Studio then
automatically generates this configuration for you as shown in Listing 2-6.

Listing 2-6. Diagnostics Connection String Configuration

For development storage:

<ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"
value="UseDevelopmentStorage=true" />

<Setting name="PerformanceCounters"
value="\Processor(_Total)\% Processor Time,\Memory\Available MBytes" />

</ConfigurationSettings>

For cloud storage:

<ConfigurationSettings>
 <Setting name="DiagnosticsConnectionString" value=
"DefaultEndpointsProtocol=https;AccountName=proazurestorage;AccountKey=[YOURKEY]"/>
<Setting name="PerformanceCounters"
value="\Processor(_Total)\% Processor Time,\Memory\Available MBytes" />

CHAPTER 2 WINDOWS AZURE COMPUTE

98

</ConfigurationSettings>

Starting the Diagnostics Service
Next, you have to start the diagnostics service in your role by passing in the connection string name you
defined in step 2. Once started, the diagnostics monitoring service can start collecting the logged data.
You can also choose to further configure the diagnostics service through the
DiagnosticMonitorConfiguration class, as shown in Listing 2-7.

Listing 2-7. Programmatically Changing the Diagnostics Configuration

private void SetupDiagnostics()

 {
 Trace.WriteLine("Setting up diagnostics", "Information");

 DiagnosticMonitorConfiguration diagConfig =
DiagnosticMonitor.GetDefaultInitialConfiguration();

 // Add performance counter monitoring for configured counters
 // Run typeperf.exe /q to query the counter list
 string perfCounterString =
RoleEnvironment.GetConfigurationSettingValue("PerformanceCounters");

 if (!string.IsNullOrEmpty(perfCounterString))
 {
 IList<string> perfCounters = perfCounterString.Split(',').ToList();

 // Setup each counter specified in comma delimitered string
 foreach (string perfCounter in perfCounters)
 {
 diagConfig.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier = perfCounter,
 SampleRate = TimeSpan.FromSeconds(5)
 }
);
 }

 // Update counter information in Azure every 30 seconds
 diagConfig.PerformanceCounters.ScheduledTransferPeriod =
TimeSpan.FromMinutes(0.5);
 }

 diagConfig.DiagnosticInfrastructureLogs.ScheduledTransferPeriod =
TimeSpan.FromMinutes(0.5);

 // Specify a logging level to filter records to transfer
 diagConfig.DiagnosticInfrastructureLogs.ScheduledTransferLogLevelFilter =
LogLevel.Verbose;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 WINDOWS AZURE COMPUTE

99

 // Set scheduled transfer interval for user's Windows Azure Logs to 5 minutes
 diagConfig.Logs.ScheduledTransferPeriod = TimeSpan.FromMinutes(5);

 diagConfig.Directories.ScheduledTransferPeriod = TimeSpan.FromMinutes(5);

 Microsoft.WindowsAzure.Diagnostics.CrashDumps.EnableCollection(true);

 //Event Logs
 // Add event collection from the Windows Event Log
 diagConfig.WindowsEventLog.DataSources.Add("System!*");
 diagConfig.WindowsEventLog.DataSources.Add("Application!*");
 diagConfig.WindowsEventLog.DataSources.Add("Security!*");
 diagConfig.WindowsEventLog.ScheduledTransferPeriod = TimeSpan.FromMinutes(5);

 // Start the diagnostic monitor with this custom configuration

DiagnosticMonitor.Start("Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString",
diagConfig);
 }

In Listing 2-7, the SetupDiagnostics() function performs the following:

1. Initializes the Diagnostic Monitor Configuration.

2. Reads the Performance Counters listed in the ServiceConfiguration.cscfg.

3. Adds each Performance Counter as a data source to the Diagnostic Monitor
Configuration.

4. Schedules the transfer of infrastructure and directories (e.g., IIS) logs to the
Windows Azure Storage.

5. Initializes Diagnostic Infrastructure logs transfer.

6. Initializes crash dump collection and transfer.

7. Adds System, Application, and Security Event Log data sources to the
Diagnostic Monitor Configuration.

8. Schedules the transfer of Event Log data.

9. Starts the Diagnostic Monitor service.

Once the logs data gets collected in the Windows Azure storage destinations, you can read it by
either writing a custom application that calls the Windows Azure storage REST API or by running a third-
party tool like the Cerebrata’s Azure Diagnostics Manager
(www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx).

3

http://www.cerebrata.com/Products/AzureDiagnosticsManager/Default.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

100

Figure 2-36. Cerebrata Azure Diagnostics Manager

 Note Microsoft has also released System Center Operations Manager (SCOM) pack for Windows Azure. You
can download it here microsoft.com/download/en/details.aspx?

Walter Myers III has a nice series of blog articles on Windows Azure application monitoring with SCOM:
blogs.msdn.com/b/walterm/archive/2011/02/14/adding-azure-application-monitoring-to-scom-2007-

r2.aspx

 Tip When designing cloud applications, it is important to design diagnostics and logs reporting right from the
beginning. This will save you a lot of debugging time and help you create a high quality application.

Developing Windows Azure Services with Inter-Role Communication
In this example, you will learn to develop Windows Azure services in the local development fabric and in
the cloud environment. I will also show you how to communicate between roles using the internal
endpoints. You will also learn to use your own Configuration Settings in ServiceDefinition.csdef and
ServiceConfiguration.cscfg.

CHAPTER 2 WINDOWS AZURE COMPUTE

101

Objectives
The objectives of this example are as follows:

• Understanding inter-role communication in Windows Azure cloud services.

• Accessing local machine resources.

• Understanding the configuration settings for configuring cloud services.

Adding Diagnostics and Inter-role Communication
In this section, I will guide you through the code for adding diagnostics, configuration and inter-role
communication to the Windows Azure services. Follow these steps:

1. Open Ch2Solution.sln from Chapter 2’s source code directory.

2. Expand the HelloService folder, as shown in Figure 2-37.

Figure 2-37. HelloService folder

CHAPTER 2 WINDOWS AZURE COMPUTE

102

The folder contains one Web role, one Worker role, and one cloud service project: HelloWebRole,
HelloWorkerRole, and HelloAzureCloud cloud service respectively.

Service Model
The ServiceDefinition.csdef and ServiceConfiguration.cscfg file define the service model and
configuration values for the service. Figures 2-38, 2-39, 2-40, 2-41, and 2-42 illustrate the Service of the
HelloAzureCloud service.

Figure 2-38. HelloAzureCloud – Configuration

CHAPTER 2 WINDOWS AZURE COMPUTE

103

Figure 2-39. HelloAzureCloud – Settings

Figure 2-40. HelloAzureCloud – Endpoints

CHAPTER 2 WINDOWS AZURE COMPUTE

104

Figure 2-41. HelloAzureCloud – Local Storage

Figure 2-42. HelloAzureCloud – Certificates

This service model defines an external HTTP endpoint (input endpoint) for the HelloWebRole
listening on port 80 and internal as well as external endpoints for the HelloWorkerRole. HelloWebRole
also defines a local storage named HelloAzureWorldLocalCache with maximum size of 10MB. Both the
roles define the Diagnostics and Remote Access plug-in.

The ServiceDefinition.csdef also defines a startup task that calls Startme.cmd, which in turn opens a
command prompt.

<Startup>

 <Task commandLine="Startme.cmd" executionContext="elevated" taskType="simple">
 </Task>
 </Startup>

Worker Role
HelloWorkerRole implements two methods, OnStart() and Run(). In the OnStart() method, it also
subscribes to the role changing event to catch any configuration changes.

CHAPTER 2 WINDOWS AZURE COMPUTE

105

 Note In both the Web and the Worker roles, you need to add references to the following assemblies:
Microsoft.WindowsAzue.ServiceRuntime.dll, Microsoft.WindowsAzure.StorageClient.dll and
Microsoft.WindowsAzure.Diagnostics.dll. And you need to add the following using statements in code:
using Microsoft.WindowsAzure.ServiceRuntime; and using Microsoft.WindowsAzure.Diagnostics;. The
storage client is used for transferring logs from Windows Azure instances to the storage service.

Listing 2-8 shows the code for the HelloWorkerRole class.

Listing 2-8. HelloWorkerRole

public override void Run()

{
 Trace.WriteLine("HelloWorkerRole entry point called", "Information");
 var internalEndpoint =
RoleEnvironment.CurrentRoleInstance.InstanceEndpoints["MyInternalEndpoint"];
 var wcfAddress = new
Uri(String.Format("net.tcp://{0}",internalEndpoint.IPEndpoint.ToString()));
 Trace.WriteLine(wcfAddress.ToString());
 var wcfHost = new ServiceHost(typeof(HelloServiceImpl), wcfAddress);
 var binding = new NetTcpBinding(SecurityMode.None);
 wcfHost.AddServiceEndpoint(typeof(IHelloService), binding, "helloservice");
 try
 {
 wcfHost.Open();
 while (true)
 {
 Thread.Sleep(10000);
 Trace.WriteLine("Working", "Information");
 }
 }
 finally
 {
 wcfHost.Close();

 }
}

public override bool OnStart()
{
// Set the maximum number of concurrent connections
 ServicePointManager.DefaultConnectionLimit = 12;
 SetupDiagnostics();
 Trace.WriteLine("Diagnostics setup...");
 // For information on handling configuration changes
 // see the MSDN topic at http://go.microsoft.com/fwlink/?LinkId=166357.

http://go.microsoft.com/fwlink/?LinkId=166357

CHAPTER 2 WINDOWS AZURE COMPUTE

106

 RoleEnvironment.Changing += RoleEnvironmentChanging;

 return base.OnStart();
 RoleEnvironment.Changing += RoleEnvironmentChanging;
 return base.OnStart();
}

private void RoleEnvironmentChanging(object sender,
RoleEnvironmentChangingEventArgs e)
{
 if (e.Changes.Any(change => change is RoleEnvironmentConfigurationSettingChange))
 e.Cancel = true;

}

The OnStart() method starts the diagnostics service (see Listing 2-7 for the SetupDiagnostics()
method code) with a scheduled log transfer to the storage and also subscribes to the Changing event of
the Windows Azure runtime to detect any changes to the configuration. You can use the
RoleEnvironmentChanging event to capture the following changes:

• RoleEnvironmentConfigurationSettingChange to detect the changes in the service
configuration.

• RoleEnvironmentTopologyChange to detect the changes to the role instances in the
service.

In addition, you can remove a role instance from the load-balancer after the service has started by
subscribing the RoleEnvironment.StatusCheck event and calling SetBusy() method on the
RoleInstanceStatusCheckEventArgs. You can also request a recycle of the role instance on-demand by
calling the RoleEnvironment.RequestRecycle() method. For more information on runtime API, please
see the Microsoft.WindowsAzure.ServiceRuntime namespace in the Windows Azure SDK class
documentation.

Because the diagnostics service is configured to save all the logs to the Windows Azure storage, all
the Trace.WriteLine() statements will be sent to the storage periodically. The Run() method gets a
reference to the internal endpoint named MyInternalEndpoint from the service definition and retrieves
its IP address and creates a WCF service host for the HelloServiceImpl. Once the WCF host is opened on
the internal IP address and port, any role in the service can make WCF method calls. Listing 2-9 shows
the code for IHelloService and HelloServiceImpl.

Listing 2-9. Hello Contract

[ServiceContract (Namespace="http://proazure/helloservice")]

 interface IHelloService
 {
 [OperationContract]
 string GetMyIp();
 [OperationContract]
 string GetHostName();
 [OperationContract]
 int GetUpdateDomain();
 [OperationContract]

CHAPTER 2 WINDOWS AZURE COMPUTE

107

 int GetFaultDomain();

 }
 [ServiceBehavior(AddressFilterMode=AddressFilterMode.Any)]
 public class HelloServiceImpl : IHelloService
 {

 #region IHelloService Members

 public string GetMyIp()
 {
 IPAddress[] ips = null;

 ips = Dns.GetHostAddresses(Dns.GetHostName());

 if (ips != null)
 {
 foreach (IPAddress i in ips)
 {
 if(i.AddressFamily ==
System.Net.Sockets.AddressFamily.InterNetwork)
 return i.ToString(); ;
 }

 }

 return "";
 }

 #endregion

 public string GetHostName()
 {
 return Dns.GetHostName();
 }

 public int GetUpdateDomain()
 {
 return RoleEnvironment.CurrentRoleInstance.UpdateDomain;

 }
 public int GetFaultDomain()
 {
 return RoleEnvironment.CurrentRoleInstance.FaultDomain;

 }

 }

CHAPTER 2 WINDOWS AZURE COMPUTE

108

The IHelloService interface defines four methods to retrieve the IP address, domain name of the
machine, Upgrade Domain and Fault domain. HelloServiceImpl class implements these four methods.

Web Role
The user interface for the Web role is in Default.aspx. The user interface is designed to do a few
operations when you click the Get Machine Info button. Figure 2-43 illustrates the user interface design
of Default.aspx page.

Figure 2-43. Default.aspx user interface design

When you click the Get Machine Info button, it retrieves the machine name, host address, and local
storage and calls the HelloWorkerRole service through an internal endpoint. You can also upload a file to
the local storage using the upload file button. All the functions use traditional .NET APIs for retrieving
local file and network information of the machine. If you are developing the service from scratch, you
will have to add reference to the HelloWorkRole WCF service. In the HelloWebRole project, the reference
has already been added for you in the ClientProxy.cs file. Listing 2-10 shows the code for calling the
HelloWorkerRole WCF service.

Listing 2-10. Call Worker Role WCF Service

string wrIp = RoleEnvironment.Roles["HelloWorkerRole"].Instances[0].

InstanceEndpoints["MyInternalEndpoint"].IPEndpoint.ToString();
lblWREndpointAddress.Text = wrIp;

CHAPTER 2 WINDOWS AZURE COMPUTE

109

var serviceAddress = new Uri(String.Format("net.tcp://{0}/{1}", wrIp, "helloservice"));
var endpointAddress = new EndpointAddress(serviceAddress);
var binding = new NetTcpBinding(SecurityMode.None);
var client = new ClientProxy(binding, endpointAddress);
lblWRHostName.Text = client.GetHostName();
lblWRIp.Text = client.GetMyIp();
lblUpgradeDomain.Text = client.GetUpdateDomain().ToString();
lblFaultDomain.Text = client.GetFaultDomain().ToString();

In Listing 2-10, the Web role gets reference to the internal endpoint of a Worker role instance and
instantiates the ClientProxy object to call the IHelloService methods.

 Note An important point to note here is that the endpoints are exposed as IP address of the instance and you
still have to build your server in the form of TcpListener, WCF service, or HTTP service on that IP address.

Running the HelloAzureCloud Service
To build and run the solution, press F5 on the HelloAzureCloud project to start it in debug mode. Click
the Get Machine Info button. Figure 2-44 illustrates the HelloAzureCloud Web role application running
on the local machine.

Figure 2-44. HelloAzureCloud on local machine

CHAPTER 2 WINDOWS AZURE COMPUTE

110

Open the development fabric UI by clicking the development fabric icon in the system tray. Figure
2-45 shows the development fabric UI running two instances of the Web role and one instance of the
Worker role.

Figure 2-45. HelloAzureCloud development fabric two instances

The information is logged either in the console of instance 0 or instance 1 depending on where the
load balancer sends the request. If you click the Get Machine Info button very quickly, you will see that
the request gets load balanced across both the instances. Figure 2-46 shows the load-balanced requests
across two instances of the Web role application.

CHAPTER 2 WINDOWS AZURE COMPUTE

111

Figure 2-46. Load Balance across two instances of HelloAzureCloud service

In Figure 2-46, observe the logs in the consoles of both the instances of HelloAzureCloud Web roles.
Now that you have tested the cloud service in the development fabric, you can deploy it in the

Windows Azure cloud. When you deploy the application to the cloud, the consoles that you see in the
development fabric are not available to visually view the logs. So, let’s see how you can access and view
these logs in the cloud.

Publishing to Windows Azure Cloud
For publishing the HellAzureCloud service to Windows Azure, you should first provision a service. The
following steps outline how:

1. Log in to https://windows.azure.com.

2. Go to the Hosted Services section.

3. Click New Hosted Service from the top menu.

4. Enter a name for your service.

5. Choose a URL prefix for your service.

6. Choose a region closest to your location.

https://windows.azure.com

CHAPTER 2 WINDOWS AZURE COMPUTE

112

7. In the Deployment Options, select “Do not deploy,” because in this exercise
you will deploy from the Visual Studio directly.

8. Click OK.

9. Add a certificate under the certificates folder.

10. Repeat these steps to create a new storage service.

Figure 2-47. Create a new Hosted Service

CHAPTER 2 WINDOWS AZURE COMPUTE

113

 Note For information on creating your own X.509 certificate, visit http://msdn.microsoft.com/en-
us/library/gg432987.aspx.

To deploy HelloAzureCloud service to Windows Azure, right-click on the HelloAzureCloud project in
Visual Studio, and select Publish to create the service package HelloAzureCloud.cspkg, as shown in the
Figure 2-48.

Figure 2-48. Publish to Windows Azure

Open the Deploy Windows Azure Project dialog box, as shown in Figure 2-49.

Figure 2-49. Deploy Windows Azure Project Windows

http://msdn.microsoft.com/en-us/library/gg432987.aspx
http://msdn.microsoft.com/en-us/library/gg432987.aspx
http://msdn.microsoft.com/en-us/library/gg432987.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

114

Here, follow these steps:

1. Select the certificate your service management certificate you created in the
previous section.

2. Select the storage location for storing the uploaded package.

3. Check Enable IntelliTrace (optional).

4. Configure Remote Desktop Connections (optional).

5. Click OK to start the Windows Azure Activity Log.

6. The windows will show completed status on successful deployment of the
project, as shown in Figure 2-50.

Figure 2-50. Windows Azure Activity Log

For viewing the application, you can point to the URL of the service and the appropriate HTTP port
corresponding to the HttpIn input endpoint you created for the web role. In the previous example, the
Web role’s HTTP input endpoint was configured to listen on TCP port 8080. There the appropriate URL
for the HelloAzureCloud service is http://silverlining.cloudapp.net:8080/Default.aspx.

Figure 2-51 illustrates the HelloAzureCloud service running in Windows Azure.

http://silverlining.cloudapp.net:8080/Default.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

115

Figure 2-51. HelloAzureCloud running in Windows Azure

Here are a few things to observe when running the HelloAzureCloud service in Windows Azure:

1. The IPAddress and the machine name changes in Windows Azure.

2. The format of the RoleIds id is different than running in development fabric.

3. Two Upgrade Domains and Two Fault Domains are utilized.

4. If you refresh the page often or start another browser, you will see the changes
in the Web role information because the request is load-balanced to the
second instance. The second instance will show the second Upgrade Domains
and the Fault Domain.

Next, select the deployed service and click the Configure button from the top menu. On the
Configure Deployment screen, select the Edit Configuration option and change the number of instances
of the Worker role from 2 to 3 as shown in Figure 2-52. While the roles are updating, continue to interact

CHAPTER 2 WINDOWS AZURE COMPUTE

116

with the HelloAzureCloud application through Default.aspx. Observe that even if the configuration
changes at runtime, the existing role instances continue to run unaffected.

Figure 2-52. Edit the configuration

After all the instances get into the Ready state, go back to the HelloAzureCloud application and click
the GetMachineInfo button. You will observe that the Windows Azure Fabric Controller has placed the
third worker role instance in a third Upgrade Domain (2) but in one of the two existing Fault Domains (0
or 1) as shown in Figure 2-53. It is important to know these settings when you are planning for high-
availability and maintenance. You can also specify the number of Upgrade Domains you want to you in
the Service Definition file

<ServiceDefinition name="<service-name>" upgradeDomainCount="<number-of-upgrade-domains>">

Figure 2-53. Upgrade the Domain and Fault Domain

CHAPTER 2 WINDOWS AZURE COMPUTE

117

For upgrading your service in-place, follow these steps:

1. Login to Windows Azure Management Portal.

2. Go to Hosted Services.

3. Select the service you want to upgrade.

4. Click on the Upgrade button from the top menu.

5. Enter the new package and configuration information.

6. In the Upgrade Mode, specify Automatic for upgrading all Upgrade Domains
at the same time and Manual for upgrading one Upgrade Domain at a time.

7. Click OK and proceed with a Manual Upgrade when the service state changes
to “Ready for Manual Upgrade.”

 Note For more information on in-place upgrades, please visit http://msdn.microsoft.com/en-
us/library/ee517255.aspx.

Viewing IntelliTrace Logs
When you deployed the HelloAzureCloud service to Windows Azure, you selected the checkbox for
enabling IntelliTrace. I have found IntelliTrace logs handy in cases where the deployment did not go well
due to missing dependencies or incorrect configuration settings. Such mistakes are difficult to catch in
cloud environments.

For viewing the IntelliTrace logs of the deployment, go to Server Explorer, right-click on the cloud
service instances and select View IntelliTrace logs as shown in Figure 2-54.

Figure 2-54. Download IntellitTace Logs

This action will start downloading IntelliTrace logs from the storage service and open the summary
in Visual Studio as shown in Figure 2-55.

http://msdn.microsoft.com/en-us/library/ee517255.aspx
http://msdn.microsoft.com/en-us/library/ee517255.aspx
http://msdn.microsoft.com/en-us/library/ee517255.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

118

Figure 2-55. IntelliTrace Logs

The IntelliTrace log contains the recording of the deployment. The recording summary includes a
time chart, exception data, threads list system information, and modules. With this exception and stack
trace data, you can pinpoint certain type of errors very quickly.

Connecting with Remote Desktop Connection
When you published the cloud service to Windows Azure from Visual Studio, you had the option for
enabling Remote Access. If you enabled remote access, you can log in to the cloud service instances.
Enable remote access as outlined in the following steps:

1. Go to the Hosted Services page on the management portal.

2. Select a specific instance and click Connect from the top menu, as shown in
Figure 2-56. If you recall, we have added a startup task in the Worker Role
service definition for opening a command window, to check whether the
command windows was opened during startup, select the HelloWorkerRole.

CHAPTER 2 WINDOWS AZURE COMPUTE

119

Figure 2-56. Remote Desktop connect

After connection, experiencing Windows Azure instances using Remote Desktop instances is similar
to connecting to any other Windows Server 2008. Once you remote login, observe the directory structure
and also open the task manager to see the processes running. Figure 2-57 illustrates the overall structure
of the Worker Role instance. Similar structure exists for the Web roles.

CHAPTER 2 WINDOWS AZURE COMPUTE

120

Figure 2-57. Directory structure of a Worker role

 Tip Any modifications to the instance done manually may be erased during a recycle automatically done by the
Fabric Controller. Therefore, don’t consider any modifications to the instances permanent. Consider each instance
as a stateless and maintain all the state in your application package or externally in Windows Azure storage.

Geo-location
Windows Azure is already available in six data centers around the world, and going forward, Microsoft
plans to expand into more data centers. In today’s enterprise, as well as consumer applications, the
common pain point is to design a globally available service. The service needs to be physically deployed
into data centers around the world for business continuity, performance, network latency, compliance,
or geopolitical reasons. For example, in one project I had the responsibility for architecting a global
deployment of a business critical application for a Fortune 100 company. Even though I did not need to
travel around the world, I had to plan and coordinate deployment efforts around five data centers across
the world. The effort took six months of rigorous planning and coordination. With geo-location support

CHAPTER 2 WINDOWS AZURE COMPUTE

121

in Windows Azure, you can choose the geo-location of the storage and the compute at the time of
deployment, so you don’t need to deploy hardware and software physically in global locations. Table 2-6
lists some of the common geo-location advantages.

Table 2-6. Geolocation Advantages

Advantage Rationale

Business Continuity and Planning With geo-location features, enterprise data can be
replicated across multiple data centers around the
world as an insurance shield from natural and
political disasters.

Performance and Network Latency One of the architectural tenets and best practices
of cloud services is keeping data close to the
application for optimizing performance and end
user experience. With geo-location support, a
cloud service application can be run in close
proximity to the data for improved performance.

Compliance Compliance laws are different in different
countries. Multinational organizations have to
deal with compliance regulations in all the
countries that they do business in. With Windows
Azure, companies can now move data closer to the
country offices for adhering to the country specific
compliance regulations.

Geopolitical Requirements Some countries pose restrictions and constraints
on enterprises in where they can store enterprise
data. Geo-location features can help enterprises
better align with such geopolitical requirements.

Geo-location support gives you the ability to choose the affinity of the storage and compute services

to a particular geo-location.

Enabling Geographic Affinity
When you create a new storage account or a hosted services project, you can specify the location and
affinity group for your project. The steps for creating a geographic affinity between a hosted service
project and a storage account follow:

1. Login to the management portal and create a new Hosted Services project.

2. Give the project a name and a label. I have named my project tejaswi.

3. Select a hosted service URL.

4. Next, select Create or choose an Affinity group.

CHAPTER 2 WINDOWS AZURE COMPUTE

122

5. Select “Create a new affinity group” and choose a name and location for the
affinity group, as shown in Figure 2-58.

Figure 2-58. Hosted service affinity group

CHAPTER 2 WINDOWS AZURE COMPUTE

123

Next, when you create a storage service, you can associate it with the newly created affinity group as
shown in Figure 2-59.

Figure 2-59. Affinity group

Windows Azure Service Management
Unlike on-premise applications, where provisioning requires hardware and network infrastructure in
place, the deployment of a cloud services requires only software provisioning. In a scalable environment
where enterprises may need to provision multiple services across thousands of instances, you need
more programmatic control over the provision process rather than configuring services using Windows
Azure management portal or Visual Studio. Manually uploading service packages and then starting and
stopping services from the portal interface works well for one or two services. For multiple large-scale
services, it becomes a time-consuming and error-prone task. The Windows Azure Service Management
API allows you to programmatically perform most of the provisioning functions via a REST-based
interface. Using the Service Management API, you can script your provisioning and de-provisioning
process end to end in an automated manner. In this section, I will cover some important functions from
the Service Management API and also demonstrate some source code for you to build your own cloud
service provisioning process.

Service Management API Structure
The Service Management API provides most of the functions you can perform on the storage services
and hosted services from Windows Azure developer portal. The Service Management API categorizes the
API operations into three primary sections: storage accounts, hosted services, and affinity groups.
Operations on storage accounts mainly cover listing of accounts and generation of the access keys.
Operation on hosted services cover listing of services, deploying services, removing services, swapping
between staging and production, and upgrading services. The affinity groups operations are limited to
listing and getting properties of affinity groups in your account.

CHAPTER 2 WINDOWS AZURE COMPUTE

124

 Note You can find the Service Management API reference at http://msdn.microsoft.com/en-
us/library/ee460799.aspx.

The Service Management API uses X.509 client certificates for authenticating calls between the
client and the server.

Programming with the Service Management API
To start programming with the Service Management API, you must first create a valid X.509 certificate
(or work with an existing one). You can use makecert.exe to create a self-signed certificate

makecert -r -pe -a sha1 -n "CN=Windows Azure Authentication Certificate" -ss My -
len 2048 -sp "Microsoft Enhanced RSA and AES Cryptographic Provider" -sy 24
proazureservicemgmt.cer

Next, go to the services list in the Hosted Services section, select the Certificates folder under the
service and click the Add Certificate button from the top menu. In the upload dialog box, select the
certificate you want to upload and click OK.

Figure 2-60. Upload the API certificate

Once the certificate is uploaded, you can call the Service Management REST API by passing the
certificate as the ClientCertificate property of the System.Net.HttpWebRequest object, by using the
csmanage.exe application from the Service Management API samples, or by building your own
application. In Ch2Solution, I have created a sample Windows Application that makes REST calls to the
Service Management API. It uses the Microsoft.Samples.WindowsAzure.ServiceManagement.dll file from
the service management code samples. The csmanage.exe uses the same assembly to make the API calls.
Eventually, the API assembly may become part of the Windows Azure SDK. Figure 2-61 illustrates the
Service Management API windows application in action.

http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx

CHAPTER 2 WINDOWS AZURE COMPUTE

125

Figure 2-61. The Service Management API windows application

The Service Management Operations section lists the operations that you can invoke on the Service
Management API. The output textbox prints the output from the operations. The right-hand side of the
user interface consists of input parameters. The input parameters textboxes turn yellow for required
parameters. The input parameters are as follows:

• Subscription Id: You can get the subscriptionId from the Account page of the
developer portal. This parameter is required by all the Service Management API
operations.

• Certificate Path: This text box points to the API certificate file on the local
machine. This certificate must match the one you uploaded to the portal.

CHAPTER 2 WINDOWS AZURE COMPUTE

126

• Resource Type: This drop-down lists the types of resource you want to access:
Hosted Service, Storage Account, or Affinity Group.

• Resource name: You should type the name of the resource you want to access
(e.g., storage account name, hosted service name, affinity group name).

The remaining input parameters are operation dependent. You can choose an operation from the
Service Management operations list, enter input parameters and click Execute Operation. For example,
to create a deployment in your hosted service account, you can do the following:

1. Select the Create Deployment operation.

2. Enter your Account SubscriptionId.

3. Select the API certificate from local machine (or add it to the app.config file for
automatic loading).

4. Select Hosted Service Name as the Resource Type.

5. Enter the name of the Hosted Service you want to deploy your service to in the
Resource Name text box.

6. Select the slot type (staging or production).

7. Choose a deployment name.

8. Choose a deployment label.

9. You have to then point to a service package (.cspkg) on a blob storage in the
Package Blob URL text box.

10. Select the path to the ServiceConfiguration.cscfg file of the cloud service.

11. Click Execute Operation.

The OP-ID shows the operation ID returned by the method call, which you can use to track the
operation status. To check the status of the deploy operation, select the Get Operation Status method,
and click Execute Operation. The status gets displayed in the bottom window. Once the deployment is
complete, you can run the deployment by selecting the Update Deployment Status method and
selecting the “running” option from the deployment status drop-down. Similarly, you can execute other
operations from the Service Management API.

 Tip One of the more important uses of the Service Management API is in dynamic scaling of your Windows
Azure Service. The Service Management API can change the configuration of your service on-the-fly, thus
increasing or decreasing the number of instances of your roles. You track the performance counters from the
storage service for all the instances and then dynamically determine whether to scale-up or scale-down the
service. You can find the latest source code for the Service Management application here:
azureplatformbook.codeplex.com

CHAPTER 2 WINDOWS AZURE COMPUTE

127

Windows Azure Service Development Life Cycle
The objective of Windows Azure is to automate the service life cycle as much as possible. Windows Azure
service development life cycle has five distinct phases and four different roles, as shown in Figure 2-62.

Figure 3-62. The Windows Azure service development life cycle

The five phases are as follows:

Design and development: In this phase, the on-premise team plans, designs,
and develops a cloud service for Windows Azure. The design includes quality
attribute requirements for the service and the solution to fulfill them. This
phase is conducted completely on-premise, unless there is some proof of
concept (POC) involved. The key roles involved in this phase are on-premise
stakeholders. For the sake of simplicity, I have combined these on-site design
roles into a developer role.

Testing: In this phase, the quality attributes of the cloud service are tested. This
phase involves on-premise as well as Windows Azure cloud testing. The tester
role is in charge of this phase and tests end-to-end quality attributes of the
service deployed into cloud testing or staging environment.

Provisioning: Once the application is tested, it can be provisioned to Windows
Azure cloud. The release engineer (deployer) role deploys the cloud service to
the Windows Azure cloud. The deployer is in charge of service configurations
and makes sure the service definition of the cloud service is achievable through

CHAPTER 2 WINDOWS AZURE COMPUTE

128

production deployment in Windows Azure cloud. The developer defines the
configuration settings, but the deployer sets the production values. In this
phase, the role responsibilities transition from on-premise to the Windows
Azure cloud. The fabric controller in Windows Azure assigns the allocated
resources as per the service model defined in the service definition. The load
balancers and virtual IP address are reserved for the service.

Deployment: In the deployment phase, the fabric controller commissions the
allocated hardware nodes into the end state and deploys services on these
nodes as defined in the service model and configuration. The fabric controller
also has the capability of upgrading a service in running state without
disruptions. The fabric controller abstracts the underlying hardware
commissioning and deployment from the services. The hardware
commissioning includes commissioning the hardware nodes, deploying
operating system images on these nodes, and configuring switches, access
routers, and load-balancers for the externally facing roles (e.g., the Web role).

Maintenance: Windows Azure is designed with the assumption that failure will
occur in hardware and software. Any service on a failed node is redeployed
automatically and transparently, and the fabric controller automatically restarts
any failed service roles. The fabric controller allocates new hardware in the
event of a hardware failure. Thus, fabric controller always maintains the desired
number of roles irrespective of any service, hardware, or operating system
failures. The fabric controller also provides a range of dynamic management
capabilities like adding capacity, reducing capacity, and service upgrades
without any service disruptions.

In the previous sections, you learned how to design, develop, and deploy a cloud service to
Windows Azure on production quality datacenter. In a traditional world, this would take several times
longer. Be careful what you wish for, because empowerment also makes it easy to make bad decisions. In
the next section, I will give you a checklist for following architecture best practices for developing
Windows Azure applications.

Architectural Advice
Finally, here is a list of some practical advice that should serve you well going forward.

1. Performance- and load-test your application on Windows Azure to find out the
optimum capacity needed. Don’t decide on role sizes before testing.

2. Clearly separate the functionality of the Web role from the Worker role. Do not
use Worker role to perform web functions by exposing HTTP (or HTTPS)
endpoints.

3. Maintaining stateless role interfaces is important for load balancing and fault
tolerance. Keep the roles stateless.

4. Use internal endpoints only for unreliable communications. For reliable
communications, use Windows Azure queues.

5. User Worker roles effectively for batch and background processing.

CHAPTER 2 WINDOWS AZURE COMPUTE

129

6. Use Service Management API prudently for commissioning, decommissioning,
and scaling of the role instances. Do not keep instances running idle for a long
period of time, because you are using server resources and will be charged for
it. Leverage third-party tools for scaling.

7. Do not use local storage for reliable storage; use Windows Azure storage or
SQL Azure as a reliable storage for storing data from roles.

8. Design the system for fault tolerance and always account for failure of role
instances.

9. The Worker role works very well as Worker roles for High Scale Compute.

10. For higher I/O operations, use large VM instances.

11. For large caching scenarios, use large VM instances, because they have larger
memory capacity.

12. For distributed caching and session management, use Windows Azure
AppFabric Caching.

13. Build dynamic scaling capabilities into all the Windows Azure services as a
best practice. Most of the configuration for dynamic scaling is external and
does not need changes to the source code of the roles.

14. Finally, do not deploy your cloud service for maximum capacity; deploy for
optimum capacity, and dynamically provision more instances as demand
increases, and vice versa.

Summary
In this chapter, we dove deeply into the computational features of Microsoft’s Windows Azure cloud
operating system. Through the examples, you were exposed to deploying Windows Azure Web role and
Worker role instances, not only in the development fabric but also in the Windows Azure cloud. In the
examples, you also learned how to access the configuration settings and local storage. Then, I briefly
covered the geo-location and service management features of Windows Azure. In the examples in this
chapter, we were storing and retrieving data from the local storage, which is local and machine
dependent. The data will be lost as soon as the underlying machine is rebooted or the service
redeployed. Windows Azure storage provides you with persistent storage for storing highly available data
that can be accessed from anywhere using REST-based API. In the next chapter, you will learn Windows
Azure storage components and their programming APIs in detail.

CHAPTER 2 WINDOWS AZURE COMPUTE

130

Bibliography
Apache Software Foundation. (n.d.). Apache Hadoop . Retrieved from http://hadoop.apache.org

Factor, A. (2001). Analyzing Application Service Providers. Prentice Hall.

Google. (n.d.). Google AppEngine. Retrieved from Google: http://code.google.com/appengine

Google. (n.d.). Google Apps. Retrieved from Google Apps:

http://www.google.com/apps/intl/en/business/index.html

Mario Barbacci, M. H. (1995). Quality Attributes. Pittsburgh, Pennsylvania 15213: Software Engineering

Institute, Carnegie Mellon University.

Microsoft Corporation. (n.d.). About Windows Azure. Retrieved from Windows Azure:

http://www.azure.com/

Microsoft Corporation. (n.d.). Windows Azure Pricing. Retrieved from Windows Azure:

http://www.microsoft.com/azure/pricing.mspx

Open ID Foundation. (n.d.). Retrieved from http://openid.net/foundation/

Staten, J. (2008). Is Cloud Computing Ready For The Enterprise? Forrester Research, Inc.

http://hadoop.apache.org
http://code.google.com/appengine
http://www.google.com/apps/intl/en/business/index.html
http://www.azure.com/
http://www.microsoft.com/azure/pricing.mspx
http://openid.net/foundation/

C H A P T E R 3

131

Windows Azure Storage
Part I – Blobs and Drives

The previous chapter covered computational and management features of Windows Azure. In this
chapter, you will learn about Windows Azure Storage service. Windows Azure Storage is a scalable,
highly available, and durable service for storing any kind of application and non-application data. The
Storage service provides you with the ability to store data in three different types of storage types: blobs,
queues, and tables. Each storage type has advantages; depending on the application requirements, you
can choose the appropriate storage type for your data. You can also use multiple storage types within the
same application.

The Blob service is designed to store large binary objects with associated metadata like documents,
pictures, videos, and music files. The queue is a reliable asynchronous message delivery and storage
type. Cloud services as well as on-premises applications can use queues for asynchronous cross-
application communications. The table storage type provides structured storage capability to store
billions of lightweight data objects occupying terabytes of data.

Windows Azure Drives is a special case of blog storage in which you can upload an NTFS formatted
virtual hard disk as a Page blob and then attach is as a drive to a compute instance. The compute
instance sees the Windows Azure Drive as any other NTFS formatted drive. The Windows Azure
compute instances consist of a special driver that mounts NTFS formatted VHDs from Blob storage as
drives. In this chapter, I cover the blob storage type and Windows Azure Drives in detail. This chapter
will provide you with enough information to make the right storage decisions for using blobs and drives
in your applications. Before you start, I would like to alert you that this chapter is long and detailed, and
therefore I would recommend you to read it in phases and not try to read all the pages in a single seating.
Relax, drink some coffee or tea, and enjoy the ride.

Table 3-1 lists the Windows Azure storage types and some of their properties.

Table 3-1. Windows Azure Storage

Feature Blob Queue Table

URL schema http://[Storage
Account].blob.core.wi
ndows.net/[Container
Name]/[Blob Name]

http://[Storage
Account].queue.core.
windows.net/[Queue
Name]

http://[Storage
Account].table.core.windows.ne
t/[Table Name]?$filter=[Query]

Max size 200GB(block blob)/1TB
(page blob)

8KB (string) Designed for terabytes of data but
limits combined size of all the
data in one entity to 1MB.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

132

Recommended
usage

Designed for large
binary data types

Designed for cross-
service message
communication

Designed to store smaller
structured objects like the user
state across sessions

API reference http://msdn.microsoft
.com/en-us/library/
dd135733.aspx

http://msdn.microsof
t.com/en-us/library/
dd179363.aspx

http://msdn.microsoft.com/
en-us/library/
dd179423.aspx

 Note The Windows Azure Storage service is independent of the SQL Azure database service offered by the
Windows Azure Platform. You can use the Storage Service independent of any other Windows Azure service.

Storage Service Taxonomy
The Windows Azure Storage service allows users to store application data in the cloud and access it from
anywhere, anytime. Windows Azure offers REST APIs for interacting with the storage service from your
applications. Each storage type in the Storage service has an independent REST programming API.
Figure 3-1 illustrates the Windows Azure storage service taxonomy.

http://msdn.microsoft
http://msdn.microsof
http://msdn.microsoft.com/

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

133

Figure 3-1. Storage service architecture

As shown in Figure 3-1, Windows Azure Storage types are scoped at the account level. This means
that when you open a storage account, you get access to all the Windows Azure storage services. The
Blob, Queue, and Table services expose REST API functions for application interaction.

A blob account is a collection of containers. You can create any number of containers in an account.
A container consists of number of blobs. A blob can be further composed of a series of pages or blocks.

A queue account is a collection of queues. An account can have any number of queues. A queue is
composed of queue messages sent by the message sending applications.

The table storage type supports access via REST as well as the ADO.NET Data Services API. You can
create any number of tables in an account. A table consists of a set of entities that represent runtime
objects or data. Entities are analogous to the rows of data in a relational database. They have properties,
which are analogous to the database fields in a relational database table. The table storage type isn’t a
relational database table; it follows the entity model, where each entity record represents an object
instance.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

134

Each storage account gets 100TB of maximum space combining all the storage services within that
account. By default, each Windows Azure subscription receives five storage accounts. You can contact
Windows Azure support for adding more accounts to your subscription.1

WHAT IS REST?

The term REST was coined by Roy Thomas Fielding in his Ph.D. dissertation2 “Architectural Styles and the
Design of Network-based Software Architectures.” Representation State Transfer (REST) is interface
architecture for systems deployed and accessible over the network.

The system entry points are abstracted into web resources. In REST, each resource has metadata and is
uniquely identified by a URL. The operations of the resource are also exposed via URL. Each URL
interaction with the resource returns a representation that can be any document or a binary object. For
example, the URLs for blobs, queues, and tables in Table 3-1 represent the REST URLs of these storage
type resources. Querying these REST URLs returns appropriate representations from the resources, such
as blob files or queue messages. The REST APIs for these storage types also expose operations, which are
discussed in detail when I cover the respective storage type.

The URI scheme for addressing the Storage services is

<http|https>://<account-name>.<storage service name>.core.windows.net/<resource-path>

<http|https> is the protocol used to access Storage services. <account-name> is the unique name of your
storage account. <storage service name> is the name of the storage service you’re accessing (blob, queue,
or table). And <resource-path> is the path of the underlying resource in the storage services that you’re
accessing. It can be a blob container name, a queue name, or a table name.

You used the Blob service in the previous chapter to store logs. In the next section, you study the
Blob service in detail and learn to program against the REST programming API for blobs.

Storage Service Architecture
The storage service consists of a three layered architecture. The same architecture hosts blobs, queues,
and table services. The three layers of the storage service architecture3 are as follows:

1 Windows Azure Storage Abstractions and Their Scalability targets
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-
abstractions-and-their-scalability-targets.aspx
2 Roy Thomas Fielding. “Architectural Styles and the Design of Network-based Software Architectures.”
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
3 Windows Azure Storage Architecture Overview:-
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/12/30/windows-azure-storage-
architecture-overview.aspx

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/12/30/windows-azure-storage-architecture-overview.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/12/30/windows-azure-storage-architecture-overview.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/12/30/windows-azure-storage-architecture-overview.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

135

• Front End Servers: The front-end servers receive all the requests to the storage
service. The servers authenticate the requests based on the embedded storage
access key. The request is then routed to the appropriate partition server in the
partition layer. The front end servers maintain a partition map of the servers
maintaining partitions of the data being accessed.

• Partition Layer: The partition layer manages the data and their associated
partition servers. Each storage object has a partition key and is served by only one
partition server. One partition server can serve one or more partitions. The
partition layer maintains the mapping between the partition and the data being
served by that partition. The Partition Master in the partition layer is responsible
for automatic load-balancing between partitioning servers depending on the
current load on the partitioning servers.

• Distributed File System (DFS): The DFS actually stores the objects on physical
disks and replicates across multiple servers for high-availability. The entire DFS is
accessible from any partition server. As of writing this book, the data is replicated
in the same datacenter, but Microsoft was working on a system for geo-replicating
data across multiple datacenters within the same continent.

Figure 3-2 illustrates the Storage service architecture.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

136

Figure 3-2. Storage service architecture

Every storage object is stored with a Partition Key that is the basis for scaling your queries against
the storage service. Each object type (Blob, Table, and Queue) has a different partitioning scheme. The
Partition Key determines the partition on which the object resides. The more horizontally spread your
objects are, the better query scalability and performance you will get from the service. Partitioning
scheme for each object type follows the following format:

• Blobs: Combination of Container Name and Blob Name

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

137

• Tables: Combination of Table Name and PartititionKey

• Queues: Queue Name (all messages in a queue are located on the same partition)

The Blob Service
The Blob service provides scalable and highly available storage for any kind of entities, such as binary
files and documents. The Blob service achieves its scalability and high availability by distributing blob
files across multiple servers and replicating them at least three times. The combination of Container
Name and Blob name defines the Partition Key of the blob object. That means that each blob and its
snapshots within the same container are stored on the same partition. The target throughput for a single
blob is 60MB/sec. It provides a REST API to store named files along with their metadata. The Blob REST
API provides consistency-checking features for concurrent operations.

 Note Windows Azure Blob, blob storage, Blob service, and Blob Storage service all mean the same thing. The
REST API HTTP headers call it the Blob service. Some MSDN documents refer to it as the Blob Storage service, and
others call it Windows Azure blob. In this book I have tried to be consistent by calling it the Blob service. The blob
object in the Blob service points to the actual file stored in the Blob service.

The Blob service is scoped at the account level. When you create an account on the Azure Services
Developer Portal, you get access to the Blob service. Figure 3-3 shows the Azure Services Developer
Portal page for the storage account created in the previous chapter and the URL endpoint for the Blob
service.

Figure 3-3. Blob endpoint URL

The account endpoint for the Blob service is <account name>.blob.core.windows.net, where
<account name> is the unique name you created for your storage account. The secret key associated
with the account provides security for accessing the storage account. You can use the secret key for
create an HMAC-SHA256 signature for each request. The storage server uses the signature to
authenticate the request.

 Note HMAC stands for Hash Message Authentication Code, which is a message-authentication code calculated
from the secret key using a special cryptographic hash function like MD5, SHA-1, or SHA256. The Windows Azure
Storage service expects a SHA256 hash for the request. SHA256 is a 256-bit hash for the input data.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

138

Blob Limitations and Constraints
Even though the Blob service provides a scalable and highly available service to store large files in the
cloud, it has some limitations and constraints that are important to understand before you dive deep
into its architecture and programming. The storage limitations of the Blob service are as follows:

• The maximum size of each block blob is 200GB and each page blob is 1TB (per
version 2009-09-19 of the storage service API).

• You can upload blobs that are less than or equal to 64MB in size using a single
PUT operation. Blobs more than 64MB in size must be uploaded as a set of blocks,
with each block not greater than 4MB in size.

• The development Blob service supports blob sizes only up to 2GB.

Blob Architecture
The blob architecture consists of a four-level hierarchical structure: account, containers, blobs, blocks,
and pages, as shown in Figure 3-4.

Figure 3-4. Blob service architecture

Your Windows Azure storage account is the entry point to the Blob service via the REST API.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

139

Windows Azure Storage Account
The Windows Azure storage account encompasses the blob, queue, and table storage types. The URI
scheme to access the Blob service via storage account is

<http|https>://<account name>.blob.core.windows.net

where <account name> is the unique name you created for your storage account. The <account name>
must be globally unique.

For example, the Blob service for the storage account created in the previous chapter can be
referenced as

<http|https>://proazurestorage.blob.core.windows.net

Containers
A container is a logical grouping for a set of blobs. Containers can have metadata in the form of name-
value pairs. They can be created as public or private: public containers are visible to all users
(anonymous) for read-only purposes without authentication, and private containers are visible only to
the account owner. Blob service is the only storage type that supports public and private access; the
queue and table storage types support only private access.

You can access a container the following URI

<http|https>://<account name>.blob.core.windows.net/<container>

where <container> is the name of the container you want to access.
For example, if you create a blob container named logs in the proazurestorage account, you can

reference it using the following URI:

<http|https>://proazurestorage.blob.core.windows.net/logs

The naming constraints on a container are as follows:4

• Container names must be unique within an account.

• Container names must start with a letter or a number.

• Container names can’t contain any special characters other than the dash (-)
character.

• The dash (-) character must be immediately followed by a character or a number.

• All the characters in the container name must be lowercase.

• Container names can’t be fewer than 3 or more than 63 characters in length.

If a container name or the URI violates the naming convention, an HTTP status code 400 (Bad
Request) is returned by the server.

4Source: Windows Azure SDK documentation

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

140

 Note Containers do not allow nesting. But, you can logically nest blobs in a container by adding file separators
in a blob’s name. For example, tejaswicontainer/video/Dhruv.mp4 represents a blob named video/Dhruv.mp4 in
the container tejaswicontainer. But, in your application, you will need to parse the tree structure for visual
representation. A Blob storage account may have a root represented by the keyword $root. You need to explicit
create a $root container. You don’t need to use the container name explicitly when accessing a root container. The
blob URL http://mystorageaccount.blob.core.windows.net/$root/aaryan.html can be represented as
http://mystorageaccount.blob.core.windows.net/aaryan.html. One caveat in a root container is that you
cannot have forward slash (/) in the blob names in a root container. Based on the $root keyword, the storage
processing engine treats these blob addresses a bit differently than blobs in other containers.

Blobs
Blobs, which are the actual entities in the Blob service, are stored in containers. A blob name must be
unique within the scope of a container. A blob can also have metadata in the form of name-value pairs.
The Access Control List (ACL) is set only at the container level, so all the blobs in a public container are
visible to everyone for read-only access. You can access a blob using the following URI

<http|https>://<accountname>.blob.core.windows.net/<container>/<blob>

where <blob> is a unique name of the blob within the specified container. For example, if you create a
blob named 200912211752pm-logs in the container named Logs, you can reference it by this URI:

<http|https>://proazurestorage.blob.core.windows.net/logs/200912211752pm-logs.txt

A blob name can’t be more than 1,024 characters long. Blob doesn’t support creation of folder
hierarchies to store files; you can store files only in a flat structure. In most applications, the hierarchical
organization of files is important for ease of access. To facilitate creation of a virtual folder structure, you
to add a delimiter to a blob’s name. For example, you can name a blob 2009/december/21/ 1752pm-
logs.txt. With this naming scheme, you can add multiple log files in the virtual folder structure
2009/december/21/. For example, 2009/december/21/1752pm-logs.txt, 2009/december/21/1852pm-
logs.txt, and 2009/december/21/1952pm-logs.txt can be the log files created on December 21, 2009.

The Blob API provides filtering capabilities based on a delimiter that allows you to retrieve only the
log files in a particular virtual structure. For example, you can retrieve only the log files under the virtual
folder structure 2009/december/21 by specifying a delimiter when enumerating the blobs. I cover this in
the programming exercises later in the chapter. To support this functionality, the blob name can contain
any combination of characters. Any reserved URL characters must be appropriately escaped. Some of
the well-known URL reserved characters are dollar ($), ampersand (&), plus (+), comma (,), forward slash
(/), colon (:), semicolon (;), equals (=), question mark (?), and at symbol (@).

Types of Blobs
The storage service offers two types of blobs: page blobs and block blobs.

http://mystorageaccount.blob.core.windows.net/$root/aaryan.html
http://mystorageaccount.blob.core.windows.net/aaryan.html

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

141

Page Blobs
Page blobs were introduced in the 2009-09-19 version of the storage service API. They’re optimized for
random read/write access and provide you with the ability to copy a series of bytes into a blob. A page is
represented by its start offset from the start of the blob. Writes to page blobs are immediately committed
to the blob storage. You can store up to 1TB of data per page. Page blobs are ideal for applications
requiring quick read/write access to binary data like images, videos, documents, and so on. Common
applications for Page blobs are random file access to larger document objects, Windows Azure Drives,
and so on. The Windows Azure Storage Client API provides two specific operations on page blobs: Put
Page and Get Page Regions.

Block Blobs
Block blobs are optimized for streaming file access where you need to read parts of the file instead of
downloading the entire file. As listed in the blob limitations and constraints earlier, if a file is more than
64MB in size, it can’t be uploaded to the Blob service using the PUT blob function. You have to first
break the blob file into contiguous blocks and then upload it in the form of smaller chunks of data called
blocks. Each block can be a maximum of 4MB in size. After all the blocks are uploaded, they can be
committed to a particular blob. Note that in Figure 4-3, there is no URI to access blocks in a blob: after
blocks are committed to a blob, you can only retrieve that complete blob. So, you can execute the GET
operation only to the blob level.

Uploading blocks and committing blocks to a blob are two separate operations. You can upload the
blocks in any sequence, but the sequence in which you commit the list of blocks represents the readable
blob. You may upload multiple blocks in parallel in any random sequence, but when you execute the
commit operation, you must specify the correct list for the block sequence representing the readable
blob. Figure 3-5 illustrates the account, container, blob, and block relationships with an example.

Figure 3-5. Blob service example

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

142

In Figure 3-5, you have a storage account name proazurestorage. The account has three containers:
pictures, videos, and music. In the videos container are three video files: Video1.wmv, Video2.wmv, and
Video3.wmv. Video2.wmv and Video1.wmv are less than 64MB in size, so the Blob Upload Application
can directly upload these video files as blobs. But Video1.wmv is more than 64MB in size, so the Blob
Upload Application has to break it into contiguous blocks and then upload each block. After all the
blocks are uploaded, the application can commit the block list by giving the sequential order of the
blocks that form the Video1.wmv blob file. Until all the blocks are committed, the blob file isn’t available
for reading. Any blocks that remain uncommitted due to application errors or network failures are
garbage-collected after seven days of inactivity.

I have covered the uploading and committing of blocks in a programming example later in the
chapter.

REST API
The REST API for the Blob service is available at the account, container, and blob levels. In this section,
you will learn about the Blob service REST API with specific examples. As a result of the exercise, you will
also learn to interact with the Blob service programmatically, and explore the blob methods in the
available Storage Client libraries.

The REST API enables you to make HTTP calls to the Blob service and its resources. REST is an
HTTP-based protocol that lets you specify the URI of the resource as well as the function you want to
execute on the resource. Every REST call involves an HTTP request to the storage service and an HTTP
response from the storage service.

 Note Due to frequent changes to the Windows Azure Storage service API, the URL parameters may not be
exactly the same as the most recent API version. But conceptually, the variation in the REST API shouldn’t be
significant. For the exact parameter lists, please refer to the Windows Azure SDK documentation shipped with the
SDK.

Request
In the Blob service REST API, the HTTP request components include those outlined next.

HTTP Verb
The HTTP verb represents the action or operation you can execute on the resource indicated in the URI.
The Blob service API supports the following verbs: GET, PUT, HEAD, and DELETE. Each verb behaves
differently when executed on a different resource.

Request URI
The request URI represents the URI of a resource you’re interested in accessing or executing a function
on. Example resources in the Blob service API include an account, a container, and a blob. An example
URI for creating a container named proazurecontainer in an account named proazurestorage is:

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

143

PUT http://proazurestorage.blob.core.windows.net/proazurecontainer

The HTTP verb PUT instructs the service to create the container, and the URI points to the resource
that needs to be created.

URI Parameters
The URI parameters are the extra parameters you specify to fine-tune your operation execution. They
may include operation parameters or filter parameters for the results. In the Blob service API, the URI
parameters depend on the type of resource and the HTTP verb used. For example, a URI to retrieve a list
of containers from an account looks like this:

GET http://proazurestorage.blob.core.windows.net/?comp=list

The HTTP verb GET instructs the Blob service to retrieve results, and the parameter ?comp=list
instructs that the data requested should be a list of containers.

Request Headers
Request headers follow the standard HTTP 1.1 name-value pair format. Depending on the type of
request, the header may contain security, date-time or metadata information, or instructions embedded
as name-value pairs. In the Storage Service REST API, the request header must include the authorization
information and a Coordinated Universal Time (UTC) timestamp for the request. The timestamp can be
in the form of either an HTTP/HTTPS date header or an x-ms-Date header.

The authorization header format is as follows

Authorization="[SharedKey|SharedKeyLite] <Account Name>:<Signature>"

where SharedKey|SharedKeyLite is the authentication scheme, <Account Name> is the storage service
account name, and <Signature> is a Hash-based Message Authentication Code (HMAC) of the request
computed using the SHA256 algorithm and then encoded using Base64 encoding.

To create the signature, you have to follow these steps:

1. Create the signature string for signing.

2. The signature string for the Storage service request consists of the following
format:

VERB\n
Content - MD5\n
Content - Type\n
Date\n
CanonicalizedHeaders
CanonicalizedResource

3. VERB is an uppercase HTTP verb such as GET, PUT, and so on. Content – MD5
is the MD5 hash of the request content. CanonicalizedHeaders is the portion
of the signature string created using a series of steps described in the
“Authentication Schemes” section of the Windows Azure SDK documentation:
http://msdn.microsoft.com/en-us/library/dd179428.aspx. And
CanonicalizedResource is the storage service resource in the request URI. The
CanonicalizedResource string is also constructed using a series of steps

http://proazurestorage.blob.core.windows.net/proazurecontainer
http://proazurestorage.blob.core.windows.net/?comp=list
http://msdn.microsoft.com/en-us/library/dd179428.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

144

described in the “Authentication Schemes” section of the Windows Azure SDK
documentation.

4. Use the System.Security.Cryptography.HMACSHA256.ComputeHash()
method to compute the SHA256 HMAC-encoded string.

5. Use the System.Convert.ToBase64String() method to convert the encoded
signature to Base64 format.

Listing 3-1 shows an example request header that sets the metadata values of a container.

Listing 3-1. Request Header

x-ms-date: Thu, 04 Jun 2009 03:58:47 GMT
x-ms-version: 2009-04-14
x-ms-meta-category: books
x-ms-meta-m1: v1
x-ms-meta-m2: v2
Authorization: SharedKey proazurestorage:88F+32ZRc+F065+wEiQlDW/

The request header consists of x-ms-date, x-ms-version, x-ms-[name]:[value], and Authorization
values. The x-ms-date represents the UTC timestamp, and the x-ms-version specifies the version of the
storage service API you’re using. The x-ms-version isn’t a required parameter, but if you don’t specify it,
you have to make sure the operation you’re calling is available in the default version of the Blob service.
For example, to use the Copy Blob operation, you must specify the 2009-04-14 version string because the
Copy Blob operation was added in this particular version and isn’t available in the default version. The x-
ms-meta values represent the container metadata name-value pairs that the operation wants to set. The
last header value is the Authorization SharedKey used by the Storage service to authenticate and
authorize the caller.

The Blob service REST API also supports HTTP 1.1 conditional headers. The conditional headers are
used for conditional invocation of operations. For example, consider a scenario where you’re working on
a document that is stored as a blob. After editing the document, you want to save it back to the Blob
service, but you don’t know whether someone else on your team modified the document while you were
editing it. The Blob service supports four types of conditional headers that act as preprocessing
conditions for an operation to succeed. Table 3-2 lists these supported conditional headers.

Table 3-2. Conditional Headers

Conditional Header Description

If-Modified-Since A DateTime value instructing the storage service to execute the
operation only if the resource has been modified since the specified
time.

If-Unmodified-Since A DateTime value instructing the storage service to execute the
operation only if the resource has not been modified since the specified
time.

If-Match An ETag value instructing the storage service to execute the operation
only if the ETag value in the header matches the ETag value of the
resource.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

145

If-None-Match An ETag value instructing the storage service to execute the operation
only if the ETag value in the header doesn’t match the ETag value of the
resource. You can use a wildcard (*) to instruct the storage service to
execute the operation if the resource doesn’t exist and fail if it does
exists.

Different operations support different conditional headers; I cover conditional headers for specific

operations in their respective sections later in the chapter.

Request Body
The response body consists of data returned by the operation. Some operations require a request body
and some of them don’t. For example, the Put Blob operation request body consists of the contents of
the blob to be uploaded, whereas the Get Blob operation requires an empty request body.

Response
The HTTP response of the Blob service API typically includes the components described in the following
sections.

Status Code
The status code is the HTTP status code that indicates the success or failure of the request. The most
common status codes for the Blob service API are 200 (OK), 400 (BadRequest), 404 (NotFound), and 409
(Conflict).

Response Headers
The response headers include all the standard HTTP 1.1 headers plus any operation-specific headers
returned by the Blob service. Typically, when you create or modify a container or a blob, the response
header contains an ETag value and a Last-Modified value that can be used in conditional headers for
future operations. The x-ms-request-id response header uniquely identifies a request. Listing 3-2 shows
an example response header for a List Containers operation.

Listing 3-2. List Containers Response Header

Transfer-Encoding: chunked
Content-Type: application/xml
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 53239be3-4d55-483f-90b9-fc2f2d073215
Date: Thu, 04 Jun 2009 05:28:16 GMT

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

146

Response Body
The response body consists of data returned by the operation. This data is specific to each operation. For
example, the List Container operation returns the list of containers in an account, whereas the Get Blob
operation returns the contents of the blob. Listing 3-3 shows an example of the response body for a List
Container operation. The response contains three containers and a next marker pointing to the starting
point of the remaining containers.

Listing 3-3. List Containers Response Body

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults AccountName="http://proazurestorage.blob.core.windows.net/">
<MaxResults>3</MaxResults>
<Containers>
<Container>
<Name>000000004c00f241-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/000000004c00f241-staging</Url>
<LastModified>Sun, 26 Apr 2009 15:05:44 GMT</LastModified>
<Etag>0x8CB94979BAAA0F0</Etag>
</Container>
<Container>
<Name>05022009-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/05022009-staging</Url>
<LastModified>Sun, 03 May 2009 04:50:07 GMT</LastModified>
<Etag>0x8CB99C1C3ECE538</Etag>
</Container>
<Container>
<Name>050320090743-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/050320090743-staging</Url>
<LastModified>Sun, 03 May 2009 14:44:28 GMT</LastModified>
<Etag>0x8CB9A14CC091F60</Etag>
</Container>
</Containers>
<NextMarker>/proazurestorage/050320091143-staging</NextMarker>
</EnumerationResults>

 Tip To test the REST API, I recommend using the Fiddler tool available at www.fiddler2.com/fiddler2/. I
have used Fiddler in this book for tracing client/server communications.

Storage Client API
Even though the REST API and the operations in the REST API are easily readable, the API doesn’t
automatically create client stubs like the ones created by WDSL-based web services. You have to create
your own client API and stubs for REST API operations. This makes the client programming more
complex and increases the barriers to entry for developers. To reduce this barrier to entry, the Windows
Azure SDK team has created a client helper library: Microsoft.WindowsAzure.StorageClient from the
Windows Azure SDK. Microsoft.WindowsAzure.StorageClient abstracts the REST interface by providing

http://proazurestorage.blob.core.windows.net/
http://www.fiddler2.com/fiddler2/

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

147

a client-side object model on top of the REST API. You can also build your own object model leveraging
the REST API directly. For most of the applications, the Microsoft.WindowsAzure.StorageClient API is
sufficient.

The following sections cover the Microsoft.WindowsAzure.StorageClient API.

 Note You don’t have to use the StorageClient library to make REST calls to the Storage service. You can create
your own client library to make REST operations to the Storage service directly.

Windows Azure Storage Client Blob API
The Microsoft.WindowsAzure.StorageClient namespace consists of classes representing the entire Blob
hierarchy. Figure 3-6 illustrates the core classes for programming Blob service applications.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

148

Figure 3-6. Blob class hierarchy

Table 3-3 describes these classes.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

149

 Tip The Windows Azure Storage Client API is the recommended method for programming storage service
applications. The API provides synchronous as well as asynchronous methods for interacting with the Storage
service REST APIs.

Table 3-3. Classes for the Blob Service

Class Name Description

CloudStorageAccount A helper class to retrieve account information from the
configuration files or create an instance of the storage account
object from account parameters.

CloudBlobClient A wrapper class for getting references to the core blob objects. The
class consists of methods like GetContainerReference() and
GetBlobReference().

CloudBlobContainer A class that consists of container operations like Create(), Delete(),
ListBlobs(), and GetBlobReference().

CloudBlob A class that consists of blob operations like Create(), Copy(),
UploadFromFile(), UploadByteArray(), UploadStream(), and so on.
This is the class you use the most to interact with blobs.

In addition to these core classes, classes like BlobProperties and BlobContainerProperties represent

more details about the blob and the container, respectively. CloudPageBlob and CloudBlockBlob define
operations for page blobs and block blobs, respectively.

The steps for programming simple blob applications with these blob classes are as follows:
1. Add the following using statement to your C# class:

using Microsoft.WindowsAzure.StorageClient;

2. Instantiate the CloudStorageAccount class from the configuration files by
publishing the appropriate configuration publisher:

CloudStorageAccount _cloudStorageAccount

if (RoleEnvironment.IsAvailable)
 {
 CloudStorageAccount.SetConfigurationSettingPublisher((configName,
configSetter) =>
 {
 configSetter(RoleEnvironment.GetConfigurationSettingValue(configName));
 });
 cloudStorageAccount =
CloudStorageAccount.FromConfigurationSetting(configString);

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

150

 }
 else
 {
 CloudStorageAccount.SetConfigurationSettingPublisher((configName,
configSetter) =>
 {
 configSetter(ConfigurationManager.AppSettings[configName]);
 });
 cloudStorageAccount =
CloudStorageAccount.FromConfigurationSetting(configString);
 }

 Caution When instantiating the configuration publisher in ASP.NET (IIS) application, make sure you instantiate
it in Global.asax.cs instead of WebRole.cs because WebRole.cs (RoleEntryPoint) runs in a separate process than
the ASP.NET application (including Web Services).

3. Or, instantiate the CloudStorageAccount class using account information:

CloudStorageAccount storageAccountInfo = new
CloudStorageAccount.Parse(storageAccountConnectionString);

Where storageAccountConnectionString is of the format

DefaultEndpointsProtocol=https or http;AccountName={0};AccountKey={1}

4. Create an instance of CloudBlobClient:

CloudBlobClient blobStorageType = storageAccountInfo.CreateCloudBlobClient();

When you have an instance of the CloudBlobClient class, you can execute operations on the Blob
Storage service as follows:

List containers:
IList<CloudBlobContainer> containers = new
List<CloudBlobContainer>(this.blobStorageType.ListContainers(prefix,
ContainerListingDetails.All));

Create a container:

blobStorageType.GetContainerReference(containerName).CreateIfNotExist();

Create a container with permissions:
CloudBlobContainer container = blobStorageType.GetContainerReference(containerName);
BlobContainerPermissions perm = new BlobContainerPermissions();
perm.PublicAccess = accessType;
container.SetPermissions(perm);
container.Metadata.Add(new NameValueCollection());
container.CreateIfNotExist();

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

151

Create a blob by uploading a byte array:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).UploadByteArra
y(blobContents);

Create a blob by uploading text:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).UploadText(blo
bContents);

Create a blob by uploading a stream:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).UploadFromStre
am(blobContents);

Create a blob by uploading a file:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).UploadFile(fil
eName);

Get a blob by downloading a byte array:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).DownloadByteAr
ray();

Get a blob by downloading text:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).DownloadText()
;

Get a blob by downloading a stream:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).DownloadToStre
am(outputStream);

Get a blob by downloading a file:
blobStorageType.GetContainerReference(containerName).GetBlobReference(blobName).DownloadToFile
(outputFileName);

Create a temporary Shared Access Url for a blob that expires in 10 minutes

CloudBlob cb = new CloudBlob(absoluteBlobUri)

var readPolicy = new SharedAccessPolicy()
 {
 Permissions = SharedAccessPermissions.Read,
 SharedAccessExpiryTime = DateTime.UtcNow + TimeSpan.FromMinutes(10)
 };
 return cb.Uri.AbsoluteUri + cb.GetSharedAccessSignature(readPolicy);

 Tip I recommend you to only access blobs using Shared Access Signature instead of full open account access.
Your storage account key is an entry to your entire storage account with administrator privileges. A hacker can
wipe out your entire storage account or even store his/her own files in your account with these privileges. With

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

152

Shared Access Signature or URL, you can restrict the URL with a time window as well as add access control for
the URL. I also recommend you to recycle your storage key as frequently as once a month. You can automate the
process of refreshing the key and then publishing it to your applications through the Windows Azure Service
Management API covered in Chapter 2.

Shared Access Signatures

Having account level security is not really useful if you want to leverage the Blob storage space within
one account for multiple users. Let’s say for example you want to build a file synchronization service
that leverages blob storage for any number of users. You should be able to provide granular security for
every user subscribed to the application. Create one storage account for every user will not be feasible
for a large number of users because you will have to manage a large number of subscriptions and
accounts. Shared Access Signatures allows you to specify granular level of security at the blob level by
embedding time-bound signatures in the blob URL. Shared Access Signatures are a series of URL
parameters specified in the URI of the resources for controlling access privileges to the resources. Shared
Access Signatures are available for container and blob resources. In the URL, you can specify the start
time when the resource becomes visible, the expiration time after which the Shared Access Signature
expires, permissions that are granted to the URL, the resource that is made available to the URL, and the
signature used to authenticate the request to the resource. The available permissions are read (r), write
(w), delete (d), and list (l). An example of a blob PUT operation’s URL with Shared Access Signatures is as
follows:

PUT http://proazure.blob.core.windows.net/videos/myvideo.wmv?st=2009-12-21T05%3a52Z&se=2009-
12-31T08%3a49Z&
sr=c&sp=w&si=YWJjZGVmZw%3d%3d&sig=Rcp6gPEaN%GJAI$KAM%PIR$APANG%Ca%IL%O$V%E
you%234so%m$uch2bqEArnfJxDgE%2bKH3TCChIs%3d HTTP/1.1
Host: proazure.blob.core.windows.net
Content-Length: 19
My Name is Tejaswi..

In these requests, the Shared Access Signatures are as follows:

• st (signedstart): (Optional) This is the start time when the resource becomes
available with a valid Shared Access Signature.

• se (signedexpiry): (Required) This is the end time when the Shared Access
Signature becomes invalid and, as a result, the URL can’t access the resource.

• sr (signedresource): The parameter can have two values: b to specify access to a
specific blob, and c to specify access to any blob in the container and to the list of
blobs in the container.

• sp (signedpermissions): (Required) This parameter specifies the type of
permissions to the resource: read (r), write (w), delete (d), or list (l).

• si (signedidentifier): (Optional) This is a unique string with a maximum of 64
characters that correlates to the access policy of the container, thus giving you an
additional level of control over the Shared Access Signatures and the ability to
revoke the signature.

http://proazure.blob.core.windows.net/videos/myvideo.wmv?st=2009-12-21T05%3a52Z&se=2009-12-31T08%3a49Z&
http://proazure.blob.core.windows.net/videos/myvideo.wmv?st=2009-12-21T05%3a52Z&se=2009-12-31T08%3a49Z&

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

153

• sig (signature): This is the signature used to authenticate the request. You can
create a signature using the following method:

HMAC-SHA256(URL.Decode(UTF8.Encode(string-to-sign)))

HMAC-SHA256 is the algorithm used to compute the signature, and string-to-sign is of the format

string-to-sign = signedpermissions + "\n"
 signedstart + "\n"
 signedexpiry + "\n"
 canonicalizedresource + "\n"
 signedidentifier

Shared Access Signatures give you the ability to exercise fine-grained access control at the blob and
container levels. Shared Access Signatures are very useful in creating time-bound temporary URLs for
downloading file(s) from the Blob service.

Listing 3-4 shows the code for creating a Shared Access Signature and Signed Identifier using the
Windows Azure SDK managed client API.

Listing 3-4. Shared Access Signature

// Get reference to your blob storage account

var storageAccount = CloudStorageAccount.DevelopmentStorageAccount;
var container = storageAccount .CreateCloudBlobClient()
.GetContainerReference("proazurecontainer");
container.CreateIfNotExist();
var blob = container.GetBlobReference("proazuredocument.txt");
blob.Properties.ContentType = "text/plain";
blob.UploadText("Are you enjoying Blobs?");

// Create a shared access signature with a new shared access policy

var sharedAccessSignature = blob.GetSharedAccessSignature(new SharedAccessPolicy()
 {
 Permissions = SharedAccessPermissions.Read
 |SharedAccessPermissions.Write,
 SharedAccessExpiryTime = DateTime.UtcNow + TimeSpan.FromMinutes(30)
 });

//This link will expire after 30 minutes

// Using shared access signature for blob operations from your client application
var sharedAccessSignatureCreds = new
StorageCredentialsSharedAccessSignature(sharedAccessSignature);
var secureBlob = new CloudBlobClient(storageAccount.BlobEndpoint, sharedAccessSignatureCreds)
 .GetBlobReference("proazurecontainer/ proazuredocument.txt");
secureBlob.UploadText("Thank You!");
Console.WriteLine(secureBlob.DownloadText());

//To set the optional signed identifier
var permissions = container.GetPermissions();
permissions.SharedAccessPolicies.Add("write", new SharedAccessPolicy()

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

154

 {
 Permissions = SharedAccessPermissions.Write
 });
container.SetPermissions(permissions, new BlobRequestOptions()
{
 // This step is to check if someone modified the permissions while we were setting it
 AccessCondition = AccessCondition.IfMatch(container.Properties.ETag)
});

var sharedAccessSignatureIdentifier = blob.GetSharedAccessSignature(new SharedAccessPolicy()
 {
 SharedAccessExpiryTime = DateTime.UtcNow + TimeSpan.FromHours(24)
 }, "write");

Console.WriteLine("This link will expire in 24 hours”);
Console.WriteLine(“Full Uri “ + blob.Uri.AbsoluteUri + sharedAccessSignatureIdentifier);

In Listing 3-8, you get reference to the blob and then add a shared access signature to the blob that
lasts for 30 minutes. The code snippet also shows how to access the blob using the shared access
signature from the client application. The next part of the code shows the use of shared access identifiers
to apply more granular security to the blobs by giving read, write, and listing permissions or even
revoking permissions.

 Note You can find the latest source code companion for this book on the CodePlex site
azureplatformbook.codeplex.com

Account Operations
The storage account provides an entry point to the Blob service via the Blob service endpoint URI. At the
account level of the hierarchy, the Blob service supports only one operation: List Containers. The URI of
a specific account is of the format http://<account name>.blob.core.windows.net. Table 3-4 describes
the List Containers operation, and Table 3-5 lists some important characteristics of the List Containers
function.

Table 3-4. Blob Account Operation

Operation Description

List Containers This operation gets a list of all the containers in a storage account. You
can limit the number of records returned by specifying a filter on
container names and the size of the dataset in the request. Table 4.6
lists all the possible URI parameters for this operation.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

155

Table 3-5. Blob Account Operation Characterstics

Operation HTTP Cloud URI Development Storage
URI

HTTP
Version

Permissions

List
Containers

GET http://<account
name>.blob.core.wind
ows.net?comp=list

http://127.0.0.1:1
0000/<devstorageac
count>?comp=list

HTTP/1.1 Only the account
owner can call
this operation.

<account name> is the storage account name, such as proazurestorage, and <devstorageaccount> is

the account name for the development storage. The HTTP verb used in this operation is GET. The table
lists the URI format to access Cloud Blob service as well as the development storage URI. Port 10000 is
the default Blob service port in the development fabric.

The URI for the List Containers operation also supports additional optional parameters, as listed in
Table 3-6.

Table 3-6. List Containers URI Parameters

Parameter Description Example

Prefix A filter parameter to return containers
starting with the specified prefix value.

http://proazurestorage.blob.core.windows.net
/?comp=list&prefix=may returns containers with
names starting with the prefix “may.”

Marker Used to page container results when not
all results were returned by the Storage
service either due to the default maximum
results allowed (the current default is
5000) or because you specify the
maxresults parameter in the URI. The
marker prefix is opaque to the client
application.

http://proazurestorage.blob.core.windows.net
/?comp=list&prefix=may&marker=/proazurestora
ge/may0320091132-staging

maxresults The maximum number of containers the
Blob service should return. The default
value is 5000. The server returns an HTTP
Bad Request (400) code if you specify a
maxresults value greater than 5000.

http://proazurestorage.blob.core.windows.net
/?comp=list&prefix=may&maxresults=100

The sample REST request for List Containers in raw format looks like Listing 3-5.

http://proazurestorage.blob.core.windows.net
http://proazurestorage.blob.core.windows.net
http://proazurestorage.blob.core.windows.net

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

156

Listing 3-5. List Containers REST Request

GET /?comp=list&prefix=may&maxresults=6&timeout=30 HTTP/1.1
x-ms-date: Wed, 27 May 2009 04:33:00 GMT
Authorization: SharedKey proazurestorage:GCvS8cv4Em6rWMuCVix9YCsxVgssOW62S2U8zjbIa1w=
Host: proazurestorage.blob.core.windows.net
Connection: Keep-Alive

The characteristics of the REST request in Listing 4-5 are as follows:

• The parameter comp=list at the account level of the Blob service yields the list of
all the containers.

• The prefix=may filters the results by container names starting with “may.”

• maxresults=6 returns only six containers.

• x-ms-date is the UTC timestamp of the request.

• The Authorization header contains the SharedKey of the request.

• The Host header points to the Blob service in the cloud.

• Because the request is sending a maxresults parameter, it makes sense to keep the
HTTP connection alive because it’s highly likely that the user will retrieve the next
set of results by making one more call to the Blob service.

Listing 3-6 shows the response for the List Containers request.

Listing 3-6. List Containers REST Response

HTTP/1.1 200 OK
Content-Type: application/xml
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 62ae926f-fcd8-4371-90e1-bdb6d32e31e6
Date: Wed, 27 May 2009 04:34:48 GMT
Content-Length: 1571

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults AccountName="http://proazurestorage.blob.core.windows.net/">

<Prefix>may</Prefix>
<MaxResults>6</MaxResults>

<Containers>
<Container>
<Name>may022009-01-52-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/may022009-01-52-staging</Url>
<LastModified>Sat, 02 May 2009 08:54:23 GMT</LastModified>
<Etag>0x8CB991AB99A3DE8</Etag>
</Container>
<Container>
<Name>may022009-01-56-staging</Name>

http://proazurestorage.blob.core.windows.net/

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

157

<Url>http://proazurestorage.blob.core.windows.net/may022009-01-56-staging</Url>
<LastModified>Sat, 02 May 2009 08:58:08 GMT</LastModified>
<Etag>0x8CB991B3F6EECF8</Etag>
</Container>
<Container>
<Name>may031119am-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/may031119am-staging</Url>
<LastModified>Sun, 03 May 2009 18:21:46 GMT</LastModified>
<Etag>0x8CB9A3326D83577</Etag></Container>
<Container><Name>may0320091132-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/may0320091132-staging</Url>
<LastModified>Sun, 03 May 2009 18:33:55 GMT</LastModified>
<Etag>0x8CB9A34D97B4CC0</Etag>
</Container>
<Container>
<Name>may0320091413pm-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/may0320091413pm-staging</Url>
<LastModified>Sun, 03 May 2009 21:14:53 GMT</LastModified>
<Etag>0x8CB9A4B5676BA40</Etag>
</Container>
<Container>
<Name>may0320091500pm-staging</Name>
<Url>http://proazurestorage.blob.core.windows.net/may0320091500pm-staging</Url>
<LastModified>Sun, 03 May 2009 22:01:55 GMT</LastModified>
<Etag>0x8CB9A51E81571B3</Etag>
</Container>
</Containers>

<NextMarker />

</EnumerationResults>

In Listing 3-6, the header consists of the HTTP status (200 OK) indicating the success of the
operation. The response body is in XML format with <EnumerationResults /> as the root element. The
<Containers /> element contains the retrieved containers. The <ETag> or the entity tag and the
<LastModified> values are used to find changes to the content source after it was retrieved. These fields
are used to detect concurrency conditions where a resource may change between retrieve and save
operations. The empty <NextMarker/> element indicates that all the results have been retrieved.

Programming Example
To help you understand the Blob service programming model, I’ve created a project named Windows
Azure Storage Operations in Ch3Solution.sln. The name of the Windows application project is Windows
Azure Storage Operations. I’ve also created a helper class named WAStorageHelper in the
ProAzureCommonLib project, to wrap the StorageClient methods. Figure 3-7 shows the user interface
for the Windows Azure Storage Operations.exe application as it pertains to the account operations of the
Blob service.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

158

Figure 3-7. Windows Azure Storage Operations blob account operations

In Figure 3-7, the top Account section displays the Account name and SharedKey of the storage
account. When the Windows Azure Storage Operations application starts, it loads the account
information from the configuration file.

The AccountName and AccountSharedKey values are loaded when the application starts; the
application displays these values in the Account and Key text fields, respectively. When you start the
application, make sure to enter the account name and shared key of your own storage account or change
then in the app.config file before building the project. The account information is used to initialize the
WAStorageHelper class, as shown here:

StorageHelper = new WAStorageHelper(CloudStorageAccount.Parse(txtAccountName.Text));

The WAStorageHelper class in the ProAzureCommonLib project has two overloaded
GetContainers() methods to retrieve container names. Listing 3-7 shows the code for these two methods.

Listing 3-7. GetContainers() Methods

public IEnumerable<BlobContainer> GetContainers()

{
return this.BlobClient.ListBlobContainers();
}
public ResultSegment<CloudBlobContainer> GetContainerSegmented(string prefix, int maxResults,
ResultContinuation continuationToken)
 {
 return BlobClient.ListContainersSegmented(prefix, ContainerListingDetails.All,
maxResults, continuationToken);
 }

Both methods get the list of containers in your storage account. The first ListContainers() method
returns all the containers from the account; therefore it doesn’t accept any filtering parameters. The
second ListContainersSegmented() method accepts prefix, maxresults, and continuation token. The
continuation token is used to page results. You can iterate over the container list as shown in Listing 3-8.

Listing 3-8. Iterating over a Large List of Containers

static void ListContainersSegmented(string storageAccountStr)

{
 CloudBlobClient blobClient = CloudStorageAccount.Parse(storageAccountStr);

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

159

 //Return the first group of 25 containers.
 ResultSegment<CloudBlobContainer> resultSegment = blobClient.ListContainersSegmented("",
ContainerListingDetails.All, 25, null);

 foreach (var container in resultSegment.Results)
 {
 Console.WriteLine(container.Name);
 }

 //Are there more results in the segment?.
 if (resultSegment.HasMoreResults)
 {
 resultSegment = resultSegment.GetNext();

 foreach (var container in resultSegment.Results)
 {
 Console.WriteLine(container.Name);
 }
 }

 //Continuation token determines whether there are more results/segments on the server.
 while (resultSegment.ContinuationToken != null)
 {
 resultSegment = resultSegment.GetNext();

 foreach (var container in resultSegment.Results)
 {
 Console.WriteLine(container.Name);
 }
 }
}

 Note maxresult=0 will return a maximum of 5000 containers.

The results returned from these methods are displayed in the list box in the Account section of the
Windows Azure Storage Operations.exe application, as shown in the Figure 3-8.

Figure 3-8. List containers

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

160

Click on the List button to retrieve containers from the Blob service in the list box. In the Parameters
section, you can specify the prefix and the maxresults for filtering the result set. Click the List Containers
button again to retrieve the remaining results.

Container Operations
The URI of a specific container is of the format <account name>.blob.core.windows.net/<container
name>. Containers support several operations, as listed in Table 3-7.

Table 3-7. Container Operations

Operation Description

Create Container Creates a new container under the given account. You can specify
metadata and access control for the container during creation.

Get Container Properties Returns the user-defined metadata values and the system properties of the
container. The ETag and Last-Modified values are examples of system
generated container properties.

Set Container Metadata

Get Container ACL

Sets the user-defined metadata values of a container. This operation sets or
overwrites all the metadata values at once. You can’t change specific
name-value pairs of a container. The ETag value of a container changes
when this operation executes successfully.

Returns a container’s access control bit value. It returns False if a container
is private and True if public.

Set Container ACL Sets a container’s access control bit value. You can set the value of the
header parameter x-ms-prop-publicaccess to True for a public container
or False for a private container.

Delete Container Marks a container for deletion. The delete operation doesn’t delete the
container instantly; it’s deleted during the next garbage-collection cycle.
So, if you delete a container and immediately try to create another
container with the same name, you may receive an error if the container
hasn’t been garbage-collected. When a container is deleted, all the blobs in
that container are also deleted.

List Blobs Retrieves blobs from a particular container. Similar to the List Containers
operation, you can specify maxresults and prefix parameters to filter your
results. This operation also supports a delimiter parameter that you can
use to group blobs in a virtual path structure. For example, if there are two
blobs named mydocuments/docA.docx and mydocuments/docB.docx,
then if you specify the delimiter as / in your HTTP Request, the HTTP
response will contain a <BlobPrefix >mydocuments/</BlobPrefix> element
as a virtual group for docA.docx and docB.docx.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

161

Table 3-8 lists some of the important characteristics of the container operations listed in Table 3-7.

Table 3-8. Container Operation Characterstics

Operation HTTP Verb Cloud URI Development Storage
URI

HTTP
Version

Permissions

Create
Container

PUT http://<account
name>.blob.core.wind
ows.net/<container
name>

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>

HTTP/1.1 Only the account
owner can call this
operation.

GET/HEAD http://<account
name>.blob.core.wind
ows.net/<container
name>

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>

HTTP/1.1 Any client may call
this operation on a
public container.

Get
Container
Properties

Set
Container
Metadata PUT http://<account

name>.blob.core.windo
ws.net/<container
name>?comp=metadata

http://127.0.0.1:
10000/<devstorage
account>/<contain
erName>?comp=meta
data

HTTP/1.1 Only the account
owner can call this
operation.

Get
Container
ACL

GET/
HEAD

http://<account
name>.blob.core.windo
ws.net/<container
name>?comp=acl

http://127.0.0.1:
10000/<devstorage
account>/<contain
erName>?comp=acl

HTTP/1.1 Only the account
owner can call this
operation.

Set
Container
ACL

PUT http://<account
name>.blob.core.windo
ws.net/<container
name>?comp=acl

http://127.0.0.1:
10000/<devstorage
account>/<contain
erName>?comp=acl

HTTP/1.1 Only the account
owner can call this
operation.

Delete
Container

DELETE http://<account
name>.blob.core.windo
ws.net/<container
name>

http://127.0.0.1:
10000/<devstorage
account>/<contain
erName>

HTTP/1.1 Only the account
owner can call this
operation.

List Blobs GET http://<account
name>.blob.core.windo
ws.net/<container
name>?comp=list

http://127.0.0.1:
10000/<devstorage
account>/<contain
erName>?comp=list

HTTP/1.1 Only the account
owner can call this
operation.

<account name> is the storage account name in the cloud, and <devstorageaccount> is the

development storage account. note that only one operation, Get Container Properties, can be called by
all the users on a public container. All other operations can only be called by the owner of the container.

The following sections discuss some of the operations from Table 3-8 in detail. Even though the
operations are different, the programming concepts behind them are similar. To keep the book at a

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

162

conceptual level, I discuss Create Container, Set Container Metadata, and List Blobs operations, because
they cover most of the discussed concepts. By studying these three operations in detail, you can
understand the programming concepts behind all the container operations. The Windows Azure Storage
Operations.exe application included with this chapter’s source code contains implementations of these
container operations.

Create Container
The Create C ontainer operation is used to c reate a conta iner in a n account. The URI for Crea te
Container is of the format http://<account name>.blob.core.windows.net/<container name>. You can
think of a container as a bucket for holding similar blobs, although it’s not a requirement that blobs in a
container be similar. For example, if you want to store all your media files as Azure blobs, you can create
a container for each media t ype, such as M usic, Video, and Pictures. Then, you can st ore your media
blobs under each cat egory. This gives you easy access to particular media types. The Create Container
REST request looks like Listing 3-9.

Listing 3-9. Create Container REST Request

PUT /myfirstcontainer?timeout=30 HTTP/1.1
x-ms-date: Fri, 05 Jun 2009 02:31:10 GMT
x-ms-meta-creator: tejaswi
x-ms-meta-creation-date: 06042009
x-ms-prop-publicaccess: true
Authorization: SharedKey proazurestorage:mQfgLwFfzFdDdMU+drg5sY2LfGKMSfXQnWrxrLPtzBU=
Host: proazurestorage.blob.core.windows.net
Content-Length: 0
Connection: Keep-Alive

Listing 3-9 shows the request to create a container named myfirstcontainer. x-ms-meta-
[name]:[value] represents the metadata values for the container. x-ms-prop-publicaccess:true indicates
that the container has public visibility.

For the Create Container operation, the Blob service responds with a status code of HTTP/1.1 201
Created or HTTP/1.1 409 Conflict if a container with the same name already exists. The Create Container
response is shown in Listing 3-10.

Listing 3-10. Create Container REST Response

HTTP/1.1 201 Created
Last-Modified: Fri, 05 Jun 2009 02:32:43 GMT
ETag: 0x8CBB39D0A486280
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: a0ea17df-5528-4ad3-985c-20664b425c7b
Date: Fri, 05 Jun 2009 02:32:43 GMT
Content-Length: 0

In Listing 3-10, the first line represents the status code of the operation. The ETag and the Last-
Modified values can be used in conditional headers while modifying or deleting the container. The
Create Container operation doesn’t support any conditional headers, but the Set Container Metadata
and Delete Container operations, discussed later, do support conditional headers. x-ms-request-id
represents a unique request identifier that you can use for debugging or tracing.

Figure 3-9 shows the working of the Create Container operation in the Windows Azure Storage
Operations application.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

163

Figure 3-9. Create Container from the Windows Azure Storage Operations application

As shown in Figure 3-9, you follow these steps to create a container:

1. Enter a container name (such as myfirstcontainer) in the Container Name text
field.

2. Check the Public check box if the container is public (accessible to everyone).

3. Select Create Container Function in the Container Functions list box.

4. Click the Execute button.

After the container is created, the Containers list box in the Account section is refreshed and
displays the newly created container’s name. To better understand the programming model of the
Create Container operation, open the Visual Studio Solution Chapter3.sln from the Chapter 3 source
directory. The WAStorageHelperclass in ProAzureCommonLib contains helper functions for creating
containers, as shown in Listing 3-11.

