
Vandad Nahavandipoor

iOS 10 Swift
 Programming
 Cookbook
SOLUTIONS & EXAMPLES FOR IOS APPS

Covers Swift 3

and Xcode 8

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Vandad Nahavandipoor

iOS 10 Swift Programming
Cookbook

Solutions and Examples for iOS Apps

www.allitebooks.com

http://www.allitebooks.org

978-1-491-96643-3

[LSI]

iOS 10 Swift Programming Cookbook
by Vandad Nahavandipoor

Copyright © 2017 Vandad Nahavandipoor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://www.oreilly.com/safari). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Shiny Kalapurakkel
Copyeditor: Jasmine Kwityn
Proofreader: Rachel Monaghan

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Panzer

December 2016: First Edition

Revision History for the First Edition
2016-12-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491966433 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 10 Swift Programming Cookbook,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://www.oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491966433
http://www.allitebooks.org

Table of Contents

Preface. ix

1. iMessage Stickers and Apps. 1
1.1 Setting Up a Sticker Pack Application 2
1.2 Adjusting Sticker Sizes 4
1.3 Building a Full-Fledged iMessage Application 6
1.4 Adding an iMessage App Extension to an Existing App 15
1.5 Utilizing an Expanded View in a Sticker Pack App 16
1.6 Appending Rich Information to Stickers 24
1.7 Creating Interactive Conversations with iMessage Apps 27

2. SiriKit. 37
2.1 Setting Up Your Project for Siri 37
2.2 Defining an Intent Handler 44
2.3 Resolving Ambiguity in an Intent 52
2.4 Reporting Progress for Resolving an Intent 60
2.5 Handling an Intent 62

3. Measurements and Units. 65
3.1 Converting Between and Working with Length Units 65
3.2 Working with and Switching Between Angle Units 67
3.3 Representing and Converting Between Durations of Time 68
3.4 Using and Working with Frequency Units 70
3.5 Working with and Using Power Units 72
3.6 Representing and Comparing Temperature Units 73
3.7 Working with and Converting Volume Units 74

iii

www.allitebooks.com

http://www.allitebooks.org

4. Core Data. 77
4.1 Designing Your Database Scheme 78
4.2 Writing Data to the Database 83
4.3 Reading Data from the Database 85
4.4 Searching for Data in the Database 88
4.5 Performing Background Tasks with Core Data 91

5. Swift 3.0, Xcode 8, and Interface Builder. 95
5.1 Handling Errors in Swift 95
5.2 Specifying Preconditions for Methods 97
5.3 Ensuring the Execution of Code Blocks Before Exiting Methods 98
5.4 Checking for API Availability 100
5.5 Categorizing and Downloading Assets to Get Smaller Binaries 101
5.6 Exporting Device-Specific Binaries 105
5.7 Linking Separate Storyboards Together 106
5.8 Adding Multiple Buttons to the Navigation Bar 107
5.9 Optimizing Your Swift Code 108
5.10 Showing the Header View of Your Swift Classes 112
5.11 Creating Your Own Set Types 113
5.12 Conditionally Extending a Type 115
5.13 Building Equality Functionality into Your Own Types 117
5.14 Looping Conditionally Through a Collection 118
5.15 Designing Interactive Interface Objects in Playgrounds 120
5.16 Grouping Switch Statement Cases Together 122
5.17 Bundling and Reading Data in Your Apps 123

6. The User Interface. 129
6.1 Animating Views 129
6.2 Attaching Live Views to Playgrounds 133
6.3 Running Playgrounds as Interactive and Continuous Apps 136
6.4 Arranging Your Components Horizontally or Vertically 137
6.5 Customizing Stack Views for Different Screen Sizes 139
6.6 Creating Anchored Constraints in Code 143
6.7 Allowing Users to Enter Text in Response to Local and Remote

Notifications 148
6.8 Dealing with Stacked Views in Code 152
6.9 Showing Web Content in Safari View Controller 154
6.10 Laying Out Text-Based Content on Your Views 155
6.11 Improving Touch Rates for Smoother UI Interactions 156
6.12 Supporting Right-to-Left Languages 159
6.13 Associating Keyboard Shortcuts with View Controllers 164
6.14 Recording the Screen and Sharing the Video 165

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

7. Apple Watch. 173
7.1 Downloading Files onto the Apple Watch 175
7.2 Noticing Changes in Pairing State Between the iOS and Watch Apps 180
7.3 Transferring Small Pieces of Data to and from the Watch 184
7.4 Transferring Dictionaries in Queues to and from the Watch 193
7.5 Transferring Files to and from the Watch 198
7.6 Communicating Interactively Between iOS and watchOS 203
7.7 Setting Up Apple Watch for Custom Complications 213
7.8 Constructing Small Complications with Text and Images 220
7.9 Displaying Time Offsets in Complications 231
7.10 Displaying Dates in Complications 239
7.11 Displaying Times in Complications 245
7.12 Displaying Time Intervals in Complications 251
7.13 Recording Audio in Your Watch App 258
7.14 Playing Local and Remote Audio and Video in Your Watch App 261

8. Contacts. 265
8.1 Creating Contacts 266
8.2 Searching for Contacts 272
8.3 Updating Contacts 277
8.4 Deleting Contacts 282
8.5 Formatting Contact Data 283
8.6 Picking Contacts with the Prebuilt System UI 288
8.7 Creating Contacts with a Prebuilt System UI 295
8.8 Displaying Contacts with a Prebuilt System UI 297

9. Extensions. 301
9.1 Creating Safari Content Blockers 301
9.2 Creating Shared Links for Safari 306
9.3 Maintaining Your App’s Indexed Content 309

10. Web and Search. 315
10.1 Making Your App’s Content Searchable 315
10.2 Making User Activities Searchable 319
10.3 Deleting Your App’s Searchable Content 323

11. Multitasking. 325
11.1 Supporting Split Views 325
11.2 Adding Picture in Picture Playback Functionality 328
11.3 Handling Low Power Mode and Providing Alternatives 335

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

12. Maps and Location. 339
12.1 Displaying a Specific Location on the Map 339
12.2 Requesting the User’s Location a Single Time 342
12.3 Requesting the User’s Location in the Background 344
12.4 Customizing the Tint Color of Pins on the Map 346
12.5 Providing Detailed Pin Information with Custom Views 349
12.6 Displaying Traffic, Scale, and Compass Indicators on the Map 350
12.7 Providing an ETA for Transit Transport Type 352
12.8 Launching the iOS Maps App in Transit Mode 356
12.9 Showing Maps in Flyover Mode 357

13. UI Testing. 359
13.1 Preparing Your Project for UI Testing 359
13.2 Automating UI Test Scripts 362
13.3 Testing Text Fields, Buttons, and Labels 365
13.4 Finding UI Components 367
13.5 Long-Pressing on UI Elements 370
13.6 Typing Inside Text Fields 372
13.7 Swiping on UI Elements 374
13.8 Tapping UI Elements 376

14. Core Motion. 379
14.1 Querying Pace and Cadence Information 380
14.2 Recording and Reading Accelerometer Data 381

15. Security. 383
15.1 Protecting Your Network Connections with ATS 383
15.2 Binding Keychain Items to Passcode and Touch ID 385
15.3 Opening URLs Safely 387
15.4 Authenticating the User with Touch ID and Timeout 389

16. Multimedia. 393
16.1 Reading Out Text with the Default Siri Alex Voice 393
16.2 Downloading and Preparing Remote Media for Playback 395
16.3 Enabling Spoken Audio Sessions 398

17. UI Dynamics. 401
17.1 Adding a Radial Gravity Field to Your UI 401
17.2 Creating a Linear Gravity Field on Your UI 407
17.3 Creating Turbulence Effects with Animations 411
17.4 Adding Animated Noise Effects to Your UI 412
17.5 Creating a Magnetic Effect Between UI Components 415

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

17.6 Designing a Velocity Field on Your UI 418
17.7 Handling Collisions Between Nonrectangular Views 420

Index. 427

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Along with the typical upgrades and shiny new features of every release, iOS 10 offers
two major, possibly game-changing opportunities that demonstrate its movement
toward integration and enabling extensions. First, it has opened up Siri for develop‐
ers. This gives us a world of voice interfaces to explore, such as creating fitness appli‐
cations entirely controlled by Siri, or creating financial applications that allow the
receiving and sending of payments from and to others.

Apple has also opened up iMessage as a service to us developers, meaning that you
can now write applications that allow users to send custom stickers (including anima‐
ted stickers) to one another. What’s even better is that iMessage has become a lot
more interactive, allowing users to react to messages they receive and attaching pre-
built stickers to the messages.

This book has been updated with a lot of new material for you, and all existing rec‐
ipes from iOS 9 Swift Programming Cookbook have been brought up to date to use
Swift 3 and Xcode 8. Swift 3’s new features and syntax have also been discussed so
that you not only get a good idea of what is new in iOS 10 SDK, but also learn about
the language you will use to write your apps.

I’ve had a lot of fun writing this book and I really hope that you’ll enjoy reading it.

Audience
I assume that you are comfortable writing iOS apps, at least know your way around
Xcode, and can work with the simulator. This book is not for beginners. If you have
never programmed in Xcode before for iOS, it will be tough to learn iOS program‐
ming only from this book. So I suggest that you complement your skills with other
online resources. The intended audience for this book is intermediate and advanced
users.

I also assume that you have written a little bit of Swift code. In this book, I use Swift 2
and will teach you some of the concepts, but if you don’t know Swift, this is not the

ix

right place to start. If you’re just starting out, pick up Apple’s book on Swift program‐
ming first; once you’ve read through it and are a bit more comfortable with Swift,
come back to this book and I’m sure you’ll learn a lot of new things, even about Swift
2.

Organization of This Book
Here I’ll explain what each chapter is about so that you’ll get a feeling for what this
book is going to teach you:

Chapter 1, iMessage Stickers and Apps
iOS 10 opens the doors to developers to create sticker pack applications for iMessage.
Sticker packs are extensions that you can distribute either as part of your iOS applica‐
tions or as standalone applications. They allow you to add interactions to messages
being sent and received in iMessage conversations. In this chapter, we will discuss dif‐
ferent types of these extensions and how you can create interactive sticker pack appli‐
cations for iMessage.

Chapter 2, SiriKit
Since its introduction, Siri has been an integral part of iOS and how people interact
with the operating system. However, because it was a closed technology, we develop‐
ers couldn’t integrate our apps into Siri. That’s not the case anymore. Now you can
write your own app extensions that integrate into Siri and allow you to interpret vari‐
ous “intents” that come from Siri into your applications. For instance, you can create
a financial application that allows the user to send and receive money from various
sources, all driven through Siri. In this chapter, you will see how to create one of
these extensions and learn the different entry points from Siri into your application.

Chapter 3, Measurements and Units
This chapter is dedicated to the new series of classes and structures that Apple has
provided to developers to convert betweeen various measurements and units.

Chapter 4, Core Data
Core Data is without a doubt the standard and best way to store large amounts of
data, and structure your data object models, in an iOS application. Previous versions
of this book included a chapter about Core Data, but that chapter was intentionally
removed in the iOS 9 edition, because it had been present in the book since the iOS 6
edition with little alteration. In this edition of the book, I have rewritten this chapter
with fresh and new information so that you can enjoy storing data in your iOS apps,
knowing you are using the latest APIs.

Chapter 5, Swift 3.0, Xcode 8, and Interface Builder
In this chapter, we take a look at a lot of new stuff in Swift, Xcode, and Interface
Builder (IB), such as the addition of the guard keyword to Swift and conditionally
extending types with Swift’s new runtime features. Swift has really matured with Swift
3, and I want to share some of the most important additions with you.

x | Preface

Chapter 6, The User Interface
This year’s WWDC has put playgrounds under the spotlight and given them some
long-needed attention. Playgrounds can now work just like an iOS application, in
that they can have a main loop and allow you to continuously change and modify
your code while it is running in the background, compiling your changes continu‐
ously and displaying the results without you having to press the play button. This
chapter looks at these additions to playgrounds as well as other UI components and
technologies that might interest you while developing modern iOS apps.

Chapter 7, Apple Watch
This year, unlike the last, Apple didn’t focus as much on watchOS. However, there are
exciting new ways of interacting with watchOS, which we will talk about and discuss
in this chapter.

Chapter 8, Contacts
The contacts APIs will be discussed in this chapter. You’ll learn how to use the con‐
tacts framework to add new contacts to the user’s device, remove contacts, edit them,
or even allow the user to pick a contact from the list so that you can perform your
tasks on it—all without having to fiddle with low-level C APIs.

Chapter 9, Extensions
The Safari Content Blocker extension allows developers to create apps that get
installed as extensions on the user’s Safari browser, and allows us to block various ele‐
ments of web pages that the user views. For instance, you can now block pictures or
various unwanted elements in the websites that you specify in your app, and you can
share these content blockers with those who use your app. This chapter is all about
these extension points that you can add to your apps.

Chapter 10, Web and Search
Apps can now provide content to iOS for indexing in the device’s search engine. iOS
will then index these contents and allow the user to search for them right within
Spotlight on their devices. Your contents can also be indexed globally on Apple’s
servers so even those who don’t have your app can see your content on their devices.
Intrigued? Read this chapter, then!

Chapter 11, Multitasking
In iOS, we have the ability to provide Picture in Picture (PiP) to our users. Your app
can provide a video player to iOS and allow the user to minimize your whole app into
that video player while she works with other apps. It’s really cool, in my opinion!

Chapter 12, Maps and Location
With the additions to Core Location and MapKit frameworks, you can, for example,
display an ETA for transit between two locations or display your custom view inside
the annotation of a pin on the map.

Preface | xi

Chapter 13, UI Testing
We will discuss Apple’s UI Testing framework in this chapter. I’ll show you how to
write native Swift code to do UI testing.

Chapter 14, Core Motion
Core Motion is also available on watchOS. In this chapter, you’ll learn some of the
new things that you can do with this framework, including reading cadence informa‐
tion from sensors on the device.

Chapter 15, Security
ATS in iOS forces all requests to go through HTTPS. If you build your project with
the latest Xcode and iOS SDK, all your network requests will go through HTTPS by
default, protecting your content and possibly breaking a few things if you don’t sup‐
port HTTPS in your web services. Read this chapter to learn more.

Chapter 16, Multimedia
iOS 10 adds some new ways for apps to interact with Siri’s voice, and you can read
about them in this chapter.

Chapter 17, UI Dynamics
Last but not least, there are some amazing effects that you can achieve in your user
interface with UI Dynamics, including the ability to create turbulence or magnetic
fields. In this chapter, we’ll review some examples that show these effects in action.

Additional Resources
This book is not for beginners, so I assume you have already gotten a grip on Swift
and can do basic things with it. You can find Apple’s documentation on Swift by
doing a quick web search. You can either read it on your browser, as a PDF, or via
iBooks.

Also check this book’s GitHub repository in order to get the most up-to-date code, as
I update the code to ensure it works with the latest Swift and Xcode versions.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/vandadnp/iOS-10-Swift-Programming-Cookbook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐

xii | Preface

https://github.com/vandadnp/iOS-10-Swift-Programming-Cookbook

cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “iOS 10 Swift Programming Cookbook
by Vandad Nahavandipoor (O’Reilly). Copyright 2017 Vandad Nahavandipoor,
978-1-491-96643-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals that delivers expert content in both
book and video form from the world’s leading authors in tech‐

nology and business.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920053798.

Preface | xiii

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
http://oreilly.com/safari
http://www.oreilly.com/catalog/0636920053798
http://www.oreilly.com/catalog/0636920053798

Acknowledgments
Thank you to:

Sara
For continuously supporting and encouraging me. If it wasn’t for you, I wouldn’t have
been able to pen a single word of this book. Thank you for taking care of the kids and
Molly while I put effort into writing.

Rachel Roumeliotis
For always having trust in me and knowing that I stick to my words when I promise
to write a whole new book in a short period of time with quality material. Your trust
means a lot to me and I hope this book will make you proud, as much as it made me.

Andy Oram
The editor that anybody would dream about, Andy has been by my side editing this
book nonstop since I started. His relentless efforts have allowed me to relax while he
craftily worked his way through the book, making it even more understandable for
readers. I would not have been able to write this book without Andy’s help.

Niklas Saers
For his detailed technical review of this book.

xiv | Preface

CHAPTER 1

iMessage Stickers and Apps

We all use messaging capabilities on our iOS devices. This is a bold statement and I
have no proof for it, but it’s difficult to imagine a person owning an iOS device
without having sent or received messages. The main messaging application on iOS is
iMessage, but it’s not the only messaging option for iOS. You can download and
choose among a huge selection of various messaging applications.

Up until iOS 10, iMessage was fully closed. That is to say, it lived in its own sandbox
(and still does), and did not allow any extensions to be attached to it. In iOS 10 that
has changed, and we developers can finally write our own iMessage extensions that
allow even more interactivity to be added to our conversations.

iMessage apps can be of two different types:

Sticker packs
This is a special, unusual kind of app that contains only images, with absolutely no
code. You can create this kind of app so users can send the images to one another in
iMessage. For instance, if you offer a sticker pack full of heart shapes, users can then
download the app and attach those hearts to messages that they or others send. In
other words, as the name implies, images can stick to messages!

Full-fledged apps
This is where you have full control over how your iMessage app works. You can do
some really fun stuff in this mode, which we will review soon. For instance, you can
change an existing sticker that was sent previously by one of your contacts, so that
you and the person you’re chatting with can collaboratively send and receive mes‐
sages to each other.

1

1.1 Setting Up a Sticker Pack Application
Problem
You want to create a simple iMessage application that allows your users to send stick‐
ers to each other, without writing any code.

Solution
Follow these steps:

1. Open Xcode if it’s not already open.
2. Create a new project. In the new project dialog, choose Sticker Pack Application

and then click Next (Figure 1-1).

Figure 1-1. Creating a new sticker pack application for iMessage

3. Enter a product name for your project and then click Next (Figure 1-2).

2 | Chapter 1: iMessage Stickers and Apps

Figure 1-2. Enter your sticker pack application’s product name here

4. You will then be asked to save the project somewhere. Choose an appropriate
location to save the project to finish this process.

5. You should now see your project opened in Xcode and then a file named Stick‐
ers.xcstickers. Click on this file and place your sticker images inside.

6. After you’ve completed these steps, test your application on the simulator and
then on devices as thoroughly as possible. Once you are happy, you need to code
sign and then release your app to the iMessage app store.

Discussion
With the opening up of iMessage as a platform where developers can build stand-
alone apps, Apple has created a new type of store called iMessage App Store, where
applications that are compatible with iMessage will show up in the list and users can
purchase or download them without cost.

If you create a sticker pack app with no accompanying iOS app, your app shows up
only in the iMessage App Store. If you create an iOS app with an accompanying iMes‐
sage extension (stickers), your app shows up both in the iOS App Store (for the main
iOS app) and also in the iMessage App Store (for your iMessage extension).

1.1 Setting Up a Sticker Pack Application | 3

Your stickers can be PDF, PNG, APNG (PNG with an alpha layer),
JPEG, or even (animated) GIF, but Apple recommends using PNG
files for the sake of quality. If you are desperate to create a sticker
app but have no images to test with, simply open Finder at /
System/Library/CoreServices/CoreTypes.bundle/Contents/Resources/,
then open the ICNS files in that folder with Preview.app, export
those ICNS files into PNG files, and drag and drop them into your
Stickers.xcstickers file in Xcode. Then build and run your project on
the simulator.

See Also
Recipes 1.2 and 1.4

1.2 Adjusting Sticker Sizes
Problem
You have created a sticker pack application and you want to adjust the size of your
stickers in relation to how they appear on the screen.

Solution
Follow these steps in order to change the sticker sizes:

1. While in Xcode, click on the Stickers.xcstickers file that Xcode created and placed
in your project.

2. Open the Attributes inspector in Xcode using Command-Alt-4.
3. Locate the Sticker Pack section and then Sticker Size drop-down list in the

Attributes inspector and choose between Small, Medium, and Large (Figure 1-3).

4 | Chapter 1: iMessage Stickers and Apps

Figure 1-3. Changing the sticker size in the Attributes inspector in Xcode

Discussion
After you ship your sticker applications to the iMessage store and a user downloads
them to her device, your stickers appear at a specific size both on the user’s device and
when sent to the recipient. This size is adjustable—not per sticker, but for the whole
sticker pack. All stickers must have the same size.

After you have changed this size, test your app thoroughly on the simulator and on
the device before shipping it to the iMessage app store. Ensure that there are no fuzzy
edges on your images and that curves look smooth.

See Also
Recipe 1.5

1.2 Adjusting Sticker Sizes | 5

1.3 Building a Full-Fledged iMessage Application
Problem
You want to build a custom iMessage application where you have full control over the
presentation of your stickers and how the user interacts with them.

Solution
Create an iMessage application in Xcode by following these steps:

1. Open Xcode if it’s not already open.
2. Create a new project. In the template window choose iMessage Application and

then click Next (Figure 1-4).

Figure 1-4. Creating a full-fledged iMessage app

3. Enter the product name for your project and then click Next (Figure 1-5).
Choose Swift as the language, of course!

6 | Chapter 1: iMessage Stickers and Apps

Figure 1-5. Enter your product name in this screen

4. You will be asked to save your project somewhere. Do so and then you should see
Xcode open up your project.

Discussion
Now that you have created your iMessage app, it’s time to learn a bit about what’s new
in the Messages framework for iOS 10 SDK. This framework contains many classes,
the most important of which are:

MSMessagesAppViewController

The main view controller of your extension. It gets displayed to users when they open
your iMessage application.

MSStickerBrowserViewController

A view controller that gets added to the app view controller and is responsible for
displaying your stickers to the user.

MSSticker

A class that encapsulates a single sticker. There is one MSSticker for each sticker in
your pack.

1.3 Building a Full-Fledged iMessage Application | 7

MSStickerView

Every sticker instance in MSSticker has to be placed inside a view to be displayed to
the user in the browser view controller. MSStickerView is the class for that view.

For the sake of simplicity, in this recipe, I am going to hover over /System/Library/
CoreServices/CoreTypes.bundle/Contents/Resources/, grab the first three ICNS files out
of there, and export them, using Preview.app, into my desktop as PNG files with
alpha. Then I am going to drag and drop them into the Assets.xcassets file in my
Xcode project under the MessagesExtension section; not the main app’s Assets.xcassets
file.

When you build an iMessage application as we have just done, your app is then sepa‐
rated into two entry points:

• The iOS app entry point with your app delegate and the whole shebang
• The iMessage app extension entry point

This is unlike the sticker pack app that we talked about earlier in this chapter. Sticker
pack apps are iMessage apps but have no iOS apps attached to them. Therefore there
is no code to be written. In full-fledged iMessage apps, your app is divided into an
iOS app and an iMessage app, so you have two of some files, such as the Assets.xcas‐
sets file.

Even with custom sticker pack applications, you can build the apps in two different
ways:

• Using the existing Messages classes, such as MSStickerBrowserViewController,
which do the heavy lifting for you

• Using custom collection view controllers that will be attached to your main
MSMessagesAppViewController instance

This recipe explores the first method, because it is much easier to explain and carry
out. Once you have created the main structure of your application as described in this
recipe’s Solution, follow these steps to program the actual logic of the app:

1. Drag and drop your PNG stickers into your project’s structure, on their own and
not in an asset catalog. The reason is that we need to find them using their URLs,
so we need them to sit on the disk directly.

2. Create a new Cocoa Touch class in your project (Figure 1-6) that will be your
MSStickerBrowserViewController instance.

8 | Chapter 1: iMessage Stickers and Apps

Figure 1-6. Creating a new Cocoa Touch class

3. Give your class the name of BrowserViewController (Figure 1-7), ensure it is of
type MSStickerBrowserViewController, and then click Next.

1.3 Building a Full-Fledged iMessage Application | 9

Figure 1-7. Creating your browser view controller

4. Save your file inside your project in the new dialog that appears.
5. I have added three icons to my project: Burning, Alert, and Accounts. I grabbed

them from /System/Library/CoreServices/CoreTypes.bundle/Contents/Resources/ as
described earlier. So it would be nice if my MSSticker class had an initializer
where I could just give it the name of the sticker, instead of the path of the image
to which it relates. I accomplish this by doing a search at runtime in the resources
for my app. I’ve created a MSStickerItem enumeration, whose three items match
the names of the images I dropped into my project. The extended initializer for
our MSSticker now accepts an instance of MSStickerItem and uses its name to
find the path of the image to apply to the sticker.

extension MSSticker{

 enum MSStickerItem : String{
 case Burning, Alert, Accounts
 }

 convenience init(item: MSStickerItem) throws{
 try self.init(contentsOfFileURL:
 Bundle.main.url(forResource: item.rawValue, withExtension: "png")!,
 localizedDescription: "")
 }

10 | Chapter 1: iMessage Stickers and Apps

}

6. In the newly created BrowserViewController, I create an array of my stickers:
class BrowserViewController: MSStickerBrowserViewController {

 let stickers = [
 try! MSSticker(item: .Burning),
 try! MSSticker(item: .Alert),
 try! MSSticker(item: .Accounts),
]

 ...

7. Your instance of MSStickerBrowserViewController has a property called
stickerBrowserView of type MSStickerBrowserView, which in turn has a prop‐
erty named dataSource of type MSStickerBrowserViewDataSource?. Your
browser view controller by default will become this data source, which means
that you need to implement all the non-optional methods of this protocol, such
as numberOfStickers(in:). So let’s do that now:

override func numberOfStickers(in
 stickerBrowserView: MSStickerBrowserView) -> Int {
 return stickers.count
}

override func stickerBrowserView(_ stickerBrowserView: MSStickerBrowserView,
 stickerAt index: Int) -> MSSticker {
 return stickers[index]
}

I’m explicitly unwrapping the optional value of the MSSticker
instance here because I know that those instances exist in my code.
If you are careful with optionals, like I am, in production code, try
to read the values first and then unwrap them only if they exist.

Our browser view controller is done, but how do we display it to the user? Remember
our MSMessagesAppViewController? Well, the answer is through that view controller.
In the viewDidLoad() function of the aforementioned view controller, load your
browser view controller and add it as a child view controller:

1.3 Building a Full-Fledged iMessage Application | 11

override func viewDidLoad() {
 super.viewDidLoad()

 let controller = BrowserViewController(stickerSize: .regular)

 controller.willMove(toParentViewController: self)
 addChildViewController(controller)

 if let vcView = controller.view{
 view.addSubview(controller.view)
 vcView.frame = view.bounds
 vcView.translatesAutoresizingMaskIntoConstraints = false
 vcView.leftAnchor.constraint(equalTo: view.leftAnchor).isActive = true
 vcView.rightAnchor.constraint(equalTo: view.rightAnchor).isActive = true
 vcView.topAnchor.constraint(equalTo: view.topAnchor).isActive = true

 vcView.bottomAnchor.constraint(equalTo:
 view.bottomAnchor).isActive = true
 }

 controller.didMove(toParentViewController: self)

}

Now press the Run button on Xcode to run your application on the simulator. You
will see a screen similar to Figure 1-8.

12 | Chapter 1: iMessage Stickers and Apps

Figure 1-8. Xcode asking you which app on the simulator to attach your app to

In this list, simply choose the Messages app and continue. Once the simulator is run‐
ning, you can manually open the Messages app, go to an existing conversation that is
already placed for you there by the simulator, and press the Apps button on the key‐
board. Then choose your app from the list and see your stickers inside the simulator
(Figure 1-9).

1.3 Building a Full-Fledged iMessage Application | 13

Figure 1-9. Our stickers are displayed correctly in the iMessage app and can be clicked to
be sent to the recipient

See Also
Recipes 1.1 and 1.2

14 | Chapter 1: iMessage Stickers and Apps

www.allitebooks.com

http://www.allitebooks.org

1.4 Adding an iMessage App Extension to an Existing App
Problem
Fully fledged iMessage apps can either stand on their own, without a host iOS app, or
be attached to a host iOS app. This recipe shows how to add a new iMessage app
extension to an existing app. This in turn allows you to add an iMessage app exten‐
sion to one of your existing iOS apps so that you can send custom stickers and pro‐
vide extra functionality to the existing iMessage app.

Solution
Create an iMessage Extension and provide the required app icons to it. Follow these
steps:

1. Open your project in Xcode.
2. Add a new target of type iMessage Extension to your project (Figure 1-10).

Figure 1-10. Adding an iMessage extension to your app

3. On the next screen, enter your extension’s product name and other information
(Figure 1-11).

1.4 Adding an iMessage App Extension to an Existing App | 15

Figure 1-11. Now you need to provide a name for the new extension

4. Then save your new extension to disk and add it to your project.

Discussion
One of the important steps in creating an extension is to add the required icons, so
that they appear correctly in the iMessage apps list. Extensions work fine and can be
tested without icons, but they will not be accepted to the iMessage app store without
appropriate icons.

See Also
Recipes 1.1 and 1.6

1.5 Utilizing an Expanded View in a Sticker Pack App
Problem
The space that your app gets by default to render itself in an iMessage window is not
quite large enough for your purposes and you would like to ask for more space.

16 | Chapter 1: iMessage Stickers and Apps

Solution
To solve this problem, use the requestPresentationStyle(_:) function of the MSMes
sagesAppViewController class to request an expanded view. The parameter that you
pass to this function is of type MSMessagesAppPresentationStyle and can take the
value of either compact (the default) or expanded.

Discussion
Let’s have a look at an example where we put all of this information together to create
a functioning application that allows the user to control the size of your rendered app.
The user presses a plus button on the interface to expand the extension’s view, and
can then change the interface back to the compact mode. By default, all extensions
launch in the compact mode and can then be changed by the user herself.

Follow these steps to create an iMessage app extension that allows the user to expand
its view:

1. Open Xcode and ensure that you have an application with an iMessage Exten‐
sion, as explained in Recipe 1.4.

2. Open your extension’s MainInterface.storyboard file and then drag a collection
view controller and a normal view controller to the scene. Set the collection view
controller’s class to StickersViewController and the normal view controller’s
class to ExpandedStickersViewController. We are going to create these two
classes now.

3. Create a new Cocoa Touch class of type UICollectionViewController and set its
name to StickersViewController. Ensure that you don’t create a XIB file for it,
since its interface is already on our storyboard. Set StickersViewController as
the Storyboard ID of this view controller in the identity inspector of IB.

4. Also create another Cocoa Touch class of type UIViewController and name it
ExpandedStickersViewController. Set ExpandedStickersViewController as
the Storyboard ID of this view controller in the identity inspector of IB.

5. Select your storyboard collection view controller. In the cell that is already cre‐
ated for you in IB, drag and drop an instance of UIButton, set its text to a simple
+ (plus sign), and then enlarge the font so that it is visible enough for a typical
user (Figure 1-12). Also set the reuse identifier of this cell to Cell in IB.

1.5 Utilizing an Expanded View in a Sticker Pack App | 17

Figure 1-12. Our collection view Storyboard ID is set along with the creation of the
button on our cell

6. Ensure that the button that you placed on your cell has no user interactions
enabled. Otherwise, it will trap all touch events. We want to trap the touch events
through the parent collection view controller. So go to the Attributes inspector of
IB on your button and deselect the User Interaction Enabled checkbox.

7. Open your StickersViewController.swift file and define a protocol for your collec‐
tion view controller so that any other class can become its delegate. Later, when
the user presses the + button on the collection view, you can report this to your
delegate object:

import UIKit

protocol StickersViewControllerDelegate : class{
 func plusButtonTappedOn(controller: UIViewController)
}

protocol HasStickersDelegate : class{
 weak var delegate: StickersViewControllerDelegate? {get set}
}

class StickersViewController: UICollectionViewController,
 HasStickersDelegate {

 weak var delegate: StickersViewControllerDelegate?

 ...