Listing 3-11. CreateContainer Method in the WAStorageHelper Class

 public IList<CloudBlobContainer> GetContainers(string prefix)

 {
 return BlobClient.ListContainers(prefix,
ContainerListingDetails.All).ToList<CloudBlobContainer>();
 }

 public bool CreateContainer(string containerName)
 {
 CloudBlobContainer container = GetBlobContainer(containerName);

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

164

 return container.CreateIfNotExist();
 }

 public bool CreateContainer(string containerName, BlobContainerPermissions
permissions, NameValueCollection metadata)
 {

 CloudBlobContainer container = GetBlobContainer(containerName);
 bool result = container.CreateIfNotExist();
 if (result)
 {
 container.SetPermissions(permissions);
 container.Metadata.Add(metadata);
 container.SetMetadata();
 }
 return result;

 }

The first CreateContainer() method creates a container with default properties (private access). The
second method accepts a permission object and metadata for the container. If you observe, the function
abstracts the calls to SetPermissions() and SetMetadata() within a single call.

Set Container Metadata
Containers contain name-value pairs of metadata values. You can store values like time of creation,
creator, last modified by user, and so on in a container’s metadata fields. The size of the metadata can be
8KB per container. The Set Container Metadata operation sets the metadata of a container
independently. The URI for the Set Container Metadata operation is of the format http://<account
name>.blob.core.windows.net/<container name>?comp=metadata. The Set Container Metadata REST
request looks like Listing 3-12.

Listing 3-12. Set Container Metadata REST Request

PUT /myfirstcontainer?comp=metadata&timeout=30 HTTP/1.1
x-ms-date: Fri, 05 Jun 2009 05:44:21 GMT
x-ms-meta-creator: tejaswi
x-ms-meta-creation-date: 06042009
x-ms-meta-last-updated-by: arohi
Authorization: SharedKey proazurestorage:hC5t3QscO9kINOzRCRN2vcgTIyPR97ay7WZRzwgbKBI=
Host: proazurestorage.blob.core.windows.net
Content-Length: 0
Connection: Keep-Alive

In Listing 3-12, the HTTP verb used is PUT. Note the URI parameter ?comp=metadata; it instructs
the Blob service to set the container metadata instead of creating the container. The Create Container
operation doesn’t have this parameter. The x-ms-meta.[name]:[value] entries represent the metadata
name-value pairs you want to set on the container.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

165

 Caution The Set Container Metadata operation replaces all the existing metadata of the container. It doesn’t
update individual metadata entries. For example, if a container has two metadata values Creator and Creation-
Time, and you call Set Container Metadata with only one metadata value LastUpdatedBy, then the Creator and
Creation-Time values will be deleted and the container will have only one metadata value LastUpdatedBy. To avoid
this side effect, always set all the metadata values again along with any new values you want to add to the
container’s metadata.

The Set Container Metadata operation also supports the conditional header If-Modified-Since,
which isn’t shown in Listing 3-12. The If-Modified-Since header carries a date-time value instructing the
Blob service to set the metadata values only if they have been modified since the supplied date in the
request header.

The response from the Blob service consists of one the following HTTP status codes:

• HTTP/1.1 200 OK if the operation is successful

• HTTP/1.1 412 PreconditionFailed if the precondition If-Modified-Since fails

• HTTP/1.1 304 NotModified if the condition specified in the header isn’t met

Figure 3-10 illustrates the execution of the Set Container Metadata operation in the Windows Azure
Storage Operations application.

Figure 3-10. Set Container Metadata in the Windows Azure Storage Operations application

As shown in Figure 3-10, please follow these steps to execute the Set Container Metadata operation:

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

166

1. In the Account section, click the List Containers button to get a list of
containers in your account.

2. Select one of the containers from the list (such as myfirstcontainer).

3. Make sure the Container Name text box in the Container section displays the
name of the selected container.

4. In the Container section, select the Set Container Metadata operation from the
list of container operations.

5. In the Containers section, enter metadata name-value pairs in the Metadata
section.

6. Click the Execute button to execute the operation.

7. To verify the success of the operation, click the Clear Results button in the
Containers section, and re-select the container from the Containers list in the
Account section to the newly set metadata values.

To better understand the programming model of the Set Container Metadata operation, open the
Visual Studio Solution Chapter3.sln from the Chapter 3 source directory. The WAStorageHelper class in
ProAzureCommonLib contains a helper function called SetContainerMetadata(), as shown in Listing 3-
13.

Listing 3-13. SetContainerMetadata Method in the WAStorageHelper Class

public void SetContainerMetadata(string containerName, NameValueCollection metadata)
 {
 CloudBlobContainer container = GetBlobContainer(containerName);
 container.CreateIfNotExist();
 container.Metadata.Clear();
 container.Metadata.Add(metadata);
 container.SetMetadata();
 }

In Listing 3-13, the SetContainerMetadata method accepts the container name and a
System.Collection.Specialized.NameValueCollection object populated with metadata name-value pairs.
The container name is used to create a local instance of the CloudBlobContainer object. The code then
calls the SetContainerMetadata() method on the CloudBlobContainer object to set the metadata values
for the container. If the metadata is set successfully, a Boolean value of true is returned to the caller;
otherwise, a false value is returned.

List Blobs
Containers are typically used to logically group and store blobs. The URI for the List Blobs operation is of
the format http://<account name>.blob.core.windows.net/<container name>?comp=list. At the
container level of the Blob service hierarchy, you can get a list of blobs in a container by calling the List
Blobs operation. The List Blobs operation also provides paging capabilities with maxresults and prefix
parameters, similar to the List Containers operation discussed earlier. The container and blob hierarchy
is a single-level hierarchy, but in real-world applications you want to create deeper hierarchies with
folder structures to store blob files. For example, there may be a scenario where you would want to
create a multilevel folder structure for your music files in the music container, as shown in Figure 3-11.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

167

Figure 3-11. Music container hierarchy

The *.mp3 files represent the blob files you want to store in the music container, but you want an
intermediate folder structure to organize the blob files by the genre of the music file. The Blob service
hierarchy doesn’t allow you to create folders in containers to create folder structures, but the blob
naming convention is relaxed so that you can add a delimiter in the name of the blob file to create a
virtual folder structure within the name of the blobs. To create a virtual folder structure as shown in
Figure 3-11, you can name the blobs as follows:

Rock/R1.mp3

Rock/R2.mp3

POP/P1.mp3

POP/P2.mp3

Classical/C1.mp3

Classical/C2.mp3

Indian/I1.mp3

Indian/I2.mp3

When you store a blob to the container, you specify the folder structure in the file name. When you
retrieve the blob structure, you specify the delimiter character (/ in this example) as the parameter in the
URI of the List blob operation. The Blob service sends you a BlobPrefix XML element specifying the
folder structure that groups blobs with similar names together. You see an example of this in a few
paragraphs.

The URI for the List Blobs operation also supports additional optional parameters, as listed in
Table 3-9.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

168

Table 3-9. List Blobs URI Parameters

Parameter Description Example

Prefix A filter parameter to return files starting with
the specified prefix value.

http://proazurestorage.blob.core.windows
.net/music?comp=list&prefix=kishore
returns containers with names starting with
the prefix “kishore.”

delimiter A character or a string that represents the
separation of different tokens present in the
name of a blob.

If the name of a blob is rock/R1.mp3, you
can specify / as a delimiter to separate the
string tokens rock and R1.mp3.

marker Pages blob results when all results weren’t
returned by the Storage service either due to
the default maximum results allowed (the
current default is 5000) or because you
specify the maxresults parameter in the URI.
The marker prefix is opaque to the client
application.

http://proazurestorage.blob.core.windows
.net/music/?comp=list&prefix=kishore&mar
ker=/proazurestorage/kishore0320091132.m
p3.

maxresults The maximum number of blobs the Blob
service should return. The default value is
5000. The Server returns an HTTP Bad
Request (400) code if you specify a
maxresults value greater than 5000.

http://proazurestorage.blob.core.windows
.net/music/?comp=list&prefix=kishore&max
results=100.

Assume that the blob hierarchy from Figure 3-11 exists in the Blob service. To retrieve all the blobs

in the music container, you have to execute two REST requests for each blob file. In the first request, you
pass the delimiter (such as /) as one of the URI parameters. The Blob service response gets the first token
of the blob name separated by the delimiter (for example, Classical/) as a BlobPrefix element in the
response body. The first token doesn’t represent the end of the blob name, so you have to make one
more request to the Blob service by passing the first token as a prefix parameter to the Blob service URI
(for example, prefix=Classical/). Now, because the next token represents the end of the blob name, the
Blob service sends the blob properties in the response. If the blob name has more tokens, you must keep
on querying the Blob service until you reach the end of blob name to retrieve the blob properties you’re
interested in.

 Note If the blob name doesn’t contain a delimiter, or if you want to retrieve the blob name along with the
delimiter, then you don’t have to pass a delimiter—the first response retrieves all the blob properties in the
specified container.

http://proazurestorage.blob.core.windows
http://proazurestorage.blob.core.windows
http://proazurestorage.blob.core.windows

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

169

In the first REST request, you specify the container name, maxresults (optional), and delimiter (/ in
the music example), as shown in Listing 3-14.

Listing 3-14. List Blobs First REST request

GET /music?comp=list&delimiter=%2f&maxresults=100&timeout=30 HTTP/1.1
x-ms-date: Sun, 07 Jun 2009 05:53:37 GMT
Authorization: SharedKey proazurestorage:7euawYh5wNOGFJZGnvrn9vyR4y
Host: proazurestorage.blob.core.windows.net

The Blob service responds to this request with the list of <BlobPrefix> values tokenized by the
delimiter at the next level of the folder hierarchy. In the music example, the next level of the folder
hierarchy consists of Genres values like Classical, Indian, POP, and Rock. The response from the Blob
service is shown in Listing 3-15.

Listing 3-15. List Blobs First Response

HTTP/1.1 200 OK
Content-Type: application/xml
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 7c490b17-8c99-43fa-ab8b-bde4cef032d7
Date: Sun, 07 Jun 2009 05:54:41 GMT
Content-Length: 408

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults
ContainerName="http://proazurestorage.blob.core.windows.net/music">
<MaxResults>100</MaxResults>
<Delimiter>/</Delimiter>
<Blobs>
<BlobPrefix>
<Name>Classical/</Name>
</BlobPrefix>
<BlobPrefix>
<Name>Indian/</Name>
</BlobPrefix>
<BlobPrefix>
<Name>POP/</Name>
</BlobPrefix>
<BlobPrefix>
<Name>Rock/</Name>
</BlobPrefix>
</Blobs>
<NextMarker />
</EnumerationResults>

Next, for each <BlobPrefix> value, you send a request to the Blob service to get the next string token
separated by the delimiter at the next level of hierarchy. In this request, the prefix URI parameter must
contain the <BlobPrefix> value, e.g. prefix=Classical, prefix=Indian, prefix=POP, or prefix=Rock. In the
music hierarchy, the next token is the last token representing the file name of the music file. For
example, under the Classical folder are C1.mp3 and C2.mp3 files. The response from the Blob service

http://proazurestorage.blob.core.windows.net/music

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

170

contains the properties of the C1.mp3 and C2.mp3 files. The sample request for the List Blobs operation
at the Genre folder structure level looks like Listing 3-16.

Listing 3-16. List Blob Second REST Request

GET /music?comp=list&
prefix=Classical%2f&delimiter=%2f&
maxresults=100&timeout=30 HTTP/1.1
x-ms-date: Sun, 07 Jun 2009 05:53:38 GMT
Authorization: SharedKey proazurestorage:E0V9XEPvs9J5zejM0HD+d3+3Lc2+B816HS9Vu2NwkaE=
Host: proazurestorage.blob.core.windows.net

In Listing 3-16, the prefix parameter is set to the <BlobPrefix> value sent in the response for the first
REST request. Listing 3-17 represents the response from the Blob service to get the next level of
hierarchy elements. The <Prefix> element contains the value of the prefix parameter passed in the URI.

Listing 3-17. List Blob Second REST Response

HTTP/1.1 200 OK
Content-Type: application/xml
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 6ad95e46-652d-4e4c-a50b-68c14dd2bd74
Date: Sun, 07 Jun 2009 05:54:41 GMT
Content-Length: 863

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults ContainerName="http://proazurestorage.blob.core.windows.net/music">
<Prefix>Classical/</Prefix>
<MaxResults>100</MaxResults>
<Delimiter>/</Delimiter>
<Blobs>
<Blob><Name>Classical/C1.mp3</Name>
<Url>http://proazurestorage.blob.core.windows.net/music/Classical/C1.mp3</Url>
<LastModified>Sun, 07 Jun 2009 05:47:18 GMT</LastModified>
<Etag>0x8CBB54A8D83F750</Etag>
<Size>4055168</Size>
<ContentType>audio/mpeg</ContentType>
<ContentEncoding /><ContentLanguage />
</Blob>
<Blob><Name>Classical/C2.mp3</Name>
<Url>http://proazurestorage.blob.core.windows.net/music/Classical/C2.mp3</Url>
<LastModified>Sun, 07 Jun 2009 05:47:38 GMT</LastModified>
<Etag>0x8CBB54A99E42600</Etag>
<Size>4055168</Size><ContentType>audio/mpeg</ContentType>
<ContentEncoding />
<ContentLanguage />
</Blob>
</Blobs>
<NextMarker />
</EnumerationResults>

http://proazurestorage.blob.core.windows.net/music

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

171

Repeat the same procedure for the other three genres—Indian, POP, and Rock—to get the blobs in
those containers.

The Windows Azure Storage Operations application supports the retrieving of blobs with delimiters.
In the Container section of the application, the TreeView control on the right side displays the results
from the List Blobs operation. The Parameters group box contains text boxes for prefix, marker,
maxresults, and delimiter. Figure 3-12 illustrates the List Blobs operation executed on a music container.
Note the delimiter and the tree structure that are created in the TreeView control.

Figure 3-12. List Blobs in Windows Azure Storage Operations.exe

The List Blobs operation is called on the music container. The Delimiter text field contains the /
delimiter character. The TreeView shows the virtual folder hierarchy of the blobs in the music container.

You can also use the CloudBlobDirectory class to get a reference to the logical directory in a
container as shown in the Listing 3-18.

Listing 3-18. CloudBlobDirectory Usage

static void ListBlobs(string storageAccountStr, string containerName, string directoryName)

{

 CloudBlobClient blobClient = CloudStorageAccount.Parse(storageAccountStr);

 //Get a reference to a blob directory in the specified container.
 CloudBlobDirectory blobDir = blobClient.GetBlobDirectoryReference(string.Format("{0}/{1}",
containerName, directoryName));

 //List blobs and directories.
 foreach (var blobItem in blobDir.ListBlobs())
 {

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

172

 Console.WriteLine(blobItem.Uri);
 }
 Console.WriteLine(“-----------------------”);

 //using flat listing.
 BlobRequestOptions options = new BlobRequestOptions();
 options.UseFlatBlobListing = true;
 foreach (var blobItem in blobDir.ListBlobs(options))
 {
 Console.WriteLine(blobItem.Uri);
 }
}

Blob Operations
The URI of a specific blob is of the format http://<account name>.blob.core.windows.net/<container
name>/<blob name>. Blobs support several operations, as listed in Table 3-10.

Table 3-10. Blob Operations

Operation Description

Put Blob Creates a new blob under the given container or updates an existing blob. Updates
complete overwrite a blob’s contents and metadata. You can upload a blob up to
64MB in size using the Put Blob operation. If it’s bigger than 64MB, see the Put
Block operation.

Get Blob Retrieves the blob, its metadata, and its properties from the blob service. The
operation times out if the download takes more than two minutes per megabyte.

Get Blob
Properties

Retrieves the blob’s system properties, HTTP properties, and user-defined
metadata.

Get Blob Metadata Retrieves only the user-defined metadata of the specified Blob.

Set Blob Metadata Sets the user-defined metadata of the specified blob.

Put Block (Block
Blob)

Used to upload blobs larger than 64MB. Split the file into multiple blocks of 4MB
each, and upload multiple blocks using this operation.

Get Block List
(Block Blob)

Gets the list of blocks uploaded by the Put Block operation. The operation
supports the listing of committed as well as uncommitted blocks.

Put Block List
(Block Blob)

Commits a list of uploaded blocks to a blob. The operation accepts a list of block
IDs of successfully uploaded blocks. Uncommitted blocks are garbage-collected.

Copy Blob Copies a blob from a source to a destination within the Blob service.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

173

Delete Blob Marks a specified blob for deletion. The actual deletion takes place during the
garbage-collection cycle.

Lease Blob The Lease Blob method creates a one minute lock on the blob for write operations.
This is helpful when you are writing concurrent applications supporting
concurrent users. You can Acquire, Renew, Release or Break a lease. When you
create a lease, the blob storage service returns you a leaseId which you can use for
write operations on the blob.

Snapshot Blob The Snapshot Blob method creates a readonly snapshot of the blob. This method
is commonly used for backup and archiving scenarios. This method is also
commonly used for taking snapshot of the Windows Azure drives and then
attaching these drives to multiple role instances for readonly data access.

Put Page (Page
Blob)

The Put Page operation writes page ranges to the page blob. A Page Blob must
exist before you write pages to it. You can use Update and Clear options in the Put
Page method to update and clear the specified page ranges.

Get Page Regions
(Page Blob)

The Get Page Regions method gets the page regions for the specified blob or
snapshot of a blob. You can optionally specify the regions you want returned or
the blob service will return all the page regions.

Table 3-11 lists some of the important characteristics of the blob operations.Table 3-12. Blob

Operation Characterstics

Operation HTTP
Verb

Cloud URI Development Storage
URI

HTTP
Version

Permissions

Put Blob PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob name>

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>/<blob name>

HTTP/1.1 Only the account
owner can call this
operation.

Get Blob GET http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob name>

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>/<blob name>

HTTP/1.1 Any client may call
this operation on a
blob in the public
container.

Get Blob
Properties

HEAD http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob name>

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>/<blob name>

HTTP/1.1 Any client may call
this operation on a
blob in the public
container.

Get Blob GET/ http://<account
name>.blob.core.wind

http://127.0.0.1:1
0000/<devstorageac

HTTP/1.1 Only the account
owner can call this

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

174

Metadata HEAD ows.net/<container
name>/<blob
name>?comp=metadata

count>/<containerN
ame>/<blob
name>?comp=
metadata

operation.

Set Blob
Metadata

PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=metadata

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>/<blob
name>?comp=metadat
a

HTTP/1.1 Only the account
owner can call this
operation.

PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=block&blo
ckid=id

http://127.0.0.1:1
0000/<devstorageac
count>/<containerN
ame>/<blob
name>?comp=block&b
lockid=id

HTTP/1.1 Only the account
owner can call this
operation.

Put Block
(Block
Blob)

Get Block
List
(Block
Blob)

GET http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=blocklist
&blocklisttype=[comm
itted|uncommitted|
all]

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/<
blob
name>?comp=blocklist
&blocklisttype=[comm
itted|uncommitted|
all]

HTTP/1.1 Any client may
call this
operation on a
blob in the public
container.

Put Block
List
(Block
Blob)

PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=blocklist

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/<
blob
name>?comp=blocklist

HTTP/1.1 Only the account
owner can call
this operation.

Copy Blob PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob name>

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/
<blob name>

HTTP/1.1 Only the account
owner can call
this operation.

Delete
Blob

DELETE http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob name>

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/
<blob name>

HTTP/1.1 Only the account
owner can call
this operation.

Lease
Blob

PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=lease

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/<
blob
name>?comp=lease

HTTP/1.1 Only the account
owner can call
this operation.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

175

Snapshot
Blob

PUT http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=snapshot

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/<
blob
name>?comp=snapshot

HTTP/1.1 Only the account
owner can call
this operation.

Put Page
(Page
Blob)

 http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=page

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/<
blob name>?comp=page

HTTP/1.1 Only the account
owner can call
this operation.

Get Page
Regions
(Page
Blob)

 http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=pagelist

http://<account
name>.blob.core.wind
ows.net/<container
name>/<blob
name>?comp=pagelist&
snapshot=<DateTime>

http://127.0.0.1:100
00/<devstorageaccoun
t>/<containerName>/<
blob
name>?comp=pagelist

HTTP/1.1 Any client may
call this
operation on a
blob in the public
container.

<account name> is the storage account name in the cloud, and <devstorageaccount> is the

development storage account. <container name> is the name of the container in which the blob is
stored, and <blob name> is the name of the blob object.

The following sections discuss some of the operations from Table 3-11 in detail. Even though the
operations are different, the programming concepts behind them are similar. To keep the book at a
conceptual level, I discuss the Put Blob, Get Blob, and Copy Blob operations because they cover most of
the discussed concepts. By studying these three operations in detail, you will understand the
programming concepts behind all the blob operations. The Windows Azure Storage Operations
application included with this chapter’s source code contains implementations of most of the blob
operations.

Put Blob
The Put Blob operation is used to upload blob objects to the Blob service. A blob must be stored in a
container, so the URI is of the format http://<account name>.blob.core.windows.net/<container
name>/<blob name>, where the <container name> must be referenced before a <blob name>. You can
upload a blob file up to 64MB using a single Put Blob operation. The Put Blob REST request looks like
Listing 3-19.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

176

Listing 3-19. Put Blob REST Request

PUT /pictures/toucan.jpg?timeout=30 HTTP/1.1
x-ms-date: Wed, 10 Jun 2009 05:32:42 GMT
Content-Type: image/jpeg
If-None-Match: *
Authorization: SharedKey proazurestorage:GvjnSO2oBj8nS1Fjh0D0nOwDhvG6ak32VlPHZNp6qc8=
Host: proazurestorage.blob.core.windows.net
Content-Length: 33624
Expect: 100-continue

In Listing 3-19, a toucan.jpg file is uploaded to the pictures container in the Blob service. Note that
the conditional header If-None-Match has a * value associated with it. This conditional header instructs
the Blob service to upload the file only if the ETag value of the destination is different to the ETag value
of the source. Because this file is a fresh upload, the conditional header doesn’t matter. Also note that
the Content-Length of the HTTP request body is only 33,624 bytes. Because this is less than 64MB, a
single Put Blob operation can upload this file to the Blob service. Listing 3-20 shows the response from
the Blob service.

Listing 3-20. Put Blob REST Response

HTTP/1.1 201 Created
Content-MD5: df6MtpHeFTI4oChTKxil1A==
Last-Modified: Wed, 10 Jun 2009 05:34:43 GMT
ETag: 0x8CBB7A44AEB70B0
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 7a898dd6-4458-439e-8895-003584810d7c
Date: Wed, 10 Jun 2009 05:34:19 GMT
Content-Length: 0

The Blob service responds with an HTTP/1.1 201 Created status code for a successful blob upload.
Figure 3-13 shows the working of the Put Blob operation in the Windows Azure Storage Operations
application.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

177

Figure 3-13. Put Blob in Windows Azure Storage Operations.exe

As illustrated in Figure 3-13, you can upload a blob to the Blob service from the Windows Azure
Storage Operations application. The steps to upload are as follows:

1. Create a new container (called pictures).

2. Select the new container from the list box.

3. In the Blob section on the right side, under Add Blob, select an image from
your file system.

4. If you wish, rename the file in the Blob Name text field.

5. You can also create a virtual folder structure (such as pictures/toucan.jpg) in
the path name in the Blob Name text field.

6. Select the Put Blob function from the Blob functions list box.

7. Execute the function to upload the blob to the pictures container.

8. Execute the List Blobs function to refresh the blobs list and display the newly
added blob.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

178

To help you understand the programming model of the Put Blob operation, open the Visual Studio
Solution Chapter3Solution.sln from the Chapter 3 source directory. The WAStorageHelper.cs class in the
Windows Azure Storage Operations project consists of several overloaded PutBlob() methods, as shown
in Listing 3-21.

Listing 3-21. PutBlob() Method in WindowsAzureStorage.cs

 public void PutBlob(CloudBlob blob, Byte[] contents)

 {//Upload byte array
 blob.UploadByteArray(contents);
 }

 public void PutBlobFromFile(CloudBlob blob, string fileName)
 {
//Upload file
 blob.Properties.ContentType =
WAStorageHelper.GetContentTypeFromExtension(Path.GetExtension(fileName));
 blob.UploadFile(fileName);
 }

 public void PutBlob(CloudBlob blob, Stream contents)
 {
//Upload Stream
 blob.UploadFromStream(contents);
 }

 public void PutBlob(CloudBlob blob, string contents)
 {
//Upload Text
 blob.UploadText(contents);
 }

Each PutBlob() method represents the type of datasource used for uploading contents to the blob.
You can upload a byte array, stream, file from a local file system and even text content directly to a blob.

Put Block and Put Block List Operations
To upload files larger than 64MB, break the blob into smaller contiguous files (Blocks) that are maximum
of 4MB each, and then upload these blocks using the Put Block operation. You can commit uploaded
blocks to a blob using the Put Block List operation. Before uploading a block, you have to assign a
blockid that is unique within a blob. Blocks in different blobs can have the same blockid because
blockids are unique only within the scope of a blob. You can upload blocks in parallel or in any order, as
long as the Put Block List operation commits all the blocks to a blob in the correct contiguous order. An
uploaded block doesn’t become part of a blob unless it’s committed using the Put Block operation.
Uncommitted blocks are stored for seven days before they’re garbage-collected by the system.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

179

 Note The UploadFromStream() method uses the Put Block method from the REST API. The
CloudBlobClient.WriteBlockSizeInBytes property determines each block size that will be uploaded to the blob
storage. If you uploading larger files (maximum Block blob size is 200GB), you can set
CloudBlobClient.WriteBlockSizeInBytes = 4 MB which is the maximum size per block. Behind the scenes, the
UploadFromStream() method will upload the file in multiple blocks of 4MB.

Ideally, from an end-user perspective, the Put Block operation should be transparent. The
application should upload the blob as contiguous blocks and commit the Blocklist transparently for the
end user. The end user should only be given the status of the blob upload. The StorageClient API
abstracts the Put Block operation from the end user but you can use the REST API directly for uploading
blocks and then committing the blocks to a blob. To test the Put Block and Put Block List operations,
upload an image file larger than 64MB from the Windows Azure Storage Operations application. Listing
3-22 shows four separate REST requests of the Put Block operations to upload a music file R3.mp3 to the
music container.

Listing 3-22. REST Requests for Put Block Operations

PUT /music/Rock/R3.mp3?comp=block&blockid=AAAAAA%3d%3d&timeout=30 HTTP/1.1

x-ms-date: Thu, 11 Jun 2009 04:12:14 GMT
Content-Type: audio/mpeg
If-None-Match: *
Authorization: SharedKey proazurestorage:UE3slooBGXZewrAHTXj7efzdA33ozPoElVs/5NWNoy8=
Host: proazurestorage.blob.core.windows.net
Content-Length: 1048576
Expect: 100-continue

PUT /music/Rock/R3.mp3?comp=block&blockid=AQAAAA%3d%3d&timeout=30 HTTP/1.1

x-ms-date: Thu, 11 Jun 2009 04:12:17 GMT
Content-Type: audio/mpeg
If-None-Match: *
Authorization: SharedKey proazurestorage:BOHjZPkvSN1IZWNJ7VGhrOppe7DAxSvjkV5l6xgGOWQ=
Host: proazurestorage.blob.core.windows.net
Content-Length: 1048576
Expect: 100-continue

PUT /music/Rock/R3.mp3?comp=block&blockid=AgAAAA%3d%3d&timeout=30 HTTP/1.1

x-ms-date: Thu, 11 Jun 2009 04:12:18 GMT
Content-Type: audio/mpeg
If-None-Match: *
Authorization: SharedKey proazurestorage:Fo+V+kdv6cEbBs0CLIMIdQ+lzLfHX7Dit8lqAEkwqeI=
Host: proazurestorage.blob.core.windows.net
Content-Length: 1048576
Expect: 100-continue

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

180

PUT /music/Rock/R3.mp3?comp=block&blockid=AwAAAA%3d%3d&timeout=30 HTTP/1.1

x-ms-date: Thu, 11 Jun 2009 04:12:20 GMT
Content-Type: audio/mpeg
If-None-Match: *
Authorization: SharedKey proazurestorage:uwPvdQyf6RMZOi6fYtVmzlRRZxXu3L1SLvXoTGLpCY8=
Host: proazurestorage.blob.core.windows.net
Content-Length: 909440
Expect: 100-continue

As shown in Listing 3-22, the blob is uploaded in four contiguous blocks. Note the unique blockid of
each REST request.

After uploading blocks to the Blob service, you need to commit them to the blob using the Put Block
List operation. Listing 3-23 shows the REST request for the Put Block List operation to commit the
uploaded blocks to the Rock/R3.mp3 blob.

Listing 3-23. REST Request for the Put Block Operation

PUT /music/Rock/R3.mp3?comp=blocklist&timeout=30 HTTP/1.1
x-ms-date: Thu, 11 Jun 2009 04:12:21 GMT
Content-Type: audio/mpeg
If-None-Match: *
Authorization: SharedKey proazurestorage:OXOlXUegzNFcyuwbIcRSoon/CgB8jAOwrEQaMDFGGlk=
Host: proazurestorage.blob.core.windows.net
Content-Length: 156
Expect: 100-continue

<?xml version="1.0" encoding="utf-8"?>
<BlockList>
<Block>AAAAAA==</Block>
<Block>AQAAAA==</Block>
<Block>AgAAAA==</Block>
<Block>AwAAAA==</Block>
</BlockList>

The blob Rock/R3.mp3 is created when the four blocks in Listing 3-22 are committed by the Put
Block List operation in Listing 3-23. The name of the blob is part of the operation URI, even though the
blob doesn’t exist before Put Block List is executed. The blob is created only after the Put Block List
operation is successfully executed.

Get Blob
The Get Blob operation is used to download the blob contents, its properties, and metadata from the
Blob service. The URI for the Get Blob operation is of the format http://<account
name>.blob.core.windows.net/<container name>/<blob name>. Listing 3-24 shows the REST API request
for the Get Blob operation.

Listing 3-24. Get Blob REST Request

GET /pictures/birds/toucan.jpg?timeout=30 HTTP/1.1
x-ms-date: Thu, 11 Jun 2009 05:14:10 GMT
If-Match: 0x8CBB8550DF72BC0

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

181

x-ms-range: bytes=0-51086
Authorization: SharedKey proazurestorage:EVXgpmvaiEtyJlmBgupxLi2VebXK4XQk6/HsPF903EI=
Host: proazurestorage.blob.core.windows.net

In Listing 3-24, the URI points to the blob birds/toucan.jpg. The If-Match conditional header
instructs the Blob service to check the specified ETag before downloading the blob. The x-ms-range
value represents the range of bytes to be retrieved. This value is usually transparent to the end user; you
can use it to download the blobs in batches of bytes. Listing 3-25 shows the REST API response from the
Blob service for the Get Blob operation.

Listing 3-25. Get Blob REST Response

HTTP/1.1 206 Partial Content
Content-Length: 33624
Content-Type: image/jpeg
Content-Range: bytes 0-51086/51087
Last-Modified: Thu, 11 Jun 2009 02:40:02 GMT
ETag: 0x8CBB8550DF72BC0
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 374e2072-106d-4841-b51c-45f25e9e6596
x-ms-meta-createdBy: tejaswi
Date: Thu, 11 Jun 2009 05:15:21 GMT

Listing 3-25 shows the HTTP header of the Get Blob operation. The HTTP response body consists of
the contents of the blob. Figure 3-14 shows the working of the Get Blob operation in the Windows Azure
Storage Operations application.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

182

Figure 3-14. Get Blob in Windows Azure Storage Operations.exe

As illustrated in Figure 3-14, you can download a blob from the blob service using Windows Azure
Storage Operations. The steps for downloading are as follows:

1. In the Containers list box, select a container (such as pictures) that has blobs.

2. In the Containers section, execute the List Blobs operation to get a list of blobs
in the container (for example, birds/toucan.jpg).

3. Select a blob (such as birds/toucan.jpg) from the Blobs TreeView control.

4. In the Blobs section, execute the Get Blob operation.

5. A Save As dialog box pops up, where you can choose the local folder in which
to store the blob.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

183

6. When you click Save, the blob is stored on your local machine in the specified
folder.

To help you understand the programming model of the Get Blob operation, open the Visual Studio
Solution Chapter3Solution.sln from the Chapter 3 source directory. The WAStorageHelper.cs file in the
Windows Azure Storage Operations project consists of several overloads of the GetBlob() method, some
are shown in Listing 3-26.

Listing 3-26. GetBlob() Method in WindowsAzureStorage.cs

 public void GetBlobContentsAsFileIfModified(string containerName, string blobName, string
fileName)

 {
 CloudBlob blob = GetBlob(containerName, blobName);
 BlobRequestOptions options = CreateIfModifiedOption(blob);
 blob.FetchAttributes();
 try
 {

 blob.DownloadToFile(fileName, options);

 }
 catch (StorageClientException ex)
 {
 if (ex.ErrorCode == StorageErrorCode.BadRequest)
 throw new InvalidOperationException(string.Format("{0} was not downloaded,
since the blob has not been modified.", blobName));
 else
 throw ex;
 }
 }

 public void GetBlobContentsAsStream(string containerName, string blobName, Stream
stream)
 {
 CloudBlob blob = GetBlob(containerName, blobName);

 blob.DownloadToStream(stream);

 }

The GetBlobContentsAsFileIfModified() method downloads the contents of the blob to a file on the
local file system only if the contents of the blob are modified in the Blob storage. The
GetBlobContentsAsStream() downloads the contents of the blob to a stream you can use for further
processing.

 Note The Blob service supports blob concurrency on Get and Put operations via snapshot isolation. A Get Blob
operation sees only a single version of the blob. If the blob is updated during the Get Blob operation, you receive a
“connection closed” error. You can then follow up the error with an If-Modified conditional Get Blob operation.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

184

Copy Blob
The Copy Blob operation is used to copy a source blob and its properties and metadata to a destination
blob within a storage account. If you don’t specify metadata values for the destination blob, then the
source blob metadata values will be copied by default. The URI for the Copy Blob operation is of the
format http://<account name>.blob.core.windows.net/<destination container name>/<destination
blob name>. Listing 3-27 shows the REST API request for the Copy Blob operation.

Listing 3-27. Copy Blob REST Request

PUT /test/birds/toucan-copy.jpg?timeout=30 HTTP/1.1

x-ms-date: Mon, 15 Jun 2009 15:49:56 GMT
x-ms-version: 2009-04-14
x-ms-meta-createdBy: tejaswi

x-ms-copy-source: /proazurestorage/pictures/birds/toucan.jpg

Authorization: SharedKey proazurestorage:FqssEZkcIUjlVrQhH0aLdt+rtEmvgjN0tu9XZO6iRKw=
Host: proazurestorage.blob.core.windows.net
Content-Length: 0

In Listing 3-27, the URI points to the destination blob birds/toucan.jpg in the test container. The x-
ms-version value specifies the version of the Storage REST API to use. The Copy method wasn’t available
in the earlier CTP versions of the Storage REST API; you can use it beginning with version 2009-04-14.
The x-ms-copy-source value specifies the source blob for the copy operation. Listing 3-28 shows the
REST API response from the Blob service for the Copy Blob operation.

Listing 3-28. Copy Blob REST Response

HTTP/1.1 201 Created
Last-Modified: Mon, 15 Jun 2009 15:52:27 GMT
ETag: 0x8CBBBE86B023C10
Server: Blob Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: ee93e063-9256-443b-b6cb-536dd4012863
Date: Mon, 15 Jun 2009 15:51:28 GMT
Content-Length: 0

Listing 3-28 shows the HTTP header of the Copy Blob operation. The HTTP response body is similar
to the Put Blob operation response body you saw earlier in the chapter. Figure 3-15 shows the Copy Blob
operation in the Windows Azure Storage Operations.exe application.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

185

Figure 3-15. Copy Blob in Windows Azure Storage Operations.exe

As illustrated in Figure 3-15, you can copy a blob from a source blob to a destination blob within the
same storage account from Windows Azure Storage Operations. The steps for copying a blob are as
follows:

1. In the Containers list box, select a container (such as pictures) that has blobs.

2. In the Containers section, execute the List Blobs operation to get a list of blobs
in the container (for example, birds/toucan.jpg).

3. Select a blob (such as birds/toucan.jpg) from the Blobs TreeView control.

4. In the Blobs section, enter a name for the destination blob in the Destination
Blob Name text box.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

186

5. Also select a destination container (such as test) for the blob from the
Destination Container Name drop-down list.

6. A Save As dialog box pops up where you can choose the local folder in which to
store the blob.

7. Enter metadata, if any, in the Metadata text fields in the Blob section.

8. Select the Copy Blob operation in the Blob operations list box, and click the
Execute button to execute the Copy Blob operation.

9. The status bar message indicates the success or failure of the operation.

10. You can execute the List Blobs operation on the destination container to see
the copied blob.

To help you understand the programming model of the Copy Blob operation, open the Visual
Studio Solution Chapter3Solution.sln from the Chapter 3 source directory. The WAStorageHelper.cs file
in the Windows Azure Storage Operations project consists of several CopyBlob() overloaded methods.
See Listing 3-29.

Listing 3-29. CopyBlob() Method in WindowsAzureStorage.cs

public CloudBlob CopyBlob(CloudBlob blob, string destinationContainerName, string
destinationBlobName)

 {
 CloudBlobContainer copyContainer = GetBlobContainer(destinationContainerName);
 CloudBlob copyBlob = copyContainer.GetBlobReference(destinationBlobName);
 copyBlob.CopyFromBlob(blob);
 return copyBlob;
 }

 public CloudBlob CopyBlob(CloudBlob blob, string destinationContainerName, string
destinationBlobName, NameValueCollection additionalMetadata)
 {
 //Get a reference to the destination container object
 CloudBlobContainer copyContainer = GetBlobContainer(destinationContainerName);
 CloudBlob copyBlob = copyContainer.GetBlobReference(destinationBlobName);
 copyBlob.CopyFromBlob(blob);
 // we have to do this for now, there is a bug in the SDK where the additional
metadata is not copied.
 copyBlob.Metadata.Add(additionalMetadata);
 copyBlob.SetMetadata();
 return copyBlob;
 }

The first CopyBlob() method copies a blob from source to destination whereas the second method
copies the blob and then sets the metadata of the copied blob.

Now that you have understood the Blob storage concepts in detail, let’s look at how we can set use
the CDN to cache blobs.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

187

Content Delivery Network (CDN)
Content Delivery Network (CDN) is a caching service that caches your blobs and static content from
compute instances at strategic locations closer to the blob consumers. For example, if your media-heavy
web site has media files centrally located in the United States, whereas your users are from all the
continents, then there will be performance degradation for the users in distant locations. Windows
Azure CDN pushes content closer to the users at several data center locations in Asia, Australia, Europe,
South America, and the United States. You can find the current list of CDN locations here:
http://msdn.microsoft.com/en-us/library/gg680302.aspx. So, if you enable your media files on the
Windows blob storage with CDN, they will be automatically available across these locations locally, thus
improving the performance for the users. Currently, the only restriction on enabling CDN is the blob
containers must be public. This makes CDN extremely useful for e-commerce, news media, social
networking, and interactive media web sites.

When you enable a storage account with CDN, the portal creates a unique URL with the following
format for CDN access to the blobs in that storage account: http://<guid>.vo.msecnd.net/.

This URL is different from the blob storage URL format,
http://<storageaccountname>.blob.core.windows.net/, because, the blob storage URL is not designed
to resolve to CDN locations. Therefore, to get the benefit of CDN, you must use the URL generated by
CDN for the blob storage. You can also register a custom domain name for the CDN URL from Windows
Azure Developer Portal.

To enable CDN on a storage account, follow these steps:

1. Go to your Windows Azure Developer Portal storage account.

2. Click on CDN on the left hand side menu.

3. On the top CDN menu, click on New Endpoint.

4. In the New Endpoint window, you can select a hosted service or a storage
account for caching content.

5. Click OK to cache the content in CDN.

6. The portal provides a CDN endpoint to the storage by creating a CDN URL of
the format http://<guid>.vo.msecnd.net/.

You can use the CDN endpoint URL for accessing your public containers. To create a custom
domain name, you can click on the Add Domain button from the top menu and enter the domain name.
The portal will instruct you to create a CNAME record pointing to verify.azure.com.

 Note CDN content can be made available only for public containers and blobs over HTTP and HTTPS. Be
careful while choosing content for caching. If you cache constantly changing data, you may not be able to reap the
benefits of the CDN and will also cost you a lot. Also, you don’t have control over the cache endpoints, means,
based on the user access, the CDN decides which edge cache machine to cache your content on. This may have
cost implications if you have worldwide user base.

You can also enable CDN on hosted services with the following constraints:

http://msdn.microsoft.com/en-us/library/gg680302.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

188

• CDN can only cache static content from the Windows Azure instances.

• The cloud service must be deployed to the production slot and not the staging
slot.

• The cloud service must provide content on port 80 over the HTTP protocol.

• The cloud service must place the content to the /cdn folder on the web
application.

Listing 3-30 shows the code for creating a blob and modifying its cache-control property so that it is
cached in the CDN. The cache-control property decides the time to live for the cached blobs.

Listing 3-30. Creating CDN Blob

 //Create storage credentials.

 StorageCredentialsAccountAndKey credentials = new
StorageCredentialsAccountAndKey("silverliningstorage1",

"m4AHAkXjfhlt2rE2BN/hcUR4U2lkGdCmj2/1ISutZKl+OqlrZN98Mhzq/U2AHYJT992tLmrkFW+mQmz9loIVCg==");

 //Create a storage account instance
 CloudStorageAccount storageAccount = new CloudStorageAccount(credentials, true);

 //Create a new blob client instance
 CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

 //Create a new container instance
 CloudBlobContainer container = blobClient.GetContainerReference("mycdn");
 //Create the container if it does not exist
 container.CreateIfNotExist();

 //Specify that the container is publicly accessible. This is a requirement for CDN
 BlobContainerPermissions containerPermissions = new BlobContainerPermissions();
 containerPermissions.PublicAccess = BlobContainerPublicAccessType.Container;
 container.SetPermissions(containerPermissions);

 //Create a new blob
 CloudBlob blob = blobClient.GetBlobReference("mycdn/mytestblob.txt");
 blob.UploadText("My first CDN Blob.");

 //Set the Cache-Control header property of the blob and specify your desired
refresh interval (in seconds).

 blob.Properties.CacheControl = "public, max-age=30036000";

 blob.SetProperties();

After you have created the Blob, you can access it from your browser using the public URL
 http://[your CDN GUID].vo.msecnd.net/mycdn/mytestblob.txt
A few points to note about the CDN are:

• Your content is pushed to the edge cache only on first request.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

189

• You will be charged for content cached on all the nodes.

• You cannot choose specific edge cache nodes to cache the content to, your
content will be cached based on end-user requests.

Make sure you do due diligence on your end-user access points and perform a pricing exercise in
early stages of development.

 Note You can also stream blob contents to a video or music play. I recommend the following articles:

Smooth Streaming Video from Blob Storage msdn.microsoft.com/en-us/realdevelopment/hh285879

Adaptive Streaming with Windows Azure Blobs and CDN – By Steve Marx blog.smarx.com/posts/smooth-
streaming-with-windows-azure-blobs-and-cdn

Windows Azure Drives
Windows Azure Drive provides durable NTFS volumes for your applications running in Windows Azure.
Windows Azure Drives can only be mounted in role instances running in Windows Azure or in the
Windows Azure local simulation environment. You cannot attach a Windows Azure Drive to your local
machine and share it with Windows Azure instances. Windows Azure Drives, once mounted on to
Windows Azure role instances, can be accessed as regular NTFS volumes from the cloud applications
running on those role instances. In this section, I will cover Windows Azure Drives in detail and show
you some examples for leveraging them in your code.

Overview
With mounted Windows Azure Drives, you can access the files system on the drive by referencing drive
letters like Z:\ in your applications. You can perform most of the read and write file system operations
like creating and reading files and folders. Windows Azure Drives are actually NTFS formatter VHD files
stored in the Blob storage as Page Blobs. Page Blob has a maximum size limit of 1TB, and therefore the
maximum size of a Windows Azure Drive cannot exceed 1TB. The Windows Azure team has written
drivers that are installed on the role instances. These drivers expose the VHDs from Blob storage as
drives when mounted using the Microsoft.WindowsAzure.CloudDrive API. When you perform write
operations on a mounted Windows Azure Drive, the non-buffered data is written to the drive and is
persistent across system reboots. This means that even if your role instance crashes, the data on the
drive remains persisted to the VHD in Blob storage. You can access that data back after mounting the
drive again to the new role instance. Windows Azure Drives also support caching of data locally on the
role instance for improving reads. The cache size is specified through configuration and API while
mounting the drive and it takes up the local drive space allocated to the role instance based on its size.
Therefore, the drive cache cannot exceed the size of the local drive space. Each size of the virtual
machine instance has a different local storage limit, therefore while designing your application; you
should choose the size of your VM instance that fits your caching needs. You can also reduce the Blob
service transaction cost by caching the data on local drive. One thing to be aware of is the cache does not

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

190

proactively cache data on the local drive. It caches the data when you first access it. Therefore, the first
call to the data may be much slower than any subsequent calls.

Drive Operations
The API for Windows Drives operations are available in the Microsoft.WindowsAzure.CloudDrive.dll in
the class CloudDrive. All the drive specific operations can be performed using the CloudDrive class. But,
because the drive itself is a Page Blob, you can modify some of the Page blob properties using the
CloudBlob class. Figure 3-16 shows the class diagram for classes and enumerations from the
Microsoft.WindowsAzure.Cloud.dll assembly.

Figure 3-16. CloudDrive class

The CloudDrive class supports Create, Delete, Mount, Snapshot, Copy, and Unmount methods. You
can call these methods only from a Windows Azure instance running in the local development fabric or
the Windows Azure cloud. The InitializeCache() function initializes the cache on the local machine. To
leverage the local cache, you need to first create a LocalStorage entry in the configuration with sufficient
size. The cache consumes space from the total disk space available for the instance. Multiple cached
drives will consume space from the total disk space available for the instance. Therefore, it is important
to choose the right role instance type (i.e., Extra Small, Small, Medium, Large, and Extra Large) when you
consider caching the drive data on local disk. Figure 3-17 illustrates the typical life cycle of a Windows
Azure Drive.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

191

Figure 3-17. Life cycle of a Windows Azure Drive

The typical life cycle of a Windows Azure Drive is comprised of the following steps.

1. Creating a Drive: During this step, you either create a VHD locally or create a
VHD directly from your Windows Azure role instance by calling the
CloudBlob.Create() method from your role instance.

2. Uploading a Drive: If you created a drive locally, it needs to be uploaded to the
Blob storage as a Page Blob to be visible to the Windows Azure role instances.

3. Mounting a Drive: Once a drive is available in the Blob storage, you can mount
the drive from any Windows Azure role instance by calling the
CloudDrive.Mount() method. The cloud drive operating system driver tries to
acquire an exclusive access lease on the Page Blob representing the drive. If
the lease succeeds, the drive will be mounted to a drive letter. One Page Blob
drive can be mounted once and only once in a role instance for write access. A
role instance can mount up to 16 drives.

4. Working with a Drive: After a drive is mounted, you will receive a drive letter
that you can use to read and write data to the drive. It is recommended to geo-
locate the drive’s Page Blob in the same Windows azure datacenter as the role
instance mounting it. This will improve performance and you don’t have to
pay data transfer costs.

5. Snapshotting a Drive: You can take snapshot of a drive by calling the
CloudDrive.Snapshot() method on an already mounted drive. Snapshot
creates a readonly copy of the mounted drive. You can mount a snapshot to
any number of role instances for readonly access. You cannot write to a drive

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

192

snapshot. I have used this functionality in high-scale compute architectures
where a large amount of same input data is needed by multiple role instances
running high performance calculations. These instances do not modify the
input data but create a new set of output data which can be stored separately
in Blob storage. You can create a writeable drive from a snapshot by calling the
CloudDrive.Copy() method on the snapshot.

6. Copying a Drive: The CloudDrive.Copy() method allows you to create a
writable copy of a snapshot or an unmounted drive. You can then mount the
copy to another role instance. You cannot create a copy of a mounted drive,
therefore, common pattern is to create a snapshot of a mounted drive, then
create a copy and then delete the snapshot.

7. Unmounting a Drive: You can Unmount a drive from a role instance by calling
the CloudDrive.Unmount() method. This will free the drive from the role
instance and release the exclusive lock it had acquired during the Mount()
operation.

Next, I will go into the details of each step of the drive’s life cycle with an example.

Creating a Drive Locally
If you have Windows 7, you can use the Disk Management utility “diskmgmt.msc” utility for creating
Fixed Size VHDs as shown in Figure 3-18. The following steps show you how:

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

193

Figure 3-18. Creating a Fixed Size VHD in Windows 7

1. Initialize the disk: Once you create a disk, you can right-click on the disk and
click select “Initialize Disk.” This will mount the drive Figure 3-19.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

194

Figure 3-19. Initialize Disk

2. Next, create a new simple volume and format the disk in NTFS.

3. The drive gets mounted and you should see the volume created in the Disk
Management console and also in Windows Explorer, as shown in the Figure 3-
20.

Figure 3-20. Drive mounted locally

4. You can then copy files to the drive, as shown in Figure 3-21.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

195

Figure 3-21. Copy files to local drive

5. After you are done copying files to the drive, detach the drive from the Disk
Management. See Figure 3-22.

Figure 3-22. Detach the drive

 Note Only Fixed Size VHDs are supported in Windows Azure Drives.

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

196

Uploading a Drive
A VHD disk can be uploaded to the Blob storage as a Page Blob. In this example, I have used Andy
Edward’s5 vhdupload.exe program for uploading the drive to Blob storage. The source code for the
vhdupload.exe is available in the Ch3Solution.sln Visual Studio solution. The usage for vhdupload.exe is
Vhdupload.exe <local file> < blob url> <keyfile>

Create a key file named storagekey.txt and copy your storage key in the file. Next, use the command
as shown in the following:

vhdupload.exe myfirstdrive.vhd
http://silverliningstorage1.blob.core.windows.net/drives/myfirstdrive.vhd storagekey.txt

In this example, I have a public container named drives and I am uploading the drive
myfirstdrive.vhd to that container. Silverliningstorage1 is the name of my storage account.

Mounting a Drive
After the drive completes uploading, you can then mount the drive using the Mount() function, as shown
in Listing 3-31.

Listing 3-31. Mount Drive

StorageCredentialsAccountAndKey credentials =
 new StorageCredentialsAccountAndKey("silverliningstorage1", storageAccountKey);
CloudDrive drive = new CloudDrive(blobURI, credentials);
drive.Mount(100000, DriveMountOptions.None);

 Note You must run the Mounting operations in a Windows Azure role because the functions are not applicable on your

local machine because the drives will be mounted on your Windows Azure instances and not on your local machine.

Creating and Mounting a Drive from a Role Instance
You can also create a drive and then mount a drive from the role instance. In this scenario, you don’t
have to upload a drive from your local machine. The CloudDrive.Create() function creates the drive as a
Page Blob in the specified Blob storage account. Listing 3-32 shows the code for creating and mounting
the drive in the same code segment.

5 Using Windows Azure Page Blobs and How to Efficiently Upload and Download Page Blobs,
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/04/11/using-windows-azure-page-blobs-
and-how-to-efficiently-upload-and-download-page-blobs.aspx

http://silverliningstorage1.blob.core.windows.net/drives/myfirstdrive.vhd
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/04/11/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/04/11/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/04/11/using-windows-azure-page-blobs-and-how-to-efficiently-upload-and-download-page-blobs.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

197

Listing 3-32. Creating and Mounting a Drive from a Role Instance

// Create a storage account object
 StorageCredentialsAccountAndKey credentials =
 new StorageCredentialsAccountAndKey("silverliningstorage1", storageAccountKey);

 try
 {
 CloudDrive.InitializeCache(localCache.RootPath,
 10000);
 CloudDrive drive = new CloudDrive(BlobURI, credentials);

 drive.Create(sizeOfDrive);

 string driveLetter = string.Empty;

 driveLetter = drive.Mount(cacheSize, DriveMountOptions.None);

 }
 catch (CloudDriveException ex)
 {

 throw ex;
 }

In Listing 3-24, the InitializeCache() function initializes the local cache for caching data from the
drive. A new Page Blob is created for the drive in the specified URI. The URI may include a container that
already exists in your Blob storage. Note that the size of the cache is specified during mounting of the
drive.

 Note When creating a drive using Blob URI, you can specify Shared Access Signature within the URI and pass
null as credentials. You can create a granular security scheme at the Blob level.

Snapshotting a Drive
Snapshotting a drive creates a read-only copy of the drive. Listing 3-33 shows the listing of a function
named SnapshotAzureDrive() available in ProAzureCmmonLib Visual Studio project.

Listing 3-33. Snapshotting a Drive

 public static string SnapshotAzureDrive(string accountName, string accountKey, string
azureDriveContainerName, string azureDrivePageBlobName)
 {

 try
 {
 CloudStorageAccount csa = WAStorageHelper.GetCloudStorageAccount(accountName,
accountKey, false);

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

198

 // Create the blob client

 CloudBlobClient client = csa.CreateCloudBlobClient();
 // Create the blob container which will contain the pageblob corresponding to
the azure drive.
 CloudBlobContainer container =
client.GetContainerReference(azureDriveContainerName);
 container.CreateIfNotExist();

 // Get the page blob reference which will be used by the azure drive.
 CloudPageBlob blob = container.GetPageBlobReference(azureDrivePageBlobName);
 CloudDrive drive = new CloudDrive(blob.Uri, csa.Credentials);
 if (drive != null)
 {
 return drive.Snapshot().ToString();
 }
 }
 catch (Exception ex)
 {
 WindowsAzureSystemHelper.LogError(String.Format("Error in snapshot drive {0}
- {1}", azureDrivePageBlobName, ex.Message));

 }

 return string.Empty;

 }

Similar to the Mount() and Snapshot() methods, you can call the Unmount() method to unmount
the drive from the compute instance. The CopyTo() method copies the data from a Windows Azure drive
to a page blob. Next, let’s look at some of the Windows Azure Drive scenarios.

 Note The Windows Azure Storage team has written a blog post on sharing Windows Azure drives via SMB with
multiple role instances. I recommend you to run this sample for understanding the possibilities of using Windows
Azure Drives in your solution. blogs.msdn.com/b/windowsazurestorage/archive/2011/04/16/using-smb-to-
share-a-windows-azure-drive-among-multiple-role-instances.aspx

Windows Azure Drives Scenarios
Windows Azure Drives can be created, mounted, copied and unmounted at run time. This give you the
ability to leverage drives in several different scenarios as described here:

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

199

• Data storage for third-party applications: The new startup tasks with elevated
features enable you to deploy even third-party applications in the cloud. Some of
these applications have a pre-defined file storage structure or requires storage
capacity in the cloud. Data stored on the local drive may get lost in case of
instance failure. Storing this data on a drive will ensure that the data is persisted in
the Blob storage and can be accessed anytime by a role instance by mounting it.

• Readonly data storage for high-scale compute scenarios: In typical high-scale
compute scenarios, a large input dataset is made available to compute nodes for
processing and generating results which are then persisted to file-base storage or a
database. Usually, the input data is made available using file storage. High-scale
compute scenarios are a sweet spot for Windows Azure, because you can
dynamically scale up and scale down your system based on the input data load. In
this scenario, you can upload the large input dataset in a Windows Azure Drive,
then take a snapshot of that drive and publish the snapshot to multiple worker
role instances for processing the data. Figure 3-23 illustrates the steps involved in
publishing snapshot drives to multiple worker role instances.

Figure 3-23. Using drive in Windows

In Figure 3-23, the Master Drive Manager is a Worker Role with external web service endpoints for
writing data to mounted drives. Client applications call these web service methods for writing data to the
MyDisk mounted drive. Whenever desired, the client applications can request a snapshot of the drive.
The snapshot of the drive is then mounted on high-scale compute worker role instances for processing

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

200

the data uploaded to the drive. In this architecture, you can only upload the data differences to MyDisk
and control the publishing of the data to high-scale compute nodes. This architecture can also work in
data back-up scenarios where data is continuously pushed to the disk in the cloud and periodic
snapshots are taken by an automated process. The risk in this architecture is the exposure of Master
Drive Manager as a single point of failure. This can be mitigated by designing the following:

• Writing a monitoring package to restart the Master Drive Manager in case of a
failure

• Creating a near real time copy of MyDisk by first taking a snapshot, then copying
the snapshot to a writable drive and mounting the drive to another worker role
instance for redundancy

You can then route the load-balanced requests from secondary to primary because sticky sessions
are not available in Windows Azure load-balancers.

In case the primary node fails, you can promote secondary to primary. Of course, you have to
maintain heart-beat between the primary and secondary instances for detecting these failures.

 Note In one of the real-world applications, I have used a similar pattern for storing data for Intex software
(http://www.intex.com/main/solutions_software.php). The Intex software runs on one of the Windows Azure
VM Roles and receives data updates directly from Intex. The Intex software is unaware that it is writing to a
Windows Azure drive instead of a locally mounted physical drive. After the data is updated, the snapshot of the
drive is published to multiple role instances for financial data processing.

Blob Storage Scenarios
In this section, I have listed some commonly seen Blob Storage scenarios.

Massive Data Uploads
When you are migrating applications to Windows Azure, one important recommendation I have for you
is to architect the data migration to early on during the planning phase of the project. Applications are
easier to migrate, but massive data upload takes time. This is specifically true for media applications.
The data uploads are limited by the bandwidth you experience from your datacenter to Windows Azure
datacenters. Listed in the following are some recommendations for uploading massive data to Windows
Azure Blob storage:

• Calculate the throughput you receive from your local machines to Windows Azure
datacenters using the Azure Throughput Analyzer from Microsoft Research
(http://research.microsoft.com/en-us/downloads/5c8189b9-53aa-4d6a-a086-
013d927e15a7/default.aspx).

• Architect appropriate parallelism in your data upload application.

• Split the data into sets and then upload each set independently via parallel threads
or processes.

http://www.intex.com/main/solutions_software.php
http://research.microsoft.com/en-us/downloads/5c8189b9-53aa-4d6a-a086-013d927e15a7/default.aspx
http://research.microsoft.com/en-us/downloads/5c8189b9-53aa-4d6a-a086-013d927e15a7/default.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

201

• Keep a log of uploaded data and backlog to track progress of the data upload
across all the parallel operations.

• Leverage CDNs for uploading data.

• I also recommend approaching your nearest Microsoft Technology Center (MTC)6
for uploading your data, because they have better network connections to
Microsoft datacenters.

Figure 3-24 shows the result of one test I performed using the Azure Throughput Analyzer.

Figure 3-24. Azure Throughput Analyzer

Storage as a Service in the Cloud
Storage as a Service stores enterprise data in the cloud. Depending on the maturity of the cloud service
provider and the type of enterprise data, several services like data backup, application backup and file
synchronization are possible. For example, recently one of the larger Windows Azure customers
uploaded their Windows 7 operating system images as blobs over CDN for deploying Windows 7 to all
the enterprise desktops quickly and efficiently across the world. Now you may wonder, CDN does not
offer blob security, wasn’t the images open over the internet? The security requirement of a Windows 7
image file is very low because the images were deployed without activation keys. So, they were like
downloading trial versions of Windows 7 from Microsoft’s web site.

For designing enterprise storage as a service in the cloud, I recommend the prerequisites covered in
the following sections.

6 Microsoft Technology Centers: http://www.microsoft.com/mtc/default.mspx

s

http://www.microsoft.com/mtc/default.mspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

202

Integration with Your Enterprise Domain Accounts
A single shared key access to the storage gives too much power to the end-user. Therefore you need to
have a Web or a Worker role façade managing role-based security by federating with your identity
management system. The façade role is the only application that has access to the shared storage key.

 Note I have covered federation with identity providers in Chapter 7.

Figure 3-25 illustrates the role façade pattern for managing enterprise user access to the blob
storage.

Figure 3-25. Role Façade over Blob storage

Storage Taxonomy Design
Designing the storage service for randomly storing enterprise data into the blob storage is going to turn
into a maintenance nightmare. Have appropriate governance and management of the data in an
organized manner is extremely important for optimizing your Blob storage usage. The first step towards
a well-managed storage service is designing an extensible taxonomy of the data that will last for years to
come. Remember that eventually the storage service will replace your storage area network (SAN). As a

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

203

recommendation, closely align the Blob storage taxonomy to your organization structure. This means
you can allocate Blob storage by functional units and isolate them for maintenance. This will also help
you create localized storage accounts in Asian datacenters for offices in Asia and align them back to the
headquarter storage accounts.

Encryption and Decryption
For some of the sensitive data, encryption is required by enterprise IT. Windows Azure Blob storage does
not provide you with encryption capabilities within the platform, therefore you have to encrypt and
decrypt the data using your own encryption keys. One of the drawbacks of encrypting data is that it
cannot be indexed because the search crawlers do not decrypt the data. For storing encrypted data in
Blob storage, you can use any popular encryption technique: symmetric or asymmetric. In encryption
architecture, the key management is the most important piece of the puzzle. The owner of the key is
liable for the security of the key itself.

Enterprise File Sync
If you have ever used Windows Live Sync or Dropbox, you know the convenience these tools offer to
consumers for synchronizing data not only between your machine and the cloud, but also from your
machine to another group of machines. Offering a similar service within an enterprise will provide
significant benefits in productivity. Imagine enterprise users do not have to worry about backing up
their files because the enterprise file sync will automatically synchronize their files into Windows Azure
Blob storage and also take periodic backups of the files right into the cloud. For designing Enterprise File
Sync architecture, some of the software components that you may want to consider are the following:

• Microsoft Sync Framework 4.0 (http://msdn.microsoft.com/en-
us/sync/default.aspx) for developing an end-to-end file synchronization
application between your enterprise and Windows Azure.

• SQLAzure Data Sync (http://www.microsoft.com/en-us/sqlazure/datasync.aspx)
for maintaining the relational data for the Enterprise Sync application.

• Windows Azure AppFabric Access Control (http://msdn.microsoft.com/en-
us/library/ee732536.aspx).

Figure 3-26 illustrates a high-level diagram of a sample Enterprise File Sync service running in
Windows Azure.

http://msdn.microsoft.com/en-us/sync/default.aspx
http://msdn.microsoft.com/en-us/sync/default.aspx
http://msdn.microsoft.com/en-us/sync/default.aspx
http://www.microsoft.com/en-us/sqlazure/datasync.aspx
http://msdn.microsoft.com/en-us/library/ee732536.aspx
http://msdn.microsoft.com/en-us/library/ee732536.aspx
http://msdn.microsoft.com/en-us/library/ee732536.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

204

Figure 3-26. Enterprise File Sync

There are several interesting Blob scenarios that I would have loved to cover in this book, but had to
stop here in the interest of space. These scenarios include Media Streaming, Disaster Recovery Data
Repository, Application Store Repository, and Storing mobile applications and data.

 Note In Windows Azure 1.5 SDK release, cross-region data replication was announced for the Windows Azure
Storage service. This replication occurs automatically behind the scenes without any user intervention. You can
find more information about 1.5 SDK release here:
blogs.msdn.com/b/windowsazurestorage/archive/2011/09/16/windows-azure-storage-at-build-2011-

geo-replication-and-new-blob-table-and-queue-features.aspx

CHAPTER 3 WINDOWS AZURE STORAGE PART 1 – BLOBS AND DRIVES

205

Summary
The Blob service is a scalable and highly available cloud storage designed to store any kind of file. It has a
REST API that you can use to program applications against. You can use Blob storage from any kind of
client that supports REST interactions. For Windows Azure compute applications, the Blob storage offers
a great unstructured storage for storing just about any kind of file or even serialized objects. The
Windows Azure SDK also provides a local Blob service emulator on top of local SQL Server Express. You
can use the Windows Azure Storage Operations.exe application for testing Blob service scenarios. By
reading this chapter, I hope you have gained enough knowledge for building your own Blobs and Drive
applications. In In the next chapter, I cover Windows Azure queues.

Bibliography
MSDN. (n.d.). ADO.NET Data Services Specification. Retrieved from MSDN Developer’s Network:

http://msdn.microsoft.com/en-us/library/cc668808.aspx.

MSDN. (2009, May). Windows Azure Blob — Programming Blob Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153400.

MSDN. (2009, May). Windows Azure Queue — Programming Queue Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153402.

MSDN. (2009, May). Windows Azure SDK. Retrieved from MSDN: http://msdn.microsoft.com/en-

us/library/dd179367.aspx.

MSDN. (2009, May). Windows Azure Table — Programming Table Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153401.

http://msdn.microsoft.com/en-us/library/cc668808.aspx
http://go.microsoft.com/fwlink/?LinkId=153400
http://go.microsoft.com/fwlink/?LinkId=153402
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://go.microsoft.com/fwlink/?LinkId=153401

C H A P T E R 4

207

Windows Azure Storage
Part II – Queues

The Windows Azure Queue service is an Internet-scale message queuing system for cross-service
communications. Even though the service is called a queue, the messages aren’t guaranteed to follow
the First In First Out (FIFO) pattern. The design focus of the Queue service is on providing a highly
scalable and available asynchronous message communication system that’s accessible anywhere,
anytime. The Queue service is not a replacement for your on-premises Microsoft Message Queuing
(MSMQ), because it lacks some of the features like transactional messaging, distributed transactions,
and integration with domain security. But, most of the applications that do not use these MSMQ features
should be able to replace it by the Queue service with minor modifications. The Queue service provides
a REST API for applications to use the large-scale Queue service infrastructure. If you want to build an
application that is agnostic to the type of queuing system it uses, you should build an abstraction layer
using interface contracts and then let the implementation decide the type of queue. In real-world
programming, you should always start with interfaces whether you have multiple implementations or
not.

The Queue service is scoped at the account level. So, when you create an account on the Azure
Services Developer Portal, you get access to the Queue service. Figure 4-1 illustrates the Management
Portal page for the storage account that I created in the previous chapter and URL endpoint for the
Queue service.

Figure 4-1. Queue endpoint URL

The account endpoint for the Queue service is <account name>.queue.core.windows.net, where
<account name> is the unique name you created for your storage account. The secret key associated
with the account provides security for accessing the storage account. You can use the secret key to create
a Hash-based Message Authentication Code (HMAC) SHA256 signature for each request. The storage
server uses the signature to authenticate the request.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

208

 Note HMAC is a message-authentication code calculated from the secret key using a special cryptographic
hash function like MD5, SHA-1, or SHA256. The Windows Azure Storage service expects the SHA256 hash for the
request. SHA256 is a 256-bit hash for the input data.

Queue Limitations and Constraints
Even though the Queue service provides a scalable and highly available infrastructure for asynchronous
message communications in the cloud, it has some limitations and constraints that are important to
understand before diving deep into architecture and programming. The limitations of the Queue service
are as follows:

• The Queue service supports an unlimited number of messages, but individual
messages in the Queue service can’t be more than 64KB in size. If your object is
larger than 64KB, you can store the actual object in Blob or Table storage and just
send the link as a queue message.

• The FIFO behavior of the messages sent to the Queue service isn’t guaranteed.

• Messages can be received in any order.

• The Queue service doesn’t offer guaranteed-once delivery. This means a message
may be received more than once.

• Messages sent to the Queue service can be in either text or binary format, but
received messages are always in the Base64 encoded format.

• The expiration time for messages stored in the Queue service is seven days. After
seven days, the messages are garbage-collected. Therefore, don’t use Queue
service as a permanent storage solution. Use Blob or Table storage for permanent
storage.

 Caution Do not expect Windows Azure Queues to deliver same performance as MSMQ or any other on-
premises queuing system because the access protocol is still HTTP. HTTP(S) is a text-based protocol and not
optimized for high-performance remote method invocations. The Windows Azure AppFabric may provide you with
better performance options than Windows Azure queues. Windows Azure queues do offer highly available queues
for light-weight communications.

Queue Service Architecture
The Queue service architecture consists of a three-level hierarchy: accounts, queues, and messages, as
shown in Figure 4-2.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

209

Figure 4-2. Queue service architecture

Your Windows Azure storage account is the entry point to the Queue service via the REST API.

 Note In Windows Azure 1.5 SDK, some new features were announced to the Queue service like, larger
message sizes (64KB instead of 8KB), message lease extension, and message update. You can find more
information on the new features here:
blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/windows-azure-queues-improved-leases-

progress-tracking-and-scheduling-of-future-work.aspx

Windows Azure Storage Account
The URI scheme for accessing the Queue service via your storage account is

<http|https>://<account name>.queue.core.windows.net

where <account name> is the unique name you created for your storage account. The <account name>
must be globally unique.

For example, the Queue service for the storage account that I created in the previous chapter can be
referenced as

<http|https>://proazurestorage.queue.core.windows.net

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

210

Queues
A queue is a logical destination for sending messages. There can be any number of queues in an account
in the Queue service. A queue stores messages and makes them available to applications via the REST
API. Queues can have metadata in the form of name-value pairs up to 8KB in size per queue. The Queue
service support only private access; that means you need to have account privileges in order to access
queues in a Queue service.

You can access a queue using the URI

<http|https>://<account name>.queue.core.windows.net/<queue name>

where <queue name> is the name of the queue you want to access.
For example, if you create a queue named logsqueue in the proazurestorage account, you can

reference it using the following URI:

<http|https>://proazurestorage.queue.core.windows.net/logsqueue

The naming constraints for a queue are as follows:1

• The queue name must be a valid DNS name.

• Queue names must be unique within an account.

• Queue names must start with a letter or a number.

• Container names can’t contain any special characters other than the dash (-)
character.

• The dash (-) character must be immediately followed by a character or a number.

• All the characters in the queue name must be lowercase.

• Queue names can’t be less than 3 or more than 63 characters in length.

If a queue name or the URI violates the naming convention, an HTTP status code 400 (Bad Request)
is returned by the server.

Messages
Messages are stored in queues. There is no limit to the number of messages that can be stored in a
queue, but the size of each individual message can’t exceed 8KB. To communicate large object
messages, you can put the large object in a Blob and then send the URI of that object as a message to a
queue.

When you send a message, it can be in either text or binary format; but when you receive a message
from the queue, it’s always in Base64-encoded format. A GUID MessageID assigned by the Queue
service uniquely identifies a message in the queue.

A message has the following attributes:

• MessageID – Uniquely identifies a message in a queue and is created by the
Queue service when you send the message to the Queue service.

1Source: Windows Azure SDK documentation

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

211

• PopReceipt – An attribute of the message used for deleting or popping the
message out from the queue.

• Visibilitytimeout – An integer value representing the visibility of the message in
seconds after it’s received by a receiving application. The default visibilitytimeout
value is 30 seconds, which means that after a message is received, it remains
invisible to other applications for 30 seconds (unless it’s deleted by the receiving
application). The maximum visibilitytimeout value is two hours. The
visibilitytimeout value is passed to the Queue service while a message is being
retrieved from a queue. From the message receiver, you can control the visibility
timeout in such a way that processing of the message is completed within the
visibility timeout period, which includes deleting the message from the queue. If
the processing is not complete and message not explicitly deleted within the
visibility timeout period, the system will assume that the processing failed and the
message will be visible again in the queue for other receivers to process.

• Messagettl – An integer value representing the time-to-live value in seconds.
When you send a message to a queue, you can specify the messagettl, which
instructs the Queue service to keep the message only for the specified number of
seconds. The default value for messagettl is seven days. That means if you don’t
specify a messagettl value, the Queue service keeps the message for seven days
before it’s garbage-collected.

You can access messages in a queue using this URI

<http|https>://<account name>.queue.core.windows.net/<queue name>/messages

where <queue name> is the unique name of the queue within the scope of the account specified in the
URI, and messages is a constant string representing all the messages in the specified queue. For
example, if you create a queue named logsqueue, you can get messages from it by calling the following
URI:

<http|https>://proazurestorage.queue.core.windows.net/logsqueue/messages

REST API
The REST API for the Queue service is available at the account, queue, and message levels. In this
section, you learn about the Queue service REST API with specific examples. You also learn to interact
with the Queue service programmatically, and you explore the queue methods in the available storage
client libraries.

The REST API enables you to make HTTP calls to the Queue service and its resources. REST is an
HTTP-based protocol that lets you specify the URI of the resource as well as the function you want to
execute on the resource. Every REST call involves an HTTP request to the storage service and an HTTP
response from the storage service.

Request
The Queue service REST API’s HTTP request components are described in the following sections.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

212

HTTP Verb
The HTTP verb represents the action or operation you can execute on the resource indicated in the URI.
The Queue service REST API supports the following verbs: GET, PUT, POST, HEAD, and DELETE. Each
verb behaves differently when executed on a different resource.

Request URI
The request URI represents the URI of a resource you’re interested in accessing or executing a function
on. Example resources in the Queue service include accounts, queues, and messages. An example URI
for creating a queue named logsqueue in an account named proazurestorage is

PUT http://proazurestorage.queue.core.windows.net/logsqueue

The HTTP verb PUT instructs the service to create the queue, and the URI points to the resource that
needs to be created.

URI Parameters
The URI parameters are the extra parameters you specify to fine-tune your operation execution. They
may include operation parameters or filter parameters for the results. In the Queue service API, the URI
parameters depend on the type of resource and the HTTP verb used. For example, a URI for retrieving a
list of queues from an account looks like this:

GET http://proazurestorage.queue.core.windows.net/?comp=list

The HTTP verb GET instructs the Queue service to retrieve results, and the parameter ?comp=list
specifies that the data requested is a list of queues.

Request Headers
Request headers follow the standard HTTP 1.1 name-value pair format. Depending on the type of
request, the header may contain security, date/time, metadata, or instructions embedded as name-value
pairs. In the Storage service REST API, the request header must include the authorization information
and a Coordinated Universal Time (UTC) timestamp for the request. The timestamp can be in the form
of either an HTTP/HTTPS Date header or the x-ms-Date header.

The authorization header format is as follows:

Authorization="[SharedKey|SharedKeyLite] <Account Name>:<Signature>"

Where SharedKey|SharedKeyLite is the authentication scheme, <Account Name> is the storage service
account name, and <Signature> is an HMAC of the request computed using the SHA256 algorithm and
then encoded by using Base64 encoding.

To create the signature, follow these steps:

1. Create the signature string for signing. The signature string for the Storage
service request consists of the following format:

VERB\n
Content - MD5\n
Content - Type\n

http://proazurestorage.queue.core.windows.net/logsqueue
http://proazurestorage.queue.core.windows.net/?comp=list

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

213

Date\n
CanonicalizedHeaders
CanonicalizedResource

where VERB is the uppercase HTTP verb such as GET, PUT, and so on; Content
— MD5 is the MD5 hash of the request content; CanonicalizedHeaders is the
portion of the signature string created using a series of steps described in the
“Authentication Schemes” section of the Windows Azure SDK documentation
(http://msdn.microsoft.com/en-us/library/dd179428.aspx); and
CanonicalizedResource is the storage service resource in the request URI. The
CanonicalizedResource string is also constructed using a series of steps
described in the “Authentication Schemes” section of the Windows Azure SDK
documentation.

2. Use the System.Security.Cryptography.HMACSHA256.ComputeHash()
method to compute the SHA256 HMAC-encoded string.

3. Use the System.Convert.ToBase64String() method to convert the encoded
signature to Base64 format.

Listing 4-1 shows an example request header that sets the metadata values of a queue.

Listing 4-1. Request Header

PUT /myfirstazurequeue?comp=metadata&timeout=30 HTTP/1.1
x-ms-date: Wed, 17 Jun 2009 04:33:45 GMT
x-ms-meta-createdBy: tejaswi
x-ms-meta-creationDate: 6/16/2009
Authorization: SharedKey proazurestorage:
 spPPnadPYnH6AJguuYT9wP1GLXmCjn0I1S6W2+hzyMc=
 Host: proazurestorage.queue.core.windows.net
Content-Length: 0

In Listing 4-1, the request header consists of x-ms-date, x-ms-version, x-ms-[name]:[value], and
Authorization values. x-ms-date represents the UTC timestamp, and x-ms-version specifies the version
of the storage service API you’re using. x-ms-version isn’t a required parameter, but if you don’t specify,
you have to make sure the operation you’re calling is available in the default version of the Queue
service. Before making the REST call, be sure you match the operation you’re calling with the API version
it’s supported in. It’s always safe to match the operation with the version to get the expected results. The
x-ms-meta values represent the queue metadata name-value pairs the operation should set. The last
header value is the Authorization SharedKey used by the Storage service to authenticate and authorize
the caller.

 Note Unlike the Blob service REST API, the Queue service REST API doesn’t support HTTP 1.1 conditional
headers.

http://msdn.microsoft.com/en-us/library/dd179428.aspx

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

214

Request Body
The request body consists of the contents of the request operation. Some operations require a request
body and some don’t. For example, the Put Message operation request body consists of the message
data in XML format, whereas the Get Messages operation requires an empty request body.

Response
The HTTP response of the Queue service API typically includes the following components.

Status Code
The status code is the HTTP status code that indicates the success or failure of the request. The most
common status codes for the Queue service API are 200 (OK), 201 (Created), 204 (No Content), 400
(BadRequest), 404 (NotFound), and 409 (Conflict).

Response Headers
The response headers include all the standard HTTP 1.1 headers plus any operation-specific headers
returned by the Queue service. The x-ms-request-id response header uniquely identifies a request.
Listing 4-2 shows an example response header for a List Queues operation.

Listing 4-2. List Queues Response Header

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: ccf3c21c-7cca-4386-a636-7f0087002970
Date: Tue, 16 Jun 2009 04:47:54 GMT

Response Body
The response body consists of data returned by the operation. This data is specific to each operation. For
example, the List Queues operation returns the list of queues in an account, whereas the Get Messages
operation returns the messages in a queue. Listing 4-3 shows an example of the response body for a List
Queues operation. The response contains four queues.

Listing 4-3. List Queues Response Body

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults AccountName="http://proazurestorage.queue.core.windows.net/">

<MaxResults>50</MaxResults>

<Queues>
<Queue>

<QueueName>testq</QueueName>

http://proazurestorage.queue.core.windows.net/

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

215

<Url>http://proazurestorage.queue.core.windows.net/testq</Url>
</Queue>
<Queue>

<QueueName>testq1</QueueName>
<Url>http://proazurestorage.queue.core.windows.net/testq1</Url>
</Queue>

<Queue>

<QueueName>testq2</QueueName>

<Url>http://proazurestorage.queue.core.windows.net/testq2</Url>
</Queue>
<Queue>

<QueueName>testq3</QueueName>

<Url>http://proazurestorage.queue.core.windows.net/testq3</Url>
</Queue>
</Queues>
<NextMarker />
</EnumerationResults>

 Tip To test the REST API, I recommend using the Fiddler Tool available at www.fiddler2.com/fiddler2/. In
this book, I have used this tool to trace client/server communications.

Storage Client API
Even though the REST API and the operations in the REST API are easily readable, the API doesn’t
automatically create client stubs like the ones created by WDSL-based web services. You have to create
your own client API and stubs for REST API operations. The Windows Azure SDK team has created a
client helper managed code library: Microsoft.WindowsAzure.StorageClient from Windows Azure SDK.
Behind the scenes, the client API invokes the REST APIs of the Windows Azure Queue Storage service.
The Microsoft.WindowsAzure.StorageClient library abstracts this by providing a closed-source interface
and therefore is easier for developers to extend it and use it directly from your code.

In the following sections, I will cover the class structure and calling mechanisms from the
Microsoft.WindowsAzure.StorageClient assembly.

Windows Azure Storage Client Queue API
The Microsoft.WindowsAzure.StorageClient namespace consists of classes representing the entire queue
hierarchy. Figure 4-3 illustrates the core classes for programming Queue service applications.

http://www.fiddler2.com/fiddler2/

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

216

Figure 4-3. Queue class hierarchy

As shown in Figure 4-3, four core classes are required for queue operations. Table 4-1 provides a
short description of each of them.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

217

 Tip The Windows Azure Storage Client API is the recommended method for programming Storage service
applications. The API provides synchronous as well as asynchronous methods for interacting with the Storage
service REST API.

Table 4-1. Classes for the Queue Service

Class Name Description

CloudStorageAccount A helper class for retrieving account information from the
configuration file or creating an instance of the storage
account object from account parameters.

CloudQueueClient A wrapper class for getting references to the core queue
objects. The class consists of methods like
GetQueueReference() and ListQueues().

CloudQueue Consists of queue operations like Create(), Delete(),
AddMessage(), and GetMessage().

CloudQueueMessage Represents a queue message with properties like
InsertionTime, ExpirationTime, NextVisibleTime, ID, and
PopReceipt.

In addition to these core classes, classes like QueueAttributes and QueueErrorCodeStrings represent

more details about the queue.
The steps for programming simple queue applications with the queue classes listed in Table 4-1 are

as follows:

1. Add the following using statement to your C# class:

using Microsoft.WindowsAzure.StorageClient;

2. Instantiate the CloudStorageAccount class from the configuration file:

CloudStorageAccount storageAccountInfo =
CloudStorageAccount.FromConfigurationSetting(configurationSettingName);

3. Or, instantiate the CloudStorageAccount class using account information:

CloudStorageAccount storageAccountInfo = new CloudStorageAccount(new
StorageCredentialsAccountAndKey(accountName, accountKey), new Uri(blobEndpointURI), new
Uri(queueEndpointURI), new Uri(tableEndpointURI));

4. Create an instance of CloudQueueClient:

CloudQueueClient queueStorageType = storageAccountInfo. CreateCloudQueueClient ();

When you have an instance of the CloudQueueClient class, you can execute operations on the
queue storage service as follows:

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

218

List queues:

IEnumerable<CloudQueue> queues = queueStorageType.ListQueues();
Create Queue
queueStorageType.GetQueueReference(queueName).Create();
Delete Queue
queueStorageType.GetQueueReference(queueName).Delete();

Add a message:

public void AddMessage(string queueName, CloudQueueMessage queueMessage)
{
queueStorageType.GetQueueReference(queueName).AddMessage(queueMessage);
}

Get messages:

queueStorageType.GetQueueReference(queueName).GetMessages(numberofMessages,
TimeSpan.FromSeconds(visibilityTimeoutInSecs));

Peek messages:

queueStorageType.GetQueueReference(queueName).PeekMessages(numberofMessages);

Delete a message:

public void DeleteMessage(string queueName, CloudQueueMessage queueMessage)
{
queueStorageType.GetQueueReference(queueName).DeleteMessage(queueMessage);
}

Set queue metadata:

public void SetQueueMetadata(string queueName, NameValueCollection queueProps)
{

CloudQueue queue = queueStorageType.GetQueueReference(queueName);
queue.Attributes.Metadata = queueProps;
queue.SetMetadata();
}

The call to SetMetadata() method calls the method on the queue service API in the cloud.
In the next few sections, you learn how to call some of these functions at every level of the Queue

service hierarchy.

Account Operations
The storage account provides an entry point to the Queue service via the Queue service endpoint URI. At
the account level of the hierarchy, the Queue service supports only one operation: List Queues. The URI
of a specific account is of the format <account name>.queue.core.windows.net. Table 4-2 describes the
List Queues operation, and Table 4-3 lists some important characteristics of the List Queues function.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

219

Table 4-2. Queue Account Operation

Operation Description

List Queues This operation gets the list of all the queues in a storage account. You
can limit the number of records returned by specifying a filter on queue
names and the size of the data set in the request. Table 4-4 lists all the
possible URI parameters for this operation.

Table 4-3. Queue Account Operations Characterstics

Operation HTTP
Verb

Cloud URI Development
Storage URI

HTTP
Version

Permissions

List
Queues

GET account
name>.queue.co
re.windows.net
?comp=list

http://127.0.0.1
:10001/<devstora
geaccount>?comp=
list

HTTP/1.1 Only the
account owner
can call this
operation.

<account name> is the storage account name, such as proazurestorage; and <devstorageaccount> is

the account name for the development storage. The HTTP verb used in this operation is GET. The table
lists the URI format for accessing the cloud Queue service as well as the development storage URI. Port
10001 is the default Queue service port in the development fabric.

The URI for the List Queues operation supports additional optional parameters, as listed in
Table 4-4.

Table 4-4. List Queues URI Parameters

Parameter Description Example

prefix A filter parameter for returning
queues starting with the specified
prefix value.

http://proazurestorage.queue.core.
windows.net/?comp=list&prefix=may
returns queues with names starting
with the prefix “may.”

marker Used for paging queue results
when all results aren’t returned by
the Storage service either due to
the default maximum results
allowed (the current default is
5000), or because you specify the
maxresults parameter in the URI.
The marker prefix is opaque to the
client application.

http://proazurestorage.queue.core.
windows.net/?comp=list&prefix=may&
marker=/proazurestorage/testq

maxresults The maximum number of queues
the Queue service should return.
The default value is 5000. The

http://proazurestorage.queue.core.
windows.net/?comp=list&prefix=may&

http://proazurestorage.queue.core
http://proazurestorage.queue.core
http://proazurestorage.queue.core

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

220

server returns HTTP Bad Request
(400) code if you specify a
maxresults value greater than
5000.

maxresults=10

The sample REST request for List Queues in raw format looks like Listing 4-4.

Listing 4-4. List Queues REST Request

GET /?comp=list&prefix=test&maxresults=50&timeout=30 HTTP/1.1
x-ms-date: Wed, 27 May 2009 04:33:00 GMT
Authorization: SharedKey proazurestorage:GCvS8cv4Em6rWMuCVix9YCsxVgssOW62S2U8zjbIa1w=
Host: proazurestorage.queue.core.windows.net
Connection: Keep-Alive

The characteristics of the REST request in Listing 4-4 are as follows:

• The parameter comp=list at the account level of the Queue service yields the list of
all the queues.

• The prefix=test filters the results by queue names starting with “test.”

• The maxresults=50 returns 50 queues or less.

• The x-ms-date is the UTC timestamp of the request.

• The Authorization header contains the SharedKey of the request.

• The Host header points to the Queue service in the cloud.

Because the request is sending a maxresults parameter, it makes sense to keep the HTTP connection
alive, because it’s highly likely that the user will retrieve the next set of results by making another call to
the Queue service.

Listing 4-5 shows the response for the List Queues request.

Listing 4-5. List Queues REST Response

HTTP/1.1 200 OK
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: dde8c8bd-121d-4692-a578-d8fac08e4525
Date: Wed, 17 Jun 2009 01:24:45 GMT
Content-Length: 648

<?xml version="1.0" encoding="utf-8"?>
<EnumerationResults AccountName="http://proazurestorage.queue.core.windows.net/">
<Prefix>test</Prefix>
<MaxResults>50</MaxResults>
<Queues>
<Queue>
<QueueName>testq</QueueName>
<Url>http://proazurestorage.queue.core.windows.net/testq</Url>
</Queue>

http://proazurestorage.queue.core.windows.net/

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

221

<Queue>
<QueueName>testq1</QueueName>
<Url>http://proazurestorage.queue.core.windows.net/testq1</Url>
</Queue>
<Queue>
<QueueName>testq2</QueueName>
<Url>http://proazurestorage.queue.core.windows.net/testq2</Url>
</Queue>
<Queue>
<QueueName>testq3</QueueName>
<Url>http://proazurestorage.queue.core.windows.net/testq3</Url>
</Queue>
</Queues>
<NextMarker />
</EnumerationResults>

In Listing 4-5, the header consists of the HTTP status (200 OK) indicating the success of the
operation. The response body is in XML format with <EnumerationResults /> as the root element. The
<Queues /> element contains the retrieved queues. The Queue element encompasses queue attributes
like the queue name and the queue URI. An empty <NextMarker /> element indicates that all the results
have been retrieved.

To help you understand the Queue service programming model, open the Windows Azure Storage
Operations project from Ch4Solution.sln. The project consists of a Windows form and uses the
StorageClient project from the same solution for making calls to all the Windows Azure storage. The
StorageClient project is shipped with the Windows Azure SDK. I also created a helper class named
WAStorageHelper in the ProAzureCommonLib project for wrapping the StorageClient methods. Figure
4-4 shows the user interface for the Windows Azure Storage Operations application as it pertains to the
Operations account of the Queue service.

Figure 4-4. Windows Azure storage Queue service account operations

In Figure 4-4, the top Account section displays the account name and SharedKey of the storage
account. When the Windows Azure Storage Operations.exe application starts, it loads the account
information from the configuration file. Listing 4-6 shows the account configuration in the project’s
app.config file.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

222

Listing 4-6. App.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="StorageAccountConnectionString" value="UseDevelopmentStorage=true"/>
 </appSettings>
</configuration>

The StorageAccountConnectionString is loaded when the application starts and displays in the
textbox. Before starting the application, make sure you modify this connection string to point to your
storage account, except when you are using development storage. The QueueStorageEndpoint is the URI
of the Queue service.

The WAStorageHelper class in ProAzureCommonLib project has a ListQueue() method for retrieving
queue names. Listing 4-7 shows the code for ListQueues() method.

Listing 4-7. ListQueues() Method

public IEnumerable<CloudQueue> ListQueues(string prefix)

 {
 if (string.IsNullOrEmpty(prefix))
 {
 return this.QueueClient.ListQueues();
 }
 else
 {
 return this.QueueClient.ListQueues(prefix);
 }
 }

In Listing 4-7, the ListQueues() method calls the ListQueues() method on the QueueClient object,
which is of type CloudQueueClient from the StorageClient assembly. The first method returns all the
queues in an account or filtered based on the prefix. Figure 4-5 illustrate the execution of the ListQueues
operation in the Windows Azure Storage Operations application.

Figure 4-5. List Queues operation

When you click the List Queues button, the application retrieves queues from the Queue service and
displays the names of queues in the Queues ListBox. In the parameter section, you can specify the prefix.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

223

Queue Operations
Queues support several operations, as listed in Table 4-5.

Table 4-5. Queue Operations

Operation Description

Create Queue Creates a new queue under the given account. You can specify metadata for
the queue during creation.

Delete Queue Marks the specified queue for deletion. The garbage collector deletes
marked queues on a periodic basis. So, if you delete a queue and try to
create it immediately, the Queue service complains that the queue already
exists.

Get Queue Metadata Gets the user-defined queue metadata and other queue properties. The
metadata is retrieved in the form of name-value pairs.

Set Queue Metadata Sets the metadata values of the specified queue. Set Queue Metadata
replaces all the metadata of the specified queue with new values.

Table 4-6 lists some of the important characteristics of the queue operations listed in Table 4-5.

Table 4-6. Queue Operations Characterstics

Operation HTTP
Verb

Cloud URI Development Storage
URI

HTTP
Version

Permissions

Create
Queue

PUT http://<account
name>.queue.core.win
dows.net/<queue
name>

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>

HTTP/1.1 Only the account
owner can call this
operation.

Delete
Queue

DELET
E

http://<account
name>.queue.core.win
dows.net/<queue
name>

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>

HTTP/1.1 Only the account
owner can call this
operation.

Get
Queue
Metadata

GET/
HEAD

http://<account
name>.queue.core.win
dows.net/<queue
name>?comp=metadata

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>?comp=
metadata

HTTP/1.1 Only the account
owner can call this
operation.

Set Queue
Metadata

PUT http://<account
name>.queue.core.win
dows.net/<queue

http://127.0.0.1:1
0001/<devstorageac
count>/<queue

HTTP/1.1 Only the account
owner can call this
operation.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

224

name>?comp=metadata name>?comp=
metadata

Table 4-6 lists the HTTP verb, cloud URI, development storage URI, HTTP version, and access

control for the queues. The <account name> is the storage account name in the cloud, and the
<devstorageaccount> is the development storage account. Observe that unlike blob containers, all the
operations can be called only with the account owner privileges.

The following sections discuss some of the operations from Table 4-7 in detail. Even though the
operations are different, the programming concepts behind them are similar. To keep the book at a
conceptual level, I discuss just the Create Queue and Set Queue Metadata operations. By studying these
operations in detail, you can understand the programming concepts behind all the queue operations.
The Windows Azure Storage Operations application included with this chapter’s source code contains
an implementation of all the queue operations.

Create Queue
The Create Queue operation creates a queue in a storage account. The URI for the Create Queue
operation is of the format account name>.queue.core.windows.net/<queue name>. You can think of
Queue as a message queuing system in the cloud. For example, if you want to send and receive messages
across diverse applications in different domains, Windows Azure Queue may fit your requirement.
Because of its standard REST interface and Internet scale, you can send and receive queue messages
anywhere, anytime, and in any programming language that supports Internet programming. The Create
Queue REST request looks like Listing 4-8.

Listing 4-8. Create Queue REST Request

PUT /myfirstazurequeue?timeout=30 HTTP/1.1
x-ms-date: Wed, 17 Jun 2009 03:16:12 GMT
Authorization: SharedKey proazurestorage:a0EQSlfMdXfFrP/wwdfCUVqMYiv4PjXesF0Jp4d71DA=
Host: proazurestorage.queue.core.windows.net
Content-Length: 0

Listing 4-8 shows the request for creating a queue named myfirstazurequeue. The PUT HTTP verb
instructs the Queue service to create a queue. There is no metadata information for the queue, so the
queue is created without any metadata. You can add x-ms-meta-[name]:[value] to the header to create
metadata values. For the Create Queue operation, the Queue service responds with a status code of
HTTP/1.1 201 Created, or HTTP/1.1 409 Conflict if a queue with the same name already exists. The
Create Queue response is shown in Listing 4-9.

Listing 4-9. Create Queue REST Response

HTTP/1.1 201 Created
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 8b4d45c8-2b5d-46b8-8e14-90b0d902db80
Date: Wed, 17 Jun 2009 03:17:57 GMT
Content-Length: 0

In Listing 4-9, the first line represents the status code of the operation. The x-ms-request-id
represents a unique request identifier that can be used for debugging or tracing.

Figure 4-6 shows the working of the Create Queue operation in the Windows Azure Storage
Operations application.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

225

Figure 4-6. Create Queue from Windows Azure Storage Operations.exe

As shown in Figure 4-6, to create a queue, you need to do the following:

1. Go to the Queue Operations tab.

2. Enter a queue name (such as myfirstazurequeue) in the Queue Name text field.

3. Select the Create Queue operation from the Operations list box.

4. Click the Execute button. After the queue is created, the queues list box in the
Account section is refreshed with the newly created queue name in it.

To help you understand the programming model of the Create Queue operation, open the Visual
Studio Solution Chapter4.sln from the Chapter 4 source directory. The WAStorageHelper class in the
ProAzureCommonLib contains a helper function called CreateQueue, as shown in
Listing 4-10.

Listing 4-10. Create Queue Method in the WAStorageHelper Class

public bool CreateQueue(string queueName)

 {
 CloudQueue q = QueueClient.GetQueueReference(queueName);
 return q.CreateIfNotExist();
 }

The CreateQueue() method calls the GetQueueReference() method to get a reference to the
CloudQueue object. The CloudQueue object is a local instance of the Queue object and may not
represent a queue that already exists. This instance doesn’t create a queue when you instantiate it. To
create a queue, you have to call the CreateQueue() method on the CloudQueue object explicitly. The
CloudQueue object creates the accurate URI and metadata headers for calling the Queue service.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

226

Under the hood, the API uses System.Net.HttpWebRequest to send the REST message over HTTP.
Upon success or failure of the operation, the Queue service returns an HTTP status code: HTTP/1.1 201
for success or HTTP/1.1 409 for conflict or failure. The CreateQueue() method translates the HTTP status
code into true for success and false for failure or conflict. The Boolean value is passed all the way to the
Windows Azure Storage Operations application as a return parameter of the CreateQueue() method.

Set Queue Metadata
Queues can contain name-value pairs of metadata values. You can store values like the time of creation,
creator, last modified by user, and so on in the metadata fields of a queue. The size of the metadata can
be 8KB per queue. The Set Queue Metadata operation sets the metadata of a queue independently. The
URI for the Set Queue Metadata operation is of the format account
name>.queue.core.windows.net/<queue name>?comp=metadata. The Set Queue Metadata REST request
looks like Listing 4-11.

Listing 4-11. Set Queue Metadata REST Request

PUT /myfirstazurequeue?comp=metadata&timeout=30 HTTP/1.1
x-ms-date: Wed, 17 Jun 2009 04:33:45 GMT

x-ms-meta-createdBy: tejaswi
x-ms-meta-creationDate: 6/16/2009

Authorization: SharedKey proazurestorage:spPPnadPYnH6AJguuYT9wP1GLXmCjn0I1S6W2+hzyMc=
Host: proazurestorage.queue.core.windows.net
Content-Length: 0

In Listing 4-11, the HTTP verb used is PUT, and the URI parameter is ?comp=metadata. This
parameter instructs the Queue service to set the queue metadata instead of creating the queue. The
Create Queue operation doesn’t have this parameter. The x-ms-meta.[name]:[value] entries represent
the metadata name-value pairs you want to set on the queue.

 Caution Set Queue Metadata operation replaces all the existing metadata of the queue. It doesn’t update
individual metadata entries. For example, if a queue has two metadata values Creator and Creation-Time, and you
call Set Queue Metadata with only one metadata value LastUpdatedBy, then the Creator and Creation-Time values
will be deleted and the queue will have only one metadata value: LastUpdatedBy. To avoid this side effect, always
set all the metadata values again along with any new values you want to add to the queue’s metadata.

Figure 4-7 illustrates how to execute the Set Queue Metadata operation in Windows Azure Storage
Operations application.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

227

Figure 4-7. Set Queue Metadata in the Windows Azure Storage Operations application

As shown in Figure 4-7, to execute the Set Queue Metadata operation, you do the following:

1. Go to the Queue Operations tab.

2. In the Account section, click the List Queues button to get a list of queues in
your account.

3. Select one of the queues from the list (such as myfirstazurequeue).

4. Make sure the Queue Name text box in the Queues section displays the name
of the selected queue.

5. In the Queues section, select the Set Queue Metadata operation from list of
queue operations.

6. In the Queues section, enter metadata name-value pairs in the Metadata
section.

7. Click the Execute button to execute the operation.

8. To verify the success of the operation, click the Clear Results button in the
Queues section, and re-select the queue from the Queues list in the Account
section to retrieve the newly set metadata values.

To help you understand the programming model of the Set Queue Metadata operation, open the
Visual Studio Solution Chapter4.sln from the Chapter 4 source directory. The WAStorageHelper class in
the ProAzureCommonLib contains a helper function called SetQueueMetadata(), as shown in Listing 4-
12.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

228

Listing 4-12. SetQueueMetadata Method in the WAStorageHelper Class

 public void SetQueueMetadata(string queueName, NameValueCollection metadata)

 {
 CloudQueue queue = GetQueue(queueName);

 queue.Metadata.Clear();
 queue.Metadata.Add(metadata);
 queue.SetMetadata();

 }

In Listing 4-12, the System.Collections.Specialized.NameValueCollection represents the metadata
name-value pairs. The queue name is used to create a local instance of the CloudQueueQueue object.
The code then clears all the metadata and adds new metadata to the queue. Note that you need to call
SetMetadata() operation to actually commit the metadata changes.

The SetMetadata() method creates the REST message and sends it synchronously to the Windows
Azure Queue service to set the queue metadata values. It uses the System.Net.HttpWebRequest to send
the REST message over HTTP. Upon success or failure of the operation, the Windows Azure Queue
service returns an HTTP status code: HTTP/1.1 200 for success or HTTP/1.1 204 (No content

Message Operations
Messages support several operations, as listed in Table 4-7.

Table 4-7. Messages Operations

Operation Description

Put Message En-queues a message at the end of the specified queue. The
message can’t be more than 8KB in size.

Get Messages Dequeues one or more messages from the front of the specified
queue. The maximum number of messages that can be retrieved
in a single call is 32. The messages received are marked invisible
until the visibilitytimeout property of the message expires. The
default visibilitytimeout is 30 seconds, and the maximum value is
two hours.

Peek Messages Reads one or more messages from the front of the specified queue.
This method doesn’t alter the visibilitytimeout property of a
message, so the messages are visible to other applications at the
same time.

Delete Message Deletes the specified message from the queue. The Queue service
marks the message for deletion, and the message is deleted during
the next garbage-collection cycle. The delete operation requires
the MessageId and PopReceipt of the message to be passed to the

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

229

Queue service.

Clear Messages Deletes all messages from the specified queue.

Table 4-8 lists some of the important characteristics of the message operations.

Table 4-8. Message Operations Characterstics

Operation HTTP
Verb

Cloud URI Development Storage
URI

HTTP
Version

Permissions

Put
Message

POST http://<account
name>.queue.core.win
dows.net/<queue
name>/messages

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>/messages

HTTP/1.1 Only the
account owner
can call this
operation.

Get
Messages

GET http://<account
name>.queue.core.win
dows.net/<queue
name>/messages

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>/messages

HTTP/1.1 Only the
account owner
can call this
operation.

Peek
Messages

GET http://<account
name>.queue.core.win
dows.net/<queue
name>/messages?peeko
nly=true

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>/messages?pee
konly=true

HTTP/1.1 Only the
account owner
can call this
operation.

Delete
Message

DELETE http://<account
name>.queue.core.win
dows.net/<queue
name>/<messageid>?po
preceipt=[pop
receipt value]

http://127.0.0.1:1
0001/<devstorageac
count>/<queue
name>/<messageid>?
popreceipt=[pop
receipt value]

HTTP/1.1 Only the
account owner
can call this
operation.

Clear
Messages

DELETE http://<account
name>.queue.core.win
dows.net/<queue
name>/messages

http://127.0.0.1:1
0000/<devstorageac
count>/<queue
name>/messages

HTTP/1.1 Only the
account owner
can call this
operation.

The <account name> is the storage account name in the cloud, and the <devstorageaccount> is the

development storage account. The <queue name> is the name of the queue in which messages are
stored. The following sections discuss some of the operations from Table 4-8 in detail. Even though the
operations are different, the programming concepts behind them are similar. To keep the book at a
conceptual level, I discuss just the Put Message and Get Messages operations. By studying these two
operations in detail, you can understand the programming concepts behind all the message operations.
The Windows Azure Storage Operations application included with this chapter’s source code contains
implementations of most of the message operations.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

230

Put Message
The Put Message operation en-queues (puts) a message at the end of the queue. The URI of a Put
Message operation is of the format account name>.queue.core.windows.net/<queue name>/messages. You
can send a message with size up to 8KB. To send larger files, you can save the message as a blob and
send the URI of the blob to the queue. The body of the message while sending can be text or binary, but
it should support inclusion in an XML body with UTF-8 encoding. This is because a message received
from the queue is always returned in Base64-encoded format within an XML response body. You see this
in the Get Messages operation. The URI for the Put Message operation supports an additional optional
parameter, listed in Table 4-9.

Table 4-9. Put Message URI Parameter

Parameter Description Example

messagettl This is an integer value of seconds
representing the time-to-live for a
message in the queue before it’s
retrieved or deleted. The default and
the maximum value for messagettl is
seven days, after which the message
is garbage-collected.

account
name>.queue.core.windows.net/<queuename>/me
ssages?messagettl=60

The Put Message REST request looks like Listing 4-13.

Listing 4-13. Put Message REST Request

POST /myfirstazurequeue/messages?messagettl=120&timeout=30 HTTP/1.1
x-ms-date: Thu, 18 Jun 2009 05:52:00 GMT
Authorization: SharedKey proazurestorage:Ahv5yhR9xOrHiMTnq3fBcaBKL8KeUFQ3r
Host: proazurestorage.queue.core.windows.net
Content-Length: 84
Expect: 100-continue

<QueueMessage>

<MessageText>bXlmaXJzdGF6dXJlbWVzc2FnZQ==</MessageText>

</QueueMessage>

In Listing 4-13, a string message “myfirstazuremessage” is sent to the queue named
myfirstazurequeue. The time-to-live seconds for the message is 120, which means if the message isn’t
received or deleted by an application within 120 seconds in the queue, the message will be marked for
deletion and won’t be visible to any applications. The request body consists of the message content
wrapped in the <QueueMessage> element. Note that the content of the message within the
<MessageText /> element is in Base64-encoded format. Listing 4-14 shows the response from the Queue
service.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

231

Listing 4-14. Put Message REST Response

HTTP/1.1 201 Created
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: e724cc82-3d21-4253-9317-3b3964374be7
Date: Thu, 18 Jun 2009 05:53:32 GMT
Content-Length: 0

As shown in Listing 4-14, the Queue service responds with an HTTP/1.1 201 Created status code for
a successful Put Message operation. Figure 4-8 shows the working of the Put Message operation in the
Windows Azure Storage Operations application.

Figure 4-8. Put Message in Windows Azure Storage Operations.exe

As illustrated in Figure 4-8, you can send a text message using the Windows Azure Storage
Operations application. The steps for sending a message to a queue are as follows:

1. Create a new queue (called myfirstazurequeue).

2. Select the new queue from the Queues List Box in the Accounts section.

3. Add some text to the Message Body text box in the Queues section.

4. Select the Put Message operation from the Operations text box.

5. Make sure the Queue Name text box is populated with the selected queue
name.

6. Optionally, you can specify the time-to-live in the “Time to live (secs)” text
box.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

232

7. Click the Execute button to execute the Put Message operation.

To help you understand the programming model of the Put Message operation, open the Visual
Studio Solution Chapter4.sln from the Chapter 4 source directory. The WindowsAzureStorage.cs file in
the Windows Azure Storage Operations project consists of a PutMessage() method, as shown in
Listing 4-15.

Listing 4-15. PutMessage() Method in WAStorageHelper.cs

public void AddMessage(string queueName, CloudQueueMessage queueMessage)

 {
 CloudQueue q = QueueClient.GetQueueReference(queueName);

 q.AddMessage(queueMessage);

 }

//Calling the method
int ttlsecs=300;

StorageHelper.AddMessage(txtQueueName.Text, new CloudQueueMessage(messageBody),
ttlsecs);

The AddMessage() method of the CloudQueue object creates the REST message request and sends it
synchronously to the Queue service. It uses the System.Net.HttpWebRequest to send the REST message
over HTTP. Upon the success of the operation, the Queue service returns an HTTP status code:
HTTP/1.1 201 Created.

Get Messages
In the previous section, you learned to send messages to queues in the Queue service. In this section,
you learn to retrieve these messages using the Get Messages operation. The URI for the Get Messages
operation is of the format account name>.queue.core.windows.net/<queue name>/messages. The URI for
the Get Messages operation supports additional optional parameters, as listed in Table 4-10.

Table 4-10. Get Messagse URI Parameters

Parameter Description Example

numofmessages An integer value specifying the total
number of messages you want retrieved.
You can retrieve a maximum of 32
messages in a single call. By default, the
operation retrieves only one message at a
time.

account
name>.queue.core.windows.net/
<queue
name>/messages?numofmessages=
10

visibilitytimeout An integer value representing the
visibility of the message in seconds after
it’s received by a receiving application.
The default visibilitytimeout value is 30
seconds, which means that after a

account
name>.queue.core.windows.net/
<queue
name>/messages?visibilitytime

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

233

message is received, it will remain
invisible to other applications for 30
seconds, unless it’s deleted by the
receiving application. The maximum
visibilitytimeout value is two hours.

out=60

Listing 4-16 shows the REST API request for the Get Messages operation.

Listing 4-16. Get Messages REST Request

GET /myfirstazurequeue/messages?numofmessages=10&visibilitytimeout=60&timeout=30_
 HTTP/1.1
x-ms-date: Thu, 18 Jun 2009 05:34:13 GMT
Authorization: SharedKey proazurestorage:qB9P717GTC6nd6rX4Ed16r6QkxO2QwJxLcr
Host: proazurestorage.queue.core.windows.net

In Listing 4-16, the URI points to the myfirstazurequeue queue. numofmessages=10 instructs the
Queue service to retrieve only 10 messages. visibilitytimeout=60 instructs the Queue service to make the
retrieved messages invisible to other applications for 60 seconds, unless the receiving application deletes
them. Listing 4-17 shows the REST API response from the Queue service for the Get Messages operation.

Listing 4-17. Get Messages REST Response

HTTP/1.1 200 OK
Content-Type: application/xml
Server: Queue Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: c10542ae-fa9e-45fd-b036-3f0b77ed611e
Date: Thu, 18 Jun 2009 05:35:43 GMT
Content-Length: 3900

<?xml version="1.0" encoding="utf-8"?>
<QueueMessagesList>
<QueueMessage>
<MessageId>ba16723c-8b4c-48dd-9d80-d5d2731bcbd8</MessageId>
<InsertionTime>Thu, 18 Jun 2009 05:36:43 GMT</InsertionTime>
<ExpirationTime>Thu, 18 Jun 2009 05:37:28 GMT</ExpirationTime>
<PopReceipt>AgAAAAEAAAAAAAAAIBeHw9bvyQE=</PopReceipt>
<TimeNextVisible>Thu, 18 Jun 2009 05:36:43 GMT</TimeNextVisible>
<MessageText>bXlmaXJzdGF6dXJlbWVzc2FnZQ==</MessageText>
</QueueMessage>
<QueueMessage>
<MessageId>c0d92c72-2f9f-4c14-a177-7cf988c2532d</MessageId>
<InsertionTime>Thu, 18 Jun 2009 05:36:43 GMT</InsertionTime>
<ExpirationTime>Thu, 18 Jun 2009 05:37:28 GMT</ExpirationTime>
<PopReceipt>AgAAAAEAAAAAAAAAIBeHw9bvyQE=</PopReceipt>
<TimeNextVisible>Thu, 18 Jun 2009 05:36:43 GMT</TimeNextVisible>
<MessageText>bXlmaXJzdGF6dXJlbWVzc2FnZQ==</MessageText>
</QueueMessage>
<QueueMessage>
<MessageId>f3ae9ccd-b97c-4bae-bc22-744cadd2c9c0</MessageId>

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

234

<InsertionTime>Thu, 18 Jun 2009 05:36:43 GMT</InsertionTime>
<ExpirationTime>Thu, 18 Jun 2009 05:37:28 GMT</ExpirationTime>
<PopReceipt>AgAAAAEAAAAAAAAAIBeHw9bvyQE=</PopReceipt>
<TimeNextVisible>Thu, 18 Jun 2009 05:36:43 GMT</TimeNextVisible>
<MessageText>bXlmaXJzdGF6dXJlbWVzc2FnZQ==</MessageText>
</QueueMessage>
</QueueMessagesList>

Listing 4-17 shows the HTTP header and body of the Get Messages operation response. For the sake
of brevity, only three messages are shown. The HTTP response body consists of a list of messages in XML
format. Every <QueueMessage /> element represents a message. When you retrieve a message, the
MessageId and the PopReceipt properties of the message are important for deletion purposes. The
recommended pattern is to receive the message, process it, and then delete it before it becomes visible
to other applications when the visibilitytimeout period expires. The TimeNextVisible value specifies the
expiration time of the visibilitytimeout period. The ExpirationTime specifies the time when the message
will be marked for deletion if not retrieved and/or deleted by a receiving application. This value was set
when the message was sent to the queue. Figure 4-9 shows the working of the Get Messages operation in
the Windows Azure Storage Operations.exe application.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

235

Figure 4-9. Get Messages in the Windows Azure Storage Operations application

As illustrated in Figure 4-9, you can use the Get Messages operation for a queue using the Windows
Azure Storage Operations application. The steps for retrieving messages are as follows:

1. Select a queue (such as myfirstazurequeue) that already contains some
messages.

2. In the Queues section, select the Get Messages operation.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

236

3. Click the Execute button to get a list of messages from the selected queue.

4. Optionally, you can specify the Number of Messages and Visibility Timeout in
the Parameters section.

The retrieved messages are populated in the DataGridView control in the Messages section. Each
message is represented by a row in the DataGridView control. The control displays all the properties of
the retrieved messages. To delete a message, select a row in the DataGridView and press the Delete
button on your keyboard.

To help you understand the programming model of the Get Messages operation, open the Visual
Studio Solution Chapter4.sln from the Chapter 4 source directory. The WAStorageHelper.cs file in the
Windows Azure Storage Operations project consists of two overloaded GetMessages() methods, as
shown in Listing 4-18.

Listing 4-18. GetMessages() Method in WindowsAzureStorage.cs

 public IEnumerable<CloudQueueMessage> GetMessages(string queueName, int numberofMessages,
int visibilityTimeoutInSecs)

 {
 CloudQueue q = QueueClient.GetQueueReference(queueName);
 return q.GetMessages(numberofMessages, new TimeSpan(0, 0,
visibilityTimeoutInSecs));
 }

 public IEnumerable<CloudQueueMessage> GetMessages(string queueName, int
numberofMessages, TimeSpan timeout)
 {
 CloudQueue q = QueueClient.GetQueueReference(queueName);
 return q.GetMessages(numberofMessages, timeout);
 }

The numofmessages parameter represents the number of messages to retrieve. The visibility
timeout represents the length of time these retrieved messages will be invisible to other clients. If you
don’t delete these messages in the visibilitytimeout period specified, these messages will be read by
other clients or the same client when it tries to read again. The visibility timeout parameter is used in
making sure the message is processed at least once when multiple clients are accessing the same queue.
If the processing of a message fails, then it will be automatically read by other clients. If the processing of
the message succeeds, it must be deleted by the client processing the message. In order to avoid
processing of the message multiple times, you need to make sure the visibilitytimeout period is longer
than the message processing time.

Unlike MSMQ, the Microsoft.WindowsAzure.StorageClient API does not provide any queue listener
events. But, the event objects in .NET Framework enables you to build your own. In the
ProAzureCommonLib project, I have created an event class MessageReceivedEventArgs, an event handler
delegate MessageReceivedEventHandler and a listener class QueueListener that defines the
MessageReceived event. See Listing 4-10.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

237

Figure 4-10. Custom QueueListener

Figure 4-10 illustrates class diagram for the event hander and QueueListener. The client class can
implement the MessageReceived event to receive messages from the Queue service.

 Note The even-driven model is a purely client-side implementation for ease of client programming. In the
background, the event is fired periodically and calls the same Get Messages operation discussed in earlier section.
The REST API for the Queue service doesn’t offer events.

Listing 4-19 shows the usage of the QueueListener class for receiving a MessageReceived event
whenever a new message arrives in the specified queue.

Listing 4-19. Listening for Queue messages

listener.MessageReceived -= new MessageReceivedEventHandler(listener_MessageReceived);

 listener.PollInterval = 10000;
 listener.StartReceiving();

 void listener_MessageReceived(object sender, MessageReceivedEventArgs e)

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

238

 {
 //Cast the message
 CloudQueueMessage m = e.Message as CloudQueueMessage;
 //Process the message

 }

 Tip When failed messages remain in the queue and are not processed by any message receivers, they remain
in the queue till they expire. These messages are called poison messages or orphan messages. Poison messages
can cost you money in the cloud or simply interfere with your regular message processing producing erroneous
results. The Queue service does not explicitly track poison messages because it does not know whether it is
poison or not. Therefore, your application needs to keep track of poison messages in the queue listener and delete
them after processing has failed. The CloudQueueMessage class has a property named DequeueCount that gives
you the number of times a message has been dequeued. You can use this property to identify poison messages in
your queue listener and delete them immediately.

Asynchronous API
Until now, I have covered only synchronous methods for calling Queue service. In a real-world
application, I recommend using asynchronous API instead of synchronous because in asynchronous
method invocations, you are not blocking the calling thread and therefore the chances of getting a
deadlock are limited. Especially in scenarios where the managed API (in this case, the Storage Client API)
is making asynchronous calls to the service. The Storage Client API makes asynchronous REST calls to
the Windows Azure Queue service and waits on the same thread for the response. If your synchronous
call is waiting for the call to return on a thread and the asynchronous call is waiting on the ThreadPool to
release a thread, there is a deadlock because your synchronous call will not return until the REST
asynchronous call from within the API returns and the REST asynchronous call will not return because
all the threads in the ThreadPool are exhausted.

As a workaround to this issue, and a best practice anyways, I recommend you to use asynchronous
methods in the Storage Client API wherever possible. In stateless web applications, it involves a bit more
work, because the request thread is synchronous, but the efforts in building asynchronous calling
mechanisms in such applications will definitely pay off in terms of scalability. The Storage Client API for
Queue Service consists of asynchronous methods for most of the operations. Listing 4-20 shows a
pattern for invoking the asynchronous methods BeginAddMessage() and BeginGetMessage(). You can
use the same pattern for invoking all the asynchronous methods in the Storage Client API, including
Blob and Table storage.

Listing 4-20. Asynchronous Method Invocation Pattern

 public void AddMessageAsync(string queueName, CloudQueueMessage queueMessage, int
ttlsecs)

 {
 CloudQueue q = QueueClient.GetQueueReference(queueName);

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

239

 using (System.Threading.ManualResetEvent evt = new
System.Threading.ManualResetEvent(false))
 {

 q.BeginAddMessage(queueMessage, TimeSpan.FromSeconds(ttlsecs), new
AsyncCallback(result =>
 {
 var qc = result.AsyncState as CloudQueue;
 qc.EndAddMessage(result);
 evt.Set();

 }

), q);

 evt.WaitOne();

 }
 }

 public IEnumerable<CloudQueueMessage> GetMessagesAsync(string queueName, int
numberofMessages, int visibilityTimeoutInSecs)
 {
 CloudQueue q = QueueClient.GetQueueReference(queueName);
 IEnumerable<CloudQueueMessage> ret = null;

 using (System.Threading.ManualResetEvent evt = new
System.Threading.ManualResetEvent(false))
 {
 q.BeginGetMessages(numberofMessages,
TimeSpan.FromSeconds(visibilityTimeoutInSecs), new AsyncCallback(result =>
 {
 var qc = result.AsyncState as CloudQueue;
 ret = qc.EndGetMessages(result);
 evt.Set();

 }

), q);

 evt.WaitOne();
 }

 return ret;

 }

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

240

In both the methods, note that I am creating a manual event that will be reset using the evt.Set()
method after the operations is complete. I am not using the IAsyncCallback object’s WaitOne() method
to wait because when I use a lambda expression, the reset automatically happens even before the
lambda expression code segment gets executed. If you are using a separate function to end the
asynchronous method call instead of a lambda expression, you don’t need to manually set the event.
The above mentioned code pattern can be reused in all the asynchronous method calls in the
StorageClient library.

 Note You can find more information about this potential deadlock on the Windows Azure Storage Team blog
(http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/23/windows-azure-storage-client-library-
potential-deadlock-when-using-synchronous-methods.aspx).

Now that you understand Windows Azure Storage Queue service, let’s look at some common
scenarios in which Queues are used.

Queue Scenarios
In the previous sections, you saw the details of working with the Windows Azure Queue service. This
section covers some of the basic application communication scenarios that can use the Windows Azure
Queue service.

Scenario 1: Windows Azure Web and Worker Role
Communications
Consider a scenario in which you’re designing an ecommerce web application in Windows Azure with a
Web role front end and several Worker roles for back-end processing work. The Web role instances
continuously send purchase order information to the Worker roles for order processing. In this scenario,
you can use the Windows Azure Queue service to queue purchase order messages for the Worker roles,
as shown in Figure 4-11.

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/23/windows-azure-storage-client-library-potential-deadlock-when-using-synchronous-methods.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/23/windows-azure-storage-client-library-potential-deadlock-when-using-synchronous-methods.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/23/windows-azure-storage-client-library-potential-deadlock-when-using-synchronous-methods.aspx

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

241

Figure 4-11. Web role/Worker role communication using the Queue service

In Figure 4-11, Web role instances 1 and 2 send orders to the order-processing queue. Worker Roles
1 and 2 dequeue the order messages and process the orders. Because not all orders have to be processed
immediately, Worker roles can pick up from the queue only the orders that are ready to be processed.
This way, you can create an effective message communication system between Web roles and Worker
roles, taking advantage of the scalable and highly available Queue service infrastructure. If the order
message size exceeds 8KB, you can store the message body in the Blob service and pass a link to the blob
as a queue message, as shown in Figure 4-11. When the Worker role dequeues the message, it can
retrieve the contents of the order from the Blob service.

Scenario 2: Worker Role Load Distribution
Continuing Scenario 1, depending on the volume of messages, you can either adjust the number of
queues or the number of instances of Worker roles for processing orders. For example, if you identify
during your testing phase that one Worker role can process only ten orders at a time, you can configure
Worker roles to pick up only ten messages from the queue. If the number of messages in the queue keeps
increasing beyond the number that Worker roles can process, you can create more instances of Worker
roles on demand and increase the order-processing capacity. Similarly, if the queue is under-utilized,
you can reduce the Worker role instances for processing orders.

In this scenario, the Queue service plays the role of capacity indicator. You can think of the queues
in the Queue service as indicators of the system’s processing capacity. You can also use this pattern to

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

242

process scientific calculations and perform business analysis. Figure 4-12 illustrates the Worker role
load-distribution scenario.

Figure 4-12. Worker role load distribution

In Figure 4-12, Worker Roles 1 through 3 can process average order loads. When the number of
orders backs up into the queue, you can spawn more Worker roles (4 through n) depending on demand
and the need for overall order-processing capacity.

Scenario 3: Interoperable Messaging
Large enterprises use applications from different vendors, and these applications seldom interoperate
with each other. An enterprise may end up buying an expensive third-party tool that acts as the
interoperability bridge between these applications. Instead, the enterprise could use the Queue service
to send messages across the applications that don’t interoperate with each other naturally. The Queue
service exposes a REST API based on open standards. Any programming language or application capable
of Internet programming can send and receive messages from the Windows Azure Queue service using
the REST API. Figure 4-13 illustrates the use of the Queue service to interoperate between a Java-based
Sales application and a .NET-based CRM application.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

243

Figure 4-13. Interoperable messaging

Scenario 4: Guaranteed Processing
In Scenario 1, every order needs guaranteed processing. Any loss in orders can cause financial damage to
the company. So, the Worker roles and the Queue service must make sure every order in the queue is
processed. You can implement guaranteed processing using the following four simple principles:

• Set the visibilitytimeout parameter to a value large enough to last beyond the
average processing time for the messages.

• Set the visibilitytimeout parameter to a value small enough to make the message
visible if message processing fails in a consumer (Worker role) or a consumer
crashes.

• Don’t delete a message until it’s processed completely.

• Design the message consumers (Worker roles) to be idempotent (that is, they
should account for handling the same message multiple times without an adverse
effect on the application’s business logic).

Figure 4-14 illustrates guaranteed message processing in the context of the order-processing
example discussed in Scenario 1.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

244

Figure 4-14. Guaranteed processing

In Figure 4-14, two Web roles create orders, and three Worker roles process orders. Consider the
following steps:

1. Worker Role 1 reads order O1 for processing. Worker roles typically take 15
seconds to process an order. The visibilitytimeout for messages is set to 60
seconds.

2. Worker Role 1 starts processing order O1. At this point, O1 isn’t visible to other
Worker roles for 60 seconds.

3. Worker Role 1 crashes after 10 seconds.

4. After 60 seconds, O1 becomes visible again because Worker Role 1 wasn’t able
to delete it.

5. Worker Role 2 reads O1 and processes it.

6. After processing is complete, Worker Role 2 deletes O1 from the queue.

The important points to note here are that Worker Role 1 didn’t delete the message from the queue
before processing was complete, and the visibilitytimeout was set to an appropriate time window to
exceed the processing time of an order. This pattern is commonly used in batch processing systems.

CHAPTER 4 WINDOWS AZURE STORAGE PART II – QUEUES

245

Summary
The Queue service provides a scalable and highly available store and delivery mechanism for exchanging
messages across distributed applications. It provides reliable message delivery from message producers
to message consumers.

Don’t expect the performance of the Queue service to match your on-premises message brokers like
MSMQ or ServiceBroker, because of its reliance on HTTP REST protocol. The Queue service exposes a
REST API, making it easily accessible across multiple platforms and programming languages. In this
chapter, you saw some of the important operations and scenarios for using the Queue service. The next
chapter covers Windows Azure tables.

Bibliography
MSDN. (n.d.). ADO.NET Data Services Specification. Retrieved from MSDN Developer’s Network:

http://msdn.microsoft.com/en-us/library/cc668808.aspx.

MSDN. (2009, May). Windows Azure Blob — Programming Blob Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153400.

MSDN. (2009, May). Windows Azure Queue — Programming Queue Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153402.

MSDN. (2009, May). Windows Azure SDK. Retrieved from MSDN: http://msdn.microsoft.com/en-

us/library/dd179367.aspx.

MSDN. (2009, May). Windows Azure Table — Programming Table Storage. Retrieved from MSDN:
http://go.microsoft.com/fwlink/?LinkId=153401.

http://msdn.microsoft.com/en-us/library/cc668808.aspx
http://go.microsoft.com/fwlink/?LinkId=153400
http://go.microsoft.com/fwlink/?LinkId=153402
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://go.microsoft.com/fwlink/?LinkId=153401

C H A P T E R 5

247

Windows Azure Storage
Part III – Tables

The Windows Azure Table service provides structured storage in the cloud. Windows Azure tables aren’t
relational database tables, but follow a simple yet highly flexible model of entities and properties. In the
simplest of terms, tables contain entities, and entities have properties. The Table service is designed for
massive scalability and availability, supporting billions of entities and terabytes of data. It’s designed to
support high volume, but smaller sized objects. For example, you can use the Table service to store user
profiles and session information in high-volume Internet sites. But if you also want to store the photos of
users, you should store the images in the Blob storage and save the link to the photo in Table service, but
Table service has limitations on the size of each entity object. In this chapter, you will learn about the
Windows Azure Table Storage service in detail. I have covered all the basics you need to start developing
with the Table Storage API and, like other chapters, I have dedicated a section for Table Storage
scenarios.

Table service provides you with the NoSQL storage option in the Windows Azure platform. NoSQL is
important because it is said to scale efficiently, as compared to its relational counterparts, in certain
scenarios. Table service is typically used in high-scale public facing applications such as social
networking and blogging. The query patterns in these applications are much different than query
patterns used in enterprise business applications where relational databases have better applicable
scenarios.

There is no limit on the number of tables and entities you can create in a Table service. There is a
limit of 100TB on the size of the tables in your account, which is capped at the storage account level.
Similar to Blobs and Queues, the Table service also has a URL endpoint, as shown in Figure 5-1.

Figure 5-1. Table service endpoint URL

Table Service Architecture
The Table service architecture consists of a four-level hierarchical structure: Account, Table, Entity, and
Properties, as shown in Figure 5-2.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

248

Figure 5-2. Table service architecture

Your Windows Azure storage account is the entry point to the Table service via the REST API.

Windows Azure Storage Account
The URI scheme for accessing the Table service via a storage account is

<http|https>://<account name>.table.core.windows.net

where <account name> is the globally unique name you created for your storage account. For example,
the Table service for the storage account that I created in chapter 4 can be referenced as:

<http|https>://proazurestorage.table.core.windows.net

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

249

Table
A table is a container for storing data. Data is stored in tables as collection of entities. There can be any
number of tables in an account in the Table service. A table stores entities and makes them available to
applications via the REST API and .NET client-side libraries like ADO.NET Data Services and LINQ. The
Table service supports only private access, which means you must have the account shared access key to
access tables in the Table service.

You can access a table with the following URI:

<http|https>://<accountname>.table.core.windows.net/Tables('<table name>')

where <table name> is the name of the table you want to access. You can access all the tables in an
account with the following URI:

<http|https>://<account name>.table.core.windows.net/Tables

For example, if you create a table named userprofiles in the proazurestorage account, you can
reference it using the following URI:

<http|https>://proazurestorage.table.core.windows.net/Tables('userprofiles')

The naming constraints on a table are as follows:1

• Table names must be valid DNS names.

• Table names must be unique within an account.

• Table names must contain only alphanumeric characters.

• Table names must begin with an alphabetical character.

• Table names are case sensitive.

• Table names can’t be fewer than 3 or more than 63 characters in length.

If a table name or the URI violates the naming convention, the server returns an HTTP status code
400 (Bad request).

Entity
Entities are analogous to rows in a relational database table. There is no limit on the number of entities
that can be stored in a table. You can retrieve all the entities in a table with the following URI:

<http|https>://<account name>.table.core.windows.net/<table name>()

where <table name> is the name of the table you want to access, and the parentheses instructs the
Table service to retrieve the entities in the specified table.

1Source: Windows Azure SDK documentation

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

250

Property
An entity consists of a set of name-value pairs called properties. Properties are analogous to columns in a
relational database table. An entity must have three mandatory properties: PartitionKey, RowKey, and
Timestamp. PartitionKey and RowKey are of string data type, and Timestamp is a read-only DateTime
property maintained by the system. The combination of PartitionKey and RowKey uniquely identifies an
entity. You must design PartitionKey and RowKey carefully as part of your table design exercise.

The Table service organizes data into several storage nodes based on the entities’ PartitionKey
property values. Entities with same PartitionKey are stored on a single storage node. A partition is a
collection of entities with the same PartitionKey. A RowKey uniquely identifies an entity within a
partition.

The Table service provides a single index in which entity records are sorted first by PartitionKey, and
then by RowKey. All the entities in a single partition have the same PartitionKey, so you can safely
assume that all the entities in a partition are lexically sorted by RowKey. Figure 5-3 illustrates the design
of an example PartitionKey and RowKey for a table.

Figure 5-3. PartitionKey and RowKey

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

251

In Figure 5-3, imagine you’re designing an event management web site. On your web site, the most
dominant user query is, “Give me today’s events in my city.” So, the application queries the Events table
for all the events on a particular day sorted with the most recent event at the top. The example in Figure
5-3 illustrates the Events table with its PartitionKey, RowKey, and EventName properties.

Because the most dominant query retrieves all the events from a city, as an architect of the system,
you want the dominant query to execute on a single partition (or storage node) for maximum query
performance. If a San Francisco user comes to the web site, the application retrieves all the San
Francisco events from a single partition. As explained earlier, the Table service groups entities with the
same PartitionKey on the same partition. To achieve the desired distribution of entities, you define City
as the PartitionKey for the entity; doing so groups all the events in a particular city on a single partition,
as shown in Figure 5-3.

The table spans three partitions: the events “Book Release” and “Party” in San Francisco are stored
on Partition 1, and New York and Seattle events are stored on Partition 2 and Partition 3, respectively.
The distribution of a table across multiple partitions is opaque to the application.

The next part of the dominant query involves sorting events by date and time. Remember that the
RowKey uniquely identifies an entity within a partition, and the entities are sorted by RowKey within a
partition. So, you want all the events in a city (or partition) sorted by date and time. To sort the entities in
a partition by date and time, you define RowKey as a function of date and time. You can achieve this by
subtracting (DateTime.MaxValue.Ticks – EventTime.Ticks), where EventTime is the date and time of the
event.

The combination of PartitionKey and RowKey uniquely identifies an entity within a table, so you
can’t have a duplicate PartitionKey and RowKey pair. There can’t be two events in the same city starting
at the exact same date and time. If there are, then you have to design the Partition and Row keys to
uniquely identify them. To create a unique PartitionKey and RowKey pair, you can append the RowKey
with a GUID or any unique identifier of your choice. Because there can be only one PartitionKey and one
RowKey in an entity, you must concatenate strings to create a PartitionKey and RowKey for every table
design. In the future, when the Table service supports multiple indexes and RowKeys, the partitioning
and sorting design will be more refined.

If the dominant query was, “Get me today’s Book Releases (Event Type) across all the Cities,” the
PartitionKey would be a function of time and Event Type, because you would want all the events of the
same type across all the cities partitioned together. But you would also have to consider the impact of
the volume of data on the query. The previous examples assume the number of entities on each partition
is low enough for the query to perform optimally. If there are millions of events in a particular city, you
would further refine the PartitionKey to reduce the load on the query. In some cases, it may be worth
duplicating the data for two or three dominant queries for boosting performance. Of course, you will pay
the extra cost of storing data but the cost of storage is very low if you factor in performance impact of
consumer facing applications. Typically, in mobile applications, lot of data is streamed to the mobile
devices based on the user’s location or geocode. When the user logs in, the geocode is sent to the server
and based on the geocode, the data (e.g., local news) is streamed to the user’s device.

So, would you store the data based on geocode as the partition key? It depends, because if the
application supports adding multiple locations, then the user may add ten different locations from
which he wants to receive news. Now, if you design the Partition Key as the geocode, then the query will
have to scan ten partitions to compose the aggregated results. Therefore, I recommend designing the
Partition Keys and Row Keys based on the application’s performance requirements. You can also store
duplicate data with a different Partition key and Row Key pair or cache the data in Windows Azure
AppFabric Caching service.

While you’re designing PartitionKeys, consider a tradeoff between scalability and performance.
Depending on the capacity requirements and usage volume of your application, the PartitionKey may
play an important role in scalability and performance. Having more partitions distributed over multiple
storage nodes makes the table more scalable, whereas narrowing entities on a single partition may yield

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

252

better performance, assuming the number of entities on a partition is low enough for the query to
perform optimally.

 Tip Design your PartitionKeys and RowKeys in an iterative manner. Stress- and performance-test your design
for every iteration. Then, choose an optimum PartitionKey that satisfies your application’s performance and
scalability requirements.

 Caution The following characters are not allowed in PartitionKey and RowKey values:

The forward slash (/) character

The backslash (\) character

The number sign (#) character

The question mark (?) character

More information is available at: http://msdn.microsoft.com/en-us/library/dd179338.aspx

Table 5-1 lists the supported data types for property values and their Common Language Runtime
(CLR) counterparts.

Table 5-1. Property Value Data Types

Data Type Corresponding CLR Data Type

Binary byte[]

Boolean bool

DateTime DateTime

Double Double

Guid Guid

Int32 int or Int32

http://msdn.microsoft.com/en-us/library/dd179338.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

253

Int64 long or Int64

String string

The following are some of the characteristics of and constraints on entities and properties:

• Tables support flexible schema. This means a table can contain entities that have
property values of different data types. For example, in a UserProfiles table, you
can have an entity record representing a ZipCode property with an integer data
type (“ZipCode”, 94582) and another entity record with a string data type for the
same property (“ZipCode”, “CK45G”).

• An entity can contain at the most 255 properties (including the PartitionKey,
RowKey, and Timestamp properties, which are mandatory).

• The total size of an entity including all the property names and values can’t exceed
1MB.

• Timestamp is a read-only value maintained by the system.

• PartitionKey and RowKey can’t exceed 1KB in size each.

• Property names can contain only alphanumeric characters and the underscore (_)
character. The following characters aren’t supported in property names: backslash
(\), forward slash (/), dash (-), number sign (#), and question mark (?).

REST API
The REST API for the Table service is available at the table and entity levels of the hierarchy. The Table
service API is compatible with the ADO.NET Data Services REST API. The differences between the Table
service API and the ADO.NET Data Services API are highlighted in the Table services API section of the
Windows Azure SDK documentation.2 In this section, you learn about the Table service REST API with
specific examples. You also learn to interact with the Table service programmatically, using the .NET
Client Library and the Storage Client libraries from the Windows Azure SDK. The REST API enables you
to send HTTP messages to the Table service and its resources.

REST is an HTTP-based protocol; you specify the URI of the resource as well as the function you
want to execute on the resource. Every REST call involves an HTTP request to the storage service and an
HTTP response from the storage service. The programming examples in this section use the .NET Client
library and/or Storage Client library to access the Table service. Both of them ultimately result in REST
API calls to the Table service. You can choose to program the Table service directly using the REST API.

 Note ADO.NET Data Services provides a REST API for accessing any data service on the Web. You can find the
specification for the ADO.NET Data Services at http://msdn.microsoft.com/en-us/library/cc668808.aspx.

2 See http://msdn.microsoft.com/en-us/library/dd135720.aspx/

http://msdn.microsoft.com/en-us/library/cc668808.aspx
http://msdn.microsoft.com/en-us/library/dd135720.aspx/

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

254

Request
The following sections describe the Table service REST API’s HTTP request components.

HTTP Verb
The HTTP verb represents the action or operation you can execute on the resource indicated in the URI.
The Table service REST API supports the following verbs: GET, PUT, MERGE, POST, and DELETE. Each
verb behaves differently when executed on a different resource.

Request URI
The request URI represents the URI of a resource you’re interested in accessing or executing a function
on. Example resources in the Table service include table and entity. An example URI to create a table
named Events in an account named proazurestorage is

POST http://proazurestorage.table.core.windows.net/Tables

Note that unlike in the Blob and Queue services, the URI doesn’t include the name of the table
(Events). The request body includes the details of the table to be created. The HTTP verb POST instructs
the service to create the table, and the request body points to the resource that needs to be created.

URI Parameters
Typically, URI parameters are the extra parameters you specify to fine-tune your operation execution.
They may include the operation parameters or filter parameters for the results. In the Table service API,
the URI parameters support the ADO.NET Data Service Framework query options $filter and $top, as
described in the ADO.NET Data Service specification at http://msdn.microsoft.com/en-
us/library/cc668809.aspx.

The $filter parameter retrieves only the tables and entities that match the filter criteria specified in
the URI. The following URI shows a sample usage of the $filter parameter:

http://proazurestorage.table.core.windows.net/ProAzureReader()?
 $filter=PurchaseDate%20eq%20datetime'2009-05-20T00:00:00'

ProAzureReader is the name of the table, and ProAzureReader() retrieves all the entities from the
table. The URI further applies a filter “PurchaseDate eq datetime’2009-05-20T00:00:00’” for restricting
the number of returned entities.

The $top parameter retrieves only Top(n) number of tables or entities specified in the URI. The
following URI shows a sample usage of the $top parameter:

http://proazurestorage.table.core.windows.net/ProAzureReader()?$top=3

Again, ProAzureReader is the name of the table, and ProAzureReader() retrieves all the entities from
the table. The $top parameter instructs the Table service to retrieve only the top three entities from the
table.

Request Headers
Request headers follow the standard HTTP 1.1 name-value pair format. Depending on the type of
request, the header may contain security information, date time information, or instructions embedded

http://proazurestorage.table.core.windows.net/Tables
http://msdn.microsoft.com/en-us/library/cc668809.aspx
http://msdn.microsoft.com/en-us/library/cc668809.aspx
http://msdn.microsoft.com/en-us/library/cc668809.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

255

as name-value pairs. In the Storage Service REST API, the request header must include the authorization
information and a Coordinated Universal Time (UTC) timestamp for the request. The timestamp can be
in the form of either an HTTP/HTTPS Date header or an x-ms-Date header.

The authorization header format is as follows

Authorization="[SharedKey|SharedKeyLite] <Account Name>:<Signature>"

Where SharedKey|SharedKeyLite is the authentication scheme, <Account Name> is the storage
service account name, and <Signature> is a Hash-based Message Authentication Code (HMAC) of the
request computed using the SHA256 algorithm and then encoded by using Base64 encoding.

To create the signature, follow these steps:

1. Create the signature string for signing. The signature string for the Storage
service request consists of the following format:

VERB\n

Content - MD5\n

Content - Type\n

Date\n

CanonicalizedHeaders

CanonicalizedResource

VERB is the uppercase HTTP verb such as GET, PUT, and so on. Content - MD5 is the MD5
hash of the request content. CanonicalizedHeaders is the portion of the signature string
created using a series of steps described in the “Authentication Schemes” section of the
Windows Azure SDK documentation at http://msdn.microsoft.com/en-
us/library/dd179428.aspx. CanonicalizedResource is the storage service resource in the
request URI. The CanonicalizedResource string is also constructed using a series of steps
described in the “Authentication Schemes” section of the Windows Azure SDK
documentation.

2. Use the System.Security.Cryptography.HMACSHA256.ComputeHash()
method to compute the SHA256 HMAC encoded string.

3. Use the System.Convert.ToBase64String() method to convert the encoded
signature to Base64 format.

Listing 5-1 shows an example request header for an entity GET operation.

Listing 5-1. Request Header

User-Agent: Microsoft ADO.NET Data Services

x-ms-date: Sat, 20 Jun 2009 22:42:54 GMT
x-ms-version: 2009-04-14
Authorization: SharedKeyLite
 proazurestorage:qWuBFkungfapSPIAFsrxeQ+j1uVRHyMUyEPiVOC832A=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx

http://msdn.microsoft.com/en-us/library/dd179428.aspx
http://msdn.microsoft.com/en-us/library/dd179428.aspx
http://msdn.microsoft.com/en-us/library/dd179428.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

256

Host: proazurestorage.table.core.windows.net

In Listing 5-1, the request header consists of x-ms-date, x-ms-version, and Authorization values.
The x-ms-date represents the UTC timestamp, and the x-ms-version specifies the version of the storage
service API you’re using. The header also specifies the version of the ADO.NET Data Service API. The
Authorization SharedKey header value is used by the Storage service to authenticate and authorize the
caller.

The Table service REST API also supports the HTTP 1.1 If-Match conditional header. The If-Match
conditional header is a mandatory header sent by the ADO.NET Data Service API. For update, merge,
and delete operations, the Table service compares the specified ETag value with the ETag value on the
server. If they don’t match, an HTTP 412 (PreCondition Failed) error is sent back in the response. You
can force an unconditional update by specifying a wildcard (*) for the If-Match header in the request.

Request Body
The request body consists of the contents of the request operation. Some operations require a request
body, and some don’t. For example, the Create Table operation’s request body consists of an ADO.NET
entity in the form of an Atom feed, whereas the Query Table operation requires an empty request body.
Atom is an application-level protocol for publishing and editing web resources3 defined by the Internet
Engineering Task Force (IETF). You see other request body examples later in this chapter.

 Note For more information about the Atom format in ADO.NET Data Services messages, visit the “Atom
Format” section of the ADO.NET Data Services specification at http://msdn.microsoft.com/en-us/
library/cc668811.aspx.

Response
The HTTP response of the Table service API typically includes the components described in the
following sections.

Status Code
The status code is the HTTP status code that indicates the success or failure of the request. The most
common status codes for the Table service API are 200 (OK), 201 (Created), 400 (BadRequest), 404
(NotFound), 409 (Conflict), and 412 (PreCondition Failed).

3 Source: ADO.NET Data Services Framework, http://msdn.microsoft.com/en-
us/library/cc668811.aspx

http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/library/cc668811.aspx
http://msdn.microsoft.com/en-us/library/cc668811.aspx
http://msdn.microsoft.com/en-us/library/cc668811.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

257

Response Headers
The response headers include all the standard HTTP 1.1 headers plus any operation-specific headers
returned by the Table service. The x-ms-request-id response header uniquely identifies a request. Listing
5-2 shows an example response header for a Query Entities operation.

Listing 5-2. Query Entities Response Header

HTTP/1.1 200 OK

Cache-Control: no-cache
Transfer-Encoding: chunked
Content-Type: application/atom+xml;charset=utf-8
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: a1eccc1c-8c1f-4fca-8ca9-69850684e553

Date: Sat, 20 Jun 2009 22:43:45 GMT

Response Body
The response body consists of values returned by the operation. These values are specific to each
operation. For example, the Query Entity operation returns an ADO.NET entity set, which is in the form
of an Atom feed. Listing 5-3 shows an example of the response body for the following entity query:

GET http://proazurestorage.table.core.windows.net/ProAzureReader()?$
 filter=PartitionKey%20eq%20'06202009'

The response consists of two entities.

Listing 5-3. Query Entity Response Body

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<feed xml:base=http://proazurestorage.table.core.windows.net/
xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
 <title type="text">ProAzureReader</title>
 <id>http://proazurestorage.table.core.windows.net/ProAzureReader</id>
 <updated>2009-05-20T22:43:46Z</updated>
 <link rel="self" title="ProAzureReader" href="ProAzureReader" />

 <entry m:etag="W/"datetime'2009-05-20T13%3A01%3A10.5846Z'"">

 <id>http://proazurestorage.table.core.windows.net/ProAzureReader
(PartitionKey='06202009',RowKey='12521567980278019999’)</id>
 <title type="text"></title>
 <updated>2009-05-20T22:43:46Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="ProAzureReader"
href="ProAzureReader(PartitionKey='06202009',RowKey='12521567980278019999')" />
 <category term="proazurestorage.ProAzureReader"

http://proazurestorage.table.core.windows.net/
http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom
http://proazurestorage.table.core.windows.net/ProAzureReader

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

258

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>06202009</d:PartitionKey>
 <d:RowKey>12521567980278019999</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">2009-05-20T13:01:10.5846Z
</d:Timestamp>
 <d:City>mumbai</d:City>
 <d:Country>india</d:Country>
 <d:EntryDate m:type="Edm.DateTime">2009-05-20T12:59:32.198Z
</d:EntryDate>
 <d:Feedback>Good Book :). But don't write again.</d:Feedback>
 <d:PurchaseDate m:type="Edm.DateTime">2009-05-20T00:00:00Z
</d:PurchaseDate>
 <d:PurchaseLocation>web</d:PurchaseLocation>
 <d:PurchaseType>New</d:PurchaseType>
 <d:ReaderName>tredkar</d:ReaderName>
 <d:ReaderUrl></d:ReaderUrl>
 <d:State>maharashtra</d:State>
 <d:Zip>400028</d:Zip>
 </m:properties>
 </content>
 </entry>

 <entry m:etag="W/"datetime'2009-05-20T11%3A40%3A24.834Z'"">

 <id>http://proazurestorage.table.core.windows.net/ProAzureReader
(PartitionKey='06202009',RowKey='12521568028370519999')</id>
 <title type="text"></title>
 <updated>2009-05-20T22:43:46Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="ProAzureReader"
href="ProAzureReader(PartitionKey='06202009',
RowKey='12521568028370519999’)" />
 <category term="proazurestorage.ProAzureReader"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>06202009</d:PartitionKey>
 <d:RowKey>12521568028370519999_</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">2009-05-20T11:40:24.834Z</d:Timestamp>
 <d:City></d:City>
 <d:Country></d:Country>
 <d:EntryDate m:type="Edm.DateTime">2009-05-20T11:39:22.948Z</d:EntryDate>
 <d:Feedback>Good Book :). But don't write again.</d:Feedback>
 <d:PurchaseDate m:type="Edm.DateTime">2009-05-20T00:00:00Z
</d:PurchaseDate>
 <d:PurchaseLocation></d:PurchaseLocation>
 <d:PurchaseType>New</d:PurchaseType>
 <d:ReaderName></d:ReaderName>
 <d:ReaderUrl></d:ReaderUrl>

http://schemas.microsoft.com/ado/2007/08/dataservices/scheme
http://proazurestorage.table.core.windows.net/ProAzureReader
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

259

 <d:State></d:State>
 <d:Zip></d:Zip>
 </m:properties>
 </content>
 </entry>

</feed>

 Tip To test the REST API, I recommend using the Fiddler Tool available at www.fiddler2.com/fiddler2/. In
this book, I use this tool to trace client/server communications.

ADO.NET Data Services Library (.NET Client Library)
The Table service API provides a subset of the ADO.NET Data Service API, so you can use the ADO.NET
Data Services client library to work with tables and entities in the Table service. The
System.Data.Services.Client assembly consists of the ADO.NET Data Services and .NET Client library
classes.

 Note For more information about the Table service’s support for the ADO.NET Data Services .NET Client library,
visit the latest Table services API MSDN documentation at http://msdn.microsoft.com/en-
us/library/dd894032.aspx.

You don’t have to use the ADO.NET Data Services library to interact with tables and entities in the
Table service. You may choose to work directly at the REST API level by constructing REST messages on
your own.

 Note For more information about the ADO.NET Data Services .NET client library, visit
http://msdn.microsoft.com/en-us/library/cc668789.aspx.

If you’re using .NET Client library, the Table service lets you use a subset of Language Integrated
Queries (LINQ) to interact with tables and entities. For more information about LINQ support in the
Table service, visit the “Summary of Table Service Functionality” (http://msdn.microsoft.com/en-
us/library/dd135720.aspx) and “Writing LINQ Queries” http://msdn.microsoft.com/en-
us/library/dd894039.aspx) sections of the Table service API Windows Azure SDK documentation.

In this book, I have used some of the ADO.NET Data Services .NET client library constructs as an
alternative to using the Table service’s REST API directly.

http://www.fiddler2.com/fiddler2/
http://msdn.microsoft.com/en-us/library/dd894032.aspx
http://msdn.microsoft.com/en-us/library/dd894032.aspx
http://msdn.microsoft.com/en-us/library/dd894032.aspx
http://msdn.microsoft.com/en-us/library/cc668789.aspx
http://msdn.microsoft.com/en-us/library/dd135720.aspx
http://msdn.microsoft.com/en-us/library/dd135720.aspx
http://msdn.microsoft.com/en-us/library/dd135720.aspx
http://msdn.microsoft.com/en-us/library/dd894039.aspx
http://msdn.microsoft.com/en-us/library/dd894039.aspx
http://msdn.microsoft.com/en-us/library/dd894039.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

260

Storage Client API
Even though the REST API and the operations in the REST API are easily readable, the API doesn’t
automatically create the client stubs like those created by WSDL-based web services. You have to create
your own client API and stubs for REST API operations. This makes the client programming more
complex and increases the barriers to entry for developers. To reduce this barrier, the Windows Azure
SDK team has created the Microsoft.WindowsAzure.StorageClient library available in the Windows
Azure SDK. This library can used to invoke REST APIs of the Windows Azure Storage service. The
Microsoft.WindowsAzure.StorageClient library abstracts the REST API by providing a closed-source
interface and therefore sufficient for most of the applications.

In the following sections, I have covered the table storage APIs from
Microsoft.WindowsAzure.StorageClient.

 Note You don’t have to use any of the StorageClient API to make REST calls to the Storage service; you can
instead create your own client library. In order to keep the book conceptual, I have used the StorageClient API to
interact with the Storage service throughout this book.

Windows Azure StorageClient Table API
The Microsoft.WindowsAzure.StorageClient namespace consists of classes representing the entire blob
hierarchy. Figure 5-4 illustrates the core classes for programming Table service applications.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

261

Figure 5-4. Table class hierarchy

As shown in Figure 5-4, five core classes are required for table operations. Table 5-2 describes each
of them.

 Tip The Windows Azure StorageClient API is the recommended method for programming storage service
applications. The API provides synchronous as well as asynchronous methods to interact with the Storage service
REST APIs.

Table 5-2. Classes for the Table Service

Class Name Description

CloudStorageAccount A helper class for retrieving account information from the
configuration file or creating an instance of the storage account
object from account parameters.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

262

CloudTableClient A wrapper class to interact with the Table service. It has methods
like CreateTable(), DeleteTable(), GetDataServiceContext(), and
ListTables().

TableServiceContext Inherits from the System.Data.Services.Client.DataServiceContext
class. It adds additional authentication functionality required by
the Table service.

TableServiceEntity An abstract class representing an entity(row) in a table. It has the
mandatory properties (PartitionKey, RowKey, and Timestamp)
defined in it. You may inherit your entity class from this class and
provide additional properties.

CloudTableQuery<TElement> Can be used to work with continuation tokens in Table service. A
continuation token is similar to the NextMarker property you saw
in the Blob and Queue services. It’s a pointer to the next object
available that wasn’t retrieved due to the limit set on the results
retrieved either by the application or the Table service itself.

The steps for programming simple table applications with these table classes are as follows:

1. Add the following using statement to your C# class:

using Microsoft.WindowsAzure.StorageClient;

2. Instantiate the CloudStorageAccount class from configuration file:

CloudStorageAccount storageAccountInfo =
CloudStorageAccount.FromConfigurationSetting(configurationSettingName);

3. Or, instantiate the CloudStorageAccount class using account information:

CloudStorageAccount storageAccountInfo = new CloudStorageAccount(new
StorageCredentialsAccountAndKey(accountName, accountKey), new Uri(blobEndpointURI), new
Uri(queueEndpointURI), new Uri(tableEndpointURI));

4. Create an instance of CloudTableClient:

CloudTableClient tableStorageType = storageAccountInfo. CreateCloudTableClient ();

5. When you have an instance of the CloudTableClient class, you can execute
operations on the table storage service as follows:

Create Table
tableStorageType.CreateTable(tableName);
Delete Table

tableStorageType.DeleteTable(tableName);

Get Tables

IEnumerable<string> tables = tableStorageType.ListTables();

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

263

The Table service is quite different from the Blob and Queue services because the tables you create
in the Table service are custom and depend on the application’s data storage requirements. Unlike Table
service, the Queue and Blob services don’t require custom schemas to be created. In the next few
sections, you will learn how to design your own Table storage model and call some of these functions at
every level of the Table service hierarchy.

Example Table Model
In this section you will learn to create a simple application with a one-table schema. The purpose of this
exercise is to demonstrate a broader overview of the Table service’s features.

 Note The Windows Azure Table storage is not a relational database therefore you cannot define relationships
between two tables. Referential integrity or normal forms don’t apply to the Table storage; everything is
denormalized.

The application you will create is called Pro Azure Reader Tracker. (You can go to the Pro Azure
Reader Tracker web site and provide feedback.) The application has only one table, called
ProAzureReader. The first step in developing for Table storage is to create an entity model representing
each table record.

Figure 5-5 illustrates the ProAzureReader class representing the table schema (or the entity).

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

264

Figure 5-5. ProAzureReader schema

As shown in Figure 5-5, the ProAzureReader class inherits from the TableStorageEntity class from
the Storage Client library. The TableServiceEntity class defines the mandatory entity properties required
by the Table service: PartitionKey, RowKey, and Timestamp. The ProAzureReader class defines the
properties required to capture reader information and feedback:

• The Feedback property represents the reader’s feedback.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

265

• The EntryDate property represents the data-entry date.

• The PurchaseDate property represents the date the book was purchased by the
reader.

• The PurchaseLocation property represents the location where the reader
purchased the book.

• The PurchaseType property represents whether the purchase was a new or used
book.

• The rest of the properties represent user information including name, address,
and personal URL.

The ProAzureReader class also creates the PartitionKey and RowKey for the entity record.
Figure 5-6 illustrates how the ProAzureReaderDataContext class inherits from the
TableStorageDataServiceContext class, which in turn inherits from the
System.Data.Services.Client.DataServiceContext class of the ADO.NET Data Services .NET client library.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

266

Figure 5-6. ProAzureReaderDataContext class

The DataServiceContext class represents the runtime context of ADO.NET Data Services. The
context is a client-side construct and maintains the client-side state of invocations for update
management between the client and the service.

Finally, the ProAzureReaderDataSource class is a utility class that wraps all the data queries and is
used for binding the data with client-side controls. See Figure 5-7.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

267

Figure 5-7. ProAzureReaderDataSource class

As illustrated in Figure 5-7, the ProAzureReaderDataSource class consists of methods for inserting
an entity into the table and retrieving entities from the table.

To design the PartitionKey, first you need to find out the most dominant query in the application.
The application lists all the feedback entered by readers on a particular day. When you go the web page,
you see all the feedback entries for the day. As a result, the most dominant query in the application can
be phrased as, “Get all the entities entered today.” If you design the PartitionKey as the same as the
entity’s EntryDate property, all the entries with the same EntryDate are placed in the same partition by
the Table service. This executes the query locally on the partition and yields better query performance.

The query should list the results sorted by time with the most recent entry at the top. To achieve
this, the RowKey must be a function of EntryDate. Listing 5-4 shows the code for the ProAzureReader
class and the ProAzureReaderDataContext class.

Listing 5-4. ProAzureReader Schema Classes

ProAzureReader.cs

public class ProAzureReader : TableServiceEntity
 {
 public ProAzureReader()
 {
 CreateKeys();
 }
 public DateTime PurchaseDate
 { get; set; }
 public DateTime EntryDate
 { get; set; }
 public string Country

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

268

 { get;set;}
 public string State
 { get; set; }
 public string City
 { get; set; }
 public string Zip
 { get; set; }
 public string PurchaseLocation
 { get; set; }
 public string PurchaseType
 { get; set; }
 public string ReaderName
 { get; set; }
 public string ReaderUrl
 { get; set; }
 public string Feedback
 { get; set; }

 private void CreateKeys()
 {
 EntryDate = DateTime.UtcNow;
//By Entry Date: [Query: Get records entered today]

 PartitionKey = EntryDate.ToString("MMddyyyy");

 RowKey = string.Format("{0:10}_{1}",
DateTime.MaxValue.Ticks - EntryDate.Ticks, Guid.NewGuid());

 }
 }

ProAzureReaderDataContext.cs
public class ProAzureReaderDataContext : TableServiceContext
 {

 public ProAzureReaderDataContext() : base(null, null) { }

 public IQueryable<ProAzureReader> ProAzureReader
 {
 get
 {
 return this.CreateQuery<ProAzureReader>("ProAzureReader");
 }
 }

 public void AddRecord(
 DateTime purchaseDate,
 string country,
 string state,
 string city,

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

269

 string zip,
 string purchaseLocation,
 string purchaseType,
 string readerName,
 string readerUrl,
 string feedback)
 {
 ProAzureReader pa = new ProAzureReader(city);
 pa.Country = country;
 pa.Feedback = feedback;
 pa.PurchaseDate = purchaseDate;
 pa.PurchaseLocation = purchaseLocation;
 pa.PurchaseType = purchaseType;
 pa.ReaderName = readerName;
 pa.ReaderUrl = readerUrl;
 pa.State = state;
 pa.Zip = zip;

 this.AddObject("ProAzureReader", pa);
 this.SaveChanges();
 }

 }

As shown in Listing 5-4, the CreateKeys() methods in the ProAzureReader class sets the values of the
PartitionKey and the RowKey. The CreateKeys method is called by the constructor of the class. The
PartitionKey and RowKey are a function of the EntryDate property. The RowKey has a GUID associated
with it to take into account multiple entities with the same EntryDate. If the dominant query of the
application was, “Get all the records from a City,” you could design the PartitionKey as a function of the
City property.

The ProAzureReaderDataContext class defines an AddRecord method for adding a new entity to the
table. The method uses the AddObject() and SaveChanges() methods of the base class to save the entity
to the table.

Next, you see how to use this schema model in executing table and entity operations.

Account Operations
The storage account provides an entry point to the Table service via the Table service endpoint URI.
There are no methods at the Account level in the Table service hierarchy. The URI endpoint of a specific
account is of the format http://<account name>.table.core.windows.net.

Table Operations
The Table service defines three methods at the table level of the hierarchy: Create Table, Delete Table,
and Query Tables. Table 5-3 lists and describes the three operations, and Table 5-4 lists some important
characteristics of these methods.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

270

Table 5-3. Table Operations

Operation Description

Create Table Creates a new table under the given storage account. The
table is actually created as an entity in a master Tables table.

Delete Table Marks the specified table and its contents for deletion. The
garbage collector deletes marked tables on a periodic basis.
So, if you delete a table and try to create it immediately, the
Table service complains that the table already exists.

Query Tables Gets a list of tables from the specified storage account.

Table 5-4. Table Operations Characterstics

Operation HTTP
Verb

Cloud URI Development
Storage URI

HTTP
Version

Permissions

Create
Table

POST http://<account
name>.table.core.win
dows.net/Tables

http://127.0.0.1:
10002/<devstorage
account>/Tables

HTTP/1.1 Only the account
owner can call this
operation.

Delete
Table

DELETE http://<account
name>.table.core.win
dows.net/Tables('<ta
ble name>')

http://127.0.0.1:
10002/<devstorage
account>/Tables(‘
<table name>’)

HTTP/1.1 Only the account
owner can call this
operation.

Query
Tables

GET http://<account
name>.table.core.win
dows.net/Tables()

http://127.0.0.1:
10002/<devstorage
account>/Tables

HTTP/1.1 Only the account
owner can call this
operation.

The <account name> is the storage account name in the cloud, and the <devstorageaccount> is the

development storage account. Observe that unlike with blob containers, the operations can be called
only with account owner privileges. The following sections discuss some of the operations from Table 5-
4 in detail. Even though the operations are different, the programming concepts behind them are
similar. To keep the book at a conceptual level, I will discuss only the Create Table and Query Tables
operations, because they cover most of the discussed concepts. Studying these operations in detail will
enable you to understand the programming concepts behind all the table operations. The
ProAzureReaderTracker_WebRole web role included with this chapter’s source code contains the
implementation of the table operations.

Create Table
The Create Table operation creates a table in the storage account. Behind the scenes, the Table service
creates an entity with the specified name in the master table Tables.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

271

The URI for the Create Table operation is of the format http://<account
name>.table.core.windows.net/Tables. Tables give you a structured storage data structure in the cloud.
Because of the standard REST interface and Internet scale, you can create tables anywhere, anytime, and
in any programming language that supports Internet programming. The Create Table REST request
looks like Listing 5-5.

Listing 5-5. Create Table REST Request

POST /Tables HTTP/1.1

User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Sun, 21 Jun 2009 18:42:29 GMT
Authorization: SharedKeyLite proazurestorage:
pwFouPw+BPWzlaQPyccII+K8zb+v6qygxZhp9fCdqRA=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
Host: proazurestorage.table.core.windows.net
Content-Length: 499
Expect: 100-continue
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
 <title />
 <updated>2009-05-21T18:42:29.656Z</updated>
 <author>
 <name />
 </author>
 <id />
 <content type="application/xml">
 <m:properties>

 <d:TableName>MyFirstAzureTable</d:TableName>

 </m:properties>
 </content>

</entry>

Listing 5-5 shows the request to create a table named MyFirstAzureTable. The POST HTTP verb
instructs the Table service to create a table. The request body consists of an ADO.NET entity set in Atom
feed format. For the Create Table operation, the Table service responds with a status code of HTTP/1.1
201 Created or HTTP/1.1 409 Conflict if a table with the same name already exists. The Create Table
response is shown in Listing 5-6.

http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

272

Listing 5-6. Create Table REST Response

HTTP/1.1 201 Created

Cache-Control: no-cache
Content-Type: application/atom+xml;charset=utf-8
Location: http://proazurestorage.table.core.windows.net/Tables('MyFirstAzureTable')
Server: Table service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: 7347b965-9efb-4958-bcf5-d3616563fb28
Date: Sun, 21 Jun 2009 18:44:29 GMT
Content-Length: 836

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xml:base=http://proazurestorage.table.core.windows.net/
xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
 <id>http://proazurestorage.table.core.windows.net/Tables('MyFirstAzureTable')
</id>
 <title type="text"></title>
 <updated>2009-05-21T18:44:29Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Tables" href="Tables('MyFirstAzureTable')" />
 <category term="proazurestorage.Tables"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>

 <d:TableName>MyFirstAzureTable</d:TableName>

 </m:properties>
 </content>

</entry>

In Listing 5-6, the first line represents the status code of the operation. The x-ms-request-id
represents a unique request identifier that can be used for debugging or tracing. The response body also
contains an ADO.NET entity set in Atom feed format.

Figure 5-8 illustrates the Create Table operation in the ProAzureReaderTracker_WebRole web role.

http://proazurestorage.table.core.windows.net/Tables
http://proazurestorage.table.core.windows.net/
http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom
http://proazurestorage.table.core.windows.net/Tables
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

273

Figure 5-8. Create Table operation from the ProAzureReaderTracker_WebRole web role

As shown in Figure 5-8, to create a table, you must do the following:

1. Run the ProAzureReaderTracker_WebRole web role locally or in the cloud.

2. Make sure the appropriate table storage endpoint is specified in the
ServiceConfiguration.cscfg file of the ProAzureReaderTracker cloud service.

3. Make TableOperations.aspx the default start page.

4. Run ProAzureReaderTracker cloud service.

5. Enter a table name (such as MyFirstAzureTable) in the text field next to the
Create Table button.

6. Click the Create Table button to create the table in the Table service. If the
table is created successfully, it appears in the List of Tables list box.

There is one more way to create a table using the schema model you created earlier in this section.
To create a table using the schema model, go to TableOperations.aspx and click the Create
ProAzureReader Table link button to create the ProAzureReader table from the schema.

To help you understand the programming model of the Create Table operation, open the Visual
Studio Solution Chapter4.sln from the Chapter 4 source directory. The WAStorageHelper class in the
ProAzureCommonLib contains a helper function called CreateTable(), as shown in
Listing 5-7.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

274

Listing 5-7. CreateTable() Method in the WAStorageHelper Class

public void CreateTable(string tableName)

{
 TableClient.CreateTable(tableName);

}

The CreateTable() method calls the CreateTable() method on the CloudTableClient class from the
StorageClient library. Listing 5-8 shows definition of the DeleteTable() method.

Listing 5-8. Delete Table

 public void DeleteTable(string tableName)

 {
 TableClient.DeleteTable(tableName);
 }

Similar to the CreateTable method, the DeleteTable() method simply calls the DeleteTable() method
of the CloudTableClient class.

Query Tables
The Query Tables operation returns a list of all the tables in a storage account. The Table service returns
a maximum of 1,000 items in a single query. But similar to the NextMarker element you saw in the Blob
and Queue services, the Table service returns a pointer x-ms-continuation-NextTableName. You can
send a follow-up request to the Table service to retrieve the remaining items by passing x-ms-
continuation-NextTableName as a URI parameter. The Query Tables REST request looks like Listing 5-9.

Listing 5-9. Query Tables REST Request

GET /Tables()?$top=50 HTTP/1.1

User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Sun, 21 Jun 2009 18:42:10 GMT
Authorization: SharedKeyLite proazurestorage:
hZTV+6FS1lWguxB4vBiDvbubPMALt2kK+kIpVmrYme8=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Host: proazurestorage.table.core.windows.net

Connection: Keep-Alive

In Listing 5-9, the HTTP verb used is GET. Note the URI parameter $top=50; this parameter instructs

the Table service to return a maximum of 50 items for this call. Listing 5-10 shows the response from the
Table service for the Query Tables operation.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

275

Listing 5-10. Query Tables REST Response

HTTP/1.1 200 OK

Cache-Control: no-cache
Content-Type: application/atom+xml;charset=utf-8
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: d3ca497d-65d2-4fb5-a51e-3babec57e525
Date: Sun, 21 Jun 2009 18:44:09 GMT
Content-Length: 1630

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xml:base=http://proazurestorage.table.core.windows.net/
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Tables</title>
 <id>http://proazurestorage.table.core.windows.net/Tables</id>
 <updated>2009-05-21T18:44:10Z</updated>
 <link rel="self" title="Tables" href="Tables" />
 <entry>
 <id>
 http://proazurestorage.table.core.windows.net/Tables('ProAzureReader')
 </id>
 <title type="text"></title>
 <updated>2009-05-21T18:44:10Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Tables" href="Tables('ProAzureReader')" />
 <category term="proazurestorage.Tables"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>

 <d:TableName>ProAzureReader</d:TableName>

 </m:properties>
 </content>
 </entry>
 <entry>
 <id>
 http://proazurestorage.table.core.windows.net/Tables('TestTable1')
 </id>
 <title type="text"></title>
 <updated>2009-05-21T18:44:10Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="Tables" href="Tables('TestTable1')" />
 <category term="proazurestorage.Tables"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">

http://proazurestorage.table.core.windows.net/
http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom
http://proazurestorage.table.core.windows.net/Tables
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme
http://proazurestorage.table.core.windows.net/Tables
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

276

 <m:properties>

 <d:TableName>TestTable1</d:TableName>

 </m:properties>
 </content>
 </entry>

</feed>

As shown in Listing 5-10, the Query Tables response contains two tables ProAzureReader and
TestTable1. Figure 5-9 illustrates the Query Tables operation in the ProAzureReaderTracker_WebRole
web role.

Figure 5-9. Query Tables operation in the ProAzureReaderTracker_WebRole web role

As illustrated in Figure 5-9, the TableOperations.aspx loads all the tables from the storage account in
the list box.

To help you understand the programming model of the Query Tables operation, open the Visual
Studio Solution Chapter4.sln from the Chapter 4 source directory. The WAStorageHelper class in
ProAzureCommonLib contains a helper method called ListTables(), as shown in Listing 5-11.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

277

Listing 5-11. ListTables() Method in the WAStorageHelper Class

public IEnumerable<string> ListTables()

{
 return TableClient.ListTables();

}

In Listing 5-11, the ListTables() method calls the ListTables() method on the CloudTableClient
object from StorageClient library. The TableClient object utilizes the
System.Data.Services.Client.DataServiceQuery object to retrieve a list of tables from the Table service.

Figure 5-10 illustrates the sequence diagram for the Query Tables operation.

Figure 5-10. List Tables sequence diagram

As illustrated in Figure 5-10, the WAStorageHelper object calls the ListTables() method on the
CloudTableClient object from the StorageClient library. The TableStorage object utilizes the
DataServiceContext object to create an instance of the DataServiceQuery class. TableStorage then calls

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

278

the Execute() method on the DataServiceQuery object to retrieve the list of tables from the Table service.
The Table service returns a list of all the table names from the storage account.

Entity Operations
Entities support several operations, as listed in Table 5-5.

Table 5-5. Entity Operations

Operation Description

Query Entities Queries for a list of entities in a table.

Insert Entity Adds a new entity to the table.

Update Entity Updates or replaces an entire entity in the table.

Merge Entity Only updates the properties of an entity in the table. Properties with null
values are ignored by this operation.

Delete Entity Deletes an existing entity from a table.

Table 5-6 lists some of the important characteristics of the entity operations listed in Table 5-5.

Table 5-6. Entity Operations Characterstics

Operation HTTP
Verb

Cloud URI Development
Storage URI

HTTP
Version

Permissions

Query
Entities

GET http://<account
name>.table.core.win
dows.net/<table
name>()?$filter=<que
ry-expression>

http://127.0.0.1:
10002/<devstorage
account>/<table
name>()?$filter=<
query-expression>

HTTP/1.1 Only the account
owner can call this
operation.

Insert
Entity

POST http://<account
name>.table.core.win
dows.net/<table
name>

http://127.0.0.1:
10002/<devstorage
account>/<table
name>

HTTP/1.1 Only the account
owner can call this
operation.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

279

Operation HTTP

Verb
Cloud URI Development

Storage URI
HTTP
Version

Permissions

Update
Entity

PUT http://<account
name>.table.core.w
indows.net/<table
name>(PartitionKey
=”x”, RowKey=”y”)

http://127.0.0.1:
10002/<devstorage
account>/<table
name>(PartitionKe
y=”x”,
RowKey=”y”)

HTTP/1.1 Only the account
owner can call this
operation.

Merge
Entity

MERGE http://<account
name>.table.core.w
indows.net/<table
name>(PartitionKey
=”x”, RowKey=”y”)

http://127.0.0.1:
10002/<devstorage
account>/<table
name>(PartitionKe
y=”x”,
RowKey=”y”)

HTTP/1.1 Only the account
owner can call this
operation.

Delete
Entity

DELETE http://<account
name>.table.core.w
indows.net/<table
name>(PartitionKey
=”x”, RowKey=”y”)

http://127.0.0.1:
10002/<devstorage
account>/<table
name>(PartitionKe
y=”x”,
RowKey=”y”)

HTTP/1.1 Only the account
owner can call this
operation.

The <account name> is the storage account name in the cloud, and the <devstorageaccount> is the

development storage account. The <table name> is the name of the table you want to query on. The
following sections discuss some of the operations from Table 5-6 in detail. Even though the operations
are different, the programming concepts behind them are similar. To keep the book at a conceptual
level, I discuss the Query Entities, Insert Entity, and Merge Entity operations, because they cover most of
the discussed concepts. By studying these three operations in detail, you can understand the
programming concepts behind all the entity operations.

Query Entities
The URI for the Query Entities operation is of the form http://<account
name>.table.core.windows.net/<table name>()?$filter=<query-expression> or http://<account
name>.table.core.windows.net/<table name>(PartitionKey="x", RowKey="y "). Entities are analogous
to rows in a relational table. So, you need a flexible mechanism to specify query parameters and filter
criteria for the query. The URL parameters for the Query Entities operation support the ADO.NET Data
Services query options as defined in the ADO.NET Data Service Specifications.4 The $filter and $top URL
parameters discussed earlier in this section are the most commonly used criteria for querying entities in
a table.

4 ADO.NET Data Services Query Options: http://msdn.microsoft.com/en-us/library/cc668809.aspx

http://msdn.microsoft.com/en-us/library/cc668809.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

280

You can use LINQ to query entities in a table. When you enumerate over a LINQ statement, the
query is created and sent to the server, and results are retrieved. Listing 5-12 shows an example Query
Entities REST request.

Listing 5-12. Query Entities REST Request

GET /ProAzureReader()?$top=2 HTTP/1.1

User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Mon, 22 Jun 2009 02:35:26 GMT
Authorization: SharedKeyLite
 proazurestorage:K+P5VD/AIhS22b6yui04LR1kxx1V4v4/Cy5rc+5nIr0=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx

Host: proazurestorage.table.core.windows.net

Listing 5-12 shows the request for querying the ProAzureReader table with a $top=2 criteria to
retrieve top two items. The Query Entities operation can return only 1,000 items in a single call. If the
number of items that fit the filter criteria is greater than 1,000 or the query times out, the Table services
sends two continuation tokens:- x-ms-continuation-NextPartitionKey and x-ms-continuation-
NextRowKey in the response. Similar to the NextMarker token you saw in the Blob and Queue services,
these tokens point to the first item in the next data set. Listing 5-13 shows the REST response from the
Table service for the Query Entities operation.

Listing 5-13. Query Entities REST Response

HTTP/1.1 200 OK

Cache-Control: no-cache
Content-Type: application/atom+xml;charset=utf-8
Server: Table Service Version 1.0 Microsoft-HTTPAPI/2.0
x-ms-request-id: ab64434d-9a8d-4090-8397-d8a9dad5da8a

x-ms-continuation-NextPartitionKey: 1!12!MDYyMDIwMDk-
x-ms-continuation-NextRowKey: 1!76!MTI1MjE1NjgwMjgzNzA1MTk5OTlfM

Date: Mon, 22 Jun 2009 02:38:19 GMT
Content-Length: 3592

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xml:base=http://proazurestorage.table.core.windows.net/
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"xmlns="http://www.w3.o
rg/2005/Atom">
 <title type="text">ProAzureReader</title>
 <id>http://proazurestorage.table.core.windows.net/ProAzureReader</id>
 <updated>2009-05-22T02:38:19Z</updated>
 <link rel="self" title="ProAzureReader" href="ProAzureReader" />
 <entry m:etag="W/"datetime'2009-05-20T23%3A30%3A15.251Z'"">
 <id>http://proazurestorage.table.core.windows.net/
ProAzureReader(PartitionKey='06202009',RowKey='12521567602930729999')

http://proazurestorage.table.core.windows.net/
http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://proazurestorage.table.core.windows.net/

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

281

</id>
 <title type="text"></title>
 <updated>2009-05-22T02:38:19Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="ProAzureReader"
href="ProAzureReader(PartitionKey='06202009',RowKey='12521567602930729999')" />
 <category term="proazurestorage.ProAzureReader"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>06202009</d:PartitionKey>
 <d:RowKey>
 12521567602930729999
 </d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">2009-05-20T23:30:15.251Z</d:Timestamp>
 <d:City></d:City>
 <d:Country></d:Country>
 <d:EntryDate m:type="Edm.DateTime">2009-05-20T23:28:26.927Z</d:EntryDate>
 <d:Feedback>Good Book :). But don't write again.</d:Feedback>
 <d:PurchaseDate m:type="Edm.DateTime">2009-05-20T00:00:00Z</d:PurchaseDate>
 <d:PurchaseLocation></d:PurchaseLocation>
 <d:PurchaseType>New</d:PurchaseType>
 <d:ReaderName></d:ReaderName>
 <d:ReaderUrl></d:ReaderUrl>
 <d:State></d:State>
 <d:Zip></d:Zip>
 </m:properties>
 </content>
 </entry>
 <entry m:etag="W/"datetime'2009-05-20T13%3A01%3A10.5846Z'"">
 <id>http://proazurestorage.table.core.windows.net/
ProAzureReader(PartitionKey='06202009',RowKey='12521567980278019999')
</id>
 <title type="text"></title>
 <updated>2009-05-22T02:38:19Z</updated>
 <author>
 <name />
 </author>
 <link rel="edit" title="ProAzureReader"
href="ProAzureReader(PartitionKey='06202009',RowKey='12521567980278019999')" />
 <category term="proazurestorage.ProAzureReader"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
 <content type="application/xml">
 <m:properties>
 <d:PartitionKey>06202009</d:PartitionKey>
 <d:RowKey>12521567980278019999</d:RowKey>
 <d:Timestamp m:type="Edm.DateTime">2009-05-20T13:01:10.5846Z</d:Timestamp>
 <d:City>mumbai</d:City>
 <d:Country>india</d:Country>
 <d:EntryDate m:type="Edm.DateTime">2009-05-20T12:59:32.198Z</d:EntryDate>

http://schemas.microsoft.com/ado/2007/08/dataservices/scheme
http://proazurestorage.table.core.windows.net/
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

282

 <d:Feedback>Good Book :). But don't write again.</d:Feedback>
 <d:PurchaseDate m:type="Edm.DateTime">2009-05-20T00:00:00Z</d:PurchaseDate>
 <d:PurchaseLocation>web</d:PurchaseLocation>
 <d:PurchaseType>New</d:PurchaseType>
 <d:ReaderName>tredkar</d:ReaderName>
 <d:ReaderUrl></d:ReaderUrl>
 <d:State>maharashtra</d:State>
 <d:Zip>400028</d:Zip>
 </m:properties>
 </content>
 </entry>

</feed>

In Listing 5-13, the first line represents the status code of the operation. The response body consists
of ADO.NET entity set in Atom feed format. The body shows two items retrieved. The x-ms-
continuation-NextPartitionKey and x-ms-continuation-NextRowKey indicate pointers to the first item
from the next data set. To retrieve the remaining items, you can pass the two tokens as the
NextPartitionKey and NextRowKey URL parameters of a subsequent call. The x-ms-continuation-
NextPartitionKey and x-ms-continuation-NextRowKey are used to page on Query Entity results.

In the Pro Azure Reader Tracker application, you can implement the following queries:

• Get all the entries entered today (the dominant query).

• Get entries by city, state, or country.

• Get the Top(n) entries.

• Get entries by purchase date.

Listing 5-14 shows the implementation of each of these queries using LINQ. The methods are
implemented in the ProAzureReaderDataSource class.