8. Now it’s time to provide enough information for the collection view to display
our single cell:

18 | Chapter 1: iMessage Stickers and Apps

// we set this to Cell in IB as well, remember?
private let reuseIdentifier = "Cell"

override func numberOfSections(in collectionView: UICollectionView) ->
 Int {
 return 1
}

override func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return 1
}

override func collectionView(
 _ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: reuseIdentifier, for: indexPath)

 return cell
}

9. And now we also ensure that when the + cell is tapped, we will report it to our
delegate:

override func collectionView(_ collectionView: UICollectionView,
 didSelectItemAt indexPath: IndexPath) {
 guard indexPath.row == 0 && indexPath.section == 0 else {return}
 delegate?.plusButtonTappedOn(controller: self)
}

10. Now go to the MessagesViewController.swift file and define the storyboard identi‐
fiers of the two view controllers that we just created:

import UIKit
import Messages

struct Identifiers{
static let StickersViewController = "StickersViewController"
static let ExpandedStickersViewController = "ExpandedStickersViewController"
}

11. Let’s also extend UIViewController with a function that allows us to add any
view controller to our messages app view controller:

1.5 Utilizing an Expanded View in a Sticker Pack App | 19

extension UIViewController{
 func addTo(appViewController host: MSMessagesAppViewController){

 // see if this view controller has a delagete and then set it to
 // the host view controller if yes
 if
 let delegate = host as? StickersViewControllerDelegate,
 let vc = self as? HasStickersDelegate{
 vc.delegate = delegate
 }

willMove(toParentViewController: host)
host.addChildViewController(self)
view.frame = host.view.bounds
view.translatesAutoresizingMaskIntoConstraints = false
host.view.addSubview(view)
view.leftAnchor.constraint(equalTo: host.view.leftAnchor).isActive = true
 view.rightAnchor.constraint(equalTo: host.view.rightAnchor).isActive
 = true
 view.topAnchor.constraint(equalTo: host.view.topAnchor).isActive
 = true
 view.bottomAnchor.constraint(equalTo:
 host.view.bottomAnchor).isActive = true
 didMove(toParentViewController: host)

 }
}

12. Then let’s add a function called loadViewController(forPresentationStyle:)
to our MessagesViewController class. In this function, we take the incoming
presentation style of type MSMessagesAppPresentationStyle and then load
either the collection view controller (for compact mode) or the normal view con‐
troller (for expanded mode).

class MessagesViewController : MSMessagesAppViewController,
StickersViewControllerDelegate {

func loadViewController
 (forPresentationStyle: MSMessagesAppPresentationStyle) -> Bool{

 childViewControllers.forEach{
 $0.willMove(toParentViewController: nil)
 $0.view.removeFromSuperview()
 $0.removeFromParentViewController()
 ($0 as? HasStickersDelegate)?.delegate = nil
 }

 let vcId: String

20 | Chapter 1: iMessage Stickers and Apps

 switch presentationStyle{
 case .compact:
 vcId = Identifiers.StickersViewController
 case .expanded:
 vcId = Identifiers.ExpandedStickersViewController
 }

 guard let vc = storyboard?
 .instantiateViewController(withIdentifier: vcId) else {return false}

 vc.addTo(appViewController: self)

 return true

}

...

13. Because we have become the delegate of the collection view controller, we also
need to implement its delegate method:

func plusButtonTappedOn(controller: UIViewController) {
 let _ = loadViewController(forPresentationStyle: .expanded)
 requestPresentationStyle(.expanded)
}

14. We can also load the appropriate view controller based on the reported presenta‐
tion styles, via methods already defined on MSMessagesAppViewController:

override func willBecomeActive(with conversation: MSConversation) {
 // Called when the extension is about to move from the
 // inactive to active state.
 // This will happen when the extension is about to present UI.

 // Use this method to configure the extension and restore previously
 // stored state.

 let _ = loadViewController(forPresentationStyle: .compact)

}

override func willTransition(to presentationStyle:
 MSMessagesAppPresentationStyle) {
 // Called before the extension transitions to a new presentation style.

 // Use this method to prepare for the change in presentation style.
 let _ = loadViewController(forPresentationStyle: presentationStyle)
}

override func didTransition(to presentationStyle:

1.5 Utilizing an Expanded View in a Sticker Pack App | 21

 MSMessagesAppPresentationStyle) {
 // Called after the extension transitions to a new presentation style.

 // Use this method to finalize any behaviors associated with the
 // change in presentation style.
 let _ = loadViewController(forPresentationStyle: presentationStyle)
}

Run your project now on the simulator. You will now see a plus button in the list, as
shown in Figure 1-13.

Figure 1-13. Our plus button is shown properly on the compact mode of our extension

22 | Chapter 1: iMessage Stickers and Apps

Once the user taps this button, our extension will request the expanded presentation
style (Figure 1-14).

Figure 1-14. Our iMessage extension is now expanded

You can see that the system provides a bar button item on the navigation bar, which,
when tapped, will send the extension back to the compact mode.

See Also
Recipes 1.2 and 1.6

1.5 Utilizing an Expanded View in a Sticker Pack App | 23

1.6 Appending Rich Information to Stickers
Problem
You want to attach extra information, such as caption, title, and subtitle, to your
stickers and messages in an iMessage app.

Solution
Follow these steps:

1. Create an instance of MSMessage.
2. Create a layout object of type MSMessageTemplateLayout and set its properties,

such as image and caption.
3. Once the template is ready, set it as the template property of the message object.
4. Send the message to the current conversation using the insert(_:completion

Handler:) function of the active conversation object of type MSConversation.

Your MSMessagesAppViewController instance has a property
called activeConversation of type MSConversation?. You can use
this optional property to get a reference to your active conversa‐
tion. Ideally, this property should always be present, but officially
it’s optional so you can’t assume its presence. Always check its value
against nil and then handle the situation properly if it is not
present.

Discussion
In this recipe we are going to build a new application based on what we discussed in
Recipe 1.5. The difference in this recipe is that, when the user presses the + button on
our iMessage extension, we will send a prebuilt sticker to the recipient. I have already
placed an image called Accounts.png inside the image asset catalog of my iMessage
extension so that I can open it using an instance of UIImage. You can also do the same
thing. I grabbed this image out of the Accounts.icns file at /System/Library/CoreServi‐
ces/CoreTypes.bundle/Contents/Resources/.

If you recall from Recipe 1.5, when the + button gets tapped, we call the plusButton
TappedOn(controller:) function of our delegate object, which in this case is our
instance of MSMessagesAppViewController. In our current recipe, we will rewrite the
code in this function so that we create an instance of MSMessage and send it to the
recipient. So follow these steps to rewrite this code:

1. Retrieve the current conversation object:

24 | Chapter 1: iMessage Stickers and Apps

func plusButtonTappedOn(controller: UIViewController) {

 guard let conversation = activeConversation else {fatalError()}

 ...

2. Retrieve the existing session. If one doesn’t exist, create one:
let session = conversation.selectedMessage?.session ?? MSSession()

3. Instantiate your message object:
let message = MSMessage(session: session)

4. Create your layout object and assign all its properties to your chosen values:
let layout = MSMessageTemplateLayout()
layout.image = messageImage
layout.caption = "Caption"
layout.imageTitle = "Image title"
layout.imageSubtitle = "Image subtitle"
layout.trailingCaption = "Trailing caption"
layout.subcaption = "Subcaption"
layout.trailingSubcaption = "Trailing subcaption"

5. Once the layout is ready, insert the message into the conversation:

message.layout = layout

conversation.insert(message) {error in
 // empty for now
}

When preparing the layout object, we set its image property to messageImage. This is
a custom property that I have defined on our instance of MSMessagesAppViewControl
ler. All it does is call UIGraphicsImageRenderer to create an image context, set the
background color of the context to black, and then draw the Accounts.png file on top
of the black background so that the white text that our layout object renders will
eventually be visible on the black background:

var messageImage: UIImage? {
 guard let image = UIImage(named: "Accounts") else {return nil}
 let rect = image.size.rectWithZeroOrigin

 let renderer = UIGraphicsImageRenderer(bounds: rect)
 return renderer.image {context in
 let bgColor: UIColor = .black
 bgColor.setFill()
 context.fill(rect)

1.6 Appending Rich Information to Stickers | 25

 image.draw(at: .zero)
 }
}

Run your code now on the simulator and see the results for yourself (Figure 1-15).

Figure 1-15. Our message, with rich information, is ready to be sent to the recipient

The MSMessageTemplateLayout class has many useful properties, as you have just
seen, so let’s explore some of them and understand what they are and what they do:

26 | Chapter 1: iMessage Stickers and Apps

image: UIImage?

This is the actual image that will be sent as the message. This is an optional property.

caption: String?

If you look closely at Figure 1-15, you will notice that iMessage inserts a little colorful
bar at the bottom of your images on which it will render the caption. This is extra
information that you can add to your image, of type String?.

subcaption: String?

This gets rendered underneath the image, on the additional bar that gets displayed by
default by iMessage under the caption itself.

imageTitle: String?

The title and the subtitle get rendered at the bottom of the image itself, and they are
in a white color, so ensure that your image’s background is a color other than white.

imageSubtitle: String?

This is the subtitle that gets rendered underneath the title but still at the bottom-left
corner of the image itself.

trailingCaption: String?

This is the trailing caption, displayed on the bottom-right corner.

trailingSubcaption: String?

This subcaption gets displayed on the bottom-right corner, underneath the trailing
caption.

See Also
Recipes 1.2 and 1.5

1.7 Creating Interactive Conversations with iMessage
Apps
Problem
Your iMessage app allows users to send data, such as images or texts, to one another.
Inside the active conversation, you would like to allow the recipient of this data to be
able to change that data, and send it back by replacing the existing data instead of
sending a new message.

Solution
Inside the MSMessagesAppViewController instance of your extension, look at the
activeConversation.selectedMessage property to see whether it’s set. If it is, there
is a selected message that was previously sent by your iMessage app. Once you find

1.7 Creating Interactive Conversations with iMessage Apps | 27

this selected message, use its url property to create a mutable instance of the same
message.

Discussion
The first message sent by user A to user B with your app will have the selectedMes
sage property set to nil because no previous messages were sent by your app, hence
none could be selected. In this case, you can send a new message and set the url
property of the message to http://app.com/. Then, when the recipient receives this
message and taps on it, your extension will go into the expanded mode, and there you
can find this selectedMessage and read its url property. You can then compose a
new message with new data, images, etc., and set its url property to http://app.com/
withnewdata. Once you send this message, iMessage realizes that you took the
selected message and just changed it a little bit. Hence, iMessage will not send a new
iMessage, but instead, change the selected message to the new one for both the sender
and the receiver.

Let’s take what we learned in Recipe 1.6 and change the solution a little bit so that we
can create such interactive conversations.

In Recipe 1.6 we have both a compact and an expanded view controller. As explained
just now, when the user taps on a message that was previously sent by your app, two
things will happen:

• The willTransition(to:) function of your MSMessagesAppViewController will
be called and will change your app to the expanded mode.

• The activeConversation.selectedMessage property of your MSMessagesApp
ViewController will be set to an instance of MSMessage that represents the
selected message.

Knowing that the app is in expanded mode at this point, we are going to take the
same view controller as we did in Recipe 1.6 and change its interface so that there is a
button on the screen that looks like Figure 1-16.

28 | Chapter 1: iMessage Stickers and Apps

Figure 1-16. We will hook this button to our code quite soon

Also hook this button to a new function in your code:

import UIKit

class ExpandedStickersViewController: UIViewController, HasStickersDelegate {

 weak var delegate: StickersViewControllerDelegate?

 @IBAction func appendButtonTapped(_ sender: AnyObject) {
 delegate?.plusButtonTappedOn(self)
 }

}

I am utilizing the existing HasStickersDelegate and Stickers
ViewControllerDelegate protocols for this view controller
because our instance of MSMessagesAppViewController is con‐
cerned only with the press of the + button. When MSMessagesApp
ViewController traps this pressing of a button, it can read the
active conversation’s selected message and hence send a new one or
change the existing one if a selected message is already there.

When the button is tapped on either the compact or the expanded view controller,
the plusButtonTappedOn(_:) delegate method will be called in MSMessagesAppView
Controller. Here, we are going to look at the selected message to see if it exists and,
if it does, determine how many url components it has. So we need a property on the
URL class that can count the url components for us:

1.7 Creating Interactive Conversations with iMessage Apps | 29

extension URL{
 // counts the number of path components in the URL
 var pathCount: Int{
 let components = NSURLComponents(url: self, resolvingAgainstBaseURL: false)
 return components?.path?
 .components(separatedBy: "/")
 .filter{$0.characters.count > 0}
 .count ?? 0
 }
}

For instance, if the URL is http://app.com/, this property will return 0 because there is
no path component after the domain name. If the URL is http://app.com/foo, the
property will return 1 because foo is the single path component.

What I want to do in the plusButtonTappedOn(controller:) delegate method is
send the URL of https://developer.apple.com to the conversation should there be no
previously selected message in the active session. Once the first message is sent in the
current session, the recipient can tap on it and then append a new path to the URL.
The final path that I am going to construct is library/prerelease/ios/releasenotes/
General/WhatsNewIniOS/ appended to https://developer.apple.com, so we have a total
of six path components to play with. This means six bouncebacks of the same mes‐
sage back and forth between the sender and the recipient.

When https://developer.apple.com is sent as the first message, I would like an image to
be inside the MSMessage instance with the caption “developer.apple.com/,” as shown
in Figure 1-17.

30 | Chapter 1: iMessage Stickers and Apps

Figure 1-17. The first message in the conversation refers to developer.apple.com/

Once the recipient gets this message and taps on it, the expanded view of our app will
be displayed (Figure 1-18).

1.7 Creating Interactive Conversations with iMessage Apps | 31

Figure 1-18. The expanded view of our app is shown after the user tapped on the selected
message, composed by the same app on the sender’s side

Upon tapping the button on our expanded view, we will append the next path com‐
ponent, “library/”, to the URL and send it over (Figure 1-19).

32 | Chapter 1: iMessage Stickers and Apps

Figure 1-19. The selected message is changed to the new message with a new caption,
indicating the current final path component

Once this new message is sent, the receiver will be able to select it and press the but‐
ton again on the expanded view to change the message to a new one, with the next
path component attached to it (Figure 1-20).

1.7 Creating Interactive Conversations with iMessage Apps | 33

Figure 1-20. The next path component is now attached to the message

So let’s go to the plusButtonTappedOn(controller:) delegate method and define our
path components:

func plusButtonTappedOn(controller: UIViewController) {

 let paths = [
 "library/", "prerelease/", "ios/",
 "releasenotes/", "General/", "WhatsNewIniOS/"
]

34 | Chapter 1: iMessage Stickers and Apps

www.allitebooks.com

http://www.allitebooks.org

 ...

We will also define the base URL:

let base = "developer.apple.com/"

We should then find the existing session (or create a new one) and find the active
conversation to which we can send or append our messages:

guard let conversation = activeConversation else {fatalError()}
let session = conversation.selectedMessage?.session ?? MSSession()

We will now construct our URL instance and build a caption for our image:

let url: URL
let caption: String?
if let selectedMessageUrl = conversation.selectedMessage?.url{
 let pathCount = selectedMessageUrl.pathCount
 if pathCount < paths.count{
 let lastPath = paths[pathCount]
 // I am assuming that this will be fine, but in a production app
 // I will make sure not to use try!, and instead conditionally run this
 // code with a proper do, try, and catch statement
 url = selectedMessageUrl.appendingPathComponent(lastPath)
 caption = "\(base) (\(lastPath))"
 } else {
 url = selectedMessageUrl
 caption = "\(base) (\(paths.last))"
 }
} else {
 url = URL(string: "https://\(base)")!
 caption = base
}

After this is done, we will create an instance of our MSMessage with the session that
we previously found and set its layout:

let message = MSMessage(session: session)

let layout = MSMessageTemplateLayout()
layout.image = messageImage
layout.caption = caption

message.layout = layout
message.url = url

1.7 Creating Interactive Conversations with iMessage Apps | 35

I explained how messageImage is implemented in Recipe 1.6.

Last but not least, we will insert this message into the conversation and, once every‐
thing is settled, call the dismiss() function of our MSMessagesAppViewController
instance so that if we are in the expanded mode and the user tapped the button on the
UI, we can close our expanded view so that the user can send the message:

conversation.insert(message) {[weak self]error in
 guard let strongSelf = self else {return}
 strongSelf.dismiss()
}

See Also
Recipes 1.1, 1.2, and 1.6

36 | Chapter 1: iMessage Stickers and Apps

CHAPTER 2

SiriKit

Siri has been an integral part of iOS since Apple bought this technology and integra‐
ted it with the iPhone in 2011. However, Siri has been a closed technology up to now,
and developers like you and me were not able to provide our own extensions.

iOS 10 has changed this situation. Now you can add your own extensions to Siri and
allow users to interact with your apps and the services inside your apps, through Siri.

Imagine that you have a financial app that allows users to send up to $20 worth of
money to family and friends using their telephone numbers. The user can say, for
instance, “Send 15 dollars to Max.” Then your app looks in the user’s address book to
determine whether there is a contact called “Max” listed. If there is, you allow the
financial transaction to go through. There are a few steps that you have to take in
order to make your app Siri compatible, and we will have a look at those first.

2.1 Setting Up Your Project for Siri
Problem
You want to enable interactions with Siri in your app.

Solution
Follow these steps, the details of which can be found in this recipe’s Discussion:

1. Create your app, if you don’t already have one.
2. Enable Siri capabilities in your target’s preferences in Xcode.
3. Add an Intents extension to your app as a new target.
4. Define your intents in the extension’s info.plist file.

37

5. In your app’s info.plist file, define the NSSiriUsageDescription key, along with a
message explaining why you are intending to use Siri in your application. This
message will be shown to the user when you attempt to ask for permission to
integrate into Siri.

6. Import the Intents framework into your app.
7. Call the requestSiriAuthorization(_:) class method of the INPreferences

class and ask the user for authorization to use Siri.
8. If the status is authorized, then you might need to wait a few minutes before Siri

indexes your app’s intents and understands that your app is going to need to
interact with Siri.

Discussion
Imagine the user that interacts with Siri by saying something like, “Send 15 dollars to
Max.” Siri understands a few things from this message:

1. “Send” is the verb. From “dollars,” Siri understands that this is a financial intent.
2. From the phrase “15 dollars,” Siri understands that the quantity of this command

is 15.
3. From “Max,” Siri realizes that “Max” is the recipient of this financial transaction.

So now Siri knows what to do, but by default she doesn’t know how to do it. How
does she send the money? Siri therefore goes through the various apps and their
exposed intents to find out which ones allow financial transactions and then negoti‐
ates the rest with the found app, if any.

An intent says what your app can do with the help of Siri. Every intent is represented
by a class in the Intents framework. Some examples of these classes include:

INBookRestaurantReservationIntent

To reserve a place at a restaurant.

INCancelWorkoutIntent

To cancel an ongoing workout session.

INSendPaymentIntent

Send a payment to someone.

We are going to look at INSendPaymentIntent in detail in this chapter. This recipe’s
Solution outlined how you can integrate your app with Siri, but now let’s look at the
steps in more detail:

1. Create your app if you haven’t already created one. For the purposes of this
example, I created a single view app, as shown in Figure 2-1.

38 | Chapter 2: SiriKit

Figure 2-1. Create your app first

2. Give your app a product name (Figure 2-2), click Next, and save your project to
disk.

2.1 Setting Up Your Project for Siri | 39

Figure 2-2. Give your app a name

3. Select your project’s icon on the explorer pane on the lefthand side of Xcode,
then select your target from the list that says TARGETS. Under the Capabilities
section on top, enable Siri (Figure 2-3).

Figure 2-3. Enable the Siri capability for your app

40 | Chapter 2: SiriKit

4. Open the info.plist file of your app. Create a new key/value pair in it, setting the
key to NSSiriUsageDescription. For the value, enter a brief text message that
tells the user why you are attempting to integrate your app with Siri (Figure 2-4).

Figure 2-4. Tell the user why you are integrating into Siri

5. Import the Intents framework into your source code and then call the
requestSiriAuthorization(_:) class method of the INPreferences class to
request access to Siri:

typealias SiriAccessCompletionHandler = (Bool) -> Void
func requestSiriAccess(
 completionHandler: @escaping SiriAccessCompletionHandler){

 INPreferences.requestSiriAuthorization {status in
 switch status{
 case .authorized:
 completionHandler(true)
 default:
 completionHandler(false)
 }
 }

}

6. Go to the Files menu, select New and then Target, and then from the screen,
under the Application Extension section, choose Intents Extension (Figure 2-5)
and click Next.

2.1 Setting Up Your Project for Siri | 41

Figure 2-5. Create an Intents extension for Siri

7. Give the Intents extension a name (Figure 2-6), then press Finish to save and add
it to the project. An Intents extension is your delegate through to Siri’s capabili‐
ties, and this extension is your window to your users, through Siri!

42 | Chapter 2: SiriKit

Figure 2-6. Give your Intents extension a name

8. In your newly created Intents extension’s info.plist file, go to the NSExtension key,
expand it down to NSExtensionAttributes, and further expand that down to
IntentsSupported and IntentsRestrictedWhileLocked. Under these two arrays
of strings, you can list the name of the classes (such as INSendPaymentIntent)
that your extension supports. Whatever you list under the IntentsSupported key
will be a supported intent by your app, and whatever you list under IntentsRes
trictedWhileLocked requires the user’s device to be locked before that intent can
be resolved. You can use this latter functionality to create more secure intents,
such as when you want the user to be able to send money to a friend or a family
member.

The INSendPaymentIntent that we want to use requires the device to be locked for
the sake of security, so you have to list it under IntentsSupported to indicate that
your app supports this intent. You also have to list it under IntentsRestrictedWhile
Locked to tell iOS that this intent requires the user’s device to be locked before the
user can use it.

2.1 Setting Up Your Project for Siri | 43

If you forget to place your intent under IntentsSupported, it will
not be recognized at all by iOS. And even worse, if your Intents
Supported is empty, you won’t even be able to compile and run
your app on an iOS device.

The following section from an info.plist file shows the Intents target that we have just
set up:

<plist version="1.0">
 <dict>
 <key>NSExtension</key>
 <dict>
 <key>NSExtensionAttributes</key>
 <dict>
 <key>IntentsRestrictedWhileLocked</key>
 <array>
 <string>INSendPaymentIntent</string>
 </array>
 <key>IntentsSupported</key>
 <array/>
 </dict>
 <key>NSExtensionPointIdentifier</key>
 <string>com.apple.intents-service</string>
 <key>NSExtensionPrincipalClass</key>
 <string>$(PRODUCT_MODULE_NAME).IntentHandler</string>
 </dict>
 </dict>
</plist>

You can now run your app on a device. It will take a while before Siri can recognize
that your app supports Siri intents, so give it a few minutes before asking Siri any
questions that can be handled with INSendPaymentIntent.

See Also
Recipes 1.3 and 2.2

2.2 Defining an Intent Handler
Problem
You want to handle a specific Siri intent and you want to be able to handle all its
related delegate messages to and from Siri.

44 | Chapter 2: SiriKit

Solution
Follow these steps, assuming that you have created your Intents extension target as
discussed in Recipe 2.1.

1. Create a new Cocoa Touch class under your Intents extension target (Figure 2-7).

Figure 2-7. Creating a new handler class for the intent

2. In the Subclass field, enter the class name of the intent that you wish to handle,
such as INSendPaymentIntent. Then enter the name of the class that you wish to
create in your own project, such as SendPaymentHandler (Figure 2-8). Proceed to
the next screen to add it to your Intents extension target and save the file on disk.

2.2 Defining an Intent Handler | 45

Figure 2-8. Give your intent class a name

3. The newly created file will be opened for you. Xcode will complain that this file
isn’t compilable, because Xcode doesn’t import the Intents framework by
default, so help Xcode by importing it:

import UIKit
import Intents

class SendPaymentHandler: INSendPaymentIntent {

}

4. Every intent handler has to conform to a protocol named XHandling, where X is
the name of the intent class. If your intent handler is called INSendPaymentIn
tent, for instance, your intent handler class must conform to the
INSendPaymentIntentHandling protocol:

import UIKit
import Intents

class SendPaymentHandler: INSendPaymentIntent,
 INSendPaymentIntentHandling {

46 | Chapter 2: SiriKit

func handle(sendPayment intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 }

func confirm(sendPayment intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 }

 // optional
func resolvePayee(forSendPayment intent: INSendPaymentIntent,
 with completion: @escaping (INPersonResolutionResult) -> Void) {

 }

 // optional
func resolveCurrencyAmount(
 forSendPayment intent: INSendPaymentIntent,
 with completion: @escaping (INCurrencyAmountResolutionResult) ->
 Void) {

 }

func resolveNote(forSendPayment intent: INSendPaymentIntent,
 with completion: @escaping (INStringResolutionResult) -> Void) {

 }

}

5. Open the IntentHandler.swift file that was already created for you when you cre‐
ated your Intents extension target. In the handle(for:) method of INExtension,
return an instance of your newly created SendPaymentHandler class whenever an
intent of type INSendPaymentIntent is about to be resolved:

import Intents

class IntentHandler: INExtension{

 override func handler(for intent: INIntent) -> Any {

 if intent is INSendPaymentIntent{
 return SendPaymentHandler()
 } else {
 return self
 }

2.2 Defining an Intent Handler | 47

 }

}

Discussion
If you have followed all the steps in this recipe’s Solution, you can now choose the
Intents extension target that Xcode created for you when you created the target ear‐
lier in this chapter and then press the Run button in Xcode. A dialog will appear ask‐
ing you the app to which you want to attach your intent. In this dialog, choose Siri
(Figure 2-9) and then press the Run button.

Figure 2-9. You have to attach your intent extension to Siri to be able to test it

This will then run Siri with your extension attached to it. Once Siri is up and running,
say “Send 15 dollars to Anthony.” This will cause Siri to ask you to confirm that you

48 | Chapter 2: SiriKit

want to make this payment using the app that we have been working on
(Figure 2-10).

Figure 2-10. Siri is asking us if we want the payment to be handled by our app

If this is the first time you are giving this permission, Siri will ask to access your app’s
data with a dialog similar to Figure 2-11.

2.2 Defining an Intent Handler | 49

Figure 2-11. Siri needs access to your app’s data before it can integrate into the app for
the first time

Press the Siri Settings button that is provided to you (Figure 2-12) and allow access.

50 | Chapter 2: SiriKit

Figure 2-12. Allowing Siri to access our app and integrate itself into it

Now if you go back to Siri and repeat this request, your extension will be run but will
time out after a while, because we didn’t really implement any of the required call‐
backs in our shiny new SendPaymentHandler class. You will learn how to do that in
the upcoming recipes.

See Also
Recipe 2.1

2.2 Defining an Intent Handler | 51

2.3 Resolving Ambiguity in an Intent
Problem
Your intent delegate finds multiple entities that match what Siri asked you to operate
on. For example, multiple people might match the name to which the user wants to
send a payment, multiple activities might match the one the user asked to be paused,
and so on.

This recipe builds on what we discussed in Recipe 2.2, so it is
essential that you read and run that recipe first before proceeding
with this one.

Solution
Use the ambiguity APIs that are provided in every XHandling protocol, where X is the
intent that you are working with. If you are working with sending payments from
within your intents, you have to create a subclass of INSendPaymentIntent and then
implement the delegate methods in INSendPaymentIntentHandling. One of these
methods is resolvePayee(forSendPayment:with:), which gives you the payee who
Siri believes to be the user specified along with a completion handler that you can
call. The completion handler contains a value of type INPersonResolutionResult
that specifies whether:

• The given payee resolves unambiguously to a payee that your app recognizes.
This is a success.

• The given payee doesn’t resolve to any payees that your app can recognize. This is
a failure.

• The given payee resolves to more than one recognized payee in your app. This is
an ambiguity.

Discussion
Let’s examine a case where the user says, “Send 15 dollars to Anthony” but has two
contacts named Anthony:

• Anthony Foo
• Anthony Bar

People that the user can pay should be of type INPerson, so let’s define these two peo‐
ple in our app by creating a function that can create an instance of this class, accept‐

52 | Chapter 2: SiriKit

ing a first name, last name, and other pertinent information, including the telephone
number (which is necessary for payment processing purposes):

import UIKit
import Intents

class SendPaymentHandler: INSendPaymentIntent, INSendPaymentIntentHandling {

 private func person(givenName: String,
 lastName: String,
 imageName: String,
 telephone: String) -> INPerson{

 let personHandle = INPersonHandle(value: telephone, type: .phoneNumber)
 var nameComponents = PersonNameComponents()
 nameComponents.givenName = givenName
 nameComponents.familyName = lastName
 let displayName = "\(givenName) (\(lastName))"
 let image = INImage(named: imageName)
 return INPerson(personHandle: personHandle,
 nameComponents: nameComponents,
 displayName: displayName,
 image: image,
 contactIdentifier: nil, customIdentifier: nil)

 }

 ...

We can then proceed to create these two person instances and designate one of them
as the default person to whom all payments are made:

private var anthonyFoo: INPerson{
 return person(givenName: "Anthony",
 lastName: "Foo",
 imageName: "Alert",
 telephone: "111-222-333")
}

private var anthonyBar: INPerson{
 return person(givenName: "Anthony",
 lastName: "Bar",
 imageName: "Burning",
 telephone: "444-555-666")
}

var persons: [INPerson]{
 return [anthonyFoo, anthonyBar]
}

var defaultPerson: INPerson{
 return anthonyFoo

2.3 Resolving Ambiguity in an Intent | 53

}

Then we need to start implementing the resolvePayee(forSendPayment:with:)
function of our payment delegate. In here, we first look at the payee that Siri has
interpreted as the intended recipient of the payment, and then attempt to find this
payee in the list of people that our app supports sending money to. If we find such a
person, we proceed. If we find more than one person with the given name, we ask Siri
to resolve the problem. Siri does this by running a procedure called a disambiguation.
Siri shows the user a dialog containing all the possible payees, prompts the user to
choose the intended recipient of the payment, and then calls a completion handler to
carry out the operation.

Finally, if we don’t find any person with the given name, we provide the default per‐
son that we have defined just a few seconds ago, and ask the user to confirm whether
she wants to send the payment to this user:

func resolvePayee(forSendPayment intent: INSendPaymentIntent,
 with completion: @escaping (INPersonResolutionResult) ->
 Void) {

 guard let payee = intent.payee else {

 let result = INPersonResolutionResult
 .confirmationRequired(with: defaultPerson)

 completion(result)

 return
 }

 // do we have a match with the given display name already?
 if let foundPerson =
 persons.filter({$0.displayName == payee.displayName}).first{
 // we found a match, we can confirm that this person exists and can
 // be used
 let result = INPersonResolutionResult.success(with: foundPerson)
 completion(result)
 return
 }

 var foundPersons = [INPerson]()
 for person in persons{
 if person.nameComponents?.givenName?.lowercased() ==
 payee.nameComponents?.givenName?.lowercased(){
 foundPersons.append(person)
 }
 }

 let result: INPersonResolutionResult
 switch foundPersons.count{

54 | Chapter 2: SiriKit

 case 0:
 // we found nobody that matches the required user
 result = .confirmationRequired(with: defaultPerson)
 case 1:
 // we did find the user
 result = INPersonResolutionResult.success(with: foundPersons[0])
 default:
 // we found more than one user
 result = INPersonResolutionResult.disambiguation(with: foundPersons)
 }

 completion(result)

}

When we have more than one match, we trigger Siri’s disambiguation, passing as an
argument the list matches we created.

While sending payments, you have to also code the resolveCurrencyAmount(for
SendPayment:with:) function of INSendPaymentIntentHandling. In there you will
be given the amount of money that the person is trying to send and the currency in
which she is sending it. Then you can provide a resolution of type INCurrencyAmoun
tResolutionResult where you can either:

• Confirm that the amount and the currency are supported.
• Say that the amount and/or currency has multiple matches and requires a disam‐

biguation.
• Ask the user to confirm whether a change that you made to the given amount or

currency is acceptable. This option is helpful in cases where the user specifies a
currency that is not supported by your app or requests sending an amount above
the maximum allowed. For example, if the user asks to send a friend $500 (which
is above our app’s $20 limit), the app would change the amount to $20 and ask
the user to confirm that this is acceptable.

So let’s define the list of currencies that we support:

enum SupportedCurrencies : String{
 case USD
 case SEK
 case GBP

 static func allValues() -> [String]{
 let allValues: [SupportedCurrencies] = [.USD, .SEK, .GBP]
 return allValues.map{$0.rawValue}
 }

 static var defaultCurrency = SupportedCurrencies.USD

2.3 Resolving Ambiguity in an Intent | 55

}

And then define our minimum and maximum payment values:

func resolveCurrencyAmount(
 forSendPayment intent: INSendPaymentIntent,
 with completion: @escaping (INCurrencyAmountResolutionResult) -> Void) {

 let minimumPayment = 5.0
 let maximumPayment = 20.0
 let defaultCurrencyAmount = INCurrencyAmount(amount: 15, currencyCode: "USD")

 ...

When the user makes a request to send money, we can then check whether she has
specified a valid currency value and amount. If not, we will provide our default cur‐
rency and amount and ask the user to confirm them:

guard let givenCurrency = intent.currencyAmount,
 let currencyCode = givenCurrency.currencyCode,
 let currencyAmount = givenCurrency.amount else {
 let result = INCurrencyAmountResolutionResult
 .confirmationRequired(with: defaultCurrencyAmount)
 completion(result)
 return
}

We then find the given currency code in the array of our supported currencies:

let currencyAmountDoubleValue = currencyAmount.doubleValue

// do we support this currency code?
let foundCurrencies = SupportedCurrencies.allValues()
 .filter{$0 == currencyCode}
let foundCurrencyCount = foundCurrencies.count

Depending on whether we could find this currency code, we decide how to call the
completion handler:

let result: INCurrencyAmountResolutionResult

switch foundCurrencyCount{

case 0:
 result = INCurrencyAmountResolutionResult
 .confirmationRequired(with: defaultCurrencyAmount)

case 1 where currencyAmountDoubleValue >= minimumPayment &&
 currencyAmountDoubleValue <= maximumPayment:
 result = .success(with: givenCurrency)

56 | Chapter 2: SiriKit

case 1:
 // the amount is not acceptable, ask for confirmation
 let amount: NSDecimalNumber = 20
 let newAmount = INCurrencyAmount(amount: amount,
 currencyCode: currencyCode)
 result = .confirmationRequired(with: newAmount)

default:
 // the currency code gave more than one result

 var amounts = [INCurrencyAmount]()
 for foundCurrency in foundCurrencies{
 let amount = INCurrencyAmount(amount: currencyAmount,
 currencyCode: foundCurrency)
 amounts.append(amount)
 }

 result = .disambiguation(with: amounts)
}

completion(result)

You also have to handle the resolveNote(forSendPayment:with) method of INSend
PaymentIntentHandling. This lets the user who is making the payment attach a note
of type String to be sent alongside the payment to the recipient. Here you also have
the chance to either accept that note or resolve any ambiguity in it. In this example,
we simply override any given note with a constant string for the sake of simplicity,
but you get the idea!

func resolveNote(forSendPayment intent: INSendPaymentIntent,
 with completion: @escaping (INStringResolutionResult) -> Void) {

 completion(.success(with: "This is your payment"))

}

So now if the user asks Siri to “Send 15 dollars to Anthony,” she will first see the dia‐
log shown in Figure 2-13, asking for confirmation of whether she would like to use
SiriApp.