Listing 5-14. Query Entities in the ProazureReaderDataSource Class

 private TableServiceContext dContext;

 public CloudStorageAccount Account {get;set;}
 public CloudTableClient TableClient { get; set; }

 public const string ENTITY_SET_NAME = "ProAzureReader";
 public ProAzureReaderDataSource()
 {
 Init("StorageAccountConnectionString");
 dContext = TableClient.GetDataServiceContext();
 dContext.RetryPolicy = RetryPolicies.Retry(3, TimeSpan.FromSeconds(5));

 }

 public ProAzureReaderDataSource(string storageAccountConnectionString)
 {
 Init(storageAccountConnectionString);
 dContext = TableClient.GetDataServiceContext();
 dContext.RetryPolicy = RetryPolicies.Retry(3, TimeSpan.FromSeconds(5));

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

283

 }

 private void Init(string configurationSettingName)
 {
 if (RoleEnvironment.IsAvailable)
 {
 CloudStorageAccount.SetConfigurationSettingPublisher(
 (configName, configSettingPublisher) =>
 {
 var connectionString =
RoleEnvironment.GetConfigurationSettingValue(configName);
 configSettingPublisher(connectionString);
 }
);
 }
 else
 {
 CloudStorageAccount.SetConfigurationSettingPublisher(
 (configName, configSettingPublisher) =>
 {
 var connectionString =
ConfigurationManager.ConnectionStrings[configName].ConnectionString;
 configSettingPublisher(connectionString);
 }
);
 }

 Account = CloudStorageAccount.FromConfigurationSetting(configurationSettingName);

 TableClient = Account.CreateCloudTableClient();
 TableClient.RetryPolicy = RetryPolicies.Retry(3, TimeSpan.FromMilliseconds(100));

 }

 public IEnumerable<ProAzureReader> Select()
 {

 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)
 where g.PartitionKey == DateTime.UtcNow.ToString("MMddyyyy")
 select g;

 var r = results.ToArray<ProAzureReader>();
 return r;
 }

 public IEnumerable<ProAzureReader> SelectByCity(string city)
 {

 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)
 where g.PartitionKey == DateTime.UtcNow.ToString("MMddyyyy")
 && g.City == city
 select g;

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

284

 var r = results.ToArray<ProAzureReader>();
 return r;
 }
 public IEnumerable<ProAzureReader> SelectByState(string state)
 {

 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)
 where g.PartitionKey == DateTime.UtcNow.ToString("MMddyyyy")
 && g.State == state
 select g;

 var r = results.ToArray<ProAzureReader>();
 return r;
 }
 public IEnumerable<ProAzureReader> SelectByCountry(string country)
 {

 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)
 where g.PartitionKey == DateTime.UtcNow.ToString("MMddyyyy")
 && g.Country == country
 select g;

 var r = results.ToArray<ProAzureReader>();
 return r;
 }

 public IEnumerable<ProAzureReader> SelectByPurchaseDate(DateTime purchaseDate)
 {

 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)
 where g.PurchaseDate.Equals(purchaseDate)
 select g;

 var r = results.ToArray<ProAzureReader>();
 return r;
 }

 public IEnumerable<ProAzureReader> SelectTopN(int topNumber)
 {
 var results =
dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME).Take(topNumber);
 var r = results.ToArray<ProAzureReader>();
 return r;
 }

 public void AddProAzureReader(ProAzureReader newItem)
 {
 dContext.AddObject(ENTITY_SET_NAME, newItem);
 dContext.SaveChangesWithRetries(SaveChangesOptions.None);
 }
 public void UpdateFeedback(string PartitionKey, string RowKey, string feedback)
 {

 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

285

 where g.PartitionKey == PartitionKey
 && g.RowKey == RowKey
 select g;

 var e = results.FirstOrDefault<ProAzureReader>();
 e.Feedback = feedback;
 dContext.MergeOption = MergeOption.PreserveChanges;
 dContext.UpdateObject(e);
 dContext.SaveChanges();
 }

 public void UpdateUrl(string PartitionKey, string RowKey, string url)
 {
 var results = from g in dContext.CreateQuery<ProAzureReader>(ENTITY_SET_NAME)
 where g.PartitionKey == PartitionKey
 && g.RowKey == RowKey
 select g;
 var e = results.FirstOrDefault<ProAzureReader>();
 e.ReaderUrl = url;
 dContext.MergeOption = MergeOption.PreserveChanges;
 dContext.UpdateObject(e);
 dContext.SaveChanges();

 }

In Listing 5-14, each method implements a LINQ query for Query Entities on the ProAzureReader
table. On the Default.aspx page of the ProAzureReaderTracker_WebRole web role is a link button for
each of the queries; see Figure 5-11.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

286

Figure 5-11. Query entities in the ProAzureReaderTracker_WebRole web role

As shown in Figure 5-11, you can specify filter criteria in the filter text box and click one of the link
buttons to execute the query.

 Tip If you’re running the web application on the local machine, you can run the Fiddler trace tool and capture
the request and response contents of each query.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

287

Insert Entity
The Insert Entity operation inserts an entity into the specified table. This operation requires the
PartitionKey and RowKey to be specified. The URI for the insert Entity operation is of the format
http://<account name>.table.core.windows.net/<table name>. A typical Insert Entity REST request
looks like Listing 5-15.

Listing 5-15. Insert Entity REST Request

POST /ProAzureReader HTTP/1.1

User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Mon, 22 Jun 2009 03:25:47 GMT
Authorization: SharedKeyLite proazurestorage:
 mazZ5pykdE1CmH5+SDe7fqWDLQpnWDcK1pgWDvyzxss=
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml
Host: proazurestorage.table.core.windows.net
Content-Length: 1178
Expect: 100-continue

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
 <title />
 <updated>2009-05-22T03:25:47.469Z</updated>
 <author>
 <name />
 </author>
 <id />
 <content type="application/xml">
 <m:properties>
 <d:City>san ramon</d:City>
 <d:Country>usa</d:Country>
 <d:EntryDate m:type="Edm.DateTime">2009-05-22T03:25:46.976Z</d:EntryDate>
 <d:Feedback>Excellent Book</d:Feedback>
 <d:PartitionKey>06222009</d:PartitionKey>
 <d:PurchaseDate m:type="Edm.DateTime">2009-05-21T00:00:00</d:PurchaseDate>
 <d:PurchaseLocation>amazon.com</d:PurchaseLocation>
 <d:PurchaseType>New</d:PurchaseType>
 <d:ReaderName>tejaswi</d:ReaderName>
 <d:ReaderUrl m:null="false" />
 <d:RowKey>12521566596530239999_7e9f46ea</d:RowKey>
 <d:State>ca</d:State>
 <d:Timestamp m:type="Edm.DateTime">0001-01-01T00:00:00</d:Timestamp>
 <d:Zip>94582</d:Zip>
 </m:properties>

http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

288

 </content>

In Listing 5-15, the HTTP verb used is POST, to instruct the Table service that this is an insert
operation. The request body contains an ADO.NET entity set. The m:properties element defines the
property names and values of the entity. In reality, it represents a serialized ProAzureReader object
discussed earlier in this chapter. The m:type attribute specifies the data type of the property. The default
property is Edm.String if the property is omitted. After the entity is created successfully, the response
header consists of an HTTP 1.1 201 (Created) status code. The response body also contains the same
ADO.NET entity set that was part of the request body.

The Submit button on the Default.aspx page in the ProAzureReaderTracker_WebRole project is tied
to an Insert Entity operation because it inserts a new entity into the ProAzureReader table. Figure 5-12
shows the Default.aspx page.

Figure 5-12. Default.aspx in the ProAzureReaderTracker_WebRole web role

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

289

In Figure 5-12, when you enter all the reader properties and click Submit, a new entity is created and
the data list is refreshed, showing the new entity at the top. Listing 5-16 shows the code for the
btnSubmit_Click event from the Default.aspx.cs file. Listing 5-16 also shows the AddProAzureReader()
method from the ProAzureReaderDataSource class, which is called by the btnSubmit_Click method to
insert a new entity.

Listing 5-16. Insert Entity

//Default.aspx
protected void btnSubmit_Click(object sender, EventArgs e)
 {
 try
 {
 ProAzureReader newReader = new ProAzureReader()
 {
 City = txtCity.Text,
 Country = txtCountry.Text,
 Feedback = txtFeedback.Text,
 PurchaseDate = DateTime.Parse(txtPurchaseDate.Text),
 PurchaseType = ddlPurchaseType.SelectedItem.Text,
 PurchaseLocation = txtPurchaseLocation.Text,
 ReaderName = txtName.Text,
 ReaderUrl = txtUrl.Text,
 State = txtState.Text,
 Zip = txtZip.Text

 };

 ProAzureReaderDataSource ds = new ProAzureReaderDataSource();
 ds.AddProAzureReader(newReader);

 }
 catch (Exception ex)
 {

 lblStatus.Text = "Error adding entry " + ex.Message;
 }
 }

//ProAzureDataSource.cs
public void AddProAzureReader(ProAzureReader newItem)
 {

 dContext.AddObject(ENTITY_SET_NAME, newItem);
 dContext.SaveChangesWithRetries(SaveChangesOptions.None);

 }

As shown in Listing 5-16, the AddProAzureReader() method calls the AddObject() and
SaveChangesWithRetries() methods on the ProAzureReaderDataContext object. SaveChangesOptions is
an ADO.NET Data Services enumeration with four possible values:

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

290

• None specifies that the operation is non-batch and should stop if any error occurs.

• Batch specifies that multiple changes are packaged into one change set and sent
to the server in a single call.

• ContinueOnError specifies that subsequent operations are attempted even if an
error occurs in one of the operations.

• ReplaceOnUpdate replaces all the properties of an entity on the server with the
new ones specified.

Figure 5-13 illustrates the sequence diagram for the Insert Entity operation.

Figure 5-13. Insert Entity sequence diagram

As shown in Figure 5-13, the Default.aspx page calls the AddProAzureReader() method on the
ProAzureReaderDataSource object. Default.aspx gathers the user input, creates a new ProAzureReader
object, and passes it as a parameter to the AddProAzureReader() method. The AddProAzureReader()
method calls the AddObject() and SaveChangesWithRetries() methods on the
ProAzureReaderDataSourceContext object, which in turn calls the SaveChanges() method on its parent
class (DataServiceContext) object. The SaveChanges() method sends the HTTP request and receives the
response from the Table service.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

291

 Note The Table service supports ACID transactions for batch operations on multiple entities on a single
partition (with the same PartitionKey). 5 The constraints are as follows: same PartitionKey, one transaction per
entity in the batch, no more than 100 transactions in the batch, and the total batch payload size should be less
than 4MB.

Merge Entity
The Merge Entity operation updates the properties of an entity without replacing an entity from the
specified table. It requires the PartitionKey and RowKey to be specified. The URI for the Merge Entity
operation is of the format http://<account name>.table.core.windows.net/<table
name>(PartitionKey="x", RowKey="y"). A typical Merge Entity REST request looks like Listing 5-17.

Listing 5-17. Merge Entity REST Request

MERGE /ProAzureReader(PartitionKey='06222009',RowKey='12521566596530999’) HTTP/1.1

User-Agent: Microsoft ADO.NET Data Services
x-ms-date: Mon, 22 Jun 2009 07:02:04 GMT
Authorization: SharedKeyLite proazurestorage:motXsCh9vzZZpNLbJ8xsNgmO95
Accept: application/atom+xml,application/xml
Accept-Charset: UTF-8
DataServiceVersion: 1.0;NetFx
MaxDataServiceVersion: 1.0;NetFx
Content-Type: application/atom+xml

If-Match: W/"datetime'2009-05-22T07%3A01%3A13.043Z'"

Host: proazurestorage.table.core.windows.net
Content-Length: 1355
Expect: 100-continue

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<entry xmlns:d=http://schemas.microsoft.com/ado/2007/08/dataservices
xmlns:m=http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
xmlns="http://www.w3.org/2005/Atom">
 <title />
 <updated>2009-05-22T07:02:04.948Z</updated>
 <author>
 <name />
 </author>
 <id>http://proazurestorage.table.core.windows.net/ProAzureReader
(PartitionKey='06222009',RowKey='12521566596530239999')
</id>
 <content type="application/xml">

5 Performing Entity Group Transactions: http://msdn.microsoft.com/en-us/library/dd894038.aspx

http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.w3.org/2005/Atom
http://proazurestorage.table.core.windows.net/ProAzureReader
http://msdn.microsoft.com/en-us/library/dd894038.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

292

 <m:properties>
 <d:City>san ramon</d:City>
 <d:Country>usa</d:Country>
 <d:EntryDate m:type="Edm.DateTime">2009-05-22T03:25:46.976Z</d:EntryDate>
 <d:Feedback>Excellent Book</d:Feedback>
 <d:PartitionKey>06222009</d:PartitionKey>
 <d:PurchaseDate m:type="Edm.DateTime">2009-05-21T00:00:00Z</d:PurchaseDate>
 <d:PurchaseLocation>amazon.com</d:PurchaseLocation>
 <d:PurchaseType>New</d:PurchaseType>
 <d:ReaderName>tejaswi</d:ReaderName>
 <d:ReaderUrl>http://www.bing.com</d:ReaderUrl>
 <d:RowKey>12521566596530239999_7e9f46ea-4230-4abb-bbd1</d:RowKey>
 <d:State>ca</d:State>
 <d:Timestamp m:type="Edm.DateTime">2009-05-22T07:01:13.043Z</d:Timestamp>
 <d:Zip>94582</d:Zip>
 </m:properties>
 </content>

</entry>

In Listing 5-17, the HTTP verb specified is MERGE, to instruct the Table service that this is a Merge
operation. The request body contains an ADO.NET entity set. The m:properties element define the
property names and values of the entity. In the example, it represents a serialized ProAzureReader object
as discussed earlier in this chapter. The If-Match header is a required condition the server checks before
performing a conditional update. The ETag value of the entity is checked before making the update. For
an unconditional update, its value should be a wildcard (*). A successful entity update returns an HTTP
1.1 204 (No Content) status code.

The data list in the Default.aspx page in the ProAzureReaderTracker_WebRole project has an
UpdateUrl button that update the ReaderUrl property of an entity. Figure 5-14 shows the Default.aspx
page.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

293

Figure 5-14. Default.aspx in the ProAzureReaderTracker_WebRole web role for the Merge Entity operation

In Figure 5-14, you can update the ReaderUrl property of the ProAzureReader entity. The code for
Merge Entity is in the UpdateUrl() method in the ProAzureReaderDataSource class, as shown in
Listing 5-18.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

294

Listing 5-18. UpdateUrl() Method

public void UpdateUrl(string PartitionKey, string RowKey, string url)

 {
 var results = from g in dContext.ProAzureReader
 where g.PartitionKey == PartitionKey
 && g.RowKey == RowKey
 select g;
 var e = results.FirstOrDefault<ProAzureReader>();
 e.ReaderUrl = url;

 dContext.MergeOption = MergeOption.PreserveChanges;

 dContext.UpdateObject(e);
 dContext.SaveChanges();

 }

As shown in Listing 5-18, the UpdateUrl() method retrieves the appropriate entity using a LINQ
query. Then, it sets the merge option to PreserveChanges and calls the UpdateObject() and
SaveChanges() methods of the DataServiceContext object. The merge option instructs the
DataServiceContext object to track entities in a specific manner locally. The possible options are as
follows.

• AppendOnly instructs the DataServiceContext object to append entities to
already-existing entities in the local cache. The existing entities in the cache aren’t
modified. This is the default option.

• NoTracking instructs the DataServiceContext object that entities aren’t tracked
locally. As a result, objects are always loaded from the server. The local values are
overwritten with the server values.

• OverwriteChanges instructs the DataServiceContext object that server values take
precedence over client values even if they have changed.

• PreserveChanges instructs the DataServiceContext object to preserve the local
changes even if changes are detected on the server. The DataServiceContext
object doesn’t overwrite the property values but updates the ETag value with the
server ETag value. Any properties not changed locally are updated with latest
values from the server. In this option, the local changes to the properties aren’t
lost.

Figure 5-15 illustrates the sequence diagram for the Merge Entity operation.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

295

Figure 5-15. Merge Entity sequence diagram

As shown in Figure 5-15, the Default.aspx page calls the UpdateUrl() method on the
ProAzureReaderDataSource object. The UpdateUrl() method calls the UpdateObject() and
SaveChanges() methods on the ProAzureReaderDataSourceContext object.

 Note In Windows Azure 1.5 SDK, two new features were announced for the Table Storage service — Upsert
and Query Projections. The Upsert feature allows you to update or insert a record on the same transaction and
Query Projection allows you to query a subset of one or more entities. You can find more information on these
features here: blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/windows-azure-tables-
introducing-upsert-and-query-projection.aspx

Steve Marx has developed extension methods for these features because these features are not avaible in the
Windows Azure 1.5 client SDK. blog.smarx.com/posts/extension-methods-for-the-august-storage-
features

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

296

Storage Analytics
In Chapter 2, you learned how to log information from your compute nodes. This information is useful
for finding out the overall usage, health, and data transfer occurring through the compute instances.
This information is also useful for calculating the operating costs in more or less real time, so you don’t
get a surprised by the monthly bill. You can also use this information for throttling or charging your
users for overage in a multi-tenant system. Previously, there was no way of tracking calls that were made
directly to the Windows Azure storage because you could not intercept them. So, a lot of companies had
to divert traffic either through compute instances or estimate the usage based on overall compute usage.
In August 2011, Microsoft announced the Windows Azure Storage Analaytics API. This API lets you to
trace and analyze all the calls made to the Windows Azure storage service, including Blobs, Queues, and
Tables. The Storage Analytics comprises of two features: Logging and Metrics. In Logging, you can trace
the calls to the storage service, and the Metrics feature lets you capture the usage of your storage at an
individual or aggregated basis.

Logging
The following are the characteristics of the Logging feature:

Logging provides traces of all the calls made to the storage service

The tracing information is saved as block blobs in a special blob container $logs

The log file format is as follows

<storage-service-name>/YYYY/MM/DD/hhmm/<counter>.log

e.g., silverliningstorage1/2011/08/26/1700/000001.log

The URL format for accessing the blob is

http://<storageaccountname>.blob.core.windows.net/$logs/silverliningstor
age1/2011/08/26/1700/000001.log

Each request is blogged to the file representing the hour of execution.
For example, a request executed at 5:52 PM will be represented as

http://<storageaccountname>.blob.core.windows.net/$logs/silverliningstor
age1/2011/08/26/1700/000006.log

The 000006 indicates that there have been 6 entries in this hour so far.

Each log entry consists of semi-colon separated fields listed here:

<version-number>;<request-start-time>;<operation-type>;<request-
status>;<http-status-code>;<end-to-end-latency-in-ms>;<server-latency-in-
ms>;<authentication-type>;<requestor-account-name>;<owner-account-
name>;<service-type>;<request-url>;<requested-object-key>;<request-id-
header>;<operation-count>;<requestor-ip-address>;<request-version-
header>;<request-header-size>;<request-packet-size>;<response-header-
size>;<response-packet-size>;<response-content-length>;<request-
md5>;<server-md5>;<etag-identifier>;<last-modified-time>;<conditions-
used>;<user-agent-header>;<referrer-header>;<client-request-id>

The descriptions of these fields are available here:

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

297

http://msdn.microsoft.com/en-us/library/hh343259.aspx

Each line is separated by a new line character ‘\n’

The following example shows one entry for a GetBlob request

1.0;2011-08-
26T17:52:46.5143711Z;GetBlob;AnonymousSuccess;200;18;10;anonymous;;silve
rliningstorage1;blob;"http://
silverliningstorage1.blob.core.windows.net/images/aaryandhruv.jpg?timeout=
20000";"/ silverliningstorage1/images/ aaryandhruv.jpg";z33rt405-4f67-48b5-
b033-b43sdf3346c3;0;123.100.2.10;2009-09-
19;252;0;265;100;0;;;"0x8CE1B6EA95033D5";Friday, 26-Aug-11 17:52:46
GMT;;;;"8/26/2011 5:52:46 PM z33rt405-4f67-48b5-b033-b43sdf3346c3"

The log blob entries also contain metadata representing the type of operations
contained in the log – LogType (read, write, delete), start time, end time, and
log version – currently 1.0

The storage account administrator can read and delete log entries, but cannot create and update log
entries because the $logs is a reserved container for the Windows Azure storage service to dump logs

 Note From the list of logged fields, you can programmatically analyze all the requests in detail and find out the
performance, cost and success rate for all the storage service requests.

Metrics
Listed here are the characteristics of the Metrics feature:

• Metrics gives you aggregated information about requests and capacity of the
storage account. Metrics information is statistical in nature and gives you hourly
aggregates of requests and daily statistics on capacity information like space
consumed, number of blobs and containers.

• Both the Logs and Metrics information is available via the Windows Azure Storage
service REST API and managed API.

• Request (or Transaction) metrics are currently stored in the following Windows
Azure Tables:

• $MetricsCapacityBlob: Represents the only capacity table currently
supported. It contains two records created daily representing storage
account capacity (currently only Blob storage capacity is supported) and
$logs container capacity.

• $MetricsTransactionsBlob: Contains hourly aggregates of service-level *
 and API-level aggregate data for transactions on Blob service.

• $MetricsTransactionsTable: Contains hourly aggregates of service-level
and API-level aggregate data for transactions on Table service.

http://msdn.microsoft.com/en-us/library/hh343259.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

298

• $MetricsTransactionsQueue: Contains hourly aggregates of service-level
and API-level aggregate data for transactions on Queue service.

The schemas for the metrics tables can be found here:

http://msdn.microsoft.com/en-us/library/hh343264.aspx.

 Caution Storage Analytics is not enabled by default. Once you enable it, you will be charged for the space
occupied and transactions handled by the Storage Analytics to your storage account. Because Microsoft changes
billing information quire frequently, here is a link to the page that describes Storage Analytics billing in detail.
blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-analytics.aspx

Steve Marx has developed extension methods for storage analytics: blog.smarx.com/posts/analytics-
leasing-and-more-extensions-to-the-net-windows-azure-storage-library

Enabling Storage Analytics
The Storage Analytics feature introduces two new REST operations: Set Storage Service Properties and
Get Storage Properties. Unfortunately, at the time of writing this section, these two REST operations
were not yet added to the .NET Storage Service managed API. But, like all other Storage service
operations, you can call the REST operations directly. You must call the Set Storage Service Properties
operation for enabling analytics on specific storage services. For example, you have to make a separate
call to the Blob, Table and Queue services for enabling storage analytics on each. Listing 5-19 shows the
REST header and body format of the request to enable storage analytics in the Blob service.

Listing 5-19. Enable Storage Analytics Request for Blob Service

PUT http://silverliningstorage1.blob.core.windows.net/?restype=service&comp=properties
HTTP/1.1

x-ms-version: 2009-09-19
x-ms-date: Tue, 26 Aug 2011 05:52:19 GMT
Authorization: SharedKey
silverliningstorage1:Z1lSsffsr35gUYQluucdsXk6/iDsse53g5sUE=
Host: silverliningstorage1.blob.core.windows.net

<?xml version="1.0" encoding="utf-8"?>
<StorageServiceProperties>
 <Logging>
 <Version>1.0</Version>
 <Delete>true</Delete>
 <Read>false</Read>
 <Write>true</Write>
 <RetentionPolicy>
 <Enabled>true</Enabled>

http://msdn.microsoft.com/en-us/library/hh343264.aspx
http://silverliningstorage1.blob.core.windows.net/?restype=service&comp=properties

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

299

 <Days>14</Days>
 </RetentionPolicy>
 </Logging>
 <Metrics>
 <Version>1.0</Version>
 <Enabled>true</Enabled>
 <IncludeAPIs>true</IncludeAPIs>
 <RetentionPolicy>
 <Enabled>true</Enabled>
 <Days>30</Days>
 </RetentionPolicy>
 </Metrics>
</StorageServiceProperties>

The REST Request header is similar to all the REST request headers you have seen so far in this
book. The REST Request body is in XML format and defines two main elements: Logging and Metrics.
The request body in Listing 5-19 enables analytics for Delete and Write operations and specifies a
retention policy of 14 days, after which the analytics information will be deleted. The request also
enables aggregate metrics, API-level summary statistics, and a retention policy of 30 days. Once analytics
are enabled, you can get the properties by calling Get Storage Service Properties and Update analytics
using Set Storage Service Properties again. The XML format of the Get Storage Service Properties return
body is the same as the Request body of the Set Storage Service Properties operation.

 Note C# examples for reading Logging and Metrics data is available from Windows Azure Storage Team Blog
here

http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-

using-logs-to-track-storage-requests.aspx

and here

http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-metrics-

using-metrics-to-track-storage-usage.aspx

respectively.

Table Storage versus SQLAzure
“How do I decide whether to use SQLAzure or Table storage?” I get this question at least once is every
Architecture Design Session that I conduct. My answer is, as you expected, “it depends.” Both the

http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-using-logs-to-track-storage-requests.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-using-logs-to-track-storage-requests.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-logging-using-logs-to-track-storage-requests.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-metrics-using-metrics-to-track-storage-usage.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-metrics-using-metrics-to-track-storage-usage.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/08/03/windows-azure-storage-metrics-using-metrics-to-track-storage-usage.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

300

storage services have distinct advantages over the other in specific scenarios. I usually adhere to the
following guidelines in deciding which storage option to use.

For any new application development, consider Table storage as a viable option for storing data.
You will be surprised to find out the number of tables that really do not require any normalization.

• Migration: For any migration scenario, if your on-premises data resides in a
relational database, SQLAzure will make your migration quick and easy with
minimal or no code changes.

• Cost: Table Storage is much cheaper than SQLAzure from a pure storage cost
perspective (including transaction costs). Even if you denormalize data with
duplicate data in multiple tables, it will still be cheaper than SQLAzure in most of
the cases.

• Stickiness: Table storage is proprietary to Windows Azure platform. Once you put
your data in there, you will have to invest in tools to bring the data back on-
premises in the future. With SQLAzure, you can bring you data back in no time.

• Utility Tables: I regularly recommend using Table storage for utility tables that do
not have relational requirements. Examples of utility tables are ecommerce
transactions, user profiles, tracing information, session, and the like. These tables
don’t have stringent normalization requirements and each record can atomically
represent an event.

If your data model has a well-defined relational model, SQLAzure is the right choice, as it will save
you a lot of time in maintaining referential integrity across tables and map that to an object relational
model like Entity Framework, NHibernate or Typed Datasets.

In the next section, we will look at two most common scenarios: reading performance counters from
table storage and paging in table storage.

Table Service Scenarios
Now that you understand Windows Azure Table storage concepts, let’s look at some of the commonly
used scenarios. Reading performance counters from Table storage shows you how to read the
performance counters data from Table storage that are stored by the diagnostics service running in
compute nodes of your service. The second scenario shows paging of data sets when using Windows
Azure Table storage.

Scenario 1: Reading Performance Counters from Table Storage
In Chapter 2, you learned that the performance counter logs from the Windows Azure Compute
instances are periodically transferred to the Table storage and stored in the
WADPerformanceCountersTable table. For retrieving these logs, you have to use the Table storage REST
API. The structure of the WADPerformanceCountersTable is illustrated in Figure 5-16.

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

301

Figure 5-16. WADPerformanceCountersTable

Figure 5-16 shows that data from multiple deployments and roles are stored in the same table
therefore you have to query based on Deployment ID for retrieving data for a particular deployment.
And to further filter the query, you may also include a time range and the roles you are interested in.
Listing 5-20 shows structure of the PerformanceData class that inherits from the TableServiceEntity class
and the PerformanceDataContext class that inherits from the TableServiceContext class. This class will
represent the returned object on the query.

Listing 5-20. WADPerformanceCountersTable Structure

public class PerformanceData : Microsoft.WindowsAzure.StorageClient.TableServiceEntity

 {
 public Int64 EventTickCount { get; set; }
 public string DeploymentId { get; set; }
 public string Role { get; set; }
 public string RoleInstance { get; set; }
 public string CounterName { get; set; }
 public double CounterValue { get; set; }
 }
public class PerformanceDataContext : TableServiceContext
 {
 public IQueryable<PerformanceData> PerfData
 {
 get
 {
 return this.CreateQuery<PerformanceData>("WADPerformanceCountersTable");
 }
 }

 public PerformanceDataContext(string baseAddress, StorageCredentials credentials)
 : base(baseAddress, credentials)
 {
 }

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

302

 }

I have not inlcuded the Partition Key and the Row Key in the cliass because they are of no value
considering that we are only interested in the counter values over a period of time. After you have
created the queryable PerfData property on the PerformanceDataContext class, you can then execute
LINQ queries against the PerfData property for retreving values. Listing 5-21 shows two query functions
that retrieve the average memory usage and the average processor percentage over a given time range
for the specified deployment.

Listing 5-21. Retrieve Memory and Performance Usage data

public static double GetAverageProcessorTime(string deploymentId, string storageAccountName,
string storageKey, int timeFrameInMinutes)
 {

 try
 {
 var account = new CloudStorageAccount(new
StorageCredentialsAccountAndKey(storageAccountName, storageKey), true);
 var context = new PerformanceDataContext(account.TableEndpoint.ToString(),
account.Credentials);
 var data = context.PerfData;
 DateTime tf =
DateTime.UtcNow.Subtract(TimeSpan.FromMinutes(timeFrameInMinutes));

 System.Collections.Generic.List<PerformanceData> selectedData = (from d in
data
 where
d.CounterName == @"\Processor(_Total)\% Processor Time"
 &&
d.DeploymentId == deploymentId
 &&
(DateTime.Compare(tf, d.Timestamp) < 0)
 select
d).ToList<PerformanceData>();

 return (from d in selectedData
 where d.CounterName == @"\Processor(_Total)\% Processor Time"
 select d.CounterValue).Average();

 }
 catch (System.Exception ex)
 {
 throw ex;
 }
 }

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

303

 public static double GetAverageMemoryUsageInMbytes(string deploymentId, string
storageAccountName, string storageKey, int timeFrameInMinutes)
 {

 try
 {
 var account = new CloudStorageAccount(new
StorageCredentialsAccountAndKey(storageAccountName, storageKey), true);
 var context = new PerformanceDataContext(account.TableEndpoint.ToString(),
account.Credentials);

 var data = context.PerfData;

 DateTime tf =
DateTime.UtcNow.Subtract(TimeSpan.FromMinutes(timeFrameInMinutes));

 System.Collections.Generic.List<PerformanceData> selectedData = (from d in
data
 where
d.CounterName == @"\Memory\Available MBytes"
 &&
d.DeploymentId == deploymentId
 &&
(DateTime.Compare(tf, d.Timestamp) < 0)
 select
d).ToList<PerformanceData>();

 if (selectedData.Count > 0)
 {
 return (from d in selectedData
 where d.CounterName == @"\Memory\Available MBytes"
 select d.CounterValue).Average();
 }
 else
 {

 return 0;

 }

 }
 catch (System.Exception ex)
 {
 throw ex;
 }

 }

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

304

In Listing 5-21, the LINQ query retrieves all the records for the specified performance counter that
have timestamps between now and the specified time frame. You can find this code in the Service
Management API Windows client application from the Chapter 2 source code.

Scenario 2: Paging in Table storage
Web user interfaces are not designed to display a lot of records at the same time in a listing format. In the
cloud, you may have to display data directly from the Table storage into an ASP.NET web page.
Windows Azure Table storage also has the limit of returning no more than 1000 results for your query
even if more than 1000 entities fit the query. The response consists of a continuation token in the header
indicating that there are more entities that match the query criteria. The CloudTableQuery<TElement>
generic class returns a continuation token for the query results. The asynchronous methods for
retrieving and using the continuation token is shown in Listing 5-22.

Listing 5-22. Continuation Token

private IAsyncResult BeginAsyncOperation(object sender, EventArgs e, AsyncCallback cb,
object extradata)

 {
 var query = new
ProAzureReaderDataContext(CloudConfiguration.GetStorageAccount()).ProAzureReader.Take(3).AsTab
leServiceQuery();
 if (Session["segment"] == null)
 {

 return query.BeginExecuteSegmented(cb, query);

 }else
 {
 var segment = Session["segment"] as ResultSegment;

 return query.BeginExecuteSegmented(segment, cb, query);

 }

 }

 private void EndAsyncOperation(IAsyncResult result)
 {
 var tableQuery = result.AsyncState as CloudTableQuery<ProAzureReader>;

 ResultSegment<ProAzureReader> resultSegment =
tableQuery.EndExecuteSegmented(result);

 Session["segment"] = resultSegment.ContinuationToken;
 //this.readers = resultSegment.Results.ToList();
 }

In Listing 5-22, an asynchronous query is executed on the Table storage using the CloudTableQuery
.BegingExecuteSegmented() method. This method returns the ResultSegment object when the

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

305

asynchronous method ends. The continuation token is a property of the ResultSegment class. The
continuation token is saved in the user’s session object and used in the next query. Typically, the
continuation token will be associated with the user’s paging action for viewing results on the next page.

 Tip When executing a query against Table storage, there might be cases where the connection is throttled and
your query receives an exception. The type of exception returned by the Storage service indicates whether the
query can be retried or not. All the exceptions with code >= 400 and < 500, and 501 and 505 are exception codes
that does not allow retry on the query. All other exceptions can be retried using either the pre-defined retry policies
in the Windows Azure StorageClient API or creating a custom retry policy6.

RetryPolicies.NoRetry: No retry is used.

RetryPolicies.Retry: Retries N number of times with the same backoff between each attempt.

RetryPolicies.RetryExponential (Default): Retries N number of times with an exponentially increasing backoff
between each attempt.

All the three storage types: Blobs, Queues, and Tables have RetryPolicy property in their client class.

 Note More information on retries can be found on the Windows Azure Team Blob site
(http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-
the-windows-azure-storage-client-library.aspx).

You can use Table storage for storing ASP.NET Membership, Roles, Profiles, and Session State using the
AspProviders and AspProviders Demo samples that Microsoft has made available through code.msdn.com
http://code.msdn.microsoft.com/windowsazuresamples.

6 Windows Azure Storage Team Blog,
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-
windows-azure-storage-client-library.aspx

http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-windows-azure-storage-client-library.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-windows-azure-storage-client-library.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-windows-azure-storage-client-library.aspx
http://code.msdn.microsoft.com/windowsazuresamples
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-windows-azure-storage-client-library.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-windows-azure-storage-client-library.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/02/03/overview-of-retry-policies-in-the-windows-azure-storage-client-library.aspx

CHAPTER 5 WINDOWS AZURE STORAGE PART III – TABLES

306

Summary
In this chapter, you learned the details in interacting with the Windows Azure Table Storage service
programmatically. The Table service provides a structured storage that you can use from anywhere,
anytime. If you’ve already worked with REST, the ADO.NET Data Services Framework, or the ADO.NET
Entity Framework, you should find the Table service concepts easy to understand and program with.
The knowledge you’ve acquired from learning Table service REST API, ADO.NET Data Services Client
library, and Windows Azure SDK StorageClient should enable you to build your own Table service
applications.

This concludes a series of three intense chapters covering the wide range of features and
functionality offered by the Blob, Queue, and Table services. You learned in detail about the three types
of storage services offered by Windows Azure. You also learned Drives as a special type of Blob storage.
The demonstrations and API discussions in these chapters should enable you to use the concepts in your
own storage applications. Now, you are also better prepared to choose the right combination of storage
services for your solution. Later in the book I have covered the relational database in the Windows Azure
called SQLAzure. Make sure you leverage the best possible combination of non-relational, structured
and relational storage for your solution after reading these chapters.

The next few chapters cover the Middleware layer of the Windows Azure Platform called the
Windows Azure AppFabric.

Bibliography
MSDN. (n.d.). ADO.NET Data Services Specification. Retrieved from MSDN Developer’s Network:

http://msdn.microsoft.com/en-us/library/cc668808.aspx.

MSDN. (2009, May). Windows Azure Blob — Programming Blob Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153400.

MSDN. (2009, May). Windows Azure Queue — Programming Queue Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153402.

MSDN. (2009, May). Windows Azure SDK. Retrieved from MSDN: http://msdn.microsoft.com/en-

us/library/dd179367.aspx.

MSDN. (2009, May). Windows Azure Table — Programming Table Storage. Retrieved from MSDN:

http://go.microsoft.com/fwlink/?LinkId=153401.

Windows Azure Storage Team Blog: http://blogs.msdn.com/b/windowsazurestorage/

http://msdn.microsoft.com/en-us/library/cc668808.aspx
http://go.microsoft.com/fwlink/?LinkId=153400
http://go.microsoft.com/fwlink/?LinkId=153402
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://go.microsoft.com/fwlink/?LinkId=153401
http://blogs.msdn.com/b/windowsazurestorage/

C H A P T E R 6

307

VM Role and Windows Azure
Connect

As two of the latest additions to the Windows Azure platform, it’s hard to think of any more widely
anticipated features than VM role and Windows Azure Connect. However, they may also be the most
misunderstood. In this chapter, I will help you understand why these features were released, what their
purpose is, and the scenarios to which they do and do not apply.

 Note As of the time of writing, both of these technologies are technically still in beta. Thus, they are not
supported for production use. For announcements regarding production availability for this and other Azure
features, go to http://blogs.msdn.com/windowsazure.

The VM role is complementary to the Web and Worker roles. It provides the ability to deploy a
Windows Server 2008 R2 Hyper-V-enabled virtual machine to your hosted service. Essentially, you will
now have the ability to run your own images in the Azure environment.

Windows Azure Connect provides IPSec protected connections between on-premise machines and
cloud role instances. This provides a higher level of integration than previously offered by the AppFabric
Service Bus.

VM Role
The first thing to note about the VM role in its current form is that it is not considered infrastructure as a
service. In other words, it’s not intended to be used in the same way as Amazon Web Services EC2 or
other IaaS providers such as Rackspace. This makes sense when you consider the Azure Fabric—the
Fabric Controller can bring down any role instance at any time, for many good reasons. In addition, the
nodes sit behind a round-robin load balancer. This is what makes Azure strong as a PaaS provider.
However, this also means that in order to maintain the Azure SLA, you will need at least two instances of
your role deployed. This has several architectural impacts, including the following:

• State management. Because there are two instances running behind a round-
robin load balancer, you will need to store runtime state information outside the
VM. Windows Azure Caching is a good candidate for this.

http://blogs.msdn.com/windowsazure

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

308

• File management: Files will also need to be maintained outside the VM. Because
the load balancers route requests in a round-robin fashion, the file systems on
each compute instance will quickly become dissimilar and fragmented unless files
are stored centrally. If the files are read-only files, then Windows Azure Drives are
a great solution. Otherwise, consider using Azure blob storage.

So, what this means today is that VM role is not well suited to running stateful server applications.
Obviously, you wouldn’t want to install Active Directory to a VM role, but applications like SQL Server
and Oracle are also not good candidates at this point.

VM Role Benefits/Tradeoffs
Using VM role provides you the ability to have more control over your image. You can set it up exactly
the way you want, install any software necessary, and configure services that you might need. In
addition, you still get the benefits of Azure-provided load balancing, failover, and redundancy.

However, once you use the VM role, you are responsible for maintaining the image yourself. This
means you have to perform upgrades to the operating system, and patches. If you have an application
update, you will need to build and test the new images, rather than simply deploying an application
package to the Azure Service Management portal. This also complicates your development cycles.
Before, your application developers could test their work by simply deploying their package to the
compute emulator. Now there’s an extra layer of complexity brought into the development cycle.

Scenarios
There are several scenarios in which VM role makes perfect sense. One would be an application that
requires many other products to be installed to run correctly. While you could use Startup Tasks to
install this required software, the install will take time. This time increases the amount of time required
to spin up the Azure role instances. This has several impacts, most notably that whenever one of your
VMs are taken down by the fabric controller, it will take longer for that VM to be restored, resulting in
longer periods of diminished capacity.

If you were to pre-install all of this software on a VHD image, then you won’t have to wait for the
installers to run—the software will be already installed.

 Note You might assume that by handling OS upgrades and patches yourself in VM role, that the application
would gain significantly more uptime, as the fabric controller would not need to install these updates. This is only
partially true, in that the guest OS would not need to be updated. However, the instance can still be taken down for
a variety of reasons, including hardware failure, Host OS updates, or even to gain hardware efficiencies in the data
center.

There is another scenario worth mentioning related to installing software. If your application
requires third-party software, and the provider didn’t write its installer to run in silent or unattended
mode, then you need to use the VM role. You can install the software manually on your image, then
deploy your image to the cloud.

There are other scenarios, such as complications involving SysWow64 and 32-bit Dlls, but the
takeaway from this section is to carefully consider the use of the VM role. It isn’t intended to support

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

309

IaaS, and you should take this into consideration, especially when migrating an existing application to
the cloud. Some applications, such as single-server, on-premises applications are not good candidates
for the cloud without significant changes, whether you use VM role or Web/Worker roles. VM role is not
always a shortcut to getting to the cloud.

At a high level, there are the following three steps to deploying a VM to Windows Azure:

1. Create a base image in Hyper-V.

2. Apply sysprep.exe.

3. Upload to Windows Azure.

I discuss these in the following sections.

Creating the Virtual Machine
The first step is to build your base VM image. You’ll need a Windows 2008 R2 Server with Hyper-V
enabled, and either a disk or .iso image for a Windows Server 2008 R2 (along with a valid license key, of
course). You will also want to either install the Windows Azure SDK 1.4 to this server, or copy the
following file to your server hard drive:

C:\Program Files\Windows Azure SDK\v1.4\iso\wavmroleic.iso

This assumes you are running SDK version 1.4 and have installed to the default directory. If you
installed to another directory, or are using another version, adjust the path accordingly.

 Note The steps to setting up Hyper-V and creating a base virtual machine image are beyond the scope of this
book. I will be focusing on any steps that are specific to building and deploying to Windows Azure. The Windows
Azure Platform Training Kit has an excellent lab that will take you step by step through this process.

Using Hyper-V Manager, build your base image. The key step in this process that is different is to
pay attention to how much memory you assign to the image. It’s important that this space is within the
disk space allocated for the size of the Azure VM you plan to deploy. For example, the Medium size VM
has a 500GB disk size limit. You obviously wouldn’t want to allocate 750 GB to your image in this case,
unless you are planning on deploying to a Large VM, which would increase the cost of the application.

After installing the OS, add the roles you need for the server (such as IIS), and features such as .NET
Framework, Remote Administration, and enabling Remote Desktop access if you want to be able to
remote into your instance. You’ll also want to install all other server application components necessary
to run your application, such as third-party tools, services, and the code required to run your
application.

Windows Azure VM Role Integration Components
The Windows Azure VM Role Integration components are required to be installed on the image. These
are components that start each time the operating system starts, and they perform tasks that enable the
VM to run in the Azure environment. Essentially, the components provide several functions – preparing

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

310

the VM for deployment, installing runtime APIs that provide coordination between the VM and the
Azure Fabric, installing certificates, and creating local storage resources.

System Preparation
Included with the Integration Components is a System Preparation Tool (sysprep.exe). This tool runs
the VM you have created through a specialized setup when the instance is initialized. In order to
automate this, a file (C:\unattend.xml) is installed in the root directory of the VM role instance. This file
provides the Windows configuration settings for this specialization phase, and includes the following:

• System locale to en-US

• Time zone to UTC (which must not be changed)

• Turning off Windows Update

• Setting the Administrator password

Provide Coordination Between Your Image and the Windows Azure Fabric
Several service runtime APIs are also installed. These allow the VM to communicate with the Azure
environment. This is what enables code from the Microsoft.WindowsAzure.ServiceRuntime namespace
to perform actions such as retrieving the IP addresses of all other role instances, getting the instance ID,
and getting service configuration information. It also enables the VM to communicate its instance state
through the load balancer. This is critical to ensuring the fabric controller can determine when a VM is
unhealthy and needs to be recycled.

 Note Code that uses the service runtime API needs to be running under an administrator or LocalSystem
account.

Install Certificates
Remember that certificates are specified in the service definition file and uploaded through the Azure
portal? Well, this means that they somehow need to get installed on the VM. The Windows Azure
Integration Components handle this for you. All certificates are installed to the LocalMachine store
location.

If you’re thinking that it’s easier to install the server certificate directly on the server image, think
again. The sysprep tool, in the process of generalizing your image, destroys private key information.

 Note For more information on using management certificates with a VM role, go to
http://msdn.microsoft.com/en-us/library/gg697586.aspx.

http://msdn.microsoft.com/en-us/library/gg697586.aspx

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

311

Create Local Storage Resources
In your service definition, you have the ability to define local storage on the VM. Because this is in the
service definition and not on the VM, the Integration Components must read the service model through
the service runtime API, and then allocate the local storage resources as necessary.

Installing the Integration Components
In order to install the components, you will need the wavmroleic.iso file, which can be found in the
Windows Azure SDK as described previously, or copied to you server hard drive (see Figure 6-1). Here
are the steps:

1. While connected to your VM on your server, choose Media DVD Drive
Insert Disk.

2. Browse to the .iso file, select it, and click Open.

3. This will mount the ISO as a DVD drive, which will bring up the AutoPlay
dialog. Double-click WaIntegrationComponents-x64.msi to begin the
installation.

Figure 6-1. Windows Azure integration components install file

4. Run the install wizard. You will need to provide the Administrator password.
This is used when the operating system starts, after the image is prepared and
deployed to Windows Azure.

5. When the install is complete, you will be asked to restart the system.

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

312

 Note It’s probably a good idea to create a password-reset disk, in case you ever lose the Administrator
password.

System Preparation Tool
Once the VM is restarted, log in and run the System Preparation Tool, which is located at
%windir%\system32\sysprep\sysprep.exe. Set the options as shown in Figure 6-2.

Figure 6-2. System Preparation Tool settings

The sysprep tool will prepare the image by cleaning up specifics such as user and machine settings
and log files, private key information, and hardware-dependent information.

Upload Image to Windows Azure
Finally, we are ready to upload the image to Windows Azure! In order to upload to the Windows Azure
environment, we will use the csupload.exe command-line tool that is provided as part of the Windows
Azure SDK. Once the image is uploaded, we will create the Visual Studio project that contains the service
definition

From the start menu, navigate to Windows Azure SDK 1.4 and open the Azure SDK Command
Prompt as an Administrator. Here, we will execute csupload.exe, telling it to execute a PowerShell
cmdlet that will upload the vhd file:

csupload Add-VMImage -Connection "SubscriptionId=<YOUR-SUBSCRIPTION-ID>;
CertificateThumbprint=<YOUR-CERTIFICATE-THUMBPRINT>" -Description "<YOUR DESCIPTION>" -
LiteralPath "<PATH-TO-VHD-FILE>" -Name <NAME.VHD> -Location <HOSTED-SERVICE-LOCATION>

The subscription ID is your Azure subscription ID. This can be obtained from the Management
Portal. The certificate thumbprint is the thumbprint from the management certificate you generated and
uploaded to the management portal. Add your own description, the path to your VHD, and the name of
the VHD, and then the name of the Windows Azure datacenter where the VHD will be hosted. As of the

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

313

time of writing, available options are “East Asia,” “North Central US,” “North Europe,” “South Central
US,” “Southeast Asia,” “West Europe.”

Once execution starts, the Windows Azure VHD Verification Tool will run. This tool will mount the
VHD and verify it, then compress it into an even smaller copy, with a .preped extension. It will then
begin uploading the image, which can take a long time, due to the typically large file size and connection
speed.

Viewing Image in Management Portal
To verify that the image was uploaded successfully, Open your Management Portal, click Hosted
Services, Storage Accounts & CDN, and the click the VM Images folder on the left, as shown in Figure 6-
3. You should see a list of your subscriptions, along with any VMs you have uploaded.

Figure 6-3. VM image in Management Portal

Creating the Hosted Service and Service Definition
Congratulations! You have successfully uploaded a VHD to Windows Azure! But wait… we’re not done
yet. We need a hosted service in which to deploy the image, which means we need to create a
deployment package and configure it to reference the image we just uploaded. Here are the steps:

1. Open Visual Studio and create a new Windows Azure Project, but in this case
do not add any roles. Just click OK when the Add Roles dialog appears.

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

314

2. Once the solution is created, right-click the Roles folder in Solution Explorer,
and choose Add New Virtual Machine Role.

 Note If the New Virtual Machine Role option is not available, you may need to change a registry setting
(remember, this is still technically in beta). This link can help: http://social.msdn.microsoft.com/Forums/en-
US/windowsazuretroubleshooting/thread/84c61a84-89c1-4fef-8d7b-e6419e8c4339.

3. Double-click the role you just created in Solution Explorer to begin configuring
the Hosted Service model. Visual Studio will need access to your Azure
subscription, to retrieve the list of VMs that have been uploaded and are
available.

4. Select the credentials that you have uploaded to the portal. In the Virtual Hard
Disk tab, choose the credentials you used when uploading the VM, and then
you will be provided with a drop down listing the VHDs you have uploaded.

5. Choose the appropriate VHD for this hosted service (see Figure 6-4).

http://social.msdn.microsoft.com/Forums/en-US/windowsazuretroubleshooting/thread/84c61a84-89c1-4fef-8d7b-e6419e8c4339
http://social.msdn.microsoft.com/Forums/en-US/windowsazuretroubleshooting/thread/84c61a84-89c1-4fef-8d7b-e6419e8c4339

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

315

Figure 6-4. Selecting a VHD in Visual Studio

 Note If you have not yet uploaded management certificates to the portal, go to
http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_vmrolelab_topic6 for additional
information.

6. Next, we need to configure endpoints. Go to the Endpoints tab and add the
endpoints required for your application, such as HTTP and HTTPS, plus any
TCP ports you need opened (see Figure 6-5). Keep in mind there is a 5-port
limit, and that Remote Access will also consume one of your ports.

http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_vmrolelab_topic6

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

316

Figure 6-5. Configuring endpoints in Service Definition

Once we have completed these tasks, the final steps are to package the role and (if desired) enable
remote access so we can view the instance remotely once deployed.

Packaging and Enabling Remote Access
Packaging our VM role for deployment is not different than doing the same for a Web or Worker role.
Right-click the Cloud Service project and select Publish. To enable remote access, click the Configure
Remote Desktop Connections link, and enter your credentials, and the Remote Access password, which
is either the Administrator password, or another identity you created in the VM for remote access.

Deploying the Hosted Service
To deploy the hosted service, we simply go back to the management portal and deploy our package
exactly the same as a Web or Worker role. Navigate to Hosted Services, create or select the hosted service
in which to deploy, and deploy your project.

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

317

Once these steps are complete, you should have your VM role application running on Windows
Azure!

Next, we will take a look at Windows Azure Connect—a handy tool, for instance, if you need to
connect your VM to a server running on premises.

Windows Azure Connect
While the Azure product team doesn’t refer to Windows Azure Connect as a VPN, I can’t really come up
with a more accurate comparison. Windows Azure Connect provides an IPsec protected connection
between disconnected machines. This could be on-premise machines, or Web/Worker/VM role
instances in separate hosted services. As you might expect, the possibilities for hybrid applications
becomes mind-boggling, as shown in Figure 6-6.

In the next few sections, we will look at how Windows Azure Connect is different from the Windows
Azure AppFabric Service Bus, as well as how to provision and activate Windows Azure Connect
endpoints, creating a solution that networks could instances to on-premises machines.

Figure 6-6. Windows Azure Connect group

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

318

Windows Azure Connect vs. Service Bus
Connect enables hybrid scenarios and Service Bus enables hybrid scenarios. So how are they different,
and when is it appropriate to use one over the other? I like to think of Service Bus as an application-level
integration utility, while Connect is a machine-level integration utility.

With Service Bus, you need to build proxies on each side of the firewall, and the applications use a
relay service to communicate. If your scenario is one application talking to another application, this is
highly appropriate.

With Connect, you have access to the entire machine as if it were in your datacenter. This means
you can operate in a more familiar way, such as integrating System Center Operations Manager for
monitoring, connecting to a database on-premises, or accessing functionality of legacy systems that
could not be ported to the cloud.

Connect brings tremendous power and flexibility. However, keep the following in mind:

1. Network latency. Keeping your database on-premises and using Connect is
very tempting, especially in regulatory compliance scenarios. However, the
distance between your datacenter and the Azure datacenter matters.
Performance may suffer. However, if the benefits outweigh the performance
cost, then go with Connect.

2. Bandwidth costs. Even though the servers are interacting as if they are in the
same datacenter, they are not. Even though pricing has not yet been
announced for Connect, keep in mind that you are charged for all bandwidth
coming out of the datacenter. No matter what, you would always want to make
sure you are using bandwidth as efficiently as possible.

 Note For a real-world example that implemented Connect as a replacement for Service Bus, go to
http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-

onpremises-using-connect/.

Provisioning Windows Azure Connect
The first step in provisioning Windows Azure Connect is to ensure you have access to the CTP. To do so,
follow these steps:

1. In the Windows Azure Management Portal, click the Home tab, then the Beta
Programs folder in the left-hand navigation.

2. There you will be given the option to request CTP access. Note that this
process will change once Connect is in production, you will not need to
request access.

3. Once access has been granted, you will be able to access Connect functionality
through the Virtual Network tab, as shown in Figure 6-7.

http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-onpremises-using-connect/
http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-onpremises-using-connect/
http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-onpremises-using-connect/

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

319

Figure 6-7. Virtual Network – Azure Management Portal

4. Next, you will need to enable Windows Azure Connect for your subscription.
In the left-hand navigation pane, click on your subscription name.

5. A dialog box will pop up asking if you want to enable Windows Azure Connect
for your subscription. Click Yes.

Once your subscription is enabled, you will need to create endpoints, and create a group containing
your roles and on-premises machines.

Activated Endpoints, Groups, and Roles
Endpoints you wish to have available to Connect must be registered with Windows Azure. Once
registered, you will have the ability to add these endpoints into groups that will be able to interact with
each other as if they were in the same datacenter.

The Management Portal shows two folders in the navigation: Activated Endpoints and Groups and
Roles. Activated Endpoints lists the endpoints that you have activated for this subscription. Groups and
Roles will provide a tree view showing the groups you have created, and what endpoints exist in each
group.

The end result we want is to have a group of endpoints connected, so first we need to activate those
endpoints for our subscription. The process is different depending on whether you are activating an
endpoint for a local machine, or an Azure role.

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

320

Installing and Activating an Azure Endpoint on a Local Machine
In order for local machines to be integrated with Windows Azure Connect, you will need to install the
endpoint software on the machine itself.

The following steps are the easiest way to do this:

1. Go to the Virtual network tab on the Management Portal and click on your
subscription in the left-hand navigation.

2. Then click Install Local Endpoint in the upper left-hand corner. You’ll be
presented with a dialog that contains a link (see Figure 6-8).

Figure 6-8. Local endpoint installation link

3. Click the button to copy the link to your clipboard.

4. If you are on the machine for which you want to install the endpoint, then
open your browser and paste this link into your browser. If you plan to install
to another machine, then you will need to paste this link to a text file.

5. Copy the text file to the other machine, and then copy/paste the link into the
browser on that machine. This will download and install the endpoint software
on your machine.

 Note The local endpoint software is currently only compatible with Windows operating systems.

6. Once installed, note that there really isn’t much for UI elements to determine
that the endpoint is running. The only UI element is in your system tray (see
Figure 6-9).

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

321

Figure 6-9. Azure Connect UI in system tray

7. If you click the tray icon, you will be presented with options to open Windows
Azure Connect, Refresh Policy, or Diagnostics. Opening Windows Azure
Connect brings up the dialog shown in Figure 6-10.

Figure 6-10. Windows Aure Connect endpoint software UI

If you’re having connectivity issues, the diagnostics dialog might be useful in detecting issues (see
Figure 6-11).

Figure 6-11. Windows Azure Connect Diagnostics dialog

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

322

Protocols and Ports
Note that Azure connectivity is based on IPv6 and HTTPS. This means that on the machine hosting the
local endpoint software, TCP port 443 outbound must be opened, and firewall excpetions must be
created for Internet Control Message Protocol version 6 (ICMPv6) communication. This is critical to
establishing an IPv6 link. The endpoint software configures these for you, but you should be aware of
these protocol/port/firewall requirements in case you run into issues. Additionally, you will need to
configure other firewall exceptions as required by your applications.

Concerning your Windows Azure role instances, the endpoints/firewall rules are configured for you
by Windows Azure. If you need a specific port opened for an application running on your instnace, then
you will need to configure that in the service definition, but otherwise, you won’t need to make any
specific changes for Windows Azure Connect.

Enabling Windows Azure Connect for a Role
In order to activate Windows Acure Connect for a role, you must get an activation token from the
Management Portal, and copy that token into the service configuration for your role. This token tells
Windows Azure to add this role to the collection of activated endpoints that can be added to an Azure
group (see Figure 6-12).

Figure 6-12. Getting an activation token from the Management Portal

Connect must be enabled in the ServiceDefinition for your deployment. In order to enable Connect,
open the role properties by double-clicking, go to the Virtual Network tab, select the Activate Windows
Azure Connect checkbox, and paste the token you received from the portal (see Figure 6-13).

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

323

Figure 6-13. Activating Windows Azure Connect for a role

It’s really that simple. Behind the scenes, your ServiceDefinion.csdef and
ServiceConfiguration.cscfg files are modified.

<Import moduleName="Connect" />

The code in Listing 6-1 is added to the service configuration, and define the settings for the Connect
environment:

Listing 6-1. ServiceConfiguration.cscfg modifications

<Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="<TOKEN>" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.Diagnostics" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DNSServers" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" />
<Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" />

Once you deploy your solution, your endpoints will be activated. You can view these endpoints by
clicking the Activated Endpoints folder in the Management Portal.

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

324

Creating Connect Groups
Creating groups is very simple once you have activated all the required endpoints. Go to the
Management Portal, click the Virtual network tab, select your subscription, and click the Groups and
Roles folder. Click Create Group. Provide a name for your group, and add your local endpoints. Note the
checkbox for “Allow connections between endpoints in group.” This allows you to control whether the
local endpoints can communicate with each other. Keep in mind that the local endpoints may not be in
the same datacenter, so you need to decide whether you want to enable them to communicate directly
with each other.

Next you add your Azure roles for which you have activated endpoints, or other endpoint groups
you have already created. Click Create, and your group will be enabled and capable of communicating
directly (see Figure 6-14)!

Figure 6-14. Creating a Windows Azure Connect endpoint group

 Note If you un-deploy a role and re-deploy (which may happen often during development), the role will be
dropped from the group and you will need to go back to the Management Portal and add t to the group again.
Roles can be easily added or removed using the Edit Group button (see Figure 6-15).

CHAPTER 6 VM ROLE AND WINDOWS AZURE CONNECT

325

Figure 6-15. Group named Loadtest, with a computer and a role (two instances)

Summary
In this chapter you learned how to create a VM role, as well as the scenarios in which VM role can be
useful, and other scenarios where it may not be an appropriate solution. We covered Windows Azure
Connect and creating Azure Connect groups to enable machine-level connectivity between
environments.

Bibliography
MSDN: How to Install the Windows Azure Integration Components. http://msdn.microsoft.com/en-
us/library/gg465409.aspx

MSDN: Troubleshooting Windows Azure Connect. http://msdn.microsoft.com/en-
us/library/gg433016.aspx

MSDN: Overview of Firewall Settings Related to Windows Azure Connect.
http://msdn.microsoft.com/en-us/library/gg433061.aspx

http://msdn.microsoft.com/en-us/library/gg465409.aspx
http://msdn.microsoft.com/en-us/library/gg465409.aspx
http://msdn.microsoft.com/en-us/library/gg465409.aspx
http://msdn.microsoft.com/en-us/library/gg433016.aspx
http://msdn.microsoft.com/en-us/library/gg433016.aspx
http://msdn.microsoft.com/en-us/library/gg433016.aspx
http://msdn.microsoft.com/en-us/library/gg433061.aspx

C H A P T E R 7

327

AppFabric: Access Control
Service

Access Control Service (ACS) provides a facility for abstracting your authentication code, as well as
mapping disparate claims from multiple identity providers into a single token and claim structure. In
addition to saving you the trouble of writing code to authenticate to many identity providers, this makes
it easier to write your authorization code, as you can expect to receive a consistent set of claims from
ACS.

In this chapter, we will cover ACS in depth, starting with a quick discussion of digital identities.
Then we will look at ACS usage scenarios, and move into the functionality provided by ACS. Finally, we
will cover some of the programming aspects.

What Is Your Digital Identity?
I personally have at least 15 different identities, and it’s tedious as well as insecure to maintain
usernames and passwords for every application. You can categorize such identities as critical, important,
and less important based on the impact they may have, not only on your digital life but also on your real
life if you lose them. The critical ones are enterprise identities you may have with your company or
partner companies (such as an Active Directory account) and financial identities with financial service
providers like 401K fund managers, online banks, and so on. The important ones are personal e-mail
identities like Hotmail, Yahoo Mail, and Gmail. The less-important identities belong to social-
networking and other web portal sites and can be reestablished without any effect if necessary.

Where do these identities come from, and how are they maintained? You create an identity when
you register with an identity provider. For example, when you join a company, the IT department creates
an identity for you in their Active Directory. The identity is maintained in the Active Directory until you
leave the company, and sometimes even after you leave. Similarly, when you register for a 401K plan, the
plan provider creates a new identity for you that is maintained in the plan provider application. When
you create a Hotmail or a Windows Live account, you get a LiveID to share across multiple Microsoft
portals and applications online. Even in the same enterprise, most applications maintain their own
identity providers like the database. This results in identity silos across organizations that are difficult to
maintain. When a person leaves a company, the IT department has to not only delete their identity
across all the applications, but also maintain these deletion records for compliance reasons. Partner
companies also have to delete the user’s identity from their extranet identity system.

As an application developer, often you have to design identity providers within applications; and if
these applications are extranet or Internet facing, then the complexity of authentication and
authorization increases significantly. You end up spending more effort on authentication and
authorization design instead of the application’s business logic. Ideally, you’re given a standard interface
for identity management that is consistent across all applications. The identity-management

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

328

architecture needs to be abstracted from the application architecture so you can focus your time on
business logic and reduce the costs associated in maintaining the identity-management infrastructure
for every application. Some large organizations deploy an enterprise-wide single sign-on solution that all
applications can leverage to solve the multiple identity providers problem. But, when you are designing
applications for the cloud, there is no enterprise-grade identity provider, like Active Directory, available
in the cloud (including Windows Azure platform) that can store your identities. The whole software
industry is moving towards a claims-based model in which the authentication responsibility stays with
the identity provider whereas the authorization responsibility stays with the application.

Windows Azure AppFabric Access Control Service (ACS) is a cloud service that abstracts the
orchestration of authentication for your application. ACS follows a claims-based architecture where
users acquire their claims from ACS based on their identity and present the claims to the application.
The application is configured to trust ACS and uses the information presented in the claims to
determine appropriate entry to users. In simple terms, ACS is a claims-transformation service in the
cloud that relieves you of managing identities within your application.

 Note Windows Identity Foundation (WIF) is the underlying framework for building claims-aware applications.
WIF is a developer tool and an extension of the .NET Framework that makes it easier for you to develop claims-
aware applications using familiar tools like Visual Studio. It is a standalone framework and thus detailed
information is outside the scope of this book. Some general concepts and terminology are provided at the end of
this chapter. However, you can learn details about WIF from the Identity Developer Training Kit available from
Microsoft here (www.microsoft.com/download/en/details.aspx?id=14347).

What Are Claims?
Claims are a set of attributes that an application expects. As a user, you present a set of claims to an
application and then let the application decide the privileges it can offer you based on those claims. I
consider claims as natural advancements to the role-based authorization model. For example, you may
have an application that expects e-mail address, phone number, password, and employee ID from an
end user as the set of claims for determining the appropriate access control. You can configure your ACS
to provide these user claims to your application independent of the user’s identity provider. Figure 7-1
illustrates a simple view of ACS.

http://www.microsoft.com/download/en/details.aspx?id=14347

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

329

Figure 7-1. A simple view of the Access Control Service

The pattern illustrated in Figure 7-1 is called a claims-based identity model because the claims tie
together the relying party, ACS, the identity provider, and the consumer. The primary function of ACS is
to transform input claims into output claims as follows:

1. Configure ACS and the identity provider to trust each other.

2. Configure ACS and your service (a.k.a., relying party) to trust each other with a
signing key.

3. Configure ACS with rules for mapping input claims to output claims that your
application expects. In the real world, these tasks are performed by system
and/or security administrators.

4. When an application wants to consume the web service, it sends the required
claims to ACS in a request for a token.

5. ACS transforms input claims into output claims based on the mapping rules
you created while configuring ACS.

6. Next, ACS issues a token with output claims to the consumer application. The
consumer application sends the token in the request header to the web
service.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

330

7. The web service validates the claims in the token and provides appropriate
access to the end user.

In this model, if you are building your application using .NET Framework, the consumer and the
relying party can both benefit from using the WIF APIs.

 Note Active Directory itself doesn’t support a claims-based identity model. You will need Active Directory
Federation Services 2.0 (ADFS 2.0) to provide claims-based identity support to Active Directory. ADFS 2.0 is built
using WIF. ACS is used for abstracting multiple identity providers from the relying party. If you are sure that you
will be using one and only identity provider, then you can use WIF to directly federate with the relying party. The
Identity Developer Training Kit available from Microsoft here
(www.microsoft.com/download/en/details.aspx?id=14347) has several examples for using WIF to federate
directly with the relying party, without using ACS.

The important information to take from this example is the fact that ACS abstracts multiple token
providers from the relying party by always issuing the same type of token. The relying party has to only
consider the output claims in its authorization logic to provide appropriate access to the end user. As a
result, you as a developer only have to program your application or service against a set of output claims
independent of input claims from multiple identity providers. You can reuse these output claims across
multiple applications within the enterprise, cross enterprise, and even over the Internet. The relying
party can be a web application or a web service. I cover each step discussed in Figure 7-1 in more detail
later in the chapter.

 Note Before diving deep into a technical discussion, you might want to review some key concepts and
terminology that are extremely important in the design and architecture of ACS. The “Concepts and Terminology”
section at the end of the chapter introduces some new terms and redefines some existing terms in the ACS
context.

Claims-Based Identity Model
This section goes over the details of the claims-based identity model in ACS. Specifically, I expand on the
discussion from Figure 7-1. Figure 7-2 illustrates the interaction between different components in a
claims-based identity model. With the terminology defined, it will be much easier for you to understand
the flow of information between different parties in this model.

http://www.microsoft.com/download/en/details.aspx?id=14347

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

331

Figure 7-2. ACS claims-based identity message flow

As illustrated in Figure 7-2, several messages and tokens are passed back and forth between the key
parties in a claims-based identity model. Before the interaction starts, prerequisites (listed as step 0) are
required in order to make the end-to-end scenario work. The following steps describe the flow of
information from the requesting user or application to the relying party:

Step 0: Two important prerequisites for claims-based identity to work are
completed in this step. First, trust is established between the relying party (web
service), ACS, and identity providers. The trust relationships are refreshed on a
periodic basis. The trust between ACS and the relying party is established using a
signing key. Second, an administrator creates an issuer to identify service
consumers and defines the mapping rules between input claims and output claims
in the form of rules in ACS. The issuer key material is distributed to the service
consumer.

Step 1: When ACS, the relying party, and identity providers are configured for the
claims-based identity model to work seamlessly, the service consumer must use the
issuer key material to acquire a token from ACS in order to call the web service. In
the current version (Version 1.0 production), the ACS supports the following three
types of token requests:

• Plain text: The service consumer sends an issuer key directly to ACS to
authenticate the request.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

332

• Signed: The service consumer creates an SWT, signs the token, and sends
the token to ACS for authentication. In this method, unlike with the plain
text request, the service consumer doesn’t need to send an issuer key
directly to ACS. Typically, the signed token from the consumer includes
input claims that are then mapped to output claims by ACS and included in
the output token emitted by ACS.

• SAML: The service consumer acquires a signed SAML token from ADFS 2.0
or a similar identity provider that emits SAML tokens, and sends it to ACS
for authentication. Intended primarily for ADFS 2.0 integration, this
approach requires that a signed SAML bearer token be acquired and sent to
ACS for authentication.

 Note ACS Version 2.0 was released in April 2011. The following features were added:

Web-based administrative access to ACS configuration

An OData-based Management Service that provides programmatic access to ACS configuration

Support for the SAML 1.1, SAML 2.0, and Simple Web Token (SWT) token formats

Support for some web identity providers: Windows Live ID, Google, Yahoo, and Facebook

Support for Active Directory Federation Server v2.0

Support for OAuth 2.0 (draft 10), WS-Trust, and WS-Federation protocols

Step 2: Based on the claims-mapping rules configured in ACS, ACS maps the input
claims received in the service consumer token to output claims specific to the web
service. The ACS then issues an SWT 1 or a SAML token consisting of output claims
to the service consumer. ACS signs the token using the key registered in Step 0. The
mapping of input claims to output claims makes ACS an R-STS. ACS abstracts the
token-issuing party from the token-consuming party by always emitting an SWT
containing output claims the web service expects.

1 Simple Web Token specification: http://groups.google.com/group/oauth-wrap-wg

http://groups.google.com/group/oauth-wrap-wg

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

333

Step 3: Regardless of the method used to acquire the input token, ACS creates an
SWT or a SAML token and sends it to the service consumer. This token contains
output claims that the web service expects.

Step 4: The consumer packages the token into an HTTP header and sends it to the
web service along with the message payload.

Step 5: The web service validates the token based on the secret key exchange
established in Step 0. The web service also validates the required claims and grants
or denies access to the resource based on the validation outcome. There is no direct
communication between the web service and ACS during the method invocation.
The only communication happens during the periodic refresh of the secret key
exchange. The token consists of all the information needed by the web service,
therefore it is important to send the token the web service using a secure channel
like HTPS.

Figure 7-2 may look complex initially, but when you go through the steps, the claims-based identity
is easy to understand. The next section puts the claims-based identity model into an enterprise scenario
perspective.

 Note In the future, ACS will support multiple tokens as input as well as output. Therefore, in the interest of
keeping the text simple, when I mention the word “token” in the text, it can either be SWT, SAML, Facebook,
Google Id, LiveID, or any token that is supported by ACS. If there is a need to be explicit, I will explicitly mention the
type of token supported.

Access Control Service Usage Scenarios
Now that you understand the claims-based identity and ACS concepts, some real-world scenarios will
provide more clarity about these concepts. This section presents three real-world scenarios. Scenario 1
shows how an enterprise cloud application can benefit from ACS. Scenario 2 illustrates the use of ACS in
a cross-enterprise scenario, and finally scenario 3 shows an ISV cloud service using ACS across multiple
customers.

 Note A great resource for additional information is Alik Levin’s blog, which is located at
http://blogs.msdn.com/b/alikl/. One post provides a whitepaper that describes various cloud identity
scenarios, with code samples. You can find that post at
http://blogs.msdn.com/b/alikl/archive/2011/09/30/cloud-identity-stories-for-developers-

application-architecture-scenarios.aspx.

http://blogs.msdn.com/b/alikl/
http://blogs.msdn.com/b/alikl/archive/2011/09/30/cloud-identity-stories-for-developers-application-architecture-scenarios.aspx
http://blogs.msdn.com/b/alikl/archive/2011/09/30/cloud-identity-stories-for-developers-application-architecture-scenarios.aspx
http://blogs.msdn.com/b/alikl/archive/2011/09/30/cloud-identity-stories-for-developers-application-architecture-scenarios.aspx

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

334

Scenario 1: Enterprise Cloud Application
For this scenario, consider a news organization called T-Press Inc., similar to the Associated Press or
Reuters. T-Press has a large workforce of journalists and technicians based around the world, who are
busy investigating, planning, and creating news events. Usually, journalists and technicians can be
either employees or contractors, but for the purpose of this scenario, assume that the journalists are
employees and the technicians are contractors. Currently, T-Press has a newsroom-management web
application called T-Room. T-Room is a globally deployed application and can be used by all journalists
and technicians in the field. The T-Room web application is deployed in the cloud and federated with T-
Press’s Active Directory using ADFS 2.0. The deployment of T-Room in the cloud makes it accessible
from anywhere in the world with Internet access. Journalists can view all the current and historical T-
Press news items, but technicians can view only the news items to which they’re assigned. The current
pain point from an identity-management perspective is as follows.

Technicians are typically hired for a short period of time covering the lifetime of a single news event.
After the contract expires, the technician rolls off and may or may not join the workforce for another
news event. Currently, whenever a technician is hired, an account is created in T-Press’s Active
Directory. Due to the short contract periods, identity management has become expensive, and T-Press
would really like to move away from creating short-term Active Directory accounts for technicians.
Instead, T-Press wants to support any technician’s existing digital ID (such as a Windows Live ID,
Facebook ID, and the like) to access T-Room. T-Press needs help designing an access control system that
can not only support public digital IDs but also give immediate access to the T-Room application from
anywhere in the world. I recommend that T-Press design a claims-based identity model for T-Room and
use ACS to abstract a technician’s identity provider from T-Room. The design is illustrated in Figure 7-3.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

335

Figure 7-3. Enterprise cloud application scenario

The following steps describe the flow of information from the browser to the T-Room web
application:

Step 0: The T-Room system administrator completes all the prerequisites to make
ACS work for the T-Room application. In Figure 7-3, the important steps are
establishing trust between the T-Room web application and ACS using a shared
key, which is refreshed on a periodic basis; configuring ACS with the supported
identity providers (such as ADFS 2.0, Windows LiveID, Facebook, and so on), and
defining the mapping between input claims and output claims in the form of rules
for employees and contractors. This is where the administrator can define different
claims for employees and contractors. The ACS can be configured to process
employee authentication with ADFS 2.0, whereas contractors can be authenticated
using external identity providers. I have also seen real-world applications where we
built custom STS for other identity providers like a simple SQL Server database,

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

336

Novell eDirectory, Computer Associates SiteMinder, and the like. WIF gives you the
flexibility to build custom STS on top of any backend identity provider.

Step 1: First, the requestor goes to access the web application. The web application
identifies there is no token in the request. Therefore, requestor is redirected to ACS
and then to the login page of the appropriate identity provider. The requestor
authenticates with the identity provider and acquires a token.

Step 2: The requestor posts the acquired token to ACS for claims mapping.

Step 3: ACS is an important piece of the identity federation orchestration because
the token is sent to ACS to transform input claims to output claims the T-room
application understands. T-Room application is not designed with any specific
identity provider in mind, but only the claims. This is a very important concept to
understand.

Step 4: ACS returns a token to the requestor. This token consists of the output claims
that only the T-Room application understands.

Step 5: The requestor packages the token along with the payload and sends it to the
relying party (the T-Room web application).

Step 6: The T-Room application processes these claims in a claims-processing
module and determines the level of access the requestor is entitled to. The claims-
processing module doesn’t depend on any identity provider but only validates the
claims from the requestor’s token.

 Tip The key concept to understand here is that if there was only one identity provider, you could validate the
claims based on that identity provider, but every identity provider generates different claims and thus a different
token structure. This forces the developer to update the relying party code for supporting specific identity
providers. By using ACS, the developer can expect only one type of token emitted from ACS that is independent of
the identity provider. This makes the relying party extensible. Therefore, when you design your relying party, make
sure you consider the current and future requirements from the user identity perspective.

In Figure 7-3, the introduction of ADFS 2.0 and ACS into T-Press’s existing infrastructure simplifies
the identity management of a cloud application like T-Room that supports users from outside of the
organization. The T-Press system administrators don’t have to manage the identities of technicians in T-
Press systems anymore. Technicians use their existing identities to access the T-Press application.
Administrators can configure input to output claims mappings in ACS as per the business requirements.
The T-Press developers only have to focus on building a claims-processing module for ACS-forwarded
claims; they don’t have to write separate modules for each identity provider as before. Thus, for T-Press,
ACS successfully abstracts claims from multiple identity providers into a single coherent view of output
claims for the T-Room web application.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

337

Scenario 2: Cross-Enterprise Application
In this scenario, two partner enterprises would like to collaborate on several projects using each other’s
collaboration platforms. Enterprise A is a software company that manufactures operating system
software. Enterprise A has partner companies (OEMs) that customize these operating systems, install
those systems on their hardware, brand the integrated platform, and sell the product to consumers
through their sales channels. The end product may be a personal computer, a laptop, or even a cell
phone. For this example, Enterprise B is an OEM of Enterprise A. To launch a particular product in time,
Enterprise B needs early access to some of the software releases and documentation associated with
those releases. Enterprise A, on the other hand, needs information about sales of the end product to use
for sales and revenue tracking of its own product.

Enterprise A has a dedicated web application named PartnerAccess in its extranet for OEM partners.
The PartnerAccess web application supports role-based authorization for different roles in multiple
partner enterprises. Some example partner roles are Partner_Manager, Partner_Employee, and
Partner_Contractor.

Enterprise B has a list of users configured in Enterprise A’s Active Directory who have access to the
early release operating system software through the web application in Enterprise A’s extranet.
Enterprise B users log in to this application using their Enterprise A credentials. Enterprise A’s
administrators find it difficult to track and maintain users of Enterprise B and other partners, because
the administrators have to delete or modify partner users when they quit their company or are promoted
to another position. Remember that the information shared between these companies is top-secret and
cannot be leaked under any circumstances. The total number of partner users’ numbers totals hundreds
of thousands across multiple OEM partners. Maintaining these partner user identities has become
expensive and risky for Enterprise A, and the company is looking forward to mitigating its identity-
management risks for the PartnerAccess web application.

On the other side of the equation, Enterprise B has a similar problem maintaining Enterprise A
identities for thousands of Enterprise A employees and contractors in its SalesAccess software. The
SalesAccess software provides sales information to Enterprise A. Enterprise A users log in to the
SalesAccess software using their Enterprise B credentials, to acquire real-time sales information from
Enterprise B. Other partner companies also have similar applications providing sales data access
capabilities.

As an architect, I recommend Enterprise A and B to design a claims-based identity model for its web
applications and use ACS to abstract the partner’s identity providers. Each enterprise owns the
responsibility of maintaining and authenticating its own employees. The recommended design is
illustrated in Figure 7-4.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

338

Figure 7-4. Cross-enterprise scenario

The following steps describe the claims model for the PartnerAccess web application:

Step 0: The PartnerAccess web application completes all the prerequisites
required to make ACS work for the application. In Figure 7-4, the important
steps are establishing trust between PartnerAccess and ACS using a shared key,
which is refreshed on a periodic basis; having the PartnerAccess administrator
and Enterprise B administrator configure ACS to trust Enterprise B’s ADFS 2.0
identity provider to generate STS for Enterprise B users; and having
PartnerAccess define the mapping between input claims from Enterprise B’s
ADFS 2.0–generated SAML tokens and output claims in the form of rules
specific to the PartnerAccess application. This is where the administrator can
define different claims for different roles for Enterprise B employees.

Step 1: When an Enterprise B employee wants to sign in to the PartnerAccess
web application, the employee is authenticated with Enterprise B’s Active
Directory, and the ADFS 2.0 generates a SAML token for ACS. Because
Enterprise B is in control of its employee identities, and Enterprise A trusts
Enterprise B’s authentication process, it makes sense to delegate the
authentication of Enterprise B’s employees to Enterprise B.

Step 2: The SAML token generated by Enterprise B’s ADFS 2.0 is sent to ACS.
The SAML token consists of input claims.

Step 3: ACS maps the input claims from the SAML token to output claims
specific to the PartnerAccess web application and packages them into a token
(SAML or SWT).

Step 4: The ACS token with output claims is sent to the PartnerAccess web
application for processing. The PartnerAccess application validates the token,
processes these claims in a claims-processing module and determines the level

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

339

of access the Enterprise B employee is entitled to. The PartnerAccess web
application doesn’t need to authenticate Enterprise B users in the Enterprise A
environment because it trusts tokens generated by ACS.

The introduction of ACS into Enterprise A’s environment and federating Enterprise B identities
using ADFS 2.0 simplifies the management of the partner accounts. Enterprise A can reuse this
configuration for all the partners accessing the PartnerAccess web application, whereas Enterprise B can
reuse ADFS 2.0 to federate identities across multiple partner companies. Note that the PartnerAccess
web application isn’t dependent on the identity providers of partner companies. As long as a trust is
established between ACS and the partner identity provider, the PartnerAccess application does the
necessary claims processing for any partner.

For the SalesAccess web application, Enterprise B can implement the same pattern by introducing
ACS in the architecture and letting Enterprise A employees authenticate and generate tokens using
Enterprise A’s own ADFS 2.0. With the same pattern implemented in Enterprise B’s architecture,
Enterprise A and Enterprise B can access each other’s applications seamlessly by removing the identity-
management burden from the partner company. Identity management remains with the company that
owns the identities.

Scenario 3: ISV Cloud Service
In this scenario, an independent software vendor (ISV) named My Energy offers an energy-management
cloud service to multiple utility companies. The service performs data collection from power meters on
houses and commercial buildings and offers this data to utility companies for reporting and processing.
Currently, the ISV service has its own identity-management database and for every utility company. Due
to resource constraints, maintaining identities of all the utility partner companies has turned into an
expensive process. Every time an employee of a utility company quits, My Energy has to remove the
employee from the database. My Energy wants to reduce its identity-management costs because it’s
turning out to be a significant portion of the company’s support operating expenses. Assuming that
utility companies have an identity federation infrastructure, I recommend that My Energy implement a
claims-based identity model using ACS as the claims-transformation engine. My Energy can use ACS to
map claims issued by a utility company’s identity federation server (such as ADFS 2.0) to claims required
by the My Energy service.

The recommended design is illustrated in Figure 7-5.

w

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

340

Figure 7-5. ISV cloud service scenario

The following steps describe the claims model for the My Energy web application:

Step 0: In this step, similar to previous scenarios, the My Energy administrator
establishes trust relationships between My Energy, ACS, and the identity providers
of utility companies. Then, the My Energy administrator configures ACS by
mapping input claims from the identity providers to output claims specific to the
My Energy application.

Step 1: When a utility company employee wants to sign in to the My Energy service,
the employee authenticates with the utility company’s identity federation server
and receives a token.

Step 2: The token is sent to ACS. Because ACS is configured to trust the company’s
identity federation server, ACS can accept input claims from the issuer. The token
consists of input claims to ACS.

Step 3: ACS maps the input claims from the token to output claims specific to the
My Energy service and packages them into a secondary token.

Step 4: The ACS token with output claims is sent to the My Energy service for
processing. The My Energy service processes these claims and determines the level
of access to which the utility company’s employee is entitled.

Using ACS, the My Energy service can support multiple utility companies without managing their
identities in its own identity store. The identity management costs mainly involve claims mapping and

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

341

establishing trust between identity providers and ACS; but these are one-time efforts per utility
company. After trust is established and claims are configured, the claims-based identity process will
work seamlessly for My Energy. The My Energy service no longer maintains a separate identity-
management store, because users are authenticated against the utility company’s identity store. My
Energy is configured only to process output claims coming from ACS.

The three scenarios discussed demonstrate the following ACS advantages:

• ACS federates between wide varieties of identity providers because of its
standards-based interface.

• ACS abstracts identity management from your application or service.

• ACS abstracts out claims management from your application or service.

• ACS can help achieve single sign-on across diverse systems because of its
standards-based API.

• ACS works with web browsers and web applications (passive participants) as well
as smart clients and web services (active participants).

• ACS provides an STS for issuing SWT and SAML tokens containing output claims.
Every mapping scope can be considered to have its own virtual STS.

Retrieving Tokens from ACS
The ACS version 2.0 supports a variety of identity providers out-of-the-box. These are, ADFS 2.0,
Windows Live Id, Facebook Id, Yahoo Id, Google Id, and any SWT or SAML tokens generated by custom
STS. ACS supports only SSL transmission of the tokens over HTTP POST. ACS also supports OAuth 2.0
draft (draft 10), WS-Trust, and WS-Federation protocols. Irrespective of the input token, ACS always
issues an SWT or SAML output token that consists of output claims the relying party expects. Figure 7-6
illustrates these token-retrieving methods.

Figure 7-6. Retrieving tokens from ACS

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

342

ACS version 2.0 supports much more identity providers and protocols that version 1.0 which
supported Plain Text, SWT, and SAML as input tokens and only SWT as the output ACS Token. In version
2, ACS supports multiple identity providers and token types.

Access Control Service Management Portal
The ACS version 2.0 Management Portal provides provisioning and configuration capabilities. As such it
is your gateway to setting up ACS functionality. To set up an ACS-enabled application, you will perform
the following steps:

1. Provision an ACS service namespace.

2. Configure the identity providers that will interact with this service namespace.

3. Configure the application(s) that will be authenticated by the service
namespace.

4. Set up certificates, keys, or service identities

5. Modify the application to interact with ACS.

These steps are defined in detail in the following sections.

Provisioning Your ACS Service Namespace
The following are the steps you will typically take while provisioning your ACS service namespace.

1. Log in to the Windows Azure Management portal.

2. Select the ServiceBus, Access Control, and Caching option from the left pane.

3. On the Windows Azure AppFabric portal page, select Access Control and click
the New Namespace button. Then choose a name for your service namespace
that is unique, as shown in Figure 7-7.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

343

Figure 7-7. New namespace

4. Click OK to create the service namespace.

5. Select the newly created service namespace and click the Access Control
Service button from the Manage Access Control group in the top menu to go to
the service namespace management portal, shown in Figure 7-8

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

344

Figure 7-8. Manage Access Control Service

The service namespace management portal gives you the ability to manage the different entities
that will participate in the claims-based identity orchestration involving ACS. A service namespace
defines the namespace for your ACS resources. You must select a unique name for your service
namespace and the region in which you want the service namespace to run. If you’re building a
Windows Azure distributed application, you can choose a common location for the Windows Azure
services, SQL Azure database, and AppFabric service namespace so that all the Windows Azure
components run in close proximity to each other and yield better performance. ACS also provides a
management web service for provisioning and configuring ACS service namespaces.

 Tip An ACS service namespace provides you with an out-of-the-box partitioning scheme for multi-tenant
applications. You can create a separate service namespace for every customer and automatically partition the
access per customer. This will help you isolate, debug, and scale the ACS access control to your application. By
using the ACS management API, you can automate the provisioning of these namespaces whenever a new
customer signs up for your service.

The service namespace page consists of four sections: Trust Relationships, Service Settings,
Administration, and Development. The Trust Relationships section contains sub-services for managing
the relying parties, identity providers, and the rules for configuring input claims (from the identity

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

345

provider’s STS) to output claims (your relying party is expecting). The Service Settings section is a place
for configuring certificates and keys for signing and encrypting tokens. This section also consists of
section for configuring service identities. Even though ACS is not primarily designed for storing
identities, it does provide a section for storing few identities you can use for testing purposes. The
Administration section allows you to add ACS portal administrator accounts and management web
service client accounts. The development section allows you to configure custom login pages and also
lists the endpoints for the ACS service namespace.

Now that our service namespace is provisioned, we need to start setting up identity providers.

Identity Providers
Identity providers are repositories where user identities reside. For example, Active Directory, custom
database with user name and passwords, and LDAP directories are all identity providers. In claims-
based identity model, the identity providers are responsible for authenticating the user and then release
a secure token (e.g., SAML and SWT) from its secure token service (STS). An STS that is tightly coupled
with an identity provider is called an Identity Provider STS or IP-STS. ADFS 2.0 is IP-STS for Active
Directory because it is tightly coupled with Active Directory and emits SAML tokens for Active Directory
authentications. The Identity Providers section of the ACS service namespace management portal
supports the following identity providers:

• Active Directory Federation Services 2.0

• Windows Live ID

• Facebook

• Google

• Yahoo!

Active Directory Federation Services 2.0 (ADFS 2.0)
ADFS 2.0 is a separate product from Microsoft that can be downloaded and installed independently of
Active Directory. ADFS 2.0 is built using WIF and can be used as an STS for Active Directory and other
identity providers. ADFS 2.0 can provide claims in the form of SAML tokens from Active Directory to
ACS. ACS then maps these incoming claims to outgoing claims expected by the Relying Party
application. Before configuring ADFS 2.0 as an Identity Provider, you need to install ADFS 2.0 and
configure it for releasing claims in association with the backend identity provider.

 Note For more information on installing, configuring, and deploying ADFS 2.0, please refer to the following
TechNet documentation (http://technet.microsoft.com/en-us/library/adfs2(WS.10).aspx). The
documentation includes step-by-step procedures for interoperating with various other federation and single sign-
on providers like CA SiteMinder, Ping Identity Ping Federate, and Oracle Identity Federation.

The step-by-step procedure for configuring ADFS 2.0 as an identity provider in ACS is as follows:

1. Click the Add link on the Identity Providers as shown in Figure 7-9.

http://technet.microsoft.com/en-us/library/adfs2

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

346

Figure 7-9. Add ADFS 2.0 identity provider

2. Click Next and fill up the form displayed on the Add ADFS 2.0 Identity Provider
page as shown in Figure 7-10.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

347

Figure 7-10. Add ADFS 2.0 details

 Note The WS-Federation metadata represents the metadata definition of your ADFS 2.0 STS. When you upload
the federation metadata, make sure you use HTTPS endpoint and upload metadata from the ADFS 2.0 service that
you already know. In this configuration process, you are essentially establishing trust between ACS and ADFS 2.0;
therefore, make sure you follow all the security best practices for accessing any remote service information.

3. If your ADFS 2.0 is encrypting tokens using a certificate, then you can also
choose to add a token decryption certificate in the Certificates and Keys
section as shown in Figure 7-11.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

348

Figure 7-11. Add certificate

4. In ADFS 2.0, add your ACS service namespace as a Relying Party, because from
ADFS 2.0 perspective, it is sending SAML token to a Relying Party (RP), but
essentially it is sending the SAML token to a claims mapping service that will
in-turn transform these claims into another set of token and claims expected
by the final Relying Party. Here ACS acts as a Relying Party and an STS, it is also
called RP-STS.

5. Next, add claim rules for the Access Control Service namespace in ADFS 2.0.

6. In the Rule Groups section of the ACS service namespace management portal,
you can add new rules for your Relying Party that map input claims to output
claims as shown in Figure 7-12.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

349

Figure 7-12. Add claim rule

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

350

Global Identity Providers
In ACS version 2.0, you can choose to use Windows Live, Google, Yahoo!, and Facebook as identity
providers. For adding Windows Live, Google, or Yahoo! as Identity Providers, simply select the desired
Identity Providers as shown in Figure 7-13.

Figure 7-13. Add out-of-the-box identity providers

After you have added the desired Identity Providers, you can go to the Rule Groups section, add a
new Rule Group, and click the Generate button to generate default claims for the Windows Live, Google,
and Yahoo! Identity providers as shown in Figure 7-14.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

351

Figure 7-14. Edit Rule Group

The step-by-step process for adding Facebook application as an Identity Provider to ACS is as
follows:

1. Create a Facebook account.

2. Install the Facebook Developer application
(www.facebook.com/apps/application.php?id=2345053339) as shown in Figure
7-15.

http://www.facebook.com/apps/application.php?id=2345053339

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

352

Figure 7-15. Create Facebook Developer application

3. Click Set Up New Application to create a new application.

4. In the Application Name field, enter a display name for your application.

5. Click Create Application.

6. Click the Web Site tab in the left panel.

7. In the Site URL field, enter the HTTPS URL of your ACS Service Namespace
(e.g., https://yourservicenamespace.accesscontrol.appfabriclabs.com/).

8. From the resulting page, copy the Application ID and Application Secret as
shown in Figure 7-16. This information will be used in the ACS portal when
you configure Facebook as an Identity Provider.

https://yourservicenamespace.accesscontrol.appfabriclabs.com/

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

353

Figure 7-16. Facebook Application ID and Secret

9. On the ACS management portal main page, click Identity providers.

10. Click Add.

11. Select Facebook application, and click Next.

12. In the Application ID field, enter the App ID key copied from your Facebook
application page.

13. In the Application secret field, enter the App Secret copied from your
Facebook application page.

14. Optionally, in the Application permissions field, you can add any additional
permission documented here
http://developers.facebook.com/docs/authentication/permissions.

15. The Login link text field is used to customize the text displayed by the ACS
login page.

http://developers.facebook.com/docs/authentication/permissions

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

354

Figure 7-17. Add Facebook Identity Provider

16. In the Used By section, select any existing relying party applications with
which you want to associate the Facebook identity provider. This causes the
Facebook identity provider to appear on the login page for that application,
and enables claims to be delivered from the identity provider to the
application.

 Note Make sure you generate the rules for your rule groups after you have added a new Identity Provider. ACS
version 2.0 does not automatically generate rule groups when you add a new Identity Provider. See Figure 7-18.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

355

Figure 7-18. Facebook claims

17. Click Save.

Relying Party
Relying Party is the consumer of claims generated by the identity providers. Relying Party validates
claims and provides appropriate privileges to the user of the application. Claims can consists of any
information about the user, but when you are using ACS, it is important to provide a single view of all the
incoming claims irrespective of the type of identity provider. You can acquire claims from Windows Live
ID, Google Id and Facebook application, but ACS can transform these claims into a single view your
relying party is configured to consume. Figure 7-19 illustrates the page for creating a new Relying Party
on the ACS service namespace portal.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

356

Figure 7-19. Create a new Relying Party application

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

357

While adding a new Relying Party application, make sure you pay attention to the Realm and Return
URL. Realm is the URI for which ACS will generate tokens. This is usually the URI of your application or a
URN. ACS matches this value to the Realm information (wtrealm in WS-Federation protocol and
applies_to in OAuth WRAP protocol) in the token generated by the identity provider. ACS will issue a
token for your Relying Party application only if the realm matches between the configured value and the
token received from the identity provider. ACS can also do a prefix match like www.tejaswiredkar.com
and www.tejaswiredkar.com/home, but will not match www.tejaswiredkar.com to
http://tejaswiredkar.com.

Rule Groups
Rule Groups are used for mapping input claims from identity provider to the output claims for the
Relying Party. The Rule Groups section in the ACS portal allows you to create mapping for all the Identity
Providers you have added to your namespace, including the ACS itself. Figure 7-20 illustrates the Edit
Claims page for the Facebook name claim.

http://www.tejaswiredkar.com
http://www.tejaswiredkar.com/home
http://www.tejaswiredkar.com
http://tejaswiredkar.com

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

358

Figure 7-20. Edit Claim page

The Edit Claim Rule page is structured to guide you through the mapping of claims between input
claims issuer and output claim receiver. You can chain the claims processing by choosing ACS as an
input to itself. Complex claims mapping needs attention when you are working in multi-tenant
authentication and authorization environments.

Certificates and Keys
In this section of the portal, you can manage the certificates and keys used for encryption, decryption,
and token signing.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

359

Token Signing
In ACS, tokens are signed using either an X.509 certificate or a symmetric key, depending on your token
format. SAML tokens are signed with X.509 certificates, and SWT tokens are signed with a 256-bit
symmetric key.

Which token format should you use? As usual, it depends. However, consider that SAML tokens are
the default for Windows Identity Foundation applications, and are compatible with many protocols,
including WS-Federation and WS-Trust. SWT tokes are also compatible with many protocols, including
OAuth WRAP and WS-Federation.

When you create your namespace, a Symmetric Key and a X.509 certificate will be provisioned by
default. You can use these to sign tokens for all relying party applications. However, if you wish to have a
specific key or certificate for a specific relying party application, you can add that certificate or key as
well, and specify the relying party application for which the key or certificate applies. See Figure 7-21.

Figure 7-21. Adding a certificate for a specific Relying Party Application

CREATING YOUR OWN CERTIFICATES

In a claims-based identity model, X.509 certificates are used by all the participating parties: STS, ACS, and
the relying party. X.509 certificates are used to encrypt and/or decrypt SAML tokens and also to validate

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

360

claims sent from one party to another. Most of the examples in MSDN and training kits use a predefined
set of certificates that can cause conflicts when used by multiple developers and testers in the same
environment. The following are the steps you can use to create your own certificates so you don’t have to
rely on the prepackaged certificates in sample applications:

1. Start the Visual Studio command prompt as an administrator.

2. Run the following command to create a temporary certificate:

makecert -n "CN=ProAzure" -r -sky exchange -sv ProAzure.pvk ProAzure.cer

3. Run the following command to create a certificate that is digitally signed and authorized
by ProAzure:

makecert -sk ProAzureSignedCA -sky exchange -iv ProAzure.pvk -n "CN=ProAzureSignedCA" -
ic ProAzure.cer ProAzureSignedCA.cer -sr localmachine -ss My

4. Use MMC to Import the ProAzure.cer certificate into the Trusted Root Certificate
Authorities folder of the local machine certificate store. You can start MMC from Start
Run mmc.exe. Then, choose File Add/Remove Snap-In Certificates.

5. From MMC, import ProAzureSignedCA.cer into the certificates personal folder of the local
machine certificate store.

6. Export the certificate to distribute it to the outside world, using the pvk2pfx.exe tool from
the Visual Studio .NET\Tools\bin folder:

pvk2pfx.exe -pvk ProAzure.pvk -spc ProAzure.cer

7. If you’re hosting your service in IIS and would like to give permissions to certificates to
specific accounts, see the WinHttpCertCfg.exe certificate configuration tool at
http://msdn.microsoft.com/en-us/library/aa384088(VS.85).aspx.

Token Encryption
For web services that use proof-of-possession tokens over WS-Trust, token encryption is required. ACS
can encrypt any SAML 1.1 or 2.0 token to send to your relying party application. Tokens are encrypted
using X.509 certificates, so you will need to upload these through the portal.

Token Decryption
If you have a WS-Federation identity provider that sends encrypted tokens to ACS (such as ADFS 2.0),
ACS will need to decrypt those tokens. Once again, we turn to X.509 certificates. The certificate is
uploaded to ACS via the portal. The identity provider will then obtain the public key from the ACS
federation metadata endpoint, and use that public key to encrypt the token. ACS will then decrypt the
token using the private key.

Service Identities
Service Identities allow an authentication request to be made directly against ACS instead of an identity
provider. Essentially, they are hard-coded identities inside ACS that will produce a token if presented
with the right credentials. These are useful when an autonomous application or service needs access to a

http://msdn.microsoft.com/en-us/library/aa384088

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

361

relying party application or service. Typical scenarios are REST web services or OAuth WRAP protocol,
where a client would request a token from ACS to present to an ACS-integrated service.

 Note Service identities are not intended to be used as end-user credentials.

Three types of credentials can be associated with a service identity: Symmetric key,
Username/Password, and X.509 Certificate.

To create a Service Identity, navigate to the Service Identities section of the portal, and then click
Add. Set up the name, credential type, and credential information. Once saved, distribute the credential
information along with the reference endpoint to the necessary application or service.

Portal Administrators
In ACS, you have the capability of assigning users administrative rights for specific ACS namespaces. The
administrator can then access ACS through the ACS Management Portal.
In order to add a user, the identity provider that contains that user’s credential must be added to the
namespace. For example, if a user is authenticated using ADFS 2.0, then that identity provider must be
added.

Once the identity provider is added, navigate to the Portal Administrators area and click Add. Then
select the identity provider, claim type, and claim value. See Figure 7-22.

 Note it is critically important to pick a unique claim type. If the claim type contains values that could be used
by more than one user, then access to the portal will be granted to all users who present this claim value.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

362

Figure 7-22. Adding a portal administrator

Management Service
This section of the portal allows you to administer the accounts that can access the management service
for your namespace. You provide a name and option description, then can define one of three credential
types: Symmetric Key, Username/Password, or X.509 Certificate.

You can then distribute this credential information to users/applications that need to access the
Management Service API via the reference endpoint provided in the Application Integration section.

Application Integration
This section provides you with the means necessary to integrate ACS into your application. There are
three sections: login pages, SDKS and documentation, and endpoint references.

Login Pages
This is where you define what users see when they login to your application through ACS. There are 2
options: link to an ACS-hosted login page or host the login page as part of your application.

Linking to an ACS-Hosted Login Page

In this case, ACS hosts a default login page, as shown in Figure 7-23. The URL to this page is provided on
the screen. Link to that page anywhere you expect users to login to your application. The screen is very

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

363

simple and not pretty, but it is easy and effective. The Global identity providers will appear as buttons, as
will WS-Federation providers.

Figure 7-23. ACS-hosted login page

However, consider the scenario where an application is serving many enterprise customers using
WS-Federation. It is more than likely that you will not want to show all of the WS-Federation providers.
The solution for this is to define e-mail suffixes for the WS-Federation providers in the Management
Portal. Once you have done this, the screen will look different, as shown in Figure 7-24.

Figure 7-24. ACS-hosted login page with e-mail suffixes defined

Once the user logging in enters their email address, ACS will use the e-mail domain suffix to route
the authentication request to the appropriate identity provider.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

364

Hosting the login page as part of your application

You have the option to download a sample login page from this screen, which will provide you with an
HTML page identical to the default login page provided by ACS. It uses AJAX to call a JSON-encoded feed
to acquire the token. You can simply modify the look and feel of this page to provide a better-looking
screen, or build your own page that integrates with the ACS-hosted JSON feed. The URL for the JSON
feed is provided on the screen.

Here is an example URL from the proazure-1 namespace:

https://proazure-
1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=h
ttps%3a%2f%2flocalhost%2fACSWebApp&reply_to=https%3a%2f%2flocalhost%2fACSWebApp%2fDefault.aspx
&context=&request_id=&version=1.0&callback=

Let’s take a look at the individual parts of this URL listed in Table 7-1.

Table 7-1. ACS JSON feed URI elements

Feed URI Required Change ‘proazure-1’ to the name of your Windows Azure AppFabric service
namespace.

protocol Required ACS requires the communication protocol to be ‘wsfederation.’

Realm Required The realm specified for the relying party application in the Management
Portal.

version Required ACS requires a value of 1.0. If you are confused about ACS v1 and v2, note
that ‘v2’ is in the path of the URI.

reply-to Optional Return URL. If omitted, will use default Return URL you specified for the
relying party application in the Management Portal.

context Optional Simple pass-through of additional context information. ACS does not use
the data in this parameter.

callback Optional JavaScript callback function to execute upon receiving a response. The
JSON feed is passed into this function as an argument.

The response to this call will be a JSON array containing an array for each provider, similar to the

following:

[
{"Name":"Windows Live ID","LoginUrl":"https://...","LogoutUrl":"https://...",
"ImageUrl":"https://...","E-mailAddressSuffixes":[]},
{"Name":"My ADFS 2.0 Provider","LoginUrl":"https://...","LogoutUrl":"https://...",
 "ImageUrl":"","E-mailAddressSuffixes":[“contoso.com”]}
]

Each array item represents an identity provider, and will contain the f information listed in Table 7-
2.

https://proazure-1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=h
https://proazure-1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=h

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

365

Table 7-2 – JSON ACS Response elements

Name Display name you entered in the Management Portal.

LoginUrl URL to use when making requests of the identity provider.

LogoutUrl Allows for singing out from the identity provider. Currently only supported for
ADFS 2.0 and Live ID. Will return empty for other providers.

ImageUrl An image that should be displayed for that provider. Entered into the
Management Portal.

E-
mailAddressSuffixes

E-mail domain suffixes added for this identity provider.

If you download the sample login page from the ACS portal, you will see the following HTML

embedded in the page:

<!-- This script gets the HRD metadata in JSON and calls the callback function which renders
the links -->
 <script src="https://proazure-
1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=h
ttps%3a%2f%2flocalhost%2fACSWebApp&reply_to=&context=&request_id=&version=1.0&callback=ShowSi
gninPage" type="text/javascript"></script>

Note the callback. This means that the JSON generated from this call will be passed to a JavaScript
function that will render the UI elements for each identity provider:

// This function will be called back by the HRD metadata, and is responsible for displaying
the sign-in page.
function ShowSigninPage(json) {
 // Code to iterate through identity provider array and render UI elements for each
}

SDKs and Documentation
Self-explanatory, this contains links to SDKs and documentation that will help you create ACS-
integrated applications.

Endpoint References
This section is critical, it contains the endpoint references you will need to incorporate your application.
Depending on whether you are using OAuth or WS-Federation, you will need to reference one or more of
these endpoints in your application. See Figure 7-25.

https://proazure-1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=https%3a%2f%2flocalhost%2fACSWebApp&reply_to=&context=&request_id=&version=1.0&callback=ShowSigninPage
https://proazure-1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=https%3a%2f%2flocalhost%2fACSWebApp&reply_to=&context=&request_id=&version=1.0&callback=ShowSigninPage
https://proazure-1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=https%3a%2f%2flocalhost%2fACSWebApp&reply_to=&context=&request_id=&version=1.0&callback=ShowSigninPage
https://proazure-1.accesscontrol.windows.net:443/v2/metadata/IdentityProviders.js?protocol=wsfederation&realm=https%3a%2f%2flocalhost%2fACSWebApp&reply_to=&context=&request_id=&version=1.0&callback=ShowSigninPage

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

366

Figure 7-25. ACS endpoint references

Programming Access Control Service Applications
This section discusses some end-to-end examples of configuring and using ACS in web applications and
web services. I will cover a relatively simple scenario that should demonstrate the power of ACS. The
example is a web application that will use multiple identity providers, both global (LiveID, Google,
Yahoo!) and WS-Federation. In addition, we will define rules that will allow us to use the claims
presented by the tokens to perform authorization.

 Note Before proceeding in this section, it is important to have the pre-requisites installed for creating the
development environment.

Visual Studio 2010 (any edition) (www.microsoft.com/visualstudio/en-us/products)

.NET Framework 4.0 or .NET Framework 3.5 SP1 with KB's 976126 or 976127 applied

Windows Identity Foundation Runtime (http://support.microsoft.com/?kbid=974405)

Windows Identity Foundation SDK (www.microsoft.com/downloads/en/details.aspx?familyid=C148B2DF-
C7AF-46BB-9162-2C9422208504&displaylang=en)

In a typical ACS solution, the development workflow is as follows:

1. Create a service namespace.

2. Define the identity providers.

3. Define the relying party applications.

4. Create rule groups and rules for mapping input claims to output claims.

http://www.microsoft.com/visualstudio/en-us/products
http://support.microsoft.com/?kbid=974405
http://www.microsoft.com/downloads/en/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504&displaylang=en

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

367

5. Modify the relying party application to integrate with ACS.

The first four topics have already been covered, so in this section I will focus on the steps required to
modify your application integrate with ACS.

 Note Some of the examples in this section require Windows Identity Foundation (WIF). Before running the
examples, please install WIF and the WIF SDK.

Passive Federation with ACS
In Passive Federation, a web browser is the access point for the requestor for interacting with a relying
party, ACS and the identity provider. The web browser loads web pages from the relying party web
application and the requestor interacts with the relying party only through the web browser. The relying
party, ACS and the identity provider redirects the requestor’s browser through several stages of the
claims-based identity model.

Web Application: Multiple Identity Providers using ACS
In this example, we will create a simple web application that uses ACS to federate identity management
to multiple providers. We will federate with the “out-of-the=box” providers: Windows Live, Google, and
Yahoo!, as well as a custom WS-Federation STS (simulating ADFS 2.0).

The sample code for this example can be found in the ProAzureACSFederation solution in the code
samples for this chapter.

Configure Access Control Service Using Management Portal
Configuring ACS in this manner requires a series of steps, which are outlined in the following sections.

Add Identity Providers
Per the steps described in the Identity Providers section earlier in this chapter, add Identity providers to
your namespace for Windows LiveID, Google, and Yahoo!

 Note If you don’t already have existing accounts with these providers, you will need to set up accounts for
testing,

Add Relying Party Application
Navigate to Relying Party Applications. Click the Add link to add a new relying Party application, and fill
in the form with the following information:

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

368

1. Name: ProAzureACSFederation

2. Mode: Enter settings manually

3. Realm: https://127.0.0.1:81 (this may change based on how the Compute
emulator starts your application)

4. Return URL: https://127.0.0.1:81/ProAzureACSWeb/Default.aspx (again, this
may change)

5. Error URL: leave the field empty

6. Token format: SAML 2.0

7. Token encryption policy: None

8. Token lifetime (secs): 600

9. Identity providers: Select all

10. Rule groups: Create New Rule Group

11. Token signing: Use service namespace certificate (standard)

Create Rule Groups and Rules for Mapping Claims
Follow these steps to create rule groups:

1. Click Rule Groups. There will be a default rule group created for your
application, in this case names Default Rule Group for ProAzureACSWeb
(Figure 7-26).

2. To create, modify, and delete rules, click the link for this rule group. You will
notice upon first look that no rules will have been created.

3. Click the Generate link to generate a set of base rules for each provider.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

369

Figure 7-26. Default rule group

Modify Relying Party Application to Integrate with ACS
To integrate with ACS, a web application needs to forward all unauthenticated requests to ACS. We will
use WS-Federation to communicate from our web application to ACS. Therefore, the application will
receive a consistent authentication token to use for authorization purposes.

The first thing we need is the WS-Federation Endpoint from your ACS namespace:

1. Click Application Integration on the left-hand navigation in the portal, and
you will be provided with this endpoint.

2. Copy the endpoint text from the WS-Federation Metadata section as shown in
Figure 7-27.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

370

Figure 7-27. WS-Federation Metadata endpoint text

Once we have the endpoint, we need to create an STS reference in our web application.

3. Right-click on the application and choose Add STS Reference.

4. Use the pre-populated field on the welcome screen. Click Next to go to the
Security Token Service page.

5. Choose Use an Existing STS, and enter the endpoint reference you copied into
the textbox for STS WS-Federation metadata document location, as shown in
Figure 7-28.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

371

Figure 7-28. Entering WS-Federation metadata location information

Accept the defaults through the rest of the screens, and Visual Studio will configure your web
application to authenticate against ACS. It will add the WIF configuration to your web.config by adding a
<microsoft.identitymodel> section, as well as configuration to restrict access to only authenticated
users, as well as adding a configuration that allows all users to access the FederationMetadata.xml file.
This is required so the metadata can be downloaded prior to authenticating.

When you start your application now, you should see the ACS-hosted page, with buttons for your
identity providers, which will require you to authenticate with them before accessing your application.

Adding a WS-Federation Provider
Now that we have configured global providers, let’s say that administrators of your application must be
authenticated from your own identity provider. Inside your domain, these users are assigned to an
admin group. When the claim is presented to ACS, users who enter from this group will have a claim of
type Group with a value of admin However, our application is using role-based security, and is expecting
a claim of type ‘role’ with a value of ‘admin’ or ‘user.’ Based on this claim, administrative access to the
application will be granted or denied.

 Note For this example, I have used the ‘SelfSTS’ tool, provided as part of the Windows Azure Platform Training
Kit. This tool will simulate a running WS-Federation provider, saving you the trouble of setting up and configuring

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

372

one yourself. The latest version as of the release date of this book can be found here:
http://msdn.microsoft.com/en-us/gg271268. Once the kit is downloaded and installed, the SelfSTS tool can
be found at <install directory>\Labs\ACS2Federation\Source\Assets\SelfSTS1.

Run the SelfSTS utility. The first thing we are going to do is add the role claim to the set of claims
that are presented by the provider. Click Edit Claim Types and Values, ensure the claims match the
values shown in Figure 7-29.

Figure 7-29. Claims to be presented by WS-Federation provider

Once that is completed, click Start so that SelfSTS will be running when we add it to ACS as an
identity provider. Navigate to the ACS portal, add a new identity provider, and choose “WS-Federation
identity provider.” Then enter the following information to complete the request:

• Display Name: SelfSTS1

• WS-Federation metadata: Choose File, the click the ‘Browse’ button and navigate
to the SelfSTS1 directory on your file system, and select FederationMetadata.xml

• Login link text: SelfSTS1

• Image URL: leave blank

• E-mail domain names: selfsts1.com

• Relying Party Applications: ACSWebApp

http://msdn.microsoft.com/en-us/gg271268

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

373

Designing the Relying Party Claims
When you design a claims-based identity model, one of the important design tasks you must complete is
designing claims for the relying party. The relying party is the web service or web application that you
want to protect using a claims-based identity model. Most web services and web applications already
have some kind of role-based authorization model that defines privileges for end users. In most cases,
the role-based authorization model can be easily transformed into a claims-based model by converting
the roles to claims; you can keep the privileges the same as in the role-based authorization model. One
advantage of moving to the claims-based identity model is that you can remove the end user
authentication from your web application. Your web service or web application processes the tokens
issued by ACS and validates the claims issued by ACS regardless of the authentication method used to
authenticate the end user.

 Note In the interest of keeping the example conceptual to ACS, it’s very simple. You can enhance this example
to provide more complex scenarios.

Designing ACS Rules
After you design the claims for your web service, you need to design the input and output claims for ACS.
I mentioned earlier that our application grants administrative access based on the role claim having a
value of “admin.” However, in the SelfSTS tool, we configured the SElfSTS tool to present a “group”
clam. So we will need to use the mapping capabilities of ACS to map the group claim to a role claim. In
this example, only the SelfSTS is issuing this claim, so the mapping is simple; complex scenarios can
have multiple input claims from multiple issuers that need to be mapped to a single set of output claims
expected by the relying party. For this example, let’s also assume we want to still keep the original claim,
and add a second claim that is the mapped claim, so that we can see both the original and the mapped
claim. Table 7-3 lists the input claim types and values with their corresponding output claim types and
values. Figure 7-30 shows the view in the management portal.

Table 7-3. SelfSTS Claims Mapping

Rule Name Input Claim Type Input Claim Value Output Claim
Type

Output Claim Value

Group Group admin group admin

role Group admin role admin

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

374

Figure 7-30. Creating a claim that maps from Group input claim to Role output claim

Claims-Based Authorization
The final step in integrating our application is to add the authorization code. For our sample application,
we have a few simple rules: we want administrators to see a link to an administrator page, and we want
to prevent unauthorized access to the administrator age. The code for this is actually quite simple. In our
Page_Load method, we add the following code:

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

375

// check to see if the user is in the admin role
if(User.IsInRole("admin"))
 EnableAdminAccess();

And in the EnableAdminAccess() method:

//Attribute protects method from unauthorized access
[PrincipalPermission(SecurityAction.Demand, Role="admin")]
private void EnableAdminAccess()
{
 lnkAdmin.Visible = true; // show link to admin page
}

Also, we want to ensure someone cannot access the admin page by entering the URL in the browser,
so we add an attribute to the Page_Load method of the Admin.aspx page:

// Attribute protects against unauthorized access.
// User must belong to the "admin" role, no matter how they are authenticated.
// In this example, the role access was presented as a claim in the token from ACS.
[PrincipalPermission(SecurityAction.Demand, Role="admin")]
protected void Page_Load(object sender, EventArgs e)
{
}

Once you run your application in debug mode, you will be taken to the ACS-hosted login screen,
which is shown in Figure 7-31. Note all three global providers are available, as well as a place to enter
your e-mail address.

Figure 7-31. ACS-hosted login page, with e-mail domain suffix entry for WS-Federation providers

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

376

Make sure SelfSTS is running, then enter <something>@selfsts1.com and click Submit. It should take
you to the default.aspx page shown in Figure 7-32, with the admin link enables and visible:

Figure 7-32. Default.aspx, with administrative access via claims presented through ACS mapping

Clicking on the Admin link will take you to the admin page. Now, stop and restart the application
and choose another provider. Now the admin page link will be hidden. Try to navigate to it by appending
‘admin.aspx to the URL in the address bar. You should see the screen shown in Figure 7-33.

Figure 7-33. Access to admin page denied for non-admin users

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

377

In this example, we’ve managed to federate our identity management to four providers (both global
and WS-Federation), and allow for administrative user management through one of those providers.
Additionally, we secured our application using authorization policies that have no specific dependency
on ACS or partner/customer-specific policies or protocols. We can add as many new providers as we
want without needing to make changes to the application.

Finally, remember that the protocol is REST-based and so can be easily used from multiple
platforms. The core functionality of ACS is to map input claims to output claims by abstracting multiple
input claims from multiple sources to a consistent set of output claims expected by the relying party.
The relying party doesn’t have knowledge of the input claim source; it trusts the output claims issued by
ACS. The ACS management service API provides functions to create these mappings.

Summary
Microsoft is investing heavily in its products to support a claims-based identity model. The Windows
Identity Foundation SDK, ADFS v2.0, WCF, and ACS are good evidence of the direction Microsoft is
taking. In cloud applications, currently there is no unified programming model for managing
authentication and authorization across multiple applications and platforms. Enterprises rely on
identity federation services like ADFS, and consumer applications build custom identity providers
within the service. ACS fills this gap by abstracting the claims-transformation logic in the cloud and
presenting a unified view of claims issued by identity providers to the claims required by applications.

In this chapter, you learned how ACS achieves this through simple configurations of input and
output claims. You also examined different scenarios that ACS supports. Through examples, you gained
hands-on knowledge about implementing claims-based identity models using ACS. ACS is a core piece
of the overall Azure Services Platform and is actively used in other Azure technologies like the AppFabric
Service Bus. In the next chapter, you learn about the communication and messaging possibilities offered
by the AppFabric Service Bus in the cloud.

Concepts and Terminology
Before diving deep into a technical discussion, you should understand some key concepts and
terminology that are extremely important in the design and architecture of ACS. This section introduces
some new terms and redefines some existing terms in the ACS context.

Identity Provider
An identity provider manages your identity and provides an authentication service for client
applications. Identity providers authenticate users and issue Security Assertions Markup Language
(SAML) tokens (defined in a moment). SAML tokens contain user IDs and other identity properties of the
user (claims). Examples of some identity providers are Windows Live ID, ADFS 2.0, Google Accounts,
Yahoo ID, and Oracle.

Relying Party
The relying party is the application that validates the claims issued by ACS to authorize a user and
release appropriate access to the user. As a developer, you’re primarily concerned with developing a
relying party application that receives a SAML token filled with claims from ACS. You can then process
these claims in the relying party to provide appropriate access to the end user.

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

378

Security Token (SAML Token)2
A SAML token is an XML message consisting of sets of claims digitally signed by the issuing authority.
The token is issued by a Secure Token Service (STS). The ACS and relying party both process claims from
SAML tokens.

Secure Token Service (STS)
An STS is a subsystem responsible for building, signing, validating, cancelling, renewing, and issuing
SAML tokens. An STS may support one or more of these features. It typically implements the protocol
defined in the WS-Trust specification. Identity providers and ACS both have STS capabilities.

An R-STS is a resource STS that acts as an intermediate claims-transformation service to transform
input claims from a partner STS to output claims specific to your application. This model is popular in
extranet and cross-enterprise applications. ACS is an R-STS because it transforms input claims from
identity providers to output claims. You can build your own STS and R-STS using Windows Identity
Framework.

Request for Security Token (RST)
Every relying party requires a unique set of claims it can process. RST is the request made to an STS to
acquire these claims to an STS. For example, a requestor may make this request to ACS to acquire claims
for a relying party.

Request Security Token Response (RSTR)
The response sent by an STS to the RST is called an RSTR. This request contains the SAML token with
claims signed by the STS.

Claim
A claim consists of information about the user or role interested in accessing an application (or relying
party). A claim can have any information about the user depending on the configuration of the identity
provider and ACS. A typical ACS scenario involves three kinds of claims:

• User claims: When a user sends a request for a security token to ACS, the request
contains claims like the username, password, domain name, and so on, which are
usually required for authentication.

• Input claims: When the user is authenticated with the identity provider, the
identity provider issues a SAML token. The SAML token usually contains input
claims to the ACS. These input claims may contain user claims as well as
additional claims introduced by the identity provider in the SAML token.

2 You can find the SAML token profile at the WS-I web site: www.ws-
i.org/deliverables/workinggroup.aspx?wg=samltoken.

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=samltoken
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=samltoken
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=samltoken

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

379

• Output claims: ACS examines the input claims from the SAML token issued by the
identity provider and maps them to output claims. ACS translates input claims
into application- (or relying party-) specific output claims and includes them in
the token that the relying party can use to authorize users and give appropriate
access. For example, an input claim “Username: tejaswi_redkar” may map to an
output claim “Role: Domain User.” The relying party reads the Role as Domain
User and provides Domain User privileges to the user. Input claims are mapped to
output claims as a part of ACS configuration exercise covered later.

Identity Federation
Identity federation is a set of mechanisms, standards, and patterns that define different ways of sharing
identity information between domains. It reduces identity-maintenance costs and also simplifies
software development because you don’t have to design and maintain a separate identity store within
the application. Federated identities also ease single sign-on between applications running in different
domains and/or enterprises.

Windows Identity Foundation (WIF)
The Windows Identity Foundation is a Microsoft product used to create claims-based applications and
services in .NET Framework. You can build your own STS using the Windows Identity Framework if
existing products don’t fulfill your application requirements. WIF simplifies the development of cross-
domain security scenarios. It provides a framework for building passive (web browser-based) as well as
active (Windows Communications Foundation) clients that support identity federation across a wide
variety of clients and servers. ACS uses WIF to provide STS capabilities. ADFS 2.0, Microsoft’s next-
generation claims-based identity federation server, is also built using WIF.

Active Directory Federation Server (ADFS 2.0)
ADFS 2.0 is a Microsoft product that provides STS functionality to Active Directory. It’s the next version
of Active Directory Federation Services (ADFS) and supports a claims-based identity model. It enables
the creation of single sign-on between on-premises and cloud applications using the claims-based
identity model. By definition, ADFS 2.0 implements the protocol defined in the WS-Trust specification
and so provides interoperability with other products like Sun OpenSSO and Novell Access Manager.
ADFS 2.0 supports not only passive clients like web browsers but also active stand-alone clients built
using the Windows Communications Foundation (WCF).

Web Resource Authorization Protocol (WRAP) and Simple Web
Token (SWT)
Version 1 of ACS implements the REST-friendly Web Resource Authorization Protocol (WRAP) that
defines the Simple Web Token standard. The token issued by ACS adheres to the SWT specification,
which you can find in the WRAP profiles on the OAuth web site at
http://groups.google.com/group/oauth-wrap-wg. SWT tokens are HTTP form encoded key-value pairs
signed with an HMAC-SHA256 cryptographic key. ACS always emits either an SWT or SAML for different
types of input tokens (such as SAML, SWT, Facebook tokens, LiveID tokens, and so on), so the relying
party can always expect either SWT of SAML from ACS. SWT is typically designed for REST-based web
services. SAML is supported by a wide range of software vendors like IBM, Microsoft, Oracle, and

http://groups.google.com/group/oauth-wrap-wg

CHAPTER 7 APPFABRIC: ACCESS CONTROL SERVICE

380

Computer Associates. You can find more information on SAML 1.1 and SAML 2.0 here
http://en.wikipedia.org/wiki/SAML_2.0.

Bibliography
Federated Identity Primer. (n.d.). Retrieved from sourceid.org: www.sourceid.org/content/primer.cfm.

Microsoft Corporation. (2009, 11 17). Identity Developer Training Kit (PDC 2009). Retrieved from

Microsoft Download Center: www.microsoft.com/downloads/

details.aspx?displaylang=en&FamilyID=c3e315fa-94e2-4027-99cb-904369f177c0.

Microsoft Corporation. (n.d.). Identity Management (Geneva Framework). Retrieved from MSDN:

http://msdn.microsoft.com/en-us/security/aa570351.aspx

Microsoft Corporation. (n.d.). MSDN .NET Services Center. Retrieved from MSDN:

http://msdn.microsoft.com/en-us/azure/netservices.aspx

Microsoft Corporation. (2009, 11 16). Windows Identity Foundation. Retrieved from Microsoft Download

Center: www.microsoft.com/downloads/details.aspx?familyid=EB9C345F-E830-40B7-A5FE-

AE7A864C4D76&displaylang=en

Microsoft Corporation. (2009, 11 16). Windows Identity Foundation SDK. Retrieved from Microsoft

Download Center: www.microsoft.com/downloads/details.aspx?familyid=C148B2DF-C7AF-46BB-

9162-2C9422208504&displaylang=en

Smith, J. (2009, November 14). ACS SAML / ADFS v2 Sample. Retrieved from Justin Smith’s Blog:

http://blogs.msdn.com/justinjsmith/default.aspx

Microsoft Corporation (n.d) Windows Azure Platform Training Kit. Retrieved from Microsoft Download

Center: http://msdn.microsoft.com/en-us/wazplatformtrainingcourse.aspx

http://en.wikipedia.org/wiki/SAML_2.0
http://www.sourceid.org/content/primer.cfm
http://www.microsoft.com/downloads/
http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://msdn.microsoft.com/en-us/azure/netservices.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=EB9C345F-E830-40B7-A5FE-AE7A864C4D76&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=EB9C345F-E830-40B7-A5FE-AE7A864C4D76&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=EB9C345F-E830-40B7-A5FE-AE7A864C4D76&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=C148B2DF-C7AF-46BB-9162-2C9422208504&displaylang=en
http://blogs.msdn.com/justinjsmith/default.aspx
http://msdn.microsoft.com/en-us/wazplatformtrainingcourse.aspx

C H A P T E R 8

381

AppFabric Service Bus

In this chapter, you will learn details of the AppFabric Service Bus architecture. We will cover the
concept of an Enterprise Service Bus, and introduce you to the AppFabric Service Bus. We will then
cover the various ways of programming applications that use the Service Bus, both from the .NET Client
API and a REST-based API. We will also look at the newest functionality addition, a new robust
messaging system consisting of Queues and Topics. After reading this chapter, you should be able to use
the AppFabric Service Bus in your own architectures.

 Note This is a large chapter. If you’re already familiar with the concepts of an Enterprise Service Bus, you
might want to skip ahead to “Introduction To the AppFabric Service Bus” section.

First, a Little Background. . .
Over the past decade, enterprises have invested heavily in upgrading their enterprise architecture by
implementing several enterprise software patterns like Service Oriented Architecture and Enterprise
Service Bus (ESB). These software patterns make application infrastructure loosely coupled and
compatible across software boundaries. For example, Microsoft SharePoint server can integrate with
Lotus Domino or EMC Documentum. You can also build custom business applications that can take
advantage of these loosely coupled architectures. To make such integrations possible, Microsoft has
defined four tenets1 as guidance:

• Services have explicit boundaries.

• Services are autonomous and deployed, versioned, and managed independently.

• Services share schema and contracts.

• Service compatibility is achieved by appropriate policy configuration.

These tenets are by no means comprehensive, but they give a good high-level framework for
service-oriented enterprise architectures.

1 John Evdemon. The Four Tenets of Service Orientation. Business Architectures and Standards, Microsoft
Architecture Strategy Team, Thursday, May 19, 2005.

CHAPTER 8 APPFABRIC SERVICE BUS

382

The ESB pattern is designed to offer service-oriented brokered communications of enterprise
objects across enterprise applications. The design and implementations of ESBs varies in different
organizations because by definition, ESB is a pattern and not a product. For example, I consulted with
an enterprise where the ESB had an FTP interface. You could configure and schedule the ESB on the
kind of data the subscriber systems needed from a publisher system. The ESB then queried the publisher
system and provided an FTP endpoint to the subscriber systems. The architecture worked like a charm
because the contract at the data level was defined in a set of enterprise schema, and the data
communication medium was FTP, a well-known public protocol.

Even though these architectures work well in an enterprise environment, they can’t easily cross
enterprise boundaries and aren’t designed for Internet scale. As applications move into the cloud, they
still need to decouple themselves to keep the architectural tenets of the enterprise intact and make
applications seamlessly accessible not only in the cloud but also on-premises.

Microsoft’s attempt to create an Internet-scale Service Bus is an Azure Platform Service called
AppFabric Service Bus. AppFabric Service Bus runs in the cloud and seamlessly connects cloud,
enterprise, and consumer applications.

Enterprise Service Bus (ESB)
There is no generic architecture for an ESB, because it’s a pattern and can be built as an add-on for
already-existing Microsoft products like BizTalk Server, MSMQ, Windows Communications Foundation
(WCF), and SQL Server. Every company that makes a product conforming to the ESB pattern has a
different definition of ESB. I define the ESB pattern as follows: “ESB is an enterprise architecture pattern
that defines the connectivity, contracts, and communication of business objects across enterprise
applications.”

The definition is depicted in Figure 8-1.

Figure 8-1. Enterprise Service Bus pattern

CHAPTER 8 APPFABRIC SERVICE BUS

383

As in my definition, an ESB offers the following four core services:

• Security and Access Control

• Connectivity Infrastructure

• Enterprise Naming Scheme

• Interface Contracts

These are discussed in the sections that follow.

Security and Access Control
The Security and Access Control service offers communication as well as message-level security for
interacting with ESB endpoints. An ESB usually integrates with the enterprise identity providers but may
have an integrated identity provider. All applications must pass through this layer before interacting
with the ESB.

Connectivity Infrastructure
The connectivity infrastructure defines the mechanisms and endpoints of an ESB to communicate
business objects across enterprise applications. These endpoints may be any public or private protocols
conforming to enterprise standards. In enterprises, I have seen ESBs with a connectivity infrastructure
based on protocols like FTP, HTTP, TCP-Sockets, SOAP, and even REST.

Enterprise Naming Scheme
To communicate business objects across enterprise applications, you need an enterprise standard for
defining naming schemes for objects. For example, a Product object must have a single schema across
the enterprise. The URI scheme for accessing these objects in an ESB should also be standardized.

ESB can define the URI scheme for accessing business objects. For example, the URI of a specific
product object may be of the format /MyEnterprise/MyProducts/T-Shirts["ProductId"]. ESB can
translate this schema and make it usable across any connectivity infrastructure. For example, in an
HTTP-based interface, you can access the product using the URI http://mysystem/
MyEnterprise/MyProducts/T-Shirts["ProductId"], whereas in an FTP-based interface, you can access
the serialized object in a file /MyEnterprise/MyProducts/T-Shirts/[“ProductId”].xml. Enterprise
schemes not only define a uniformed way of accessing business object, but also offer simple business
rules and filters within the scheme.

Interface Contracts
ESB acts as a broker of business objects across business applications. One business application can
access the methods and objects of another business application in a loosely coupled manner. The ESB
interface contracts define the standard contracts for invoking methods on the ESB as well as other
business systems. For example, I have a marketing reporting application that needs access to daily sales
data on a periodic basis, but sometimes I also want to know real-time sales figures by accessing real-
time sales data on demand. ESB can define interface contracts that the source and destination systems
can adhere to while making asynchronous and synchronous invocations.

CHAPTER 8 APPFABRIC SERVICE BUS

384

Evolution of the Internet Service Bus (ISB)
ESB clearly has challenges in the cloud as well as in cross-organization scenarios. Current ESBs aren’t
designed to offer the scalability and availability required by cloud applications. In cross-organization
scenarios, ESB may somehow integrate the connectivity infrastructure and interface contracts, but it
faces significant challenges in integrating security and enterprise naming schemes. Porting enterprise
schemes becomes difficult across enterprises, and most applications need to be rewritten to work with
different enterprise schemes. To make the security service in ESB work across organizations, ESB needs
to integrate with the security provider of another enterprise. ESBs aren’t designed to work across
security realms and thus usually aren’t recommended to be used across enterprises. With the enterprise
push toward cloud services, it’s important to offer a Service Bus in the cloud that can be used by
enterprises as well as consumer applications at an Internet scale.

Some years back, I designed an Internet Service Bus (ISB) specifically to collect data from energy
devices in homes and commercial buildings. At that time, I called it Energy Bus, but essentially it was an
ISB with some limitations. I deployed this ISB as part of an overall service in a data center. The service
was designed for high scalability and availability with multiple clustered nodes at the infrastructure as
well as database level. The business purpose of the service was to collect energy data from thousands of
homes and commercial buildings and offer energy-management services to end users through utility
companies. For example, you as a homeowner could control your home devices like lighting, security,
HVAC, and coffee maker over the Internet. At the same time, devices in the house could call the energy
service in the cloud to send energy usage logs (kWh values) and alarms (fire alarm, burglar alarm, and so
on). The entire architecture was build around the concept of an Internet Service Bus with Microsoft
Message Queuing (MSMQ) as its backbone communications engine. Figure 8-2 illustrates the high-level
architecture of the ISB.

CHAPTER 8 APPFABRIC SERVICE BUS

385

Figure 8-2. Energy management service ISB

As shown in Figure 8-2, end users could generate reports on their energy data and also get and set
values of energy-consuming devices in buildings and apartments. The ISB provided the connectivity and
interfaces between the devices in the buildings and cloud. Two of the biggest challenges I faced in
designing the service were as follows:

CHAPTER 8 APPFABRIC SERVICE BUS

386

• Connectivity: Because of the nature of the service, one of its core functions was
providing real-time connectivity between devices and the service. Most often,
devices were behind firewalls or network address translation (NAT) routers. Even
though communication from the device to the service was seamless,
communication from the service to the device was always challenging. Opening
firewall ports to the devices wasn’t an option in many cases due to customers’
security policies. So, ISB communication couldn’t penetrate the firewall, and
communications failed. As a workaround, the developers had to tunnel
communications through only the ports that were allowed through the firewall, or
build a proxy server on the customer site that polled the cloud service on a
periodic basis to receive commands from ISB.

• User profiles: Customers wanted their existing user profile stores to synchronize
with the cloud securely, rather than creating all the user profiles from scratch. As a
workaround, I ended up building a profile import and synchronization server that
periodically synchronized the user profiles from the customer’s Active Directory
with the service database in the cloud. Because the service was deployed in the
cloud and was available for multiple customers, it couldn’t directly integrate with
any identity providers.

If Microsoft’s AppFabric Service Bus had been available at the time, both these challenges would
have been non-existent because the Service Bus is designed to address these exact challenges. The
AppFabric Service Bus provides access control, naming, service registry, messaging, and connectivity
services at Internet scale. It enables bidirectional communications between on-premises and cloud
application through relay service capabilities. The relay service runs in the cloud, and interested parties
register themselves with it to communicate with each other. The Service Bus determines the best
connectivity method by either using outbound bidirectional sockets connections from the service to the
Service Bus when a firewall is present, or establishing a direct connection between the client and the
service when there is no firewall.

Some of the applications you use today may already support bidirectional communication through
NAT traversal. Internet client applications like Windows Live Messenger, Kazaa, BitTorrent, Xbox Live,
and some Universal Plug and Play clients (UPnP) can traverse through firewalls using Relay Service.

Relay Service
A relay service is a central service running in the cloud that provides a rendezvous connection point
between the client and the service. In networking terms, the rendezvous address is a common meeting
point for two connections. Figure 8-3 shows typical relay service communications between client and
service.

CHAPTER 8 APPFABRIC SERVICE BUS

387

Figure 8-3. Relay service

As shown in Figure 8-3, the relay service runs in the cloud and offers connection endpoints to the
message client and service. A client opens an outbound connection to the relay service. The service
opens a bidirectional outbound connection to the relay service and receives a rendezvous connection
endpoint that is shared with the service. The outbound bidirectional connection from the service makes
it possible for the service to receive messages on an outbound connection without opening inbound
ports in the firewall or NAT routers. The client sends a message to the relay service that is routed by the
rendezvous connection point to the service over the outbound connection. Thus, the relay service makes
it possible for clients and services to communicate through firewalls.

With the advancements in networking APIs in frameworks like the .NET Framework, it isn’t difficult
to build a relay service and bidirectional sockets in your applications. The real challenge is to build a
relay service at Internet scale for applications around the world. In this chapter, you see how the
AppFabric Service Bus provides an Internet scale Service Bus with relay capabilities.

Introduction to the AppFabric Service Bus
Microsoft’s AppFabric Service Bus is an Internet-scale Service Bus that offers scalable and highly
available connection points for application communication. The AppFabric Service Bus is designed to
provide connectivity, queuing, and routing capabilities not only for the cloud applications but also for
on-premises applications. It also integrates with the Access Control Service (ACS) to provide secure relay
and communications. Figure 8-4 illustrates the architecture of the AppFabric Service Bus.

 Note To see a Field note describing how Service Bus was used to connect an Azure application to a FAST
search engine on-premises, go to http://www.microsoft.com/windowsazure/learn/real-world-
guidance/field-notes/integrating-with-service-bus-and-port-bridge/.

http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-with-service-bus-and-port-bridge/
http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-with-service-bus-and-port-bridge/
http://www.microsoft.com/windowsazure/learn/real-world-guidance/field-notes/integrating-with-service-bus-and-port-bridge/

CHAPTER 8 APPFABRIC SERVICE BUS

388

Figure 8-4. AppFabric Service Bus architecture

As shown in Figure 8-4, the AppFabric Service Bus consists of four main services that can be used by
different kinds of on-premises as well as cloud services. They are as follows:

• Security

• Naming service

• Service registry

• Messaging fabric

Security
As you read in Chapter 1, one of the biggest concerns of enterprises in moving applications to the cloud
is security. At Internet scale, where millions of frauds and hacks occur on a daily basis, secure
communication across applications is absolutely necessary for enterprises. An on-premises
environment is governed and controlled by corporate policies, and prevention is preferred to cure. In
the cloud, systems, applications, and data are exposed and prone to not only external but also internal
threats. To overcome this barrier, the AppFabric Service Bus offers the following two main options for
securing the transport of messages from clients to services:

• Access Control Service (ACS) integration

• End-to-end security

CHAPTER 8 APPFABRIC SERVICE BUS

389

ACS Integration (Relay Authentication)
Microsoft has integrated the AppFabric Service Bus with ACS to provide relay authentication and
authorization. The message sender and message receiver have to pass security checks before connecting
to the AppFabric Service Bus. Services (or receivers) must be authenticated either by ACS or an identity
provider trusted by ACS before establishing a connection to the AppFabric Service Bus. By default, the
clients (or senders) require relay authentication but can be optionally exempted from authentication by
services. The client authentication type may be different than the service authentication type. For
example, a client can authenticate using a shared secret, whereas a service can authenticate using a
SAML token. Three types of authentication are currently available with ACS: shared secret, SAML token,
and simple web tokens (SWTs). Figure 8-5 illustrates the Service Bus integration with ACS.

Figure 8-5. AppFabric Service Bus and ACS integration

As shown in Figure 8-5, the client and service both have must be authenticated with ACS before
connecting to the Service Bus. The authentication for client and service takes place separately and isn’t
dependent on the other. The client authentication process is as follows:

1. The client acquires a SAML token from a SAML token provider or creates an
SWT token or uses a shared secret to authenticate with Service Bus.

2. The client sends an authentication request to ACS and acquires a #Send claim
from ACS. After it is authenticated, the client receives a token containing the
#Send claim. AppFabric Service Bus is preconfigured to validate only the
#Send claim from a client application.

CHAPTER 8 APPFABRIC SERVICE BUS

390

 Note For more information about ACS, please refer to Chapter 7.

3. The token with the #Send claim is embedded into the header of the message
sent to the Service Bus relay service.

4. The relay service validates the token and removes it from the message header.
Because AppFabric Service Bus is the relying party in this scenario, as seen in
the previous chapter, ACS encrypts the token with a public key, and Service
Bus decrypts the token with a private key. During solution provisioning, trust
between ACS solution and Service Bus is already established by the AppFabric
portal.

5. The relay service sends the message (without the token) to the service.

The service also has to authenticate itself with ACS before connecting to the AppFabric Service Bus.
The service authentication process is as follows:

6. The service sends an authentication request to ACS and acquires the #Listen
claim from ACS. Similar to the client, the service can authenticate with any
identity provider trusted by ACS.

7. The token with the #Listen claim is embedded in the subscription request to
the AppFabric Service Bus relay service.

8. The relay service validates the token and lets the service open a bidirectional
outbound connection to the relay service.

Optionally, you can turn off the client authentication by specifying it in the service-binding
configuration as shown in Listing 8-1.

Listing 8-1. Turning Off Client Authentication

<binding name="default">
 <security relayClientAuthenticationType="None" />
 </binding>

The RelayClientAuthenticationType.None value specifies that clients of the service aren’t required
to present any token issued by the ACS. Usually, you set the RelayClientAuthenticationType.None value
if you want the service to authenticate and authorize the clients and the AppFabric Service Bus
authentication is adding unnecessary overhead to the service without adding any value. The default
value for the relayAuthenticationType attribute is RelayAccessToken.

TransportClientEndpointBehavior is a class in the Microsoft.ServiceBus namespace that describes
the WCF behavior of a particular endpoint registered with the Service Bus. The CredentialType property
of the TransportClientEndpointBehavior class specifies the type of authentication you use for the
endpoint. AppFabric Service Bus API offers TransportClientCredentialType enumeration with four
different values for relay authentication, as shown in Table 8-1.

CHAPTER 8 APPFABRIC SERVICE BUS

391

Table 8-1. TransportClientCredentialType Values

TransportClientCredentialType iption

Saml Suggests that the client is authenticated using a Security Assertions Marku
Language (SAML) tokens. The SAML token is sent over the SSL protocol, an
you’re required to create your own SSL credential server.

SharedSecret Refers to the issuer and issuer key created in ACS from the ACS manageme
portal. The Service Bus has a dedicated issuer name and issuer key created
default when you create a service namespace in ACS.

SimpleWebToken Suggests that the client is authenticated using an SWT token that is self-iss
by the client and registered with ACS.

Unauthenticated Doesn’t require clients to authenticate to connect to the Service Bus. Clien
must set this option explicitly in code if it’s exempted from authentication
the service. When this option is used, the AppFabric Service Bus sends the
message without acquiring a token from ACS.

The services and clients can choose authenticate using any of the configured types. In the examples

later in the chapter, I show you how to implement these options in your code.
As you read in the previous chapter on ACS, ACS creates dedicated Service Bus endpoints in your

service namespace. Figure 8-6 shows the Service Bus section from the service namespace page of your
account.

CHAPTER 8 APPFABRIC SERVICE BUS

392

Figure 8-6. Service Bus solution in ACS

You can map incoming and outgoing claims in ACS to authenticate your clients and/or services.
Thus, ACS integration provides The AppFabric Service Bus with the ability to authenticate with any
identity provider and participate in a claims-based identity model for authorization.

Message Security
Relay authentication is geared toward authenticating clients and services to communicate with the
AppFabric Service Bus. But a true enterprise solution is incomplete without security of the message that
travels between the communicating parties. Message security refers to the security of the message that
travels from the source through the AppFabric Service Bus to the destination. The AppFabric Service Bus
offers four options for securing messages between the clients and services. The enumeration
Microsoft.ServiceBus.EndToEndSecurityMode in the AppFabric Service Bus API defines four security
modes, as shown in Table 8-2.

CHAPTER 8 APPFABRIC SERVICE BUS

393

Table 8-2. Message Security Values

Message Security Type Description

None Security for the message is disabled. The message is sent as-is
from the client to the service.

Transport The message is sent through a secure channel (such as HTTPS) to
and from the relay service. The movement of the message within
the AppFabric Service Bus isn’t secure. The message doesn’t
contain any client credentials. This is the recommended and the
default mode for most applications where messages don’t contain
sensitive information.

Message In this security type, you can encrypt the body of the message
using an X.509 certificate provided by your service. Because the
message is encrypted, the movement of the message within the
.NET Service Bus is secure. The message may contain client
credentials, and the service must authenticate the client
credentials if present in the message. Use this option only if you
need client credentials in your service for authorization purposes.

TransportWithMessageCredential This security type is a combination of the Transport and Message
security types. The transport between the relay service and
applications is secured using a secure channel, and the message is
moved from the client all the way to the service in encrypted
format. The message is secure as it travels through the AppFabric
Service Bus. The message may also contain client credentials. This
security type is recommended only when sending sensitive
messages over the Internet.

 Note Message security is independent of relay security. Relay security is used to connect with the AppFabric
Service Bus, whereas message security refers to the security of the message that traverses through the AppFabric
Service Bus.

Naming Service
The Naming service allows you to assign DNS-capable names to your service, which makes the service
easily resolvable over the Internet. The Internet is based on the Domain Name System (DNS) where
every resource on the Internet can be resolved using the DNS name and relative path. For example, in
the URL www.microsoft.com, microsoft.com is the registered domain name for Microsoft’s web site.
HTTP is the protocol used for accessing the web site. Similarly, http://msdn.microsoft.com is the
registered domain name for MSDN site. The msdn part of the URL is called a subdomain of

http://www.microsoft.com
http://msdn.microsoft.com

CHAPTER 8 APPFABRIC SERVICE BUS

394

microsoft.com, and microsoft.com itself is called a root domain. DNS follows a hierarchical structure
where one root domain can consist of many subdomains to form a tree structure. For example,
social.msdn.microsoft.com adds one more level (social) under msdn to the microsoft.com domain
hierarchy.

The Internet DNS system was designed for reference to static resources like web pages and web sites
where the application may change but the domain name remains the same. In the cloud services world,
there can be multiple unique cloud services and subservices that can register and unregister themselves
from the DNS depending on the cloud service requirements. Companies can use the AppFabric Service
Bus on-premises as well as off-premises. In case of on-premises services, companies can register unique
domain names for services; but for off-premises services, companies must invest in infrastructure and
internal naming schemes for identifying these services uniquely on the Internet.

The AppFabric Service Bus offers a DNS-compatible naming system for assigning unique Internet
URIs to cloud as well as on-premises services. The AppFabric Service Bus defines a root domain name
that can be resolved through the Internet DNS, but offers a service namespace-based naming hierarchy
below the root. For example, in the Service Bus naming system, servicebus.windows.net is the root
domain of the Service Bus. If you have ten service namespaces you want to register with the Service Bus,
all ten service namespaces automatically receive URIs for cloud as well as on-premises services. If you
name your namespaces solution1, solution2, …, solution10, then each solution has its own URI name:

solution1.servicebus.windows.net

solution2.servicebus.windows.net

….

solution10.servicebus.windows.net

Figure 8-7 shows an example hierarchical naming tree structure in the AppFabric Service Bus.

Figure 8-7. Hierarchical naming structure

CHAPTER 8 APPFABRIC SERVICE BUS

395

You, the service namespace owner, have complete control over the naming hierarchy under the
Service Bus root node. The naming scheme for the URI formation is

[scheme]://[solution-name].servicebus.windows.net/[name]/[name]/...

where [scheme] is the protocol for accessing the service. AppFabric Service Bus supports two URI
schemes: http and sb. http is used for all HTTP-based communications between clients and services,
whereas sb is used for all TCP-based communications between clients and services. [solution-name] is
the unique solution name across the entire AppFabric Service Bus namespace. Because this name is the
subdomain under the AppFabric Service Bus root domain, this needs to be unique across the entire
AppFabric Service Bus namespace. You can choose any solution name while creating the account. For
example, the solution I use in this chapter is the ProAzure solution. The name ProAzure is unique across
the entire AppFabric Service Bus namespace. You can reference the ProAzure namespace in AppFabric
Service Bus as http://proazure.servicebus.windows.net or sb://proazure.servicebus.windows.net.

[name] is the user-defined virtual name for a service or a hierarchical structure pointing to a service.
You can create any hierarchical structure using the user-defined namespace. For example, if you’re
offering an energy management service in different cities around the world, and you have deployed
different instances of you service, you can assign unique names to these service instances based on the
names of the cities as follows:

http://proazure.servicebus.windows.net/sanfrancisco/energy

http://proazure.servicebus.windows.net/newyork/energy

http://proazure.servicebus.windows.net/london/energy

http://proazure.servicebus.windows.net/singapore/energy

http://proazure.servicebus.windows.net/mumbai/energy

You can also further extend the hierarchy by offering subservices like

http://proazure.servicebus.windows.net/sanfrancisco/energy/reports

http://proazure.servicebus.windows.net/sanfrancisco/energy/realtime

http://proazure.servicebus.windows.net/sanfrancisco/energy/logs

All these URIs point to endpoints of services hosted in these cities. The physical location of these
URIs is transparent not only to applications but also to each other. The
http://proazure.servicebus.windows.net/sanfrancisco/energy/reports service may be hosted in a
totally separate location from the
http://proazure.servicebus.windows.net/sanfrancisco/energy/realtime service. The AppFabric
Service Bus internally resolves the actual location of the service endpoints at runtime. Thus, the
AppFabric Service Bus allows you to create an infinitely deep hierarchical naming structure referencing
endpoints of cloud as well as on-premises services. It also abstracts the DNS registration and resolution
for your services and applications calling these services.

Service Registry
The AppFabric Service Bus provides a registration and discovery service for service endpoints called the
service registry. The service endpoints can be in the cloud or on-premises. The service registry offers an
Atom feed to your solution. You can register a service endpoint into the Atom Feed using either the Atom

http://proazure.servicebus.windows.net
http://proazure.servicebus.windows.net/sanfrancisco/energy
http://proazure.servicebus.windows.net/newyork/energy
http://proazure.servicebus.windows.net/london/energy
http://proazure.servicebus.windows.net/singapore/energy
http://proazure.servicebus.windows.net/mumbai/energy
http://proazure.servicebus.windows.net/sanfrancisco/energy/reports
http://proazure.servicebus.windows.net/sanfrancisco/energy/realtime
http://proazure.servicebus.windows.net/sanfrancisco/energy/logs
http://proazure.servicebus.windows.net/sanfrancisco/energy/reports
http://proazure.servicebus.windows.net/sanfrancisco/energy/realtime

CHAPTER 8 APPFABRIC SERVICE BUS

396

Publishing Protocol (APP)2 or WS-Transfer3 references. APP and WS-Transfer both support publishing,
listing, and removing the service endpoints. The client application can then discover your service
endpoint references by simply navigating Atom 1.0 feed of your solution. The Atom 1.0 feed exposes a
tree-like structure you can manually or programmatically navigate to get to the leaf node of the service
endpoint. You can also programmatically register a service endpoint for public discovery by setting the
DiscoveryMode property of the Microsoft.ServiceBus.ServiceRegistrySettings object to Public and
associating it with the service endpoint behavior as shown in Listing 8-2. In this approach, the AppFabric
Service Bus relay service automatically registers the service endpoint for you in the service registry.

Listing 8-2. Associating ServiceRegistrySettings

class Program
{
 static void Main(string[] args)
 {

 ServiceHost host = new ServiceHost(typeof(EnergyManagementService));
 ServiceRegistrySettings settings = new ServiceRegistrySettings();
 settings.DiscoveryMode = DiscoveryType.Public;
 foreach(ServiceEndpoint s in host.Description.Endpoints)
 s.Behaviors.Add(settings);
 host.Open();
 Console.WriteLine("Press [Enter] to exit");
 Console.ReadLine();
 host.Close();
 }
}

The default setting for the public discovery is set to private, so if you don’t set the discovery type to
public, your service won’t be discoverable publicly. After you register the service endpoint, you can view
the Atom feed of your Service Bus registry by navigating to the AppFabric section of the Azure
management portal, and clicking the Service Bus item under AppFabric in the navigation tree. You’ll see
the endpoint information on the right, as shown in Figure 8-8.

Figure 8-8. Service Bus registry link

2 Atom Publishing Protocol Reference: www.ietf.org/rfc/rfc5023.txt.
3 WS-Transfer Specification: www.w3.org/Submission/WS-Transfer/.

http://www.ietf.org/rfc/rfc5023.txt
http://www.w3.org/Submission/WS-Transfer/

CHAPTER 8 APPFABRIC SERVICE BUS

397

Figure 8-9 shows the Atom feed for the publicly listed services in the ProAzure solution.

Figure 8-9. Service Bus registry for the ProAzure solution

The Service Bus registry shows only one registered service. I revisit the Service Bus Registry later in
the examples in this chapter.

Messaging Fabric
The messaging fabric enables the relaying and communication of messages between clients and
services. The messaging fabric makes it possible to expose your service endpoints into the cloud for on-
premises as well as cloud deployed services. The messaging fabric also integrates with ACS to provide
message level security.

The relay service is the core component of the AppFabric Service Bus messaging fabric. The relay
service makes it possible for the client and services to communicate behind firewalls and NAT routers.
As the name suggests, the relay service plays the role of relaying messages from clients to the services by
assuming the responsibility of receiving the messages from the clients and delivering it to the services.
The services can be running in the cloud or on-premise. As long as the endpoints of the services are
registered in the service registry of the AppFabric Service Bus and are reachable, the relay service
forwards the message. In simple terms, the relay service is like a postman who delivers the message from
the client to the service. As long as the services address is valid and in the USPS registry, the postman
delivers the mail. The only difference is that the postman is an asynchronous communication whereas
the relay service defines a synchronous communication. This means the relay service requires the server
to be available in most of the cases when the client sends a message.

The relay service supports the following types of communications between the clients and the
services:

One-way communications

• Publish/Subscribe messaging

• Peer-to-peer communications

• Multicast messaging

• Direct connections between clients and services

Figure 8-10 illustrates the communication process that takes place between the client, the service,
and the AppFabric Service Bus relay service.

v

CHAPTER 8 APPFABRIC SERVICE BUS

398

Figure 8-10. AppFabric Service Bus relay service

As shown in Figure 8-10, the service opens an outbound connection with a bidirectional socket to
the AppFabric Service Bus relay service. The service registry registers the listener’s endpoint in its
naming tree for client applications to resolve. Most the AppFabric Service Bus listener bindings require
the following TCP ports opened on firewall or the NAT router for outbound communication: 808, 818,
819, 828, 80, and 443.4

Note that you don’t need to open any inbound ports in your firewall or NAT router for the end-to-
end communication to work when using the AppFabric Service Bus. Therefore, the listener application
can be running behind a firewall, NAT router, and even with a dynamic IP address. The client
application initiates an outbound connection to the relay service with the appropriate service address
that can be resolved from the service registry. The AppFabric Service has a load-balanced array of nodes
that provide the necessary scalability to the client and service communications. When the client sends a
message to the service, the message is relayed by the relay service to the appropriate node that is holding
reference to the listener’s endpoint. Finally, the relay service sends the message to the service over the
listener’s outbound bidirectional socket.

The AppFabric Service Bus URI naming scheme restricts listeners from registering more than one
listener on a URI scope. For example, if you have a service with the URI /energy/california, you can’t
register any listener with a URI suffix of /energy/California—/energy/california/sanfrancisco,
/energy/california/sanramon, and so on. You can register a service with the same URI root address,

4 Port information available in the AppFabric SDK: http://msdn.microsoft.com/en-us/
library/dd582710.aspx.

http://msdn.microsoft.com/en-us/

CHAPTER 8 APPFABRIC SERVICE BUS

399

such as /energy/sanfrancisco or /energy/sanjose. The AppFabric Service Bus uses the longest-prefix
match algorithm to relay messages to the services. The longest URI under URI scope is evaluated and
used to relay the message. So, in your service, you can process the entire URI suffix directory for query
processing or filtering.

AppFabric Service Bus Bindings
The AppFabric Service Bus SDK comes with an API for programming AppFabric Service Bus
applications. The namespace for AppFabric Service Bus classes is Microsoft.ServiceBus. The AppFabric
Service Bus supports bindings similar to Windows Communications Foundation (WCF) bindings.
Microsoft architected the AppFabric Service Bus with the vision of supporting the existing WCF
programming model so that WCF developers can design and develop services for AppFabric Service Bus
with their existing skill sets. The fundamental difference between AppFabric Service Bus bindings and
WCF bindings is at the transport level, which is completely opaque to the programming model. The
AppFabric Service Bus API provides binding classes that can be used in your WCF applications for
binding to the AppFabric Service Bus relay service.

In traditional WCF applications, the service runs with specified bindings on local or remote servers,
and client applications connect to the services directly. In traditional WCF, the notion of a relay service
doesn’t exist. Most of the standard WCF bindings have a direct match in the AppFabric Service Bus
bindings. Table 8-3 lists the WCF bindings and the AppFabric Service Bus bindings side by side.

Table 8-3. WCF and AppFabric Service Bus Bindings

WCF Binding AppFabric Service Bus
Relay Binding

Description

BasicHttpBinding BasicHttpRelayBinding Both bindings use simple HTTP transport.
BasicHttpRelayBinding uses the HTTP transport
channel to the relay service.

WebHttpBinding WebHttpRelayBinding Both bindings support HTTP, XML, and raw
binary encodings like base64. Popularly used in
REST-style interfaces.

WS2007HttpBinding WS2007HttpRelayBinding Both bindings support the Organization for the
Advancement of Structured Information
Standards (OASIS) standard versions of
ReliableSession and Security.
WS2007HttpRelayBinding doesn’t support
atomic TransactionFlow protocols because the
MSDTC isn’t available between your service and
the AppFabric Service Bus.

WSHttpContextBinding WSHttpRelayContext
Binding

Both bindings support context-enabled binding.
WSHttpRelayContextBinding enables context-
enabled binding between your service and the
relay service. You can use SOAP headers for
exchanging context.

CHAPTER 8 APPFABRIC SERVICE BUS

400

WCF Binding AppFabric Service Bus
Relay Binding

Description

NetTcpBinding NetTcpRelayBinding These bindings are the TCP counterpart of the
WSHttp bindings you saw earlier. The
NetTcpRelayBinding uses binary message
encoding and TCP for message delivery between
your service and the relay service.

NetTcpContextBinding NetTcpRelayContext
Binding

NetTcpRelayContextBinding binding uses a
context-enabled binding between your service
and the relay service. You can use SOAP headers
to exchange context.

N/A NetOnewayRelayBinding The NetOnewayRelayBinding is available only in
the AppFabric Service Bus and doesn’t have any
corresponding binding in WCF. This binding
supports only one-way messages between your
service and the relay service.

N/A NetEventRelayBinding The NetOnewayRelayBinding is available only in
the AppFabric Service Bus and doesn’t have any
corresponding binding in WCF. The
NetEventRelayBinding enables one-way
multicast eventing between multiple publishers
and subscribers. This binding is used in
Internet-scale publish-subscribe scenarios.

The AppFabric Service Bus Relay bindings offer you a complete spectrum of choices when you’re

selecting a high-performance binding like the NetTcpRelayBinding or a more interoperable and flexible
binding like the WSHttpRelayBinding. All the bindings depend on the relay service to decide the
message communication path between the clients and the services.

Message Buffer
The AppFabric Service Bus bindings for the WCF-style communications are designed for synchronous
communications between the sender and the receiver. This means the receiver must be running to
receive the message sent by the sender; otherwise, the message will get lost. The relay service doesn’t
contain a message store for storing and forwarding messages sent by senders to receivers. At Internet
scale, the existence of the senders and receivers 100% of the time is an unrealistic expectation because
senders and receivers depend on external and internal dependencies like server availability, on-
premises network resources, network availability, bandwidth, and so on, that pose a significant
availability risk for synchronous communications.

The AppFabric Service Bus offers a message buffer service for storing messages in a temporary
cache for asynchronous communication between clients and servers. The AppFabric Service Bus buffers
expose the REST API for applications to create a message buffer, send messages to the message buffer,
and retrieve messages from the message buffer. The messages stored in a message buffer on the server

CHAPTER 8 APPFABRIC SERVICE BUS

401

don’t survive server reboots. The message buffers themselves are replicated across multiple servers to
provide redundancy, but messages stored in message buffer are stored in the server memory and are lost
when the server reboots or crashes. When you design your application to use a message buffer, you have
to design redundancy into the application. If you need redundancy for your messages in the server, you
should consider using either Windows Azure Queue storage or SQL Azure. The message buffer also uses
ACS authentication to authenticate client applications.

Queues and Topics
Released with AppFabric SDK 1.5 are two new features called Queues and Topics. Queues provide a
durable messaging mechanism, and Topics builds upon the queuing structure by adding the ability to
create topics for which consumers can create rules by which to filter messages. This provides a robust
pattern for delivering messages to multiple subscribers with a publish-subscribe pattern. These will be
discussed in-depth below in the section “AppFabric Messaging Queues and Topics.”

 Note Queues and Topics are replacing Message Buffers, which will be deprecated in future releases.

Programming with the AppFabric Service Bus
This section dives into programming applications with the AppFabric Service Bus. The AppFabric
Service Bus API provides WCF-like bindings for senders to send messages to receivers via the relay
service. The job of the relay service is to receive messages from the sender(s) and relay those messages to
the appropriate receiver(s). The AppFabric Service Bus bindings you saw in the previous sections consist
of all the communication logic to communicate with the relay service. From a programmer’s
perspective, you must understand the limitations of and differences between WCF bindings and
AppFabric Service Bus bindings in order to program AppFabric Service Bus applications. The WCF-like
programming model reduces the barriers to entry for .NET developers and also enables easy porting of
existing WCF applications to the AppFabric Service Bus.

The steps to create an AppFabric Service Bus application are as follows:

1. Create an AppFabric Service Bus namespace by doing the following:

2. Navigate to http://windows.azure.com in your browser, and log in using your
LiveId.

3. Choose Service Bus, Access Control, & Caching from the lower left hand pane.

4. If not already expanded, expand the AppFabric tree node by clicking the
Arrow/triangle next to it.

5. Select the Service Bus node by clicking on it.

6. Click the New button on the upper left to create a new namespace. To modify
an existing namespace, select it in the middle pane, and then click Modify. You
should see the dialog shown in Figure 8-11.

http://windows.azure.com

CHAPTER 8 APPFABRIC SERVICE BUS

402

7. Provide a name for your namespace, a region/Country (i.e., data center) in
which it will be located and, if desired, a Connection Pack size. Connection
packs provide discounts if you are willing to subscribe to a certain number of
connections every month. Be sure you need then because you will be charged
for them every month whether they are used or not.

8. Design AppFabric contracts between the servers and the clients.

9. Implement the service contracts.

10. Design a bindings plan between the servers and clients for complex services
using multiple bindings. This plan lists the AppFabric Service Bus bindings
used for every message communication.

11. Create a security plan for relay- and message-level security between the clients
and the servers. Some of the popularly used security scenarios include the
following:

• X.509 certificates for message security

• ACS integration with a third-party identity provider (Windows Identity
Foundation, ADFS v2.0, LiveID, and so on)

• ACS integration with a client generated SWT token

• ACS integration with a shared issuer key

• Custom message security

12. Design endpoints for the service.

13. Design service hosting. This design includes whether the service will be hosted
on-premises or in the cloud.

14. Design the scalability and availability for the service.

15. Design client applications for the service contract.

CHAPTER 8 APPFABRIC SERVICE BUS

403

Figure 8-11. Modifying an existing Service Bus namespace.

The relay bindings are the core concepts for programming AppFabric Service Bus applications. This
section covers relay bindings, queues, and routers. For the purpose of demonstration, I use a simple
energy-management service that puts the AppFabric Service Bus’s capabilities in a business context.

ProAzure Energy Service Example
ProAzure Energy is a sample service I use in most of the demonstrations in this chapter. The ProAzure
Energy service offers utility companies energy-related data from consumer and commercial buildings.
For the purpose of this demo, assume that the ProAzure Energy service offers the following three
services to the utility companies:

• Energy meter monitoring: A control gateway device monitors the energy meters in
buildings and sends energy meter values to the ProAzure Energy head-end
software periodically. The utility companies can then access these values through
a subscription service.

CHAPTER 8 APPFABRIC SERVICE BUS

404

 Note Assume the head-end software is either in the cloud or on-premises at the ProAzure Energy company
site. It definitely isn’t on the customer’s site where the actual device monitoring takes place. Also assume there is
one gateway per building that can monitor different types of energy devices.

• Lighting monitoring and control: A control gateway device in buildings monitors
the light switches using a control network protocol. The gateway device accepts
ON/OFF commands from the ProAzure head-end software to turn the lights on
and off, respectively. The gateway device also send real-time light-switch values to
the head-end software when an ON or OFF switch event takes place on the switch
either manually or programmatically.

 Note Assume that the control gateway device is control-network-protocol agnostic. That means it supports all
control network protocols over power lines to communicate with the energy devices. The gateway has Internet
connectivity on one side and control network connectivity on another.

• Heating Ventilation Air Conditioning (HVAC) monitoring and control: A control
gateway device in buildings monitors the HVAC devices using a control network
protocol. The gateway device accepts the following HVAC commands:

• SETPOINT: Changes the set point of the HVAC to the specified value in degrees
Fahrenheit (oF).

• HEAT: Sets the HVAC value to heating mode.

• COOL: Sets the HVAC value to the cooling mode.

• OFF: Sets the HVAC value to the OFF mode.

• The control gateway device also sends the set-point value, temperature, and
heat/cool HVAC value to the ProAzure head-end software when it changes locally
or on a periodic basic.

Figure 8-12 illustrates the high-level architecture of the ProAzure Energy service.

CHAPTER 8 APPFABRIC SERVICE BUS

405

Figure 8-12. ProAzure Energy service architecture

Some of the important characteristics of the ProAzure Energy Service are as follows:

• The service monitors thousands of control gateways, which in turn manage energy
devices in buildings.

• The control gateways communicate with the AppFabric Service Bus relay service
to send and receive messages.

CHAPTER 8 APPFABRIC SERVICE BUS

406

• The control gateways are clients of the head-end server as well as servers to
receive commands from the head-end server.

• The control gateways may be behind firewalls.

• The ProAzure head-end server can be hosted either in the cloud in Windows Azure
or on-premises at the ProAzure Energy service data center.

• The ProAzure Energy service head-send server uses the AppFabric Service Bus
relay service to send and receive messages.

In addition to the device commands, the control gateway also supports the following commands for
its own configuration and monitoring:

• ONLINE: Periodically, the control gateway sends an online message to let the
head-end know of its continued availability.

• UPLOAD_SOFTWARE: This command is used to upload the software on the
control gateway.

In the following sections, you learn how to leverage different AppFabric Service Bus bindings,
queues, and routers to implement the ProAzure Energy service.

NetOnewayRelayBinding
NetOnewayRelayBinding supports one-way messages from client to the server. The method signatures
for one-way methods in the service contract must not return any values. One-way methods are
optimized for one-way TCP communications between the senders to the relay service and then to the
receivers. The default size of the message is set to 65,536 bytes. The receiver using the
NetOnewayRelayBinding opens a bidirectional TCP connection on outbound TCP port 828 for an SSL
connection and TCP port 808 for a non-SSL connection. If the TCP outbound ports are unavailable due
to environmental policies or port conflicts, you can configure the AppFabric Service Bus to use the HTTP
protocol instead. The HTTP protocol polls the relay service through outbound ports 443 for SSL and 80
for non-SSL communications.

Figure 8-13 illustrates the workings of NetOnewayRelayBinding.

CHAPTER 8 APPFABRIC SERVICE BUS

407

Figure 8-13. NetOnewayRelayBinding

For the purpose of demonstrating NetOnewayRelayBinding, in this section you design part of the
ProAzure Energy sample service. Based on the requirements discussed in the previous section, you use
the following communications from the control gateway to the head-end server to use the
NetOnewayRelayBinding:

Sending energy meter value (kWh) to the head-end server periodically

• Sending light switch value (ON/OFF) to the head-end server when the state of the
switch changes.

• Sending the HVAC set-point value to the head-end server when the set point
changes.

• Sending the HVAC mode value (OFF/COOL/HEAT) to the head-end server when
the HVAC mode changes.

The service project for this example is NetOnewayRelayServer, and the client project is
NetOnewayRelayClient.

AppFabric Contract
The service contract represents the interface contract between the client and the server. The contract
abstracts the interface of the server from its implementation. For the four communication requirements

CHAPTER 8 APPFABRIC SERVICE BUS

408

defined in the previous section, you design four methods in a service contract interface named
IOnewayEnergyServiceOperations, as shown in Listing 8-3.

Listing 8-3. Service Contract IOnewayEnergyServiceOperations

[ServiceContract(Name = "IOnewayEnergyServiceOperations.",
Namespace = "http://proazure/ServiceBus/energyservice/headend")]
 public interface IOnewayEnergyServiceOperations
 {
 [OperationContract(IsOneWay=true)]
 void SendKwhValue(string gatewayId, string meterId,
double kwhValue, DateTime utcTime);
 [OperationContract(IsOneWay = true)]
 void SendLightingValue(string gatewayId, string switchId,
int lightingValue, DateTime utcTime);
 [OperationContract(IsOneWay = true)]
 void SendHVACSetPoint(string gatewayId, string hvacId,
int setPointValue, DateTime utcTime);
 [OperationContract(IsOneWay = true)]
 void SendHVACMode(string gatewayId, string hvacId,
int mode, DateTime utcTime);
 }

 public interface IOnewayEnergyServiceChannel : IOnewayEnergyServiceOperations,
IClientChannel { }

The IOnewayEnergyServiceOperations define four operations you implement in the head-end
server for the control gateway to call to send the values. Note the IsOneWay=true property of the
OperationContract attribute, and also note that none of the one-way methods return any values. This is
a requirement for all one-way methods in the AppFabric Service Bus.

 Tip Always explicitly define the name and namespace for the service contract as a best practice. Doing so
ensures a unique namespace for your contract and avoids any conflicts with default values.

The IOnewayEnergyServiceChannel defines a channel for client communications that inherits from
the IOnewayEnergyServiceOperations and IClientChannel interfaces.

 Note All the code for the interfaces is available in the EnergyServiceContract project in the Ch8Solution.sln
Visual Studio solution. Before opening the solution, download the latest Windows Azure AppFabric SDK, also
known as the AppFabric SDK.

CHAPTER 8 APPFABRIC SERVICE BUS

409

Service Implementation
After the contract is designed, the next step is to implement the contract in the head-end server. In the
interest of keeping the book conceptual, you create a simple implementation of the contract that prints
out the received messages to the console. Listing 8-4 shows the implementation of the
IOnewayEnergyServiceOperations interface.

Listing 8-4. IOnewayEnergyServiceOperations Implementation

[ServiceBehavior(Name = "OnewayEnergyServiceOperations",
Namespace = "http://proazure/ServiceBus/energyservice/headend")]
 public class OnewayEnergyServiceOperations :
EnergyServiceContract.IOnewayEnergyServiceOperations
 {
 public void SendKwhValue(string gatewayId, string meterId,
double kwhValue, DateTime utcTime)
 {
 Console.WriteLine(String.Format
("{0}>Energy Meter {1} value:{2:0.00} kWh @ {3}",
 gatewayId, meterId, kwhValue, utcTime.ToString("s")));
 }
 public void SendLightingValue(string gatewayId, string switchId,
int lightingValue, DateTime utcTime)
 {
 Console.WriteLine(String.Format
("{0}>Changed lightbulb state of switch {1} to {2}",
gatewayId, switchId, ((lightingValue == 1) ? "ON" : "OFF")));
 }
 public void SendHVACSetPoint(string gatewayId, string hvacId,
int setPointValue, DateTime utcTime)
 {
 Console.WriteLine(String.Format
("{0}>HVAC {1} has SETPOINT value:{2:0} F @ {3}",
 gatewayId, hvacId, setPointValue, utcTime.ToString("s")));
 }
 public void SendHVACMode(string gatewayId, string hvacId,
int mode, DateTime utcTime)
 {
 Console.WriteLine(String.Format
("{0}>HVAC {1} MODE is set to {2} @ {3}", gatewayId,
hvacId, GetHVACModeString(mode), utcTime.ToString("s")));
 }

Note that all the concepts applied until now are the same as any WCF service implementation.

Service Binding
Bindings define the transport, encoding, and protocol required by the WCF services and clients to
communicate with each other. A binding configuration is applied to the endpoint to represent the
transport, encoding, and protocol used for communication between client and services.
NetOnewayRelayBinding is an AppFabric Service Bus binding that defines one-way communication

CHAPTER 8 APPFABRIC SERVICE BUS

410

between the client, relay server, and service. Listing 8-5 shows the binding configuration in App.config
for the OnewayEnergyServiceOperations service implementation.

Listing 8-5. Service Binding for OnewayEnergyServiceOperations

<bindings>
 <netOnewayRelayBinding>
 <binding name="default" />
 </netOnewayRelayBinding>
 </bindings>

The bindings section defines the netOnewayRelayBinding. You can define multiple bindings in the
bindings section and then later apply one to the service endpoint. The netOnewayRelayBinding makes a
TCP outbound connection on port 828 by default, which is on a secure connection. For a non-secure
TCP connection, it uses port 808. In most enterprises, no outbound connections other than HTTP on
port 80 or SSL on port 443 are allowed due to corporate security policies. In such scenarios, you can
configure netOnewayRelayBinding to establish an HTTP connection with the relay service over port 80
or 443. The AppFabric Service Bus environment supports a ConnectivityMode property you can set to
one of these enum values: AutoDetect, TCP, or HTTP, as listed in Table 8-4.

Table 8-4. ConnectivityMode Values

ConnectivityMode Description

AutoDetect This option automatically detects the communication options between TCP and
HTTP depending on the availability of TCP and HTTP. If both are available, it
chooses TCP over HTTP.

TCP This is the default mode of communication. If the TCP option is selected, the
application opens a TCP connection with the relay service on outbound TCP port
828 for secure TCP connections.

HTTP If the HTTP option is selected, the application opens an HTTP connection with the
relay service on port 443 for SSL communications and port 80 for non-SSL
communications. The HTTP connection on the receiver side polls the relay service
for messages. Use this option only if you don’t have TCP outbound connections
restricted, because the HTTP option has a performance impact due to the polling
mechanism.

You can set the ConnectivityMode of the netOnewayRelayBinding using

ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.AutoDetect;

SystemConnectivity.Mode sets the value of ConnectivitySettings that represents the AppFabric Service
Bus connectivity. The default connectivity mode between the AppFabric Service Bus and the service is
TCP. If you’re running your service behind a firewall, you can use the HTTP binding. If you aren’t sure
about the network constraints, use AutoDetect mode, where the Service Bus selects TCP by default but
automatically switches to HTTP if TCP connectivity isn’t available.

You can configure end-to-end security between the client and the server as shown in Listing 8-6.

CHAPTER 8 APPFABRIC SERVICE BUS

411

Listing 8-6. Binding Security for netOnewayRelayBinding

<netOnewayRelayBinding>
<binding name="default" >
<security mode="Transport" relayClientAuthenticationType="None" />
</binding>
</netOnewayRelayBinding>

The mode attribute supports four values, as listed in Table 8-5.

Table 8-5. End to End Security Values

Security Mode Value Description

Message Provides SOAP message security.

Transport Provides transport-level security like SSL.

TransportWithMessageCredential Provides transport-level security like SSL along
with message-level client security.

None Provides no security between client and server.

Relay Security
The AppFabric Service Bus integrates with ACS to provide the authentication and authorization required
for accessing and creating service endpoints in the AppFabric Service Bus. Even though ACS can be
configured to use an external identity provider like ADFS v2.0 or Windows Live ID, this example uses a
shared secret to authenticate with ACS for both the service and the client. Listing 8-7 shows the code to
pass an issuer name and issuer key as credentials to authenticate with the AppFabric Service Bus.

Listing 8-7. Shared Secret Authentication

TransportClientEndpointBehavior sharedSecretServiceBusCredential =
new TransportClientEndpointBehavior();
 sharedSecretServiceBusCredential.CredentialType =
TransportClientCredentialType.SharedSecret;
 sharedSecretServiceBusCredential.Credentials.SharedSecret.IssuerName =
 issuerName;
 sharedSecretServiceBusCredential.Credentials.SharedSecret.IssuerSecret =
issuerKey;
ServiceHost Host = new ServiceHost(serviceType);
Host.Description.Endpoints[0].Behaviors.Add(behavior);

In Listing 8-7, you create a TransportClientEndpointBehavior object and select the credential type
SharedSecret to use the issuer and issuer key as the authenticating credentials.

Figure 8-14 shows the service namespace page with Service Bus credentials. You can use the default
issuer name and default issuer key in the shared secret values while connecting to the Service Bus.

CHAPTER 8 APPFABRIC SERVICE BUS

412

Figure 8-14. Credentials Management page

You can also define the shared secret in app.config, as shown in Listing 8-8. If you define credentials
as your service behavior and assign it to the service endpoint, then you don’t need to initialize transport
client credentials in the code.

Listing 8-8. SharedSecret Declaration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name="sharedSecretClientCredentials">

 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="owner"
issuerSecret="wJBJaobUmarWn6kqv7QpaaRh3ttNVr3w1OjiotVEOL4=" />
 </clientCredentials>
 </transportClientEndpointBehavior>

 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <!-- Application Binding -->
 <netOnewayRelayBinding>
 <binding name="default" />
 </netOnewayRelayBinding>
 </bindings>

CHAPTER 8 APPFABRIC SERVICE BUS

413

 <services>
 <service name="EnergyServiceContract.OnewayEnergyServiceOperations">
 <endpoint address="sb://proazure-
1.servicebus.windows.net/OnewayEnergyServiceOperations/"
 binding="netOnewayRelayBinding"

 behaviorConfiguration="sharedSecretClientCredentials"

 bindingConfiguration="default"
 name="RelayEndpoint"
 contract="EnergyServiceContract.IOnewayEnergyServiceOperations" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

In Listing 8-8, the transport client behavior is defined under the sharedSecretClientCredentials
element, which is assigned as the behaviorConfiguration of the service endpoint.

Message Security
Message security refers to the security of the message as it travels from client to service via the AppFabric
Service Bus. As discussed earlier, the AppFabric Service Bus API offers four options for message security
in the enumeration Microsoft.ServiceBus.EndToEndSecurityMode: None, Transport, Message, and
TransportWithMessageCredentials. netOnewayRelayBinding doesn’t support
TransportWithMessageCredentials. If you want to use a certificate in the client, you have to explicitly
configure the service certificate in the client; in a one-way message, there is no direct connection
between the client and service. When the client sends a message, the service may not be available, and
so the client can’t negotiate the certificate with the service.5

The netOnewayRelayBinding example provides configuration files for default (AppBasic.config),
Transport (AppTransport.config), Message without client credentials
(AppMsgSecNoClientCreds.config), and Message with username credentials
(AppMsgSecUsernameClientCreds.config). Figure 8-15 shows the client (NetOnewayRelayClient) and
service (NetOnewayRelayServer) projects.

5 Juval Lowy. Securing The .NET Service Bus. MSDN. http://msdn.microsoft.com/en-
us/magazine/dd942847.aspx.

http://msdn.microsoft.com/en-us/magazine/dd942847.aspx
http://msdn.microsoft.com/en-us/magazine/dd942847.aspx
http://msdn.microsoft.com/en-us/magazine/dd942847.aspx

CHAPTER 8 APPFABRIC SERVICE BUS

414

Figure 8-15. NetOnewayRelayBinding example

To use any particular message security, copy and paste the contents of the appropriate
configuration file into App.config for the project in both client and service, and recompile the project.
The examples use the TempCA.cer X.509 certificate for the service identity, which you can find in the
code directory of Ch8Solution. Listing 8-9 shows the contents of AppMsgSecNoClientCreds.config for
the service, and Listing 8-10 shows the contents of AppMsgSecNoClientCreds.config for the client.

Listing 8-9. AppMsgSecNoClientCreds.config for the Service

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
<behaviors>
 <serviceBehaviors>
 <!--Configure certificate for service identity-->

CHAPTER 8 APPFABRIC SERVICE BUS

415

 <behavior name = "CertificateProtection">
 <serviceCredentials>
 <serviceCertificate
 findValue = "TempCA"
 storeLocation = "LocalMachine"
 storeName = "My"
 x509FindType = "FindBySubjectName"
 />
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 <endpointBehaviors>
 <behavior name="sharedSecretEndpointBehavior">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="ISSUER_NAME" issuerSecret="ISSUER_SECRET" />
</clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <!-- Application Binding -->
 <netOnewayRelayBinding>
 <binding name = "OnewayMessageSecurity">
 <security mode = "Message">
 <message clientCredentialType = "None"/>
 </security>
 </binding>
 </netOnewayRelayBinding>
 </bindings>
 <!--Configure certificate for message security-->

 <services>
 <service name="EnergyServiceContract.OnewayEnergyServiceOperations"
 behaviorConfiguration = "CertificateProtection">
 <endpoint address=
"sb://proazure.servicebus.windows.net/OnewayEnergyServiceOperations/"
 binding="netOnewayRelayBinding"
 bindingConfiguration="OnewayMessageSecurity"
 name="RelayEndpoint"
 contract="EnergyServiceContract.IOnewayEnergyServiceOperations"
behaviorConfiguration="sharedSecretEndpointBehavior" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

CHAPTER 8 APPFABRIC SERVICE BUS

416

Listing 8-10. AppMsgSecNoClientCreds.config for the Client

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <bindings>
 <netOnewayRelayBinding>
 <binding name = "OnewayMessageSecurity">
 <security mode = "Message">
 <message clientCredentialType = "None"/>
 </security>
 </binding>
 </netOnewayRelayBinding>
 </bindings>
<behaviors>
 <endpointBehaviors>
 <behavior name = "ServiceCertificate">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="ISSUER_NAME" issuerSecret="ISSUER_SECRET" />
 </clientCredentials>
 </transportClientEndpointBehavior>
 <clientCredentials>
 <serviceCertificate>
 <scopedCertificates>
 <add targetUri = "sb://{your service
namespace}.servicebus.windows.net/OnewayEnergyServiceOperations/"
 findValue = "TempCA"
 storeLocation = "LocalMachine"
 storeName = "My"
 x509FindType = "FindBySubjectName"
 />
 </scopedCertificates>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <client>
 <!-- Service Endpoint -->
 <endpoint name="RelayEndpoint"
 contract="EnergyServiceContract.IOnewayEnergyServiceOperations"
 binding="netOnewayRelayBinding"
 bindingConfiguration="OnewayMessageSecurity"
 address=
"sb://proazure.servicebus.windows.net/OnewayEnergyServiceOperations/"
 behaviorConfiguration = "ServiceCertificate"
 >
 <identity>
 <dns value = "TempCA"/>
 </identity>

CHAPTER 8 APPFABRIC SERVICE BUS

417

 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

The TempCA X.509 certificate is configured in the service as well as the client in the behavior section
of the configuration file. In production applications, you have to use a production certificate issued by a
certificate authority. Note that the behavior elements in both the client and server configuration include
the transport client endpoint behavior set to shared secret. You can also initialize the
TransportClientEndpointBehavior class in the client and server code. In production applications, you
should encrypt the issuer credentials wherever they’re stored. The X.509 certificate is used.