2.3 Resolving Ambiguity in an Intent | 57

Figure 2-13. Siri confirming which app should be used to make the payment

After the user confirms that she would like to use SiriApp, Siri will ask the user to
clarify the intended recipient, since there are two instances of Anthony in our app
(Figure 2-14).

58 | Chapter 2: SiriKit

Figure 2-14. Confirming ambiguity in the recipient of the payment

Then we will resolve the payment amount. Because $15 is in our acceptable range,
Siri will proceed to call our delegate’s confirm(sendPayment:completion:) method,
which we have not yet implemented.

See Also
Recipe 2.2

2.3 Resolving Ambiguity in an Intent | 59

2.4 Reporting Progress for Resolving an Intent
Problem
You need some time to handle a Siri intent and you want to be able to report progress
to the user.

This recipe builds on what we learned in Recipe 2.3, so I strongly
suggest reading that recipe before continuing further.

Solution
Implement the confirm(_:completion:) method of your XHandling protocol, where
X is the name of the intent you are handling, such as INSendPaymentIntentHandling.

Discussion
In this recipe, we will implement confirmation in INSendPaymentIntentHandling.
The confirm(sendPayment:completion:) method requires you to call the given
completion handler with a parameter of type INSendPaymentIntentResponse. The
initializer for this response is:

init(code: INSendPaymentIntentResponseCode, userActivity: NSUserActivity?)

The response code of INSendPaymentIntentResponseCode is the most important
thing to note here, because this is the response code that you can change and send
back every now and then, as you progress through the payment, to the user. Some of
the values in INSendPaymentIntentResponseCode are:

ready

We are ready to begin making the payment. No other transfers are in progress right
now.

inProgress

We are confirming that the payment can in fact be made.

success

We successfully made the payment.

failure

We could not confirm that making the payment was possible or not.

60 | Chapter 2: SiriKit

Keep in mind that you will not do the actual work of processing the payment in this
method. Instead, you will determine whether the payment is possible—for instance,
by checking that the user has sufficient funds in her bank account. Once this is con‐
firmed, you will have to do the actual work of processing the payment (you will see
how this is done in Recipe 2.5).

Let’s have a look at an example. In our confirm(sendPayment:completion:) method,
the completion parameter accepts a block object that has one parameter of type
INSendPaymentIntentResponse, which we need to call when we confirm whether the
payment can be made. The INSendPaymentIntentResponse class instance can be
instantiated with a parameter of type INSendPaymentIntentResponseCode, so in our
method we can create a local function that can easily report these codes directly to the
completion handler without us having to create an instance of INSendPay

mentIntentResponse every time:

func confirm(sendPayment intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 func report(code: INSendPaymentIntentResponseCode){
 completion(INSendPaymentIntentResponse(code: code, userActivity: nil))
 }

 ...

When we begin to confirm whether the payment is possible, we report the
code .ready so that Siri knows we have begun. Then we confirm that the given pay‐
ment information is bundled within the intent; otherwise, we report .failure:

report(code: .ready)

guard let amount = intent.currencyAmount?.amount?.doubleValue else {
 report(code: .failure)
 return
}

Right after that, we confirm whether the payment value is within the allowed range. If
it’s less, we report .failurePaymentsAmountBelowMinimum and if it’s more, we
report .failurePaymentsAmountAboveMaximum:

let minimumPayment = 5.0
let maximumPayment = 20.0

if amount < minimumPayment{
 report(code: .failurePaymentsAmountBelowMinimum)
 return
}

if amount > maximumPayment{

2.4 Reporting Progress for Resolving an Intent | 61

 report(code: .failurePaymentsAmountAboveMaximum)
 return
}

After you have confirmed the amount, you can signal that you have started the work
of checking the user’s bank account for sufficient funds (and any other checks that
you want to do) by reporting the .inProgress code. Once all the checks are comple‐
ted, report either .failure or .success:

// do the actual work here
report(code: .inProgress)

// when done, signal that you have either successfully finished
// or failed
report(code: .success) // or .failure

See Also
Recipes 2.2 and 2.3

2.5 Handling an Intent
Problem
You have resolved all ambiguities regarding a Siri intent that you are handling and
have also confirmed that the intent can in fact go through successfully. Now you have
to actually see the process through and handle the intent.

Solution
Implement the handle(_:completion:) method of your XHandling protocol, where
X is the name of the intent you are handling, such as INSendPaymentIntentHandling.

Discussion
In the case of INSendPaymentIntentHandling, the method that you need to program
is called handle(sendPayment:completion:) and the completion block requires you
to send a parameter of type INSendPaymentIntentResponse, which we have already
discussed in Recipe 2.4.

To ensure that Siri can show the user a consistent flow of progress updates while the
intent is being handled by your extension, Apple recommends that handle(sendPay
ment:completion:) and confirm(sendPayment:completion:) report almost identi‐
cal, if not exactly identical, INSendPaymentIntentResponseCode codes, so that Siri
can show the user a consistent flow of progress updates while the intent is being han‐

62 | Chapter 2: SiriKit

dled by your extension. For instance, if during the confirmation stage you go through
the codes of .ready, .inProgress, and then .success or .failure, you should do
the same in the handling stage. The only difference is that when you handle the pay‐
ment, you won’t have to look again at the conditions, such as the amount of money
being transferred, that you have already checked during the confirmation stage. So
your handling stage will hopefully be less complicated.

Let’s now have a look at an example based on what we learned in Recipe 2.4. We will
have a local function that can report our codes to the completion handler:

func handle(sendPayment intent: INSendPaymentIntent,
 completion: @escaping (INSendPaymentIntentResponse) -> Void) {

 func report(code: INSendPaymentIntentResponseCode){
 completion(INSendPaymentIntentResponse(code: code, userActivity: nil))
 }

 ...

Then we extract the amount that has to be transferred and ensure that it is present:

report(code: .ready)

guard let amount = intent.currencyAmount?.amount?.doubleValue else {
 report(code: .failure)
 return
}

Last but not least, we will make the payment and then report either .success
or .failure to the user:

// here you don't have to check the amount again, as we have done that
// already in confirm(sendPayment:completion:)

// send the payment and then report success or failure
report(code: .success)

See Also
Recipes 2.1 and 2.4

2.5 Handling an Intent | 63

CHAPTER 3

Measurements and Units

We have all been there! You need to convert one unit to another, and you begin your
journey, most of the time, by Googling what the conversion should be. With iOS 10
SDK, you can now use some built-in structures to represent and convert your units.

The following classes and structures appear throughout this chapter:

Unit

The base class for all the units that are in the SDK itself. This class defines a symbol
for the unit, such as m for meters.

Dimension

The class that inherits from Unit and defines the converter to be used between vari‐
ous units.

UnitLength, UnitMass, and the like
Basic units that inherit from Dimension. Each unit offers alternative ways of repre‐
senting a particular measure, such as length or mass. Each unit also standardizes the
various symbols for its measure, such as m for meters, km for kilometers, and smi for
Scandinavian miles (with each Scandinavian mile being equal to 1 kilometer).

Measurement
The base structure for defining a value with a unit. Every measurement has a value of
type Double and a unit of type Unit.

3.1 Converting Between and Working with Length Units
Problem
You want to be able to represent values with the unit of length, such as kilometers and
miles, and would like to be able to perform some basic tasks on them, such as con‐

65

verting one unit to another, or adding and subtracting values represented in different
units.

Solution
Follow these steps:

1. Represent your values first by constructing instances of Measurement with your
given value. Use one of the units defined in UnitLength as the unit for your
measurement, such as UnitLength.meters.

2. After you have your Measurement instances, you can use the various operators
such as + and - between them as long as they are from the same base unit.

3. You can also use the converted(to:) function of your Measurement structure
instances to convert your values to another unit type of the same base unit. For
instance, converting meters to miles is fine, as they are both from the UnitLength
base unit, but converting kilometers to hours is not going to work because hours
are represented by the UnitDuration unit.

Discussion
Your values are representable by instances of the Measurement structure with a given
unit. Let’s create two values, one for 5 meters and the other for 1 kilometer:

let meters = Measurement(value: 5, unit: UnitLength.meters) // 5.0 m
let kilometers = Measurement(value: 1, unit: UnitLength.kilometers) // 1.0 km

You can then check out the return value of type(of:) on these values to see what
data type they have:

type(of: meters) // Measurement<UnitLength>
type(of: kilometers) // Measurement<UnitLength>

Their data type is Measurement, which itself is generic, and its generic parameter is set
to UnitLength since both values are lengths.

You can then simply add these values together if you want:

let result = meters + kilometers // 1005.0 m
type(of: result) // Measurement<UnitLength>

This + operator is defined in Foundation as so:

public func +<UnitType : Dimension>(lhs: Measurement<UnitType>,
 rhs: Measurement<UnitType>) -> Measurement<UnitType>

66 | Chapter 3: Measurements and Units

Eventually, you can convert the result into various other units of length, such as
miles:

let finalKilometers = result.converted(to: .kilometers) // 1.005 km
let finalMeters = result.converted(to: .meters) // 1005.0 m
let finalMiles = result.converted(to: .miles) // 0.6224 mi
let finalScandinavianMiles = result.converted(to: .scandinavianMiles)
 // 0.1005 smi

If you wish to present these values to the user, which are of type Measurement<Unit>,
read the value and the unit.symbol properties from them. The value will be of type
Double and the unit.symbol of type String. This gives you the information you need
to display values on UI components, such as a UILabel instance.

See Also
Recipes 3.2 and 3.3

3.2 Working with and Switching Between Angle Units
Problem
You want to use, convert, represent, and display angles in your applications without
having to convert them manually.

Solution
Just like length units (see Recipe 3.1), values that represent an angle can also be
encapsulated inside an instance of the Measurement structure. The unit is UnitAngle.

Discussion
Let’s have a look at how we can represent 100 gradians in our application:

let gradians = Measurement(value: 100, unit: UnitAngle.gradians) // 100.0 grad

You can then convert this value to degrees using the convert(to:) function of the
Measurement structure:

gradians.converted(to: UnitAngle.degrees) // 90 degrees

And if you read the return value of type(of:) on this value, you will get the value of
Measurement<UnitAngle>:

type(of: gradians) // Measurement<UnitAngle>

Similarly, you can represent degrees with the Measurement structure:

3.2 Working with and Switching Between Angle Units | 67

let degrees = Measurement(value: 180, unit: UnitAngle.degrees) // 180.0

And just like the + operator we saw used before with Measurement types, you also
have a - operator that is defined like so:

public func -<UnitType : Dimension>(lhs: Measurement<UnitType>,
rhs: Measurement<UnitType>) -> Measurement<UnitType>

So you can use this operator between any two instances of the Measurement structure
as long as their base units are the same:

let total = gradians - degrees // -90 degrees

Once you have your angle measurements, you can convert them to each other:

let finalGradians = total.converted(to: .gradians) // -100 grad
let finalDegrees = total.converted(to: UnitAngle.degrees) // -90 degrees

Additionally, you can show this value to your users with the value: Double and the
unit.symbol: String property of your Measurement instance:

let string = "\(finalDegrees.value) \(finalDegrees.unit.symbol)"
 // "-90 degrees"

See Also
Recipes 3.1 and 3.5

3.3 Representing and Converting Between Durations of
Time
Problem
You want to represent units of time with their values and the type of unit they repre‐
sent, such as hours or seconds, but you don’t want to fuss with counting in bunches of
60 to calculate conversions between units.

Solution
To solve this problem, instantiate the Measurement structure with your time values
and use the UnitDuration for your base unit. You can then use +, -, and other basic
operators between your units without worrying about what unit they are represented
with, as long as they come from the UnitDuration base unit.

68 | Chapter 3: Measurements and Units

Discussion
Let’s have a look at an example of how we can convert hours, minutes, and seconds to
one another, but let’s spice it up a little bit. It’s clear that we can use Measurement to
represent all three values with UnitDuration, but we can instead extend Double so
that any number can then be turned into an hour, minute, or second value repre‐
sented by Measurement:

extension Double{
 var hours: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.hours)
 }
 var minutes: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.minutes)
 }
 var seconds: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.seconds)
 }
}

Now that this is done, we can put together a few values using these properties:

let trainJourneyDuration = (1.25).hours
trainJourneyDuration.converted(to: .minutes) // 75.0 min

let planeJourneyDuration = (320.0).minutes
planeJourneyDuration.converted(to: .hours) // 5.333 hr

let boatJourneyDuration = (1500.0).seconds
boatJourneyDuration.converted(to: .minutes) // 25.0 min

These values each represent a sub-journey of a bigger journey from one destination
to another and they are in minutes, hours, and seconds. We can then put them all
together inside an array and calculate their total value in minutes, using each Measure
ment instance’s convert(to:) method:

let journeys = [
 trainJourneyDuration,
 planeJourneyDuration,
]

let finalJourneyDurationInMinutes = journeys.reduce(0.0){
 return $0 + $1.converted(to: UnitDuration.minutes).value
}

finalJourneyDurationInMinutes // 395

Representing time with Measurement makes it much easier to work with existing
classes such as Timer. For instance, if you want a timer that runs for n seconds, all you
have to do is create a Measurement instance of type UnitDuration.seconds and then,

3.3 Representing and Converting Between Durations of Time | 69

once the measurement’s value property is less than or equal to 0, you can invalidate
the timer:

import UIKit
import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

extension Double{
 var seconds: Measurement<UnitDuration>{
 return Measurement(value: self, unit: UnitDuration.seconds)
 }
}

var remainingTime = Measurement(value: 10, unit: UnitDuration.seconds)
Timer.scheduledTimer(withTimeInterval: 1.0, repeats: true) {timer in
 let minutesRemaining = remainingTime.converted(to: UnitDuration.minutes)
 print("\(minutesRemaining.value) minutes remaining before the timer stops")
 remainingTime = remainingTime - (1.0).seconds
 if remainingTime.value <= 0.0{
 timer.invalidate()
 }
}

The PlaygroundSupport framework is used alongside the Play
groundPage.current.needsIndefiniteExecution: Bool prop‐
erty, which you can set to true if you need an infinite loop in your
playground so that your playground doesn’t just start at one point
and end at another. Unlike the default behavior of playgrounds,
starting at the top and ending after the execution of the last line of
code in the playground, yours becomes a fully fledged application
that lives until you ask it to stop.

See Also
Recipes 3.2 and 3.4

3.4 Using and Working with Frequency Units
Problem
You want to use and convert between frequency units, such as megahertz and giga‐
hertz.

70 | Chapter 3: Measurements and Units

Solution
Represent your values with the Measurement structure and use UnitFrequency as the
base unit. The UnitFrequency class has various class variables such as:

• terahertz

• gigahertz

• megahertz

• kilohertz

Discussion
If you build computers in your spare time (as I used to do more frequently, before I
had three children!), you see keywords such as megahertz and gigahertz all over the
place. It’s a great idea to represent all these values with some structure in Swift, and
with Measurement now you can do that by choosing UnitFrequency as your base unit.

Here is an example of representing two CPU clock speeds in Swift, using gigahertz
and then megahertz:

var myCpuClock = Measurement(value: 3.5, unit: UnitFrequency.gigahertz)
var yourCpuClock = Measurement(value: 3400, unit: UnitFrequency.megahertz)

You can then use the built-in > and < operators to see which values are bigger or
smaller:

if myCpuClock > yourCpuClock{
 "My CPU is faster than yours"
} else if yourCpuClock > myCpuClock{
 "Your CPU is faster than mine. Good for you!"
} else {
 "It seems our CPU clocks are the same!"
}

These two operators are defined for you already in the Foundation framework so that
you don’t have to write them yourself:

public func ><UnitType : Dimension>(lhs: Measurement<UnitType>,
 rhs: Measurement<UnitType>) -> Bool

public func <<UnitType : Dimension>(lhs: Measurement<UnitType>,
 rhs: Measurement<UnitType>) -> Bool

Now that we have two CPUs whose clock speeds are represented in various forms of
the frequency unit, we can put them inside an array and iterate through this array to
get their clock speeds shown in gigahertz:

3.4 Using and Working with Frequency Units | 71

let baseUnit = UnitFrequency.gigahertz
[myCpuClock, yourCpuClock].enumerated().forEach{offset, cpuClock in
 let converted = cpuClock.converted(to: baseUnit)
 print("CPU #\(offset + 1) is \(converted.value) \(converted.unit.symbol)")
}

And the output will be as shown here:

CPU #1 is 3.5 GHz
CPU #2 is 3.4 GHz

See Also
Recipes 3.3 and 3.5

3.5 Working with and Using Power Units
Problem
You want to be able to convert between and use power units, but you don’t want to lift
a finger and do any of the work manually yourself.

Solution
Simply use Measurement to represent your power units with the unit equal to Unit
Power and then use the convert(to:) function of the Measurement structure to con‐
vert your values to other power units, some of which are listed here:

• terawatts

• gigawatts

• megawatts

• kilowatts

• watts

• horsepower

Discussion
Let’s check out an example. Let’s say that I’m riding a bicycle and moving forward by
putting 160 watts of energy into the pedals. Now a super-duper cyclist that has won
three Tour de France tournaments has a pedaling power of 0.40 horsepower. Are you
putting more power into the pedals than this super cyclist or the other way around?
How can you find the answer without having to convert one of these values to the
other or both values to another base unit?

Well, the answer is quite easy. Simply represent these values with Measurement:

72 | Chapter 3: Measurements and Units

let myCyclingPower = Measurement(value: 160, unit: UnitPower.watts)
let superCyclistPower = Measurement(value: 0.40, unit: UnitPower.horsepower)

And then use the > and < operators that are already defined for you to find out which
value is larger:

if myCyclingPower > superCyclistPower{
 "Wow I am really strong"
} else if myCyclingPower < superCyclistPower{
 "The super cyclist is of course stronger than I am"
} else {
 "It seems I am as strong as the super cyclist!"
}

But how does iOS do this and how does it know how to compare these values? The
answer is simple: base units. If you Command-click on UnitPower in Xcode, you will
see some code like this:

@available(iOS 10.0, *)
public class UnitPower : Dimension, NSSecureCoding {

 /*
 Base unit - watts
 */

There you can see that the base unit is watts. iOS converts all your power units to
watts and then compares their value properties to find which one is higher.

See Also
Recipes 3.4 and 3.6

3.6 Representing and Comparing Temperature Units
Problem
You want to convert between and work with temperature units, such as Celsius and
Fahrenheit, without having to do any manual work.

Solution
To avoid having to convert different temperature units, encapsulate your temperature
values inside an instance of the Measurement structure with the UnitTemperature
unit type. Then you can take advantage of the convert(to:) method of the Measure
ment structure to convert different types to each other and also use the existing
greater-than, less-than, and other operators to manipulate or compare these measure‐
ments.

3.6 Representing and Comparing Temperature Units | 73

Discussion
Let’s have a look at an example. Say that you have three temperatures of types Celsius,
Fahrenheit, and Kelvin and your goal is to convert them all to Celsius and then sort
them in ascending order. Let’s first represent our temperatures:

let cakeTemperature = Measurement(value: 180, unit: UnitTemperature.celsius)
let potatoesTemperature = Measurement(value: 200, unit:
 UnitTemperature.fahrenheit)
let beefTemperature = Measurement(value: 459, unit: UnitTemperature.kelvin)

Next we can sort them by their Celsius values in an ascending order:

let sorted = [cakeTemperature, potatoesTemperature, beefTemperature]
 .sorted { (first, second) -> Bool in
 return first.converted(to: .celsius) < second.converted(to: .celsius)
}

When we have a sorted array, we can convert all the values to Celsius to get our final
sorted array of Celsius temperatures:

let allCelsiusTemperatures = sorted.map{
 $0.converted(to: .celsius)
}

allCelsiusTemperatures // 93.33, 180, 185.8

See Also
Recipes 3.5 and 3.7

3.7 Working with and Converting Volume Units
Problem
You need to work with values represented as volumes such as liters and pints, but you
don’t want to manually do the work of comparing and converting them.

Solution
Encapsulate your values inside instances of the Measurement structure with the unit
of type UnitVolume.

74 | Chapter 3: Measurements and Units

Discussion
Imagine that you are baking a cake and three of the ingredients that you need are rep‐
resented in different units, namely liters, deciliters, and pints:

let milk = Measurement(value: 2, unit: UnitVolume.liters)
let cream = Measurement(value: 3, unit: UnitVolume.deciliters)
let water = Measurement(value: 1, unit: UnitVolume.pints)

You can add all these values together with the + operator and convert the total to vari‐
ous other volumes, such as cups:

let total = milk + cream + water
let totalDeciliters = total.converted(to: .teaspoons)
let totalLiters = total.converted(to: .tablespoons)
let totalPints = total.converted(to: .cups)

You can also go through all the values and print their details, such as their raw value
and the symbol that represents their units:

func showInfo(for measurement: Measurement<UnitVolume>){
 let value = measurement.value
 let symbol = measurement.unit.symbol
 print("\(value) \(symbol)")
}

[totalDeciliters, totalLiters, totalPints].forEach{showInfo(for: $0)}

The output printed to the console will be similar to this:

562.633599246894 tsp
187.544025752698 tbsp
11.5549 cup

See Also
Recipes 3.1 and 3.2

3.7 Working with and Converting Volume Units | 75

CHAPTER 4

Core Data

Every application needs to store information, whether during the course of a single
session or permanently. To aid in the difficult task of managing and searching stored
data, Apple has developed a whole framework called Core Data, which you might
already be familiar with. In iOS 10 SDK, Core Data, especially in Swift, has been
changed a little bit, so in this chapter we will have a look at these changes as well as
some basics of accessing Core Data.

Before we go further, ensure that you have added the necessary Core Data code to
your application. When you create your project file, make sure to tell Xcode to
import Core Data into your application. You do this where you enter your product’s
name in Xcode’s new project dialog, as shown in Figure 4-1. Core Data is one of the
three features you can choose at the bottom of the dialog.

77

Figure 4-1. At the bottom of this dialog, you can ask Xcode to add Core Data to your
project

4.1 Designing Your Database Scheme
Problem
You want to begin storing data in Core Data.

Solution
The idea behind Core Data is that your data is organized and stored in the database
through what are known as schemes. Schemes tell Core Data how your data is struc‐
tured, and can be designed through a visual editor that’s part of Xcode.

Ensure that you have added Core Data to your project by following
the instructions given in this chapter’s introduction.

78 | Chapter 4: Core Data

Discussion
When you create a project with Core Data already added to it, you should be able to
see a file with the .xcdatamodel extension in your project. If you cannot find this file,
press Command-Shift-O in Xcode and then type in xcdatamodel. Once you find the
file, press the Enter button on your keyboard to open it (Figure 4-2).

Figure 4-2. We have now found our Core Data model file

Figure 4-2 shows the visual editor for your Core Data scheme file, where you can cre‐
ate entities. An entity is similar to a table in a database, where you can define the col‐
umns and their data types. Let’s create a Car entity that has a maker and a model
name of type String:

1. In the visual editor of your scheme, press the Add Entity button at the bottom of
the screen. This will create a new entity for you called Entity. From the data
model inspector on the righthand side of Xcode, change this name from Entity
to Car (Figure 4-3). The data model inspector allows you to change many aspects
of your entities and their columns.

4.1 Designing Your Database Scheme | 79

Figure 4-3. Setting the name of your entity on the right side of the screen

2. Under the Attributes section of the editor on top, press the little + button to cre‐
ate a new attribute, name this new attribute maker, and change its type to String.
Also, on the data model inspector on the right side, uncheck the Optional box so
that the maker of the car becomes a mandatory attribute (Figure 4-4).

Figure 4-4. The car has a new mandatory attribute called maker of type String

3. Do the same thing that you did with the maker attribute and create another
mandatory attribute of type String, called model (Figure 4-5).

80 | Chapter 4: Core Data

Figure 4-5. Now the car has a maker and a model

4. Create another entity now, call it Person, and add two new mandatory attributes
of type String called firstName and lastName (Figure 4-6).

Figure 4-6. The Person model has two mandatory fields

5. In real life, a person can have multiple cars, although a car generally has one
owner. This ownership status can be defined as a relationship between the two
entities. Start by opening the Car entity. Under the Relationships section of the
editor, press the + button and name the new relationship owner with the destina‐
tion of Person (Figure 4-7). Make the relationship mandatory by unchecking the
Optional checkbox in the data model editor. Leave the Inverse section empty for
now.

4.1 Designing Your Database Scheme | 81

Figure 4-7. The Car entity now has an owner!

6. Open the Person entity and create a new optional relationship there. Name it
cars and set the destination as the Car entity. Also set the Inverse field to the
owner field of the Car entity. Then, under the data model editor, under the Rela‐
tionship section, choose the Type checkbox and set the type of this relationship
to “To Many”. Because this relationship is optional, a person does not necessarily
have to have cars. Because the relationship is “To Many”, every person can have
more than one car. On the other hand, because a car’s owner relationship is
mandatory, each car always has to have an owner, and only one owner at a time.

Figure 4-8. Every person can have more than one car

7. Last but not least, for both the Car and the Person entities in the editor, go to the
data model inspector under the Class section, and enter Car and Person, respec‐
tively, into the Name text field. Core Data creates a class in your project’s auto‐
matically generated code to represent each entity in your scheme, assigning the
class the name you provide. Each class also has one property for each attribute in

82 | Chapter 4: Core Data

the entity. For instance, the Car class has a maker property and a model property,
each set to the value you store for it in the database.

After designing your entities and their relationships and attributes, you can go to
your Swift code and import the Core Data module if it’s not already imported. Then
you can start instantiating your entities, as I’ll explain in this chapter.

See Also
Recipes 4.2 and 4.3

4.2 Writing Data to the Database
Problem
You have created your model objects and would now like to insert instances of those
models into your database for later retrieval.

This recipe is based on the data scheme that we designed in Recipe
4.1.

Solution
Follow these steps:

1. Your app delegate has your Core Data stack, so if you are in another class and
would like to save your objects from there, you need to get a reference to your
app delegate’s context using the persistentContainer.viewContext:

NSManagedObjectContext property like so:
var context: NSManagedObjectContext?{
 return (UIApplication.shared().delegate as? AppDelegate)?
 .persistentContainer.viewContext
}

2. You can insert an object into your database using the (context:) initializer that
is coded for you automatically by Xcode. Pass a managed object context to this
initializer to create your object on that context. Let’s create an instance of our
Person object now and set the person’s firstName and lastName mandatory
properties. If you attempt to save your data into the database without setting a
value for all the object’s mandatory properties, your app will crash by default.

4.2 Writing Data to the Database | 83

let person = Person(context: context)
person.firstName = "Foo"
person.lastName = "Bar"

3. Now let’s extend our Car class so that we can configure an instance of it with a
simple method instead of having to set all the properties one by one:

extension Car{
 func configured(maker _maker: String,
 model _model: String,
 owner _owner: Person) -> Self {
 maker = _maker
 model = _model
 owner = _owner
 return self
 }
}

4. Then we can create two cars for the current person:
person.cars = NSSet(array: [
 Car(context: context).configured(maker: "VW",
 model: "Sharan",
 owner: person),
 Car(context: context).configured(maker: "VW",
 model: "Tiguan",
 owner: person)
])

5. Once you are done with that, you can save your data into the database by calling
your app delegate’s saveContext() function.

Discussion
By default, the saveContext() function crashes your application if something goes
wrong. I prefer not to do that and instead make this function throw an exception that
I can catch later. So let’s change this function’s definition:

func saveContext() throws{
 let context = persistentContainer.viewContext
 if context.hasChanges {
 try context.save()
 }
}

Then, every time you call this function to save your data, ensure that you catch the
possible exceptions that might occur:

84 | Chapter 4: Core Data

www.allitebooks.com

http://www.allitebooks.org

do{
 try saveContext()
} catch {
 // something bad happened, handle this situation appropriately
}

See Also
Recipe 4.1

4.3 Reading Data from the Database
Problem
You have saved some data to your Core Data database and would like to read it back.

This recipe’s database scheme is based on what was described in
Recipe 4.1.

Solution
Follow these steps:

1. Call the fetchRequest() class method of your managed object (such as the Car
object) to get an object of type NSFetchRequest<T>, where T is your class name
such as Car.

2. Once the fetch request is returned to you, configure it using some of the proper‐
ties described here:

fetchLimit: Int

The maximum number of instances of the current class to fetch as the result
of the search.

relationshipKeyPathsForPrefetching: [String]?

An array of strings that denote the relationships of the current object whose
results must also be fetched. For instance, our Person object has an optional
one-to-many cars relationship. So if you want to find what cars this person
owns (if any), as well as the person herself, insert the name of the cars rela‐
tionship into this array.

4.3 Reading Data from the Database | 85

propertiesToFetch: [AnyObject]?

This is an array of the attribute names of the managed object whose values
you want to pre-fetch. For instance, the firstName and the lastName proper‐
ties of the Person object can be passed to this array to ensure that their val‐
ues are pre-fetched for you.

3. Once your fetch request is ready, execute it on your managed object context
using its fetch(_:) function.

Discussion
1. Let’s have a look at an example. First ensure that you have completed the steps

described in Recipe 4.2. Now you should be able to read the data you wrote to
your database. Imagine that you want to read the instances of the Person entity,
represented by a class of the same name. Let’s put the code that writes these
instances to the database, into a function so that we can easily call it from another
place:

func writeData() throws{

 let context = persistentContainer.viewContext

 let person = Person(context: context)
 person.firstName = "Foo"
 person.lastName = "Bar"

 person.cars = NSSet(array: [
 Car(context: context).configured(maker: "VW",
 model: "Sharan",
 owner: person),
 Car(context: context).configured(maker: "VW",
 model: "Tiguan",
 owner: person)
])

 try saveContext()

}

2. And then start by writing a function that can read only one Person object back
from the database if one exists:

func readData() throws -> Person{
 // we are going to code this function now
}

86 | Chapter 4: Core Data

3. In this function, assuming it is being written in your app delegate’s class where
you have access to your managed object context, construct a fetch request on
your Person object like so:

let context = persistentContainer.viewContext
let personFetchRequest: NSFetchRequest<Person> = Person.fetchRequest()

4. Tell Core Data that you want to pre-fetch the cars relationship of the Person
entity and that you want to fetch only one instance of the Person object:

personFetchRequest.fetchLimit = 1
personFetchRequest.relationshipKeyPathsForPrefetching = ["cars"]

5. Then call the fetch(_:) function of your managed object context to retrieve the
results:

let persons = try context.fetch(personFetchRequest)

6. We are also going to check that we fetched only one Person instance from the
database. Otherwise, we will throw a new exception, since our function is marked
with throws:

guard let person = persons.first,
 persons.count == personFetchRequest.fetchLimit else {
 throw ReadDataExceptions.moreThanOnePersonCameBack
}

ReadDataExceptions is an enumeration that we have defined
ourselves like so:

enum ReadDataExceptions : Error{
 case moreThanOnePersonCameBack
}

7. Once you are done, return this new person object:

return person

Now that we have both the writeData() and the readData() functions ready, we can
call them in one place as shown here:

4.3 Reading Data from the Database | 87

func writeData() throws{

 let context = persistentContainer.viewContext

 let person = Person(context: context)
 person.firstName = "Foo"
 person.lastName = "Bar"

 person.cars = NSSet(array: [
 Car(context: context).configured(maker: "VW",
 model: "Sharan",
 owner: person),
 Car(context: context).configured(maker: "VW",
 model: "Tiguan",
 owner: person)
])

 try saveContext()

}

And the results will be printed to the console like so:

Successfully read the person
Optional("Foo")
Optional("Bar")
Car #1
Optional("VW")
Optional("Tiguan")
Car #2
Optional("VW")
Optional("Sharan")

See Also
Recipe 4.1

4.4 Searching for Data in the Database
Problem
You want to search in your database for various entities or attributes and relation‐
ships.

Solution
Follow these steps:

88 | Chapter 4: Core Data

1. Call the fetchRequest() function of your entity to create a fetch request.
2. Instantiate the Predicate class and create your search format.
3. Set this predicate as the predicate property of your fetch request.
4. Execute your fetch request using the fetch(_:) function of your managed object

context.

Discussion
The Predicate class’s format initializer parameter is very important. It defines your
search and what you want to find in the database. Without overwhelming you with
too much information, I will introduce the various searches that you can perform on
your database by providing you with different examples.

I assume that you have already gone through the earlier recipes in
this chapter, especially Recipe 4.3, in order to be able to read your
data back from the database.

As the first example, let’s write a function that can find any Person instance in the
database with a given first and last name:

func personsWith(firstName fName: String,
 lastName lName: String) throws -> [Person]?{

 let context = persistentContainer.viewContext
 let request: NSFetchRequest<Person> = Person.fetchRequest()

 request.predicate = NSPredicate(format: "firstName == %@ && lastName == %@",
 argumentArray: [fName, lName])

 return try context.fetch(request)

}

Here we are constructing a Predicate instance using its (format:argumentArray:)
initializer. The format is a String and the argument array is of type [AnyObject]?.
The format of the predicate is quite interesting, though, if you have a closer look. The
== operator is being used to compare strings and %@ is used as a placeholder for the
given first and last name, which are placed in the arguments array. In addition, && is
used to ensure both the first and last name conditions have been satisfied by this
search.

For our next example, let’s write a function that can find all instances of the Person
object in the database whose first name starts with a specific character:

4.4 Searching for Data in the Database | 89

func personsWith(firstNameFirstCharacter char: Character) throws -> [Person]?{

 let context = persistentContainer.viewContext
 let request: NSFetchRequest<Person> = Person.fetchRequest()

 request.predicate = NSPredicate(format: "firstName LIKE[c] %@",
 argumentArray: ["\(char)*"])

 return try context.fetch(request)

}

There are a few things to explain about this predicate:

The LIKE syntax
This is a pattern matching syntax. If you want to look for any string whose first char‐
acter is M followed by anything else, you can use LIKE with the value of M*.

The [c] syntax
This tells Core Data to search case-insensitively in the database.

"\(char)*"

This takes the given character and makes it a pattern by appending an asterisk to its
end.

In the next example, we want to find all instances of the Person model who have at
least one car from a specific maker:

func personsWith(atLeastOneCarWithMaker maker: String) throws -> [Person]?{

let context = persistentContainer.viewContext
let request: NSFetchRequest<Person> = Person.fetchRequest()
request.relationshipKeyPathsForPrefetching = ["cars"]

request.predicate = NSPredicate(format: "ANY cars.maker ==[c] %@",
 argumentArray: [maker])

 return try context.fetch(request)

}

And these are the interesting statements in this predicate:

ANY

This is an aggregate operation that operates on collections. Other operations exist as
well, such as ALL, NONE, and IN, whose names indicate what they do. In the case of
ANY, it indicates that we are looking for a person who has at least one car with a given
maker (maker: String).

90 | Chapter 4: Core Data

cars.maker

This is a key path operation that allows us to perform our search on the Person entity
but dig into its cars relationship and read the maker attribute’s value.

==[c]

This makes sure the maker of the car is a given value, searched case-insensitively.

The preceding examples should give you a feel for the rich interface Core Data offers
for search, and should help you find your way through the documentation for other
options.

See Also
Recipe 4.1

4.5 Performing Background Tasks with Core Data
Problem
You want to perform some heavy operations on your Core Data stack, such as saving
thousands of records at one go, and you don’t want to slow down the UI thread by
doing this.

Solution
Follow these steps:

1. You first need to get a reference to your app’s persistent container, which should
be of type NSPersistentContainer.

2. Call the newBackgroundContext() function on your container to get a new back‐
ground context where you can do your background Core Data work. This should
be of type NSManagedObjectContext.

3. Set the automaticallyMergesChangesFromParent property of your new context
to true, so that the new objects from the view context will be automatically
brought into yours. This lets you get the latest objects if any changes are made to
the view context.

4. Call the perform(_:) function on your new background context and do your
background work in the block that you pass to this function.

5. Once you are done, call the save() function on your background context.

4.5 Performing Background Tasks with Core Data | 91

I’m basing this recipe’s code on what you learned in Recipe 4.4.

Discussion
Background tasks are very important in Core Data programming. Without a doubt,
they are one of those weapons that you must have in your arsenal before going wild
with Core Data.

Let’s write a function that allows us to save many Person instances in our database
and, when done, call a completion handler on the main thread so the thread can pick
up work on the new data. Here is the function’s definition:

func writeManyPersonObjectsToDatabase(completion: @escaping () -> Void) throws{

 // we are going to code this function now...

}

We are then going to create a new background context and make sure it merges
changes automatically from the view context:

let context = persistentContainer.newBackgroundContext()
context.automaticallyMergesChangesFromParent = true

After this, we will write our Person instances into this new background context and
then save it. Once that is done, we call the completion handler:

context.perform {
 let howMany = 999
 for index in 1...howMany{
 let person = Person(context: context)
 person.firstName = "First name \(index)"
 person.lastName = "First name \(index)"
 }
 do{
 try context.save()
 DispatchQueue.main.async{completion()}
 } catch {
 // catch the errors here
 }

}

92 | Chapter 4: Core Data

To confirm that these objects were successfully saved to the coordinator and that they
are present on the view context as well, we will write a function that can count the
total number of Person object instances in the database, with the following definition:

func countOfPersonObjectsWritten() throws -> Int{

 // we will code this function now

}

In this function, we will create a new fetch request of type NSFetchRequest<Person>.
But since we are interested in counting only the Person instances, we will not fetch
the instances themselves, but instead set the resultType: NSFetchRequestResult
Type property of the fetch request to .countResultType:

let request: NSFetchRequest<Person> = Person.fetchRequest()
request.resultType = .countResultType
let context = persistentContainer.viewContext

Because we set the resultType: NSFetchRequestResultType property of the fetch
request to .countResultType, the result of the execute(_:) function of our context
will be of type NSAsynchronousFetchResult<NSNumber>. One of the properties of
NSAsynchronousFetchResult<NSNumber> is finalResult: [ResultType]?. We’ll
read the first item in this optional array and ensure that it is an instance of Int. This
Int instance will be the count of the items that were essentially found in the database:

guard let result = (try context.execute(request)
 as? NSAsynchronousFetchResult<NSNumber>)?
 .finalResult?
 .first as? Int else {return 0}

return result

4.5 Performing Background Tasks with Core Data | 93

We can then put all of this together, write all our objects to the database, and get the
count of those objects back and print it to the console:

do{
 try writeManyPersonObjectsToDatabase(completion: {[weak self] in
 guard let strongSelf = self else {return}
 do{
 let count = try strongSelf.countOfPersonObjectsWritten()
 print(count)
 } catch {
 print("Could not count the objects in the database")
 }

 })
} catch {
 print("Could not write the data")
}

See Also
Recipe 4.1

94 | Chapter 4: Core Data

CHAPTER 5

Swift 3.0, Xcode 8, and Interface Builder

In this chapter, we are going to have a look at some of the updates to Swift (Swift 3.0),
Xcode, and Interface Builder. We will start with Swift and some of the really exciting
features that have been added to it since you read the last edition of this cookbook.

5.1 Handling Errors in Swift
Problem
You want to know how to throw and handle exceptions in Swift.

The terms error and exception are used interchangeably throughout
this book. When an error occurs in our app, we usually catch it, as
you will soon see, and handle it in a way that is pleasant and under‐
standable to the user.

Solution
To throw an exception, use the throw syntax. To catch exceptions, use the do, try,
catch syntax.

Discussion
Let’s say that you want to create a method that takes in a first name and last name as
two arguments and returns a full name. The first name and the last name have to
each at least be one character long for this method to work. If one or both have 0
lengths, we are going to want to throw an exception.

The first thing that we have to do is define our errors of type Error:

95

enum Errors : Error{
 case emptyFirstName
 case emptyLastName
}

And then we are going to define our method to take in a first and last name and join
them together with a space in between:

func fullNameFromFirstName(_ firstName: String,
 lastName: String) throws -> String{

 if firstName.characters.count == 0{
 throw Errors.emptyFirstName
 }

 if lastName.characters.count == 0{
 throw Errors.emptyLastName
 }

 return firstName + " " + lastName

}

The interesting part is really how to call this method. We use the do statement like so:

do{
 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")
 print(fullName)
} catch {
 print("An error occurred")
}

The catch clause of the do statement allows us to trap errors in a fine-grained man‐
ner. Let’s say that you want to trap errors in the Errors enum differently from instan‐
ces of NSException. Separate your catch clauses like this:

 do{
 let fullName = try fullNameFromFirstName("Foo", lastName: "Bar")
 print(fullName)
 }
 catch let err as Errors{
 // handle this specific type of error here
 print(err)
 }
 catch let ex as NSException{
 // handle exceptions here
 print(ex)
 }
 catch {
 // otherwise, do this

96 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

 }

See Also
 Recipe 5.6

5.2 Specifying Preconditions for Methods
Problem
You want to make sure a set of conditions are met before continuing with the flow of
your method.

Solution
Use the guard syntax.

Discussion
The guard syntax allows you to:

• Specify a set of conditions for your methods.
• Bind variables to optionals and use those variables in the rest of your method’s

body.

Let’s have a look at a method that takes an optional piece of data as the NSData type
and turns it into a String only if the string has some characters in it and is not
empty:

func stringFromData(_ data: Data?) -> String?{

 guard let data = data,
 let str = NSString(data: data, encoding: String.Encoding.utf8.rawValue)
 , data.count > 0 else{
 return nil
 }

 return String(str)

}

And then we are going to use it like so:

if let _ = stringFromData(nil){
 print("Got the string")
} else {
 print("No string came back")

5.2 Specifying Preconditions for Methods | 97

}

We pass nil to this method for now and trigger the failure block (“No string came
back”). What if we passed valid data? And to have more fun with this, let’s create our
NSData instance this time with a guard. Because the NSString constructor we are
about to use returns an optional value, we put a guard statement before it to ensure
that the value that goes into the data variable is in fact a value, and not nil:

guard let data = NSString(string: "Foo")
 .data(using: String.Encoding.utf8.rawValue), data.count > 0 else{
 return
}

if let str = stringFromData(data){
 print("Got the string \(str)")
} else {
 print("No string came back")
}

So we can mix guard and conditions in the same statement. How about multiple let
statements inside a guard? Can we do that? You betcha:

func example3(firstName: String?, lastName: String?, age: UInt8?){

 guard let firstName = firstName, let lastName = lastName , let _ = age
 , firstName.characters.count > 0 && lastName.characters.count > 0 else{
 return
 }

 print(firstName, " ", lastName)

}

See Also
Recipe 5.4

5.3 Ensuring the Execution of Code Blocks Before Exiting
Methods
Problem
You have various conditions in your method that can cause the method to exit early.
But you want to ensure that certain code blocks, such as cleanup code, always get exe‐
cuted before that happens.

98 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

Solution
Use the defer syntax.

Discussion
Anything that you put inside a defer block inside a method is guaranteed to get exe‐
cuted before your method returns to the caller. However, this block of code will get
executed after the return call in your method. The code is also called when your
method throws an exception.

Let’s say that you want to define a method that takes in a string and renders it inside a
new image context with a given size. Now if the string is empty, you want to throw an
exception. However, before you do that, we want to make sure that we have ended
our image context. Let’s define our error first:

enum Errors : Error{
 case emptyString
 }

Then we move on to our actual method that uses the defer syntax:

func imageForString(_ str: String, size: CGSize) throws -> UIImage{

 defer{
 UIGraphicsEndImageContext()
 }

 UIGraphicsBeginImageContextWithOptions(size, true, 0)

 if str.characters.count == 0{
 throw Errors.emptyString
 }

 // draw the string here...

 return UIGraphicsGetImageFromCurrentImageContext()!

}

I don’t want to put print() statements everywhere in the code because it makes the
code really ugly. So to see whether this really works, I suggest typing this code into
your Xcode—or even better, grab the source code for this book’s examples from Git‐
Hub, where I have already placed breakpoints in the defer and the return statements
so that you can see that they are working properly.

You can, of course, then call this method like so:

5.3 Ensuring the Execution of Code Blocks Before Exiting Methods | 99

func imageForString(_ str: String, size: CGSize) throws -> UIImage{

 defer{
 UIGraphicsEndImageContext()
 }

 UIGraphicsBeginImageContextWithOptions(size, true, 0)

 if str.characters.count == 0{
 throw Errors.emptyString
 }

 // draw the string here...

 return UIGraphicsGetImageFromCurrentImageContext()!

}

5.4 Checking for API Availability
Problem
You want to check whether a specific API is available on the host device running your
code.

Solution
Use the #available syntax.

Discussion
We’ve all been waiting for this for a very long time. The days of having to call the
respondsToSelector: method are over (hopefully). Now we can just use #available
to make sure a specific iOS version is available before making a call to a method.

Let’s say that we want to write a method that can read an array of bytes from an
NSDataobject. NSData offers a handy getBytes: method to do this, but Apple decided
to deprecate it in iOS 8.1 and replace it with getBytes:length:, an improved version
that minimizes the risk of buffer overflows. So assuming that one of our deployment
targets is iOS 8 or older, we want to ensure that we call this new method if we are on
iOS 8.1 or higher and the older method if we are on iOS 8.0 or older:

enum Errors : Error{
 case emptyData
}

100 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

func bytesFromData(_ data: Data) throws -> [UInt8]{

 if (data.count == 0){
 throw Errors.emptyData
 }

 var buffer = [UInt8](repeating: 0, count: data.count)

 if #available(iOS 8.1, *){
 (data as NSData).getBytes(&buffer, length: data.count)
 } else {
 (data as NSData).getBytes(&buffer)
 }

 return buffer

}

And then we go ahead and call this method:

guard let data = "Foo".data(using: String.Encoding.utf8) else {
 return
}

do{
 let bytes = try bytesFromData(data)
 print("Data = \(bytes)")
} catch {
 print("Failed to get bytes")
}

See Also
Recipe 5.7

5.5 Categorizing and Downloading Assets to Get
Smaller Binaries
Problem
You have many assets in your app for various circumstances, and want to save storage
space and network usage on each user’s device by shipping the app without the
optional assets. Instead, you would want to dynamically download them and use
them whenever needed.

5.5 Categorizing and Downloading Assets to Get Smaller Binaries | 101

Solution
Use Xcode to tag your assets and then use the NSBundleResourceRequest class to
download them.

Discussion
For this recipe, I will create three packs of assets, each with three images in them. One
pack may run for x3 screen scales, another for iPhone 6, and the last for iPhone 6+,
for instance. I am taking very tiny clips of screenshots of my desktop to create these
images—nothing special. The first pack will be called “level1,” the second “level2,” and
the third “level3.”

Use the GitHub repo of this book for a quick download of these
resources. Also, for the sake of simplicity, I am assuming that we
are going to run this only on x3 scale screens such as iPhone 6+.

Place all nine images (three packs of three images) inside your Assets.xcassets file and
name them as shown in Figure 5-1. Then select all the images in your first asset pack
and open the Attributes inspector. In the “On Demand Resource Tags” section of the
inspector, enter level1 and do the same thing for other levels—but of course bump
the number up for each pack.

Figure 5-1. Name your assets as shown

Now, in your UI, place three buttons and three image views, hook the buttons’
actions to the code, and hook the image view references to the code:

102 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

 @IBOutlet var img1: UIImageView!
 @IBOutlet var img2: UIImageView!
 @IBOutlet var img3: UIImageView!

 var imageViews: [UIImageView]{
 return [self.img1, self.img2, self.img3]
 }

To find out whether the resource pack that you need has already been downloaded,
call the conditionallyBeginAccessingResourcesWithCompletionHandler function
on your resource request. Don’t blame me! I didn’t name this function. This will
return a Boolean of true or false to tell you whether you have access to the resource.
If you don’t have access, you can simply download the resources with a call to the
beginAccessingResourcesWithCompletionHandler function. This will return an
error if one happens, or nil if everything goes well.

var currentResourcePack: NSBundleResourceRequest?

func displayImagesForResourceTag(_ tag: String){
 OperationQueue.main.addOperation{
 for n in 0..<self.imageViews.count{
 self.imageViews[n].image = UIImage(named: tag + "-\(n+1)")
 }
 }
}

func useLevel(_ lvl: UInt32){

 let imageViews = [img1, img2, img3]

 for img in imageViews{
 img?.image = nil
 }

 let tag = "level\(lvl)"

 if let req = currentResourcePack{
 req.endAccessingResources()
 }

 currentResourcePack = NSBundleResourceRequest(tags: [tag])

 guard let req = currentResourcePack else {
 return
 }

 req.conditionallyBeginAccessingResources{available in
 if available{
 self.displayImagesForResourceTag(tag)
 } else {
 req.beginAccessingResources{error in

5.5 Categorizing and Downloading Assets to Get Smaller Binaries | 103

 guard error == nil else{
 // TODO: you can handle the error here
 return
 }
 self.displayImagesForResourceTag(tag)
 }
 }

 }

}

@IBAction func useLevel3(_ sender: AnyObject) {
 useLevel(3)
}

@IBAction func useLevel2(_ sender: AnyObject) {
 useLevel(2)
}

@IBAction func useLevel1(_ sender: AnyObject) {
 useLevel(1)
}

We keep a reference to the request that we send for our asset pack
so that the next time our buttons are tapped, we don’t have to check
their availability again, but release the previously downloaded
resources using the endAccessingResources function.

Run the code now in your simulator. When Xcode opens, go to the Debug Navigator
(Cmd-6 key) and then click the Disk section. You will see results similar to that
shown in Figure 5-2.

104 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

Figure 5-2. Xcode displaying all our On Demand Resources and status of whether or not
they are downloaded locally

Note how none of the asset packs are in use. Now in your UI, click the first button to
get the first asset pack and watch how the first asset pack’s status will change to “In
Use.” Once you switch from that pack to another, the previously chosen pack will be
set to “Downloaded” and be ready to be purged.

5.6 Exporting Device-Specific Binaries
Problem
You want to extract your app’s binary for a specific device architecture to determine
how big your binary will be on that device when the user downloads your app.

Solution
Follow these steps:

1. Archive your app in Xcode.
2. In the Archives screen, click the Export button.
3. Choose the “Save for Ad Hoc Deployment” option in the new screen and click

Next.
4. In the new window, choose “Export for specific device” and then choose your

device from the list.
5. Once you are done, click the Next button and save your file to disk.

Discussion
Bitcode is Apple’s way of specifying how the binary that you submit to the App Store
will be downloaded on target devices. For instance, if you have an asset catalog with

5.6 Exporting Device-Specific Binaries | 105

some images for iPad and iPhone and a second set of images for iPhone 6 and 6+
specifically, users on iPhone 5 should not get the second set of assets. This is the
default functionality in Xcode, so you don’t have to do anything special to enable it. If
you are working on an old project, you can enable bitcode from Build Settings in
Xcode.

If you are writing an app that has a lot of device-specific images and assets, I suggest
that you use this method, before submitting your app to the store, to ensure that the
required images and assets are indeed included in your final build. Remember, if bit‐
code is enabled in your project, Apple will detect the host device that is downloading
your app from the store and will serve the right binary to that device. It’s not neces‐
sary to separate your binaries when submitting to Apple—simply submit a big, fat,
juicy binary and Apple will take care of the rest.

5.7 Linking Separate Storyboards Together
Problem
You have a messy storyboard, so you would like to place some view controllers in
their own storyboard and still be able to cross-reference them in your other story‐
boards.

Solution
Use IB’s new “Refactor to Storyboard” feature under the Editor menu.

Discussion
I remember working on a project where we had a really messy storyboard and we had
to separate the view controllers. What we ended up doing was putting the controllers
on separate storyboards manually, after which we had to write code to link our but‐
tons and other actions to the view controllers, instantiate them manually, and then
show them. Well, none of that anymore. Apple has taken care of that for us!

As an exercise, create a single view controller project in Xcode and then open your
main storyboard. Then choose the Editor menu, and navigate to Embed In-
>Navigation Controller. Now your view controller has a navigation controller. Place a
button on your view controller and then place another view controller on your story‐
board. Select the button on the first view controller, hold down the Control button on
your keyboard, drag the line over to the second view controller, and then choose the
Show option. This will ensure that when the user taps your button, the system will
push the second view controller onto the screen, as Figure 5-3 shows.

106 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

Figure 5-3. We need to create a show segue ensuring that pressing our button will show
the second view controller

Now select your second view controller and then, from the Editor menu, choose the
“Refactor to Storyboard” item. In the dialog, enter Second.storyboard as the file
name and save. That’s really it. Now run your app and see the results if you want.

If you prefer to do some of this stuff manually instead of embedding things like this,
you can always drag the new item called Storyboard Reference from the Object
Library onto your storyboard and set up the name of the storyboard manually. Xcode
will give you a drop-down box so that you don’t have to write the name of the story‐
board all by yourself. You will also be able to specify an identifier for your storyboard.
This identifier will then be useful when you are working with the segue. You of course
have to set up this ID for your view controller in advance.

See Also
Recipe 5.8

5.8 Adding Multiple Buttons to the Navigation Bar
Problem
You want to add multiple instances of UIBarButtonItem to your navigation bar.

Solution
In Xcode, you can now add multiple bar button items to your navigation bar. Simply
open the Object Library and search for “bar button.” Once you find the buttons, drag
and drop them onto your navigation bar and then simply reference them in your
code if you have to. For instance, Figure 5-4 shows two bar buttons on the righthand

5.8 Adding Multiple Buttons to the Navigation Bar | 107

side of the navigation bar. In previous versions of Xcode, we could add only one but‐
ton to each side. If we wanted more buttons, we had to write code to add them.

Figure 5-4. Two buttons on the same side of the navigation bar

Discussion
Prior to the latest Xcode, you could not place multiple bar button items next to each
other on your navigation bar. Well, now you can. You can also access these buttons
just as you would expect, by creating a reference to them in your code. And you can
always find them using the barButtonItems property of your navigation bar.

See Also
Recipe 5.7

5.9 Optimizing Your Swift Code
Problem
You want to adopt some simple practices that can make your Swift code run much
faster than before.

Solution
Use the following techniques:

1. Enable whole module optimization on your code.
2. Use value types (such as structs) instead of reference types where possible.
3. Consider using final for classes, methods, and variables that aren’t going to be

overridden.

108 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

4. Use the CFAbsoluteTimeGetCurrent function to profile your app inside your
code.

5. Always use Instruments to profile your code and find bottlenecks.

Discussion
Let’s have a look at an example. Let’s say that we have a Person class like so:

class Person{
 let name: String
 let age: Int
 init(name: String, age: Int){
 self.name = name
 self.age = age
 }
}

Now we will write a method that will generate 100,000 instances of this class, place
them inside a mutable array, and then enumerate the array. We will time this opera‐
tion using the CFAbsoluteTimeGetCurrent function. We’ll then be able to tell how
many milliseconds this took:

func example1(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [Person]()

 for _ in 0..<100000{
 array.append(Person(name: "Foo", age: 30))
 }

 // go through the items as well
 for n in 0..<array.count{
 let _ = array[n]
 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

}

When I ran this code, it took 41.28 milliseconds to complete; it will probably be dif‐
ferent in your computer. Now let’s create a struct similar to the class we created before
but without an initializer, because we get that for free. Then do the same that we did
before and time it:

5.9 Optimizing Your Swift Code | 109

struct PersonStruct{
 let name: String
 let age: Int
}

func example2(){

 var x = CFAbsoluteTimeGetCurrent()

 var array = [PersonStruct]()

 for _ in 0..<100000{
 array.append(PersonStruct(name: "Foo", age: 30))
 }

 // go through the items as well
 for n in 0..<array.count{
 let _ = array[n]
 }

 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0

 print("Took \(x) milliseconds")

}

Don’t suffix your struct names with “Struct” like I did. This is for
demo purposes only, to differentiate between the class and the
struct.

When I run this code, it takes only 35.53 milliseconds. A simple optimization brought
some good savings. Also notice that in the release version these times will be mas‐
sively improved, because your binary will have no debug information. I have tested
the same code without the debugging, and the times were around 4 milliseconds.
Also note that I am testing these on the simulator, not on a real device. The profiling
will definitely report different times on a device, but the ratio should be quite the
same.

You will also need to determine which parts of your code are final and mark them
with the final keyword. This will tell the compiler that you are not intending to
override those properties, classes, or methods and will help Swift optimize the dis‐
patch process. For instance, let’s say we have this class hierarchy:

class Animal{
 func move(){
 if "Foo".characters.count > 0{
 // some code

110 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

 }
 }
}

class Dog : Animal{

}

And we create instances of the Dog class and then call the move function on them:

func example3(){
 var x = CFAbsoluteTimeGetCurrent()
 var array = [Dog]()
 for n in 0..<100000{
 array.append(Dog())
 array[n].move()
 }
 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0
 print("Took \(x) milliseconds")
}

When we run this, the runtime will first have to detect whether the move function is
on the superclass or the subclass and then call the appropriate class based on this
decision. This checking takes time. For instance, if you know that the move function
won’t be overridden in the subclasses, mark it as final:

class AnimalOptimized{
 final func move(){
 if "Foo".characters.count > 0{
 // some code
 }
 }
}

class DogOptimized : AnimalOptimized{

}

func example4(){
 var x = CFAbsoluteTimeGetCurrent()
 var array = [DogOptimized]()
 for n in 0..<100000{
 array.append(DogOptimized())
 array[n].move()
 }
 x = (CFAbsoluteTimeGetCurrent() - x) * 1000.0
 print("Took \(x) milliseconds")
}

5.9 Optimizing Your Swift Code | 111

When I run these on the simulator, I get 90.26 milliseconds for the non-optimized
version and 88.95 milliseconds for the optimized version. Not that bad.

I also recommend turning on whole module optimization for your release code. Just
go to your Build Settings and under the optimization for your release builds (App
Store scheme), simply choose “Fast” with Whole Module Optimization, and you are
good to go.

See Also
Recipe 5.11

5.10 Showing the Header View of Your Swift Classes
Problem
You want to get an overview of what your Swift class’s interface looks like.

Solution
Use Xcode’s new Generated Interface Assistant Editor. This is how you do it: open
your Swift file first and then, in Xcode, use Show Assistant Editor, which you can find
in the Help menu if you just type that name. After you open the assistant, you will get
a split screen of your current view. Then in the second editor that opened, on top,
instead of Counterparts (which is the default selection), choose Generated Interface.
You’ll see your code as shown in Figure 5-5.

112 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

Figure 5-5. Code shown in Xcode assistant

Discussion
The Generated Interface functionality of the assistant editor is quite handy if you
want to get an overview of how clean your code is. It probably won’t be day-to-day
functionality that you use all the time, but I cannot be sure—maybe you will love it so
much that you will dedicate a whole new monitor just to see your generated interface
all the time. By the way, there is a shortcut to the assistant editor in Xcode:
Command-Alt-Enter. To get rid of the editor, press Command-Enter.

See Also
Recipe 5.8

5.11 Creating Your Own Set Types
Problem
You want to create a type in Swift that can allow all operators that normal sets allow,
such as the contain function.

5.11 Creating Your Own Set Types | 113

Solution
Conform to the OptionSet protocol. As a bonus, you can also conform to the Custom
DebugStringConvertible protocol, as I will do in this recipe, in order to set custom
debug descriptions that the print function can use during debugging of your sets.

Discussion
Let’s say that I have a structure that keeps track of iPhone models. I want to be able to
create a set of this structure’s values so that I can say that I have an iPhone 6, iPhone
6+, and iPhone 5s (fancy me!). Here is the way I would do that:

 struct IphoneModels : OptionSet, CustomDebugStringConvertible{

 let rawValue: Int
 init(rawValue: Int){
 self.rawValue = rawValue
 }

 static let Six = IphoneModels(rawValue: 0)
 static let SixPlus = IphoneModels(rawValue: 1)
 static let Five = IphoneModels(rawValue: 2)
 static let FiveS = IphoneModels(rawValue: 3)

 var debugDescription: String{
 switch self{
 case IphoneModels.Six:
 return "iPhone 6"
 case IphoneModels.SixPlus:
 return "iPhone 6+"
 case IphoneModels.Five:
 return "iPhone 5"
 case IphoneModels.FiveS:
 return "iPhone 5s"
 default:
 return "Unknown iPhone"
 }
 }

 }

And then I can use it like so:

 func example1(){

 let myIphones: [IphoneModels] = [.Six, .SixPlus]

 if myIphones.contains(.FiveS){
 print("You own an iPhone 5s")
 } else {

114 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

 print("You don't seem to have an iPhone 5s but you have these:")
 for i in myIphones{
 print(i)
 }
 }

 }

Note how I could create a set of my new type and then use the contains function on
it just as I would on a normal set. Use your imagination—this is some really cool
stuff.

See Also
Recipe 5.1

5.12 Conditionally Extending a Type
Problem
You want to be able to extend existing data types that pass a certain test.

Solution
Use protocol extensions. Swift allows protocol extensions to contain code.

Discussion
Let’s say that you want to add a method on any array in Swift where the items are
integers. In your extension, you want to provide a method called canFind that can
find a specific item in the array and return yes if it could be found. I know that we
can do this with other system methods. I am offering this simple example to demon‐
strate how protocol extensions work:

extension Sequence where Iterator.Element == Int{
 public func canFind(_ value: Iterator.Element) -> Bool{
 return contains(value)
 }
}

Then you can go ahead and use this method like so:

func example1(){

 if [1, 3, 5, 7].canFind(5){
 print("Found it")
 } else {
 print("Could not find it")

5.12 Conditionally Extending a Type | 115

 }

}

As another example, let’s imagine that you want to extend all array types in Swift
(Sequence) that have items that are either double or floating point. It doesn’t matter
which method you add to this extension. I am going to add an empty method for
now:

extension Sequence where Iterator.Element : FloatingPoint{
 // write your code here
 func doSomething(){
 // TODO: code this
 }
}

And you can, of course, use it like so:

 func example2(){

 [1.1, 2.2, 3.3].doSomething()

 }

However, if you try to call this method on an array that contains non–floating-point
data, you will get a compilation error.

Let me show you another example. Let’s say that you want to extend all arrays that
contain only strings, and you want to add a method to this array that can find the
longest string. This is how you would do that:

extension Sequence where Iterator.Element == String{
 var longestString: String{
 var result = ""
 for value in self{
 if value.characters.count > result.characters.count{
 result = value
 }
 }
 return result
 }
}

Calling it is as simple as:

func example3(){

 print(["Foo", "Bar", "Vandad"].longestString

 }

116 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

See Also
Recipe 5.1

5.13 Building Equality Functionality into Your Own Types
Problem
You have your own structs and classes and you want to build equality-checking func‐
tionality into them.

Solution
Build your equality functionality into the protocols to which your types conform.
This is the way to go!

Discussion
Let me give you an example. Let’s say that we have a protocol called Named:

protocol Named{
 var name: String {get}
}

We can build the equality functionality into this protocol. We can check the name
property and if the name is the same on both sides, then we are equal:

func ==(lhs : Named, rhs: Named) -> Bool{
 return lhs.name == rhs.name
}

Now let’s define two types, a car and a motorcycle, and make them conform to this
protocol:

struct Car{}
struct Motorcycle{}

extension Car : Named{
 var name: String{
 return "Car"
 }
}

extension Motorcycle : Named{
 var name: String{
 return "Motorcycle"
 }
}

5.13 Building Equality Functionality into Your Own Types | 117

That was it, really. You can see that I didn’t have to build the equality functionality
into Car and Motorcycle separately. I built it into the protocol to which both types
conform. And then we can use it like so:

func example1(){

 let v1: Named = Car()
 let v2: Named = Motorcycle()

 if v1 == v2{
 print("They are equal")
 } else {
 print("They are not equal")
 }

 }

This example will say that the two constants are not equal because one is a car and the
other is a motorcycle, but what if we compared two cars?

func example2(){

 let v1: Named = Car()
 let v2: Named = Car()

 if v1 == v2{
 print("They are equal")
 } else {
 print("They are not equal")
 }

 }

Bingo. Now they are equal. So instead of building the equality functionality into your
types, build them into the protocols that your types conform to and you are good to
go.

See Also
Recipe 5.11

5.14 Looping Conditionally Through a Collection
Problem
You want to go through the objects inside a collection conditionally and state your
conditions right inside the loop’s statement.

118 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

Solution
Use the new for x in y where syntax, specifying a where clause right in your for
loop. For instance, here I will go through all the keys and values inside a dictionary
and only get the values that are integers:

let dic = [
 "name" : "Foo",
 "lastName" : "Bar",
 "age" : 30,
 "sex" : 1,
] as [String : Any]

for (k, v) in dic where v is Int{
 print("The key \(k) contains an integer value of \(v)")
}

Discussion
In older versions of Swift, you’d have to create your conditions before you got to the
loop statement—or even worse, if that wasn’t possible and your conditions depended
on the items inside the array, you’d have to write the conditions inside the loop. Well,
no more.

Here is another example. Let’s say that you want to find all the numbers that are divis‐
ible by 8, inside the range of 0 to 1,000, inclusively:

let nums = 0..<1000
let divisibleBy8 = {$0 % 8 == 0}
for n in nums where divisibleBy8(n){
 print("\(n) is divisible by 8")
}

And of course you can have multiple conditions for a single loop:

let dic = [
 "name" : "Foo",
 "lastName" : "Bar",
 "age" : 30,
 "sex" : 1,
] as [String : Any]

for (k, v) in dic where v is Int && v as! Int > 10{
 print("The key \(k) contains the value of \(v) that is larger than 10")
}

5.14 Looping Conditionally Through a Collection | 119

5.15 Designing Interactive Interface Objects in
Playgrounds
Problem
You want to design a view the way you want, but don’t want to compile your app
every time you make a change.