Service Endpoints
A WCF service endpoint defines how a client can communicate with the WCF service. The endpoint
consists of four main attributes: the address of the endpoint, a binding that defines what protocol a
client can use to communicate with the endpoint, a service contract that defines the operations available
for the client to call, and a set of behaviors defining the local behavior of the endpoint. AppFabric Service
Bus endpoints are similar to WCF endpoints. The only difference is the specific bindings used to
communicate with the relay service.

Endpoints can be configured in application configuration files or programmatically. For the
netOnewayRelayBinding example, Listing 8-11 shows the service endpoint definition from the
App.config file.

Listing 8-11. netOnewayRelayBinding Endpoint

<!-- Service Endpoint -->
<endpoint
 address="sb://{your service namespace}
.servicebus.windows.net/OnewayEnergyServiceOperations/"
 behaviorConfiguration="sharedSecretClientCredentials"
 binding="netOnewayRelayBinding"
 bindingConfiguration="default"
 name="RelayEndpoint"
 contract="EnergyServiceContract.IOnewayEnergyServiceOperations" />

In Listing 8-11, the binding is set to netOnewayRelayBinding, and the bindingConfiguration and
behaviorConfiguration are pointers to the sections within the same configuration file. The address refers
to the URI of the service endpoint. You can also create the URI of the service using the static method call

ServiceBusEnvironment.CreateServiceUri("sb", serviceNameSpace, servicePath);

where servicePath is the part of the URI after sb://proazure.servicebus.windows.net. In this
example, it’s OnewayEnergyServiceOperations. The “sb” represents the scheme used to communicate
with the AppFabric Service Bus. The scheme can be either “http” or “sb” depending on the binding
you’re using. For netOnewayRelayBinding, you must use the “sb” scheme.

CHAPTER 8 APPFABRIC SERVICE BUS

418

Service Hosting
After you’ve defined the service contract, service implementation, bindings, and endpoints, you can
create a host for the service, as shown in Listing 8-12.

Listing 8-12. Hosting the AppFabric Service Bus Service

TransportClientEndpointBehavior behavior =
ServiceBusHelper.GetUsernamePasswordBehavior(issuerName, issuerKey);
Host = new ServiceHost(typeof(OnewayEnergyServiceOperations));
Host.Description.Endpoints[0].Behaviors.Add(behavior);
Host.Open();

As shown in Listing 8-12, the System.ServiceModel.ServiceHost is used to host the service. The
TransportClientEndpointBehavior object is created from the issuer name/issuer key and passed to the
defined endpoint. Finally, the Host.Open() method opens the service for communication. If you define
the issuer name and issuer key in the configuration file, then you don’t have to initialize it
programmatically. In this example, you define the transport client endpoint behavior in the
configuration file.

Client Design
You can find the client application in the NetOnewayRelayClient Visual Studio project. From the
business requirements perspective, the client application is the control gateway application that
connects to the head-end server to send messages. Figure 8-16 illustrates the user interface for the
NetOnewayRelayClient client application.

CHAPTER 8 APPFABRIC SERVICE BUS

419

Figure 8-16. NetOnewayRelayClient application Design View

The client user interface has four main sections: configuration, HVAC operations, light switch
operations, and meter reading, as discussed in the original requirements of the application. In the
configuration section at the top of the form, you should enter your solution name and solution
password. The Connect button establishes a connection to the AppFabric Service Bus. Any change to the
HVAC set point or mode is sent to the head-end server by calling the SendHVACSetPoint() and
SendHVACMode() methods on the server. Clicking the light bulb button turns the light switch on and
off. Any change to the state of the light switch is sent to the server by calling the SendLightingValue()
method on the head-end server. If you click on the energy meter button, a random kWh value is sent to
the server by calling the SendKwhValue() method on the head-end server. If you check the “Start
sending kWh values” check box, a random kWh value is sent to the head-end server every 10 seconds.

Listing 8-13 shows the code to initialize the channel to communicate with the server. The
credentials are defined in the app.config file so they don’t need to be initialized in the code.

CHAPTER 8 APPFABRIC SERVICE BUS

420

Listing 8-13. Client Communication Initialization

Uri address = ServiceBusEnvironment.CreateServiceUri
("sb", serviceNamespaceDomain, "OnewayEnergyServiceOperations");

ChannelFactory<IOnewayEnergyServiceChannel> netOnewayChannelFactory = new
ChannelFactory<IOnewayEnergyServiceChannel>("RelayEndpoint", new EndpointAddress(address));

IOnewayEnergyServiceChannel netOnewayChannel = channelFactory.CreateChannel();

channel.Open();

After the channel is opened successfully, you can call the methods on the service as follows:

netOnewayChannel.SendLightingValue(gatewayId, switchId, lightingValue, DateTime.UtcNow);
 netOnewayChannel.SendKwhValue(gatewayId, meterId, kWhValue, DateTime.UtcNow);

 Note In a real-world application, the control gateway polls the actual energy meter and sends kWh values to
the head-end server. This example uses random numbers to simulate a real-world environment.

Running the Application
The steps required to run the end-to-end application are as follows:

1. Open App.config for the server and client, and configure them to represent
your service namespace and issuer credentials.

2. Open a command prompt as Administrator, and navigate to the bin\Debug
directory of the NetOnewayRelayServer project.

3. Run NetOnewayRelayServer.exe.

4. Enter the service namespace to start the service.

5. Open Windows Explorer and navigate to the bin\Debug directory of the
NetOnewayRelayClient project.

 Note Make sure the configuration for the server and the client match in terms of address and security.

6. Double-click NetOnewayRelayClient.exe to start the client application.

7. Click the Connect button to connect to the relay service. If the connection is
successful, the text box displays success messages.

CHAPTER 8 APPFABRIC SERVICE BUS

421

8. You can interact with the application by changing the state of HVAC, Light
switch or the meter reading button. The client application calls the
appropriate methods on the head-end server, and as a result the
NetOnewayRelayServer.exe command prompt displays the received method
calls.

Figure 8-17 illustrates a running instance of the client application, and Figure 8-18 illustrates the
messages received on the server command prompt.

Figure 8-17. NetOnewayRelayClient application

CHAPTER 8 APPFABRIC SERVICE BUS

422

Figure 8-18. NetOnewayRelayServer application

 Tip If you want to observe the ports open or trace messages sent back and forth between the client and the
service, you can use Microsoft’s Network Monitor (netmon.exe), available at www.microsoft.com/
downloads/details.aspx?displaylang=en&FamilyID=983b941d-06cb-4658-b7f6-3088333d062f.

Figure 8-19 illustrates the Microsoft Network Monitor conversation tree of the interaction between
NetOnewayRelayClient.exe and NetOnewayRelayServer.exe. Note the TCP outgoing port 828 and SSL
connection in the conversation tree.

http://www.microsoft.com/

CHAPTER 8 APPFABRIC SERVICE BUS

423

Figure 8-19. Microsoft Network Monitor capture

netEventRelayBinding
netEventRelayBinding extends the netOnewayRelayBinding by providing multicast messaging between
multiple subscribers and publishers listening on the same rendezvous service endpoint. The
netEventRelayBinding class inherits from netOnewayRelayBinding. This is the only binding that
supports multiple receivers on the same service URI. Figure 8-20 illustrates the architecture of
netEventRelayBinding.

CHAPTER 8 APPFABRIC SERVICE BUS

424

Figure 8-20. netEventRelayBinding architecture

In Figure 8-20, one publisher publishes messages on a defined endpoint URI, and two subscribers
(Subscriber-1 and Subscriber-2) listen on the same endpoint URI. When the publisher sends a message
to the endpoint URI, both receivers receive the message. The AppFabric Service Bus multicasts the
message to all the subscribers of the URI. Internally, both the subscribers may be running on different
front-end nodes. From the publisher and subscriber perspective, routing of the message to two
subscribers is opaque and completely handled by the combination of netEventRelayBinding and the
AppFabric Service Bus. Because netEventRelayBinding inherits from netOnewayRelayBinding, it
supports the same connectivity modes and security features, as discussed for netOnewayRelayBinding.

You should use this binding if you require a publish-subscribe messaging system where a message
needs to be sent to multiple receivers at the same time. netEventRelayBinding uses a multicast
connection mode, whereas netOnewayRelayBinding uses a unicast connection mode.

In the ProAzure Energy service example, the control gateway needs to communicate with the head-
end server about its availability and when it comes online and goes offline. This offers the head-end
server better understanding of a gateway’s online/offline pattern and can send scheduled commands to
the control gateway only when it’s online. The head-end server is a collection of small servers with
dedicated specific roles. For example, there is a server instance that only sends scheduled commands to
the control gateway when it’s online. Another service checks for the required software upgrade on the
control gateway and can upgrade the software on the control gateway when it’s online. So, this example
uses the netEventRelayBinding to send ONLINE/OFFLINE messages between the control gateway and
the head-end server. When a control gateway is online, it periodically sends an ONLINE message to the
head-end server. A control gateway also sends an OFFLINE message if it’s shutting down gracefully. The
service project for this example is NetEventRelayServer, and the client project is NetEventRelayGateway
in the Ch8Solution. The NetEventRelayGateway project consists of netOnewayRelayBinding as well as
netEventRelayBinding examples. The same application is used to send one-way as well as
publish/subscribe messages.

CHAPTER 8 APPFABRIC SERVICE BUS

425

AppFabric Contract
The AppFabric contract for the netEventRelayBinding example consists of two operations: Online() and
GoingOffline(), as shown in Listing 8-14.

Listing 8-14. netEventRelayBinding Service Contract

[ServiceContract(Name = "IMulticastGatewayOperations.", Namespace =
"http://proazure/ServiceBus/energyservice/gateway")]
 public interface IMulticastGatewayOperations
 {
 [OperationContract(IsOneWay = true)]
 void Online(string gatewayId, string serviceUri, DateTime utcTime);
 [OperationContract(IsOneWay = true)]
 void GoingOffline(string gatewayId, string serviceUri, DateTime utcTime);

 }

 public interface IMulticastGatewayChannel : IMulticastGatewayOperations,
IClientChannel
 {
 }

The IMulticastGatewayOperations interface has two methods: Online() and GoingOffline(). Similar
to the netOnewayRelayBinding, both methods must have the IsOneWay=true attribute and must not
return any values. The gatewayID refers to the unique identifier of a gateway, and the serviceUri refers to
the URI of the gateway service. I cover the URI of the gateway when I discuss netTcpRelayBinding.

Service Implementation
The implementation of the IMulticastGatewayOperations interface is shown in Listing 8-15.

Listing 8-15. Implementation of the IMulticastGatewayOperations Interface

[ServiceBehavior(Name = "MulticastGatewayOperations", Namespace =
"http://proazure/ServiceBus/energyservice/")]
 public class MulticastGatewayOperations :
EnergyServiceContract.IMulticastGatewayOperations
 {
 public void Online(string gatewayId, string serviceUri, DateTime utcTime)
 {
 Console.WriteLine(String.Format("{0}>ONLINE Uri:{1} @ {2}",
gatewayId, serviceUri, utcTime.ToString("s")));

 }
 public void GoingOffline(string gatewayId, string serviceUri, DateTime utcTime)
 {
 Console.WriteLine(String.Format("{0}>OFFLINE Uri:{1} @ {2}",
gatewayId, serviceUri, utcTime.ToString("s")));
 }

CHAPTER 8 APPFABRIC SERVICE BUS

426

The implementation prints the name, URI, and the time values to the console.

Service Binding
The service binding for netEventRelayBinding is shown in Listing 8-16.

Listing 8-16. netEventRelayBinding

<netEventRelayBinding>
 <binding name = "OnewayMessageSecurity">

 </binding>
</netEventRelayBinding>

Relay Security
In the netOnewayRelayBinding example, you saw how to use shared-secret authentication with your
ACS solution. This example explores the use of an SWT. Listing 8-17 shows the code segment required to
authenticate using an SWT.

Listing 8-17. SWT Authentication

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespaceDomain,
"Gateway/MulticastService");

TransportClientEndpointBehavior behavior = new TransportClientEndpointBehavior();
behavior.CredentialType = TransportClientCredentialType.SimpleWebToken;
behavior.Credentials.SimpleWebToken.SimpleWebToken =
SharedSecretCredential.ComputeSimpleWebTokenString(issuerName, issuerSecret);

ServiceHost host = new ServiceHost(typeof(MulticastGatewayOperations), address);
host.Description.Endpoints[0].Behaviors.Add(behavior);

The code creates an SWT from the issuer name and issuer secret key by calling the method
SharedSecretCredential.ComputeSimpleWebTokenString (string issuerName, string issuerSecret)
method from Microsoft.ServiceBus.dll.

Message Security
Similar to the netOnewayRelayBinding example, you can create specific configuration files for particular
message security scenarios and then switch back and forth between these configuration files depending
on the scenario you’re executing. When you execute a particular security configuration, make sure
you’re switching the client security configuration consistently with the service configuration.

CHAPTER 8 APPFABRIC SERVICE BUS

427

Service Endpoints
The service endpoint configuration of netEventRelayBinding in this example doesn’t define the ACS
authentication in the configuration file like netOnewayRelayBinding. The ACS authentication is handled
in the code. Listing 8-18 shows the service configuration in of the NetEventRelayServer.

Listing 8-18. Service Endpoint Configuration

<services>
<service name="EnergyServiceContract.MulticastGatewayOperations">
 <endpoint address=""
 binding="netEventRelayBinding"
 bindingConfiguration="default"
 name="RelayMulticastEndpoint"
 contract="EnergyServiceContract.IMulticastGatewayOperations"
 />
 </service>
</services>

The relay authentication is handled in the code and therefore isn’t visible in the configuration file.

Service Hosting
The netEventRelayBinding example uses SWT tokens for relay authentication instead of issuer name and
issuer key as in the netOnewayRelayBinding example. So, the service host has to create an SWT from the
issuer name and issuer key. The code for the service host is shown in Listing 8-19.

Listing 8-19. Service Hosting for netEventRelayBinding

string serviceNamespaceDomain = “{your service namespace}”
 string issuerName = "{ISSUER NAME}";
 string issuerSecret = "{ISSUER KEY}";
 ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.AutoDetect;
 TransportClientEndpointBehavior relayCredentials = new TransportClientEndpointBehavior();
 relayCredentials.CredentialType = TransportClientCredentialType.SharedSecret;
 relayCredentials.Credentials.SharedSecret.IssuerName = issuerName;
 relayCredentials.Credentials.SharedSecret.IssuerSecret = issuerSecret;
 Uri serviceAddress = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespaceDomain,
 "Gateway/MulticastService/");
 ServiceHost host = new ServiceHost(typeof(MulticastGatewayOperations), serviceAddress);
 host.Description.Endpoints[0].Behaviors.Add(relayCredentials);

 host.Open();One the service hosts are started, they listen on the endpoint URI
sb://{your service namespace}.servicebus.windows.net/Gateway/MulticastService/

CHAPTER 8 APPFABRIC SERVICE BUS

428

Client Design
In this example, the client application performs both the netOnewayRelayBinding and the
netEventRelayBinding operations. When a control gateway comes online, it sends online messages every
10 seconds by calling the Online() method on the head-end server’s multicast URI:

sb://proazure.servicebus.windows.net/Gateway/MulticastService/

When you close the client application, it sends an offline message by calling the GoingOffline()
method on the head-end server’s multicast URI:

sb://proazure.servicebus.windows.net/Gateway/MulticastService/

Figure 8-21 illustrates the design view of the NetEventRelayGateway client application.

Figure 8-21. NetEventRelayGateway design view

CHAPTER 8 APPFABRIC SERVICE BUS

429

The Start Time check box starts the timer to send an online message every 10 seconds.

 Note I’ve combined the configuration of the netOnewayRelayBinding example and the netEventRelayBinding
example in one project, NetEventRelayGateway.

Running the Application
The steps required to run the end-to-end application are as follows:

1. Open App.config for the NetEventRelayGateway and NetEventRelayServer and
configure it to represent your service namespace and issuer credentials.

2. Open three command prompts as Administrator, and navigate two prompts to
the bin\Debug directory of the NetEventRelayServer project and the third
prompt to the bin\Debug directory of the NetOnewayRelayServer project. You
do this because the client application also supports the
netOnewayRelayBinding methods from the previous example.

3. Run NetEventRelayServer.exe in two prompts and NetOnewayRelayServer.exe
in the third prompt.

4. Enter the solution name and solution password to start the service when
prompted.

5. Open Windows Explorer, and navigate to the bin\Debug directory of the
NetEventRelayGateway project.

 Note Make sure the configuration for the server and the client match in terms of address and security.

6. Double-click NetEventRelayGateway.exe to start the client application.

7. Click the Connect button to connect to the relay service. If the connection is
successful, the text box displays success messages to connect to two
endpoints.

8. Check the Start Time check box if it isn’t already checked.

9. If the configurations are correct, then you should see ONLINE messages in the
two command windows of NetEventRelayServer.exe.

Thus you can build an Internet-scale publish/subscribe messaging service using
netEventRelayBinding.

Figure 8-22 shows a running instance of the client application, and Figure 8-23 shows the messages
received on the server command prompts.

CHAPTER 8 APPFABRIC SERVICE BUS

430

Figure 8-22. NetEventRelayGateway application

CHAPTER 8 APPFABRIC SERVICE BUS

431

Figure 8-23. NetEventRelayServer application

NetTcpRelayBinding
netTcpRelayBinding is the recommended and most frequently used AppFabric Service Bus binding. It
uses TCP as the relay transport and is based on the WCF netTcpBinding. It performs better than the
HTTP bindings, because it uses TCP for message delivery and the messages are encoded in binary
format. NetTcpRelayBinding supports WS-ReliableMessaging, which is turned off by default. You can
turn it on by setting reliableSessionEnabled to true. In WCF, you typically use netTcpBinding to create
service endpoints reachable within the intranet, but with netTcpRelayBinding you can create service
endpoints reachable over the Internet. This makes communication over the Internet faster than with
HTTP bindings. Similar to netOnewayRelayBinding, netTcpRelayBinding establishes an SSL-protected
control channel using outbound TCP port 828 and a non-SSL data channel using outbound TCP port
818.

CHAPTER 8 APPFABRIC SERVICE BUS

432

 Note netTcpRelayBinding is the only AppFabric Service Bus binding that supports WCF-style duplex callbacks
through the relay service.

netTcpRelayBinding supports three different connection modes, as listed in Table 8-6 and defined
in the AppFabric Service Bus API as the Microsoft.ServiceBus.TcpRelayConnectionMode enumeration.

Table 8-6. TransportClientCredentialType Values

Connection
Mode

Description

Relayed
(default)

In this mode, all communications between the service and the client are relayed via the
AppFabric Service Bus relay service. If the message security (or security mode) is set to
either Transport or TransportWithMessageCredential, the channel is SSL protected.
The relay service acts a socket-forwarder proxy between the client and the service.

Direct Direct mode is supported only through Hybrid mode. In Direct Mode, first the service
and the client connects to the relay service. The relay service then upgrades the
connection to direct communication between the client and the service, enabling
direct communication between them. Direct mode is capable of communicating when
the client and the service both are behind firewall or NAT routers. In Direct connection
mode, the service requires the opening of an additional TCP outbound port 819.
Communication is aborted if the client and the service aren’t able to establish a direct
connection. Direct mode doesn’t support Transport security mode; you have to use the
Message security mode.

Hybrid Hybrid is the most commonly used mode. First, the client and the service establish an
initial connection to the relay service. The client and the service then negotiate a direct
connection to each to each other. The relay service monitors the negotiation and
upgrades the communication to Direct mode if possible, or continues with the relayed
mode. Hybrid mode doesn’t support Transport security mode; you have to use
Message security mode.

Figure 8-24 illustrates Relayed mode communications between a client and a service.

CHAPTER 8 APPFABRIC SERVICE BUS

433

Figure 8-24. Relayed mode

Figure 8-24 shows the following:

• The client and the service first communicate through the relay service.

• Communications begin in Relayed mode.

• Direct connection negotiation between client and service succeeds.

• The relay service keeps on probing for mutual port of communication between the
client and the service.

• The probing succeeds, and the relay service provides the communication
information to the client and the service to communicate with each other directly.

• The connection is upgraded to a Direct connection without any data loss.

• Future communications continue in Direct mode.

• If the probing of mutual ports fails or times out, the communication continues in
Relayed mode.

In the ProAzure Energy Service example, the control gateway itself is a server that accepts
commands from the head-end server. An end user can schedule a command to be executed on the
gateway at a particular time or execute a real-time command on the control gateway, such as turning off
all the lights in the building. The control gateway accepts the command and in turn sends the command
to the lighting system on the control network. The control gateway also supports real-time retrieval of
device values. For example, an end user can retrieve the current state of the HVAC set point or the
lighting system in real time.

CHAPTER 8 APPFABRIC SERVICE BUS

434

AppFabric Contract
The control gateway supports get and set operations on the back-end devices it supports. In the
ProAzure Energy service example, it supports get and set operations on the lighting and HVAC systems
but only get operation on the energy meter. Listing 8-20 shows the service contract for the control
gateway service.

Listing 8-20. Control Gateway Service Contract

[ServiceContract(Name = "IEnergyServiceGatewayOperations",
Namespace = "http://proazure/ServiceBus/energyservice/gateway")]
 public interface IEnergyServiceGatewayOperations
 {
 [OperationContract]
 bool UpdateSoftware(string softwareUrl);

 [OperationContract]
 bool SetLightingValue(string gatewayId, string deviceId,
short switchValue);

 [OperationContract]
 short GetLightingValue(string gatewayId, string deviceId);

 [OperationContract]
 bool SetHVACMode(string gatewayId, string deviceId,
int hvMode);
 [OperationContract]
 int GetHVACMode(string gatewayId, string deviceId);

 [OperationContract]
 bool SetHVACSetpoint(string gatewayId, string deviceId,
int spValue);
 [OperationContract]
 int GetHVACSetpoint(string gatewayId, string deviceId);

 [OperationContract]
 int GetCurrentTemp(string gatewayId, string deviceId);

 [OperationContract]
 double GetKWhValue(string gatewayId, string deviceId);

 }

 public interface IEnergyServiceGatewayOperationsChannel :
IEnergyServiceGatewayOperations, IClientChannel

CHAPTER 8 APPFABRIC SERVICE BUS

435

{
 }

As shown in Listing 8-20, the IEnergyServiceGatewayOperations support nine methods that the
head-end server can call. Most of the operations are get/set methods, so the method signatures are self
explanatory.

Service Implementation
The control gateway itself is the server, so the interface IEnergyServiceGatewayOperations is
implemented in the control gateway application. The implementation of the
IEnergyServiceGatewayOperations interface is shown in Listing 8-21.

Listing 8-21. IEnergyServiceGatewayOperations Iimplementation

public bool UpdateSoftware(string softwareUrl)
 {
 AddLog("UpdateSoftware:" + softwareUrl);
 return true;
 }

 public bool SetLightingValue(string gatewayId, string deviceId,
short switchValue)
 {
 ChangeLightBulbState(false, switchValue);
 AddLog("SetLightingValue:" + switchValue);
 return true;
 }

 public bool SetHVACMode(string gatewayId, string deviceId, int hvMode)
 {
 hvacMode = hvMode;
 trackBar1.Value = hvacMode;
 ChangeHVACMode();
 AddLog("SetHVACMode:" + hvMode);
 return true;
 }

 public bool SetHVACSetpoint(string gatewayId, string deviceId, int spValue)
 {
 ChangeSetPointValue();
 AddLog("SetHVACSetpoint:" + spValue);

 return true;
 }

 public short GetLightingValue(string gatewayId, string deviceId)
 {
 AddLog("GetLightingValue:" + lightBulbState);

CHAPTER 8 APPFABRIC SERVICE BUS

436

 return lightBulbState;
 }

 public int GetHVACMode(string gatewayId, string deviceId)
 {
 AddLog("GetHVACMode:" + hvacMode);

 return hvacMode;
 }

 public int GetHVACSetpoint(string gatewayId, string deviceId)
 {
 AddLog("GetHVACSetpoint:" + txtSetPoint.Text);
 return int.Parse(txtSetPoint.Text);
 }

 public int GetCurrentTemp(string gatewayId, string deviceId)
 {
 AddLog("GetCurrentTemp:" + txtCurrentTemperature.Text);
 return int.Parse(txtCurrentTemperature.Text);
 }

 public double GetKWhValue(string gatewayId, string deviceId)
 {
 AddLog("GetKWhValue:" + kwh);

 return kwh;
 }

All the method invocations are logged to the Messages text box on the control gateway application.

Service Binding
The service binding for netTcpRelayBinding is shown in Listing 8-22.

Listing 8-22. netTcpRelayBinding

<netTcpRelayBinding>
<binding name="default" connectionMode="Hybrid">
<security mode="None" />
</binding>
</netTcpRelayBinding>

Note that the connectionMode specified is Hybrid. You can specify the value as Hybrid or Relayed.

CHAPTER 8 APPFABRIC SERVICE BUS

437

Relay Security
In the previous examples, you saw how to use different types of relay authentication. This example uses
the ACS shared secret credentials to authenticate both the client and the service. Listing 8-23 shows the
code from the NetEventRelayGateway project for setting the issuer and password for relay
authentication.

Listing 8-23. Shared Secret Relay Authentication

TransportClientEndpointBehavior behavior = new TransportClientEndpointBehavior();
behavior.CredentialType = TransportClientCredentialType.SharedSecret;
behavior.Credentials.SharedSecret.IssuerName = issuerName;
behavior.Credentials.SharedSecret.IssuerSecret = issuerKey;
ServiceHost Host = new ServiceHost(serviceType);
Host.Description.Endpoints[0].Behaviors.Add(behavior);

 Note The NetEventRelayGateway project implements the service contract because the control gateway itself is
the server now and the head-end server is the client. Because the server instance implements the interface, you
have to set the instance context mode to single, as shown here:

[ServiceBehavior(Name = "EnergyServiceGatewayOperations",

 Namespace = "http://proazure/ServiceBus/energyservice/gateway",

 InstanceContextMode=InstanceContextMode.Single)]

 public partial class EnergyManagementDevice : Form, IEnergyServiceGatewayOperations

Message Security
The netTcpRelayBinding uses Transport as its default message security if you don’t explicitly configure it
in App.config. This example doesn’t use message security, to keep the example simple. Listing 8-24
shows the configuration of netTcpRelayBinding in the App.config file of the server in the
NetEventRelayGateway project.

Listing 8-24. Message Security in netTcpRelayBinding

<netTcpRelayBinding>
<binding name="default" connectionMode="Hybrid">
<security mode="None" />
</binding>
</netTcpRelayBinding>

CHAPTER 8 APPFABRIC SERVICE BUS

438

Service Endpoints
The service endpoint configuration is shown in Listing 8-25.

Listing 8-25. Service Endpoint Configuration

<services>
<service name="NetEventRelayGateway.EnergyManagementDevice">
<endpoint name="RelayTcpEndpoint"
contract="EnergyServiceContract.IEnergyServiceGatewayOperations"
binding="netTcpRelayBinding"
bindingConfiguration="default"
address="" />
</service>

Note that in the endpoint configuration, the address field is empty: the address is generated at
runtime so you can run multiple instances of the same application representing difference control
gateways. Each control gateway has its own service endpoint, which the head-end server accesses to call
methods on each control device.

Service Hosting
The service is hosted in the control gateway, so NetEventRelayGateway contains the code to host the
service. Listing 8-26 shows the code that hosts the service within the NetEventRelayGateway application.

Listing 8-26. Service Hosting

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", solutionName, servicePath);
ServiceUri = address.ToString();
TransportClientEndpointBehavior behavior = new TransportClientEndpointBehavior();
behavior.CredentialType = TransportClientCredentialType.SharedSecret;
behavior.Credentials.SharedSecret.IssuerName = issuerName;
behavior.Credentials.SharedSecret.IssuerSecret = issuerKey;Host = new ServiceHost(serviceType,
address);
Host.Description.Endpoints[0].Behaviors.Add(behavior);
Host.Open();

In Listing 8-26, the URI for the service is generated dynamically by calling the
ServiceBusEnvironment.CreateServiceUri() method. The servicePath contains the gatewayID, which
makes the URI unique within the network of all the control gateways. The head-end server uses this URI
to call methods on the control gateway.

Client Design
The head-end server acts as a client for all the control gateways. The client in this example is a simple
console application that accepts a gateway ID, then creates the endpoint URI programmatically, and
finally invokes multiple methods to turn off all the devices attached to the control gateway. The source

CHAPTER 8 APPFABRIC SERVICE BUS

439

code for the client application is in the NetTcpRelayBinding project. Listing 8-27 shows the code for the
method (without exception handling) that turns off all the devices attached to the control gateway.

Listing 8-27. TurnEverythingOff Source Code

static void TurnEverythingOff(string solutionName, string password,
 string gatewayId)
 {
 ChannelFactory<IEnergyServiceGatewayOperationsChannel>
netTcpRelayChannelFactory = null;
 IEnergyServiceGatewayOperationsChannel
netTcpRelayChannel = null;

 Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb",
solutionName, ServiceBusHelper.GetGatewayServicePath(gatewayId));
 netTcpRelayChannelFactory = new
ChannelFactory<IEnergyServiceGatewayOperationsChannel>
("RelayTcpEndpoint", new EndpointAddress(serviceUri));

 netTcpRelayChannel = netTcpRelayChannelFactory.CreateChannel();
 netTcpRelayChannel.Open();
 netTcpRelayChannel.SetLightingValue(gatewayId, "Lighting-1", 0);

 netTcpRelayChannel.SetHVACMode(gatewayId, "HVAC-1", 0);
 netTcpRelayChannel.SetHVACSetpoint(gatewayId, "HVAC-1", 78);

 netTcpRelayChannel.Close();
 netTcpRelayChannelFactory.Close();
 }

In Listing 8-27, a channel is created with the endpoint URI based on the gateway identifier. Then,
the SetLightingValue(), SetHVACMode(), and SetHVACSetpoint() methods are called on the control
gateway to turn off the devices attached to the control gateway. Because the URI is generated
dynamically from the gateway identified, you can invoke these methods on any gateway that has an
endpoint URI registered with the AppFabric Service Bus. The ACS shared secret is defined in App.config,
and therefore you don’t need to redefine it in the code. Listing 8-28 shows the definition of the shared
secret in App.config of the client project NetTcpRelayBinding.

Listing 8-28. Shared Secret Definition in the Client

<behaviors>
 <endpointBehaviors>
 <behavior name="sharedSecretClientCredentials">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="ISSUER_NAME" issuerSecret="ISSUER_KEY" />
 </clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 </behaviors>

CHAPTER 8 APPFABRIC SERVICE BUS

440

Running the Application
The steps required to run the end-to-end application are as follows:

1. Open Windows Explorer, and navigate to the bin\Debug directory of the
NetEventRelayGateway project.

2. Double-click NetEventRelayGateway.exe two times to start two instances of
the NetEventRelayGateway application.

3. Change the service namespace name, issuer name, and issuer key to your own
values.

4. In the GatewayId field of the first application, enter MyOffice. Leave the
default MyHome in the second application.

5. Click the Connect button on both the instances of NetEventRelayGateway to
connect to the relay service. If the connections are successful, the text boxes
display success messages with the URIs of the service endpoints. Note how the
URIs are created based on the gateway identifier to make them unique.

6. Turn the light switch on, and turn the HVAC mode to HEAT or COOL.

7. Open a command prompt window with Administrator privileges, and navigate
to the bin\Debug directory of the NetTcpRelayBinding project.

8. Start the NetTcpRelayBinding.exe console application.

9. Enter the service namespace name when prompted.

10. When prompted, enter the gateway ID MyHome.

11. Observe in the NetEventRelayGateway application that the light switch and the
HVAC mode are turned off.

12. Perform the same operation on the gateway ID MyOffice to see similar results

Thus, you can dynamically register thousands of control gateway endpoints with the AppFabric
Service Bus and execute methods on these control gateways at Internet scale

Figure 8-25 illustrates the two running instances of NetEventRelayGateway.exe, and Figure 8-26
illustrates the NetTcpRelayBinding.exe command prompt.

CHAPTER 8 APPFABRIC SERVICE BUS

441

Figure 8-25. NetEventRelayGateway application

CHAPTER 8 APPFABRIC SERVICE BUS

442

Figure 8-26. NetTcpRelayBinding application

You can catch the connection upgrade event when a Relayed connection is upgraded to a Direct
connection by implementing the ConnectionStateChanged event on the IHybridConnectionStatus
interface, as shown in Listing 8-29.

Listing 8-29. Connection Upgrade Event

IHybridConnectionStatus hybridConnectionStatus =
channel.GetProperty<IHybridConnectionStatus>();
 if (hybridConnectionStatus != null)
 {
 hybridConnectionStatus.ConnectionStateChanged += (o, e) =>
 {
 //Do work
 };
 }

HTTP Relay Bindings
As discussed in Table 8-3, the AppFabric Service Bus supports the following HTTP relay bindings:

• BasicHttpRelayBinding

• WebHttpRelayBinding

• WSHttpRelayBinding

• WS2007HttpRelayBinding

This section covers only WS2007HttpRelayBinding and WebHttpRelayBinding because the concepts
for using all these bindings are similar. When you use HTTP bindings, the AppFabric Service Bus uses
HTTP as the communication protocol instead of TCP as you saw earlier in the netOnewayRelayBinding

CHAPTER 8 APPFABRIC SERVICE BUS

443

and netTcpRelayBinding sections. HTTP bindings exchange plain XML, SOAP, WS-*, or raw text and
binary messages, so they’re preferred in non-WCF client environments.

At a higher level, all the HTTP bindings follow the same sequence of steps to communicate via the
relay service, as shown in Figure 8-27.

Figure 8-27. HTTP bindings

As shown in Figure 8-27, in an HTTP binding scenario, the service authenticates and registers its
endpoint with the relay service. Then, a client authenticates and connects to the relay service to call a
method on the service. The relay service routes the HTTP (REST), SOAP 1.1, and SOAP 1.2 calls to the
service. Your business logic in the code doesn’t change depending on the binding you use. As you saw
earlier, you can configure bindings in the configuration file.

WS2007HttpRelayBinding
WS2007HttpRelayBinding supports SOAP 1.2 messaging with the latest OASIS standards for reliable
message exchange and security. It’s used to create SOAP over HTTP interfaces for your service. To
demonstrate WS2007HttpRelayBinding, you use the same control gateway applications as the service,
and the head-end server as the client application as you saw for netTcpRelayBinding. By modifying a few
lines of code, you can easily convert netTcpRelayBinding to ws2007HttpRelayBinding.

The binding and service configuration for WS2007HttpRelayBinding is shown in Listing 8-30.

CHAPTER 8 APPFABRIC SERVICE BUS

444

Listing 8-30. WS2007HttpRelay Configuration

<!—Define the binding -->
<ws2007HttpRelayBinding>
<binding name="default">
<security mode="None" relayClientAuthenticationType="None" />
</binding>
</ws2007HttpRelayBinding>

<!—Define end point -->
<endpoint name="RelayTcpEndpoint"
 contract="EnergyServiceContract.IEnergyServiceGatewayOperations"
 binding="ws2007HttpRelayBinding"
 bindingConfiguration="default"
 address="" />

The only difference between netTcpRelayConfiguration and ws2007HttpRelayConfiguration is the
definition of the binding and replacing netTcpRelayBinding with ws2007HttpRelayBinding. Similarly, in
the client application, you can make replacements as shown in Listing 8-31.

Listing 8-31. WS2007HttpRelayBinding Configuration

<!—Define the binding -->
<bindings>
 <ws2007HttpRelayBinding>
 <binding name="default">
 <security mode="None"/>
 </binding>
 </ws2007HttpRelayBinding>
</bindings>
<!—Define end point -->
<client>
<endpoint
name="RelayTcpEndpoint"
contract="EnergyServiceContract.IEnergyServiceGatewayOperations"
binding="ws2007HttpRelayBinding "
bindingConfiguration="default"
behaviorConfiguration="sharedSecretClientCredentials"
address="http://AddressToBeReplacedInCode/" />
</client>

The WS2007HttpRelayBinding client application authenticates itself with the AppFabric Service Bus
using the ACS shared-secret authentication method. In the code, when you generate the URI in both
client and the server, you must replace the “sb” protocol from netTcpRelayBinding to “http” for
ws2007HttpRelayBinding:

Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("http", serviceNamespace,
ServiceBusHelper.GetGatewayServicePath(gatewayId));

CHAPTER 8 APPFABRIC SERVICE BUS

445

The steps required to run the end-to-end application are the same as running the
netTcpRelayBinding example in the previous section.

Figure 8-28 shows the client and service applications using WS2007HttpRelayBinding.

Figure 8-28. WS2007HttpRelayBinding client and service applications

CHAPTER 8 APPFABRIC SERVICE BUS

446

While running the application, note the delay when using the WS2007HttpRelayBinding as
compared to the netTcpRelayBinding. WS2007HttpRelayBinding polls the relay service for the message.

WebHttpRelayBinding
In the past few years, REST-style programming has becomes popular because it uses existing HTTP
constructs to communicate messages and remote method invocations. As compared to SOAP, the REST
interface is easier to use in manual and scripting interfaces. In the Windows Azure Storage chapters, you
learned to use the REST interface exposed by the storage service to interact with storage objects like
blobs, queues, and tables. WebHttpRelayBinding is used to create HTTP, XML, and REST-style interfaces
for your service.

To demonstrate WebHttpRelayBinding, you create a simple service contract that represents a REST-
style interface over the control gateway service. You can find the example for WebHttpRelayBinding in
the project RESTGatewayServer in Ch8Solution.

Listing 8-32 shows the code representing two contracts: one for the lighting service
(IRESTLightswitch) and the other (IRESTEnergyMeter) for the energy meter service.

Listing 8-32. Lighting Service and Energy Meter Contracts

namespace EnergyServiceContract
{

 [ServiceContract(Name = "IRESTLightswitch.",
Namespace = "http://proazure/ServiceBus/energyservice/gateway")]
 public interface IRESTLightswitch
 {
 [OperationContract(Action = "GET", ReplyAction = "GETRESPONSE")]
 Message GetLightswitchState();
 }
 public interface IRESTLightswitchChannel : IRESTLightswitch, IClientChannel
 {
 }

 [ServiceContract(Name = "IRESTEnergyMeter.",
Namespace = "http://proazure/ServiceBus/energyservice/gateway")]
 public interface IRESTEnergyMeter
 {
 [OperationContract(Action = "GET", ReplyAction = "GETRESPONSE")]
 Message GetKWhValue();
 }
}

You can combine both interfaces into one, but this example ties the simple HTTP GET operation to
each method. The OperationContract.Action attribute property represents the HTTP action used to call
this operation. This name must be unique within an interface. The
System.ServiceModel.Channels.Message return type is a generic type of object to communicate
information between the client and the service.

Listing 8-33 contains the implementation of both the service contracts.

CHAPTER 8 APPFABRIC SERVICE BUS

447

Listing 8-33. Service Implementation

public class GatewayService : IRESTLightswitch, IRESTEnergyMeter
 {
 const string ON_FILE = "on.jpg";
 const string OFF_FILE = "off.jpg";
 Image on, off;
 static int LIGHT_BULB_STATE = 0;
 public GatewayService()
 {
 on = Image.FromFile(ON_FILE);
 off = Image.FromFile(OFF_FILE);
 }
 public Message GetLightswitchState()
 {
 Message m = Message.CreateMessage
(OperationContext.Current.IncomingMessageVersion, "GETRESPONSE", "ON");
 return m;
 }
 System.ServiceModel.Channels.Message IRESTLightswitch.GetLightswitchState()
 {
 Message response = StreamMessageHelper.CreateMessage
(OperationContext.Current.IncomingMessageVersion,
"GETRESPONSE", this.WriteImageToStream);
 HttpResponseMessageProperty responseProperty =
new HttpResponseMessageProperty();
 responseProperty.Headers.Add("Content-Type", "image/jpeg");
 response.Properties.Add(HttpResponseMessageProperty.Name,
responseProperty);
 return response;
 }
 public void WriteImageToStream(System.IO.Stream stream)
 {
 Image i = (LIGHT_BULB_STATE == 0) ? off : on;
 i.Save(stream, ImageFormat.Jpeg);
 if (LIGHT_BULB_STATE == 0)
 {
 LIGHT_BULB_STATE = 1;
 }
 else
 {
 LIGHT_BULB_STATE = 0;
 }
 }
 System.ServiceModel.Channels.Message IRESTEnergyMeter.GetKWhValue()
 {
 Random r = new Random();
 double kwhValue = double.Parse
(String.Format("{0:0.00}", (r.NextDouble() * 100)));
 System.ServiceModel.Channels.Message m =Message.CreateMessage
(OperationContext.Current.IncomingMessageVersion, "GETRESPONSE",

CHAPTER 8 APPFABRIC SERVICE BUS

448

String.Format("{0:00}", kwhValue));
 return m;
 }
 }

In Listing 8-33, the GatewayService class implements the IRESTLightswitch and IRESTEnergyMeter
interfaces. The implementation of the methods is very simple because they’re only simulating the call
and not making any real calls to the devices. The GetLightswitchState() method returns an image
representing the state of the lighting service. The GetKWhValue() method returns a text value
representing a randomly generated kWh value. Note the use of the
System.ServiceModel.Channels.Message object to transfer an image as well as a text value.

Because you can access the REST interface manually from the browser, you don’t implement a
client for the service. Listing 8-34 shows the configuration for the service.

Listing 8-34. Service Configuration

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <bindings>
 <!-- Application Binding -->
 <webHttpRelayBinding>
 <binding name="default" >

 <security
relayClientAuthenticationType="None" />

 </binding>
 </webHttpRelayBinding>
 </bindings>

 <services>
 <!-- Application Service -->
 <service name="RESTGatewayServer.GatewayService"
 behaviorConfiguration="default">
 <endpoint name="LighswitchEndpoint"
 contract="EnergyServiceContract.IRESTLightswitch"
 binding="webHttpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="cardSpaceClientCredentials"
 address=
"https://{your service namespace}.servicebus.windows.net/Gateway/MyHome/Lightswitch" />
 <endpoint name="EnergyMeterEndpoint"
 contract="EnergyServiceContract.IRESTEnergyMeter"
 binding="webHttpRelayBinding"
 bindingConfiguration="default"
 behaviorConfiguration="cardSpaceClientCredentials"
 address=
"https://{your service namespace}.servicebus.windows.net/Gateway/MyHome/Meter" />
 </service>
 </services>
<behaviors>

CHAPTER 8 APPFABRIC SERVICE BUS

449

 <endpointBehaviors>
 <behavior name="sharedSecretClientCredentials">
 <transportClientEndpointBehavior credentialType="SharedSecret">
 <clientCredentials>
 <sharedSecret issuerName="owner"
issuerSecret="wJBJaobUmarWn6kqv7QpaaRh3ttNVr3w1OjiotVEOL4=" />
 </clientCredentials>
 </transportClientEndpointBehavior>
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior name="default">
 <serviceDebug httpHelpPageEnabled="false" httpsHelpPageEnabled="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors> </system.serviceModel>
</configuration>

In Listing 8-34, the service is configured to use a shared secret to authenticate with the AppFabric
Service Bus. The relayAuthenticationType=None value disables the user authentication so that users can
access the service without authenticating themselves. You can start the service, and users should be able
to access it through the browser.

The steps to run the RESTGatewayServer application are as follows:

1. Configure the service with your service namespace and shared secret
information.

2. Open a command prompt as Administrator, and navigate to the bin\Debug
folder of the RESTGatewayServer project.

3. Run RESTGatewayServer.exe.

4. When the service starts, it displays URIs for the Lightswitch and EnergyMeter
endpoints. Write down the URI access points of Lightswitch and EnergyMeter,
as shown in Figure 8-29.

Figure 8-29. Access URLs

CHAPTER 8 APPFABRIC SERVICE BUS

450

5. Open a browser, and navigate to each endpoint. The method is automatically
invoked, and the result is displayed in the browser as shown in Figures 8-30
and 8-31. Figure 8-30 illustrates the light switch state, and Figure 8-31
illustrates the energy meter value.

Figure 8-30. Light switch state

Figure 8-31. Energy meter value

CHAPTER 8 APPFABRIC SERVICE BUS

451

6. You can also go to the AtomPub feed of the service to invoke methods.
Navigate to the solution feed page http://[solution
name].servicebus.windows.net/, as shown in Figure 8-32.

Figure 8-32. Solution feed

7. Click the gateway to go to the list of registered gateways feeds, as shown in
Figure 8-33.

Figure 8-33. Registered gateways

8. Click the gateway (myhome) to go to the gateway operations feed page, as
shown in Figure 8-34.

CHAPTER 8 APPFABRIC SERVICE BUS

452

Figure 8-34. Gateway operations

9. Click any of the listed operations to invoke the remote method and see the
response in the browser.

Message Buffer
A message buffer is a temporary cache you can create in the AppFabric Service Bus. I call it a temporary
cache because the data in the cache isn’t persistent and can’t survive server reboots. Therefore, I
recommend that you store only temporary data in message buffers and assume data loss while
programming your applications.

 Note At the time of writing, AppFabric Service Bus version 2 had just been released. Therefore, we will cover
both Message Buffers and the version 2 replacement, Queues and Topics. Bear in mind that Message Buffers are
intended to be deprecated in future releases, and are only supported for backward compatibility going forward.

A message buffer exposes operations through a REST API that you can use to create message buffers
and execute CRUD operations on messages. The message buffer REST API integrates with ACS, and
therefore you can share the authentication you use for other Service Bus application with the message
buffer. Figure 8-35 illustrates the high-level architecture of the message buffer.

CHAPTER 8 APPFABRIC SERVICE BUS

453

Figure 8-35. Message buffer architecture

As illustrated in Figure 8-35, the message buffer has three main components: a message buffer, a
message buffer policy, and the message. The message buffer represents the actual buffer you use to store
messages. The message buffer policy represents certain attributes of the message buffer such as the
buffer lifetime, maximum message count, and message overflow policy. The message represents the
message you send and receive from a message buffer.

The typical developer workflow in a message buffer application is as follows:

1. Create a message buffer policy.

2. Create a message buffer.

3. Send messages to the message buffer.

4. Receive or peek messages from the message buffer.

5. Delete messages.

6. Delete the message buffer.

The Service Bus SDK also provides a MessageBufferClient class in the Microsoft.ServiceBus.dll
assembly for interacting with the message buffer. Figure 8-36 shows the class diagram of the
MessageBufferClient and MessageBufferPolicy classes.

CHAPTER 8 APPFABRIC SERVICE BUS

454

Figure 8-36. MessageBufferClient and MessageBufferPolicy class diagrams

As shown in Figure 8-35, the MessageBufferClient class includes all the basic operations like
CreateMessageBuffer(), DeleteMessageBuffer(), Retrieve(), Send(), and PeekLock() for interacting with
the message buffer. The MessageBufferClient class abstracts the REST interface. You can call the
MessageBufferClient methods from your code directly; the MessageBufferClient class translates the
method invocations into REST API calls to the message buffer.

 Note To learn more about the message buffer REST API methods, visit the AppFabric SDK at
http://msdn.microsoft.com/en-us/library/ee794877.aspx.

Programming Message Buffer Applications
Because of the REST API, a message buffer is available to any programming language, cross platform.
You can write message buffer applications in any programming language that can make remote HTTP
calls. This section goes over the typical developer operations on the message buffer using the
MessageBufferClient class in the C# language.

Creating a Message Buffer Policy
A message buffer policy represents the runtime attributes of a message buffer. The policy is applied to a
message buffer during its creation time. A message buffer policy is represented by the
MessageBufferPolicy class, which is passed to the MessageBufferClient.CreateMessageBuffer() method.
Listing 8-35 shows the code to create an instance of the MessageBufferPolicy class.

http://msdn.microsoft.com/en-us/library/ee794877.aspx

CHAPTER 8 APPFABRIC SERVICE BUS

455

Listing 8-35. Initialize MessageBufferPolicy

private static MessageBufferPolicy GetMessagBufferPolicy(double bufferExpirationTime,
int maxMessageCount)
 {
 MessageBufferPolicy policy = new MessageBufferPolicy
 {
 ExpiresAfter = TimeSpan.FromMinutes(bufferExpirationTime),
 MaxMessageCount = maxMessageCount,
 OverflowPolicy = OverflowPolicy.RejectIncomingMessage,
 Authorization = AuthorizationPolicy.NotRequired,
 Discoverability = DiscoverabilityPolicy.Public,
 TransportProtection = TransportProtectionPolicy.AllPaths

 };
 return policy;
 }

In Listing 8-35, ExpiresAfter sets the lifetime of the message buffer. The lifetime of the message
buffer is automatically renewed when you send a message to the buffer. MaxMessageCount represents
the message capacity of the message buffer. OverflowPolicy represents the policy to be applied if there is
a message overflow beyond the capacity of the message buffer. As of the September 2011 release of the
Service Bus API, the only overflow policy available was OverflowPolicy.RejectIncomingMessage.
AuthorizationPolicy represents the authorization policy required to access the message buffer. The
default policy is AuthorizationPolicy.Required, which means that authorization is required to send as
well as receiving messages. Discoverability determines whether the message buffer is accessible from the
AppFabric Atom Feed. If Discoverability isn’t set to Public, then applications must know the explicit URI
of the message buffer. The default Discoverability value is Managers, which means only the application
that created the message buffer has access to it. TransportProtection represents the end-to-end security
of the message that traverses from sender to the receiver.

Creating and Deleting a Message Buffer
When you’ve created the message buffer policy, you can create the message buffer by calling the
MessageBufferClient.CreateMessageBuffer() method, as shown in Listing 8-36.

Listing 8-36. Create Message Buffer

private MessageBufferClient CreateMessageBuffer(
string serviceNamespace, string messageBufferName, TransportClientEndpointBehavior behavior,
MessageBufferPolicy policy)
{
MessageVersion messageVersion = MessageVersion.Default;
Uri messageBufferUri = ServiceBusEnvironment.CreateServiceUri
("https", serviceNamespace, messageBufferName);
return MessageBufferClient.CreateMessageBuffer(behavior, messageBufferUri, policy,
messageVersion);
}

CHAPTER 8 APPFABRIC SERVICE BUS

456

Before you create a message buffer, you have to create an URI for the message buffer endpoint. You
can create only one message buffer per endpoint, and when the endpoint is reserved for the message
buffer, you can’t register any other service on that endpoint. After the message buffer is created, you can
get a reference to a message buffer (MessageBufferClient object) by calling the method

MessageBufferClient client =
MessageBufferClient.GetMessageBuffer(TransportClientEndpointBehavior behavior, Uri
messageBufferUri)

You can delete a message buffer by calling the method MessageBufferClient. DeleteMessageBuffer().

Sending Messages to a Message Buffer
To send messages to the message buffer, you can call the Send() method on the message buffer Client
object that was returned either when the message buffer was created or when you called the
GetMessageBuffer() method. Listing 8-37 shows the method call to send messages to a message buffer.

Listing 8-37. Sending Messages to a Message Buffer

private void SendMessage(string message, MessageBufferClient client)
{
 System.ServiceModel.Channels.Message msg =
System.ServiceModel.Channels.Message.CreateMessage(
 MessageVersion.Default,
 string.Empty,
 message);
 client.Send(msg, TimeSpan.FromSeconds(30));
 msg.Close();
}

The Send() method accepts a System.ServiceModel.Channels.Message object and optionally accepts
a method execution timeout value. This is the time the method call should wait before timing out.

Retrieving Message from a Message Buffer
The message buffer client API provides two main methods for retrieving a message from the message
buffer: PeekLock() and Retrieve(). The PeekLock() method is used to peek at the first message in the
message buffer by locking the message before the buffer is instructed to release or delete the message.
The PeekLock() method also provides overloads for specifying the method timeout to wait on message
and the duration for which the message remains locked. You can lock a message for a duration between
10 seconds and 5 minutes, the default being 2 minutes. You can call the DeleteLockedMessage() or
ReleaseLock() method to release a lock on the message.

The Retrieve() method retrieves the message from the message buffer and deletes the message from
the message buffer. This kind of read is also called a destructive read and is the recommended method
for high-performance applications to avoid round trips to the server. Listing 8-38 shows the code for
retrieving messages from the message buffer.

CHAPTER 8 APPFABRIC SERVICE BUS

457

Listing 8-38. Retrieving Messages from a Message Buffer

private string RetrieveMessage(MessageBufferClient client)
{
 System.ServiceModel.Channels.Message retrievedMessage;

 retrievedMessage = client.Retrieve();
 retrievedMessage.Close();

 return retrievedMessage.GetBody<string>();

}

private string PeekMessage(MessageBufferClient client)
{

 System.ServiceModel.Channels.Message lockedMessage = client.PeekLock();
 client.DeleteLockedMessage(lockedMessage);
 lockedMessage.Close();

 return lockedMessage.GetBody<string>();
}

Message Buffer Sample Application
I’ve created a message buffer sample application in the source code solution for this chapter. The
MessageBuffer project in the chapter solution is a Windows application that creates a message buffer,
sends messages to the message buffer, retrieves messages from the message buffer, and finally deletes
the message buffer. Figure 8-37 shows the application in action.

CHAPTER 8 APPFABRIC SERVICE BUS

458

Figure 8-37. Message buffer sample application

In the sample application, you can enter your own issuer credentials and service namespace and
start interacting with the message buffer. From the application, you can create a message buffer, send
messages, retrieve messages, peek and retrieve messages, and finally delete the message buffer. In this
case, the message sender and the message receiver are the same application; but you can separate the
message sender and message receiver functionality into different applications because the message
buffer API is stateless and so the same instance of the message buffer is accessible to all authenticated
applications.

AppFabric Messaging: Queues and Topics
While the AppFabric Service Bus provided a viable ESB solution, there were some limitations. Most
notably, the Message Buffer is only a temporary cache, and cannot survive server reboots. Some
application architects worked around this by using Windows Azure Storage Queues. However, this did
not permit the extra functionality provided by the Service Bus, such as event notification patterns,
multicasting, and support for protocols other than HTTP/S.

Version 2 of the Service Bus provides the best of both worlds. The focus of this release is to enable
rich messaging scenarios, such as publish/subscribe, temporal decoupling, and load balancing scenarios
at Internet scale.6 AppFabric Service Bus Queues provides a persistent store for messages, and Topics

6 MSDN documentation: http://msdn.microsoft.com/en-us/library/hh201962.aspx

http://msdn.microsoft.com/en-us/library/hh201962.aspx

CHAPTER 8 APPFABRIC SERVICE BUS

459

enable the ability to distribute messages to multiple consumers using simple rules and a
publish/subscribe pattern.

 Note Another great source of information on this topic can be found at
http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-

topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx. This blog post covers the
Service Bus Explorer Tool, which allows you to administer your messaging entities, but also has links to many
other background subjects as well.

AppFabric Service Bus Queues
In building a queuing mechanism, the team set out to incorporate the same features as Microsoft
Messaging Queue (MSMQ). To that end, the new features were built by the same team that owns the
MSMQ technology. However, in this case they were provided with an Internet-scale technology
foundation, as well as the naming and discovery services provided by Service Bus. The result is a cloud
cloud-based, message-oriented-middleware technologies to Service Bus that provide reliable message
queuing and durable publish/subscribe messaging both over a simple and broadly interoperable REST-
style HTTPS protocol with long-polling support and a throughput-optimized, connection-oriented,
duplex TCP protocol.7 Figure 8-38 shows the AppFabric Service Bus Queues architecture.

Some of the functionality provided by AppFabric Queues includes:

• Peek-Lock delivery pattern for reliable delivery

• NET API and REST API

• Detection of duplicate inbound messages

• Dead-letter queue for messages that expire or fail

• Scheduled delivery of messages

7 Clemens Vasters’ blog:
http://vasters.com/clemensv/2011/05/16/Introducing+The+Windows+Azure+AppFabric+Service+Bus+May
+2011+CTP.aspx

http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx
http://vasters.com/clemensv/2011/05/16/Introducing+The+Windows+Azure+AppFabric+Service+Bus+May

CHAPTER 8 APPFABRIC SERVICE BUS

460

Figure 8-38. AppFabric Service Bus Queues

 Note To view all Service Bus Messaging quotas, go to http://msdn.microsoft.com/en-
us/library/ee732538.aspx.

AppFabric Service Bus Queues vs. Azure Storage Queues
Both mechanisms provide a queuing mechanism. So, what are the differences, and when should each be
used? AppFabric Queues provide a richer messaging environment in that it supports protocols other
than HTTP/S, in addition to enabling advanced messaging features:

• WCF binding

• Poison message handling

• Dead-lettering

• Transactions

• Groups

• Sessions

• duplicate detectionMessage Deferral/Scheduled Delivery

• Authentication via ACS

http://msdn.microsoft.com/en-us/library/ee732538.aspx
http://msdn.microsoft.com/en-us/library/ee732538.aspx
http://msdn.microsoft.com/en-us/library/ee732538.aspx

CHAPTER 8 APPFABRIC SERVICE BUS

461

Also, both services support REST over HTTP, but if you require a higher level of performance , you
can use bi-directional TCP with the AppFabric Queue.

Another key difference is that AppFabric Queues support the use of sessions. With this, you gain the
ability to guarantee First-In First-Out ordering, as well as the ability to support Exactly-Once delivery.

If any of the mentioned capabilities are required, you will need to use AppFabric Queues. If you
simply want to use a queue to support cross-service communication, such as inter-role communication
at scale, then AppFabric Queues could be overkill. In this case, Azure Storage Queues should be
sufficient.

AppFabric Service Bus Topics
Topics build on top of the queue mechanism to provide a way to distribute messages to multiple
consumers through the service bus using simple rules via a publish/subscribe pattern. This can enable
messaging scenarios where there is one central distribution point for messages, and multiple loosely
connected receiver applications that can subscribe to the topic, and add rules to their subscription, so
that only certain messages are received from the topic.

A topic allows for concurrent, durable subscriptions. Each subscription contains a set of filtering
rules that use expressions to specify which messages should be delivered from the topic when the
subscription is accessed.

Continuing with our energy example, let’s say that ProAzure Energy decides they need to distribute
their workload such that one system specifically handles data or commands specific to heating and
cooling (HVAC), and another system handles all commands and data sent from lighting devices. This
would normally be very complicated, because it would usually require an update to the devices to enable
them to send to different locations. However, in this case Topics save the day. The servers simply create
different subscriptions in order to pull different messages. The devices—they still send to the same topic
as always, which saves a significant amount of re-work and device updating. See Figure 8-39.

Figure 8-39. AppFabric Service Bus Topics

CHAPTER 8 APPFABRIC SERVICE BUS

462

Subscription Rules
A particular subscription can contain one or more rules that specify what messages the subscription is
expecting to find within the topic. When creating rules for a subscription, you have the options
discussed in the following sections.

SQLFilterExpression
A SQLFilterExpression is an expression created in SQL 92 syntax. If the expression evaluates to true, then
the message is a match, and will be delivered to the receiver through the subscription.

CorrelationFilterExpression
When using a CorrelationFilterExpression, you provide a GUID-based Correlation Id. This CorrelationId
represents the header X_MS_CORRELATION_ID in the message. All messages with a matching
Correlation Id will be delivered to the receiver through the subscription. When attempting to correlate
messages, you would set this header when the message is sent to the Topic.

Programming Service Bus Queues and Topics
There are two avenues for programming solutions that use Queues and Topics: a .NET Client API and a
REST-based API. We will explore both in the following sections.

.NET Client API
The .NET client API for this new functionality is located in two namespaces: Microsoft.ServiceBus and
Microsoft.ServiceBus.Messaging. In your project, you will need to reference the Microsoft.ServiceBus.dll
assembly.

Microsoft.ServiceBus Namespace
There are two key classes in this namespace related to Queues and Topics: NamespaceManager and
NamespaceManagerSettings. These classes are using in conjunction with the classes in the
Microsoft.ServiceBus.Messaging namespace to manage your Queues and Topics.

NamespaceManagerSettings

The NamespaceManagerSettings class provides the settings that drive NamespaceManager behavior. It
contains two properties:

• Operation Timeout: Timeout period for all namespace management operations,
which will be covered in the NamespaceManager section later in this chapter.

• TokenProvider: Allows you to define a TokenProvider the NamespaceManger
object will use for authentication purposes.

CHAPTER 8 APPFABRIC SERVICE BUS

463

NamespaceManager

The NamespaceManager class provides the ability to manage queues, topics, rules and subscriptions.
You can use NamespaceManager to create or delete any of these entities, as well as view the metadata
properties of each entity. In order to create a NamespaceManager object, we will need to provide the
constructor with the URI of the namespace being managed, as well as either a TokenProvider object or a
NamespaceManagerSettings object to define the behavior of the NamespaceManager.

Creating a Queue/Topic

You can create a NamespaceManager object and use it to create the entities you need. An example of
creating a queue and a topic is shown in Listing 8-39. The create method for all entities provides
overloaded parameters that support either passing in a string representing the path of the entity, or a
Description object (QueueDescription, TopicDescription, RuleDescription, SubscriptionDescription),
which contains the metadata needed to define the behavior of the entity. An example of using a
QueueDescription to enable session state, dead-lettering, and duplicate detection is shown in Listing 8-
40.

Listing 8-39. Creating a queue using NamespaceManager

var baseAddress = RoleEnvironment.GetConfigurationSettingValue("namespaceAddress");
var issuerName = RoleEnvironment.GetConfigurationSettingValue("issuerName");
var issuerKey = RoleEnvironment.GetConfigurationSettingValue("issuerKey");

Uri namespaceAddress = ServiceBusEnvironment.CreateServiceUri("sb", baseAddress,
string.Empty);

NameSpaceManager namespaceManager = new NamespaceManager(namespaceAddress,
TokenProvider.CreateSharedSecretTokenProvider(issuerName, issuerKey));
// CreateQueue returns a QueueDescription object, which contains all queue metadata
var queueDescription = namespaceManager.CreateQueue("energyqueue");

// create a topic, returns the TopicDescription
var topicDescription = namespaceManager.CreateTopic(“energytopic”);

// add subscriptions to topic
var hvacSubscription = this.namespaceManager.CreateSubscription(topicDescription.Path,
"HVACSubscription", new SqlFilter("messageType='hvac'"));

var lightingSubscription = this.namespaceManager.CreateSubscription(topicDescription.Path,
"LightingSubscription", new SqlFilter("messageType='lighting'"));

Adding Session State to a Queue

Session state enables many possibilities such as FIFO or Exactly Once delivery. In order to set up a queue
that requires session state, you need to pass in a QueueDescription object from the
Microsoft.ServiceBus.Messaging namespace. An example of this is shown in Listing 8-40.

CHAPTER 8 APPFABRIC SERVICE BUS

464

Listing 8-40. Creating a Queue with Session State

QueueDescription queueDescription = new QueueDescription {
RequiresSession = true,
RequiresDuplicateDetection = true,
EnableDeadLetteringOnMessageExpiration = true };

this.namespaceManager.CreateQueue(queueDescription);

 Note For more information about the all methods and properties available in the NamespaceManager class, go
to http://msdn.microsoft.com/en-us/library/hh293164.aspx

Microsoft.ServiceBus.Messaging Namespace
There are many new classes in the API that facilitate the new messaging functionality:

Table 8-7. Key classes in Messaging API

Queue/Topic Class Description

Both BrokeredMessage The unit of communication, this represents the message that
is brokered by the Messaging fabric.

Both MessagingFactory Factory class used to create messaging clients to send and
receive messages.

Both MessageReceiver Receives and acknowledges messages from the container
(Queue, Subscription).

Both MessageSender Send messages to the AppFabric Service Bus.

Queue QueueClient Used for run-time operations, such as sending and receiving
messages.

Queue QueueDescription Used to set or get Queue metadata.

Topic TopicClient Used for run-time operations, sending and receiving
messages to/from a topic.

Topic TopicDescription Used to set or get Topic metadata.

Topic SubscriptionClient Used for run-time operations related to subscriptions.

Topic SubscriptionDescription Used to set or get Subscription metadata.

Topic RuleDescription Used to set or get Rule metadata.

http://msdn.microsoft.com/en-us/library/hh293164.aspx

CHAPTER 8 APPFABRIC SERVICE BUS

465

Foundational Message Components
No matter whether you are communicating with a Queue or a Topic, you will be sending or receiving a
BrokeredMessage object. This object contains the message itself, plus all the properties that define the
message metadata, such as CorrelationId, time the message expires, send to address, reply to address,
and more.

The MessagingFactory is an object that represents the Service Bus Messaging namespace itself, and
is responsible for creating messaging clients specific to the messaging pattern (Queue, Topic,
Subscription) The messaging client object (QueueClient, TopicClient, SubscriptionClient) creates the
objects that actually send or receive messages. Listing 8-41 shows how to create the components that
will establish the means to implement a messaging infrastructure.

Listing 8-41. Creating Foundational Components Used for Either Sending or Receiving

// Create MessagingFactory for this namespace
MessagingFactory factory = MessagingFactory.Create(
 ServiceBusEnvironment.CreateServiceUri("sb", ServiceNamespace, string.Empty),
 credentials);

// Create Queue Client with PeekLock receive mode
QueueClient queueClient = factory.CreateQueueClient("energyqueue", ReceiveMode.PeekLock);

// Create Topic Client
TopicClient topicClient = factory.CreateTopicClient("energytopic");

Creating and Sending Messages
Once we have created the base components, we can create a message and send it to the messaging bus.
In order to do so, we will first need to create messages to send. Then we will send some to the Queue,
and some to the Topic to be picked up by separate subscriptions. The
BrokeredMessage.CreateMessage() static method is used to create the message. This message serializes
your object into the body of the message. You have the option of defining your own XmlObjectSerializer,
or passing in a Stream object as well. See Table 8-8.

Table 8-8. CreateMessage Oveloads

Name Description

CreateMessage() Creates a brokered message.

CreateMessage(Object) Creates a brokered message from a given object by using
DataContractSerializer with a binary
XmlDictionaryWriter.

CreateMessage(Stream,
Boolean)

Creates a brokered message using the supplied stream
as its body.

CreateMessage(Object,
XmlObjectSerializer)

Creates a brokered message from a given object using
the provided XmlObjectSerializer.

CHAPTER 8 APPFABRIC SERVICE BUS

466

Create and Send to Queue

Because Queues are less complicated than Topics and don’t have any subscriptions or filtering rules,
sending messages is simply a matter of creating the message and sending to the Queue.

Listing 8-42. Creating a Message and Sending to AppFabric Queue

// Create message
BrokeredMessage message = new BrokeredMessage(“Test message”);

// send to queue
queueClient.Send(message);

Retrieve from Queue

To retrieve from a queue, we create a MessageReceiver object, set the RecieveMode (Peek-Lock in this
case), and check the queue. We set the waitTime to 5 seconds, meaning that if the queue is empty, the
receiver will wait five seconds in case any messages come in. If there are messages, it will return
immediately.

Listing 8-43. Retrieve from Queue Using Peek-Lock

QueueClient queueClient = this.messagingFactory.CreateQueueClient(queueName,
ReceiveMode.PeekLock);
// check for a message, wait 5 seconds if queue is empty
BrokeredMessage receivedMessage = queueClient.Receive(new TimeSpan(0, 0, 5));

Create and Send to Topic

When we send to a topic, we expect subscriptions to apply filtering rules. Hence, we need knowledge of
the type of message being sent, so we can apply FilterExpressions. Typically, we would be able to refer to
the properties of the serialized object. In this case, though, we are going to explicitly set the properties of
the message. The Properties Dictionary object allows us to set application-specific properties, which is
perfect for our purposes, because our message is a simple string object. We will set a property called
messageType, which will contain either hvac or lighting as its value. In Listing 8-44, two messages are for
HVAC, one is for lighting.

Listing 8-44. Creating and Sending Topic Messages

private static void CreateTopicMessage(string messageContents, string messageType)
 {
 BrokeredMessage message = new BrokeredMessage(messageContents);
 message.Properties["messageType"] = messageType;
topicClient.Send(message);
 }

Retrieve Messages Using Subscriptions

Now that the messages are waiting for us in the topic, we can retrieve them using our subscription. For
illustrative purposes, we are using the Peek-Lock mode to receive messages for HVAC messages, and

CHAPTER 8 APPFABRIC SERVICE BUS

467

using Receive and Delete for the lighting messages. Note that in the Peek-Lock pattern, we have to use
message.Complete() to remove the message from the queue once we are done processing. Running the
code in Listing 8-45 should result in the HVAC subscription receiving two messages, and the lighting
subscription receiving one.

Listing 8-45. Retrieving Messages Through Subscriptions

// HVAC subscription – PeekLock mode

SubscriptionClient hvacSubscriptionClient = factory.CreateSubscriptionClient("EnergyTopic",
"HVACSubscription, ReceiveMode.PeekLock");

// Lighitng subscription – receive and delete
SubscriptionClient lightingSubscriptionClient =
factory.CreateSubscriptionClient("EnergyTopic", "LightingSubscription",
ReceiveMode.ReceiveAndDelete);

// get HVAC messages from topic
BrokeredMessage receivedHvacMessage = hvacSubscriptionClient.Receive(new TimeSpan(0, 0, 5));
string messageBody = message.GetBody<string>();
// Process the message here
message.Complete(); // remove the PeekLock, can ONLY be called when using PeekLock

// get lighting messages using receive and delete
BrokeredMessage receivedLightingMessage = lightingSubscriptionClient.Receive(new TimeSpan(0,
0, 5));
string messageBody = message.GetBody<string>();
// no need to complete, it was removed from queue

Handling Problem Messages and Abandonment
It’s inevitable that errors will occur in message processing. Common scenarios include invalid or poison
messages, or an issue that occurred with the server processing the message. Let’s look at both scenarios.

Invalid/Poison Messages

In this case, the main concern is that we don’t want to return these messages to the processing queue, as
it will just cause issues for the next server that processes the messages. In addition, the poison messages
will accumulate, and exponentially degrade performance. So it’s not a good idea to abandon this
message, nor to let the lock expire, as either will return the message to the queue. The best practice is to
transfer it somewhere else where it can be handled as an exception. AppFabric Service bus provides the
dead letter queue for exactly this purpose.

This is accomplished using the DeadLetter() method of the BrokeredMessage object. This moves it to
a queue named $DeadLetterQueue. Once it arrives in this queue, you can decide how you want to
handle the message. One approach would be to retrieve the messages using the ReceiveAndDelete
pattern, and log them for later analysis. See Listing 8-46.

CHAPTER 8 APPFABRIC SERVICE BUS

468

Listing 8-46. Retrieving Messages from $DeadLetterQueue and Log Information

// Log the dead-lettered messages that could not be processed:
using (MessageReceiver deadLetterReceiver = queueClient.CreateReceiver("$DeadLetterQueue",
ReceiveMode.ReceiveAndDelete))
{
 BrokeredMessage receivedDeadLetterMessage;
 while (deadLetterReceiver.TryReceive(TimeSpan.FromSeconds(10), out
receivedDeadLetterMessage))
 {
 LogOrder(receivedDeadLetterMessage);
 }
}
QueueClient deadLetterClient = factory.CreateQueueClient("$DeadLetterQueue ",
ReceiveMode.ReceiveAndDelete);
BrokeredMessage deadLetterMessage = deadLetterClient.Receive(new TimeSpan(0, 0, 5));
//Process dead lettered message

Server Error During Message Processing

Another common scenario involves errors that occur on the server, while there is nothing wrong with the
message, and it will need to be re-processed. In this scenario, we want to return the message to the
queue so that another server can process it. The mechanisms for this depend on the ReceiveMode.

For Peek-Lock, we could simply let the TimeToLive expire, in which case the AppFabric Service Bus
would return the message to the queue. However, if we want to be more proactive, we should use the
Abandon() method of the BrokeredMessage object.

If you’re using ReceiveAndDelete, then the message was deleted from the queue at the time it was
received. Neither Abandon() or relying on TimeToLive will work. You’ll have to explicitly send the
message back into the queue.

REST API
If you don’t want to use the .NET client, then the REST API exposes functionality that can be used to
interact with queues. I’ve broken these out into several categories: Message commands and
Management commands. Message commands simply send/receive/delete messages to and from
existing queues and topics, while the management commands provide the ability to manage the queues
or topics themselves.

 Note When using the REST API, the sb:// is replaced by https://. Also, unless otherwise noted, all requests
require HTTP/1.1 version. Additionally, set request Header Content-type to
application/atom+xml;type=entry;charset=utf-8.

CHAPTER 8 APPFABRIC SERVICE BUS

469

Securing REST API Requests with Access Control Service
You can secure your REST API requests using WRAPv0.9.7.2 SWT tokens obtained from the Access
Control Service. See Chapter 6 for more information about obtaining tokens from ACS. A string such as
this will be returned from ACS:

wrap_access_token=net.windows.servicebus.action%3dListen%252cManage%252cSend%26http%253a%252f%
252fschemas.microsoft.com%252faccesscontrolservice%252f2010%252f07%252fclaims%252fidentityprov
ider%3dhttps%253a%252f%252fBVTsn1002-sbususer-0-9-sb.accesscontrol.aadint.windows-
int.net%252f%26Audience%3dhttp%253a%252f%252fBVTsn1002-sbususer-0-9.Windows-
bvt.net%26ExpiresOn%3d1304710330%26Issuer%3dhttps%253a%252f%252fbvtsn1002-sbususer-0-9-
sb.accesscontrol.aadint.windows-
int.net%252f%26HMACSHA256%3d3mytM7yEZ4ZDHyO5rDBeReJien%252f%252bIrsmJJVezsUPqbU%253d&wrap_acce
ss_token_expires_in=1199

You’ll need to extract the token and URL-decode. Also, MSDN documentation notes the following
important points8:

• The received string is URI-decoded (%26 => &) and is in double quotes. Put this
into the HttpAuthorizationHeader.

• The ExpiresOn time in the middle of the string is specified as a Unix File Time
(that is, the number of seconds since 01/01/1970 at 12:00am). You should scrub
the identity provider, audience, issuer and hmacsha fields.

• The domain used when requesting a token uses the HTTP scheme, even though
calls to the service are always issued over HTTPS.

• Make sure that the content type in the HTTP header is of type: application/x-www-
form-urlencoded.

Once completed, it should look something like

WRAP_access_token="net.windows.servicebus.action=Listen%2cManage%2cSend&http%3a%2f%2fschemas.m
icrosoft.com%2faccesscontrolservice%2f2010%2f07%2fclaims%2fidentityprovider=https%3a%2f%2fBVTs
n1002-sbususer-0-9-sb.accesscontrol.aadint.windows-int.net%2f&Audience=http%3a%2f%2fBVTsn1002-
sbususer-0-9.Windows-bvt.net&ExpiresOn=1304710330&Issuer=https%3a%2f%2fbvtsn1002-sbususer-0-9-
sb.accesscontrol.aadint.windows-
int.net%2f&HMACSHA256=3mytM7yEZ4ZDHyO5rDBeReJien%2f%2bIrsmJJVezsUPqbU%3d"

Once this token is fully extracted, you can add theAuthorization Request Header, and set to WRAP
access_token=”{swt}”, where {swt} is the token you obtained.

Queues: Message Commands
Message commands are commands that facilitate the sending, receiving, and deleting of messages from
a queue. Next we will cover how to perform each of these tasks.

8 Appfabric Service Bus REST API Reference: http://msdn.microsoft.com/en-
us/library/gg278338.aspx#RESTAPI_1

http://msdn.microsoft.com/en-us/library/gg278338.aspx#RESTAPI_1
http://msdn.microsoft.com/en-us/library/gg278338.aspx#RESTAPI_1
http://msdn.microsoft.com/en-us/library/gg278338.aspx#RESTAPI_1

CHAPTER 8 APPFABRIC SERVICE BUS

470

 Note The REST API contains only a subset of functionality provided by the .NET Client API. Missing are features
to group receivers, enrich messages, set custom filter destinations, and perform batching.

Send to Queue

In order to send a request to a Queue via the REST API, create a PUT request:

PUT https://{servicenamespace.Windows.net[:{port}]/{path} HTTP/1.1

{path} can be any depth you wish, but has a maximum length of 290 characters. For example, you
could specify a path of /US, /US/CA, or /US/CA/SanRamon. It is just the path to your queue, you can name it
logically.

In the body of the request, pass your message in an Atom entry:

<entry xmlns='http://www.w3.org/2005/Atom'>
 <content type='application/xml'>
 {description}
 </content>
</entry>

If the operation fails, you’ll receive a response code indicating the reason for failure. Otherwise,
you’ll receive a 200 code with the following response:

<?xml version="1.0" encoding="utf-8" ?>
<entry xmlns='http://www.w3.org/2005/Atom'>
 <id>https://{serviceNamespace}.servicebus.windows.net/{path}</id>
 <published>{createdTime}</published>
 <updated>{lastUpdatedTime}</updated>
 <link rel='self'>https://{serviceNamespace}.servicebus.windows.net/{path} </link>
 <content type='application/xml'>
 {description}
 </content>
</entry>

Receive from Queue

The receive operation is represented by a GET operation, following the same pattern as the PUT used to
send a message to the Queue:

https://{servicenamespace.Windows.net[:{port}]/{path}

If the operation fails, you’ll receive a response code indicating the reason for failure. Otherwise,
you’ll receive a 200 code with the following response:

<?xml version="1.0" encoding="utf-8" ?>
<entry xmlns='http://www.w3.org/2005/Atom'>
 <id>https://{serviceNamespace}.Windows.net/{path}</id>
 <published>{createdTime}</published>
 <updated>{lastUpdatedTime}</updated>
 <link rel='self'>https://{serviceNamespace}.Windows.net/{path} </link>

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

CHAPTER 8 APPFABRIC SERVICE BUS

471

 <content type='application/xml'>
 {description}
 </content>
</entry>

Delete from Queue

The receive operation is represented by a GET operation, following the same pattern as the PUT used to
send a message to the Queue:

https://{servicenamespace.Windows.net[:{port}]/{path}

If the operation fails, you’ll receive a response code indicating the reason for failure. Otherwise,
you’ll receive a 200 code with nothing in the response body.

Queue: Management Commands
Management commands are commands that involve creating or deleting a queue, or getting
information about the queue itself. In the following we cover the commands that are available in the
REST interface.

QueueDescription

It’s important to cover the queue description first. This is an AtomPub document that defines the
properties for a queue. It is used in REST API request and responses, sent when creating a queue, or
received when requesting the properties of a queue. The QueueDescription properties are shown in
Table 8-9.

Table 8-9. Properties of QueueDescription

Property Description Range Default

MaxQueueSizeInBytes Maximum queue
size (in bytes)

1-100*1024*1024 100*1024*1024

DefaultMessageTimeToLive Default time to live
for a message
before it is either
deleted or moved
to the
DeadLetterQueue

1 second –
TimeSpan.MaxValue

TimeSpan.MaxValue

LockDuration Amount of time a
message is locked
while being
processed. Once
reached, the
message is
unlocked for the
next receiver to

0-300 seconds 30 seconds

CHAPTER 8 APPFABRIC SERVICE BUS

472

consume

RequiresSession Sets queue session
awareness. Not
supported through
REST interface,
intended for .NET
client API.

true, false False

RequiresDuplicateDetection Indicates whether
service bus should
check for duplicate
messages.

true, false False

EnableDeadLetteringOnMessageExpiration Defines whether to
delete a message or
move to
DeadLetterQueue
once message TTL
is reached.

true, false False

DuplicateDetectionHistoryTimeWindow Defines the time
span for which
Service bus will
check for duplicate
messages

1 second – 7 days 10 minutes

Create Queue

To create a new queue, execute the following REST command:

PUT https://{serviceNamespace}.windows.net/{Queue Path} HTTP/1.1

The payload for this command is a queue description as defined, which sets the properties and
behaviors for the queue. Once you have created a queue, you cannot change its properties; you will have
to delete and re-create with a new queue description. See Listing 8-47.

Listing 8-47. Creating an AppFabric Service Bus Queue

PUT /MyQueues/Queue1 HTTP/1.1
Host: proazure-1.servicebus.windows.net
Content-Type: application/atom+xml
Accept: application/atom+xml
Authorization: …
Content-Length: nnn

<entry xmlns='http://www.w3.org/2005/Atom'>
<content type='application/xml'>

http://www.w3.org/2005/Atom

CHAPTER 8 APPFABRIC SERVICE BUS

473

<QueueDescription xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.microsoft.com/netservices/2010/10/servicebus/connect">
 <LockDuration>PT30S</LockDuration>
 <MaxQueueSizeInBytes>104857600</MaxQueueSizeInBytes>
 <RequiresDuplicateDetection>false</RequiresDuplicateDetection>
 <RequiresSession>false</RequiresSession>
 <DefaultMessageTimeToLive>P10675199DT2H48M5.4775807S</DefaultMessageTimeToLive>
 <DeadLetteringOnMessageExpiration>false</DeadLetteringOnMessageExpiration>
 <DuplicateDetectionHistoryTimeWindow>PT10M</DuplicateDetectionHistoryTimeWindow>
</QueueDescription>
</content>
</entry>

Delete Queue

To delete a queue, execute the following REST command:

DELETE https://{serviceNamespace}.windows.net/{Queue Path} HTTP/1.1

Keep in mind that this deletes all the messages in the queue as well. If you are trying to re-create a
queue with new properties, or migrating to a new queue, you will want to make sure you get all messages
off the queue before you delete it. See Listing 8-48.

Listing 8-48. Deleting an AppFabric Service Bus Queue

DELETE /MyQueues/Queue1 HTTP/1.1
Host: proazure-1.servicebus.windows.net
Content-Type: application/atom+xml
Accept: application/atom+xml
Authorization: …
Content-Length: nnn

Get Queue

This command gets the queue and all its associated state. Of course, this means it must remove all
messages from the queue to return the state information. So, you might use this command in the
migration of messages from one queue to another, or in the deleting and re-creating a queue with new
properties (see Listing 8-49). Execute the following REST Command:

GET https://{serviceNamespace}.windows.net/{Queue Path} HTTP/1.1

Listing 8-49. Deleting an AppFabric Service Bus Queue

DELETE /MyQueues/Queue1 HTTP/1.1
Host: proazure-1.servicebus.windows.net
Content-Type: application/atom+xml
Accept: application/atom+xml
Authorization: …
Content-Length: nnn

http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect

CHAPTER 8 APPFABRIC SERVICE BUS

474

List Queues

Lists all queues that exist in the service namespace.

GET https://{serviceNamespace}.windows.net/$Resources/Queues HTTP/1.1

Topics and Subscriptions: Message Commands
Message commands are commands that facilitate the sending, receiving, and deleting of messages from
a topic. In the following sections we will cover how to perform each of these tasks.

Send to Topic

To enqueue a message into a topic, execute the following REST command:

POST http{s}://{serviceNamespace}.Windows.net/{topic path}/messages HTTP/1.1

The request body contains the message payload. When the topic is created, the maximum number
of messages may be set in the topic description. If the topic is already at its maximum number of
messages allowed, a quota exceeded error will be returned.

Read Message from Subscription with Non-Destructive Peek-Lock

Use this technique when At-Least-Once delivery is required. When you use this command, the message
is read from the queue but is locked, thus preventing other receivers from being able to process the
message. If the lock expires, then the message will be available for other receivers to process.

It’s important to note that when using this pattern, the receiver is responsible for deleting the
message with the lock ID received from this operation once processing is complete. If the receiver does
not delete the message, then the lock will eventually expire, and it will be processed by another receiver,
resulting in duplicate processing. If processing must be abandoned, the receiver should issue an unlock
command so that other receivers are free to process the message.

To use Peek-Lock reading of messages:

POST https://{serviceNamespace}.Windows.net/{topic path}/subscriptions/{subscription
Name}/messages/head?timeout={timeout} HTTP/1.1

Note the URI parameter timeout. This represents the amount of time the server will wait for
messages if there are no existing messages. Acceptable values are 0-120 seconds, and 0 is the default.

There are several important headers returned in the response. All of the information returned is
requied to delete or unlock the message once processing is complete or abandoned. See Table 8-10.

Table 8-10. Peek-Lock Response Headers

Response Header Description

X-MS-MESSAGE-LOCATION URI of the message for unlocking purposes.

X-MS-LOCK-ID Lock Id that needs to be passed when deleting a locked message.

X-MS-LOCK-LOCATION The lock URI for the locked message for unlocking when abandoning

CHAPTER 8 APPFABRIC SERVICE BUS

475

message processing.

Read and Delete Message from Subscription (Destructive read)

This command should be used in scenarios where At-Least-Once delivery is not required, and some loss
of messages is acceptable. The reason you would want to use this instead of the Peek-Lock is that the
read and delete executes as an atomic operation. No locks are held, and the receiver is not required to
return to the topoic to delete the message. Reducing that extra processing required to support Peek-Lock
will increase performance.

To execute this command:

DELETE http{s}://{serviceNamespace}.windows.net/{topic path}/subscriptions/{subscription
Name}/messages/head?timeout={timeout} HTTP/1.1

There is only one URI Parameter for this command: timeout. This parameter this represents the
amount of time the server will wait for messages if there are no existing messages. Acceptable values are
0-120 seconds, and 0 is the default.

Unlock Message from Subscription

If you have abandoned processing and want to make the message available for other receivers to
process, you will need to remove the lock object. Execute this command:

DELETE http{s}://{serviceNamespace}.servicebus.windows.net/{buffer}/messages/{message-
id}/{lock-id} HTTP/1.1

Note the URI parameters in this request. Message-id is the Id of the message to be unlocked. You got
this in the X-MS-MESSAGE-LOCATION response header when you retrieved the message using the
PeekLock command. Lock-id is the X-MS-LOCK-ID response header that was also returned in the same
response.

Delete Message from Subscription

Once your receiver has completed processing in a Peek-Lock scenario, it will need to delete the message
from the subscription to prevent duplicate processing. To execute this command:

DELETE http{s}://{serviceNamespace}.Windows.net/{topic path}/subscriptions/{subscription
Name}/messages/{message-id}?lockid={lock-id} HTTP/1.1

Once again, the same URI parameters are required as when unlocking a message. Message-id is the
ID of the message to be unlocked. You got this in the X-MS-MESSAGE-LOCATION response header
when you retrieved the message using the PeekLock command. Lock-id is the X-MS-LOCK-ID response
header that was also returned in the same response.

Topics: Management Commands
Management commands are commands that involve creating or deleting a topic, or getting information
about the topic itself. Later we cover the commands that are available in the REST interface.

CHAPTER 8 APPFABRIC SERVICE BUS

476

TopicDescription

As with queues, topic descriptions are used to define the properties for a topic. This is an AtomPub
document that defines the properties for a queue. It is used in REST API request and responses, sent
when creating a topic, or received when requesting the properties of a topic. The properties of the
TopicDescription object are shown in Table 8-11.

Table 8-11. Topic Description Properties

Property Description Range Default

MaxTopicSizeInBytes Maximum topic size
(in bytes). Once
reached, all attempts
to enqueue messages
will result in an error
being returned.

1-100 MB 100*1024*1024

DefaultMessageTimeToLive Default time to live for
a message before it is
either deleted or
moved to the
DeadLetterQueue

1 second –
TimeSpan.MaxValu
e

TimeSpan.MaxValu
e

MaximumNumberOfSubscriptions

Maximum number of
subscriptions that can
be associated with a
topic

1-2000 2000

MaximumNumberOfSqlFilters Maximum number of
SQL filter expressions

1-2000 2000

MaximumNumberOfCorrelationFilters Max number of
correlation filter
expressions

1-2000 2000

RequiresDuplicateDetection Indicates whether
service bus should
check for duplicate
messages

true, false false

EnableDeadLetteringOnMessageExpiration Defines whether to
delete a message or
move to
DeadLetterQueue
once message TTL is
reached

True, false false

DuplicateDetectionHistoryTimeWindow Defines the time span
for which Service bus
will check for duplicate

1 second – 7 days 10 minutes

CHAPTER 8 APPFABRIC SERVICE BUS

477

messages

 Note Multiple copies of a message that exist in multiple subscriptions are counted as single message, and thus
having a message on multiple subscriptions does not count against the size quota.

Create Topic

To create a new topic, execute the following REST command:

PUT https://{serviceNamespace}.windows.net/{topic Path} HTTP/1.1

The payload for this command is a topic description as defined earlier, which sets the properties
and behaviors for the topic. Once you have created a topic, you cannot change its properties, you will
have to delete and re-create with a new topic description. See Listing 8-50.