Solution
Use storyboards while designing your UI, and after you are done, put your code
inside an actual class. In IB, you can detach a view so that it is always visible in your
playground while you are working on it, and any changes you make will immediately
be shown.

Discussion
Create a single view app and add a new playground to your project, as shown in
Figure 5-6.

Figure 5-6. Add a new playground to your project

Write code similar to this to create your view:

120 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

import UIKit

var view = UIView(frame: CGRect(x: 0, y: 0, width: 300, height: 300))
view.backgroundColor = UIColor.green

view.layer.borderColor = UIColor.blue.cgColor
view.layer.borderWidth = 10
view.layer.cornerRadius = 20

view

Now on the righthand side of the last line of code that you wrote, you should see a +
button. Click that (see Figure 5-7).

Figure 5-7. Click the little + button to get your view right onto your playground

By clicking that button, you will get a live preview of your view inside your play‐
ground. Now you can continue changing your view’s properties and once you are
done, add a new preview of your view, so that you can compare the previous and the
new states (see Figure 5-8). The first view shown has only the properties you assigned
to it up to the point that view was drawn. The second view has more properties, such
as the border width and color, even though it is the same view instance in memory.
However, because it is drawn at a different time inside IB, it shows different results.
This helps you compare how your views look before and after modifications.

5.15 Designing Interactive Interface Objects in Playgrounds | 121

Figure 5-8. Two versions of a view

5.16 Grouping Switch Statement Cases Together
Problem
You want to design your cases in a switch statement so that some of them fall
through to the others.

Solution
Use the fallthrough syntax. Here is an example:

122 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

let age = 30

switch age{
case 1...10:
 fallthrough
case 20...30:
 print("Either 1 to 10 or 20 to 30")
default:
 print(age)
}

This is just an example. There are better ways of writing this code
than to use fallthrough. You can indeed batch these two cases
together into one case statement.

Discussion
In Swift, if you want one case statement to fall through to the next, you have to
explicitly state the fallthrough command. This is more for the programmers to look
at than the compiler, because in many languages the compiler is able to fall through to
the next case statement if you just leave out the break statement. However, this is a
bit tricky because the developer might have just forgotten to place the break state‐
ment at the end of the case and all of a sudden her app will start behaving really
strangely. Swift now makes you request fall-through explicity, which is safer.

5.17 Bundling and Reading Data in Your Apps
Problem
You want to bundle device-specific data into your app. At runtime, you want to easily
load the relevant device’s data and use it without having to manually distinguish
between devices at runtime.

Solution
Follow these steps:

1. In your asset catalog, tap the + button and create a new data set (see Figure 5-9).

5.17 Bundling and Reading Data in Your Apps | 123

Figure 5-9. Data sets contain our raw device-specific data

2. In the Attributes inspector of your data set, specify for which devices you want to
provide data (see Figure 5-10).

124 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

Figure 5-10. I have chosen to provide data for the iPad and iPhone in this example

3. Drag and drop your actual raw data file into place in IB.
4. In your asset list, rename your asset to something that you wish to refer to it by

later (see Figure 5-11).

Figure 5-11. I have placed two RTF files into this data asset: one for iPhone and another
for iPad

5.17 Bundling and Reading Data in Your Apps | 125

In the iPhone RTF I’ve written “iPhone Says Hello,” and the iPad
one says “iPad Says Hello”; the words iPhone and iPad are bold
(attributed texts). I am then going to load these as attributed strings
and show them on the user interface (see Figure 5-13).

5. In your code, load the asset with the NSDataAsset class’s initializer.
6. Once that’s done, use the data property of your asset to access the data.

Discussion
Place a label on your UI and hook it up to your code under the name lbl (see
Figure 5-12).

Figure 5-12. Place a label on your user interface and add all the constraints to it (Xcode
can do this for you); hook it up to your code as well

Then create an intermediate property that can set your label’s text for you:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var lbl: UILabel!

 var status = ""{
 didSet{lbl.text = status}
 }

 ...

When the view is loaded, attempt to load the custom data set:

 guard let asset = NSDataAsset(name: "rtf") else {
 status = "Could not find the data"
 return
 }

126 | Chapter 5: Swift 3.0, Xcode 8, and Interface Builder

The name of the data asset is specified in the asset catalog (see
Figure 5-11).

Because data assets can be of any type (raw data, game levels, etc.), when loading an
attributed string we need to specify what type of data we are loading in. We do that
using an options dictionary that we pass to NSAttributedString’s constructor. The
important key in this dictionary is NSDocumentTypeDocumentAttribute, whose value
in this case should be NSRTFTextDocumentType. We can also specify the encoding of
our data with the NSCharacterEncodingDocumentAttribute key:

let options = [
 NSDocumentTypeDocumentAttribute : NSRTFTextDocumentType,
 NSCharacterEncodingDocumentAttribute : String.Encoding.utf8.rawValue
] as [String : Any]

Last but not least, load the data into our string and show it (see Figure 5-13):

do{
 let str = try NSAttributedString(data: asset.data, options: options,
 documentAttributes: nil)
 lbl.attributedText = str
} catch let err{
 status = "Error = \(err)"
}

Figure 5-13. This is how my string looked when I saved it in RTF format—it is now
loaded into the user interface of my app

5.17 Bundling and Reading Data in Your Apps | 127

CHAPTER 6

The User Interface

UIKit is the main framework for working with various UI components on iOS. You
can use other frameworks, such as OpenGL, to build your own UI the way you want,
without being constrained by UIKit, but almost all developers use UIKit at some
stage in their applications to bring intuitive user interfaces to their apps. One of the
main reasons for this is that UIKit by default takes advantage of all the latest technol‐
ogies in iOS and is kept up to date. For instance, many years back when Apple started
producing Retina displays for iOS devices, all apps that were using UIKit could take
advantage of the much sharper resolution afforded by Retina displays without requir‐
ing an update to their UIKit components. Applications that were using other technol‐
ogies for rendering text had to update their apps to conform with Retina displays.

In this chapter, we will have a look at some of the most interesting features of UIKit
and playgrounds.

6.1 Animating Views
Problem
You have an instance of UIView and you would like to apply various animations to it,
such as changing its background color inside an animation block.

Solution
Use the UIViewPropertyAnimator class and specify the properties of your views that
you would like to animate, including their new values. For instance, you can instanti‐
ate UIViewPropertyAnimator and set a delay and an animation length, and then
change the background color of your view instances inside the animation block of

129

your UIViewPropertyAnimator instance. You can then simply call the
startAnimation() function on this instance to start the animation(s).

Discussion
Let’s have a look at an example. Create a single view application in Xcode (see
Figure 6-1). In your Main.storyboard file, place a UIView instance in the middle of the
screen and then connect it to your view controller, under the name animatingView.
So now the top part of your view controller should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var animatingView: UIView!

 ...

Figure 6-1. Create an application using this template

Our goal in this recipe is to change the background color of this new view to a ran‐
dom color every time the user taps on the view; in addition, we would like this color
change to be animated. So go to Interface Builder and in the Object Library, find Tap

130 | Chapter 6: The User Interface

Gesture Recognizer (see Figure 6-2) and drag and drop it into your newly created
view. Then connect the tap gesture recognizer’s Sent Actions outlet to your view con‐
troller under a new method called animatingViewTapped(_:) (see Figure 6-2). The
tap gesture recognizer placed on our view controller associates the gesture recognizer
with that view.

Figure 6-2. New view

In our view controller we will define an array of colors of type UIColor. Later we will
pick a random one and assign it to this view whenever the user taps on it:

let colors: [UIColor] = [
 .red,
 .blue,
 .yellow,
 .orange,
 .green,
 .brown
]

Imagine picking a random color from this array of colors. What if that random color
is the same color as the one currently assigned to the view? We need an algorithm

6.1 Animating Views | 131

that can pick a color that is not equal to the view’s current color. So let’s write that
function.

func randomColor(notEqualTo currentColor: UIColor) -> UIColor{

 var foundColor = currentColor

 repeat{
 let index = Int(arc4random_uniform(UInt32(colors.count)))
 foundColor = colors[index]
 } while foundColor.isEqual(currentColor)

 return foundColor

}

In this function we use the repeat...while syntax in order to find a random value.
We then compare it with the current color and if they are the same, repeat this pro‐
cess until we find a color that is not the same as the old one.

Last but not least, we need to program our animatingViewTapped(_:) function and
use an instance of UIViewPropertyAnimator to animate the change of background
color of our view. And for that we can use the init(duration:curve:animations:)
initializer of UIViewPropertyAnimator. duration is a value of type TimeInterval,
which is the duration of the animation in seconds. curve is of type UIViewAnimation
Curve. animations, which is where you will actually do your animations, is a block
that has no parameters and no return value. Once done, we call the
startAnimation() method of our property animator:

@IBAction func animatingViewTapped(_ sender: AnyObject) {

 let animator = UIViewPropertyAnimator(duration: 1.0, curve: .easeIn){
 [weak animatingView, weak self] in

 guard
 let view = animatingView,
 let strongSelf = self,
 let viewBackgroundColor = view.backgroundColor
 else {return}

 view.backgroundColor = strongSelf.randomColor(
 notEqualTo: viewBackgroundColor)

 }

 animator.startAnimation()

}

132 | Chapter 6: The User Interface

Have a look at the code now in the simulator. When you see the view in the center of
the screen, tap on it and watch how the background color changes!

6.2 Attaching Live Views to Playgrounds
Problem
You are working on a UIView instance (or one of its subclasses, such as UITableView
Cell), are constantly making changes to it in order to get it right, and would like to
see your changes continuously without having to re-compile and re-run your app on
the simulator.

Solution
Xcode now allows you to simulate screens the way the user sees them in special envi‐
ronments known as playgrounds. Follow these steps to add a live view to your play‐
ground:

1. Import the PlaygroundSupport framework into your playground with the
import statement.

2. Set an instance of UIView or UIViewController to the PlaygroundPage.cur
rent.liveView property, which is of type PlaygroundLiveViewable?.

3. Press Command-Alt-Enter on your keyboard while on Xcode to show the assis‐
tant editor. After attaching a live view to your playground, you can see the view at
all times as you make changes to it, in the assistant editor (Figure 6-3).

6.2 Attaching Live Views to Playgrounds | 133

Figure 6-3. Our live view is displayed in the assistant editor

Discussion
Live views are great for seeing what you’re doing while making rapid changes to a
view or a view controller. The traditional way of making rapid changes to a view or a
view controller and seeing the changes was to write the code first, then compile and
run the application, which takes a lot more time than seeing your changes live in the
playground.

The liveView property of the current playground is of type PlaygroundLiveViewa
ble?, which itself is a protocol that is defined as shown here:

public protocol PlaygroundLiveViewable {

 /// A custom `PlaygroundLiveViewRepresentation` for this instance.
 ///
 /// The value of this property can but does not need to be the same every time;
 /// PlaygroundLiveViewables may choose to create a new view or view controller
 /// every time.
 /// - seealso: `PlaygroundLiveViewRepresentation`
 public var playgroundLiveViewRepresentation:
 PlaygroundSupport.PlaygroundLiveViewRepresentation { get }

134 | Chapter 6: The User Interface

}

It expects conforming objects to it to implement a playgroundLiveViewRepresenta
tion property of type PlaygroundSupport.PlaygroundLiveViewRepresentation.
That’s an enumeration defined in this way:

public enum PlaygroundLiveViewRepresentation {

 /// A view which will be displayed as the live view.
 ///
 /// - note: This view must be the root of a view hierarchy
 /// (i.e., it must not have a superview), and it must *not* be
 /// owned by a view controller.
 case view(UIView)

 /// A view controller whose view will be displayed as the live
 /// view.
 /// - note: This view controller must be the root of a view
 /// controller hierarchy (i.e., it has no parent view controller),
 /// and its view must *not* have a superview.
 case viewController(UIViewController)
}

In other words, every UIView or UIViewController instance can be placed inside the
liveView property:

import UIKit
import PlaygroundSupport

extension Double{
 var toSize: CGSize{
 return .init(width: self, height: self)
 }
}

extension CGSize{
 var toRectWithZeroOrigin: CGRect{
 return CGRect(origin: .zero, size: self)
 }
}

let view = UIView(frame: 300.toSize.toRectWithZeroOrigin)
view.backgroundColor = .blue
PlaygroundPage.current.liveView = view

This means that custom objects that can be represented and drawn in a UIView
instance, such as a Person structure, can conform to the PlaygroundLiveViewable
protocol and then be assigned to the liveView property of your playground. This

6.2 Attaching Live Views to Playgrounds | 135

procedure allows you to modify the view representation of the object rapidly and see
the changes immediately in the playground.

6.3 Running Playgrounds as Interactive and Continuous
Apps
Problem
You want your playground code to have a main loop to emulate a real iOS app that
doesn’t just run from start to finish, but rather lives for as long as the user presses the
stop (or home) button. This will allow you to create interactive applications even in
your playgrounds, when mixed with what you learned in Recipe 6.2.

Solution
Set the needsIndefiniteExecution: Bool property of your current playground to
true when you need it to run indefinitely. Once you are done with your work, you
can set this property back to false (its default value).

You access this property by first importing the PlaygroundSupport
framework. Then you can access this property through Playground
Page.current.needsIndefiniteExecution.

Discussion
Let’s have a look at an example. Say that you are designing a view similar to the one
we saw in Recipe 6.2 and you are testing the addition of a new tap gesture recognizer.
You want to make sure you get a callback when the user taps on the view. Follow
these steps:

1. Make sure to ask for infinite execution time for your playground so that your app
can run until you tap on the view, at which point your code can take action, such
as to terminate execution:

import UIKit
import PlaygroundSupport

PlaygroundPage.current.needsIndefiniteExecution = true

2. Subclass UIView and add your own tap gesture recognizer to it upon initializa‐
tion. When the tap has come in, finish the execution of the playground with Play
groundPage.current.finishExecution():

136 | Chapter 6: The User Interface

class TappableView : UIView{

 @objc func handleTaps(_ sender: UITapGestureRecognizer){
 PlaygroundPage.current.finishExecution()
 }

 override init(frame: CGRect) {
 super.init(frame: frame)
 let recognizer = UITapGestureRecognizer(target: self, action:
 #selector(TappableView.handleTaps(_:)))
 addGestureRecognizer(recognizer)
 }

 required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }

}

3. The rest is reasy! Simply instantiate this view and set it as the liveView of your
playground:

extension Double{
 var toSize: CGSize{
 return .init(width: self, height: self)
 }
}

extension CGSize{
 var toRectWithZeroOrigin: CGRect{
 return CGRect(origin: .zero, size: self)
 }
}

let view = TappableView(frame: 300.toSize.toRectWithZeroOrigin)
view.backgroundColor = .blue
PlaygroundPage.current.liveView = view

6.4 Arranging Your Components Horizontally or Vertically
Problem
You have vertical or horizontal view hierarchies that you find cumbersome to manage
with constraints.

Solution
Stacked views are the solution.

6.4 Arranging Your Components Horizontally or Vertically | 137

Discussion
Imagine that you want to create a view that looks like Figure 6-4.

Figure 6-4. Vertical and horizontal views

Prior to the latest Xcode version with support for stacked views, we had to set up
massive amounts of constraints just to achieve a simple layout like Figure 6-4. Well,
no more. Let’s head to IB and drop an image view, three labels arranged vertically,
and three arranged horizontally, like the previous figure. Our image and labels look
initially like Figure 6-5.

Figure 6-5. Stacked images

Grab the top three labels and press the little Stack button at the bottom of IB, as
shown in Figure 6-6.

138 | Chapter 6: The User Interface

Figure 6-6. The stack button is the leftmost button

Now you will notice that your components are aligned as you wanted them. Now
select the top stack (your vertical components). Then, from the Attributes inspector,
under Spacing, choose 20. Then select your horizontal group and do the same. Bring
your horizontal group up and align it to the bottom of the image view to end up with
something like Figure 6-4.

6.5 Customizing Stack Views for Different Screen Sizes
Problem
You want to customize the way your stack views appear on the screen, based on the
screen size they are running on.

Solution
Use size class customization features of Xcode, right in the Attributes inspector.

Discussion
You might have noticed tiny + buttons in various places inside IB. But what are they?
Have you used them before? If not, you are missing out on a lot and I’m going to
show you how to take advantage of them.

Size classes are encapsulated information about the dimensions of the current screen:
possible values are regular, compact, and any. These sizes have been defined to stop us
from thinking in terms of pixels. You either have a regular size or compact size.

Imagine your iPhone 6+ in portrait mode. The screen width is compact, and the
screen height is regular. Once you go to landscape mode, your screen width is regular
and your height is compact. Now imagine an iPad in portrait mode. Your screen
width is regular and so is your height. Landscape, ditto.

Let’s work on a project so that we can see more clearly how this works. I want us to
achieve the effect shown in Figure 6-7 when running our app on iPhone in portrait
mode.

6.5 Customizing Stack Views for Different Screen Sizes | 139

Figure 6-7. In portrait, our views have no spacing between them

And when we go to landscape, I want us to have 10 points spacing between the items,
but only when the height of the screen is compact (Figure 6-8).

Figure 6-8. With compact screen height, we want spacing to be applied between our
views

We get started by creating three colorful views on our main storyboard. I leave the
colors to you to decide. Select all your views and then press the little stack button
(Figure 6-6) in IB to group your views horizontally. Then place your stacked view on
the top left of the view with proper top and left margin spacing (see Figure 6-9).

140 | Chapter 6: The User Interface

Figure 6-9. The IB guidelines appear when the view is on top left of the super view

Once done, make sure your stacked view is the selected view and then press the
Resolve Auto Layout issues button (the rightmost button in Figure 6-6). Under
Selected Views, choose “Reset to Suggested Constraints.”

Now choose your stack view. In the Attributes inspector, under the Spacing section,
find the little + button and press it. In the pop up, choose Any Width and then under
that choose Compact Height. This will give you an additional text field to write the
desired spacing value for any screen width while the height of the screen is compact.
In this box, set the value to 10 (see Figure 6-10).

Figure 6-10. Set the value to 10 in the new text box

6.5 Customizing Stack Views for Different Screen Sizes | 141

If you run your app on an iPhone 6+ and then switch to landscape, you won’t see any
spacing between the items—so what happened? The problem is that in landscape
mode we are not increasing the width of our stack view. It doesn’t currently have extra
width to show the spaces between the views. To account for this, let’s first add a nor‐
mal width constraint to our stack view. You can do that by selecting the stack view in
the list of views that you have, holding down the Control button on your keyboard,
and dragging from the stack view to the stack view itself. From the pop up that
appears, choose Width (see Figure 6-11).

Figure 6-11. Choose the Width option in the pop up to add a width constraint to the
stack view

While your stack view is selected, go to the Size inspector and double-click the Width
constraint that we just created. This will allow you to edit this constraint with size
classes. How awesome is that? Next to the Constant text box, I can see the value of
300. You might see a different value based on the width of the views you placed in
your stack view. My views were each 100 points wide, hence x3 comes to 300 points. I
can also see a little + button next to the Constant box. Press that button and add a
new constant for “Any Width and Compact Height” and set the value to N+20, where
N is the value of your current constant. For me N is 300, so I’ll enter the value of 320
in the new box (see Figure 6-12).

142 | Chapter 6: The User Interface

Figure 6-12. Add a new width constant class to the stack view

There is one more thing that we need to tell the stack view in order for it to stack our
views correctly when its width changes. Select the stack view and, in the Attributes
inspector, under the Distribution section, change the default value to Equal Spacing.
Now run your app and enjoy the awesomeness that you just created. Rotate from por‐
trait to landscape under any iPhone simulator (not iPad).

6.6 Creating Anchored Constraints in Code
Problem
You want your code to use the same layout anchors that IB uses.

Solution
Use the new anchor properties on UIView (for example, leadingAnchor and trail
ingAnchor).

Discussion
Layout anchors are very useful for arranging your components on the screen. Let’s
say that you have two buttons on your view, arranged horizontally, and you want the
second button to be placed 10 points to the right of the first button.

6.6 Creating Anchored Constraints in Code | 143

First create two buttons on your view using IB and then place them next to each
other, horizontally. The horizontal space between them does not matter so much right
now. Then select both of them and in the Resolve Auto Layout issues button (right‐
most button in Figure 6-6), under the Selected Views, choose the Add Missing Con‐
straints option (see Figure 6-13).

Figure 6-13. Adding the missing constraints to our buttons

Then select the second button (on the right). Under the Size inspector, find the
“Leading Space to” constraint, double-click it, and choose the “Remove at build time”
option (see Figure 6-14). This will make sure that the leading constraint, which we
are going to create in code, will be present in IB while checking things out, but that
during the project run the constraint will be removed, giving us the ability to
replace it.

144 | Chapter 6: The User Interface

Figure 6-14. Removing the leading constraint at build time will give us a window to
replace it at runtime

Now link your buttons into your code with names such as btn1 and btn2. In the view
DidLoad method of your view controller, write the following code:

override func viewDidLoad() {
 super.viewDidLoad()

 btn2.leadingAnchor.constraint(equalTo: btn1.trailingAnchor,
 constant: 10).isActive = true

}

Now run your app and see how your second button is trailing your first button hori‐
zontally with a 10-point space between them. You can use the following anchors in
your views:

• bottomAnchor

• centerXAnchor

• centerYAnchor

• firstBaselineAnchor

• heightAnchor

6.6 Creating Anchored Constraints in Code | 145

• lastBaselineAnchor

• leadingAnchor

• leftAnchor

• rightAnchor

• topAnchor

• trailingAnchor

• widthAnchor

All of these anchors are direct or indirect subclasses of the NSLayou
tAnchor class. The horizontal anchors specifically are subclasses of
the NSLayoutXAxisAnchor class and the vertical ones are subclasses
of NSLayoutYAxisAnchor.

Now, just to play with some more anchors, let’s create a view hierarchy like the one in
Figure 6-15. We are going to place a red view under the first button and set the width
of this view to the width of the button in our code.

Figure 6-15. Two buttons and a view

In IB, drag and drop a view onto your main view and set the background color of it to
red so that you can see it better. Drag and drop it so that it is aligned under the two
buttons with proper left and top margins (see Figure 6-16).

146 | Chapter 6: The User Interface

Figure 6-16. Align the red view like so

Anchor the views as follows:

1. Select the red view.
2. In IB, choose the Resolve Auto Layout issues button.
3. Under the Selected View section, choose Add Missing Constraints.
4. Go to the Size inspector. For the red view, find the “Trailing Space to” constraint

and delete it by selecting it and pressing the delete button.
5. Select the red button in the view hierarchy, hold down the Control button on

your keyboard, and drag and drop the button into itself.
6. A menu will appear. In the menu, choose Width to create a width constraint.

Then find the new width constraint in the Size inspector, double-click it, and
choose the “Remove at build time” option (see Figure 6-17).

6.6 Creating Anchored Constraints in Code | 147

Figure 6-17. Remove the automatically built width constraint at build time so that we
can replace it in code

Now create an outlet for this red view in your code (I’ve named mine “v”) and add
the following code to your viewDidLoad()method:

v.widthAnchor.constraint(equalTo: btn2.widthAnchor,
 constant:0).isActive = true

6.7 Allowing Users to Enter Text in Response to Local and
Remote Notifications
Problem
You want to allow your users to enter some text in response to local or push notifica‐
tions that you display. And you would additionally like to be able to read this text in
your app and take action on it.

Solution
To solve this problem, set the new behavior property of the UIUserNotificationAc
tion class to .TextInput (with a leading period).

148 | Chapter 6: The User Interface

Discussion
Let’s say that we want our app to register for local notifications and then ask the user
for her name once the app has been sent to the background. The user enters her name
and then we come to the foreground and take action on that name.

We start by writing a method that allows us to register for local notifications:

func registerForNotifications(){

 let enterInfo = UIMutableUserNotificationAction()
 enterInfo.identifier = "enter"
 enterInfo.title = "Enter your name"
 enterInfo.behavior = .textInput // this is the key to this example
 enterInfo.activationMode = .foreground

 let cancel = UIMutableUserNotificationAction()
 cancel.identifier = "cancel"
 cancel.title = "Cancel"

 let category = UIMutableUserNotificationCategory()
 category.identifier = "texted"
 category.setActions([enterInfo, cancel], for: .default)

 let settings = UIUserNotificationSettings(
 types: .alert, categories: [category])

 UIApplication.shared.registerUserNotificationSettings(settings)

}

We set the behavior property on the UIMutableUserNotificationAction instance
to .TextInput to allow this particular action to receive text input from the user. Now
we will move on to calling this method when our app is launched:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

 registerForNotifications()

 return true
}

We also need a method to schedule a local notification whenever asked for:

6.7 Allowing Users to Enter Text in Response to Local and Remote Notifications | 149

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

 registerForNotifications()

 return true
}

And we’ll call this method when our app is sent to the background:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

 registerForNotifications()

 return true
}

Once that is done, we will read the text that the user has entered and do our work
with it (I’ll leave this to you):

func application(_ application: UIApplication,
 handleActionWithIdentifier identifier: String?,
 for notification: UILocalNotification,
 withResponseInfo responseInfo: [AnyHashable : Any],
 completionHandler: @escaping () -> Void) {

 if let text = responseInfo[UIUserNotificationActionResponseTypedTextKey]
 as? String{

 print(text)
 // TODO: now you have access to this text

 }

 completionHandler()

}

Let’s run it and then send the app to the background and see what happens (see
Figure 6-18).

150 | Chapter 6: The User Interface

Figure 6-18. A local notification is shown on the screen

Then take that little bar at the bottom of the notification and drag it down to show
the actions that are possible on the notification (see Figure 6-19).

Figure 6-19. Possible actions on our local notification

Now if the user just taps the Enter button, she will see a text field and can then enter
her information. Upon submitting the text, she will be redirected to our app where
we will receive the text (see Figure 6-20).

Figure 6-20. Entering text in a local notification

See Also
Recipes 6.2 and 6.3

6.7 Allowing Users to Enter Text in Response to Local and Remote Notifications | 151

6.8 Dealing with Stacked Views in Code
Problem
You want to programmatically manipulate the contents of stack views.

Solution
Use an instance of the UIStackView.

Discussion
For whatever reason, you might want to construct your stack views programmatically.
I do not recommend this way of working with stack views because IB already can
handle most of the situations where you would want to use stack views, and then
some. But if you absolutely have to use stack views in your app, simply instantiate
UIStackView and pass it your arranged views.

You can also then set the axis property to either vertical or horizontal. Remember
to set the distribution property as well, of type UIStackViewDistribution. Some of
the values of this type are fill, fillEqually, and equalSpacing. I also like to set the
spacing property of the stack view manually so that I know how much space there is
between my items.

Let’s say that we want to create a stack view like Figure 6-21. The stack view is tucked
to the right side of the screen and every time we press the button, a new label will be
appended to the stack view.

Figure 6-21. This is the stack view that we want to create

First define a stack view in your view controller:

var rightStack: UIStackView!

Then a few handy methods for creating labels and a button:

func lblWithIndex(_ idx: Int) -> UILabel{
 let label = UILabel()
 label.text = "Item \(idx)"

152 | Chapter 6: The User Interface

 label.sizeToFit()
 return label
}

func newButton() -> UIButton{
 let btn = UIButton(type: .system)
 btn.setTitle("Add new items...", for: UIControlState())
 btn.addTarget(self, action: #selector(ViewController.addNewItem),
 for: .touchUpInside)
 return btn
}

func addNewItem(){
 let n = rightStack.arrangedSubviews.count
 let v = lblWithIndex(n)
 rightStack.insertArrangedSubview(v, at: n - 1)
}

The addNewItem function will be called when the button is pressed.

When our view is loaded on the screen, we will create the stack view and fill it with
the three initial labels and the button. Then we will set up its axis, spacing, and distri‐
bution. Once done, we’ll create its constraints:

override func viewDidLoad() {
 super.viewDidLoad()

 rightStack = UIStackView(arrangedSubviews:
 [lblWithIndex(1), lblWithIndex(2), lblWithIndex(3), newButton()])

 view.addSubview(rightStack)

 rightStack.translatesAutoresizingMaskIntoConstraints = false

 rightStack.axis = .vertical
 rightStack.distribution = .equalSpacing
 rightStack.spacing = 5

 rightStack.trailingAnchor.constraint(equalTo: view.trailingAnchor,
 constant: -20).isActive = true
 rightStack.topAnchor.constraint(
 equalTo: topLayoutGuide.bottomAnchor).isActive = true

}

6.8 Dealing with Stacked Views in Code | 153

6.9 Showing Web Content in Safari View Controller
Problem
You want to take advantage of such awesome Safari functionalities as Reader Mode in
your own apps.

Solution
Use the SFSafariViewController class in the SafariServices.framework. This view
controller can easily be initialized with a URL and then displayed on the screen.

Discussion
Let’s go ahead and build the UI. For this recipe, I am aiming for a UI like Figure 6-22.

Figure 6-22. Create a UI that looks similar to this in your own storyboard

Then hook up the text field and button to your code. Once the button is tapped, the
code that runs is:

@IBAction func openInSafari() {

 guard let t = textField.text, t.characters.count > 0,
 let u = URL(string: t) else{
 // the URL is missing, you can further code this method if you want
 return
 }

 let controller = SFSafariViewController(url: u,
 entersReaderIfAvailable: true)
 controller.delegate = self
 present(controller, animated: true, completion: nil)

}

Now make your view controller conform to the SFSafariViewControllerDelegate
protocol. Program the safariViewControllerDidFinish(_:) method to ensure that,
when the user closes the Safari view controller, the view disappears:

154 | Chapter 6: The User Interface

func safariViewControllerDidFinish(_ controller: SFSafariViewController) {
 dismiss(animated: true, completion: nil)
}

In the initializer of the Safari controller, I also specified that I would like to take
advantage of the Reader Mode if it is available.

6.10 Laying Out Text-Based Content on Your Views
Problem
You would like to show text-based content to your users and want to lay it out on the
screen in the optimal position.

Solution
Use the readableContentGuide property of UIView.

Discussion
The readableContentGuide property of UIView gives you the margins that you need
to place your text content on the screen properly. On a typical iPhone 6 screen, this
margin is around 20 points on both the left and the right. The top and bottom mar‐
gins on the same device are usually set near 0. But don’t take these numbers at face
value. They might change and you should never think about them as hardcoded val‐
ues. That is why we should use the readableContentGuide property to place our
components correctly on the screen.

There isn’t really much more to it than that, so let’s jump right into an example. In
this code, I will create a label and stretch it horizontally and vertically to fill the reada‐
ble section of my view. I will also make sure the top and left positioning of the label is
according to the readable section’s guides:

let label = UILabel()
label.translatesAutoresizingMaskIntoConstraints = false
label.backgroundColor = UIColor.green
label.text = "Hello, World"
label.sizeToFit()
view.addSubview(label)

label.leadingAnchor.constraint(
 equalTo: view.readableContentGuide.leadingAnchor).isActive = true

label.topAnchor.constraint(
 equalTo: view.readableContentGuide.topAnchor).isActive = true

label.trailingAnchor.constraint(

6.10 Laying Out Text-Based Content on Your Views | 155

 equalTo: view.readableContentGuide.trailingAnchor).isActive = true

label.bottomAnchor.constraint(
 equalTo: view.readableContentGuide.bottomAnchor).isActive = true

6.11 Improving Touch Rates for Smoother UI Interactions
Problem
You want to be able to improve the interaction of the user with your app by decreas‐
ing the interval required between touch events.

Solution
Use the coalescedTouchesForTouch(_:) and the predictedTouchesForTouch(_:)
methods of the UIEvent class. The former method allows you to receive coalesced
touches inside an event, while the latter allows you to receive predicted touch events
based on iOS’s internal algorithms.

Discussion
On selected devices such as iPad Air 2, the display refresh rate is 60Hz like other iOS
devices, but the touch scan rate is 120Hz. This means that iOS on iPad Air 2 scans the
screen for updated touch events twice as fast as the display’s refresh rate. These events
obviously cannot be delivered to your app faster than the display refresh rate (60
times per second), so they are coalesced. At every touch event, you can ask for these
coalesced touches and base your app’s reactions on them.

In this recipe, imagine that we are just going to draw a line based on where the user’s
finger has been touching the screen. The user can move her finger over our view any
way she wants and we just draw a line on that path.

Create a single view app. In the same file as your view controller’s Swift source file,
define a new class of type UIView and name it MyView:

class MyView : UIView{

}

In your storyboard, set your view controller’s view class to MyView (see Figure 6-23).

156 | Chapter 6: The User Interface

Figure 6-23. Your view is inside the view controller now

Make sure that you are running this code on a device at least as
advanced as an iPad Air 2. iPhone 6 and 6+ do not have a 120Hz
touch scan rate.

Then in your view, define an array of points and a method that can take a set of
touches and an event object, read the coalesced touch points inside the event, and
place them inside our array:

var points = [CGPoint]()

func drawForFirstTouchInSet(_ s: Set<UITouch>, event: UIEvent?){

 guard let touch = s.first, let event = event,
 let allTouches = event.coalescedTouches(for: touch),
 allTouches.count > 0 else{
 return
 }

 points += allTouches.map{$0.location(in: self)}

 setNeedsDisplay()

}

Now when the user starts touching our view, we start recording the touch points:

6.11 Improving Touch Rates for Smoother UI Interactions | 157

override func touchesBegan(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 points.removeAll()
 drawForFirstTouchInSet(touches, event: event)

}

Should we be told that the touch events sent to our app were by accident, and that the
user really meant to touch another UI component on the screen, such as the notifica‐
tion center, we have to clear our display:

override func touchesCancelled(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 points.removeAll()
 setNeedsDisplay(bounds)

}

Every time the touch location moves, we move with it and record the location:

override func touchesMoved(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 drawForFirstTouchInSet(touches, event: event)

}

Once the touches end, we also ask iOS for any predicted touch events that might have
been calculated, and we will draw them too:

override func touchesEnded(_ touches: Set<UITouch>,
 with event: UIEvent?) {

 guard let touch = touches.first, let event = event,
 let predictedTouches = event.predictedTouches(for: touch),
 predictedTouches.count > 0 else{
 return
 }

 points += predictedTouches.map{$0.location(in: self)}
 setNeedsDisplay()

}

Our drawing code is simple. It goes through all the points and draws lines between
them:

158 | Chapter 6: The User Interface

override func draw(_ rect: CGRect) {

 let con = UIGraphicsGetCurrentContext()

 // set background color
 con?.setFillColor(UIColor.black.cgColor)
 con?.fill(rect)

 con?.setFillColor(UIColor.red.cgColor)
 con?.setStrokeColor(UIColor.red.cgColor)

 for point in points{

 con?.move(to: point)

 if let last = points.last, point != last{
 let next = points[points.index(of: point)! + 1]
 con?.addLine(to: next)
 }

 }

 con?.strokePath()

}

Now run this on an iPad Air 2 and compare the smoothness of the lines that you
draw with those on an iPhone 6 or 6+, for instance.

6.12 Supporting Right-to-Left Languages
Problem
You are internationalizing your app and, as part of this process, need to support lan‐
guages that are written from right to left, such as Persian or Arabic.

Solution
Use a combination of the following:

• Use IB’s view properties to arrange your items with proper semantic properties.
• Ensure that you create your constraints correctly, preferably using IB.
• Use UIView’s userInterfaceLayoutDirectionForSemanticContentAttri

bute(_:) class method to find the direction of the user interface based on the
semantic attributes that are part of the UISemanticContentAttribute enum.

• If arranging your items in code, use the semanticContentAttribute property of
your views to set their semantics correctly.

6.12 Supporting Right-to-Left Languages | 159

Discussion
Let’s create an app that has a text view on top and four buttons arranged like the
arrow keys on the keyboard: up, left, down, right. When each one of these buttons is
pressed, we will display the corresponding word in the text field. The text field will be
read-only, and when displaying right-to-left languages, it will of course show the text
on the righthand side. Make sure that your UI looks (for now) something like
Figure 6-24. There is one text field and four buttons.

Figure 6-24. Initial layout

Now select the left, down, and right buttons on the UI (exclude the up button for
now) and stack them up together. In the new stack that was created, set the spacing to
20 (see Figure 6-25). Set the horizontal stack view’s spacing so that the buttons will be
horizontally stacked with the proper distance from each other.

Then select the newly created stack and the up button on IB and stack those up
together. This will create a vertical stack view for you. Set the spacing for this new
stack view to 10. Place the main stack view at the center of the screen. Use IB’s
“Resolve Auto Layout Issues” feature to add all missing constraints for all the compo‐
nents. Also make sure that you disable editing of the text field. Then hook up the text
field to your code as an outlet and hook up the four buttons’ touch events to your
view controller as well. Now your UI should look like Figure 6-26 on IB.

160 | Chapter 6: The User Interface

Figure 6-25. Horizontal spacing between buttons

Figure 6-26. Your UI should look like this at the moment

6.12 Supporting Right-to-Left Languages | 161

Now choose the main stack view in your UI. In IB, in the Semantic section under the
Attributes inspector, choose Playback. This will ensure that the views inside this stack
view will not be mirrored right to left when the language changes to a right-to-left
language (see Figure 6-27).

Figure 6-27. Choosing the Playback view semantic

Now from Xcode, create a new strings file, name it Localizable.strings, and place your
string keys in there:

"up" = "Up";
"down" = "Down";
"right" = "Right";
"left" = "Left";

Under your main project’s info page in Xcode, choose Localizations and add Arabic
as a localization. Then move over to your newly created strings file and enable the
Arabic language on it (see Figure 6-28).

Figure 6-28. Localize the strings file so that you have both English and Arabic in the list

You will now have two strings files. Go into the Arabic one and localize the file:

"up" = "Up in Arabic";
"down" = "Down in Arabic";

162 | Chapter 6: The User Interface

"right" = "Right in Arabic";
"left" = "Left in Arabic";

In your code now, we have to set the text field’s text direction based on the orientation
that we get from UIView. That orientation itself depends on the semantics that we set
on our text field before:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var txtField: UITextField!

 @IBAction func up() {
 txtField.text = NSLocalizedString("up", comment: "")
 }

 @IBAction func left() {
 txtField.text = NSLocalizedString("left", comment: "")
 }

 @IBAction func down() {
 txtField.text = NSLocalizedString("down", comment: "")
 }

 @IBAction func right() {
 txtField.text = NSLocalizedString("right", comment: "")
 }

 override func viewDidAppear(_ animated: Bool) {

 let direction = UIView
 .userInterfaceLayoutDirection(
 for: txtField.semanticContentAttribute)

 switch direction{
 case .leftToRight:
 txtField.textAlignment = .left
 case .rightToLeft:
 txtField.textAlignment = .right
 }

 }

}

Now run the app on an English device and you will see English content in the text
field aligned from left to right. Run it on an Arabic localized device and you’ll see the
text aligned on the righthand side.

6.12 Supporting Right-to-Left Languages | 163

6.13 Associating Keyboard Shortcuts with View
Controllers
Problem
You want to allow your application to respond to complex key combinations that a
user can press on an external keyboard, to give the user more ways to interact with
your app.

Solution
Construct an instance of the UIKeyCommand class and add it to your view controllers
using the addKeyCommand(_:) method. You can remove key commands with the
removeKeyCommand(_:) method.

Discussion
Keyboard shortcuts are very useful for users with external keyboards. In a word pro‐
cessing program, the user might expect to press Command-N to create a new docu‐
ment, whereas on an iOS device this may be achieved by the user pressing a button
such as “New.”

Let’s say that we want to write a single view app that allows users with an external
keyboard to press Command-Alt-Control-N to see an alert controller. When our
view is loaded, we will create the command and add it to our view controller:

override func viewDidLoad() {
 super.viewDidLoad()

 let command = UIKeyCommand(input: "N",
 modifierFlags: .command + .alternate + .control,
 action: #selector(ViewController.handleCommand(_:)))

 addKeyCommand(command)

}

As you can see, I am using the + operator between items of type UIKeyModifier
Flags. This operator by default does not exist, so let’s write a generic operator
method that enables this functionality for us:

func +<T: OptionSet>
 (lhs: T, rhs: T) -> T where T.RawValue : SignedInteger{
 return T(rawValue: lhs.rawValue | rhs.rawValue)
}

164 | Chapter 6: The User Interface

When the command is issued, iOS will attempt to call the method that we have speci‐
fied. In there, let’s show the alert:

func handleCommand(_ cmd: UIKeyCommand){

 let c = UIAlertController(title: "Shortcut pressed",
 message: "You pressed the shortcut key", preferredStyle: .alert)

 c.addAction(UIAlertAction(title: "Ok!", style: .destructive, handler: nil))

 present(c, animated: true, completion: nil)

}

Open this in the simulator. From the Hardware menu, select Keyboard, and then
select the Connect Hardware Keyboard menu item (see Figure 6-29). While the focus
is on the simulator, press the aforementioned key combinations and see the results for
yourself.

Figure 6-29. You can enable a hardware keyboard even in the simulator; this is necessary
to test the output of this recipe

6.14 Recording the Screen and Sharing the Video
Problem
You want users to be able to record their screen while in your app and then edit and
save the results. This is really important for games providing replay functionality to
gamers.

Solution
Follow these steps:

1. Import ReplayKit.
2. After you have imported ReplayKit, get a recorder of type RPScreenRecorder

using RPScreenRecorder.sharedRecorder().
3. Call the available property of the recorder to see whether recording is available.
4. Set the delegate property of the recorder to your code and conform to the

RPScreenRecorderDelegate protocol.

6.14 Recording the Screen and Sharing the Video | 165

5. Call the startRecordingWithMicrophoneEnabled(_:handler:) method of the
recorder.

6. Wait until your handler method is called and then check for errors.
7. If no error occurred, once you are done with recording, call the stopRecording

WithHandler(_:) method on the same recorder object.
8. Wait for your handler to be called. In your handler, you’ll get an instance of the

RPPreviewViewController class.
9. Set the previewControllerDelegate property of the preview controller to your

code and conform to the RPPreviewViewControllerDelegate protocol.
10. Preset your preview controller.

Discussion
The ability to record what’s happening on the screen often comes in handy for users,
particularly gamers who might want to share a particularly cool sequence of game
play with their friends. To enable this, we first need to define our view controller:

import UIKit
import ReplayKit

class ViewController: UIViewController, RPScreenRecorderDelegate,
RPPreviewViewControllerDelegate {
 ...

Set up your UI as shown in Figure 6-30. The start and stop buttons are self-
explanatory. The segmented control is there just so you can play with it while record‐
ing and then see the results after you’ve stopped the playback.

166 | Chapter 6: The User Interface

Figure 6-30. Initial layout

I hook up the buttons to my code:

 @IBOutlet var startBtn: UIButton!
 @IBOutlet var stopBtn: UIButton!

And here I’ll define my delegate methods:

func previewControllerDidFinish(_ previewController: RPPreviewViewController) {
 print("Finished the preview")
 dismiss(animated: true, completion: nil)
 startBtn.isEnabled = true
 stopBtn.isEnabled = false
}

func previewController(_ previewController: RPPreviewViewController,
 didFinishWithActivityTypes activityTypes: Set<String>) {
 print("Preview finished activities \(activityTypes)")
}

func screenRecorderDidChangeAvailability(_ screenRecorder: RPScreenRecorder) {
 print("Screen recording availability changed")
}

func screenRecorder(_ screenRecorder: RPScreenRecorder,
 didStopRecordingWithError error: Error,
 previewViewController: RPPreviewViewController?) {
 print("Screen recording finished")
}

6.14 Recording the Screen and Sharing the Video | 167

The previewControllerDidFinish(_:) method is important, because it gets called
when the user is finished with the preview controller. Here you’ll need to dismiss the
preview controller.

Then I’ll define my recorder object:

let recorder = RPScreenRecorder.shared()

When the record button is pressed, I’ll see whether recording is possible:

startBtn.isEnabled = true
stopBtn.isEnabled = false

guard recorder.isAvailable else{
 print("Cannot record the screen")
 return
}

If it is, I’ll start recording:

recorder.delegate = self

recorder.startRecording {[weak self]err in

 guard let strongSelf = self else {return}

 if let error = err as? NSError{
 if error.code == RPRecordingErrorCode.userDeclined.rawValue{
 print("User declined app recording")
 }
 else if error.code == RPRecordingErrorCode.insufficientStorage.rawValue{
 print("Not enough storage to start recording")
 }
 else {
 print("Error happened = \(err!)")
 }
 return
 } else {
 print("Successfully started recording")
 strongSelf.startBtn.isEnabled = false
 strongSelf.stopBtn.isEnabled = true
 }

}

I am checking the error codes for specific ReplayKit errors such as
RPRecordingErrorCode.UserDeclined and RPRecordingError

Code.InsufficientStorage.

168 | Chapter 6: The User Interface

The first time you attempt to record the user screen in any app, the user will be
prompted to allow or disallow this with a dialog that looks similar to that shown in
Figure 6-31.

Figure 6-31. Permission to record the screen is requested from the user

6.14 Recording the Screen and Sharing the Video | 169

Now when the user is finished recording and presses the stop button, I’ll stop the
recording and present the preview controller:

recorder.stopRecording{controller, err in

 guard let previewController = controller, err == nil else {
 self.startBtn.isEnabled = true
 self.stopBtn.isEnabled = false
 print("Failed to stop recording")
 return
 }

 previewController.previewControllerDelegate = self

 self.present(previewController, animated: true,
 completion: nil)

}

The preview controller looks like that shown in Figure 6-32.

170 | Chapter 6: The User Interface

Figure 6-32. The user is previewing what she recorded on the screen earlier and can save
and share the results

Throughout this whole process, your app doesn’t get direct access
to the recorded content. This protects the user’s privacy.

6.14 Recording the Screen and Sharing the Video | 171

CHAPTER 7

Apple Watch

Version 3 of watchOS gives us developers a lot more control and brings cool features
to the users as well. Now that we can download files directly and get access to sensors
directly on the watch, the users will benefit.

In this chapter, I am going to assume that you have a simple iOS application in Xcode
already created and you want to add a watchOS 3 target to your app. So go to Xcode
and create a new Target. On the new window, on the lefthand side, under the
watchOS category, choose WatchKit App (see Figure 7-1) and proceed to the next
stage.

173

Figure 7-1. Adding a WatchKit App target to your main application

In the next stage, make sure that you have enabled complications (we’ll talk about it
later) and the glance scene (see Figure 7-2).

174 | Chapter 7: Apple Watch

Figure 7-2. Add a complication and a glance scene to your watch app

After you have created your watch extension, you want to be able to run it on the
simulator. To do this, simply choose your app from the targets in Xcode and click the
Run button.

7.1 Downloading Files onto the Apple Watch
Problem
You want to be able to download files from your watch app directly without needing
to communicate your intentions to the paired iOS device.

7.1 Downloading Files onto the Apple Watch | 175

Solution
Use URLSession as you would on a phone, but with more consideration toward
resources and the size of the file you are downloading.

Always consider whether or not you need the file immediately. If you need the file
and the size is quite manageable, download it on the watch itself. If the file is big, try
to download it on the companion app on the iOS device first and then send the file
over to the watch, which itself takes some time.

Discussion
Let’s create an interface similar to Figure 7-3 in our watch extension.

Figure 7-3. Place a label and a button on your interface

Make sure the label can contain at least four lines of text (see Figure 7-4).

176 | Chapter 7: Apple Watch

Figure 7-4. The Lines property must be set to at least 4

Hook up your button’s action to a method in your code named download. Also hook
up your label to code under the name statusLbl.

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController, URLSessionDelegate,
URLSessionDownloadDelegate {

 @IBOutlet var statusLbl: WKInterfaceLabel!

 var status: String = ""{
 didSet{
 DispatchQueue.main.async{[unowned self] in
 self.statusLbl.setText(self.status)
 }
 }
 }

 ...

7.1 Downloading Files onto the Apple Watch | 177

URLSession delegate methods get called on private queues (not the
main thread), so I’ve coded a property on our class called status.
This is a string property that allows us to set the value of our label
—always on the main thread—regardless of where this property
gets set from, since UI work (including changing a label’s text) can
only be performed on the main thread.

The most important method of the URLSessionDownloadDelegate protocol that we
are going to have to implement is the URLSession(_:downloadTask:didFinishDown
loadingToURL:) method. It gets called when our file has been downloaded into a
URL onto the disk, accessible to the watch. The file there is temporary: when this
method returns, the file will be deleted by watchOS. In this method, you can do two
things:

• Read the file directly from the given URL. If you do so, you have to do the read‐
ing on a separate thread so that you won’t block URLSession’s private queue.

• Move the file using FileManager to another location that is accessible to your
extension and then read it later.

We are going to move this file to a location that will later be accessible to our app:

func urlSession(_ session: URLSession,
downloadTask: URLSessionDownloadTask,
didFinishDownloadingTo location: URL) {

 let fm = FileManager()

 let url = try! fm.url(
 for: .downloadsDirectory,
 in: .userDomainMask,
 appropriateFor: location, create: true)
 .appendingPathComponent("file.txt")

 do{
 try fm.removeItem(at: url)
 try fm.moveItem(at: location, to: url)
 self.status = "Download finished"
 } catch let err{
 self.status = "Error = \(err)"
 }

 session.invalidateAndCancel()

}

The task that we are going to start in order to download the file (you’ll see that soon)
will have an identifier. This identifier is quite important for controlling the task after
we have started it.

178 | Chapter 7: Apple Watch

You can see that we also have to call the invalidateAndCancel() method on our task
so that we can reuse the same task identifier later. If you don’t do this, the next time
you tap the button to redownload the item you won’t be able to.

We will then implement a few more useful methods from URLSessionDelegate and
URLSessionDownloadDelegate just so we can show relevant status messages to the
user as we are downloading the file:

func urlSession(
 _ session: URLSession,
 downloadTask: URLSessionDownloadTask, didWriteData bytesWritten: Int64,
 totalBytesWritten: Int64, totalBytesExpectedToWrite: Int64) {
 status = "Downloaded \(bytesWritten) bytes"
}

func urlSession(
 _ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didResumeAtOffset fileOffset: Int64, expectedTotalBytes: Int64) {
 status = "Resuming the download"
}

func urlSession(_ session: URLSession, task: URLSessionTask,
 didCompleteWithError error: Error?) {
 if let e = error{
 status = "Completed with error = \(e)"
 } else {
 status = "Finished"
 }
}

func urlSession(_ session: URLSession,
 didBecomeInvalidWithError error: Error?) {
 if let e = error{
 status = "Invalidated \(e)"
 } else {
 // no errors occurred, so that's all right
 }
}

When the user taps the download button, we first define our URL:

let url = URL(string: "http://localhost:8888/file.txt")!

I am running MAMP and hosting my own file called file.txt. This
URL won’t get downloaded successfully on your machine if you are
not hosting the exact same file with the same name on your local
machine on the same port! So I suggest that you change this URL
to something that makes more sense for your app.

7.1 Downloading Files onto the Apple Watch | 179

Then use the backgroundSessionConfigurationWithIdentifier(_:) class method
of URLSessionConfiguration to create a background URL configuration that you can
use with URLSession:

let id = "se.pixolity.app.backgroundtask"
let conf = URLSessionConfiguration
 .background(withIdentifier: id)

Once all of that is done, you can go ahead and create a download task and start it (see
Figure 7-5):

let session = Foundation.URLSession(configuration: conf, delegate: self,
 delegateQueue: OperationQueue())

let request = URLRequest(url: url)

session.downloadTask(with: request).resume()

Figure 7-5. Our file is successfully downloaded

7.2 Noticing Changes in Pairing State Between the iOS
and Watch Apps
Problem
You want to know, both on the watch and in your companion iOS app, whether there
is connectivity between them and whether you can send messages between them.
Specifically, you want to find out whether one device can receive a signal sent from
the other.

180 | Chapter 7: Apple Watch

Solution
To begin working through this problem, you first need to import the WatchConnectiv
ity framework on both projects. Then, after you’ve imported the framework, you can
use the WCSession’s delegate of type WCSessionDelegate to implement the session
WatchStateDidChange(_:) method on your iOS side and the sessionReachability
DidChange(_:) method on the watch side. These methods get called by WatchConnec
tivity whenever the state of the companion app is changed (whether that is on the
iOS side or on the watchOS side).

Discussion
Both devices contain a flag called reachability that indicates whether the device can
connect to the other. This is represented by a property on WCSession called reacha
ble, of type Bool. On the iOS side, if you check this flag, it tells you whether your
companion watch app is reachable, and if you check it on the watchOS side, it tells
you whether your companion iOS app is reachable.

The idea here is to use the WCSession object to listen for state changes. Before doing
that, we need to find out whether the session is actually supported. We do that using
the isSupported() class function of WCWCSession. Once you know that sessions are
supported, you have to do the following on the iOS app side:

1. Obtain your session with WCSession.default().
2. Set the delegate property of your session.
3. Become the delegate of your session, of type WCSessionDelegate.
4. Implement the sessionWatchStateDidChange(_:) function of your session dele‐

gate and in there, check the reachable flag of the session.
5. Call the activateSession() method of your session.

Make sure that you do this in a function that can be called even if your app is
launched in the background.

On the watch side, follow the exact same steps you completed on the iOS side, but
instead of implementing the sessionWatchStateDidChange(_:) method, implement
the sessionReachabilityDidChange(_:) method.

7.2 Noticing Changes in Pairing State Between the iOS and Watch Apps | 181

The sessionWatchStateDidChange(_:) delegate method is called
on the iOS side when at least one of the properties of the session
changes. These properties include paired, watchAppInstalled,
complicationEnabled, and watchDirectoryURL, all of type Bool.
In contrast, the sessionReachabilityDidChange(_:) method is
called on the watch only when the reachable flag of the compan‐
ion iOS app is changed, as the name of the delegate method
suggests.

So on the iOS side, let’s implement an extension on WCSession that can print all its
relevant states, so that when the sessionWatchStateDidChange(_:) method is called,
we can print the session’s information:

import UIKit
import WatchConnectivity

extension WCSession{
 public func printInfo(){

 // paired
 print("Paired: ", terminator: "")
 print(self.isPaired ? "Yes" : "No")

 // watch app installed
 print("Watch app installed: ", terminator: "")
 print(self.isWatchAppInstalled ? "Yes" : "No")

 // complication enabled
 print("Complication enabled: ", terminator: "")
 print(self.isComplicationEnabled ? "Yes" : "No")

 // watch directory
 print("Watch directory url", terminator: "")
 print(self.watchDirectoryURL)

 }
}

Make your app delegate the delegate of the session as well:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate, WCSessionDelegate {

 var window: UIWindow?

 ...

Now start listening for state and reachablity changes:

182 | Chapter 7: Apple Watch

func sessionReachabilityDidChange(_ session: WCSession) {
 print("Reachable: ", terminator: "")
 print(session.isReachable ? "Yes" : "No")
}

func sessionWatchStateDidChange(_ session: WCSession) {
 print("Watch state is changed")
 session.printInfo()
}

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
}

func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
}

Last but not least, on the iOS side, set up the session and start listening to its events:

guard WCSession.isSupported() else {
 print("Session is not supported")
 return
}

let session = WCSession.default()
session.delegate = self
session.activate()

Now on the watch side, in the ExtensionDelegate class, import WatchConnectivity
and become the session delegate as well:

import WatchKit
import WatchConnectivity

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate {

 ...

And listen for reachablity changes:

7.2 Noticing Changes in Pairing State Between the iOS and Watch Apps | 183

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionReachabilityDidChange(_ session: WCSession) {
 print("Reachablity changed. Reachable?", terminator: "")
 print(session.isReachable ? "Yes" : "No")
}

Then in the applicationDidFinishLaunching() function of our extension delegate,
set up the session:

guard WCSession.isSupported() else {
 print("Session is not supported")
 return
}

let session = WCSession.default()
session.delegate = self
session.activate()

7.3 Transferring Small Pieces of Data to and
from the Watch
Problem
You want to transfer some plist-serializable content between your apps (iOS and
watchOS). This content can be anything—for instance, information about where a
user is inside a game on an iOS device, or more random information that you can
serialize into a plist (strings, integers, booleans, dictionaries, and arrays). Information
can be sent in either direction.

Solution
Follow these steps:

1. Use what you learned in Recipe 7.2 to find out whether both devices are
reachable.

2. On the sending app, use the updateApplicationContext(_:) method of your
session to send the content over to the other app.

184 | Chapter 7: Apple Watch

3. On the receiving app, wait for the session(_:didReceiveApplicationCon
text:) delegate method of WCSessionDelegate, where you will be given access
to the transmitted content.

It’s important to note that the content that you transmit must be of
type [String : AnyObject].

Discussion
Various types of content can be sent between iOS and watchOS. One is plist-
serializable content, also called an application context. Let’s say that you are playing a
game on watchOS and you want to send the user’s game status to iOS. You can use
the application context for this.

Let’s begin by creating a sample application. Create a single view iOS app and add a
watchOS target to it as well (see Figure 7-1). Design your main interface like
Figure 7-6. We’ll use the top label to show the download status. The buttons are self-
explanatory. The bottom label will show the pairing status between our watchOS and
iOS apps.

Figure 7-6. Labels and button for sample app

Hook up the top label to your view controller as statusLbl, the
first button as sendBtn, the second button as downloadBtn, and the
bottom label as reachabilityStatusLbl. Hook up the action of
the download button to a method called download() and the send
button to a method called send().

7.3 Transferring Small Pieces of Data to and from the Watch | 185

Download and install MAMP (it’s free) and host the following contents as a file called
people.json on your local web server’s root folder:

{
 "people" : [
 {
 "name" : "Foo",
 "age" : 30
 },
 {
 "name" : "Bar",
 "age" : 50
 }
]
}

Now the top part of your iOS app’s view controller should look like this:

import UIKit
import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate,
URLSessionDownloadDelegate {

 @IBOutlet var statusLbl: UILabel!
 @IBOutlet var sendBtn: UIButton!
 @IBOutlet var downloadBtn: UIButton!
 @IBOutlet var reachabilityStatusLbl: UILabel!

 ...

When you download that JSON file, it will become a dictionary of type [String :
AnyObject], so let’s define that as a variable in our view controller:

var people: [String : AnyObject]?{
 didSet{
 DispatchQueue.main.async{
 self.updateSendButton()
 }
 }
}

func updateSendButton(){
 sendBtn.isEnabled = isReachable && isDownloadFinished && people != nil
}

186 | Chapter 7: Apple Watch

https://www.mamp.info/en/

Setting the value of the people variable will call the updateSendBut
ton() function, which in turn enables the send button only if all
the following conditions are met:

• The watch app is reachable.

• The file is downloaded.

• The file was correctly parsed into the people variable.

Also define a variable that can write into your status label whenever the reachability
flag is changed:

var isReachable = false{
 didSet{
 DispatchQueue.main.async{
 self.updateSendButton()
 if self.isReachable{
 self.reachabilityStatusLbl.text = "Watch is reachable"
 } else {
 self.reachabilityStatusLbl.text = "Watch is not reachable"
 }
 }
 }
}

We need two more properties—one that sets the status label and another that keeps
track of when our file is downloaded successfully:

var isDownloadFinished = false{
 didSet{
 DispatchQueue.main.async{
 self.updateSendButton()
 }
 }
}

var status: String?{
 get{return self.statusLbl.text}
 set{
 DispatchQueue.main.async{
 self.statusLbl.text = newValue
 }
 }
}

7.3 Transferring Small Pieces of Data to and from the Watch | 187

All three variables that we defined—people, isReachable, and
isDownloadFinished—call the updateSendButton() function so
that our send button will be disabled if conditions are not met, and
enabled otherwise.

Now when the download button is pressed, start a download task:

@IBAction func download() {

 // if loading HTTP content, make sure you have disabled ATS
 // for that domain
 let url = URL(string: "http://localhost:8888/people.json")!
 let req = URLRequest(url: url)
 let id = "se.pixolity.app.backgroundtask"

 let conf = URLSessionConfiguration
 .background(withIdentifier: id)

 let sess = Foundation.URLSession(configuration: conf, delegate: self,
 delegateQueue: OperationQueue())

 sess.downloadTask(with: req).resume()
}

After that, check if you got any errors while trying to download the file:

func urlSession(_ session: URLSession,
 task: URLSessionTask,
 didCompleteWithError error: Error?) {

 if error != nil{
 status = "Error happened"
 isDownloadFinished = false
 }

 session.finishTasksAndInvalidate()

}

Now implement the URLSession(_:downloadTask:didFinishDownloadingToURL:)
method of URLSessionDownloadDelegate. Inside there, tell your view controller that
you have downloaded the file by setting isDownloadFinished to true. Then con‐
struct a more permanent URL for the temporary URL to which our JSON file was
downloaded by iOS:

func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didFinishDownloadingTo location: URL){

188 | Chapter 7: Apple Watch

 isDownloadFinished = true

 // got the data, parse as JSON
 let fm = FileManager()
 let url = try! fm.url(for: .downloadsDirectory,
 in: .userDomainMask,
 appropriateFor: location,
 create: true).appendingPathComponent("file.json")

 ...

Then move the file over:

do {try fm.removeItem(at: url)} catch {}

do{
 try fm.moveItem(at: location, to: url)
} catch {
 status = "Could not save the file"
 return
}

After that, simply read the file as a JSON file with JSONSerialization:

// now read the file from URL
guard let data = try? Data(contentsOf: url) else{
 status = "Could not read the file"
 return
}

do{
 let json = try JSONSerialization.jsonObject(
 with: data,
 options: .allowFragments) as! [String : AnyObject]

 self.people = json
 status = "Successfully downloaded and parsed the file"
} catch{
 status = "Could not read the file as json"
}

Great—now go to your watch interface, place a label there, and hook it up to your
code under the name statusLabel (see Figure 7-7).

In the interface controller file, place a variable that can set the status:

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {

 @IBOutlet var statusLabel: WKInterfaceLabel!

7.3 Transferring Small Pieces of Data to and from the Watch | 189

 var status = "Waiting"{
 didSet{
 statusLabel.setText(status)
 }
 }

}

Figure 7-7. Our watch interface has a simple label only

Go to your ExtensionDelegate file on the watch side and follow these steps:

1. Define a structure that can hold instances of a person you will get in your appli‐
cation context.

2. Define a property called status that, when written to, will set the status prop‐
erty of the interface controller:

import WatchKit
import WatchConnectivity

struct Person{
 let name: String
 let age: Int
}

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate{

 var status = ""{

190 | Chapter 7: Apple Watch

 didSet{
 DispatchQueue.main.async{
 guard let interface =
 WKExtension.shared().rootInterfaceController as?
 InterfaceController else{
 return
 }
 interface.status = self.status
 }
 }
 }

 ...

Now activate the session using what you learned in Recipe 7.2. Then the session will
wait for the session(_:didReceiveApplicationContext:) method of the WCSession
Delegate protocol to come in. When that happens, just read the application context
and convert it into Person instances:

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func session(
 _ session: WCSession,
 didReceiveApplicationContext applicationContext: [String : Any]) {

 guard let people = applicationContext["people"] as?
 Array<[String : AnyObject]>, people.count > 0 else{
 status = "Did not find the people array"
 return
 }

 var persons = [Person]()
 for p in people where p["name"] is String && p["age"] is Int{
 let person = Person(name: p["name"] as! String, age: p["age"] as! Int)
 persons.append(person)
 }

 status = "Received \(persons.count) people from the iOS app"

}

Now run both your watch app and your iOS app. At first glance, your watch app will
look like Figure 7-8.

7.3 Transferring Small Pieces of Data to and from the Watch | 191

Figure 7-8. Your watch app is waiting for the context to come through from the iOS app

Your iOS app in its initial state will look like Figure 7-9.

Figure 7-9. Your iOS app has detected that its companion watch app is reachable

When I press the download button, my iOS app’s interface will change to Figure 7-10.

192 | Chapter 7: Apple Watch

Figure 7-10. The iOS app is now ready to send the data over to the watch app

After you press the send button, the watch app’s interface will change to something
like Figure 7-11.

Figure 7-11. The watch app received the data

7.4 Transferring Dictionaries in Queues to and from
the Watch
Problem
You want to send dictionaries of information to and from the watch in a queuing
(FIFO) fashion.

7.4 Transferring Dictionaries in Queues to and from the Watch | 193

Solution
Call the transferUserInfo(_:) method on your WCSession on the sending part. On
the receiving part, implement the session(_:didReceiveUserInfo:) method of the
WCSessionDelegate protocol.

A lot of the things that I’ll refer to in this recipe have been dis‐
cussed already in Recipe 7.3, so have a look if you feel a bit
confused.

Discussion
Create a single view app in iOS and put your root view controller in a nav controller.
Then add a watch target to your app (see this chapter’s introduction for an explana‐
tion). Make sure that your root view controller in IB looks like Figure 7-12.

Figure 7-12. Place a label and a button on your UI

Hook up the label to a variable in your code named statusLbl and hook up the but‐
ton to a variable named sendBtn. Hook up your button’s action to a method in your
code called send(). The top of your view controller should now look like this:

import UIKit
import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var statusLbl: UILabel!
 @IBOutlet var sendBtn: UIButton!

 ...

194 | Chapter 7: Apple Watch

You also need a property that can set the status for you on your label. The property
must be on the main thread, because WCSession methods (where we may want to set
our status property) usually are not called on the main thread:

var status: String?{
 get{return self.statusLbl.text}
 set{
 DispatchQueue.main.async{
 self.statusLbl.text = newValue
 }
 }
}

When the user presses the send button, we will use the WCSession.default().trans
ferUserInfo(_:) method to send a simple dictionary whose only key is
kCFBundleIdentifierKey and a value that will be our Info.plist’s bundle identifier:

@IBAction func send() {

 guard let infoPlist = Bundle.main.infoDictionary else{
 status = "Could not get the info.plist"
 return
 }

 let key = kCFBundleIdentifierKey as String

 let plist = [
 key : infoPlist[key] as! String
]

 let transfer = WCSession.default().transferUserInfo(plist)
 status = transfer.isTransferring ? "Sent" : "Could not send yet"

}

func updateUiForSession(_ session: WCSession){
 status = session.isReachable ? "Ready to send" : "Not reachable"
 sendBtn.isEnabled = session.isReachable
}

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
}

7.4 Transferring Dictionaries in Queues to and from the Watch | 195

func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
}

func sessionReachabilityDidChange(_ session: WCSession) {
 updateUiForSession(session)
}

The transferUserInfo(_:) method returns an object of type WCSessionUserInfo
Transfer that has properties such as userInfo and transferring and a method
called cancel(). If necessary, you can always use the cancel() method of an instance
of WCSessionUserInfoTransfer to cancel the transfer of this item if it is not already
transferring. You can also find all the user info transfers that are ongoing by using
the outstandingUserInfoTransfers property of your session object.