Listing 8-50. Creating an AppFabric Service Bus Topic

PUT /MyTopics/Topic1 HTTP/1.1
Host: proazure-1.servicebus.windows.net
Content-Type: application/atom+xml
Accept: application/atom+xml
Authorization: …
Content-Length: nnn

<entry xmlns='http://www.w3.org/2005/Atom'>
<content type='application/xml'>
<TopicDescription xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.microsoft.com/netservices/2010/10/servicebus/connect">
 <DefaultMessageTimeToLive>P10675199DT2H48M5.4775807S</DefaultMessageTimeToLive>
 <MaxTopicSizeInBytes>104857600</MaxTopicSizeInBytes>
 <RequiresDuplicateDetection>false</RequiresDuplicateDetection>
 <DuplicateDetectionHistoryTimeWindow>P7D</DuplicateDetectionHistoryTimeWindow>
 <MaxSubscriptionsPerTopic>2000</MaxSubscriptionsPerTopic>
 <MaxSqlFiltersPerTopic>1000</MaxSqlFiltersPerTopic>
 <MaxCorrelationFiltersPerTopic>2000</MaxCorrelationFiltersPerTopic>
 <DeadLetteringOnMessageExpiration>false</DeadLetteringOnMessageExpiration>
<DeadLetteringOnFilterEvaluationExceptions>true</DeadLetteringOnFilterEvaluationExceptions>
</TopicDescription>
</content>
</entry>

Delete Topic

To delete a topic, execute the following REST command:

DELETE https://{serviceNamespace}.windows.net/{Topic Path} HTTP/1.1

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect

CHAPTER 8 APPFABRIC SERVICE BUS

478

Keep in mind that this deletes all the subscriptions and messages in the topic as well. If you are
trying to re-create a topic with new properties, or migrating to a new topic, you will want to make sure
you get all subscriptions and messages off the topic before you delete it.

Get Topic

Thie command simply retrieves the topic description for the topic.

GET https://{serviceNamespace}.windows.net/{Topic Path} HTTP/1.1.

List Topics

Lists all topics that exist in the service namespace.

GET https://{serviceNamespace}.windows.net/$Resources/Topics HTTP/1.1

Subscriptions: Management Commands

Management commands are commands that involve creating or deleting a subscription, or getting
information about the subscription itself. Later we cover the commands that are available in the REST
interface.

SubscriptionDescription

Continuing the theme of setting and retrieving properties vai description objects, the Subscription
description is an AtomPub document that defines the properties for a subscription. It is used in REST
API request and responses, sent when creating a subscription, or received when requesting the
properties of a subscription. The properties of the SubscriptionDescription object are shown in Table
8-12.

Table 8-12. SubscriptionDescription Properties

Property Description Range Default

DefaultMessageTimeToLive Default time to live
for a message
before it is either
deleted or moved
to the
DeadLetterQueue

1 second –
TimeSpan.MaxValue

TimeSpan.MaxValue

LockDuration Amount of time a
message is locked
while being
processed. Once
reached, the
message is
unlocked for the
next receiver to
consume

0-300 seconds 30 seconds

CHAPTER 8 APPFABRIC SERVICE BUS

479

RequiresSession Sets subscription
session awareness.
Not supported
through REST
interface, intended
for .NET client API.

true, false false

EnableDeadLetteringOnMessageExpiration Defines whether to
delete a message or
move to
DeadLetterQueue
once message TTL
is reached.

true, false False

DuplicateDetectionHistoryTimeWindow Defines the time
span for which
Service bus will
check for duplicate
messages

1 second – 7 days 10 minutes

Create Subscription

To create a new subscription, execute the following REST command:

PUT https://{serviceNamespace}.servicebus.windows.net/{topic path}/subscriptions/{subscription
name HTTP/1.1

The payload for this command is a subscription description as defined previously, which sets the
properties and behaviors for the subscription. Once you have created a subscription, you cannot change
its properties, you will have to delete and re-create with a new subscription description. See Listing 8-51.

Listing 8-51. Creating a Subscription

PUT /MyTopics/Topic1/Subscriptions/FirstSubscription HTTP/1.1
Host: proazure-1.Windows.net
Content-Type: application/atom+xml
Accept: application/atom+xml
Authorization: …
Content-Length: nnn

<entry xmlns="http://www.w3.org/2005/Atom">
 <title type="text">MySubscription</title>
 <link rel="alternate"
href="https://contoso.Windows.net/MyTopic/subscriptions/MySubscription"/>
 <link rel="self" href="https://Contoso.Windows.net/Resources/Topics(‘MyTopic’)/
Subscriptions(‘MySubscription’)"/>

 <content type="application/xml"
xmlns="http://schemas.microsoft.com/netservices/201?/??/servicebus/connect">

http://www.w3.org/2005/Atom
http://schemas.microsoft.com/netservices/201?/??/servicebus/connect

CHAPTER 8 APPFABRIC SERVICE BUS

480

 <SubscriptionDescription>
 <MaxSubscriptionSizeInBytes>100000000</MaxSubscriptionSizeInBytes>
 <LockDuration>P30S</LockDuration>
 <RequiresMessageGrouping>False</RequiresMessageGrouping>
 <DefaultRule>True</DefaultRule>
 </SubscriptionDescription>
 </content>
</entry>
<entry xmlns='http://www.w3.org/2005/Atom'>
<content type='application/xml'>
<SubscriptionDescription xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.microsoft.com/netservices/2010/10/servicebus/connect">
 <LockDuration>PT5M</LockDuration>
 <RequiresSession>false</RequiresSession>
 <DefaultMessageTimeToLive>P10675199DT2H48M5.4775807S</DefaultMessageTimeToLive>
 <DeadLetteringOnMessageExpiration>false</DeadLetteringOnMessageExpiration>
<DeadLetteringOnFilterEvaluationExceptions>true</DeadLetteringOnFilterEvaluationExceptions>
</SubscriptionDescription>
</content>
</entry>

Delete Subscription

To delete a subscription, execute the following REST command:

DELETE https://{serviceNamespace}.servicebus.windows.net/{topic
path}/subscriptions/{subscription name}
 HTTP/1.1

Keep in mind that this deletes all the messages in the subscription as well. If you are trying to re-
create a subscription with new properties, or migrating to a new subscription, you will want to make
sure you get all messages off the subscription before you delete it.

Get Subscription

Thie command simply retrieves the topic description for the topic.

GET https://{serviceNamespace}.windows.net/{topic path}/subscriptions/{Subscription Name}
HTTP/1.1.

List Subscriptions

Lists all subscriptions that exist in the specified topic.

GET https://{serviceNamespace}.windows.net/{topic path}/subscriptions/
 HTTP/1.1

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect

CHAPTER 8 APPFABRIC SERVICE BUS

481

Rules: Mangement Commands
Management commands are commands that involve creating or deleting a rule, or getting information
about the rule itself. In the following we cover the commands that are available in the REST interface.

Rule Description

Rule Description is an AtomPub document that defines the properties for a Rule. It is used in REST API
request and responses, sent when creating a rule, or received when requesting the properties of a rule.
The properties of the RuleDDescription object are shown in Table 8-13.

Table 8-13: Rule Description Properties

Property Description

Filter:
SqlFilterExpression

A SQL 92 syntax expression encoded as a string. Expression must
evaluate to true or false.

Filter:
CorrelationFilterExpression

Match based on GUID-based correlationId. Messages whose
CorrelationId (X-MS-CORRELATION-ID) match will be returned.

FilterAction The action to be taken if the rule expression evaluates to true. A string
interpreted as a SQL 92 operation.

Create Rule

To create a new Rule, execute the following REST command:

PUT https://{serviceNamespace}.windows.net/{topic path}/subscriptions/{subscription
name}/rules/{rule name} HTTP/1.1

The payload for this command is a rule description as defined earlier, which sets the properties and
behaviors for the rule. Once you have created a rule, you cannot change its properties, you will have to
delete and re-create with a new rule description. See Listing 8-52.

Listing 8-52. Creating a Rule

PUT /MyTopics/Topic1/Subscriptions/FirstSubscription/Rules/FirstRule HTTP/1.1
Host: proazure-1.servicebus.windows.net
Content-Type: application/atom+xml
Accept: application/atom+xml
Authorization: …
Content-Length: nnn

<entry xmlns='http://www.w3.org/2005/Atom'>
<content type='application/xml'>
<RuleDescription xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.microsoft.com/netservices/2010/10/servicebus/connect">

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect

CHAPTER 8 APPFABRIC SERVICE BUS

482

 <Filter i:type="SqlFilterExpression">
 <SqlExpression>MyProperty='XYZ'</SqlExpression>
 </Filter>
 <Action i:type="SqlFilterAction">
 <SqlExpression>set MyProperty2 = 'ABC'</SqlExpression>
 </Action>
</RuleDescription>
</content>
</entry>

Delete Rule

To delete a rule, execute the following REST command:

DELETE https://{serviceNamespace}.windows.net/{topic path}/subscriptions/{subscription
name}/rules/{rule name} HTTP/1.1

Get Rule

This command simply retrieves the rule description for the rule.

GET https://{serviceNamespace}.windows.net/{topic path}/subscriptions/{subscription
name}/rules/{rule name} HTTP/1.1.

List Rules

Lists all rules that exist in the specified topic.

GET https://{serviceNamespace}.windows.net/{topic path}/rules/
 HTTP/1.1

Summary
Microsoft has built the AppFabric Service Bus as a foundation for cross-platform and cross-enterprise
application integration. Services across the same or different enterprises can communicate with each
other, even if they’re behind firewalls. Its integration with ACS and the security at the transport-level
makes it secure to send encrypted messages over the Internet. The programming model is very similar to
WCF, and you can utilize your existing WCF skills to build AppFabric Service Bus applications.

Message buffers are a different concept than WCF programming, but they’re similar to the Windows
Azure queues that you read about earlier in the book. You can use message buffers in nonreliable
asynchronous store-and-forward scenarios.

In this chapter, you learned the concepts behind the AppFabric Service Bus that can help you built
integration applications at Internet-scale. Early releases of the AppFabric Service Bus included another
component called Workflow Services that is planned for a future release.

The next chapter covers Microsoft’s database for the cloud: SQL Azure.

CHAPTER 8 APPFABRIC SERVICE BUS

483

Bibliography
Lowy, J. (n.d.). Securing The .NET Service Bus. Retrieved from MSDN: http://msdn.microsoft.com/

en-us/magazine/dd942847.aspx.

Microsoft Corporation. (2009). Windows Azure platform AppFabric November 2009 CTP. Retrieved from

MSDN: http://msdn.microsoft.com/en-us/library/ee173584.aspx.

Microsoft Corporation. (n.d.). Windows Azure SDK. Retrieved from MSDN:

http://msdn.microsoft.com/en-us/library/dd179367.aspx.

OASIS Standards. (n.d.). OASIS Standards. Retrieved from OASIS Standards:

 www.oasis-open.org/home/index.php.

Vasters, C. (n.d.). Azure: Microsoft .NET Service Bus. Retrieved from Clemens Vasters, Bldg 42:

http://blogs.msdn.com/clemensv/archive/2008/10/27/azure-microsoft-net-service-bus.aspx.

Microsoft Corporation (2011) Service Bus API REST Interface. Retrieved from MSDN:
http://msdn.microsoft.com/en-us/library/hh367521.aspx

Microsoft Corporation (2011) Windows Azure AppFabric Class Library. Retrieved from MSDN:
http://msdn.microsoft.com/en-us/library/hh394905.aspx

http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/ee173584.aspx
http://msdn.microsoft.com/en-us/library/dd179367.aspx
http://www.oasis-open.org/home/index.php
http://blogs.msdn.com/clemensv/archive/2008/10/27/azure-microsoft-net-service-bus.aspx
http://msdn.microsoft.com/en-us/library/hh367521.aspx
http://msdn.microsoft.com/en-us/library/hh394905.aspx

C H A P T E R 9

485

AppFabric: Caching

In my conversations with customers, I make a point to stress the importance of understanding the
implications of a PaaS architecture. With Windows Azure, the fact that load balancing can only be done
in a round-robin fashion certainly has architectural impact, especially when pitted against the fact that
two instances must be running to remain within the terms of the Azure Service Level Agreement. This is
where customers typically realize what I really mean when I say that an app must be stateless.

Sometimes, this is followed by a confession that their “stateless” web farm-based application uses
in-memory session state, and that they employ a sticky-IP type of load balancing to ensure that requests
go to the same server. And what follows that is a long discussion about the merits of rewriting the app
versus the performance implications of switching to SQL Server for session state.

One way around this is to store session state in SQL Azure. However, this creates additional
processing load and extra connections on SQL Azure. Under a heavy system load, this could be the
difference between getting throttled or not. In addition, the overhead of opening and closing
connections can have a performance impact.

In June 2011, Windows Azure AppFabric Caching was released. With it came the solution to both of
these problems, among others. It is a major piece of the puzzle in making Windows Azure a complete
platform. AppFabric Caching is a distributed in-memory cache provided as a cloud service. It provides
the low latency of an in-memory cache, while providing high scalability by having the cache distributed
across the memory of multiple nodes. In addition, it is provided as a high throughput cloud service,
meaning there’s no need to manage instances to scale up or down.

The architecture/typical usage of Azure AppFabric Caching is shown in Figure 9-1.

CHAPTER 9 APPFABRIC: CACHING

486

Figure 9-1. Windows Azure AppFabric caching

 Note People are often confused by Microsoft’s naming of Windows Server AppFabric and Windows Azure
AppFabric. They are not the same set of services. However, in this case, they really are built on the same
underlying technology, except that the Azure AppFabric Caching Service provides a subset of features from Server
AppFabric Caching. However, Azure Caching doesn’t require any installation or setup. It is provisioned and
maintained via the portal. For more information about the differences between Azure AppFabric and Server
AppFabric Caching, go to http://msdn.microsoft.com/en-us/library/gg185678.aspx.

In this chapter, we will compare AppFabric Caching to its open-source counterpart, memcached.
We will then delve into provisioning a cache and creating clients that can interact with the cache.
Finally, we will take a look a specific ASP.NET scenarios that are enabled by AppFabric Cache: Session
State and Page Output Caching.

AppFabric Caching vs. Other Cache Providers
There are other providers of caching services that can exist in Windows Azure, but none is as well
integrated and scalable. For example, memcached is a utility that will run in Windows Azure, but
AppFabric Caching offers several advantages. Most notably, there is little setup required to provision or
scale AppFabric Caching. Also, scalability is dynamic and automatic in AppFabric Caching, whereas if
using memcached, you would need to scale role instances up and down as necessary, requiring you to
implement an auto-scaling solution.

The biggest disadvantage of AppFabric Caching is that the initial release only included support for
the .NET client SDK. Java and REST APIs were not released, but will likely be included in future releases.

http://msdn.microsoft.com/en-us/library/gg185678.aspx

CHAPTER 9 APPFABRIC: CACHING

487

Once we have decided that using AppFabric Cache is the appropriate solution, we need to provision
the cache, which is described in the following section.

Provisioning an AppFabric Cache
Provisioning a cache is quite simple. In fact, you may have already done it in the process of creating an
appfabric namespace for either Service Bus or Access Control Service. In the AppFabric section of the
Azure Management Portal, click New Namespace and provide a name for your namespace. To add a
cache to an existing namespace, click Modify Namespace. Note that, in Figure 9-2, you can choose a
cache size from 128 MB to 4GB. Once provisioned, you can change the cache size by clicking the Change
Cache Size button.

Figure 9-2. Provisioning a Windows Azure AppFabric cache

Once you have provisioned the cache, you need to create clients who can interact with the server
cache. This is described in the following sections.

AppFabric Cache Clients
The application that accesses the cache must be configured to use the cache. The application will need
references to the Caching DLLs, as well as configuration to access the cache.

Assembly References
To enable an application to use the AppFabric Cache, you will need to add references to
Microsoft.ApplicationServer.Caching.Client.dll and

CHAPTER 9 APPFABRIC: CACHING

488

Microsoft.ApplicationServer.Caching.Core.dll. In addition, for ASP.NET applications, you will need a
reference to Microsoft.Web.DistributedCached.dll.

These DLLs are part of the Windows Azure AppFabric SDK. To add the reference, you will need to
click the Browse tab of the Add Reference dialog in Visual Studio. The default location for these
assemblies is .\Program Files\Windows Azure AppFabric SDK\V1.0\Assemblies\NET4.0\Cache.

Configuring the Cache Client
The cache client can be configured either programmatically or via configuration. The cache can be
configured to use SSL or non-SSL endpoints.

Configuring Cache Client Using Application Configuration File
Fortunately, the Management Portal provides most of the information you will need to configure the
cache client via the config file. In the Management Portal, click View Client Configuration. A dialog box
will display the configuration code you need, including your authorization token and namespaces, as
shown in Figure 9-3. Copy this code and paste it into your app.config or web.config file. In Listing 9-1, I
have also provided sample configuration code you can paste into the application, and then look up the
necessary information in the properties for the cache on the right-hand side of the portal.

Figure 9-3. Client configuration XML snippet from Azure Management portal

CHAPTER 9 APPFABRIC: CACHING

489

 Note The sessionState and outputcache sections are only relevant for ASP.NET applications. You should
remove these sections if your application is not ASP.NET, or you don’t want to use these features. I will cover
usage of these features in ASP.NET later in this chapter, in the sections “ASP.NET Session State Provider” and
“Enabling ASP.NET Output Cache in AppFabric Cache.”

Listing 9-1. Configuration Sections for Default and SSL Endpoints

<configSections>
 <!-- Append below entry to configSections. Do not overwrite the full section. -->
 <section name="dataCacheClients"
type="Microsoft.ApplicationServer.Caching.DataCacheClientsSection,
Microsoft.ApplicationServer.Caching.Core"
 allowLocation="true" allowDefinition="Everywhere"/>
 </configSections>

<dataCacheClients>
 <dataCacheClient name="default">
 <hosts>
 <host name="[Insert Cache EndPoint]" cachePort="22233" />
 </hosts>
 <securityProperties mode="Message">
 <messageSecurity
 authorizationInfo="[Encrypted ACS token goes here]">
 </messageSecurity>
 </securityProperties>
 </dataCacheClient>

 <dataCacheClient name="SslEndpoint">
 <hosts>
 <host name="[Insert Cache EndPoint]" cachePort="22243" />
 </hosts>
 <securityProperties mode="Message" sslEnabled="true">
 <messageSecurity
 authorizationInfo="[Encrypted ACS token goes here]">
 </messageSecurity>
 </securityProperties>
 </dataCacheClient>

 </dataCacheClients>

Once the work is complete in the config file, the next step is to create the cache in your application
code. This is relatively straightforward. The settings in the application configuration file are the default
settings for the DataCacheFactory, and so we can initialize the cache using default settings.

CHAPTER 9 APPFABRIC: CACHING

490

Listing 9-2. Initializing the Cache in the Application

using Microsoft.ApplicationServer.Caching;

// skipping through code to relevant part

// Create Cache client with default settings from app.config or web.config.
DataCacheFactory cacheFactory = new DataCacheFactory();
DataCache cache = cacheFactory.GetDefaultCache();

// To get SSL cache instead…
DataCache sslCache = cacheFactory.GetCache(“SslEndpoint”);

Configuring Cache Client Programmatically
While using the configuration file seems pretty easy, perhaps your application requires the cache to be
configured at run time. For this and other scenarios, you can configure the cache client
programmatically.

You will need several pieces of information from the Management Portal, as shown in Figure 9-4.

Figure 9-4. Cache Properties in Management Portal

The first step is to create the cache endpoint(s), by following these steps:

1. Create an array of type DataCacheServerEndpoint. The number of elements
depends on the number of endpoints. If you want both SSL and non-SSL
endpoints, then initialize the array with a single element.

2. Initialize this element of the array with a new DataCacheServerEndpoint,
passing in the Service URL and Port (from the management portal) as
parameters.

CHAPTER 9 APPFABRIC: CACHING

491

 Note The ability to specify multiple named dataCacheClients is only available when configuring via
application configuration file1. When configuring programmatically, only configure a single endpoint, and use the
default constructor with no parameters when initializing the cache. Sample code for this that includes configuring
for SSL or Non-SSL is included in Listing 9-3.

Next, we will need to set up the security properties of the data cache configuration factory in order
to enable signing and/or encryption between the cache client and server. The DataCacheSecurity object
is responsible for this. However, the Authentication Token must be passed into this object as a
SecureString object, so convert the string and initialize the object as shown in lines 10-18 in Listing 9-3.

Then, create our DataCacheFactoryConfiguration class. Set the Servers property to the collection of
DataCacheServerEndpoint objects that were created earlier. Also, set the SecurityProperties property to
the DataCacheSecurity object that was created earlier as well.

Now, we can create a DataCacheFactory object, passing in the DataCacheFactoryConfiguration
object we just created. Then finally, we create the cache client by calling the GetDefaultCache() method
of the DataCacheFactory object. The DataCache object that is returned can be used to access the cache
programmatically.

Listing 9-3. Programmatic Configuration of Cache Client

private DataCache InitializeCache(bool sslEnabled)
{
string hostName = "[Service URL]";
 int cachePort;

cachePort = sslEnabled ? 22243 : 22233; // Default port
List<DataCacheServerEndpoint> servers = new List<DataCacheServerEndpoint>();
servers.Add(new DataCacheServerEndpoint(hostName, cachePort));

// Setup DataCacheSecurity configuration.
string strAuthToken = "[Authentication Token from Portal]";
var secureAuthToken = new SecureString();
foreach (char a in strAuthToken)
{
 secureAuthToken.AppendChar(a);
}
secureAuthToken.MakeReadOnly();
DataCacheSecurity factorySecurity = new DataCacheSecurity(secureAuthToken);

// Setup the DataCacheFactory configuration.
DataCacheFactoryConfiguration factoryConfig = new DataCacheFactoryConfiguration();
factoryConfig.Servers = servers;
factoryConfig.SecurityProperties = factorySecurity;

1 MSDN: DataCacheFactoryConfiguration Constructor (String): http://msdn.microsoft.com/en-
us/library/hh371022.aspx

http://msdn.microsoft.com/en-us/library/hh371022.aspx
http://msdn.microsoft.com/en-us/library/hh371022.aspx
http://msdn.microsoft.com/en-us/library/hh371022.aspx

CHAPTER 9 APPFABRIC: CACHING

492

// Create a configured DataCacheFactory object.
DataCacheFactory cacheFactory = new DataCacheFactory(factoryConfig);

// Get a cache client for the default cache.
DataCache defaultCache = cacheFactory.GetDefaultCache();

return defaultCache;
}

Programming AppFabric Cache
Because the Azure AppFabric Cache is a subset of functionality from the Windows Server AppFabric
Cache, there are only a few methods of importance, which are listed in Table 9-1. You will also find a
code sample demonstrating usage of these methods in Listing 9-4.

Table 9-1. Key AppFabric Cache Methods

Method Description

Add(string key, object value) This adds a new object to the cache. It will throw
an exception if the item already exists in the cache.

Put(string key, object value) Replaces an object if it is already in the cache, or
adds a new object if it doesn’t already exist.

Get(string Key) Returns an object from the cache.

Remove(string key) Removes an object from the cache.

Listing 9-4. Programmatically Accessing the Cache

// Assume a dataCache object was already created using one of the techniques shown above.
// add a new object to the cache
dataCache.Add(“cacheItem”, “TestValue”);
// Get this value
string initialValue = dataCache.Get(“cacheItem”);
// Update value in cache
dataCache.Put(“cacheItem”, “NewTestValue”);
// Get the new value
string newValue = dataCache.Get(“cacheItem”);

// Compare the strings to ensure value was updated in the cache
int result = string.Compare(initialValue, newValue);

// remove the cache item
dataCache.Remove(“cacheItem”);

CHAPTER 9 APPFABRIC: CACHING

493

 Note For the full list of configuration settings for ASP.NET 4 and what is supported, go to
http://msdn.microsoft.com/en-us/library/gg185682.aspx.

Another great resource of information for AppFabric Cache (as well as many other Azure topics) is With Windows
Azure Customer Advisory Team. You can find posts on caching techniques at
http://windowsazurecat.com/tag/caching/.

Earlier in this chapter, I mentioned support for ASP.NET. The following sections provide guidance
on implementing ASP.Net functionality using AppFabric caching: Session State and Page Output
Caching.

ASP.NET Session State Provider
The Azure AppFabric Cache provides support for ASP.NET Session State via the AppFabric session state
provider. As mentioned earlier, this has many advantages. However, the provider created for the Azure
AppFabric also has several improvements over other ASP.NET session state providers.

For starters, it uses the NetDataContractSerializer class internally. This provides a wider range of
types that can be serialized in and out of the cache, including binary serializable types. Also, it allows you
to share session state among multiple ASP.NET applications. This could be extremely useful in many
scenarios. It also avoids server-side request queuing by allowing multiple readers to concurrently access
session state using read-only access, queuing only write requests.

And finally, and possibly most importantly, in a cloud environment where consumers are charged
for the resources consumed, compression is supported.

Enabling Session State in AppFabric Cache
In addition to the work performed earlier to create the cache client, additional steps need to be taken to
enable support for storing ASP.NET Session State in the AppFabric Cache. Specifically, the
<sessionState> element needs to be added to the web.config file. If you are already using an ASP.NET
session provider, replace with the code in Listing 9-5 to migrate.

Listing 9-5. Web.config Code for Enabling ASP.NET Session State (from Management Portal)

<!-- If session state needs to be saved in AppFabric Caching service, add the following to
web.config inside system.web. If SSL is required, then change dataCacheClientName to
"SslEndpoint". -->
<sessionState mode="Custom" customProvider="AppFabricCacheSessionStoreProvider">
 <providers>
 <add name="AppFabricCacheSessionStoreProvider"
 type="Microsoft.Web.DistributedCache.DistributedCacheSessionStateStoreProvider,
Microsoft.Web.DistributedCache"
 cacheName="default"
 useBlobMode="true"
 dataCacheClientName="default" />
 </providers>

http://msdn.microsoft.com/en-us/library/gg185682.aspx
http://windowsazurecat.com/tag/caching/

CHAPTER 9 APPFABRIC: CACHING

494

</sessionState>

If you want compression enabled, you may need to modify the dataCacheClient element in your
web.config:

<dataCacheClient name="default" isCompressionEnabled="true">

As you can see, there really isn’t much work required to enable ASP.NET Session State caching in
Azure AppFabric Cache. It provides a lot of value without much work to get it enabled.

Enabling ASP.NET Output Cache in AppFabric Cache
Output caching provides the ability for the server to cache http responses, and present those when
requested instead of going through the full rendering life cycle. This can significantly increase
performance of the web application when it has many typically static pages.

Using AppFabric Cache to store the output cache has some important benefits. Most important, the
output cache data is not lost when the web application is recycled. This is particularly useful in the Azure
environment, because the Fabric Controller can recycle a role instance at any time. Also, using the
AppFabric cache takes load off of the web server. It frees memory that would have been used to hold the
output cache data, which potentially frees memory for processing. In addition, it increases the effective
limit of the output cache, because the AppFabric cache can support up to a 4 GB cache, which many web
servers would not support. Finally, compression is supported here, as it is with session state. See the
previous section for instructions on enabling compression on the dataCacheClient.

 Note For the current release, only page output caching is supported. Web forms control output caching is not
yet supported. The specifics of using output caching in ASP.NET are beyond the scope of this book. I will focus on
enabling the cache here.

Enabling support for output caching through AppFabric cache is straightforward. Add the code from
Listing 9-6 to your web.config file.

Listing 9-6. Web.config Code for Enabling ASP.NET Output Caching (from Management Portal)

<!-- If output cache content needs to be saved in AppFabric Caching service, add the following
to web.config inside system.web. -->
<caching>
 <outputCache defaultProvider="DistributedCache">
 <providers>
 <add name="DistributedCache"
 type="Microsoft.Web.DistributedCache.DistributedCacheOutputCacheProvider,
Microsoft.Web.DistributedCache"
 cacheName="default"
 dataCacheClientName="default" />
 </providers>
 </outputCache>
</caching>

CHAPTER 9 APPFABRIC: CACHING

495

Summary
In this chapter, you learned why the AppFabric Cache is an important part of the Windows Azure
platform. You also learned how to create an AppFabric Cache and access it programmatically. And
finally, you learned about enabling support for ASP.NET Session State and Output Caching.

Bibliography
MSDN: Caching Service (Windows Azure AppFabric): http://msdn.microsoft.com/en-
us/library/gg278356.aspx

MSDN: using the ASP.NET 4 Caching Providers for AppFabric: http://msdn.microsoft.com/en-
us/library/gg185665.aspx

http://msdn.microsoft.com/en-us/library/gg278356.aspx
http://msdn.microsoft.com/en-us/library/gg278356.aspx
http://msdn.microsoft.com/en-us/library/gg278356.aspx
http://msdn.microsoft.com/en-us/library/gg185665.aspx
http://msdn.microsoft.com/en-us/library/gg185665.aspx
http://msdn.microsoft.com/en-us/library/gg185665.aspx

C H A P T E R 10

497

SQL Azure

SQL Azure is Microsoft’s relational database service in the cloud. In this chapter, we will cover SQL Azure
in depth, starting with a look at how SQL Azure was architected, then leading into a discussion of what
features are supported and what the limitations are. We’ll discuss the different means of connecting to
SQL Azure, and the impact of the distance between your application and SQL Azure. Then, we’ll cover
how to develop Windows Azure applications for SQL Azure, as well as some techniques for achieving
efficient use of SQL Azure, and standard practices for database migration. Finally, we will briefly touch
on two new technologies: SQL Azure Reporting and SQL Azure Data Sync. Throughout the chapter, we
will be building an application that uses SQL Azure as well as other Windows Azure technologies such as
Service Bus. It’s a lot of ground to cover, so let’s get started.

SQL Azure Overview
Any enterprise application, be it cloud or on-premise, is incomplete without the support of a back-end
database. The database can be used to store business data, consumer data, or system data.

Applications are volatile, whereas databases are persistent. Front-end web applications usually
depend on databases to persist business and system data. Therefore, databases can become the
bottleneck in a system and need careful attention when you’re architecting scalability, high availability,
and performance for a system. You can scale-out front-end web applications by adding more load-
balanced nodes, but to scale-out database servers, you need to not only scale out the database servers
but also the storage on which these databases depend. On top of that, you have to make sure you aren’t
jeopardizing the high availability of the database server and its storage. Typically, on-premise databases
use clustering techniques to provide high availability. Thus, scaling-out databases (typically via
sharding) is an expensive effort in terms of the costs involved in scaling-out storage and database
servers.

SQL Azure provides high availability to your databases out of the box. At any point in time, SQL
Azure maintains three replicas of your databases in the cloud. If one replica fails, SQL Azure
automatically creates a new one to maintain three replicas available at any point in time.

SQL Azure is based on the Microsoft SQL Server relational database engine. SQL Server is
Microsoft’s relational database, which is used by enterprises in their on-premise systems and is also
offered as a hosted service by database hosting providers. With the launch of SQL Azure, Microsoft aims
to offer a cloud relational database as a service for on-premise and cloud applications. When SQL Data
Services (SDS) was launched at the Professional Developers Conference 2008, the service offering was an
Entity-Attribute-Value (EAV) architecture with full scalability, fault tolerance, and high-availability
features. Microsoft’s vast partner and user community expressed the need for a relational database
instead of a completely new EAV architecture because of the existing skill sets and applications that can
be readily migrated to the cloud. Microsoft considered the feedback seriously and began the necessary
work to replace the EAV architecture with traditional relational database features. In August 2009,

CHAPTER 10 SQL AZURE

498

Microsoft announced the availability of the Community Technology Preview 1 (CTP 1) version of the
SQL Azure relational database. The EAV capabilities were removed from the product, and only the
relational database was made available. SQL Azure doesn’t provide all the features available in SQL
Server, but it does provide the bare minimum features required to deploy and maintain a database. For
example, features like the Service Broker, Common Language Runtime (CLR) stored procedures, and
HTTP endpoints aren’t available in SQL Azure. This may change in the future, depending on customer
demand.

As of the time of writing, Microsoft has released Community Technology Preview (CTP) version of
SQL Data Sync, and Reporting Services. In future versions of SQL Azure, Microsoft plans to add other
features that are missing from the SQL Azure platform.

 Note This chapter assumes that you’re familiar with SQL Server database concepts and that you can
comfortably program TSQL SQL queries and data access using the ADO.NET API.

SQL Azure Architecture
SQL Azure is a scalable and highly available database utility service in the cloud. Like all other Windows
Azure services, it runs in Microsoft data centers around the world. The data center infrastructure
provides the SQL Azure service with load balancing, failover and replication capabilities. Figure 10-1
illustrates the high-level SQL Azure architecture.

CHAPTER 10 SQL AZURE

499

Figure 10-1. SQL Azure architecture

As shown in Figure 10-1, the SQL Azure service is composed of four layers: infrastructure, platform,
services, and client. All the layers, except the client layer, run inside a Microsoft data center.

Infrastructure Layer
The infrastructure layer is the supporting layer providing administration of hardware and operating
systems required by the services layer. This is the core data center layer that is shared across multiple
services in a data center.

Platform Layer
The platform layer consists of the SQL Server instances and the SQL Azure fabric, and Management
services. The SQL Server instances represent the deployed databases, their replicas, and the operating

CHAPTER 10 SQL AZURE

500

system instances that host the SQL Server instances. The SQL Azure fabric is the underlying framework
that automates the deployment, replication, failover, and load balancing of the database servers.

The SQL Azure fabric is responsible for creating three replicas of your database instance and
provides automatic failover capabilities to these instances. As shown in Figure 10-2, if the primary
instance of your database experiences a failure, the SQL Azure fabric designates one of the replicas as the
primary instance and automatically routes all the communications to the new primary instance. In an
effort to maintain three replicas at all times, SQL Azure also creates a new replica of the database.

Figure 10-2. SQL Azure database replicas

The Management services are responsible for maintaining the health, upgrades, consistency, and
provisioning of the hardware and software to support the SQL Azure fabric.

Services Layer
The services layer comprises external (customer) facing machines and performs as a gateway to the
platform layer. It exposes the tabular data stream (TDS), billing, metering, and account provisioning
services to customers.

CHAPTER 10 SQL AZURE

501

 Note TDS is the native Microsoft SQL Server protocol that database clients can use to interact with a SQL
Server database. You can find the TDS protocol specification at http://msdn.microsoft.com/en-us/
library/dd304523(PROT.13).aspx.

The services layer exposes the TDS protocol on port 1433 over Secure Sockets Layer (SSL). The

services layer is also responsible for routing connections to the primary database instance in the
platform layer. This layer maintains runtime information about your database replicas and routes the
TDS coming from client applications to the appropriate primary instance. The services layer is also
responsible for provisioning your database when you create a database in SQL Azure. The provisioning
of databases involves communicating with the SQL Azure fabric in the platform layer to provision
appropriate replicas of the database.

The billing and metering service is responsible for monitoring the runtime usage of your database
for billing purposes. The billing and metering service tracks the usage of databases at the account level.

Client Layer
The client layer is the only layer that runs outside of the Microsoft data center. The client layer doesn’t
include any SQL Azure-specific components; instead, it uses all the existing features of SQL Server client
components like ADO.NET, ODBC, Visual Studio SQL Server Management Studio, ADO.NET Data
Services, and so on. The client API initiates a TDS connection to SQL Azure on port 1433, which is routed
by the services layer to the platform layer to the appropriate database instance.

SQL Azure Limitations and Supported Features
Even though SQL Azure is based on SQL Server, it includes some limitations because of its Internet
availability and cloud deployment. When you use SQL Server on-premise, the tools and client APIs have
full access to the SQL Server instance, and communications between the client and the database are in a
homogeneous and controlled environment.

The first release of SQL Azure has only limited functionality of the SQL Server database. One of the
most important limitations in SQL Azure is that fact that the size of the database can’t exceed 50GB. So,
as a database administrator or an architect, you must plan the growth and availability of data
accordingly. The supported and unsupported features of SQL Azure in version 1.0 are described in the
following sections.

 Note Several important features were announced at the SQL PASS Conference in October 2011. The key
announcements related to size limitations and increasing the maximum database size to 150GB by the end of
2011, and SQL Azure Federation, which allows you to elastically scale out your database beyond 150GB using the
sharding database pattern. Cihan Biyikoglu’s blog is very useful for providing more information about Federation
and SQL Azure in general: http://blogs.msdn.com/b/cbiyikoglu/.

http://msdn.microsoft.com/en-us/
http://blogs.msdn.com/b/cbiyikoglu/

CHAPTER 10 SQL AZURE

502

Avkash Chauhan’s blog is also a great source of information on SQL Azure. This post in particular is located at:
http://blogs.msdn.com/b/avkashchauhan/archive/2011/10/13/sql-azure-databases-will-be-expanded-

3x-from-50-gb-to-150-gb-and-sql-azure-reporting-amp-sql-azure-data-sync-ctp.aspx.

Database Features

SQL Azure supports the following database features:

• CRUD operations on tables, views, and indexes

• TSQL query JOIN statements

• Triggers

• TSQL functions

• Application stored procedures (only TSQL)

• Table constraints

• Session-based temp tables

• Table variables

• Local transactions

• Security roles

• Spatial data types: geography and geometry

SQL Azure does not support the following database features:

• Distributes query

• Distributed transactions

• Any TSQL query and views that change or retrieve physical resource information,
like physical server DDL statements,1 Resource Governor, and file group
references

Application Features

SQL Azure does not support the following application-level features:

• Service Broker

1 SQL Azure Team Blog: http://blogs.msdn.com/ssds/default.aspx

http://blogs.msdn.com/b/avkashchauhan/archive/2011/10/13/sql-azure-databases-will-be-expanded-3x-from-50-gb-to-150-gb-and-sql-azure-reporting-amp-sql-azure-data-sync-ctp.aspx
http://blogs.msdn.com/b/avkashchauhan/archive/2011/10/13/sql-azure-databases-will-be-expanded-3x-from-50-gb-to-150-gb-and-sql-azure-reporting-amp-sql-azure-data-sync-ctp.aspx
http://blogs.msdn.com/ssds/default.aspx

CHAPTER 10 SQL AZURE

503

• HTTP access

• CLR stored procedures

Administration Features

SQL Azure supports the following administration features:

• Plan and statistics

• Index tuning

• Query tuning

SQL Azure does not support the following administration features:

• Replication

• SQL profiler

• SQL trace flag

• Backup command

• Configuration using the sp_configure stored procedure

 Note The SQL Azure SDK documentation lists all the other limitations that aren’t covered in this section. See
http://msdn.microsoft.com/en-us/library/ee336245.aspx.

SQL Azure Data Access
SQL Azure allows you to connect to the cloud database only using the TDS protocol with limited
support, as described in the previous section. But because the TDS protocol is supported by most of the
SQL Server client APIs, all the features supported by SQL Azure work with existing client APIs. You can
use two common patterns to connect to SQL Azure databases: code near and code far.

Code-Near Connectivity
In code-near connectivity, your application is deployed in Windows Azure, which uses SQL Azure. You
geo-locate both of them in the same data center by configuring the geo-location features of Windows
Azure and SQL Azure. Figure 10-3 illustrates applications with code-near connectivity to a SQL Azure
database.

http://msdn.microsoft.com/en-us/library/ee336245.aspx

CHAPTER 10 SQL AZURE

504

Figure 10-3. Code-near connectivity to SQL Azure

CHAPTER 10 SQL AZURE

505

In a typical code-near architecture, the data access application is located in the same data center as
the SQL Azure database. The end users or on-premise applications access the web interface are exposed
via a Windows Azure web role. This web role may be hosting an ASP.NET application for end users or a
web service for on-premise applications.

The advantages of the code-near approach are as follows:

• Business logic is located closer to the database.

• You can expose open standards–based interfaces like HTTP, REST, SOAP, and so
on to your application data.

• Client applications don’t have to depend on the SQL Server client API.

The disadvantage of this approach is the performance impact your application experiences if you’re
using Windows Azure as a middle tier to access the database.

Code-Far Connectivity
In code-far connectivity, your application is typically deployed on-premise or in a different data center
than SQL Azure. In this pattern, the client application makes a SQL query using the TDS protocol over
the Internet to the SQL Azure database. Figure 10-4 illustrates applications with code-far connectivity to
a SQL Azure database.

Figure 10-4. Code-far connectivity to SQL Azure

CHAPTER 10 SQL AZURE

506

The biggest advantage of the code-far approach is the performance benefit your application can
experience because of direct connectivity to the database in the cloud. The biggest disadvantage is that
all the client applications must use the TDS protocol to access the database. Therefore, the data access
clients must use SQL Server-supported client APIs like ADO.NET, ODBC, and so on, reducing data-
access possibilities from APIs or platforms that don’t support the TDS protocol.

Getting Started with SQL Azure
SQL Azure is a core component of the Windows Azure platform. Like all other Windows Azure
components, administration is originally performed through the Azure Management Portal (shown in
Figure 10-5). Go to https://windows.azure.com, and you will see a Database navigation item in the lower
part of the left-hand navigation frame. Clicking this link will take you to your SQL Azure Management
Portal. This is where you will create servers and manage administrators and firewalls.

Figure 10-5. SQL Azure Management Portal

 Note The links on the right side of the portal contain some very useful resources.

https://windows.azure.com

CHAPTER 10 SQL AZURE

507

Creating a SQL Azure Server
The first thing to do is create a server to host your databases. Click “Create a new SQL Azure Server” and
you will be taken through a wizard. Fill in the following information:

1. Select a subscription: If you happen to have more than one Azure subscription,
choose the one for which you want to be billed.

2. Region: Select the geographic region in which the server will be provisioned.

3. System Administrator login: choose a username and password for your system
administrator account. (Note that logins such as ‘sa’ and other typically
insecure logins will not be allowed.)

4. Firewall rules: Add IP addresses for which you want to provide access to the
server. This will be required for any on-premise IP addresses or ranges s that
you want to have access to the server directly. If all of your access will be
through the portal or Database Manager, then you don’t need to add anything.
Also of importance is the check box “Allow other Windows Azure services to
access this portal.” This is required if you plan to access the database from an
application deployed in Azure. Since the IP addresses of the role instances are
dynamic, the platform manages this access for you. You also have the
opportunity to modify these settings later in the portal.

 Tip Rather than creating the entire database in the cloud, it may be simpler to use SQL Express to create the
database schema, and then use a tool like SQL Azure Migration Wizard from codeplex to migrate the structure to
SQL Azure. If you are migrating an existing database, it can even move the data for you. Check out
http://sqlazuremw.codeplex.com

Once created, your portal should show the screen in Figure 10-6.

http://sqlazuremw.codeplex.com

CHAPTER 10 SQL AZURE

508

’

Figure 10-6. SQL Azure portal, Server view

On the left will be a tree view of your subscriptions, servers and databases. On top is a set of
buttons—grouped by Server and Database—that allow you to manage your server and databases. On the
right, the properties for the server are displayed. This provides you with some key information about
your server, such as the fully qualified DNS name, which is essential when building connection strings. It
also tells you the number of databases permitted for the server, as well as how many you have created.

The key functionality is in the middle pane. By clicking on a database row in the lower pane, you can
select a database to manage, which will be covered later. On the top half of the middle pane is where you
manage the firewall rules for the server (see Figure 10-7).

By default, SQL Azure blocks all IP traffic to the server except that which comes through the portal
itself. If you intend to use tools or applications that will be accessing this SQL Azure server, you will need
to add a firewall rule. Otherwise, access to the server will be denied.

Click the Firewall Rules button in the middle, and the panel will appear showing the current set of
firewall rules (see Figure 10-8). Note the option to allow other Windows Azure services access to this
server. Again, this provides Azure role instance access to the SQL Server through the firewall.

CHAPTER 10 SQL AZURE

509

 Note In my work with customers and partners at Microsoft, forgetting to configure the firewall rules is one of
the most common issues. If you are having problems connecting to SQL Azure, check the firewall rules first. If you
can connect on-premise or in the Compute Emulator, but get connection errors when deployed to the Azure
environment, make sure the ‘Allow Windows Azure services’ checkbox is selected.

Figure 10-7. Firewall rules

CHAPTER 10 SQL AZURE

510

Figure 10-8. Adding a firewall rule

Creating a SQL Azure Database
To create a new database, follow these steps:

1. Click the Create Database button at the top of the portal (see
Figure 10-9).

CHAPTER 10 SQL AZURE

511

Figure 10-9. Creating a database: initial settings

2. Create DatabaseName the database “proazuredb” and click Create. The
proazuredb database shows up in the database list on the portal page and in
the tree view on the left. Clicking the database name in the left navigation will
bring up the database man page. This is where you can view database
properties such as connection strings. Clicking the ellipse button on the right
will provide you with connections strings for your database, as shown in Figure
10-10.

CHAPTER 10 SQL AZURE

512

Figure 10-10. Proazuredb connection strings

Note that all the databases in the same project have the same master database and administrator. If
you want to drop the database, you can click the Drop button.

Connecting to a SQL Azure Database
After the database is created, you can connect to it from anywhere with SQL Server client capabilities.
You can connect to the SQL Azure database in the following four ways:

• SQL Server Management Studio

• Database Manager portal application

• SQLCMD

• ADO.NET

Connecting Using SQL Server Management Studio
The steps to connect to the SQL Azure database are as follows:

1. Open SQL Server Management Studio.

CHAPTER 10 SQL AZURE

513

2. Choose Start All Programs SQL Server 2008 SQL Server Management
Studio.

 Note In the current CTP, click the Cancel button on the Login dialog box.

3. Click the New Query button in SQL Server Management Studio (see Figure 10-
11).

Figure 10-11. New Query window

4. A new login dialog appears (see Figure 10-12). Enter the SQL Azure server
name and administrator username/password that you created while
provisioning the database. The format for the server name is {your server
name}. database.windows.net, where {your server name} is the name of the
server assigned to your database during provisioning. You can get if from the
Server Administration page on the SQL Azure portal.

Figure 10-12. Database login

CHAPTER 10 SQL AZURE

514

5. If you want to connect to a specific database, click the Options button and
enter the database name (such as proazuredb) that you want to connect to
(see Figure 10-13). If you don’t choose a database name, you’re connected to
the master database by default.

Figure 10-13. Enter a database name

6. Keep the database name set to default, and click Connect to connect to the
master database. If the connection is successful, a new query window opens,
as shown in Figure 10-14.

CHAPTER 10 SQL AZURE

515

Figure 10-14. New Query window

7. Now you’re connected to the SQL Azure cloud master database. Type the
following queries in the query window, and click Execute:

select * from sys.databases;
select @@version;
select @@language;

8. The first query returns the list of databases, @@version, returns the version of
the database server, and @@language returns the database language currently
in use. As shown in Figure 10-15, the query returns two databases: master and
proazuredb. The master database is created by the system during provisioning,
but the proazuredb is the user created database.

CHAPTER 10 SQL AZURE

516

Figure 10-15. Execute queries

9. Create a new database named MyCloudDb. Execute the following query in the
query window to create the MyCloudDb database:

CREATE DATABASE MyCloudDb;

10. When you execute the CREATE DATABASE statement, SQL Azure creates a
new database in the cloud. Note that you don’t have to worry about the
location of the data files because SQL Azure abstracts the location of the data
files from you.

11. Execute the “select * from sys.databases” query again. You see the new
database in the list of databases returned by the query (see Figure 10-16).

Figure 10-16. List the new database

Creating Logins

From SQL Server Management Studio, you can execute common administration SQL statements like
creating logins and users, and assigning users to database roles. To create a new login, you have to first
create a new login in the master database, and then create a new user for the login in the MyCloudDb
database, and finally add the new user to one of the database roles using the system stored procedure
sp_addrolemember:

1. Connect to the master database using SQL Server Management Studio. Make
sure you set the database name to master in the Connection Properties tab, as
shown in Figure 10-17.

CHAPTER 10 SQL AZURE

517

Figure 10-17. Set the master database in Connection Properties

2. Create a new login named test user by executing the following query in the
query window (see Figure 10-18).

 Tip Use your own password in the query.

CREATE LOGIN testuser WITH PASSWORD = 'pas@word1'

CHAPTER 10 SQL AZURE

518

Figure 10-18. Create a new login

3. Connect to the MyCloudDb using your administrator account and by typing
MyCloudDb in the Connection Properties tab, as shown in Figure 10-19.

Figure 10-19. Set the database to MyCloudDb in Connection Properties

4. After the connection is successful, type the following query to create a new
user test user for the new login in MyCloudDb (see Figure 10-20):

CREATE USER testuser FOR LOGIN testuser;

CHAPTER 10 SQL AZURE

519

 Note You cannot simply use the ‘use {database}’ statement to switch between databases. It is not supported in
SQL Azure. You must create a connection to each database independently.

Figure 10-20. Create a new user for the login

5. After you add the user to the database, you have to add the user to a particular
database role. Figure 10-21 illustrates the default roles in SQL Server.

Figure 10-21. Default SQL Server roles

6. Add the test user to the db_owner group by executing the following query:

EXEC sp_addrolemember 'db_owner', 'testuser'

 Tip In real-world applications, don’t add users to the db_owner role because the db_owner role has extensive
privileges to the database.

7. Connect to MyCloudDb using the newly created test user, as shown in
Figure 10-22.

CHAPTER 10 SQL AZURE

520

Figure 10-22. Connecting to MyCloudDb as testuser

Now you don’t need to log in to the database with the administrator user; instead you can log in as
test user. From SQL Server Management Studio, you can also execute data definition (DDL) and data
manipulation (DML) commands like CREATE TABLE, UPDATE TABLE, INSERT, DELETE, and so on. I
cover DDL and DML in a later section with an example.

Connecting Using Database Manager
In this section I will show you how to connect to and manage your SQL Azure database from the
Database Manager online tool From the main SQL Azure portal, select a database, and click the
‘Manage’ button as shown in Figure 10-23. This will bring you to a Silverlight application you can use to
manage your database.

CHAPTER 10 SQL AZURE

521

Figure 10-23. Accessing Database Manager from the Azure portal

From there, you will be taken to a login screen where you must enter your SQL credentials. Once
entered, you will be taken to the Database Manager application, as shown in Figure 10-24.

CHAPTER 10 SQL AZURE

522

Figure 10-24. Database Manager application

From here, you have the ability to perform many common database tasks. Clicking New Query gives
you the ability to create and execute ad-hoc queries, as shown in Figure 10-25. In addition to ad-hoc
queries, this is where you would execute SQL commands for tasks such as creating logins and users.

Figure 10-25. Creating an ad-hoc query

Clicking ‘Tables’ in the left-hand navigation brings up a list of tables in your database. Clicking each
row in the list provides you with the option of viewing the data in the table, or modifying the design, as

CHAPTER 10 SQL AZURE

523

shown in Figure 10-26. In addition you can create new tables by clicking the New Table button. The UI
for creating/modifying tables is shown in Figure 10-27.

Figure 10-26. Database Manager table listing

Figure 10-27. Creating a table

Creating a stored procedure is also possible. Simply click New Stored Procedure and you will be
presented with a user interface that allows you to write a stored procedure and add parameters, as
shown in Figure 10-28.

CHAPTER 10 SQL AZURE

524

Figure 10-28. Creating a stored procedure

One last thing to note is that Database Manager tries to be a Windows-type application, in that each
of the user interface pages you open remains open until you explicitly close it. If you want to see which
pages are open, or navigate to one of these pages while you are working on another, click the Active
Pages button, and you will see all the pages you have open, as shown in Figure 10-29.

Figure 10-29. Active Pages

Connecting Using SQLCMD
SQLCMD.exe is a command-line utility used to execute commands on SQL Server. It comes with the SQL
Server installation. SQL Server Management Studio is a good user interface tool to connect to SQL Azure;
but in real-world production environments where automation is heavily used in administering SQL

CHAPTER 10 SQL AZURE

525

Servers, SQLCMD is the preferred tool. You can automate the execution of SQL command by scheduling
SQLCMD. It accepts inline SQL as well as scripts files as input.

The steps to connect to SQL Azure using SQLCMD are as follows:

1. Open a command prompt as administrator, as shown in Figure 10-30.

Figure 10-30. Open a command prompt

2. The syntax to connect to a database using sqlcmd.exe is as follows (it should be
entered as a single line):

CHAPTER 10 SQL AZURE

526

sqlcmd -U <userlogin@servername>
 -P <password> -S <Fully Qualified ServerName> -d <database name>

3. userlogin is the user name you created for the database. In the previous
example, it’s either administrator or test user, if you’re connecting to the
MyCloudDb database. servername is the server name from your Server
Administration page in the developer portal. Don’t provide the fully qualified
server name. password is the password for the login. Fully Qualified
ServerName is the server name appended by the fully qualified name of the
SQL Azure server (servername.ctp.database.windows.net).

4. Execute the following command on the command line to connect to
MyCloudDb (see Figure 10-31). Replace the server name with your own server
name:

sqlcmd -U testuser@nx8qpedcoo -P pas@word1
 -S nx8qpedcoo.ctp.database.windows.net -d MyCloudDb

Figure 10-31. Connect to MyCloudDb

5. If the connection is successful, you see “1> displayed on the command
prompt.

6. Execute the following command to create a table in MyCloudDb (see
Figure 10-32):

CREATE TABLE CloudTable
 (ColNumber1 int primary key clustered, ColNumber2 varchar(50), ColNumber3 float);
GO

Figure 10-32. Create Table

7. Execute the following command to get the information about the tables in the
MyCloudDb database (see Figure 10-33).

SELECT * FROM sys.tables

CHAPTER 10 SQL AZURE

527

Figure 10-33. Select all tables

 Note You can find more information about the SQLCMD command-line utility in SQL Server Books online at
http://msdn.microsoft.com/en-us/library/ms162773.aspx. In this chapter, I use SQL Server Management
Studio to connect to the SQL Azure database manually; but in an environment where you need scripting to
automate SQL Server tasks, you should use SQLCMD.

Connecting Using ADO.NET
ADO.NET is the most popular method to connect to an on-premise SQL Server programmatically. SQL
Azure supports ADO.NET connectivity similar to an on-premise SQL Server. To open a connection to
SQL Azure database using ADO.NET, you have to pass the connection string of the database acquired
from the Server Administration page of the SQL Azure developer portal; or, you can programmatically
build a connection string using the System.Data.SqlClient.SqlConnectionStringBuilder class, as shown
in Listing 10-1.

http://msdn.microsoft.com/en-us/library/ms162773.aspx

CHAPTER 10 SQL AZURE

528

Listing 10-1. Build a Connection String Using SqlConnectionStringBuilder

private static string GetUserDbString()
 {
 // Create a connection string for the sample database
 SqlConnectionStringBuilder connString2Builder =
 new SqlConnectionStringBuilder();
 string server = "yourservername.ctp.database.windows.net";
 connString2Builder.DataSource = server;
 connString2Builder.InitialCatalog = "user database";
 connString2Builder.Encrypt = true;
 connString2Builder.TrustServerCertificate = true;
 connString2Builder.UserID = "userName";
 connString2Builder.Password = "pass@word1";
 return connString2Builder.ToString();
 }

The SqlConnectionStringBuilder class is used to build the string value of the SQL Azure database
connection string. Note that the Encrypt and TrustServerCertificate properties are set to true, which is a
best practice in general for connecting to databases in the cloud or in another domain.

After the connection string is constructed, you can connect to the SQL Azure database by opening a
SqlConnection to the database. Listing 10-2 shows a series of database queries executed on a SQL Azure
database after the connection is successfully established.

Listing 10-2. SqlConnection and Query Execution

using (SqlConnection conn = new SqlConnection(GetUserDbString()))
 {
 using (SqlCommand command = conn.CreateCommand())
 {
 conn.Open();
 // Create table
 command.CommandText =
"CREATE TABLE MyTable1(Column1 int primary key clustered, " +
"Column2 varchar(50), Column3 datetime)";
 command.ExecuteNonQuery();
 // Insert records
 command.CommandText = String.Format
("INSERT INTO MyTable1 (Column1, Column2, Column3) “ +
“values ({0}, '{1}', '{2}')", 1, "TestData", DateTime.Now.ToString("s"));
 int rowsAdded = command.ExecuteNonQuery();
 DisplayResults(command);
 // Update a record
 command.CommandText =
"UPDATE MyTable1 SET Column2='Updated String' WHERE Column1=1";
 command.ExecuteNonQuery();
 AddText("UPDATED RECORD");
 DisplayResults(command);
 // Delete a record
 command.CommandText = "DELETE FROM MyTable1 WHERE Column1=1";
 command.ExecuteNonQuery();

CHAPTER 10 SQL AZURE

529

 DisplayResults(command);
 }//using
 }

Listing 10-2 shows the execution of CREATE, INSERT, UPDATE, and DELETE commands on a SQL
Azure database in a sequential operation.

 Note SQL Azure requires you to have a clustered index on the table to insert entries into the table.

Similarly, Listing 10-3 shows the code for the DisplayResults function, demonstrating SELECT
command execution on the database table.

Listing 10-3. SELECT Command

private static void DisplayResults(SqlCommand command)
 {
 command.CommandText = "SELECT Column1, Column2, Column3 FROM MyTable1";
 using (SqlDataReader reader = command.ExecuteReader())
 {
 // Loop over the results
 while (reader.Read())
 {
 AddText(command.CommandText);
 AddText(String.Format("Column1: {0}, Column2: {1}, Column3: {2}",
 reader["Column1"].ToString().Trim(),
 reader["Column2"].ToString().Trim(),
 reader["Column3"].ToString().Trim()));
 AddText("\n");
 }
 }
 }

You can find the code for Listings 10-1 through 10-3 in the ADONETConnection project in
Ch10Solution located in the source code directory of this chapter. To run the ADONETConnection
application, go to the bin\Debug directory of the ADONETConnection project and double-click
ADONETConnection.exe. Figure 10-34 illustrates the user interface for the ADONETConnection.exe
Windows application.

CHAPTER 10 SQL AZURE

530

Figure 10-34. ADONETConnection Windows application

In the ADONETConnection application, you have to enter the server name, username, password,
and database name of your database. Then, click the Create Table button to create a new table called
MyTable1. Insert a record into that table, update the record, and delete the record. The results of the
operation are displayed in the text box. To drop the table, click the Drop Table button. If the table
already exists, the Create Table operation throws an exception. So, you may have to drop the table if you
receive a “table already exists” exception.

 Caution Here are a few important points to consider while designing SQL data access: test your queries for
SQL Injection; use parameterized queries wherever possible; encrypt your database connection string; and encrypt
the username, password, and database information if you’re constructing the connection string using the
SqlConnectionBuilder.

Developing Windows Azure Services That Use SQL Azure
As an exercise to learn SQL Azure, in this section you develop an end-to-end application involving SQL
Azure, Windows Azure, and AppFabric Service Bus. This example also helps you learn to integrate these
three technologies seamlessly when building cloud applications.

CHAPTER 10 SQL AZURE

531

Service Description
Consider a hypothetical company called SixFrogs Incorporated that offers a cloud-based demand-
response service (Dem-Res) directly to utility companies and indirectly to consumers through utility
companies.

A demand-response (Dem-Res) system is a popular pattern used by utility companies to curtail the
electricity load during peak usage when the pricing for usage is very high. The cost savings are then
passed on to consumers. The curtailment is determined in real time based on peak usage, pricing, and
several other factors. In the interest of keeping the example conceptual, assume that the load reduction
depends on peak usage and pricing.

Processes for Curtailment
The process flow for the Dem-Res system between SixFrogs, utility companies, and consumers is as
follows:

1. Multiple utility companies subscribe to SixFrog’s Dem-Res cloud system.

2. Consumers subscribe to the Dem-Res system through their utility company in
return for a discount on their monthly electric bill.

3. Utility companies install their hardware (gateway) in consumers’ houses
and/or buildings and point those gateways to the Dem-Res system in the
cloud.

4. Utility companies configure load curtailment for consumers for specific load
devices (this example considers only HVAC).

5. Utility companies receive electric load-pricing information for a particular
period of time. This pricing information is in dollars per kWh for a particular
period of time. For example, a particular pricing entry may be represented as
$16/kWh between 1:00pm and 3:00pm on Monday August 24th 2009.

6. Utility companies pass this pricing information to the Dem-Res system.

7. The Dem-Res system reads the pricing information and sends commands to
the applicable gateways in buildings and houses to automatically curtail the
load.

8. Periodically, the gateways communicate the energy usage to the Dem-Res
system. The Dem-Res system checks the database for peak load and pricing
information and sends curtailment commands to the gateways if required.

Figure 10-35 illustrates the high-level process for the Dem-Res system.

CHAPTER 10 SQL AZURE

532

Figure 10-35. Dem-Res process

Technical Architecture
This section discusses the design of the Dem-Res system and its communication endpoints. The goal is
to map the process architecture to the system architecture in the cloud representing Windows Azure
components. From the earlier section and your knowledge of Windows Azure so far, it should be clear

CHAPTER 10 SQL AZURE

533

that you can build a complete Dem-Res system in Windows Azure. Figure 10-36 illustrates the technical
architecture of the Dem-Res system.

Figure 10-36. Dem-Res system architecture

As shown in Figure 10-36, the Dem-Res system consists of three core components:

• Pricing and Gateway database

• Gateway listener

CHAPTER 10 SQL AZURE

534

• Gateway application

The flow of information within the components is as follows:

1. The utility company periodically sends gateway and pricing information to the
pricing database in the Dem-Res system.

2. Periodically, the gateway sends an energy usage value to the gateway listener
via the AppFabric Service Bus.

3. The gateway listener worker role queries the pricing database to check if the
energy value is more than the peak load value.

4. If the gateway energy value is more than the peak load value, the gateway
listener sends a curtail command to the gateway application. The gateway
application in turn sends the control command to the appropriate device
(such as HVAC, in this example).

Pricing and Gateway Database Design
The Pricing and Gateway database is hosted in SQL Azure and is geo-located in the same region as the
gateway listener worker role to keep the communications within the same data center. As the name
suggests, the database consists of pricing and gateway information.

 Tip I recommend that you design your SQL Azure database in SQL Server on-premise and then migrate the
database to SQL Azure. When SQL Azure fully supports SQL Server Management Studio, you can work directly with
the SQL Azure database.

The Pricing and Gateway database consists of four tables, as shown in Figure 10-37.

CHAPTER 10 SQL AZURE

535

Figure 10-37. Pricing and Gateway database design

The Gateways table maintains the list of gateways in the field along with their location, which is
referenced by LocationId from the PricingLocations table. The PricingLocations table consists of address
locations that are mapped as pricing zones. Each zone has a price per kWh stored in the
PricingCalendar_kWh table. The PricingCalendar_kWh table is updated periodically by the utility
companies with the latest pricing. The EnergyMeterValues are the kWh values that gateways send
periodically to the Dem-Res system.

The steps to create and testing the Dem-Res database system are as follows:

1. Create a database named proazuredemres.

2. Create table-creation scripts.

3. Create stored-procedure scripts.

4. Upload sample data into the tables.

5. Create data synchronization for the PricingCalendar_kWh table.

Creating the proazuredemres Database
To create this database, follow these steps:

1. Open SQL Server Management Studio.

2. Connect to the SQL Azure master database as an administrator, as shown in
earlier sections.

3. Execute the following query in the New Query window to create the
proazuredemres database:

CHAPTER 10 SQL AZURE

536

CREATE DATABASE proazuredemres;

4. Create a new login named demresadmin in the db_owner role for the
proazuredemres database. Follow the same procedure as shown in the
“Creating Logins” section earlier in this chapter.

5. Log in to the proazuredemres database as the demresadmin user, and execute
the following query to test if the login was created successfully:

select * from sys.databases;

Creating Database Tables
To create database tables, I recommend that you first create the tables and other database objects in
your local SQL Server Express and then generate scripts to upload to the SQL Azure database. In this
section, you directly create SQL Server objects in SQL Azure to keep the content relevant to SQL Azure
only.

Listing 10-4 shows the script and schema to create the Dem-Res database tables.

Listing 10-4. Dem-Res Table-Creation Script

CREATE TABLE [dbo].[PricingLocations](
 [LocationId] [varchar](50) NOT NULL PRIMARY KEY CLUSTERED,
 [Description] [varchar](100) NOT NULL);
GO
CREATE TABLE [dbo].[PricingCalendar_kWh](
 [PricingId] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED,
 [PricingStartDate] [datetime] NOT NULL,
 [PricingEndDate] [datetime] NOT NULL,
 [PricePerkWh] [float] NOT NULL,
 [LocationId] [varchar](50) NOT NULL);
GO
CREATE TABLE [dbo].[Gateways](
 [GatewayNumber] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED ,
 [GatewayId] [varchar](50) NOT NULL,
 [LastCommunication] [datetime] NULL,
 [LocationId] [varchar](50) NOT NULL,
 [WebAddress] [varchar](100) NOT NULL);
GO
CREATE TABLE [dbo].[EnergyMeterValues](
 [RecordId] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED,
 [GatewayNumber] [int] NOT NULL,
 [GatewayId] [varchar](50) NOT NULL,
 [kWhValue] [float] NOT NULL,
 [kWhFieldRecordedTime] [datetime] NOT NULL,
 [kWhServerTime] [datetime] NOT NULL,
 [Cost] [money] NOT NULL);
GO
ALTER TABLE [dbo].[EnergyMeterValues]
 WITH CHECK ADD CONSTRAINT [FK_EnergyMeterValues_Gateways]
 FOREIGN KEY([GatewayNumber])

CHAPTER 10 SQL AZURE

537

REFERENCES [dbo].[Gateways] ([GatewayNumber])
GO
ALTER TABLE [dbo].[EnergyMeterValues] CHECK CONSTRAINT
[FK_EnergyMeterValues_Gateways]
GO
ALTER TABLE [dbo].[Gateways] WITH CHECK ADD CONSTRAINT
[FK_Gateways_PricingLocations] FOREIGN KEY([LocationId])
REFERENCES [dbo].[PricingLocations] ([LocationId])
GO
ALTER TABLE [dbo].[Gateways] CHECK CONSTRAINT [FK_Gateways_PricingLocations]
GO
ALTER TABLE [dbo].[PricingCalendar_kWh] WITH CHECK ADD CONSTRAINT
 [FK_PricingCalendar_kWh_PricingLocations] FOREIGN KEY([LocationId])
REFERENCES [dbo].[PricingLocations] ([LocationId])
GO
ALTER TABLE [dbo].[PricingCalendar_kWh]
 CHECK CONSTRAINT [FK_PricingCalendar_kWh_PricingLocations]
GO

The first part of Listing 10-4 defines the tables, and then second part defines foreign key
relationships between the tables.

To create tables in SQL Azure, follow these steps:

1. Connect to the proazuredemres database using SQL Server Management
Studio.

2. Log in as the demresadmin user.

3. Open the createtables_proazuredemresdb.sql script file window from the
DbScript folder of the Chapter 10 code directory in a NewQuery.

4. Click the Execute button to create the tables in the proazuredemres database.

5. Execute the following query to check if the tables and constraints were
successfully created:

select * from sys.objects

Creating Stored Procedures
One of the database design best practices is to locate data-processing logic closer to the database as
much as possible. This is the reason stored procedures are recommended for data-processing logic
rather than inline code. Stored procedures are also easier to modify and maintain than code because
each stored procedure is an atomic unit containing data-processing logic that can be easily modified
without having to recompile the code. For the Dem-Res system, I identified the stored procedures
described in the following sections.

CHAPTER 10 SQL AZURE

538

InsertPricingLocations

The InsertPricingLocations stored procedure inserts a new record in the PricingLocations table. This
stored procedure is called by utility companies to add locations that are used to set energy prices.
Listing 10-5 shows the create script for the InsertPricingLocations stored procedure.

Listing 10-5. InsertPricingLocations

CREATE PROCEDURE [dbo].[InsertPricingLocations]
 @locationId varchar(50),
 @description varchar(100)
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 INSERT INTO PricingLocations(LocationId, [Description])
 VALUES (@locationId, @description);
END

The stored procedure consists of a simple insert statement. If you want to modify the stored
procedure after it’s installed in the database, replace CREATE PROCEDURE with ALTER PROCEDURE in
the stored procedure body.

InsertPricingCalendar_kWh

The InsertPricingCalendar_kWh stored procedure inserts a new record in the PricingCalendar_kWh
table. The stored procedure is called by the utility companies to update the kWh pricing for a particular
period of time. Listing 10-6 shows the create script for the InsertPricingCalendar_kWh stored procedure.

Listing 10-6. InsertPricingCalendar_kWh

CREATE PROCEDURE [dbo].[InsertPricingCalendar_kWh]
 @pricingStartDate datetime,
 @pricingEndDate datetime,
 @pricePerkWh float,
 @locationId int
AS
BEGIN
 SET NOCOUNT ON;
 INSERT INTO PricingCalendar_kWh
(PricingStartDate, PricingEndDate, PricePerkWh, LocationId)
VALUES (@pricingStartDate, @pricingEndDate, @pricePerkWh, @locationId);
END

InsertGateway

The InsertGateway stored procedure inserts a new record in the Gateways table. This procedure is called
when a new gateway is added to the Dem-Res database by the utility company or when the gateway

CHAPTER 10 SQL AZURE

539

communicates with the Dem-Res system for the first time. Listing 10-7 shows the create script for the
InsertGateway stored procedure.

Listing 10-7. InsertGateway

CREATE PROCEDURE [dbo].[InsertGateway]
 @gatewayId varchar(50),
 @locationId int,
 @webAddress varchar(100)
AS
BEGIN
 SET NOCOUNT ON;

 INSERT INTO Gateways(GatewayId, LocationId, WebAddress, LastCommunication)
VALUES (@gatewayId, @locationId, @webAddress, getdate());
END

InsertEnergyMeterValues
The InsertEnergyMeterValues stored procedure inserts a new record in the EnergyMeterValues table.
This stored procedure is called when the gateway sends the energy meter value to the Dem-Res server.
Listing 10-8 shows the create script for the InsertEnergyMeterValues stored procedure.

Listing 10-8. InsertEnergyMeterValues

CREATE PROCEDURE [dbo].[InsertEnergyMeterValues]
 @gatewayId varchar(50),
 @kWhValue float,
 @kWhFieldRecoredTime datetime,
 @kWhServerTime datetime
AS
BEGIN
 SET NOCOUNT ON;
 DECLARE @gatewayNumber int
 DECLARE @cost float
 DECLARE @locationId int
 SELECT @gatewayNumber = GatewayNumber, @locationId=LocationId
FROM Gateways WHERE GatewayId = @gatewayId;
 SELECT @cost=PricePerkWh FROM PricingCalendar_kWh WHERE
LocationId = @locationId;
 SET @cost = @cost * @kWhValue;
 INSERT INTO EnergyMeterValues(GatewayNumber, GatewayId,
kWhValue, kWhFieldRecordedTime, kWhServerTime, Cost)
 VALUES (@gatewayNumber, @gatewayId, @kWhValue,
@kWhFieldRecoredTime, @kWhServerTime, @cost);
END

In Listing 10-8, PricePerkWh is retrieved from the PricingCalendar_kWh table to calculate the cost of
energy for the kWh value at the location where the gateway is located. The cost is calculated by
multiplying the kWh value by the price per kWh sent by the gateway. The cost value is then inserted into
the record along with all the other fields of the table.

CHAPTER 10 SQL AZURE

540

UpdateGatewayLastCommunication

The UpdateGatewayLastCommunication stored procedure updates the last communication time field in
the Gateways table. This stored procedure is called when the gateway sends the energy meter value to
the Dem-Res server. Listing 10-9 shows the create script for the UpdateGatewayLastCommunication
stored procedure.

Listing 10-9. UpdateGatewayLastCommunication

CREATE PROCEDURE [dbo].[UpdateGatewayLastCommunication]
 @gatewayId varchar(50),
 @locationId int,
 @webAddress varchar(100)
AS
BEGIN
 SET NOCOUNT ON;
 UPDATE Gateways SET LastCommunication = getdate() WHERE GatewayId = @gatewayId
END

To install the stored procedures, open SQL Server Management Studio, connect to the
proazuredemres database, and execute the CREATE PROCEDURE scripts as shown in Figure 10-38.

Figure 10-38. Creating stored procedures

Uploading Sample Data
In any database system design, you need sample data to test different scenarios and conditions that will
affect the system in general. You also need sample data to test the business logic in application and
stored procedures. In Ch10Solution in this chapter’s source code directory, there is a Windows Forms
project called ProAzureDemResDbApp that uploads sample data to PricingLocations,
PricingCalendar_kWh, Gateways, and EnergyMeterValues in the SQL Azure Dem-Res database. The
application calls the stored procedures discussed in the previous section to insert the data. The data is
randomly generated based on some hard-coded parameters in the code. For example, the pricing
locations are between the ZIP codes 95147 and 94583. Similarly, the gateway numbers are between 1 and
300. These values are also used to generate a web URL for the gateway, which is of the format
sb://proazure.servicebus.windows.net/gateways/{location_id}/{gateway_id}.

CHAPTER 10 SQL AZURE

541

Figure 10-39 illustrates the user interface of the ProAzureDemResDbApp application.

Figure 10-39. ProAzureDemResDbApp user interface

To upload sample data, follow these steps:

1. Run the ProAzureDemResDb application.

2. Enter your server name, username, password, and database name.

3. Click the Create Sample Data button.

 Note It may take some time to run the query, depending on your network connection.

4. To delete all the data in the tables, click the Drop Data button. Dropping data
is useful if you want to re-create the sample data from scratch.

Listing 10-10 shows the code to insert data in the PricingCalendar_kWh table.

Listing 10-10. Insert Pricing Calendar Data

 using (SqlConnection conn = new SqlConnection(GetUserDbString()))
 {
 conn.Open();
 for (int j = START_LOCATIONID; j < END_LOCATIONID; j++)

CHAPTER 10 SQL AZURE

542

 {
 using (SqlCommand command = conn.CreateCommand())
 {
 command.CommandText = "InsertPricingCalendar_kWh";
 command.CommandType = CommandType.StoredProcedure;
 string lid = j.ToString();
 Random r = new Random();
 double price = r.NextDouble();
 SqlParameter pricingStartDate = command.CreateParameter();
 pricingStartDate.ParameterName = "@pricingStartDate";
 pricingStartDate.Value = PRICINGCALENDAR_STARTDATE;
 command.Parameters.Add(pricingStartDate);
 SqlParameter pricingEndDate = command.CreateParameter();
 pricingEndDate.ParameterName = "@pricingEndDate";
 pricingEndDate.Value = PRICINGCALENDAR_ENDDATE;
 command.Parameters.Add(pricingEndDate);
 SqlParameter pricePerkWh = command.CreateParameter();
 pricePerkWh.ParameterName = "@pricePerkWh";
 pricePerkWh.Value = price;
 command.Parameters.Add(pricePerkWh);
 SqlParameter locationId = command.CreateParameter();
 locationId.ParameterName = "@locationId";
 locationId.Value = lid;
 command.Parameters.Add(locationId);
 command.ExecuteNonQuery();
 }//using

 }//for
 }//using

Listing 10-10 demonstrates calling the InsertPricingCalendar_kWh stored procedure with
parameterized values. In database programming, parameterized values are recommended over plain-
text query strings, because there is a SQL injection risk when you use plain text queries. Parameterized
queries reduce this risk because they don’t append the value of the parameter to the SQL query, which
gives a clear separation between the SQL query and its parameters. In Listing 10-10, note that the price
per kWh is generated randomly. In the real world, the utility company provides the Dem-Res application
with the price per kWh.

To test the creation of the data, you can login to proazuredemres database in your account using
SQL Server Management Studio and execute a select * query on all the database tables.

Optimizing SELECT Queries
In the Dem-Res system, the most commonly used SELECT query selects PricePerkWh by LocationId
from the PricingCalendar_kWh table, because for every message that comes in from the gateway, you
have to calculate the cost. So, it’s important that the performance of the SELECT query is optimized by
appropriate indexes on the table. Depending on the other queries in the system, you may choose to
create a clustered index on the LocationId field. But you can have only one clustered index on a table,
which in this case is PricingId. In this example, you create a simple index on the LocationId field by
executing this query:

CREATE INDEX INDEX_PricingCalendar_kWh_LocationId

CHAPTER 10 SQL AZURE

543

 ON PricingCalendar_kWh(LocationId);

To test the index scan, you need sufficient data in the PricingCalendar_kWh table; otherwise, the
SQL Server optimizer scans only the clustered index because the SQL Server optimizer may choose a
different execution plan that yields better results. You can generate more test data by executing the
stored procedure shown in Listing 10-11.

Listing 10-11. AddSampleData Stored Procedure

CREATE PROCEDURE AddSampleData
@NumRows int
AS
DECLARE @counter int
DECLARE @locationId int
DECLARE @locationIdStr varchar(50)
DECLARE @desc varchar(50)
DECLARE @pricingStartDate datetime
DECLARE @pricingEndDate datetime
DECLARE @pricekWh float
DECLARE @gatewayUrl varchar(100)
DECLARE @gatewayId varchar(50)
DECLARE @kWhValue float
DECLARE @now datetime

SELECT @counter = 1
WHILE (@counter < @NumRows)
BEGIN

SET @locationId = 10000 + @counter;
SET @locationIdStr = CAST(@locationId as varchar);
SET @desc = @locationIdStr + '-' + CAST(@counter as nvarchar)+'-description';
SET @pricingStartDate = DATEADD(m, 2, getdate());
SET @pricingEndDate = DATEADD(m, 3, getdate());
SET @pricekWh = CAST(@counter as float) * 0.00052;
SET @gatewayId = 'MyGateway' + @locationIdStr;
SET @gatewayUrl = 'sb://proazure.servicebus.windows.net/gateways/' +
 @locationIdStr + '/' + @gatewayId;
SET @kWhValue = @pricekWh * 5.2;
SET @now = getdate();

 EXEC InsertPricingLocations @locationId, @desc;
 EXEC InsertPricingCalendar_kWh @pricingStartDate, @pricingEndDate,
@pricekWh, @locationId;
 EXEC InsertGateway @gatewayId, @locationId, @gatewayUrl;
 EXEC InsertEnergyMeterValues @gatewayId, @kWhValue, @now, @now;

 SELECT @counter = @counter + 1;

END

CHAPTER 10 SQL AZURE

544

The AddSampleData stored procedure creates sample data in all the database tables similar to the
ProAzureDemResDbApp Windows application you saw earlier. Execute the stored procedure with the
following query to enter 10,000 entries in the database tables:

EXEC AddSampleData 10001;

 Note I demonstrate two different ways of creating sample data so you can choose the approach you feel
comfortable with and understand the advantage of having the data-processing logic closer to the data. You can
easily modify the AddSampleData stored procedure without recompiling any code as you would have to do with the
Windows application shown earlier.

Next, to view the query execution plan, execute the query shown in Listing 10-12.

Listing 10-12. Show Query Plan

SET SHOWPLAN_ALL ON
GO
SELECT PricePerkWh FROM PricingCalendar_kWh WHERE LocationId = 95148;
GO
SET SHOWPLAN_ALL OFF

SET SHOWPLAN_ALL ON enables you to see the output of the query execution plan, as shown in
Figure 10-40.

Figure 10-40. Query plan output

The query plan shows the steps followed by the SQL Server query optimizer to execute your query.
The information shown in the plan is valuable for optimizing queries or debugging slow-running
queries. Figure 10-41 shows the query optimizer using the index scan of the
PricingCalendar_kWh_LocationId index you created earlier. To see the execution of the plan graphically,
go to Query Display Estimated Execution Plan in SQL Server Management Studio.

CHAPTER 10 SQL AZURE

545

Figure 10-41. Graphical query plan output

Pricing Table Synchronization
The values in the PricingCalendar_kWh table are provided by the utility companies. There are several
ways to synchronize data in the cloud PricingCalendar_kWh table with an on-premise database table,
such as creating a custom web service that can be called by utility companies, having an FTP server for
data transfer between utility companies and the Dem-Res system, SQL Server Integration Services
(SSIS), SQL Azure Data Sync, and so on.

CHAPTER 10 SQL AZURE

546

SQL Server Integration Services

SSIS is an Extract-Transform-Load (ETL) tool that comes with higher SQL Server editions. You can use
SSIS to do the following

• Extract data from a structured or unstructured data source.

• Clean up the data or apply business rules to the data.

• Upload the clean data to the destination database tables.

SSIS is popular in business intelligence (BI) applications for extracting data from different kinds of
sources and uploading the aggregated and clean data to a data warehouse for analysis and reporting. But
the application of SSIS isn’t limited to BI applications: many organizations use SSIS for simple cross-
database data transfer. Figure 10-42 illustrates the use of SSIS in different kinds of applications.

Figure 10-42. SSIS applications

 Note Since SSIS is outside the scope of this book, we’ve created an online companion with a section that
shows you how to use SSIS to synchronize data between an on-premise database and the SQL Azure cloud
database. Extra content can be downloaded with the source code at http://azureplatformbook.codeplex.com.

http://azureplatformbook.codeplex.com

CHAPTER 10 SQL AZURE

547

Gateway Application Design
A gateway application runs on gateways. This example builds it as a simple Windows application, but in
the real world such applications are background processes that run on embedded operating systems like
Windows CE. The gateway application calls the DemRes service in the cloud via the AppFabric Service
Bus using the netTcpRelayBinding. In Ch10Solution, the DemResGateway project represents the
gateway application. DemResGateway is a Windows application that implements the callback interface
that the DemRes service can call to curtail the load. Figure 10-43 illustrates the DemResGateway
architecture.

Figure 10-43. DemResGateway application architecture

Running the ProAzure Demand-Response Service
The steps required to run the Dem-Res system are outlined next. Begin by performing the following
prerequisites:

1. Register for a Windows Azure account.

2. Create a project in the AppFabric portal.

3. Create a username and password in the AppFabric portal.

4. Create a new SQL Azure database called proazuredemres.

5. Log in to proazuredemres using SQL Server Management Studio.

6. Open the proazuredemres_allobjects.sql file in a New Query window, and
execute the script to create objects in the proazuredemres database.

CHAPTER 10 SQL AZURE

548

 Note Make sure you’ve chosen the correct database before executing the script. You may also use SQLCMD to
execute the script from the command line.

7. Create sample data by executing the following stored procedure:

EXEC AddSampleData 10001;

Now, follow these steps to run the application:

8. Open Ch10Solution in Visual Studio.

9. Add your own usernames, passwords, endpoints, SQL Azure connection
strings, and other configuration parameters in the configuration files of the
DemResWorker, DemResGateway, and LogReceiverConsole projects.

10. Build and deploy the DemResWorker cloud service project to Windows Azure.

 Tip Run the complete end-to-end application locally in the development fabric before deploying it to Windows
Azure.

11. Start the LogReceiverConsole application. This application receives log
messages from the DemResWorkerRole.

12. Start the DemResWorker service in Windows Azure or in the development
fabric.

13. Start the DemResGateway application on your local machine.

14. Click the Send kWh Value button to send a single kWh value to the
DemResWorker service.

15. Click the button several times to get a value that results in a price greater than
one dollar. If the cost of energy per unit is more than one dollar, the
DemResWorker service sends a curtail command to the gateway using a
callback interface. When this happens, you see a message box with the curtail
value, as shown in Figure 10-44.

CHAPTER 10 SQL AZURE

549

Figure 10-44. DemRes callback

Database-Migration Strategies
When you’re creating a database from scratch, designing and deploying it in SQL Azure shouldn’t be
difficult. All the limitations and constraints in SQL Azure are published, and the database is a subset of
your on-premise SQL Server database. So, any database you design for SQL Azure can be easily migrated
to an on-premise SQL Server. But SQL Server is a mature database server used in enterprises of all sizes.
Migrating these legacy databases to the cloud may require a complete redesign because of the wide
range of rich features like Server Broker, CLR stored procedures, replication, mirroring, and so on that
are supported by on-premise databases but aren’t yet supported in SQL Azure.

A database migration involves migrating not only the data and its schema but also the business logic
and applications that depend on that database. Thus the database-migration strategy to SQL Azure
involves the following four actions:

1. Data definition migration

2. Data migration

3. Business logic migration

4. Application migration

Data Definition Migration
The data definition refers to the design of your database schema, which may include storage-specific
objects like tables, views, indexes, constraints, and so on. The data definition is tightly coupled to the
type of data stored in the database to achieve optimal performance.

A particular database’s data definition can be easily represented by a script that can be
automatically generated in SQL Server Management Studio. With minor modifications, these scripts can
be executed on SQL Azure to migrate the data definition from on-premise SQL Server to SQL Azure. So,
other than execution tools like SQL Server Management Studio and SQLCMD, you don’t need any
specific tools to migrate data definition from on-premise SQL Server to SQL Azure when you have the

CHAPTER 10 SQL AZURE

550

script representing the data definition. This is the recommended approach to migrate data definitions
from on-premise to SQL Azure, because this approach gives you more control over the definition of the
data.

You can also use SSIS to replicate data definitions on the fly between an on-premise database and
SQL Azure. But this approach may require more work in designing, building, testing, and deploying
packages.

Typical steps required to migrate data definition from on-premise SQL Server to SQL Azure are as
follows:

1. Log in to your on-premise SQL Server database.

2. Generate a script for all the data definition objects, which include tables,
views, indexes, and constraints (see Figure 10-45).

Figure 10-45. Generate a script

3. Modify the script to remove the features or commands not supported by SQL
Azure.

CHAPTER 10 SQL AZURE

551

 Note For commands not supported in SQL Azure, please refer to the SQL Azure documentation. For a full list of
unsupported commands, go to http://msdn.microsoft.com/en-us/library/windowsazure/ee336253.aspx.

4. Save the script as a SQL Azure database definition script.

5. Connect to the SQL Azure database to which you want to migrate the data
definition.

6. Open a New Query window, and copy and paste the content of the SQL Azure
database script into it.

7. Execute the script to install the data definition objects in the SQL Azure
database.

Data Migration
Data migration refers to the actual data stored in SQL Server. An on-premise SQL Server supports several
tools to migrate data across different SQL Server instances as well as heterogeneous databases like
Oracle, DB2, Access, and so on. Some of the popular data-migration tools are as follows:

• SQL Server BCP Utility: Used for bulk copying data between SQL Server instances
and/or file systems.

• SQL Server Management Studio: Used to back up and restore SQL Server
databases.

• Database mirroring: Supports real-time data mirroring across SQL Server
databases.

• Log shipping: Used for real-time backup and restore functionality.

• Replication: Supports real-time data mirroring across SQL Server databases.

• SQL Server Integration Services (SSIS): Includes built-in backup and restore tasks
that can be included in packages and executed in a standalone manner or coupled
with other business logic.

 Note This isn’t an exhaustive list but just the most commonly used tools that are included with SQL Server.
Most companies use advanced data-replication and -migration tools built by Microsoft’s partner companies. I
discuss only the most popular out-of-the-box SQL Server tools that you can use for data migration.

Most of the tools from this list need both the source database and the destination database
supporting the tool. As of this writing, other than SSIS and the BCP Utility (supported in future releases
of SQL Azure), SQL Azure doesn’t support any of these tools. Even within SSIS, some of the maintenance
tasks aren’t supported by SQL Azure, so your best option is to use tasks that support ADO.NET

http://msdn.microsoft.com/en-us/library/windowsazure/ee336253.aspx

CHAPTER 10 SQL AZURE

552

connections. The BCP tool is the simplest to use and the best option for quickly scripting and/or
scheduling the data migration on a periodic basis. On the other hand, SSIS gives you the most flexibility
because you can design workflows and/or data transformations within your data-migration package.
The BCP Utility is the best option for simple, quick, no-code data migrations, whereas SSIS is the best
option for data migrations involving workflows and/or transformations.

Business Logic Migration
In the simplest terms, the business logic refers to the logic that is applied to the data before it’s stored in
the database or retrieved from the database for viewing. The business logic may also consist of business
rules applied to inbound as well as outbound data in specific conditions. In some distributed systems,
the business logic is embedded in the middle tier; in other cases, it’s embedded in stored procedures
closer to the database. There are also some client/server systems where the business logic is embedded
in the client tier. Microsoft Excel is a very good client example in which you can connect to a database
and add business logic to the data retrieved in Excel.

When you’re planning a database migration, migrating the business logic associated with the data is
equally important. In cases where the business logic is programmed in stored procedures, you can
follow the same procedure as in the data-definition migration discussed earlier. You can generate a
script defining the stored procedures and execute the script in SQL Azure. SQL Azure doesn’t support
CLR stored procedures yet, so you have to reprogram the stored procedures in .NET middle-tier
components and TSQL stored procedures.

When the business logic is embedded in the middle tier, you must identify the SQL Server–specific
features used in the business logic and verify their supportability in SQL Azure. If they aren’t supported,
then you have to redesign an alternative.

Your business logic migration strategy will change depending on the tier that owns the business
logic. Typically, in large-scale enterprise systems, the business logic is programmed in the middle tier, so
multiple applications can share the same data and have their own business logic components. In these
cases, migration may require a detailed analysis and planning exercise. In small- to medium-scale
databases, the business logic tier is typically programmed in stored procedures and closer to the data. In
these cases, if the business logic is in TSQL stored procedures, the process is easier—assuming the
stored procedures access objects supported by SQL Azure. If the business logic is in CLR stored
procedures, you need a detailed planning and analysis exercise similar to that used with middle-tier
components.

Application Migration
All databases provide data-retrieval and -modification services to one or more applications that process
inbound and outbound data from the database. Without applications, databases are simply silos of
isolated data providing no value to the business. You don’t need a database to create a silo of data; you
can store the data in a file system, on tape, or on a storage area network in its raw format. Enterprises
store data in databases to make it available to applications. Applications then retrieve data from the
databases and present it to end users in a readable and business-friendly format.