The app also contains code to disable the button if the watch app is
not reachable, but I won’t discuss that code here because we have
already reviewed it in Recipes 7.2 and 7.3.

On the watch side, in InterfaceController, write the exact same code that you
wrote in Recipe 7.3. In the ExtensionDelegate class, however, our code will be a bit
different. Its status property is exactly how we wrote it in Recipe 7.3.

When the applicationDidFinishLaunching() method of our delegate is called, we
set up the session just as we did previously in Recipe 7.2. We will wait for the ses
sion(_:didReceiveUserInfo:) method of the WCSessionDelegate protocol to be
called. There, we will simply read the bundle identifier from the user info and display
it in our view controller:

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func session(_ session: WCSession,
 didReceiveUserInfo userInfo: [String : Any] = [:]) {

 guard let bundleVersion = userInfo[kCFBundleIdentifierKey as String]
 as? String else{
 status = "Could not read the bundle version"
 return
 }

 status = bundleVersion

196 | Chapter 7: Apple Watch

}

If you run the iOS app, your UI should look like Figure 7-13.

Figure 7-13. The app has detected that the watch app is reachable so the button is
enabled

And your watch app should look like Figure 7-14.

Figure 7-14. The watch app is waiting for incoming user info data

When you press the send button, the user interface will change to Figure 7-15.

7.4 Transferring Dictionaries in Queues to and from the Watch | 197

Figure 7-15. The data is sent to the watch

And the watch app will look like Figure 7-16.

Figure 7-16. The watch app successfully received our user info

7.5 Transferring Files to and from the Watch
Problem
You want to transfer a file between your iOS app and the watch app. The technique
works in both directions.

Solution
Follow these steps:

1. Use the transferFile(_:metadata:) method of your WCSession object on the
sending device.

198 | Chapter 7: Apple Watch

2. Then implement the WCSessionDelegate protocol on the sender and wait for the
session(_:didFinishFileTransfer:error:) delegate method to be called. If
the optional error parameter is nil, it indicates that the file is transferred
successfully.

3. On the receiving part, become the delegate of WCSession and then wait for the
session(_:didReceiveFile:) delegate method to be called.

4. The incoming file on the receiving side is of type WCSessionFile and has proper‐
ties such as fileURL and metadata. The metadata is the same metadata of type
[String : AnyObject] that the sender sent with the transferFile(_:meta
data:) method.

Discussion
Let’s have a look at a simple UI on the sending device (the iOS side in this example). It
contains a label that shows our status and a button that sends our file. When the but‐
ton is pressed, we create a file in the iOS app’s caches folder and then send that file
through to the watch app if it is reachable (see Recipe 7.2).

Make your UI on the iOS (sender) side look like Figure 7-17. The button will be dis‐
abled if the watch app is not reachable (see Recipe 7.2).

Figure 7-17. Status label and button on sender

Hook up your button’s action code to a method in your view controller called send()
and make sure your view controller conforms to WCSessionDelegate:

import UIKit
import WatchConnectivity

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var statusLbl: UILabel!
 @IBOutlet var sendBtn: UIButton!

 var status: String?{
 get{return self.statusLbl.text}

7.5 Transferring Files to and from the Watch | 199

 set{
 DispatchQueue.main.async{
 self.statusLbl.text = newValue
 }
 }
 }

 func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
 }

 func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
 }

 func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
 }

 ...

We implemented and talked about the status property of our view
controller in Recipe 7.3, so I won’t explain it here.

Then, when the send button is pressed, construct a URL that will point to your file. It
doesn’t exist yet, but you will write it to disk soon:

let fileName = "file.txt"

let fm = FileManager()

let url = try! fm.url(for: .cachesDirectory,
 in: .userDomainMask, appropriateFor: nil,
 create: true).appendingPathComponent(fileName)

Now write some text to disk, reachable through the URL:

let text = "Foo Bar"

do{
 try text.write(to: url, atomically: true,
 encoding: String.Encoding.utf8)
} catch {
 status = "Could not write the file"

200 | Chapter 7: Apple Watch

 return
}

Once that is done, send the file over:

let metadata = ["fileName" : fileName]
WCSession.default().transferFile(url, metadata: metadata)

Also, when your session’s reachability state changes, enable or disable your button:

func updateUiForSession(_ session: WCSession){
 status = session.isReachable ? "Ready to send" : "Not reachable"
 sendBtn.isEnabled = session.isReachable
}

func sessionReachabilityDidChange(_ session: WCSession) {
 updateUiForSession(session)
}

On the watch side, make your UI look like that shown in Figure 7-7. Then, in your
ExtensionDelegate class, implement the exact same status property that we imple‐
mented in Recipe 7.3.

Now implement the session(_:didReceiveFile:) method of WCSessionDelegate.
Start by double-checking that the metadata is as you expected it:

func session(_ session: WCSession, didReceive file: WCSessionFile) {

 guard let metadata = file.metadata, metadata["fileName"]
 is String else{
 status = "No metadata came through"
 return
 }

 ...

If it is, read the file and show it in the user interface:

do{
 let str = try String(NSString(contentsOf: file.fileURL,
 encoding: String.Encoding.utf8.rawValue))
 guard str.characters.count > 0 else{
 status = "No file came through"
 return
 }
 status = str
} catch {
 status = "Could not read the file"
 return
}

7.5 Transferring Files to and from the Watch | 201

When you run the watch app, it will look like Figure 7-14. When you run the iOS
app, it will look like Figure 7-18.

Figure 7-18. The file is ready to be sent from iOS to watchOS

When the file is sent, your user interface on iOS will look like Figure 7-19.

Figure 7-19. iOS sent our file to watchOS

And the UI on your receiver (watchOS) will look like Figure 7-20.

Figure 7-20. watchOS successfully received our file, read its content, and is displaying it
in our label

202 | Chapter 7: Apple Watch

See Also
Recipe 7.2

7.6 Communicating Interactively Between iOS and
watchOS
Problem
You want to interactively send messages from iOS to watchOS (or vice versa) and
receive a reply immediately.

Solution
On the sender side, use the sendMessage(_:replyHandler:errorHandler:) method
of WCSession. On the receiving side, implement the session(_:didReceiveMes
sage:replyHandler:) method to handle the incoming message if your sender
expected a reply, or implement session(_:didReceiveMessage:) if no reply was
expected from you. Messages and replies are of type [String : AnyObject].

Discussion
Let’s implement a chat program where the iOS app and the watch app can send mes‐
sages to each other. On the iOS app, we will allow the user to type text and then send
it over to the watch. On the watch, since we cannot type anything, we will have four
predefined messages that the user can send us. In order to decrease the amount of
data the watch sends us, we define these messages as Int and send the integers
instead. The iOS app will read the integers and then print the correct message onto
the screen. So let’s first define these messages. Create a file called PredefinedMessages
and write the following Swift code there:

import Foundation

enum PredefinedMessage : Int{
 case hello
 case thankYou
 case howAreYou
 case iHearYou
}

Add this file to both your watch extension and your iOS app so that they both can use
it (see Figure 7-21).

7.6 Communicating Interactively Between iOS and watchOS | 203

Figure 7-21. We will include the file on our iOS app and watch extension

Now move to your main iOS app’s storyboard and design a UI that looks like
Figure 7-22. There are two labels that say “...” at the moment. They will be populated
dynamically in our code.

Figure 7-22. Initial iOS app UI

Hook up your UI to your code as follows:

1. Hook up your send button to an outlet called sendBtn. Hook up its action
method to a function called send(_:) in your view controller.

2. Hook up the text field to your code under the name textField.
3. Hook up the label that says “...” in front of “Watch Status:” to an outlet called

watchStatusLbl.
4. Hook up the label that says “...” in front of “Watch Said:” to an outlet called watch

ReplyLbl.

So now the top part of your view controller on the iOS side should look like this:

import UIKit
import WatchConnectivity
import SharedCode

class ViewController: UIViewController, WCSessionDelegate {

 @IBOutlet var sendBtn: UIBarButtonItem!
 @IBOutlet var textField: UITextField!

204 | Chapter 7: Apple Watch

 @IBOutlet var watchStatusLbl: UILabel!
 @IBOutlet var watchReplyLbl: UILabel!

 ...

As we have done before, we need two variables that can populate the text inside the
watchStatusLbl and watchReplyLbl labels, always on the main thread:

var watchStatus: String{
 get{return self.watchStatusLbl.text ?? ""}
 set{onMainThread{self.watchStatusLbl.text = newValue}}
}

var watchReply: String{
 get{return self.watchReplyLbl.text ?? ""}
 set{onMainThread{self.watchReplyLbl.text = newValue}}
}

The definition of onMainThread is very simple. It’s a custom func‐
tion I’ve written in a library to make life easier:

import Foundation

public func onMainThread(_ f: @escaping () -> Void){
 DispatchQueue.main.async(execute: f)
}

When the send button is pressed, we first have to make sure that the user has entered
some text into the text field:

@IBAction func send(_ sender: AnyObject) {

 guard let txt = textField.text, txt.characters.count > 0 else{
 textField.placeholder = "Enter some text here first"
 return
 }

 ...

Then we will use the sendMessage(_:replyHandler:errorHandler:) method of our
session to send our text over:

7.6 Communicating Interactively Between iOS and watchOS | 205

WCSession.default().sendMessage(["msg" : txt],
 replyHandler: {dict in

 guard dict["msg"] is String &&
 dict["msg"] as! String == "delivered" else{
 self.watchReply = "Could not deliver the message"
 return
 }

 self.watchReply = dict["msg"] as! String

}){err in
 self.watchReply = "An error happened in sending the message"
}

Later, when we implement our watch side, we will also be sending messages from the
watch over to the iOS app. Those messages will be inside a dictionary whose only key
is “msg” and the value of this key will be an integer. The integers are already defined
in the PredefinedMessage enum that we saw earlier. So in our iOS app, we will wait
for messages from the watch app, translate the integer we get to its string counterpart,
and show it on our iOS UI. Remember, we send integers (instead of strings) from the
watch to make the transfer snappier. So let’s implement the session(_:didReceive
Message:) delegate method in our iOS app:

func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
}

func sessionDidBecomeInactive(_ session: WCSession) {
 // empty for now
}

func sessionDidDeactivate(_ session: WCSession) {
 // empty for now
}

func session(_ session: WCSession,
 didReceiveMessage message: [String : Any],
 replyHandler: @escaping ([String : Any]) -> Void) {

 guard let msg = message["msg"] as? Int,
 let value = PredefinedMessage(rawValue: msg) else{
 watchReply = "Received invalid message"
 return
 }

 switch value{

206 | Chapter 7: Apple Watch

 case .hello:
 watchReply = "Hello"
 case .howAreYou:
 watchReply = "How are you?"
 case .iHearYou:
 watchReply = "I hear you"
 case .thankYou:
 watchReply = "Thank you"
 }

}

Let’s use what we learned in Recipe 7.2 to enable or disable our send button when the
watch’s reachability changes:

func updateUiForSession(_ session: WCSession){
 watchStatus = session.isReachable ? "Reachable" : "Not reachable"
 sendBtn.isEnabled = session.isReachable
}

func sessionReachabilityDidChange(_ session: WCSession) {
 updateUiForSession(session)
}

On the watch side, design your UI like Figure 7-23. Although users cannot type on
the watch, they can press a predefined message in order to send it (remember Prede
finedMessage?). That little line between “Waiting...” and “Send a reply” is a separator.

7.6 Communicating Interactively Between iOS and watchOS | 207

Figure 7-23. Strings that a user can send from a watch

Hook up your watch UI to your code by following these steps:

1. Hook up the “Waiting...” label to an outlet named iosAppReplyLbl. We will show
the text that our iOS app has sent to us in this label.

2. Place all the buttons at the bottom of the page inside a group and hook that
group up to an outlet called repliesGroup. We will hide this whole group if the
iOS app is not reachable to our watch app.

3. Hook the action of the “Hello” button to a method in your code called send
Hello().

4. Hook the action of the “Thank you” button to a method in your code called send
ThankYou().

5. Hook the action of the “How are you?” button to a method in your code called
sendHowAreYou().

6. Hook the action of the “I hear you” button to a method in your code called sendI
HearYou().

208 | Chapter 7: Apple Watch

In our InterfaceController on the watch side, we need a generic method that takes
in an Int (our predefined message) and sends it over to the iOS side with the sendMes
sage(_:replyHandler:errorHandler:) method of the session:

import WatchKit
import Foundation
import WatchConnectivity

class InterfaceController: WKInterfaceController {

 @IBOutlet var iosAppReplyLbl: WKInterfaceLabel!
 @IBOutlet var repliesGroup: WKInterfaceGroup!

 func send(_ int: Int){

 WCSession.default().sendMessage(["msg" : int],
 replyHandler: nil, errorHandler: nil)

 }

 ...

And whenever any of the buttons is pressed, we call the send(_:) method with the
right predefined message:

@IBAction func sendHello() {
 send(PredefinedMessage.hello.hashValue)
}

@IBAction func sendThankYou() {
 send(PredefinedMessage.thankYou.hashValue)
}

@IBAction func sendHowAreYou() {
 send(PredefinedMessage.howAreYou.hashValue)
}

@IBAction func sendIHearYou() {
 send(PredefinedMessage.iHearYou.hashValue)
}

In the ExtensionDelegate class on the watch side, we want to hide all the reply but‐
tons if the iOS app is not reachable. To do that, write a property called isReachable
of type Bool. Whenever this property is set, the code sets the hidden property of our
replies group:

import WatchKit
import WatchConnectivity

7.6 Communicating Interactively Between iOS and watchOS | 209

class ExtensionDelegate: NSObject, WKExtensionDelegate, WCSessionDelegate{

 var isReachable = false{
 willSet{
 self.rootController?.repliesGroup.setHidden(!newValue)
 }
 }

 var rootController: InterfaceController?{
 get{
 guard let interface =
 WKExtension.shared().rootInterfaceController as?
 InterfaceController else{
 return nil
 }
 return interface
 }
 }

 func session(
 _ session: WCSession,
 activationDidCompleteWith activationState: WCSessionActivationState,
 error: Error?) {
 // empty for now
 }

 ...

You also are going to need a String property that will be your iOS app’s reply. When‐
ever you get a reply from the iOS app, place it inside this property. As soon as this
property is set, the watch extension will write this text on our UI:

var iosAppReply = ""{
 didSet{
 DispatchQueue.main.async{
 self.rootController?.iosAppReplyLbl.setText(self.iosAppReply)
 }
 }
}

Now let’s wait for messages from the iOS app and display those messages on our UI:

func session(_ session: WCSession,
 didReceiveMessage message: [String : Any],
 replyHandler: @escaping ([String : Any]) -> Void) {

 guard message["msg"] is String else{
 replyHandler(["msg" : "failed"])
 return
 }

210 | Chapter 7: Apple Watch

 iosAppReply = message["msg"] as! String
 replyHandler(["msg" : "delivered"])

}

Also when our iOS app’s reachability changes, we want to update our UI and disable
the reply buttons:

func sessionReachabilityDidChange(_ session: WCSession) {
 isReachable = session.isReachable
}

func applicationDidFinishLaunching() {

 guard WCSession.isSupported() else{
 iosAppReply = "Sessions are not supported"
 return
 }

 let session = WCSession.default()
 session.delegate = self
 session.activate()
 isReachable = session.isReachable

}

Running our app on the watch first, we will see an interface similar to Figure 7-24.
The user can scroll to see the rest of the buttons.

Figure 7-24. Available messages on watch

7.6 Communicating Interactively Between iOS and watchOS | 211

And when we run our app on iOS while the watch app is reachable, the UI will look
like Figure 7-25.

Figure 7-25. The send button on our app is enabled and we can send messages

Type “Hello from iOS” in the iOS UI and press the send button. The watch app will
receive the message (see Figure 7-26).

Figure 7-26. The watch app received the message sent from the iOS app

Now press the “How are you?” button on the watch UI and see the results in the iOS
app (Figure 7-27).

212 | Chapter 7: Apple Watch

Figure 7-27. The iOS app received the message from the watch app

See Also
Recipe 7.2

7.7 Setting Up Apple Watch for Custom Complications
Problem
You want to create a barebones watch project with support for complications and you
would like to see a complication on the screen.

Solution
Follow these steps:

1. Add a watch target to your project (see Figure 7-1). Make sure that it includes
complications upon setting it up.

2. In Xcode, in your targets, select your watch extension. Under the General tab,
ensure that the Modular Small complication is the only complication that is
enabled. Disable all the others (see Figure 7-28).

3. Write your complication code in your ComplicationController class. We’ll dis‐
cuss this code soon.

4. Run your app on the watch simulator.
5. Once your app is opened in the simulator, press Command-Shift-H to go to the

clock face.
6. Press Command-Shift-2 to simulate Deep Press on the watch simulator and then

tap and hold on the watch face (see Figure 7-29).

7.7 Setting Up Apple Watch for Custom Complications | 213

Figure 7-28. We are going to support only small-modular complications

Figure 7-29. We can now customize our watch face

7. Press Command-Shift-1 to simulate Shallow Press and then scroll to the modular
watch face (see Figure 7-30).

214 | Chapter 7: Apple Watch

Figure 7-30. Select the modular watch face

8. Press the Customize button (see Figure 7-31).

Figure 7-31. Now you can customize your modular watch face

9. Scroll to the next page to the right, and then tap the small-modular complication
at the bottom left of the screen until it becomes selected (see Figure 7-32). You
will replace this with your own complication.

7.7 Setting Up Apple Watch for Custom Complications | 215

Figure 7-32. Select the small modular complication at the bottom left

10. Now use the up and down arrows on your keyboard (or, if on the device, use the
digital crown) to select your complication (see Figure 7-33). What you see on the
screen is the preview template that you have provided to the system. We will
implement this template soon, but in the figure I have already done that, hence
the number 22.

Figure 7-33. Your own small-modular complication is shown

216 | Chapter 7: Apple Watch

11. Press Cmd-Shift-2 to simulate Deep Press and then tap the screen (see
Figure 7-34).

Figure 7-34. We have now configured our complication on the selected watch face

12. Press Command-Shift-H to go to the clock app on the screen (see Figure 7-35).
Notice that your complication is gone and shows no data. That is because what
we displayed on the screen while configuring our watch face was just a preview
template. What the clock app displays is real data and we are not providing any
of it.

7.7 Setting Up Apple Watch for Custom Complications | 217

Figure 7-35. Our complication is on the bottom left but is empty

Discussion
Complications are pieces of information that apps can display on a watch face. They
are divided into a few main categories:

Modular small
A very small amount of space with minimal text and/or a very small image (see
Figure 7-36; the date on the top left is a modular small complication).

Modular large
An image, title, and up to two lines of text (see Figure 7-36; the calendar event in the
center of the screen is a modular large complication).

Utilitarian small
Mainly a small image with optional text (see Figure 7-36; the activity icon in the bot‐
tom center is of this type).

Utilitarian large
A date/text mixed with an image, rendered on one line. This is similar to modular
large but on just one line.

Circular small
A circular image with optional text (see Figure 7-36; the sunrise/sunset complication
on the bottom right is an example of a circular-small complication).

218 | Chapter 7: Apple Watch

Figure 7-36. Everything except the time is a complication

Assuming that you have already created a watch target with a complication attached
to it, go into your ComplicationController class and find the getPlaceholderTem
plateForComplication(_:withHandler:) method. This method gets called by iOS
when your complication is being added to a watch face. This gives you the chance to
provide a placeholder for what the user has to see while adjusting her watch face. It
won’t usually be real data.

After this method is called, you will need to create a complication template of type
CLKComplicationTemplate (or one of its many subclasses) and return that into the
replyHandler block that you are given. For now, implement the template like this:

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {

 let temp = CLKComplicationTemplateModularSmallSimpleText()
 temp.textProvider = CLKSimpleTextProvider(text: "22")
 handler(temp)

}

I am not going to discuss the details of this code right now. You’ll
learn them in other recipes in this chapter.

7.7 Setting Up Apple Watch for Custom Complications | 219

One more thing that you have to know is that once you have provided watchOS with
your placeholder template, you won’t be asked to do it again unless the user uninstalls
your watchOS app and installs it again from her iPhone (see Figure 7-37).

Figure 7-37. If the user uninstalls and reinstalls your app, it can provide a new place‐
holder template

If you would like to test out different templates while you are working on the getPla
ceholderTemplateForComplication(_:withHandler:) method, you can simply reset
the watch simulator and then run your app again. This will retrigger the getPlacehol
derTemplateForComplication(_:withHandler:) method on your complication
controller.

See Also
Recipe 7.2

7.8 Constructing Small Complications with Text and
Images
Problem
You want to construct a small-modular complication and provide the user with past,
present, and future data. In this example, a small modular complication (Figure 7-38,
bottom left) shows the current hour with a ring swallowing it. The ring is divided into
24 sections and increments for every 1 hour in the day. At the end of the day, the ring
will be completely filled and the number inside the ring will show 24.

220 | Chapter 7: Apple Watch

Figure 7-38. Small-modular complication (bottom left) showing the current hour sur‐
rounded by a ring

Solution
Follow these steps:

1. Create your main iOS project with a watch target and make sure your watch tar‐
get has a complication.

2. In your complication, implement the getSupportedTimeTravelDirectionsFor
Complication(_:withHandler:) method of the CLKComplicationDataSource
protocol. In this method, return your supported time travel directions (more on
this later). The directions are of type CLKComplicationTimeTravelDirections.

3. Implement the getTimelineStartDateForComplication(_:withHandler:)

method inside your complication class and call the given handler with a Date
object that indicates the start date of your available data.

4. Implement the getTimelineEndDateForComplication(_:withHandler:)

method of your complication and call the handler with the last date for which
your data is valid.

5. Implement the getTimelineEntriesForComplication(_:before

Date:limit:withHandler:) method of your complication, create an array of
type CLKComplicationTimelineEntry, and send that array into the given handler
object. These will be the timeline entries before the given date that you would
want to return to the watch (more on this later).

7.8 Constructing Small Complications with Text and Images | 221

6. Implement the getTimelineEntriesForComplication(_:after

Date:limit:withHandler:) method of your complication and return all the
events that your complication supports, after the given date.

7. Implement the getNextRequestedUpdateDateWithHandler(_:) method of your
complication and let watchOS know when it has to ask you next for more con‐
tent.

Discussion
When providing complications, you are expected to provide data to the watchOS as
the time changes. In our example, for every hour in the day, we want to change our
complication. So each day we’ll return 24 events to the runtime.

With the digital crown on the watch, the user can scroll up and down while on the
watch face to engage in a feature called “time travel.” This allows the user to change
the time known to the watch just so she can see how various components on screen
change with the new time. For instance, if you provide a complication to the user that
shows all football match results of the day, the user can then go back in time a few
hours to see the results of a match she has just missed. Similarly, in the context of a
complication that shows the next fast train time to the city where the user lives, she
can scroll forward, with the digital crown on the watch face, to see the future times
that the train leaves from the current station.

The time is an absolute value on any watch, so let’s say that you want to provide the
time of the next football match in your complication. Let’s say it’s 14:00 right now and
the football match starts at 15:00. If you give 15:00 as the start of that event to your
complication, watchOS will show the football match (or the data that you provide for
that match to your user through your complication) to the user at 15:00, not before.
That is a bit useless, if you ask me. You want to provide that information to the user
before the match starts so she knows what to look forward to, and when. So keep that
in mind when providing a starting date for your events.

watchOS complications conform to the CLKComplicationDataSource protocol. They
get a lot of delegate messages from this protocol calling methods that you have to
implement even if you don’t want to return any data. For instance, in the getNextRe
questedUpdateDateWithHandler(_:) method, you get a handler as a parameter that
you must call with a Date object, specifying when you want to be asked for more data
next time. If you don’t want to be asked for any more data, you still have to call this
handler object but with a nil date. You’ll find out soon that most of these handlers
ask for optional values, so you can call them with nil if you want to.

While working with complications, you can tell watchOS which directions of time
travel you support, or if you support time travel at all. If you don’t support it, your
complication returns only data for the current time. And if the user scrolls the watch

222 | Chapter 7: Apple Watch

face with the digital crown, your complication won’t update its information. I don’t
suggest you opt out of time travel unless your complication really cannot provide rel‐
evant data to the user. Certainly, if your complication shows match results, it cannot
show results for matches that have not happened. But even then, you can still support
forward and backward time travel. If the user chooses forward time travel, just hide
the scores, show a question mark, or do something similar.

As you work with complications, it’s important to construct a data model to return to
the watch. What you usually return to the watch for your complication is either of
type CLKComplicationTemplate or of type CLKComplicationTimelineEntry. The
template defines how your data is viewed on screen. The timeline entry only binds
your template (your visible data) to a date of type Date that dictates to the watch
when it has to show your data. As simple as that. In the case of small-modular com‐
plications, you can provide the following templates to the watch:

CLKComplicationTemplateModularSmallSimpleText

Has just text.

CLKComplicationTemplateModularSmallSimpleImage

Has just an image.

CLKComplicationTemplateModularSmallRingText

Has text inside a ring that you can fill from 0 to 100%.

CLKComplicationTemplateModularSmallRingImage

Has an image inside a ring that you can fill.

CLKComplicationTemplateModularSmallStackText

Has two lines of code, the second of which can be highlighted.

CLKComplicationTemplateModularSmallStackImage

Has an image and a text, with the text able to be highlighted.

CLKComplicationTemplateModularSmallColumnsText

Has a 2×2 text display where you can provide four pieces of textual data. The second
column can be highlighted and have its text alignment adjusted.

As you saw earlier in Figure 7-32, this example bases our small-modular template on
CLKComplicationTemplateModularSmallRingText. So we provide only a text (the
current hour) and a value between 0 and 1 that will tell watchOS how much of the
ring around our number it has to fill (0...100%).

Let’s now begin defining our data for this example. For every hour, we want our tem‐
plate to show the current hour. Just before midnight, we provide another 24 new
complication data points for that day to the watch. So let’s define a data structure that
can contain a date, the hour value, and the fraction (between 0 and 1) to set for our

7.8 Constructing Small Complications with Text and Images | 223

complication. Start off by creating a file called DataProvider.swift and write all this
code in that:

protocol WithDate{
 var hour: Int {get}
 var date: Date {get}
 var fraction: Float {get}
}

Now we can define our actual structure that conforms to this protocol:

struct Data : WithDate{
 let hour: Int
 let date: Date
 let fraction: Float
 var hourAsStr: String{
 return "\(hour)"
 }
}

Later, when we work on our complication, we will be asked to provide, inside the
getCurrentTimelineEntryForComplication(_:withHandler:) method of
CLKComplicationDataSource, a template to show to the user for the current time. We
are also going to create an array of 24 Data structures. So it would be great if we could
always, inside this array, easily find the Data object for the current date:

extension Date{
 func hour() -> Int{
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.hour]
 let units = Set(unitsArray)
 return cal.dateComponents(units, from: self).hour!
 }
}

extension Collection where Iterator.Element : WithDate {

 func dataForNow() -> Iterator.Element?{
 let thisHour = Date().hour()
 for d in self{
 if d.hour == thisHour{
 return d
 }
 }
 return nil
 }

}

224 | Chapter 7: Apple Watch

The dataForNow() function goes through any collection that has
objects that conform to the WithDate protocol that we specified
earlier, and finds the object whose current hour is the same as that
returned for the current moment by Date().

Let’s now create our array of 24 Data objects. We do this by iterating from 1 to 24,
creating Date objects using DateComponents and Calendar. Then, using those objects,
we construct instances of the Data structure that we just wrote:

struct DataProvider{

 func allDataForToday() -> [Data]{

 var all = [Data]()

 let now = Date()
 let cal = Calendar.current

 let unitsArray: [Calendar.Component] = [.month, .day]
 let units = Set(unitsArray)

 var comps = cal.dateComponents(units, from: now)
 comps.minute = 0
 comps.second = 0

 for i in 1...24{
 comps.hour = i
 let date = cal.date(from: comps)!
 let fraction = Float(comps.hour!) / 24.0
 let data = Data(hour: comps.hour!, date: date, fraction: fraction)
 all.append(data)
 }

 return all

 }

}

That was our entire data model. Now let’s move onto the complication class of our
watch app. In the getNextRequestedUpdateDateWithHandler(_:) method of the
CLKComplicationDataSource protocol to which our complication conforms, we are
going to be asked when watchOS should next call our complication and ask for new
data. Because we are going to provide data for the whole day, today, we would want to
be asked for new data for tomorrow. So we need to ask to be updated a few seconds
before the start of the next day. For that, we need a Date object that tells watchOS
when the next day is. So let’s extend Date:

7.8 Constructing Small Complications with Text and Images | 225

extension Date{

 static func endOfToday() -> Date{
 let cal = Calendar.current

 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)

 var comps = cal.dateComponents(units, from: Date())
 comps.hour = 23
 comps.minute = 59
 comps.second = 59
 return cal.date(from: comps)!
 }

}

Moving to our complication, let’s define our data provider first:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

We know that our data provider can give us an array of Data objects, so we need a
way of turning those objects into our templates so they that can be displayed on the
screen:

func templateForData(_ data: Data) -> CLKComplicationTemplate{
 let template = CLKComplicationTemplateModularSmallRingText()
 template.textProvider = CLKSimpleTextProvider(text: data.hourAsStr)
 template.fillFraction = data.fraction
 template.ringStyle = .closed
 return template
}

Our template of type CLKComplicationTemplateModularSmallRingText has a few
important properties:

textProvider of type CLKTextProvider
Tells watchOS how our text has to appear. We never instantiate CLKTextProvider
directly, though. We use one of its subclasses, such as the CLKSimpleTextProvider
class. There are other text providers that we will talk about later.

fillFraction of type Float
A number between 0.0 and 1.0 that tells watchOS how much of the ring around our
template it has to fill.

226 | Chapter 7: Apple Watch

ringStyle of type CLKComplicationRingStyle
The style of the ring we want around our text. It can be Open or Closed.

Later we are also going to be asked for timeline entries of type CLKComplicationTime
lineEntry for the data that we provide to watchOS. So for every Data object, we need
to be able to create a timeline entry:

func timelineEntryForData(_ data: Data) -> CLKComplicationTimelineEntry{
 let template = templateForData(data)
 return CLKComplicationTimelineEntry(date: data.date as Date,
 complicationTemplate: template)
}

In the example shown here, we support forward and backward time travel (of type
CLKComplicationTimeTravelDirections), so let’s tell watchOS that:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

If you don’t want to support time travel, call the handler argument
with the value of CLKComplicationTimeTravelDirections.None.

At this point, the next thing we have to do is implement the getTimelineStartDate
ForComplication(_:withHandler:) method of CLKComplicationDataSource. This
method gets called on our delegate whenever watchOS wants to find out the begin‐
ning of the date/time range of our time travel. For our example, since we want to pro‐
vide 24 templates, one for each hour in the day, we tell watchOS the date of the first
template:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allDataForToday().first!.date as Date)
}

Similarly, for the getTimelineEndDateForComplication(_:withHandler:) method,
we provide the date of the last event:

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allDataForToday().last!.date)

7.8 Constructing Small Complications with Text and Images | 227

}

Complications can be displayed on the watch’s lock screen. Some complications might
contain sensitive data, so they might want to opt out of appearing on the lock screen.
For this, we have to implement the getPrivacyBehaviorForComplication(_:with
Handler:) method as well. We call the handler with an object of type CLKComplica
tionPrivacyBehavior, such as ShowOnLockScreen or HideOnLockScreen. Because we
don’t have any sensitive data, we show our complication on the lock screen:

func getPrivacyBehavior(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Now to the stuff that I like. The getCurrentTimelineEntryForComplication(_:with
Handler:) method will get called on our delegate whenever the runtime needs to get
the complication timeline (the template plus the date to display) for the complication
to display on. Do you remember the dataForNow() method that we wrote a while ago
as an extension on Collection? Well, we are going to use that now:

func getCurrentTimelineEntry(for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let data = dataProvider.allDataForToday().dataForNow(){
 handler(timelineEntryForData(data))
 } else {
 handler(nil)
 }

}

Always implement the handlers that the class gives you. If they
accept optional values and you don’t have any data to pass, just pass
nil.