When you’re designing a strategy for a database migration to SQL Azure, you have to consider all the
applications that are actively using the database and supporting business functions. In your migration
strategy, you must design a business continuity plan in which the database is migrated to SQL Azure
without affecting the business continuity of the applications and the database itself. In some cases, you
may also have to migrate the applications to Windows Azure along with the database to SQL Azure.
Business continuity is critical to enterprises, and all migration strategies must be designed so that
application downtime is zero.

CHAPTER 10 SQL AZURE

553

Database Growth-Management Strategies
When your data is on-premise, you can manage your SQL Server database’s growth by adding more
storage capacity. Typically, an on-premise storage area network is shared across multiple databases and
applications, and it’s only a matter of acquiring an extra block of storage from the company’s storage-
management team. Even though a cost is associated with the storage, you still have control over how you
distribute your database growth.

When your data is in SQL Azure, there is a storage constraint of 10GB per database, and you don’t
have control over how the data files are stored or distributed across the storage area network. Microsoft’s
argument behind this constraint is that according to the company’s analysis, 90% of the SQL Server
databases in the world are less than 9GB in size.

With this constraint in mind, how do you architect your database for growth beyond 50GB? The
following are a few strategies I have designed for SQL Azure customers:

• Partition data by location, and distribute it across multiple SQL Azure data
centers.

• Partition data by date into multiple databases.

• Partition data by business functions into bucket databases.

• Partition data by tenant, with one configuration and one content database per
tenant.

• Partition data between on-premise and SQL Azure databases.

 Note Because of the SQL Azure size restrictions, all these strategies revolve around creating multiple SQL
Server databases in SQL Azure and partitioning data across these databases.

In all the partitioning options, typically a centrally located or replicated configuration database
maintains the references and boundary parameters of the content databases. The content databases
contain the actual content partitioned by the appropriate boundary condition. These boundary
conditions may be one of more of the following: location, date, business function, tenant, and premise.
Figure 10-46 illustrates some of these partitioning strategies.

CHAPTER 10 SQL AZURE

554

Figure 10-46. Partitioning strategies

In Figure 10-46, the configuration database contains the partition information of the content
databases. The application queries the configuration database with query parameters and retrieves the
list of content databases that fall within the specified parameters. For example, if your query is for dates
in 2007, then the configuration database sends references to the 2007 database. The application can
then connect to the appropriate database to execute the query.

Because of the two hops between the application and the databases, there is a performance impact
on the data retrieval from the content databases. The configuration database isn’t expected to change
frequently because it depends on the partitioning parameters, which don’t change often. Therefore, you
can cache the configuration data in the application and synchronize only when it changes, bypassing an
additional hop to the configuration database.

CHAPTER 10 SQL AZURE

555

SQL Azure Reporting
Most applications need to provide some reporting functionality. Many on-premise applications have
used SQL Server Reporting Services (SSRS) as their reporting platform. This server-based platform
provides reporting functionality and tools that make it possible to create reports in many formats. It also
serves as a delivery engine, delivering reports over standard http protocols.

In addition, SSRS offers the built-in ability to export your reports in other formats, such as Excel,
Word, PDF, CSV, and others.

In an on-premise scenario, in order to get SSRS up and running, you would need to provision and
configure one or more application-tier servers for report hosting and delivery, as well as another
database (and perhaps server) to host report server data. For many non-enterprise customers, the
additional cost and maintenance overhead has been a blocker to adoption. SQL Azure Reporting solves
this problem by providing SSRS functionality as a cloud service.

 Note At the time of writing, SQL Azure Reporting was released in Community Technology Preview (CTP) mode.
It is not recommended for production applications yet.

The benefits of SQL Azure Reporting are obvious. Freeing you from the provisionsing and
maintenance of additional servers enables you to focus on building your reports. Additionally, your
reporting services engine will be capable of scaling with your application without needing to purchase
and maintain additional equipment. Finally, since Reporting Services is provided as a cloud service, you
can consume your reports from either on-premise or cloud applications.

Sample Report
As part of our project we’re going to assume that one if the requirements is to provide a report of the
most expensive locations. We want to be able to deliver this information in a variety of formats, and we
need it up quickly, so we’ve chosen to use SQL Azure Reporting.

Creating Reports
In-depth details around creating reports is outside the scope of this book, so I will be focusing on the
differences between building for SQL Server Reporting Services and SQL Azure. For more information on
building reports, go to: http://msdn.microsoft.com/en-us/library/bb522683.aspx

The steps required to implement SQL Azure Reporting are:

1. Ensure you have installed “SQL Server Business Intelligence Studio”, as part of
your SQL Server client tools installation. This is a Visual Studio Shell
environment that provides a graphical IDE for creating reports.

2. Provision your report server on Azure. Navigate to the Azure Management
Portal, click ‘Reporting’ in the left-hand navigation, and follow the instructions
to request CTP access.

3. Create the SQL Azure database that will serve as the source for report data.

4. Author the report using the Visual Studio Business Intelligence IDE.

http://msdn.microsoft.com/en-us/library/bb522683.aspx

CHAPTER 10 SQL AZURE

556

5. Deploy the resulting .RDL file to the report server.

Once you have completed steps 1, 2, and 3, you can begin creating your report. Open SQL Server
Business Intelligence Studio and create a new Report Server project. Choosing Add New Report will
bring up a wizard that will walk you through the next steps: defining your data source, and your dataset.

Define Data Source
The first step in creating the report is to define your data source. Retrieve your connection string form
the Azure portal, and paste it into the Connection String field. Click the Credentials button. Here you
have the choice of entering credentials, prompting for credential, or requiring no credentials. Also,
choose whether you want this to be a shared data source for all reports to access. Typically you would
want to do this, and the data source will be deployed to the report server. The final part is the most
important: change the type to ‘Microsoft SQL Azure’ in the ‘Type’ drop-down. Otherwise you will not be
able to deploy the data source to the report server—it will return a type mismatch error.

Define Query/Dataset
The next step is to define the query that will populate the dataset for the report. For our report, we are
going to use the following query:

SELECT TOP (@NumRecords) pl.Description, k.PricePerkWh
FROM dbo.PricingCalendar_kWh AS k INNER JOIN
 dbo.PricingLocations AS pl ON k.LocationId = pl.LocationId
ORDER BY k.PricePerkWh DESC

@NumRecords is an input parameter that defines the number of records that you want returned.
This query will return the X highest priced locations. Paste this query into the text area of the query
designer, and click next to choose options for the report layout. There are only two fields, so it’s not
complex. Use tabular layout. Preview the report by clicking the Preview tab. If the report looks the way
you want, then we’re ready to deploy.

Deploy reports
Navigate to the Reporting section of the Azure portal, and copy the URL of your SQL Azure Report
Server. Right-click the project and select Properties. In the project properties dialog, paste your copied
URL into the TargetServerURL property. For example:
https://<instance>.ctp.reporting.database.windows.net/ReportServer/

Deploy the project by right-clicking the project and choosing Deploy. You will be prompted for
report server credentials during the deployment. Use the report server admin credentials that you set up
in the Azure Management portal.

View Reports
Open your browser and navigate to your report server URL (i.e.,
https://<instance>.ctp.reporting.database.windows.net/ReportServer/). Sign in to the portal using
the user id and password you obtained in the Azure Management portal. Navigate to your report and
click on the name to view it (Figure 10-47).

CHAPTER 10 SQL AZURE

557

Figure 10-47. Report delivered via SQL Azure Reporting

 Note For additional information and more samples, see SQL Azure Reporting samples
(http://go.microsoft.com/fwlink/?LinkId=207630).

http://go.microsoft.com/fwlink/?LinkId=207630

CHAPTER 10 SQL AZURE

558

SSRS Feature Fidelity
Not all features of SSRS are baked into SQL Azure Reporting yet. Table 10-1 provides a non-inclusive list
of some of the key feature differences. For the full list, go to http://msdn.microsoft.com/en-
us/library/gg430132.aspx.

Table 10-1. SSRS Feature Fidelity

Feature SQL Azure Reporting SQL Server Reporting Services

Data Sources SQL Azure only Built-in or customizable,
including SQL Azure

Report Management SQL Azure Development Portal Report Manager or SharePoint

Extensibility No extensions Custom extensions for
processing, rendering, delivery,
and security

Security Username/password Username/password, Windows
authentication, other
authentications

Subscription and scheduling Not available Available

CLR/Custom assemblies or code Not supported, no code in a
Code element

Supported

SharePoint Integrated Mode Not supported Supported

Data Sync
SQL Azure Data Sync provides the ability to synchronize SQL Azure databases with other SQL Azure
databases, or even on-premise databases. Some of the possible scenarios include:

• Geographically-dispersed applications: For performance or other reasons, you may
choose to deploy your application in multiple data centers. You will want to keep
the application server and the database server together to avoid additional
network bandwidth costs.

• Backup: Some application owners are extra careful, or perhaps they have legal
compliance issues requiring them to have a copy of data on-premise. They want to
know that if the worst-case scenario ever happens, as a last resort they will have
their data synchronized to multiple environments, or even on-premise.

• Scale-out within a datacenter: Do this to support elastic spikes in demand.

http://msdn.microsoft.com/en-us/library/gg430132.aspx
http://msdn.microsoft.com/en-us/library/gg430132.aspx
http://msdn.microsoft.com/en-us/library/gg430132.aspx

CHAPTER 10 SQL AZURE

559

 Note SQL Azure Sync is currently released in CTP2. It was announced that Microsoft is planning to release a
CTP3 with new and different features (http://blogs.msdn.com/b/sync/archive/2011/03/08/sql-azure-
data-sync-update.aspx). Rather than go deep into examples for an already-deprecated version, I will be focusing
on Data Sync at a high level. For more information on SQL Azure Data Sync, go to
http://blogs.msdn.com/b/sync/.

Data Sync Design
The design starts with the hub. One database must serve as the hub for all transactions. Depending on
your scenario, the hub might be a central database you use for transactional processing. Or, you might
choose to have the hub serve as the central point for serving data to other processing or reporting
servers.

Synchronization Options
All synchronization happens between the hub and a database. When you set up your synchronizations,
you will set up a separate sync for each database. You have the following three synchronization options:

• Sync to the Hub: One-way sync from the edge database to the hub.

• Sync from the Hub: One-way sync from the hub to the edge database.

• Bi-Directional: Two-way sync of data, after the sync the tables being synchronized
should be identical

These sync options provide the functionality to cover most scenarios for synchronization. Currently
the smallest synchronization interval is 5 minutes. This means that a true real-time sync is not possible
yet. You will need to take this into account in your planning processes.

Summary
In this chapter, you learned to work with SQL Azure, the SQL Server database in the cloud. Because SQL
Azure is based on SQL Server, you can use your existing SQL Server knowledge to work with SQL Server.

SQL Azure is a subset of SQL Server and supports only limited features specifically geared toward
storage and retrieval of relational data. Many administration- and application-level features like
mirroring, replication, the BCP Utility, Service Broker, CLR, replication, and so on aren’t available in SQL
Azure.

The biggest benefit of SQL Azure is its accessibility to any application from anywhere as long as the
platform supports the TDS protocol. You can write cloud and on-premise applications to seamlessly
query data in SQL Azure. In the Demand Response example, you saw the flexibility of accessing SQL
Azure from Windows Azure, as well as seamless integration between SQL Azure, Windows Azure, and
AppFabric.

Also, I introduced some database-migration and database growth-management strategies for SQL
Azure databases. Finally, I discussed new technologies not yet released, SQL Azure Reporting Services
and SQL Azure Data Sync. These will be key elements of the SQL Azure platform going forward.

http://blogs.msdn.com/b/sync/archive/2011/03/08/sql-azure-data-sync-update.aspx
http://blogs.msdn.com/b/sync/archive/2011/03/08/sql-azure-data-sync-update.aspx
http://blogs.msdn.com/b/sync/archive/2011/03/08/sql-azure-data-sync-update.aspx
http://blogs.msdn.com/b/sync/

CHAPTER 10 SQL AZURE

560

Bibliography
Microsoft Corporation. (n.d.). SQL Azure Team Blog. Retrieved from Windows Azure Team Blog:

http://blogs.msdn.com/b/windowsazure/.

Robinson, D. (2009). The Relational Database of the Azure Services Platform. MSDN, 71-74.

Microsoft Corporation. (n.d.). Sync Framework and SQL Azure Data Sync Team Blog.

http://blogs.msdn.com/sync/.

http://blogs.msdn.com/b/windowsazure/
http://blogs.msdn.com/sync/

561

Index

 Numbers and Symbols
- (dash) character, 210
(number sign) character, 252
$filter option, 254, 278–279
$MetricsCapacityBlob, 297
$MetricsTransactionsBlob, 297
$MetricsTransactionsQueue, 298
$MetricsTransactionsTable, 297
$top option, 254, 274, 279–280
/ (forward slash) character, 252
? (question mark) character, 252

 A
Abandon() method, 468
Access control, 32
Access Control List (ACL), 140
Access Control Service. See ACS
account name, 207, 209–211, 269–271, 278–279,

287
account operations, 218–222, 269
ACL (Access Control List), 140
ACS (Access Control Service), 327–380

claims, 328–333
digital identities, 327–328
integration

relay authentication with, 389–392
securing requests with, 469

Management Portal for, 342–365
ADFS 2.0, 345–348
Application Integration section, 362
Certificates and Keys section, 359
digital identities, 345, 350–355
Endpoint References section, 365
Login Pages section, 362–365
Management Service section, 362
Portal Administrators area, 361
provisioning ACS service namespace,

342–345
Relying Party applications, 355–357

Rule Groups section, 357–358
SDKs and Documentation section, 365
Service Identities section, 361
tokens, 359–360

programming applications for, 366–377
claims-based authorization, 374–377
configuring ACS using Management

Portal, 367
designing ACS rules, 373
identity providers, 367
Passive Federation case using ACS, 367
relying party, 367–369, 371–373
rule groups and rules for mapping

claims, 368
WS-Federation provider, 371–372

usage scenarios for, 333–342
cross-enterprise application, 337–339
enterprise cloud application, 334–336
ISV cloud service, 339–341
retrieving tokens from ACS, 341–342

ACS-hosted login page, 362–363, 375
ACS-hosted login screen, 375
Activate Windows Azure Connect checkbox,

322
Activated Endpoints folder, and Groups and

Roles folder, 319
Active Directory Federation Services (ADFS),

345–348, 379
Add Certificate button, 124
Add Roles dialog, 313
Add STS Reference, 370
AddMessage() method, 217–218, 232
AddProAzureReader() method, 289–290
AddRecord method, 269
ADFS (Active Directory Federation Services),

345–348, 379
Admin.aspx page, 375
administration features, of SQL Azure service,

503
ADO.NET Data Services, 249, 256, 259, 265–266,

274, 279, 287, 289, 306

 INDEX

562

ADO.NET framework, connecting to SQL Azure
service database with, 527–530

affinity, geographic, 121–123
Affinity group, 121, 123
AllowPartiallyTrustedCallers attribute, 87
API structure, 59
APIs (Application Programming Interfaces)

asynchronous, 238–240
storage client

for Queue service applications, 215–218
for Table service, 260–263

APP (Atom Publishing Protocol), 396
App.config file, 63, 126, 417, 437
AppendOnly option, 294
AppFabric Caching service, 485–495

ASP.NET framework
enabling output cache in AppFabric

Caching service, 494
Session State provider, 493–494

cache clients, 487–493
assembly references, 487–488
configuring, 488
programming AppFabric Caching

service, 492–493
vs. other cache providers, 486–487
provisioning caches, 487

AppFabric contracts
netEventRelayBinding binding, 425
NetOnewayRelayBinding binding, 407–408
NetTcpRelayBinding binding, 434–435

AppFabric platform, 32–34
AppFabric Service Bus, 381–483

background of, 381–382
ESB, 382–383

connectivity infrastructure, 383
enterprise naming scheme, 383
interface contracts, 383
Security and Access Control service, 383

introduction to, 387–401
messaging fabric, 397–401
Naming service, 393–395
security, 388–393
service registry, 395–397

ISB, 384–387
message buffer, 452–458
messaging, Queues and Topics, 458–459
programming with, 401–452

HTTP relay bindings, 442–452
netEventRelayBinding binding, 423–429
NetOnewayRelayBinding binding, 406–

422

NetTcpRelayBinding binding, 431–442
ProAzure Energy service, 403–406
Queues and Topics, 462–482

Queues, 459–461
Topics, 461–462

application configuration files, configuring
cache clients using, 488–489

application features, of SQL Azure service, 502–
503

Application Integration option, 362, 369
Application Integration section, ACS

Management Portal, 362
application migration, 552
Application Migrations, 31, 44
Application Programming Interfaces. See APIs
application roles, 52–53
applications

cross-enterprise, 337–339
enterprise cloud, 334–336
gateway, design, 547
hosting login pages as part of, 364–365
Java server, 19
netEventRelayBinding binding, 429
NetOnewayRelayBinding binding, 420–422
NetTcpRelayBinding binding, 440–442
programming for ACS, 366–377

claims-based authorization, 374–377
configuring ACS using Management

Portal, 367
designing ACS rules, 373
identity providers, 367
Passive Federation case using ACS, 367
relying party, 367–369, 371–373
rule groups and rules for mapping

claims, 368
WS-Federation provider, 371–372

programming for message buffers, 454–458
creating and deleting, 455–456
policies, 454–455
sample application, 457–458
sending messages to, 456

Queue service, storage client API for, 215–
218

runtimes, 52
upgrade and fault domains in context of,

55–57
architecture, advice on, 128–129
ASP.NET framework

enabling output cache in AppFabric
Caching service, 494

Session State provider, 493–494

 INDEX

563

ASP.NET Membership, 305
assembly references, for cache clients, 487–488
asynchronous APIs, 238–240
Atom feed, 256–257, 271–272, 282
Atom Publishing Protocol (APP), 396
Attach Debugger, 91–92
Authentication attribute, 93
authentication relay, with ACS integration, 389–

392
authorization, claims-based, 374–377
Authorization SharedKey, 144
Auto-scale toolkit, 28
Azure database, 27, 39, 344, 512, 527, 529, 536,

547, 553, 558
Azure platform, 1, 8, 11, 14, 30, 33, 38, 40, 43, 45
Azure Storage service queues, AppFabric

Service Bus Queues vs., 460–461
Azure Table storage, 263, 300, 304

 B
backslash character, 252
bandwidth costs, 318
BeginGetMessage() method, 238
BI (Business Intelligence), 45, 546
bin directory, 91, 93
bindings

AppFabric Service Bus, 399–400
relay, HTTP, 442–452
service, 409–411

netEventRelayBinding binding, 426
NetTcpRelayBinding binding, 436

blade servers, 51
Blob API, 147–154
Blob class, 148
Blob method, 173
Blob service

architecture of, 138–142
blobs, 140
containers, 139
storage account, 139

limitations and constraints of, 138
blobs, 140

operations of, 172–186
Copy Blob, 184–186
Get Blob, 180–183
Put Blob, 175–180

storage scenarios, 200–204
Enterprise File Sync tool, 203–204
massive data uploads, 200–201

 Storage as a Service model in cloud,
201–203

 types of, 140–142
 Block blob, 141–142
 Page blob, 141

Block blob, 141–142
BPOS (Business Productivity Online Suite), 10
BrokeredMessage object, 465, 467–468
btnSubmit_Click event, 289
buffers, message, 401
bursts, 46
Business Intelligence (BI), 45, 546
business logic migration, 552
Business Productivity Online Suite (BPOS), 10
businesses, and cloud services, 9

 C
C# class, 149, 217, 262
cache clients, 487–493

assembly references, 487–488
configuring, 488

programmatically, 490–491
using application configuration file,

488–489
programming AppFabric Caching service,

492–493
caches

output, ASP.NET framework, 494
provisioning, 487

caching services, 32–33. See also AppFabric
Caching service

CanonicalizedHeaders, 213
CanonicalizedResource, 213, 255
CDA (cost-driven architecture), 34
CDN (Content Delivery Network), 187–189
Cerebrata, 26
certificates, 342, 345, 359–360

installing, 310
management of, 88

Certificates and Keys section, of ACS
Management Portal, 359

Certificates folder, 124
Certificates tab, 67
CGI Web role, 61
City property, 269
claims, 328–330

claims-based authorization, 374–377
claims-based identity model, 330–333
mapping, rule groups and rules for, 368

 INDEX

564

cleanOnRoleRecycle attribute, 83
Clear Messages operation, 229
Clear Results button, 227
client designs

netEventRelayBinding binding, 428–429
NetOnewayRelayBinding binding, 418–420
NetTcpRelayBinding binding, 438–439

client layer, of SQL Azure service, 501
Client object, 456
ClientCertificate property, 124
ClientProxy object, 109
ClientProxy.cs file, 108
cloud applications, 4–5, 9, 43–44
Cloud bursts, 46
cloud computing, Storage as a Service model in,

201–203
encryption and decryption, 203
integration with enterprise domain

accounts, 202
storage taxonomy design, 202–203

Cloud platform, 5, 9
cloud service roles, 69
cloud services, 1–6

ecosystem of
businesses, 9
enablers, 9
independent software vendors, 8–9
service providers, 8
software vendors, 8

enterprise cloud application, 334–336
ISV, 339–341
Microsoft strategy for, 9–10
providers of, 5–6
shifting to, 6–7
terminology, of cloud services industry, 2–6
types of, 3

Cloud Storage Studio, 26
CloudBlob class, 190
CloudBlobClient class, 150
CloudBlobContainer object, 166
CloudBlob.Create() method, 191
CloudBlobDirectory class, 171
CloudDrive class, 190
CloudDrive.Copy() method, 192
CloudDrive.Mount() method, 191
CloudDrive.Snapshot() method, 191
CloudDrive.Unmount() method, 192
CloudQueue class, 217–218, 222, 225, 228, 232,

236, 238–239
CloudQueue object, 225, 232
CloudQueueClient class, 217, 222

CloudQueueMessage class, 217–218, 232, 236,
238–239

CloudQueueQueue object, 228
CloudStorageAccount class, 149–150, 217, 261–

262, 282–283, 302–303
CloudTableClient class, 262, 274, 277, 282
CloudTableClient object, 277
CloudTableQueryTElement class, 262, 304
CLR (Common Language Runtime), 252, 498
code-far connectivity, 505–506
code-near connectivity, 503–505
Common Language Runtime (CLR), 252, 498
Community Technology Preview (CTP), 497–

498, 555
compute architecture, 13–14
Compute service, 18

application roles, 52–53
application runtimes, 52
architectural advice, 128–129
bibliography, 130
blade servers, 51
developing services, 58–93, 100–120

API structure, 59
developer environment, 59–77
development fabric, 90–92
development storage, 92–93
diagnostics and inter-role

communication, 101–120
objectives of, 101
publishing, 111–120
running HelloAzureCloud service, 109–

111
SDK tools, 77–78
service models, 78–88

diagnostics, 94–100
Fabric Controller service, 51
geo-location, 120–123
Hypervisor program, 51
networking components, 51
operating systems, 51
security, 57–58
service development life cycle, 127–128
Service Management API, 123–126

programming with, 124–126
structure of, 123–124

service model, 52
upgrade domains and fault domains, 53–57

ComputeHash() method, 144, 213, 255
configuration files, application, 488–489
Configuration tab, 64–65
ConfigurationSettings element, 80

 INDEX

565

Configure Remote Desktop Connections link,
316

Connect feature, 22–23, 317–324
Activated Endpoints and Groups and Roles

folders, 319
enabling for role, 322–323
groups, 324
installing and activating endpoint on local

machine, 320–321
protocols and ports, 322
provisioning, 318–319
vs. Service Bus feature, 318

connectivity
code-far, 505–506
code-near, 503–505

connectivity infrastructures, 383
ConnectivityMode property, 410
containers

operations of, 160–171
Create Container, 162–164
List Blobs, 166–171
Set Container Metadata, 164–166

overview, 139
Content Delivery Network (CDN), 187–189
contracts

AppFabric, 407–408
netEventRelayBinding binding, 425
NetTcpRelayBinding binding, 434–435

interface, 383
Coordinated Universal Time (UTC), 143, 212,

255
Copy Blob operation, 184–186
Copy method, 184
CopyBlob() method, 186
CopyTo() method, 198
CorrelationFilterExpression expression, 462
cost-driven architecture (CDA), 34
crash dumps, 95, 99
Create Container operation, 162–164
Create Queue operation, 218, 223–226
Create table, 528, 535
Create Table operation, 256, 262, 269–274
CreateContainer() method, 164
CreateKeys() method, 269
CreateQueue() method, 225–226
CreateTable() method, 274
CredentialType property, 390
cross-enterprise application, 337–339
csmanage.exe, 59, 124
CSPack.exe, 78
CSRun.exe, 78, 91

Csupload.exe, 78
CTP (Community Technology Preview), 497–

498, 555
curtailment, processes for, 531

 D
DaaS (Data as a Service), 3
dash (-) character, 210
Data Access component, 29
data access, connectivity

code-far, 505–506
code-near, 503–505

Data as a Service (DaaS), 3
data definition (DDL), 520, 549–551
data definition migration, 549–551
data manipulation (DML), 520
data migrations, 44, 551–552
data sources, defining, 556
Data Sync service, 29–30, 558–559
data types, 252
database features, of SQL Azure service, 502
Database Manager tool, connecting to SQL

Azure service database with, 520–524
database mirroring, 551
DATABASE statement, 516
database tables, 536–537
databases

growth-management strategies for, 553–554
migration strategies for, 549–552

application, 552
business logic, 552
data, 551–552
data definition, 549–551

SQL Azure service, 510–512, 530
dataCacheClients, 489, 491
DataCacheFactory, 489–492
DataCacheSecurity, 491
DataCacheServerEndpoint, 490–491
DataGridView control, 236
DataMarket, 13, 40–42
DataServiceContext class, 262, 265–266, 277,

290, 294
DataServiceContext object, 277, 294
DataServiceQuery class, 277–278
datasets, query and defining, 556
DateTime property, 250
DDL (data definition), 520, 549–551
DeadLetter() method, 467

 INDEX

566

debugging, in Windows Azure Tools for Visual
Studio, 71–73

decryption, encryption and, 203
Default.aspx file, 63, 99, 108, 114, 116
default.aspx page, 376
Default.aspx.cs file, 289
Definition file, 116
Delete Entity operation, 278–279
Delete Message from Subscription command,

475
Delete Message operation, 228–229
Delete Queue operation, 218, 223
Delete Table operation, 262, 269–270, 274
DeleteTable() method, 274
Dem-Res database, 535–536, 538, 540
Dem-Res (Demand-Response) service, 547–548
deployment phase, 128
DequeueCount property, 238
Description object, 463
design and development phase, 127
Destructive Read command, 475
developer environment, 59–77

packaging service, 73–77
role settings and configuration, 63–68

Certificates tab, 67
Configuration tab, 64–65
Endpoints tab, 66–67
Local Storage tab, 67
Settings tab, 65–66
Virtual Network tab, 68

Windows Azure Tools for Visual Studio
debugging in, 71–73
project actions, 69–70
project types, 59–63

development fabric, 90–92
development, of services. See service

development
development storage, 92–93
devstorageaccount, 219, 223–224, 229, 270, 278–

279
DFS (Distributed File System), 135
DFUI.exe, 91
Diagnostic Monitor service, 99
DiagnosticMonitorConfiguration class, 98
diagnostics, 94–100

and inter-role communication, 101–120
service model, 102–104
Web role, 108–109
Worker role, 104–108

logging, 96–100
configuring trace listener, 96–97

diagnostics service, 97–100
Dictionary object, 466
digital identities

overview, 327–328
providers of, 345, 350–355

DiscoveryMode property, 396
DisplayResultsSqlCommand command, 529
disruptive technology, 1
Distributed Caching, 43
Distributed File System (DFS), 135
DML (data manipulation), 520
DNS (Domain Name System), 393
documentation, of ACS Management Portal,

365
Domain Name System (DNS), 393
domains

accounts, enterprise, 202
upgrade and fault, 53–57

drives
creating locally, 192–195
mounting, 196–197
snapshotting, 197–198
uploading, 196
Windows Azure. See Windows Azure Drives

DSInit.exe, 78, 93
Dynamic Scaling, 43

 E
E-mailAddressSuffixes element, 364–365
Each database, 29
EAV (Entity-Attribute-Value), 497
Edit Claim Rule page, 358
Edit Group button, 324
EnableAdminAccess() method, 375
enablers, of cloud services, 9
encryption, and decryption, 203
Encryption attribute, 93
Endpoint References section, of ACS

Management Portal, 365
endpoints

installing and activating on local machine,
320–321

overview, 80–83
service

netEventRelayBinding binding, 427
NetOnewayRelayBinding binding, 417
NetTcpRelayBinding binding, 438

Endpoints tab, 66–67, 315
EnergyMeterValues table, 539

 INDEX

567

enterprise cloud application, 334–336
enterprise domain accounts, integration of

Storage as a Service model with, 202
Enterprise File Sync tool, 203–204
Enterprise Identity Integration, 44
enterprise naming schemes, 383
enterprise scenario, 44
Enterprise Service Bus (ESB), 382–383
entities, 249
Entity-Attribute-Value (EAV), 497
entity operations, 278–295

Insert Entity, 287–291
Merge Entity, 291–295
Query Entities, 279–286

EntryDate property, 265, 267, 269
EnumerationResults element, 221
errors, during message processing, 468
ESB (Enterprise Service Bus), 382–383
ESB interface, 383
ETag value, 256, 292, 294
Event Log data, 99
Events table, 251
evt.Set() method, 240
Execute() method, 278
Execute Operation, 126
ExpirationTime property, 217, 233–234

 F
Fabric Controller service, 18, 20, 51–52, 54, 56,

78, 116, 120, 310
Facebook, 332–334, 341, 350–351, 353–354, 357,

379
Factory class, 464
FastCGI, 19
Fault Domain, 115–116
fault domains, upgrade domains and, 53–57
federated identities, 379
FederationMetadata.xml file, 371–372
Feedback property, 264
Fiddler Tool, 215, 259
FIFO (First In First Out), 207
file management, 308
First In First Out (FIFO), 207
Flexibility attribute, 93
forward slash (/) character, 252
foundational message components,

foundational components of, 465
foundational scenario, 43
front-end servers, 135

FTP-based interface, 383
FTP interface, 382
Full IIS (Internet Information Services) support,

85–86
full trust execution, 86–88

 G
gateway applications, design, 547
Gateway database, 533–535
Gateways table, 535, 538, 540
GatewayService class, 448
Generate link, 368
geo-location, 120–123
Geo-replication, 30–31, 43
geographic affinity, enabling, 121–123
Get Blob operation, 180–183
Get Machine Info button, 108–110
Get Messages operation, 214, 228–230, 232–238
GET operation, 141, 255
Get Queue command, 473–474
Get Queue Metadata operation, 223
Get Rule command, 482
Get Storage Service Properties, 299
Get Subscription command, 480
Get Topic command, 478
GetBlobContentsAsFileIfModified() method,

183
GetDefaultCache() method, 490–492
GetMessage() method, 217
GetMessageBuffer() method, 456
GetMessages() method, 218, 236
GetQueueReference() method, 217–218, 225,

232, 236, 238–239
GFS (Global Foundation Services), 9
Global identity providers, 363
Google, 332–333, 341, 345, 350, 355, 366–367,

377
Groups and Roles folder, Activated Endpoints

folder and, 319
groups, Connect feature, 324
growth-management strategies, for databases,

553–554
guaranteed processing, 243–245

 H
Hash-based Message Authentication Code

(HMAC), 143, 207, 255
headers

 INDEX

568

headers (cont.)
request, 143–145, 212–213, 254–256
response, 145, 214, 257

Heating Ventilation Air Conditioning (HVAC),
404, 461

HelloAzureCloud service, 62, 78, 80, 102, 104,
109–111, 115, 117

HelloAzureWorldLocalCache, 79, 104
HelloService folder, 101
HelloServiceImpl class, 105–108
HelloWebRole, 79, 84, 89, 102, 104, 108
HelloWorkerRole class, 79, 81, 83, 89, 102, 104–

105, 108, 118
high-growth sites, 45
High Scale compute, 45
HMAC (Hash-based Message Authentication

Code), 143, 207, 255
Hosted Service model, 111, 117–118, 121, 124
hosted services

deploying, 316–317
and Service Definition file, 313–316

hosting, service
netEventRelayBinding binding, 427
NetOnewayRelayBinding binding, 417–418
NetTcpRelayBinding binding, 438

Host.Open() method, 418
HTTP-based interface, 383
HTTP (Hypertext Transfer Protocol)

relay bindings, 442–452
WebHttpRelayBinding, 446–452
WS2007HttpRelayBinding, 443–446

verbs, 142, 212–254
HTTP messages, 253
HTTP request, 253–254, 290
HttpIn input endpoint, 114
HVAC (Heating Ventilation Air Conditioning),

404, 461
hybrid applications, 45
Hyper-V, 307, 309
Hypertext Transfer Protocol. See HTTP
Hypervisor program, 51

 I
IaaS (Infrastructure as a Service), 2
IAsyncCallback object, 240
IBM Global Services, 9
IDE (integrated design environment), 94
identity federation, 379
identity management, 43

identity models, claims-based, 330–333
identity providers, 367, 377
IEnergyServiceGatewayOperations interface,

435
IHelloService interface, 105–109
IHybridConnectionStatus interface, 442
IIS (Internet Information Server), 15
images

coordination between Fabric Controller
service and, 310

uploading, 312–313
viewing in management portal, 313

ImageUrl element, 364–365
implementers, 9
IMulticastGatewayOperations interface, 425
Independent Software Vendor (ISV), 45, 339–

341
information technology (IT), 1
Infrastructure as a Service (IaaS), 2
infrastructure layer, of SQL Azure service, 499
Infrastructure logs, 94, 99
Initialize() method, 20
input claims, 378–379
Insert Entity operation, 278–279, 287–291
InsertEnergyMeterValues stored procedure, 539
InsertGateway stored procedure, 538–539
InsertionTime property, 217, 233–234
InsertPricingCalendar_kWh stored procedure,

538
InsertPricingLocations stored procedure, 538
Install Local Endpoint option, 320
instance count, 65
integrated design environment (IDE), 94
Integration components, 309–311
IntelliTrace feature, 15, 71, 76, 94, 114, 117–118
inter-role communication, diagnostics and,

101–120
service model, 102–104
Web role, 108–109
Worker role, 104–108

interface contracts, 383
internal endpoint, 66–67, 79, 81–82, 106, 108–

109
Internet Information Server (IIS), 15
Internet Information Services (Full IIS) support,

85–86
Internet Service Bus (ISB), 384–387
interoperable messaging, 242–243
invalid messages, 467
IOnewayEnergyServiceOperations interface,

409

 INDEX

569

IPAddress, 107, 115
IPEndPoint object, 83
IPv6 link, 322
ISB (Internet Service Bus), 384–387
.iso file, 309, 311
IsOneWay=true property, 408
ISV (Independent Software Vendor), 45, 339–

341
IT (information technology), 1

 J, K
Java server applications, 19

 L
LastUpdatedBy, 226
life cycles, of service development, 127–128
LINQ statement, 280
List Blobs operation, 166–171
List Queues command, 474
List Queues operation, 214, 218–219, 222
List Rules command, 482
List Subscriptions command, 480
List Topics command, 478
ListContainers() method, 158
ListContainersSegmented() method, 158
ListQueue() method, 222
ListQueues() method, 217–218, 222
ListTables() method, 277
load distribution, Worker roles, 241–242
local endpoint software, 320, 322
local storage, 83, 311
Local Storage tab, 67
LocalResource class, 83
LocalStorage element, 80, 83
LocalSystem, 310
log shipping, 551
logged fields, 297
logging, 96–100

configuring trace listener, 96–97
diagnostics service

defining storage location for, 97
starting, 98–100

Logging feature, 296–297
login pages

hosting as part of application, 364–365
linking to ACS-hosted, 362–363

Login Pages section, of ACS Management
Portal, 362–365

logins, 516–520
LoginUrl element, 364–365
LogoutUrl element, 364–365
logs, IntelliTrace feature, 117–118

 M
maintenance phase, 128
Management API, 27–28
management commands, 471–475, 480–482

creating REST API Queue, 472
creating REST API Topic, 477
creating rule, 481
creating subscription, 479
deleting REST API Queue, 473
deleting REST API Topic, 477–478
deleting rule, 482
deleting subscription, 480
Get Queue, 473–474
Get Rule, 482
Get Subscription, 480
Get Topic command, 478
List Queues, 474
List Rules, 482
List Subscriptions, 480
List Topics command, 478
QueueDescription, 471
Rule Description document, 481
SubscriptionDescription, 478
subscriptions, 478
TopicDescription, 476

Management Portals
for ACS, 342–365

ADFS 2.0, 345–348
Application Integration section, 362
Certificates and Keys section, 359
digital identities, 345, 350–355
Endpoint References section, 365
Login Pages section, 362–365
Management Service section, 362
Portal Administrators area, 361
provisioning ACS service namespace,

342–345
Relying Party applications, 355–357
Rule Groups section, 357–358
SDKs and Documentation section, 365
Service Identities section, 361
tokens, 359–360

configuring ACS using, 367
overview, 38–40

 INDEX

570

Management Portals for ACS (cont.)
viewing images in, 313

Management Service section, of ACS
Management Portal, 362

Manager table, 523
mapping claims, 368
marker parameter, 219
Marketplace DataMarket broker, 41–42
massive data uploads, 200–201
maxresults parameter, 219
Merge Entity operation, 278–279, 291–295
MESQ (Microsoft Messaging Queue), 459
Message Body text box, 231
message buffers, programming applications

for, 452–458
creating and deleting message buffer, 455–

456
message buffer policies, 454–455
message buffer sample application, 457–458
sending messages to message buffer, 456

message commands, 469–471, 474–475
Delete Message from Subscription, 475
deleting from REST API Queue, 471
Read and Delete Message from Subscription

(Destructive Read), 475
Read Message from Subscription with Non-

Destructive Peek-Lock, 474
receiving from REST API Queue, 470
sending to REST API Queue, 470
sending to REST API Topic, 474
unlocking message from subscription, 475

message operations, 228–238
Get Messages, 232–238
Put Message, 230–232

message security
netEventRelayBinding binding, 426
NetOnewayRelayBinding binding, 413–417
NetTcpRelayBinding binding, 437
overview, 392–393

MessageBufferClient class, 453–454, 456
MessageBufferClient.CreateMessageBuffer()

method, 454–455
MessageBufferPolicy class, 453–454
MessageID attribute, 210
MessageReceived event, 236–237
MessageReceivedEventArgs class, 236–237
MessageReceivedEventHandler, 236–237
MessageReceiver object, 466
messages, 210–211, 465–467

buffers, 401

creating and sending to AppFabric Service
Bus Queue, 466

creating and sending to Topic, 466
foundational components of, 465
problems and abandonment, 467–468

invalid or poison messages, 467
server error during message processing,

468
retrieving from AppFabricService Bus

Queue, 466
retrieving using subscriptions, 466–467
sending to message buffer, 456
unlocking from subscription, 475

MessageText element, 230
Messagettl attribute, 211
messagettl parameter, 211, 230
messaging

fabric, 397–401
AppFabric Service Bus bindings, 399–

400
message buffer, 401
Queues and Topics features, 401

interoperable, 242–243
Queues and Topics, 458–459

Metrics feature, 297–298
Microsoft Consulting Services, 9, 28
Microsoft datacenters, 9
Microsoft Message Queuing (MSMQ), 207, 384
Microsoft Messaging Queue (MESQ), 459
Microsoft, strategy for cloud services, 9–10
Microsoft Technology Center (MTC), 201
Microsoft Windows Azure platform

AppFabric platform, 32–34
cloud services, 1–6

ecosystem of, 8–9
industry terminology, 2–6
Microsoft strategy for, 9–10
providers of, 5–6
shifting to, 6–7
terminology, 4
types of, 3

Compute service, 18
Connect feature, 22–23
description of, 10–14
Management API, 27–28
management portal, 38–40
Marketplace DataMarket broker, 41–42
pricing of, 34–38
scenarios found in, 43–46

enterprise, 44
foundational, 43

 INDEX

571

ISV, 45
SQL Azure service, 28–31
storage service, 24–26
VM role, 21
Web role, 19
Worker role, 19–21

Microsoft.ApplicationServer.Caching.Client.dll,
487

Microsoft.ApplicationServer.Caching.Core.dll,
488

microsoft.identitymodel section, 371
Microsoft.Samples.WindowsAzure.ServiceMan

agement.dll file, 124
Microsoft.ServiceBus namespace, 462–463

adding session state to Queue, 463
NamespaceManager class, 463
NamespaceManagerSettings class, 462

Microsoft.ServiceBus.Messaging namespace,
464

Microsoft.ServiceBus.ServiceRegistrySettings
object, 396

Microsoft.Web.DistributedCached.dll, 488
Microsoft.WindowsAzue.ServiceRuntime.dll,

105
Microsoft.WindowsAzure.Diagnostics

assembly, 59, 96–97, 99, 105
Microsoft.WindowsAzure.Diagnostics

namespace, 59
Microsoft.WindowsAzure.ServiceRuntime, 59,

62–63, 105–106
Microsoft.WindowsAzure.ServiceRuntime.Role

EntryPoint class, 20
Microsoft.WindowsAzure.ServiceRuntime.Role

Environment class, 83
Microsoft.WindowsAzure.StorageClient

assembly, 26, 59
Microsoft.WindowsAzure.StorageClient library,

105, 215, 217, 236
migration strategies, for databases, 549–552

application migration, 552
business logic migration, 552
data definition migration, 549–551
data migration, 551–552

MonAgentHost.exe, 95
mounting drives, 196
m:properties element, 292
MSMQ (Microsoft Message Queuing), 207, 384
MTC (Microsoft Technology Center), 201
multi-tenancy, 43
MyCloudDb database, 516, 526
MyFirstAzureTable, 271–273

MyInternalEndpoint, 79, 81, 105–106, 108

 N
NamespaceManager class, 463–464
NamespaceManagerSettings class, 462–463
NamespaceManger object, 462
namespaces, ACS service, 342–345
naming schemes, enterprise, 383
Naming service, 393–395
NAT (network address translation), 386
.NET Client API, 462–468

foundational message components, 465
messages, 465–467

creating and sending to Queue, 466
creating and sending to Topic, 466
problems and abandonment, 467–468
retrieving from Queue, 466
retrieving using subscriptions, 466–467

Microsoft.ServiceBus namespace, 462–463
adding session state to Queue, 463
NamespaceManager class, 463
NamespaceManagerSettings class, 462

Microsoft.ServiceBus.Messaging
namespace, 464

.NET Client library, 253, 259

.NET Trust Level, 65
NetDataContractSerializer class, 493
netEventRelayBinding binding, 423–429

AppFabric contract, 425
applications, 429
client design, 428–429
message security, 426
relay security, 426
service binding, 426
service endpoints, 427
service hosting, 427
service implementation, 425–426

NetOnewayRelayBinding binding, 406–422
AppFabric contract, 407–408
applications, 420–422
client design, 418–420
message security, 413–417
relay security, 411–413
service binding, 409–411
service endpoints, 417
service hosting, 417–418
service implementation, 409

NetOnewayRelayServer.exe command, 421
NetTcpRelayBinding binding, 431–442

 INDEX

572

NetTcpRelayBinding binding (cont.)
AppFabric contract, 434–435
applications, 440–442
client design, 438–439
message security, 437
relay security, 437
service binding, 436
service endpoints, 438
service hosting, 438
service implementation, 435–436

NetTcpRelayBinding.exe command, 440
network address translation (NAT), 386
network latency, 318
networking, components of, 51
New Hosted Service, 111
New Virtual Machine Role option, 314
NextMarker element, 221
NextMarker property, 262
NextPartitionKey parameter, 280, 282
NextRowKey parameter, 280, 282
NextVisibleTime property, 217
NoSQL option, 247
NoTracking option, 294
number sign (#) character, 252
numofmessages parameter, 232–233, 236

 O
OASIS (Organization for the Advancement of

Structured Information Standards), 400
OData, 41–42
OnStart() method, 20, 104, 106
operating systems, 51
Organization for the Advancement of

Structured Information Standards (OASIS),
400

output caches, ASP.NET framework, 494
output claims, 379
outputcache, 489
OverwriteChanges option, 294

 P
PaaS (Platform as a Service), 2
packaging, service, 73–77
Page blob, 141
Page method, 173
Page_Load method, 374–375
partition layer, 135, 250–251, 267, 291

PartitionKey property, 250–251, 253, 264, 267,
280, 283, 285, 291, 294

PartnerAccess, 337–339
Partner_Contractor, 337
Partner_Employee, 337
Partner_Manager, 337
Passive Federation case, using ACS, 367
Peek Messages operation, 228–229
PeekLock command, 475
PeekLock() method, 456
PerfData property, 302
performance counters, from Table service, 300–

304
PerformanceCounters, 79, 89, 97–98
PerformanceData class, 301
PerformanceDataContext class, 301–302
Platform as a Service (PaaS), 2
platform layer, of SQL Azure service, 499–500
poison messages, 467
policies, message buffer, 454–455
PopReceipt attribute, 211, 217, 228, 233–234
Portal Administrators area, of ACS

Management Portal, 361
portal commands, 39
ports, protocols and, 322
POST HTTP verb, 271
prefix parameter, 219
PreserveChanges option, 285, 294
pricing, 34–38
Pricing and Gateway database, design, 534–548

gateway application design, 547
optimizing SELECT queries, 542–544
pricing table synchronization, 545–546
ProAzure Dem-Res service, 547–548
proazuredemres database, 535–536
stored procedures, 537–540
tables, 536–537
uploading sample data, 540–542

pricing tables, synchronization, 545–546
PricingCalendar_kWh table, 535, 538–539, 541–

543, 545
PricingLocations table, 535, 538
Pro Azure Reader Tracker, 263, 282
ProAzure Dem-Res (Demand-Response)

service, 547–548
ProAzure Energy service, example of, 403–406
ProAzureACSWeb, 368
ProAzure.cer certificate, 360
ProAzureCommonLib, 221–222, 225, 227, 236,

273, 276
proazuredemres database, 535–536

 INDEX

573

ProAzureReader class, 263–265, 267, 269
ProAzureReader() method, 254, 264, 269, 280,

283, 288, 290–291, 294, 304
ProAzureReader object, 288, 290, 292
ProAzureReader table, 273, 280, 285, 288
ProAzureReaderDataContext class, 265–267,

269, 289
ProAzureReaderDataSource class, 266–267, 282,

289–290, 293, 295
ProAzureReaderDataSourceContext object, 290
ProAzureReaderTracker, 270, 272–273, 276,

285–286, 288, 292–293
ProAzureReaderTracker_WebRole, 270, 272–

273, 276, 285–286, 288, 292–293
ProAzureSignedCA.cer, 360
processing, guaranteed, 243–245
Product object, 383
programming

with AppFabric Service Bus, 401–452
HTTP relay bindings, 442–452
netEventRelayBinding binding, 423–429
NetOnewayRelayBinding binding, 406–

422
NetTcpRelayBinding binding, 431–442
ProAzure Energy service, 403–406
Queues and Topics, 462–482

with Service Management API, 124–126
project actions

cloud service roles, 69
storage services, 70

project types, in Windows Azure Tools for
Visual Studio, 59–63

properties, 250–253
protocols, and ports, 322
provisioning

ACS service namespaces, 342–345
caches, 487
Connect feature, 318–319

publishing, 111–120
Remote Desktop Connection application,

118–120
viewing IntelliTrace feature logs, 117–118

PurchaseDate property, 265
PurchaseLocation property, 265
PurchaseType property, 265
Put Blob operation, 175–180
Put Block List operation, Put Block operation

and, 178–180
Put Block operation, and Put Block List

operation, 178–180
Put Message operation, 214, 228–232

PutBlob() method, 178
PutMessage() method, 232

 Q
queries

and dataset, defining, 556
SELECT, optimizing, 542–544

Query Entities operation, 257, 278–286
Query Tables operation, 269–270, 274–278
question mark (?) character, 252
Queue class, 216
queue name, 210–211, 223–224, 226, 229–230,

232
Queue Name text box, 227, 231
Queue object, 225
queue operations, 223–228

Create Queue, 224–226
Set Queue Metadata, 226–228

Queue Operations tab, 225, 227
Queue service, 207–245

account operations, 218–222
architecture of, 208–211

messages, 210–211
queues, 210
storage account, 209

asynchronous API, 238–240
bibliography, 245
limitations and constraints of, 208
message operations, 228–238

Get Messages, 232–238
Put Message, 230–232

queue operations, 223–228
Create Queue, 224–226
Set Queue Metadata, 226–228

REST API, 211–218
request, 211–214
response, 214
storage client API, 215–218

scenarios for, 240–245
guaranteed processing, 243–245
interoperable messaging, 242–243
Web and Worker role communications,

240–241
Worker role load distribution, 241–242

QueueAttributes class, 217
QueueClient object, 222
QueueDescription command, 471
QueueDescription object, 463
QueueErrorCodeStrings class, 217

 INDEX

574

QueueListener class, 236–237
QueueMessage element, 230, 234
Queues

AppFabric Service Bus, 459
adding session state to, 463
vs. Azure Storage service queues, 460–

461
creating and sending messages to, 466
retrieving messages from, 466
and Topics, 458–459

overview, 210
REST API

management commands, 471–474
message commands, 469–471

and Topics
AppFabric Service Bus, 462–482
features of, 401

Queues element, 221
Queues List Box, 231

 R
Rackspace, 307
RDL file, 556
Read and Delete Message, from Subscription

command, 475
Read Message from Subscription with Non-

Destructive Peek-Lock command, 474
ReaderUrl property, 292–293
references, assembly, 487–488
Regions method, 173
registries, service, 395–397
relational data storage engine, 29
relay authentication, with ACS integration, 389–

392
relay bindings, HTTP, 442–452

WebHttpRelayBinding binding, 446–452
WS2007HttpRelayBinding binding, 443–446

relay security
netEventRelayBinding binding, 426
NetOnewayRelayBinding binding, 411–413
NetTcpRelayBinding binding, 437

relay services, 386–387
relying party

applications for, 355–357, 367–371
designing claims for, 373

Relying Party (RP), 345, 348, 355–357, 359, 367,
372

remote access, packaging and enabling, 316
Remote Desktop Connections, 76, 114, 118–120

reporting
defining data source, 556
defining query and dataset, 556
deploying, 556
sample of, 555
viewing, 556

Representational State Transfer API. See REST
Request for Security Token (RST), 378
Request Security Token Response (RSTR), 378
requests, 211–214, 254–256

body of, 214–256
components of, 142–146

body, 145
headers, 143–145
HTTP verb, 142
request URI, 142–143
URI parameters, 143

headers, 212–213, 254–256
HTTP verb, 212–254
securing with Access Control Service, 469
URI, 212–254

responses, 214, 256–259
body of, 214, 257–259
components of, 145–146

body, 146
headers, 145
status code, 145

headers, 214–257
status code, 214–256

REST-based interface, 27, 123
REST command, 472–474, 477, 479–481
REST interface, 59, 146, 224, 446, 448, 471–472,

475, 479, 481
REST (Representational State Transfer) API,

142–154, 211–218, 253–263, 468–482
ADO.NET Data Services library, 259
Queues

management commands, 471–474
message commands, 469–471

request, 211–214
body of, 214–256
headers, 212–213, 254–256
HTTP verb, 212–254
URI, 212–254

request components, 142–146
body, 145
headers, 143–145
HTTP verb, 142
request URI, 142–143
URI parameters, 143

response, 256–259

 INDEX

575

body of, 214, 257–259
headers, 214, 257
status code, 214, 256

response components, 145–146
body, 146
headers, 145
status code, 145

rules, management commands, 481–482
securing requests with Access Control

Service, 469
storage client API, 215–218, 260–263

for Queue service applications, 215–218
for Table service, 260–263

StorageClient API, 146–154
Blob API, 147–154

Topics
management commands, 475–480
and subscriptions, 474–475

REST Request body, 299
REST Request header, 299
REST-style interface, 399, 446
ResultSegment class, 305
ResultSegment object, 304
RetryPolicy property, 305
ROI (return on investment), 49
role instances, creating drives from, 196–197
RoleEntryPoint class, 20, 62–63
RoleEnvironmentChanging event, 106
RoleEnvironmentConfigurationSettingChange,

106
RoleEnvironment.RequestRecycle() method,

106
RoleEnvironment.StatusCheck event, 106
RoleEnvironmentTopologyChange, 106
RoleIds, 115
RoleInstanceStatusCheckEventArgs, 106
roles

application, 52–53
cloud service, 69
enabling Connect feature for, 322–323
settings and configuration of, 63–68

Certificates tab, 67
Configuration tab, 64–65
Endpoints tab, 66–67
Local Storage tab, 67
Settings tab, 65–66
Virtual Network tab, 68

RowKey, 250, 252, 257, 265, 268, 279, 281, 285,
291, 294

RP (Relying Party), 345, 348, 355–357, 359, 367,
372

RST (Request for Security Token), 378
RSTR (Request Security Token Response), 378
Rule Description document, 481
Rule Groups section, 348, 350, 357, 368
RuleDDescription object, 481
rules

CorrelationFilterExpression expression, 462
designing for ACS, 373
for mapping claims, rule groups and, 368
REST API, management commands, 481–

482
SQLFilterExpression expression, 462

Run() method, 20, 63, 106
runtimes, application, 52

 S
SaaS (Software as a Service), 2
SalesAccess, 337, 339
SAML (Security Assertions Markup Language),

377, 391
SAML token, 332–333, 338, 348, 377–379
sample data, uploading, 540–542
SAN (storage area network), 202
SaveChanges() method, 269, 290, 294–295
SaveChangesOptions, 284, 289
Scalability attribute, 93
scenarios, 43–46

enterprise, 44
foundational, 43
ISV, 45

SDK class, 106
SDK Command Prompt, 312
SDKs and Documentation section, of ACS

Management Portal, 365
SDS (SQL Data Services), 497
Secure Sockets Layer (SSL), 345, 378, 501
SecureString, 491
security, 388–393

Compute service, 57–58
message, 392–393

netEventRelayBinding binding, 426
NetOnewayRelayBinding binding, 413–

417
NetTcpRelayBinding binding, 437

relay
authentication with ACS integration,

389–392
netEventRelayBinding binding, 426

 INDEX

576

security, relay (cont.)
NetOnewayRelayBinding binding, 411–

413
NetTcpRelayBinding binding, 437

Security and Access Control service, 383
Security Assertions Markup Language (SAML),

377, 391
SELECT command, 529
SELECT queries, optimizing, 542–544
SelfSTS tool, 371–373
Send() method, 456
SendKwhValue() method, 419
SendLightingValue() method, 419
Server database, 335, 498, 501, 549–551, 553,

559
server errors, during message processing, 468
servers

blade, 51
Java, applications, 19
SQL Azure service, 507–508

service bindings
netEventRelayBinding binding, 426
NetOnewayRelayBinding binding, 409–411
NetTcpRelayBinding binding, 436

Service Bus feature, 13, 32, 46, 318
Service Definition file, hosted services and,

313–316
service descriptions, 531
service development, 58–93, 100–120

adding diagnostics and inter-role
communication, 101–120

service model, 102–104
Web role, 108–109
Worker role, 104–108

API structure, 59
developer environment, 59–77

packaging service, 73–77
role settings and configuration, 63–68
Windows Azure Tools for Visual Studio,

59, 69–73
development fabric, 90–92
development storage, 92–93
diagnostics and inter-role communication,

101–120
service model, 102–104
Web role, 108–109
Worker role, 104–108

life cycle of, 127–128
objectives of, 101
publishing, 111–120

Remote Desktop Connection
application, 118–120

viewing IntelliTrace feature logs, 117–
118

running HelloAzureCloud service, 109–111
SDK tools, 77–78
service models, 78–88

certificate management, 88
ServiceConfiguration.cscfg file, 88–90
ServiceDefinition.csdef file, 78–88

service endpoints
netEventRelayBinding binding, 427
NetOnewayRelayBinding binding, 417
NetTcpRelayBinding binding, 438

service hosting
netEventRelayBinding binding, 427
NetOnewayRelayBinding binding, 417–418
NetTcpRelayBinding binding, 438

Service Identities section, 361
service implementations

netEventRelayBinding binding, 425–426
NetOnewayRelayBinding binding, 409
NetTcpRelayBinding binding, 435–436

Service Level Agreement (SLA), 53
Service Management API, 123–126

programming with, 124–126
structure of, 123–124

service models, 52, 78–90, 102–104
certificate management, 88
ServiceConfiguration.cscfg file, 88–90
ServiceDefinition.csdef file, 78–88

endpoints, 80–83
Full IIS support, 85–86
full trust execution, 86–88
local storage, 83
startup tasks, 83–84

[Service Name].cspkg, 76
service namespaces, ACS, provisioning, 342–

345
service providers, of cloud services, 8
service queues, Azure Storage, 460–461
service registries, 395–397
Service Settings section, 345
ServiceBusEnvironment.CreateServiceUri()

method, 438
ServiceConfiguration.cscfg file, 76, 87–90, 97,

99, 102, 273
ServiceDefinition.csdef file, 78–88

endpoints, 80–83
Full IIS support, 85–86
full trust execution, 86–88

 INDEX

577

local storage, 83
startup tasks, 83–84

services layer, of SQL Azure service, 500–501
services, packaging, 73–77
session state, adding to AppFabric Service Bus

Queue, 463
Session State provider, ASP.NET framework,

493–494
sessionState, 489, 493–494
Set Container Metadata operation, 164–166
Set Queue Metadata operation, 223–224, 226–

228
SetBusy() method, 106
SetContainerMetadata method, 166
SetContainerMetadata() method, 166
SetMetadata() method, 218, 228
Settings tab, 65–66
SetupDiagnostics() method, 98–99, 105–106
Shared Access Signatures, 152–154
SharedKey, 212–213, 220–221, 224, 226, 230, 233
ShowSigninPagetype, 365
Simple Web Token (SWT), 332, 379
Size attribute, 93
SLA (Service Level Agreement), 53
snapshotting, drives, 197–198
Software as a Service (SaaS), 2
software modernization, 46
software vendors, of cloud services, 8–9
Springsource, 5
SQL Azure service, 28–31, 497–560

architecture of, 498–501
data access, 503–506
Data Sync service, 558–559
database, 510–512

connecting to, 512–530
growth-management strategies for, 553–

554
migration strategies for, 549–552

developing services that use, 530–548
Pricing and Gateway database design,

534–548
processes for curtailment, 531
service description, 531
technical architecture, 532–534

limitations of, 501–502
overview of, 497–498
reporting, 555–556

defining data source, 556
defining query and dataset, 556
deploying, 556
sample of, 555

viewing, 556
server, 507–508
SSRS feature fidelity, 558
supported features of, 501–503

administration, 503
application, 502–503
database, 502

SQL command, 522, 525
SQL Data Services (SDS), 497
SQL Server BCP utility, 551
SQL Server Integration Services (SSIS), 545–546,

551
SQL Server Management Studio tool,

connecting with, 512–520
SQL Server Reporting Services (SSRS), 555, 558
SQLAzure database, 11, 24, 29, 31, 33–34
SQLAzure service, Table service vs., 299–300
SQLCMD tool, connecting to SQL Azure service

database with, 524–526
SqlCommand command, 528, 542
SqlConnectionStringBuilder class, 528
SQLFilterExpression expression, 462
sqlInstance parameter, 93
SSIS (SQL Server Integration Services), 545–546,

551
SSL (Secure Sockets Layer), 501
SSRS (SQL Server Reporting Services), 555, 558
startup tasks, 83–84
state management, 307
stateless role interfaces, 128
status codes, 145, 214, 256
Status method, 126
Stop() method, 20
storage

development, 92–93
local, 83, 311
locations, defining for diagnostics service,

97
scenarios for, 200–204

Enterprise File Sync tool, 203–204
massive data uploads, 200–201
Storage as a Service model in cloud,

201–203
taxonomy design of, 202–203

storage accounts, 139, 154–157, 209–248
Storage Analytics API, 296–299

enabling, 298–299
Logging feature, 296–297
Metrics feature, 297–298

storage area network (SAN), 202
Storage as a Service model, in cloud, 201–203

 INDEX

578

Storage as a Service model, in cloud (cont.)
encryption and decryption, 203
integration with enterprise domain

accounts, 202
storage taxonomy design, 202–203

Storage Client API, 215, 217, 238
Storage Client library, 253, 264
storage clients, API, 260–263
Storage Emulator, 70, 93
Storage Management, 44
Storage Operations.exe application, 221, 234
Storage service, 24–26, 70, 131–205

account operations, 154–157
architecture of, 134–137
Blob service, 137–138

architecture of, 138–142
limitations and constraints of, 138

blobs
operations of, 172–186
storage scenarios, 200–204

CDN, 187–189
container operations, 160–171

Create Container, 162–164
List Blobs, 166–171
Set Container Metadata, 164–166

programming example, 157–160
REST API, 142–154

request components, 142–146
response components, 145–146
StorageClient API, 146–154

taxonomy of, 132–134
Windows Azure Drives, 189–200

operations of, 190–198
overview of, 189–190
scenarios for, 198–200

storage types, 305
StorageAccountConnectionString, 222
StorageClient API, Blob API, 147–154
StorageClient library, 240
StorageClient methods, 221
StorageClient project, 221
stored procedures, 537–540

InsertEnergyMeterValues, 539
InsertGateway, 538–539
InsertPricingCalendar_kWh, 538
InsertPricingLocations, 538
UpdateGatewayLastCommunication, 540

Stream object, 465
STS (Secure Token Service), 345, 378
subscription rules, 462
SubscriptionDescription command, 478

SubscriptionDescription object, 478
subscriptionId, 125
SubscriptionId, 126
subscriptions

deleting, 480
REST API management commands, 478
REST API Topics and, message commands,

474–475
retrieving messages using, 466–467
unlocking messages from, 475

Summary of Table Service Functionality, 259
SWT (Simple Web Token), 332, 379
Symmetric Key, 359, 362
synchronization, options for, 559
system integrators, 9
System Preparation tool, 310–312
System.Collection.Specialized.NameValueColle

ction object, 166
System.Convert.ToBase64String() method, 144,

255
System.Data.Services.Client.DataServiceContex

t class, 262, 265, 277
System.Data.SqlClient.SqlConnectionStringBui

lder class, 527
System.Diagnostics.Trace class, 97
System.IO file, 83
System.Net.HttpWebRequest, 124, 226, 228, 232
System.ServiceModel.Channels.Message

object, 448, 456

 T
T-Press, 334, 336
T-Room, 334–336
Table class, 261
Table names, 249
table operations, 269–278

Create Table, 270–274
Query Tables, 274–278

Table service
architecture of, 247–253

entity, 249
property, 250–253
storage account, 248
table, 249

example model, 263–269
paging in, 304–306
scenarios for, 300–306

paging in Table service, 304–306

 INDEX

579

reading performance counters from
Table service, 300–304

vs. SQLAzure service, 299–300
storage client API for, 260–263

TableClient object, 277
TableOperations.aspx page, 273
TableOperations.aspx page", 276
tables, 247–306

account operations, 269
bibliography, 306
database, 536–537
entity operations, 278–295

Insert Entity, 287–291
Merge Entity, 291–295
Query Entities, 279–286

pricing, synchronization, 545–546
REST API, 253–263

ADO.NET Data Services library, 259
request, 254–256
response, 256–259
storage client API, 260–263

Storage Analytics API, 296–299
enabling, 298–299
 Logging feature, 296–297
Metrics feature, 297–298

table operations, 269–278
Create Table, 270–274
Query Tables, 274–278

Table service
architecture of, 247–253
example model, 263–269
scenarios for, 300–306
vs. SQLAzure service, 299–300

TableServiceContext class, 262, 268, 282, 301
TableServiceEntity class, 262, 264, 267, 301
TableStorage object, 277
TableStorageDataServiceContext class, 265
TableStorageEntity class, 264
tabular data stream (TDS), 28, 500
TargetServerURL property, 556
taskType attribute, 79, 84, 104
TcpListener, 109
TDS (tabular data stream), 28, 500
technical architecture, 532–534
testing phase, 127
third-party applications, 44
TokenProvider object, 463
tokens

decryption, 360
encryption, 360
retrieving from ACS, 341–342

signing, 359–360
TopicDescription command, 476
Topics, 461–462

AppFabric Service Bus Queues and,
messaging, 458–459

creating and sending messages to, 466
Queues and

AppFabric Service Bus, 462–482
features of, 401

REST API
management commands, 475–480
and subscriptions, 474–475

subscription rules, 462
trace listeners, configuring, 96–97
Trace.WriteLine() statements, 106
TransportClientEndpointBehavior class, 390,

411, 417–418
TreeView control, 171, 182, 185
Trusted Root Certificate Authorities folder, 360

 U
UDP protocol, 19
Uniform Resource Identifiers. See URIs
Unmount() method, 198
Update Entity operation, 278–279
UpdateGatewayLastCommunication stored

procedure, 540
UpdateUrl() method, 293–295
Upgrade Domain, 53–57, 108, 116–117
UploadFromStream() method, 179
uploads, massive data, 200–201
URI parameter, 143, 154, 164, 169, 212, 219, 254,

274, 474–475
URIs (Uniform Resource Identifiers)

parameters of, 143
request, 142–143, 212–254

Use an Existing STS option, 370
user claims, 378
UserProfiles table, 253
UTC (Coordinated Universal Time), 143, 212,

255

 V
VHD Verification Tool, 313
VHD (virtual hard drive), 21
Virtual Hard Disk tab, 314
virtual hard drive (VHD), 21
Virtual Machine role. See VM

 INDEX

580

Virtual Network tab, 68
Visibilitytimeout attribute, 211
visibilitytimeout parameter, 211, 228, 232–234,

236, 243–244
Visual Studio command, 360
Visual Studio, Windows Azure Tools for. See

Windows Azure Tools for Visual Studio
VM Role, 18, 21–22
VM size option, 65
VM (Virtual Machine) role, 21, 307–317

benefits and tradeoffs of, 308
hosted services

deploying, 316–317
and Service Definition file, 313–316

images
coordination between Fabric Controller

service and, 310
uploading, 312–313
viewing in management portal, 313

installing certificates, 310
Integration components, 309–311
local storage resources, 311
packaging and enabling remote access, 316
scenarios for, 308–309
System Preparation tool, 310–312

WADDiagnosticInfrastructureLogsTable, 95
WADLogsTable, 95
WADPerformanceCountersTable, 96, 300
WADWindowsEventLogsTable, 96
WaIntegrationComponents-x64.msi, 311
WaitOne() method, 240
WAStorageHelper class, 158, 166, 222, 225, 227,

273, 276–277
WAStorageHelper.cs file, 178, 183, 186
WCF method, 106
WCF (Windows Communications Foundation),

19, 33, 379, 382, 399
web applications, with multiple identity

providers using ACS, 367
Web Resource Authorization Protocol (WRAP),

379
Web roles

Java server applications, 19
overview, 108–109
and Worker roles, communications

between, 240–241
web.config file, 371
WebHttpRelayBinding binding, 446–452
WebRole class, 62, 86
WIF (Windows Identity Foundation), 328, 359,

366–367, 377, 379–380

Windows Azure AppFabric Cache, 32
Windows Azure Cloud Service template, 60
Windows Azure Drives

operations of, 189–200
creating drive locally, 192–195
mounting drive, 196
snapshotting drive, 197–198
uploading drive, 196

overview of, 189–190
scenarios for, 198–200

Windows Azure Management portal, 342
Windows Azure Tools for Visual Studio, 59

debugging in, 71–73
project actions

cloud service roles, 69
storage services, 70

project types, 59–63
Windows Azure Trace logs, 94
Windows Communications Foundation (WCF),

19, 33, 379, 382, 399
Windows event logs, 94
Windows Identity Foundation (WIF), 328, 359,

366–367, 377, 379–380
Windows Live, 327, 332, 334, 341, 345, 350, 355,

364, 367, 377
Windows performance counters, 94
WindowsAzureStorage.cs file, 232
WinHttpCertCfg.exe certificate, 360
Worker roles, 19–21, 104–108

load distribution, 241–242
Web roles and, communications between,

240–241
WRAP (Web Resource Authorization Protocol),

379
WS-Federation Metadata section, 369
WS-Federation providers, 363, 371–372, 375
WS2007HttpRelayBinding binding, 443–446

 X
x-ms-request-id, 214, 220, 224, 231, 233, 257,

272, 275, 280
X.509 certificates, 360

 INDEX

581

 Y
Yahoo!, 345, 350, 366–367

 Z
Zimbra, 5
ZipCode property, 253

Windows Azure Platform
Second Edition

Tejaswi Redkar
Tony Guidici

Windows Azure Platform

Copyright © 2011 by Tejaswi Redkar and Tony Guidici

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3563-7

ISBN-13 (electronic): 978-1-4302-3564-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Todd Meister
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger
Copy Editor: Tracy Brown
Indexer: BiM Indexing & Proofreading Services
Artist: SPI Global
Compositor: Bytheway Publishing Services
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

I dedicate this book to my late grandfather, Shri. Sharad Atmaram Redkar.
My name is his creation. I thank my wife, Arohi, and my sons Aaryan (Heart-of-Gold) and

Dhruv for giving me the liberty to do what I love. I also thank my sister Aasawari for being with
me when I needed her. I thank my parents for all their teachings.

Finally, I thank God for gifting me with the people I love.

–Tejaswi Redkar

This book is dedicated to my father, James Guidici, for being the first major technical influence
in my life – in particular for buying me my first computer (a Texas Instruments TI-99/4A),

teaching me how to write GOTO loops, and how to dial into BBSes on my IBM PCJr.
Your passion for technology spurred a lifetime love of technology in me. More important,

I thank you for being an outstanding role model and for showing me how to be a good man
and good father.

I thank my mother, Deborah Guidici, for always believing that I could accomplish anything.
Her confidence and encouragement helped me to tackle challenges I wouldn’t have thought

possible, such as writing a book.

To my wife of nearly 15 years, Jenifer, thank you for supporting me during the writing of this
book. There aren’t enough words to describe my gratitude for the sacrifices you’ve made to

support my career and our family. You are truly amazing.

To my sons, Joseph and Nicholas, you are my daily inspiration. I hope that you grow up with the
same belief that I did, that you can accomplish anything as long as you reach for the stars, and

you should never settle for less than your best.

–Tony Guidici

v

Contents

 About the Authors. .. xvi
 About the Technical Reviewer . .. xvii
 Acknowledgments xviii
 Introduction . .. xx
 Chapter 1: Windows Azure Platform Overview..1

Introducing Cloud Services. ...1
Industry Terminology. .. 2
Cloud Service Providers. .. 5

Shifting to the Cloud Paradigm. ...6

Understanding the Cloud Services Ecosystem8
Service Providers. .. 8
Software Vendors 8
Independent Software Vendors . .. 8
Enablers. .. 9
Businesses 9

Microsoft’s Cloud Strategy9

Windows Azure Platform Overview. ...10
Understanding Windows Azure Compute Architecture. ... 13

Windows Azure15
Compute 18

 CONTENTS

vi

Windows Azure Storage ... 24
Management... 27

SQL Azure ..28
Windows Azure AppFabric...32

Windows Azure Platform Pricing ...34
Management Portal – Let’s Provision..38

Windows Azure Marketplace DataMarket ...41
Windows Azure Platform Common Scenarios ...43

Foundational Scenarios .. 43
Enterprise Scenarios .. 44
ISV Scenarios.. 45

Summary ...46
Bibliography...46

 Chapter 2: Windows Azure Compute ..49

Compute Service..49
Upgrade Domains and Fault Domains .. 53
Compute Service Security .. 57

Developing Windows Azure Services...58
Windows Azure API Structure... 59
Developer Environment .. 59
Windows Azure SDK Tools.. 77
Service Models ... 78
Development Fabric.. 90
Development Storage ... 92

Diagnostics ..94
Logging... 96

 CONTENTS

vii

Developing Windows Azure Services with Inter-Role Communication..........................100
Objectives ... 101
Adding Diagnostics and Inter-role Communication .. 101
Running the HelloAzureCloud Service .. 109
Publishing to Windows Azure Cloud ... 111

Geo-location ..120
Enabling Geographic Affinity .. 121

Windows Azure Service Management ...123
Service Management API Structure.. 123
Programming with the Service Management API... 124

Windows Azure Service Development Life Cycle...127
Architectural Advice...128

Summary ...129
Bibliography...130

 Chapter 3: Windows Azure Storage Part I – Blobs and Drives131

Storage Service Taxonomy ..132

Storage Service Architecture...134
The Blob Service..137

Blob Limitations and Constraints.. 138
Blob Architecture ...138

Windows Azure Storage Account ... 139
Containers .. 139
Blobs... 140
Types of Blobs .. 140

REST API ..142
Request .. 142
Response.. 145

 CONTENTS

viii

Storage Client API... 146
Account Operations ...154

Programming Example ..157
Container Operations ...160

Create Container... 162
Set Container Metadata.. 164
List Blobs.. 166

Blob Operations ...172
Put Blob .. 175
Get Blob .. 180
Copy Blob.. 184

Content Delivery Network (CDN) ..187

Windows Azure Drives ...189
Overview... 189
Drive Operations ... 190
Windows Azure Drives Scenarios ... 198

Blob Storage Scenarios ...200
Massive Data Uploads .. 200
Storage as a Service in the Cloud... 201
Enterprise File Sync.. 203

Summary ...205

Bibliography...205

 Chapter 4: Windows Azure Storage Part II – Queues...207

Queue Limitations and Constraints..208

Queue Service Architecture ...208
Windows Azure Storage Account ... 209
Queues.. 210

 CONTENTS

ix

Messages ... 210
REST API ..211

Request .. 211
Response.. 214
Storage Client API... 215

Account Operations ...218

Queue Operations ..223
Create Queue.. 224
Set Queue Metadata ... 226

Message Operations ..228
Put Message... 230
Get Messages ... 232

Asynchronous API ..238
Queue Scenarios..240

Scenario 1: Windows Azure Web and Worker Role Communications... 240
Scenario 2: Worker Role Load Distribution... 241
Scenario 3: Interoperable Messaging... 242
Scenario 4: Guaranteed Processing ... 243

Summary ...245

Bibliography...245

 Chapter 5: Windows Azure Storage Part III – Tables..247

Table Service Architecture ... 247
REST API ... 253
Example Table Model ... 263
Account Operations .. 269
Table Operations... 269
Entity Operations .. 278

 CONTENTS

x

Storage Analytics...296
Logging... 296
Metrics.. 297
Enabling Storage Analytics... 298

Table Storage versus SQLAzure...299
Table Service Scenarios ..300

Scenario 1: Reading Performance Counters from Table Storage ... 300
Scenario 2: Paging in Table storage... 304

Summary ...306
Bibliography...306

 Chapter 6: VM Role and Windows Azure Connect...307

VM Role..307
VM Role Benefits/Tradeoffs .. 308
Scenarios.. 308
Creating the Virtual Machine .. 309
Windows Azure VM Role Integration Components.. 309
Upload Image to Windows Azure.. 312

Windows Azure Connect ..317
Windows Azure Connect vs. Service Bus ... 318
Provisioning Windows Azure Connect .. 318
Activated Endpoints, Groups, and Roles... 319
Installing and Activating an Azure Endpoint on a Local Machine ... 320
Enabling Windows Azure Connect for a Role.. 322
Creating Connect Groups.. 324

Summary ...325
Bibliography...325

 CONTENTS

xi

 Chapter 7: AppFabric: Access Control Service ..327

What Is Your Digital Identity?...327
What Are Claims? ..328

Claims-Based Identity Model...330
Access Control Service Usage Scenarios ..333

Scenario 1: Enterprise Cloud Application ... 334
Scenario 2: Cross-Enterprise Application... 337
Scenario 3: ISV Cloud Service .. 339
Retrieving Tokens from ACS... 341

Access Control Service Management Portal..342
Provisioning Your ACS Service Namespace ... 342
Identity Providers.. 345
Relying Party .. 355
Rule Groups .. 357
Certificates and Keys.. 359
Service Identities .. 361
Portal Administrators.. 361
Management Service.. 362
Application Integration ... 362

Programming Access Control Service Applications...366
Passive Federation with ACS.. 367
Web Application: Multiple Identity Providers using ACS... 367
Adding a WS-Federation Provider .. 371

Summary ...377

Concepts and Terminology ..377
Identity Provider ... 377
Relying Party .. 377

 CONTENTS

xii

Security Token (SAML Token)... 378
Secure Token Service (STS) ... 378
Request for Security Token (RST)... 378
Request Security Token Response (RSTR) ... 378
Claim .. 378
Identity Federation.. 379
Windows Identity Foundation (WIF) .. 379
Active Directory Federation Server (ADFS 2.0) ... 379
Web Resource Authorization Protocol (WRAP) and Simple Web Token (SWT)...................................... 379

Bibliography...380

 Chapter 8: AppFabric Service Bus ..381

First, a Little Background.381
Enterprise Service Bus (ESB)...382

Security and Access Control... 383
Connectivity Infrastructure ... 383
Enterprise Naming Scheme.. 383
Interface Contracts ... 383

Evolution of the Internet Service Bus (ISB) ..384
Relay Service.. 386

Introduction to the AppFabric Service Bus ..387
Security .. 388
Naming Service .. 393
Service Registry.. 395
Messaging Fabric ... 397

Programming with the AppFabric Service Bus ..401
ProAzure Energy Service Example.. 403
NetOnewayRelayBinding .. 406
netEventRelayBinding... 423

 CONTENTS

xiii

NetTcpRelayBinding ... 431
HTTP Relay Bindings... 442

Message Buffer..452
Programming Message Buffer Applications ... 454

AppFabric Messaging: Queues and Topics..458
AppFabric Service Bus Queues..459

AppFabric Service Bus Queues vs. Azure Storage Queues..460
AppFabric Service Bus Topics ...461

Subscription Rules.. 462
Programming Service Bus Queues and Topics..462

.NET Client API .. 462
REST API ... 468

Summary ...482

Bibliography...483

 Chapter 9: AppFabric: Caching ...485

AppFabric Caching vs. Other Cache Providers ..486

Provisioning an AppFabric Cache ..487
AppFabric Cache Clients..487

Assembly References ... 487
Configuring the Cache Client .. 488
Programming AppFabric Cache.. 492

ASP.NET Session State Provider..493
Enabling Session State in AppFabric Cache... 493

Enabling ASP.NET Output Cache in AppFabric Cache..494
Summary ...495

Bibliography...495

 CONTENTS

xiv

 Chapter 10: SQL Azure ..497

SQL Azure Overview ..497
SQL Azure Architecture..498

Infrastructure Layer.. 499
Platform Layer .. 499
Services Layer .. 500
Client Layer... 501

SQL Azure Limitations and Supported Features ..501
Database Features.. 502
Application Features... 502
Administration Features ... 503

SQL Azure Data Access..503
Code-Near Connectivity.. 503
Code-Far Connectivity .. 505

Getting Started with SQL Azure ...506
Creating a SQL Azure Server .. 507
Creating a SQL Azure Database.. 510
Connecting to a SQL Azure Database ... 512

Developing Windows Azure Services That Use SQL Azure ..530
Service Description .. 531
Processes for Curtailment .. 531
Technical Architecture.. 532
Pricing and Gateway Database Design... 534

Database-Migration Strategies..549
Data Definition Migration.. 549
Data Migration .. 551
Business Logic Migration ... 552
Application Migration.. 552

 CONTENTS

xv

Database Growth-Management Strategies . ..553
SQL Azure Reporting. ...555

Sample Report . .. 555
Creating Reports. ... 555

SSRS Feature Fidelity558

Data Sync. ..558

Data Sync Design. ..559
Synchronization Options. ... 559

Summary . ..559
Bibliography. ..560

 Index . ..561

xvi

About the Authors

 Tejaswi Redkar is a software architect with a passion for writing. He works for
Microsoft and has been working on the Windows Azure platform since 2008. He is
also the Worldwide Community Lead for the Windows Azure platform in
Microsoft Services. He has architected several small- and large-scale systems on
Windows Azure for Enterprises and ISVs. Tejaswi has not only written about
conceptual topics like Threading and MSMQ, but also on broader topics, such as
software ecosystems, businesses, and platforms. Tejaswi has a Master’s degree in
Computer Engineering from San Jose State University and an MBA from
University of Wisconsin, Whitewater.

Tejaswi lives in the beautiful San Francisco Bay Area with his wife, Arohi, and two
sons, Aaryan and Dhruv. When not working on what’s next, he is either having fun
with the family or bicycling on San Ramon trails. Professionally, he idolizes three

people: Bill Gates, Kishore Kumar, and Sachin Tendulkar. You can find more details about him on his
LinkedIn profile at www.linkedin.com/in/tejaswiredkar. Follow him at: Twitter: @tejaswi_redkar.

 Tony Guidici has fifteen years’ experience as a software developer and architect.
He is currently a Senior Architect Evangelist at Microsoft in the Developer & Platform
Evangelism (DPE) group. He is on the Azure Incubation team, and is focused on
providing technical guidance and assistance to Cloud Service Vendors creating SaaS
applications on Windows Azure. Additionally, he works with the product team to
provide product feedback from customers.

He has been working with Windows Azure since it was first announced at PDC
2008, and with early adopters since 2009 as part of Microsoft Consulting Services. He
believes that the cloud is a generational paradigm shift, and that Windows Azure is
the premier cloud platform. He continues to stay sharp by seeking out interesting
problems his customers face and helping solve them.

He holds an MBA from the University of Wisconsin-Madison in Information Technology Analysis
and Design, and is an avid fan of Badger football. He also holds a BA in International Business from
Bradley University, and is looking forward to the next time we see the Braves in the Final Four.

Tony lives in the Chicago suburbs with his wife, Jenifer, and their two sons, Joseph and Nicholas. He
spends much of his free time with his family, coaching his kids’ baseball teams and patiently waiting for
the Cubs to win the World Series.

You can follow him at: Twitter: @tonyguid and via his blog at http://blogs.msdn.com/tonyguid.

http://www.linkedin.com/in/tejaswiredkar
http://blogs.msdn.com/tonyguid

xvii

About the Technical Reviewer

 Todd Meister has been working in the IT industry for over fifteen years. He’s been a technical editor
on over 75 titles on topics ranging from SQL Server to the .NET Framework. He is also the Senior IT
Architect at Ball State University in Muncie, Indiana. He lives in central Indiana with his wife, Kimberly,
and their four incredible children.

xviii

Acknowledgments

I would like to thank the following individuals for their contributions to my professional and personal
life:

• Smt. Laxmi Natarajan, a teacher who believed in the author in me.

• Prof. M.B. Unde at the National Chemical Laboratory, Pune, for teaching me
valuable engineering lessons.

• Randy Bainbridge at Microsoft, who is one of the best managers I’ve had.

• Jamal Haider at Microsoft for encouraging the author in me.

• Ewan Buckingham at Apress for driving the first and second edition of this
book.

• Penny Tong, for teaching me valuable work-life lessons.

• Prof. Dan Harkey at San Jose State University for giving me the opportunity to
teach.

• The Microsoft leadership team for fostering an atmosphere of innovation.

• Kui Jia, for selling me the Microsoft employment value proposition.

• Tony Guidici for taking up the challenge of creating the second edition of this
book.

• Larry Fenster, Jenn Goth, Danny Garber, Anu Chawla, Ken Archer, Kevin
Fleck, and Scott Lengel for believing in my work and providing me with
necessary feedback and opportunities.

My personal life would be incomplete without a network of amazing friends, co-workers, educators, and
students who have played an important role in shaping it.

– Tejaswi Redkar

I would like to thank the following professionals for their contributions:

• Tejaswi Redkar, for having the faith to let a first-time author contribute to
your book, and your enduring support.

• Eric Golpe, Windows Azure OneTAP guru, for helping me get started with
Azure way back in 2008.

 ACKNOWLEDGMENTS

xix

• Ewan Buckingham, Jessica Belanger, and James Markham from Apress for
guiding me through the process of authoring this book.

• Danny Garber, for helping me move from “knowledgable” to “expert” in
Azure.

• David Makogon (“World’s First Former Azure MVP”), Bhushan Nene, and
Kashif Alam of Microsoft, for providing assistance to many technical
questions.

• My colleagues on the Worldwide Azure CSV team. Your brilliance drives me to
be better every day.

• Clark Sell, my first mentor at Microsoft, for getting me off to a good start.

• Kevin Fleck and Ken Archer of Microsoft Consulting Services, for having the
foresight to start a team called Cloud 123, focused on early adopters of Azure
and BPOS. The work we did in that group with Danny and Tejaswi laid a great
foundation for other teams to follow.

 – Tony Guidici

xx

Introduction

Cloud Computing is not just hype anymore. It has graduated to the early stages of maturity where
companies have started betting their existing businesses and embarking on new business ventures. The
cloud provides opportunity to quickly turn vision into reality, because of the very low acquisition costs.
You can open an account with a credit card and start using any public cloud platform in minutes.
Architecting Windows Azure solutions is my full-time job, and I have tried to share my experiences in
this book. The book covers most of the fundamental concepts in cloud computing through the Windows
Azure platform. The Windows Azure platform is a fully functional cloud platform with Compute, Storage,
Management, and Middleware services for you to develop distributed applications.

Due to the agility of product releases, many more services will be released after this book has been
written. But, I promise to bring these services to light via other channels like public articles, my twitter
feed (@tejaswi_redkar), Field Notes (http://www.microsoft.com/windowsazure/learn/real-world-
guidance/), and other services, so please stay tuned.

My hope is that, after reading this book, you will be able to build Windows Azure applications of
your own and start reaping the benefits of the platform by embarking on new opportunities. In each
chapter, I have covered scenarios from my real-world experiences working on this platform. There is also
a wealth of source code in all the chapters (except Chapter 1) to get you started. You can download the
source code either from the publisher’s web site at www.apress.com or from the book’s CodePlex site at
http://azureplatformbook.codeplex.com.

Sincerely,
Tejaswi Redkar

http://www.microsoft.com/windowsazure/learn/real-world-guidance/
http://www.microsoft.com/windowsazure/learn/real-world-guidance/
http://www.apress.com
http://azureplatformbook.codeplex.com

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Windows Azure Platform Overview
	Introducing Cloud Services
	Shifting to the Cloud Paradigm
	Understanding the Cloud Services Ecosystem
	Microsoft’s Cloud Strategy
	Windows Azure Platform Overview
	Windows Azure
	SQL Azure
	Windows Azure AppFabric
	Windows Azure Platform Pricing
	Management Portal – Let’s Provision
	Windows Azure Marketplace DataMarket
	Windows Azure Platform Common Scenarios
	Summary
	Bibliography

	Windows Azure Compute
	Compute Service
	Developing Windows Azure Services
	Diagnostics
	Developing Windows Azure Services with Inter-Role Communication
	Geo-location
	Windows Azure Service Management
	Windows Azure Service Development Life Cycle
	Architectural Advice
	Summary
	Bibliography

	Windows Azure Storage Part I – Blobs and Drives
	Storage Service Taxonomy
	Storage Service Architecture
	The Blob Service
	Blob Architecture
	REST API
	Account Operations
	Programming Example
	Container Operations
	Blob Operations
	Content Delivery Network (CDN)
	Windows Azure Drives
	Blob Storage Scenarios
	Summary
	Bibliography

	Windows Azure Storage Part II – Queues
	Queue Limitations and Constraints
	Queue Service Architecture
	REST API
	Account Operations
	Queue Operations
	Message Operations
	Asynchronous API
	Queue Scenarios
	Summary
	Bibliography

	Windows Azure Storage Part III – Tables
	Storage Analytics
	Table Storage versus SQLAzure
	Table Service Scenarios
	Summary
	Bibliography

	VM Role and Windows Azure Connect
	VM Role
	Windows Azure Connect
	Summary
	Bibliography

	AppFabric: Access Control Service
	What Is Your Digital Identity?
	What Are Claims?
	Claims-Based Identity Model
	Access Control Service Usage Scenarios
	Access Control Service Management Portal
	Programming Access Control Service Applications
	Summary
	Concepts and Terminology
	Bibliography

	AppFabric Service Bus
	First, a Little Background. . .
	Enterprise Service Bus (ESB)
	Evolution of the Internet Service Bus (ISB)
	Introduction to the AppFabric Service Bus
	Programming with the AppFabric Service Bus
	Message Buffer
	AppFabric Messaging: Queues and Topics
	AppFabric Service Bus Queues
	AppFabric Service Bus Queues vs. Azure Storage Queues
	AppFabric Service Bus Topics
	Programming Service Bus Queues and Topics
	Summary
	Bibliography

	AppFabric: Caching
	AppFabric Caching vs. Other Cache Providers
	Provisioning an AppFabric Cache
	AppFabric Cache Clients
	ASP.NET Session State Provider
	Enabling ASP.NET Output Cache in AppFabric Cache
	Summary
	Bibliography

	SQL Azure
	SQL Azure Overview
	SQL Azure Architecture
	SQL Azure Limitations and Supported Features
	SQL Azure Data Access
	Getting Started with SQL Azure
	Developing Windows Azure Services That Use SQL Azure
	Database-Migration Strategies
	Database Growth-Management Strategies
	SQL Azure Reporting
	SSRS Feature Fidelity
	Data Sync
	Data Sync Design
	Summary
	Bibliography

	Index
	Numbers and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J, K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