Now we have to implement the getTimelineEntriesForComplication(_:before
Date:limit:beforeDate:) method of our complication delegate. This method gets
called whenever watchOS needs timeline entries for data before a certain date, with a
maximum of limit entries. So let’s say that you have 1,000 templates to return but the
limit is 100. Do not return more than 100 in that case. In our example, I will go
through all the data items that we have, filter them by their dates, find the ones com‐
ing before the given date (the beforeDate parameter), and create a timeline entry for
all of those with the timelineEntryForData(_:) method that we wrote:

228 | Chapter 7: Apple Watch

func getTimelineEntries(for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allDataForToday().filter{
 date.compare($0.date as Date) == .orderedDescending
 }.map{
 self.timelineEntryForData($0)
 }

 handler(entries)
}

Similarly, we have to implement the getTimelineEntriesForComplication(_:after
Date:limit:withHandler:) method to return the timeline entries after a certain date
(afterDate parameter):

func getTimelineEntries(for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allDataForToday().filter{
 date.compare($0.date as Date) == .orderedAscending
 }.map{
 self.timelineEntryForData($0)
 }

 handler(entries)

}

The getNextRequestedUpdateDateWithHandler(_:) method is the next method we
need to implement. This method gets called to ask us when we would like to be asked
for more data later. For our app we specify the next day, because we have already pro‐
vided all the data for today:

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date.endOfToday());
}

Last but not least, we have to implement the getPlaceholderTemplateForComplica
tion(_:withHandler:) method that we talked about before. This is where we pro‐
vide our placeholder template:

func getPlaceholderTemplate(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let data = dataProvider.allDataForToday().dataForNow(){
 handler(templateForData(data))
 } else {

7.8 Constructing Small Complications with Text and Images | 229

 handler(nil)
 }
}

Now when I run the app on my watch, because the time is 10:24 and the hour is 10,
our complication will show 10 and fill the circle around it to show how much of the
day has passed by 10:00 (see Figure 7-39).

Figure 7-39. Our complication on the bottom left is showing the hour

And if I engage time travel and move forward to 18:23, our complication updates
itself as well, showing 18 as the hour (see Figure 7-40).

230 | Chapter 7: Apple Watch

Figure 7-40. The user moves the time to the future and our complication updates itself
as well

7.9 Displaying Time Offsets in Complications
Problem
The data that you want to present has to be shown as an offset to a specific time. For
instance, you want to show the remaining minutes until the next train that the user
can take to get home.

Solution
Use the CLKRelativeDateTextProvider to provide your information inside a tem‐
plate. In this example, we are going to use CLKComplicationTemplateModular
LargeStandardBody, which is a large and modular template.

Discussion
In this recipe, let’s create a watch app that shows the next available train that the user
can take to get home. Trains can have different properties:

• Date and time of departure
• Train operator
• Type of train (high speed, commuter train, etc.)
• Service name (as shown on the time table)

7.9 Displaying Time Offsets in Complications | 231

In our example, I want the complication to look like Figure 7-41. The complication
shows the next train (a Coastal service) and how many minutes away that train
departs.

Figure 7-41. Complication shows that the next train leaves in 25 minutes

When you create your watchOS project, enable only the modular large complication
in the target settings (see Figure 7-42).

Figure 7-42. Enable only the modular large complication for this example

Now create your data model. It will be similar to what we did in Recipe 7.8, but this
time we want to provide train times. For the train type and the train company, create
enumerations:

232 | Chapter 7: Apple Watch

enum TrainType : String{
 case HighSpeed = "High Speed"
 case Commuter = "Commuter"
 case Coastal = "Coastal"
}

enum TrainCompany : String{
 case SJ = "SJ"
 case Southern = "Souther"
 case OldRail = "Old Rail"
}

These enumerations are of type String, so you can display them on
your UI easily without having to write a switch statement.

Then define a protocol to which your train object will conform. Protocol-oriented
programming offers many possibilities (see Recipe 5.12), so let’s do that now:

protocol OnRailable{
 var type: TrainType {get}
 var company: TrainCompany {get}
 var service: String {get}
 var departureTime: Date {get}
}

struct Train : OnRailable{
 let type: TrainType
 let company: TrainCompany
 let service: String
 let departureTime: Date
}

As we did in Recipe 7.8, we are going to define a data provider. In this example, we
create a few trains that depart at specific times with different types of services and
from different operators:

struct DataProvider{

 func allTrainsForToday() -> [Train]{

 var all = [Train]()

 let now = Date()
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)
 var comps = cal.dateComponents(units, from: now)

7.9 Displaying Time Offsets in Complications | 233

 // first train
 comps.hour = 6
 comps.minute = 30
 comps.second = 0
 let date1 = cal.date(from: comps)!
 all.append(Train(type: .Commuter, company: .SJ,
 service: "3296", departureTime: date1))

 // second train
 comps.hour = 9
 comps.minute = 57
 let date2 = cal.date(from: comps)!
 all.append(Train(type: .HighSpeed, company: .Southern,
 service: "2307", departureTime: date2))

 // third train
 comps.hour = 12
 comps.minute = 22
 let date3 = cal.date(from: comps)!
 all.append(Train(type: .Coastal, company: .OldRail,
 service: "3206", departureTime: date3))

 // fourth train
 comps.hour = 15
 comps.minute = 45
 let date4 = cal.date(from: comps)!
 all.append(Train(type: .HighSpeed, company: .SJ,
 service: "3703", departureTime: date4))

 // fifth train
 comps.hour = 18
 comps.minute = 19
 let date5 = cal.date(from: comps)!
 all.append(Train(type: .Coastal, company: .Southern,
 service: "8307", departureTime: date5))

 // sixth train
 comps.hour = 22
 comps.minute = 11
 let date6 = cal.date(from: comps)!
 all.append(Train(type: .Commuter, company: .OldRail,
 service: "6802", departureTime: date6))

 return all

 }

}

234 | Chapter 7: Apple Watch

Move now to the ComplicationController class of your watch extension. Here you
will provide watchOS with the data it needs to display your complication. The first
task is to extend Collection so that you can find the next train in the array that the
allTrainsForToday() function of DataProvider returns:

extension Collection where Iterator.Element : OnRailable {

 func nextTrain() -> Iterator.Element?{
 let now = Date()
 for d in self{
 if now.compare(d.departureTime as Date) == .orderedAscending{
 return d
 }
 }
 return nil
 }

}

And you need a data provider in your complication:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

For every train, you need to create a template that watchOS can display on the screen.
All templates are of type CLKComplicationTemplate, but don’t initialize that class
directly. Instead, create a template of type CLKComplicationTemplateModular
LargeStandardBody that has a header, two lines of text with the second line being
optional, and an optional image. The header will show a constant text (see
Figure 7-41), so instantiate it with type CLKSimpleTextProvider. For the first line of
text, you want to show how many minutes away the next train is, so that would
require a text provider of type CLKRelativeDateTextProvider as we talked about
before.

The initializer for CLKRelativeDateTextProvider takes in a parameter of type CLKRe
lativeDateStyle that defines the way the given date has to be shown. In our exam‐
ple, we use CLKRelativeDateStyle.Offset:

func templateForTrain(_ train: Train) -> CLKComplicationTemplate{
 let template = CLKComplicationTemplateModularLargeStandardBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: "Next train")

 template.body1TextProvider =
 CLKRelativeDateTextProvider(date: train.departureTime as Date,
 style: .offset,
 units: NSCalendar.Unit.hour.union(.minute))

7.9 Displaying Time Offsets in Complications | 235

 let secondLine = "\(train.service) - \(train.type)"

 template.body2TextProvider = CLKSimpleTextProvider(text: secondLine,
 shortText: train.type.rawValue)

 return template
}

The second line of text we are providing has a shortText alterna‐
tive. If the watch UI has no space to show our secondLine text, it
will show the shortText alternative.

We are going to need to provide timeline entries (date plus template) for every train
as well, so let’s create a helper method for that:

func timelineEntryForTrain(_ train: Train) -> CLKComplicationTimelineEntry{
 let template = templateForTrain(train)
 return CLKComplicationTimelineEntry(date: train.departureTime as Date,
 complicationTemplate: template)
}

When we are asked for the first and the last date of the data we provide, we read our
data provider’s array of trains and return the first and the last train’s dates,
respectively:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allTrainsForToday().first!.departureTime as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allTrainsForToday().last!.departureTime)
}

I want to allow the user to be able to time travel so that she can see the next train as
she changes the time with the digital crown. I also believe our data is not sensitive, so
I’ll allow viewing this data on the lock screen:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(for complication: CLKComplication,

236 | Chapter 7: Apple Watch

 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Regarding time travel, when asked for trains after and before a certain time, your
code should go through all the trains and filter out the times you don’t want dis‐
played, as we did in Recipe 7.8:

func getTimelineEntries(for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allTrainsForToday().filter{
 date.compare($0.departureTime as Date) == .orderedDescending
 }.map{
 self.timelineEntryForTrain($0)
 }

 handler(entries)
}

func getTimelineEntries(for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allTrainsForToday().filter{
 date.compare($0.departureTime as Date) == .orderedAscending
 }.map{
 self.timelineEntryForTrain($0)
 }

 handler(entries)

}

When the getCurrentTimelineEntryForComplication(_:withHandler:) method is
called on our delegate, we get the next train’s timeline entry and return it:

func getCurrentTimelineEntry(for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let train = dataProvider.allTrainsForToday().nextTrain(){
 handler(timelineEntryForTrain(train))
 } else {
 handler(nil)
 }

}

7.9 Displaying Time Offsets in Complications | 237

Because we provide data until the end of today, we ask watchOS to ask us for new
data tomorrow:

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date.endOfToday());
}

Last but not least, we provide our placeholder template:

func getPlaceholderTemplate(for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let data = dataProvider.allTrainsForToday().nextTrain(){
 handler(templateForTrain(data))
 } else {
 handler(nil)
 }
}

We saw an example of our app showing the next train (see Figure 7-41), but our app
can also participate in time travel (see Figure 7-43). The user can use the digital
crown on the watch to move forward or backward and see the next available train at
the new time.

Figure 7-43. Moving our complication backward in time

See Also
Recipe 7.2

238 | Chapter 7: Apple Watch

7.10 Displaying Dates in Complications
Problem
You want to display Date instances on your complications.

Solution
To solve this problem, use an instance of the CLKDateTextProvider class, which is a
subclass of CLKTextProvider, as your text provider.

We will use CLKComplicationTemplateModularLargeColumns (a
modular large template) for this recipe, so configure your watch
target to provide only large-modular templates (see Figure 7-42).

Discussion
Let’s develop a modular large complication that provides us with the name and the
date of the next three public holidays (see Figure 7-44). We are not formatting the
date ourselves. We leave it to watchOS to decide how to display the date by using an
instance of CLKDateTextProvider.

Figure 7-44. The next three public holidays, with their names and dates

Just as in Recipes 7.8 and 7.9, we are going to add a new class to our watch app called
DataProvider. In there, we are going to program all the holidays this year. Let’s start
off by defining what a holiday object looks like:

7.10 Displaying Dates in Complications | 239

protocol Holidayable{
 var date: Date {get}
 var name: String {get}
}

struct Holiday : Holidayable{
 let date: Date
 let name: String
}

In our data provider class, we start off by defining some holiday names:

struct DataProvider{

 private let holidayNames = [
 "Father's Day",
 "Mother's Day",
 "Bank Holiday",
 "Nobel Day",
 "Man Day",
 "Woman Day",
 "Boyfriend Day",
 "Girlfriend Day",
 "Dog Day",
 "Cat Day",
 "Mouse Day",
 "Cow Day",
]

 private func randomDay() -> Int{
 return Int(arc4random_uniform(20) + 1)
 }

 ...

Then we move on to providing our instances of Holiday:

func allHolidays() -> [Holiday]{

 var all = [Holiday]()

 let now = Date()
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)
 var comps = cal.dateComponents(units, from: now)

 var dates = [Date]()

 for month in 1...12{
 comps.day = randomDay()

240 | Chapter 7: Apple Watch

 comps.month = month
 dates.append(cal.date(from: comps)!)
 }

 var i = 0
 for date in dates{
 all.append(Holiday(date: date, name: holidayNames[i]))
 i += 1
 }

 return all

}

It’s worth noting that the allHolidays() function we just wrote simply goes through
all months inside this year, and sets the day of the month to a random day. So we will
get 12 holidays, one in each month, at a random day inside that month.

Over to our ComplicationController. When we get asked later when we would like
to provide more data or updated data to watchOS, we are going to ask for 10 minutes
in the future. So if our data changes, watchOS will have a chance to ask us for updated
information:

extension Date{
 func plus10Minutes() -> Date{
 return addingTimeInterval(10 * 60)
 }
}

Because the template we are going to provide allows a maximum of three items, I
would like to have methods on Array to return the second and the third items inside
the array, just like the prebuilt first property that the class offers:

extension Array{
 var second : Iterator.Element?{
 return count >= 1 ? self[1] : nil
 }
 var third : Iterator.Element?{
 return count >= 2 ? self[2] : nil
 }
}

DataProvider’s allHolidays() method returns 12 holidays. How about extending
the built-in array type to always give us the next three holidays? It would have to read
today’s date, go through the items in our array, compare the dates, and give us just the
upcoming three holidays:

7.10 Displaying Dates in Complications | 241

func minimum<T : Comparable>(_ items: T...) -> T{
 var result = items[0]
 for value in items{
 if value < result{
 result = value
 }
 }
 return result
}

extension Collection where Iterator.Element : Holidayable {

 // may contain less than three holidays
 func nextThreeHolidays() -> Array<Self.Iterator.Element>{

 let now = Date()

 let orderedArray = Array(self.filter{
 now.compare($0.date as Date) == .orderedAscending
 })

 let result = Array(orderedArray[0..<minimum(orderedArray.count, 3)])

 return result
 }

}

Now we start defining our complication:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

We need a method that can take in a Holiday object and give us a template of type
CLKComplicationTemplate for that. Our specific template for this recipe is of type
CLKComplicationTemplateModularLargeColumns. This template is like a 3×3 table. It
has three rows and three columns (see Figure 7-44). If we are at the end of the year
and we have no more holidays, we return a template that is of type CLKComplication
TemplateModularLargeStandardBody and tell the user that there are no more
upcoming holidays. Note that both templates have the words “ModularLarge” in their
name. Because we have specified in our target setting that we support only modular
large templates (see Figure 7-42), this example can return only templates that have
those words in their name:

242 | Chapter 7: Apple Watch

func templateForHoliday(_ holiday: Holiday) -> CLKComplicationTemplate{

 let next3Holidays = dataProvider.allHolidays().nextThreeHolidays()

 let headerTitle = "Next 3 Holidays"

 guard next3Holidays.count > 0 else{
 let template = CLKComplicationTemplateModularLargeStandardBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: headerTitle)
 template.body1TextProvider = CLKSimpleTextProvider(text: "Sorry!")
 return template
 }

 let dateUnits = NSCalendar.Unit.month.union(.day)
 let template = CLKComplicationTemplateModularLargeColumns()

 // first holiday
 if let firstHoliday = next3Holidays.first{
 template.row1Column1TextProvider =
 CLKSimpleTextProvider(text: firstHoliday.name)
 template.row1Column2TextProvider =
 CLKDateTextProvider(date: firstHoliday.date, units: dateUnits)
 }

 // second holiday
 if let secondHoliday = next3Holidays.second{
 template.row2Column1TextProvider =
 CLKSimpleTextProvider(text: secondHoliday.name)
 template.row2Column2TextProvider =
 CLKDateTextProvider(date: secondHoliday.date, units: dateUnits)
 }

 // third holiday
 if let thirdHoliday = next3Holidays.third{
 template.row3Column1TextProvider =
 CLKSimpleTextProvider(text: thirdHoliday.name)
 template.row3Column2TextProvider =
 CLKDateTextProvider(date: thirdHoliday.date, units: dateUnits)
 }

 return template
}

You need to provide a timeline entry (date plus template) for your holidays as well:

func timelineEntryForHoliday(_ holiday: Holiday) ->
 CLKComplicationTimelineEntry{
 let template = templateForHoliday(holiday)
 return CLKComplicationTimelineEntry(date: holiday.date as Date,
 complicationTemplate: template)
}

7.10 Displaying Dates in Complications | 243

Also provide the first and the last holidays:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allHolidays().first!.date as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allHolidays().last!.date)
}

Also support time travel and provide your content on the lock screen, because it is
not private:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Now let’s give watchOS information about previous and upcoming holidays:

func getTimelineEntries(
 for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allHolidays().filter{
 date.compare($0.date as Date) == .orderedDescending
 }.map{
 self.timelineEntryForHoliday($0)
 }

 handler(entries)
}

func getTimelineEntries(
 for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allHolidays().filter{
 date.compare($0.date as Date) == .orderedAscending
 }.map{

244 | Chapter 7: Apple Watch

 self.timelineEntryForHoliday($0)
 }

 handler(entries)

}

Last but not least, provide the upcoming three holidays when you are asked to pro‐
vide them now:

func getCurrentTimelineEntry(
 for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let first = dataProvider.allHolidays().nextThreeHolidays().first{
 handler(timelineEntryForHoliday(first))
 } else {
 handler(nil)
 }

}

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date().plus10Minutes());
}

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let holiday = dataProvider.allHolidays().nextThreeHolidays().first{
 handler(templateForHoliday(holiday))
 } else {
 handler(nil)
 }
}

See Also
Recipes 7.11 and 7.12

7.11 Displaying Times in Complications
Problem
You want to display a time on your watch UI and want it to look good regardless of
available space on the watch.

7.11 Displaying Times in Complications | 245

Solution
Provide your time (in form of Date) to an instance of CLKTimeTextProvider and use
it inside a template (see Figure 7-45). Our large and modular complication on the
center of the screen is showing the next pause that we can take at work, which hap‐
pens to be a coffee pause.

Figure 7-45. The time is displayed on the screen using an instance of CLKTime‐
TextProvider

In this recipe, we are going to rely a lot on what we have learned in
Recipe 7.8 and other complication recipes in this chapter. I suggest
reading Recipe 7.8 at least to get an idea of how our data provider
works. Otherwise, you will still be able to read this recipe; however,
I will skip over some details that I’ve already explained in Recipe
7.8.

Discussion
This recipe uses a large-modular template, so make sure that your project is set up for
that (see Figure 7-42). Here, I want to build an app that shows the different breaks or
pauses that I can take at work, and when they occur—for instance, when the first
pause is after I get to work, when lunch happens, when the next pause between lunch
and dinner is, and if I want to have dinner as well, when that should happen.

So we have breaks at work and we need to define them. Create a Swift file in your
watch extension and call it DataProvider. In there, define your break:

import Foundation

protocol Pausable{

246 | Chapter 7: Apple Watch

 var name: String {get}
 var date: Date {get}
}

struct PauseAtWork : Pausable{
 let name: String
 let date: Date
}

Now in your DataProvider structure, create four pauses that we can take at work at
different times and provide them as an array:

struct DataProvider{

 func allPausesToday() -> [PauseAtWork]{

 var all = [PauseAtWork]()

 let now = Date()
 let cal = Calendar.current

 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)

 var comps = cal.dateComponents(units, from: now)
 comps.calendar = cal
 comps.minute = 30

 comps.hour = 11
 all.append(
 PauseAtWork(name: "Coffee", date: comps.date!))

 comps.minute = 30
 comps.hour = 14
 all.append(
 PauseAtWork(name: "Lunch", date: comps.date!))

 comps.minute = 0
 comps.hour = 16
 all.append(
 PauseAtWork(name: "Tea", date: comps.date!))

 comps.hour = 17
 all.append(
 PauseAtWork(name: "Dinner", date: comps.date!))

 return all

 }

}

7.11 Displaying Times in Complications | 247

Here we have just obtained the date and time of today and then gone from coffee
break in the morning to dinner in the evening, adding each pause to the array. The
method is called allPausesToday(), and we are going to invoke it from our watch
complication.

Before, we created a protocol called Pausable and now we have all our pauses in an
array. When we are asked to provide a template for the next pause to show in the
complication, we have to get the current time and find the pause whose time is after
the current time. So let’s bundle that up by extending Collection like we have done
in other recipes in this chapter:

extension Collection where Iterator.Element : Pausable {

 func nextPause() -> Self.Iterator.Element?{
 let now = Date()

 for pause in self{
 if now.compare(pause.date as Date) == .orderedAscending{
 return pause
 }
 }

 return nil
 }

}

In our complication now, we instantiate our data provider:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

For every pause that we want to display to the user (see Figure 7-45), we need to pro‐
vide a template of type CLKComplicationTemplate to the runtime. We never instanti‐
ate that class directly. Instead, we return an instance of a subclass of that class. In this
particular example, we display an instance of CLKComplicationTemplateModular
LargeTallBody. However, if there are no more pauses to take at work (e.g., if time is
21:00 and we are no longer at work), we display a placeholder to the user to tell her
there are no more pauses. The template for that is of type CLKComplicationTemplate
ModularLargeStandardBody. The difference between the two templates is visible if
you read their names. We set the time on our template by setting the bodyTextPro
vider property of our CLKComplicationTemplateModularLargeTallBody instance:

func templateForPause(_ pause: PauseAtWork) -> CLKComplicationTemplate{

 guard let nextPause = dataProvider.allPausesToday().nextPause() else{

248 | Chapter 7: Apple Watch

 let template = CLKComplicationTemplateModularLargeStandardBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: "Next Break")
 template.body1TextProvider = CLKSimpleTextProvider(text: "None")
 return template
 }

 let template = CLKComplicationTemplateModularLargeTallBody()
 template.headerTextProvider = CLKSimpleTextProvider(text: nextPause.name)
 template.bodyTextProvider =
 CLKTimeTextProvider(date: nextPause.date as Date)

 return template
}

We also have to provide some of the other delegate methods of CLKComplicationData
Source, such as the timeline entry (date plus template) for every pause that we can
take at work. We also need to support time travel for this example. On top of that, our
information is not sensitive, so when asked whether we want to display our complica‐
tion on the lock screen, we happily say yes:

func timelineEntryForPause(_ pause: PauseAtWork) ->
 CLKComplicationTimelineEntry{
 let template = templateForPause(pause)
 return CLKComplicationTimelineEntry(date: pause.date as Date,
 complicationTemplate: template)
}

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

When asked the beginning and the end range of dates for our complications, we will
return the dates for the first and the last pause that we want to take at work today.
Remember, in this complication, we will return all the pauses that we can take at work
today. When the time comes to display the pauses to take at work tomorrow, we will
provide a whole set of new pauses:

7.11 Displaying Times in Complications | 249

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allPausesToday().first!.date as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allPausesToday().last!.date)
}

When the runtime calls the getTimelineEntries(for:before:limit:withHan

dler:) method, provide all the pauses that are available before the given date:

func getTimelineEntries(
 for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allPausesToday().filter{
 date.compare($0.date as Date) == .orderedDescending
 }.map{
 self.timelineEntryForPause($0)
 }

 handler(entries)
}

Similarly, when the getTimelineEntries(for:after:limit:withHandler:) method
is called, return all the available pauses after the given date:

func getTimelineEntries(
 for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allPausesToday().filter{
 date.compare($0.date as Date) == .orderedAscending
 }.map{
 self.timelineEntryForPause($0)
 }

 handler(entries)

}

In the getCurrentTimelineEntry(for:withHandler:) method, you will be asked to
provide the template for the current data (the next pause) to show on screen. We
already have a method on Collection called nextPause(), so let’s use that to provide
a template to watchOS:

250 | Chapter 7: Apple Watch

func getCurrentTimelineEntry(
 for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let pause = dataProvider.allPausesToday().nextPause(){
 handler(timelineEntryForPause(pause))
 } else {
 handler(nil)
 }

}

Because in a typical watch app our data would probably come from a backend, we
would like the runtime to task us for up-to-date information as soon as possible, but
not too soon. So let’s do that after 10 minutes:

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date().plus10Minutes());
}

Last but not least, we also need to provide a placeholder template when the user is
adding our complication to her watch face:

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let pause = dataProvider.allPausesToday().nextPause(){
 handler(templateForPause(pause))
 } else {
 handler(nil)
 }
}

See Also
Recipe 7.2

7.12 Displaying Time Intervals in Complications
Problem
You want to display a time interval (start date–end date) on your watchOS UI (see
Figure 7-46). Our template shows today’s meetings on the screen. Right now, it’s
brunch time, so the screen shows the description and location of where we are going
to have brunch, along with the time interval of the brunch (start–end).

7.12 Displaying Time Intervals in Complications | 251

Figure 7-46. Meeting with start and end times

Solution
Use an instance of CLKTimeIntervalTextProvider as your text provider (see
Figure 7-46).

This recipe is an extension of others we’ve already looked at, partic‐
ularly Recipes 7.10 and 7.11.

Discussion
Let’s say that we want to have an app that shows us all our meetings today. Every
meeting has the following properties:

• Start and end times (the time interval)
• Name (e.g., “Brunch with Sarah”)
• Location

Because text providers of type CLKSimpleTextProvider accept a short text in addi‐
tion to the full text, we also have a short version of the location and the name. For
instance, the location can be “Stockholm Central Train Station,” whereas the short
version of this could be “Central Station” or even “Centralen” in Swedish, which
means the center. So let’s define this meeting object:

252 | Chapter 7: Apple Watch

protocol Timable{
 var name: String {get}
 var shortName: String {get}
 var location: String {get}
 var shortLocation: String {get}
 var startDate: Date {get}
 var endDate: Date {get}
 var previous: Timable? {get}
}

struct Meeting : Timable{
 let name: String
 let shortName: String
 let location: String
 let shortLocation: String
 let startDate: Date
 let endDate: Date
 let previous: Timable?
}

Create a Swift file in your project called DataProvider. Put all the meetings for today
in there and return an array:

struct DataProvider{

 func allMeetingsToday() -> [Meeting]{

 var all = [Meeting]()

 let oneHour: TimeInterval = 1 * 60.0 * 60

 let now = Date()
 let cal = Calendar.current
 let unitsArray: [Calendar.Component] = [.year, .month, .day]
 let units = Set(unitsArray)
 var comps = cal.dateComponents(units, from: now)
 comps.calendar = cal
 comps.minute = 30

 comps.hour = 11
 let meeting1 = Meeting(
 name: "Brunch with Sarah", shortName: "Brunch",
 location: "Stockholm Central", shortLocation: "Central",
 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour), previous: nil)
 all.append(meeting1)

 comps.minute = 30
 comps.hour = 14
 let meeting2 = Meeting(
 name: "Lunch with Gabriella", shortName: "Lunch",
 location: "At home", shortLocation: "Home",

7.12 Displaying Time Intervals in Complications | 253

 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour),
 previous: meeting1)
 all.append(meeting2)

 comps.minute = 0
 comps.hour = 16
 let meeting3 = Meeting(
 name: "Snack with Leif", shortName: "Snack",
 location: "Flags Cafe", shortLocation: "Flags",
 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour),
 previous: meeting2)
 all.append(meeting3)

 comps.hour = 17
 let meeting4 = Meeting(
 name: "Dinner with Family", shortName: "Dinner",
 location: "At home", shortLocation: "Home",
 startDate: comps.date!,
 endDate: comps.date!.addingTimeInterval(oneHour),
 previous: meeting3)
 all.append(meeting4)

 return all

 }

}

In your complication class, extend Collection so that it can return the upcoming
meeting:

extension Collection where Iterator.Element : Timable {

 func nextMeeting() -> Self.Iterator.Element?{
 let now = Date()

 for meeting in self{
 if now.compare(meeting.startDate as Date) == .orderedAscending{
 return meeting
 }
 }

 return nil
 }

}

254 | Chapter 7: Apple Watch

I have extended Collection, but only if the items are Timable. I
explained this technique in Recipe 5.12.

In your complication handler, create an instance of the data provider:

class ComplicationController: NSObject, CLKComplicationDataSource {

 let dataProvider = DataProvider()

 ...

Our template is of type CLKComplicationTemplateModularLargeStandardBody,
which has a few important properties that we set as follows:

headerTextProvider

Shows the time range for the meeting.

body1TextProvider

Shows the name of the meeting.

body2TextProvider

Shows the location of the meeting.

To display the time range of the meeting, instantiate CLKTimeIntervalTextProvider:

func templateForMeeting(_ meeting: Meeting) -> CLKComplicationTemplate{

 let template = CLKComplicationTemplateModularLargeStandardBody()

 guard let nextMeeting = dataProvider.allMeetingsToday().nextMeeting() else{
 template.headerTextProvider = CLKSimpleTextProvider(text: "Next Break")
 template.body1TextProvider = CLKSimpleTextProvider(text: "None")
 return template
 }

 template.headerTextProvider =
 CLKTimeIntervalTextProvider(start: nextMeeting.startDate as Date,
 end: nextMeeting.endDate as Date)

 template.body1TextProvider =
 CLKSimpleTextProvider(text: nextMeeting.name,
 shortText: nextMeeting.shortName)

 template.body2TextProvider =
 CLKSimpleTextProvider(text: nextMeeting.location,
 shortText: nextMeeting.shortLocation)

 return template

7.12 Displaying Time Intervals in Complications | 255

}

Using this method, you can also create timeline entries (date plus template). In this
example, I set every new event’s start date to the end date of the previous event (if it is
available). That way, as soon as the current ongoing meeting ends, the next meeting
shows up on the list:

If the event has no previous events, its timeline entry date will be its
start date, instead of the end date of the previous event.

func timelineEntryForMeeting(
 _ meeting: Meeting) -> CLKComplicationTimelineEntry{
 let template = templateForMeeting(meeting)

 let date = meeting.previous?.endDate ?? meeting.startDate
 return CLKComplicationTimelineEntry(date: date as Date,
 complicationTemplate: template)
}

Let’s also participate in time travel and show our content on the lock screen as well:

func getSupportedTimeTravelDirections(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTimeTravelDirections) -> Void) {
 handler([.forward, .backward])
}

func getPrivacyBehavior(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationPrivacyBehavior) -> Void) {
 handler(.showOnLockScreen)
}

Then we have to provide the date range for which we have available meetings. The
start of the range is the start date of the first meeting, and the end date is the end date
of the last meeting:

func getTimelineStartDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allMeetingsToday().first!.startDate as Date)
}

func getTimelineEndDate(for complication: CLKComplication,
 withHandler handler: @escaping (Date?) -> Void) {
 handler(dataProvider.allMeetingsToday().last!.endDate)

256 | Chapter 7: Apple Watch

}

We’ll also be asked to provide all the available meetings before a certain date, so let’s
do that:

func getTimelineEntries(
 for complication: CLKComplication,
 before date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allMeetingsToday().filter{
 date.compare($0.startDate as Date) == .orderedDescending
 }.map{
 self.timelineEntryForMeeting($0)
 }

 handler(entries)
}

Similarly, we have to provide all our available meetings after a given date:

func getTimelineEntries(
 for complication: CLKComplication,
 after date: Date, limit: Int,
 withHandler handler: @escaping (([CLKComplicationTimelineEntry]?) -> Void)) {

 let entries = dataProvider.allMeetingsToday().filter{
 date.compare($0.startDate as Date) == .orderedAscending
 }.map{
 self.timelineEntryForMeeting($0)
 }

 handler(entries)

}

Last but not least, provide your placeholder template, the template for now, and the
next time we would like watchOS to ask us for updated information:

func getCurrentTimelineEntry(
 for complication: CLKComplication,
 withHandler handler: @escaping ((CLKComplicationTimelineEntry?) -> Void)) {

 if let meeting = dataProvider.allMeetingsToday().nextMeeting(){
 handler(timelineEntryForMeeting(meeting))
 } else {
 handler(nil)
 }

}

7.12 Displaying Time Intervals in Complications | 257

func getNextRequestedUpdateDate(handler: @escaping (Date?) -> Void) {
 handler(Date().plus10Minutes());
}

func getPlaceholderTemplate(
 for complication: CLKComplication,
 withHandler handler: @escaping (CLKComplicationTemplate?) -> Void) {
 if let pause = dataProvider.allMeetingsToday().nextMeeting(){
 handler(templateForMeeting(pause))
 } else {
 handler(nil)
 }
}

We coded the plus10Minutes() method on Date in Recipe 7.10.

See Also
Recipe 7.10

7.13 Recording Audio in Your Watch App
Problem
You want to allow your users to record audio while inside your watch app, and you
want to get access to the recorded audio.

Solution
To enable users to record audio in your watch app, use the presentAudioRecorder
Controller(withOutputURL:preset:options:completion:) method of your WKIn
terfaceController class to present a system dialog that can take care of audio
recording. If you want to dismiss the dialog, use the dismissAudioRecordingControl
ler() method of your controller.

The options parameter of the presentAudioRecorderControllerWithOutpu

tURL(_:preset:options:completion:) method accepts a dictionary that can con‐
tain the following keys:

WKAudioRecorderControllerOptionsActionTitleKey

This key, of type String, will be the title of our recorder.

258 | Chapter 7: Apple Watch

WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey

This key, of type NSNumber, contains a Bool value that dictates whether the title
should always be shown on the recorder.

WKAudioRecorderControllerOptionsAutorecordKey

This key, of type NSNumber, contains a Bool value to indicate whether recording
should begin automatically when the dialog is presented.

WKAudioRecorderControllerOptionsMaximumDurationKey

This key, of type NSNumber, contains a TimeInterval value to dictate the maximum
duration of the audio content.

Discussion
For this recipe, we are going to create a watch app whose UI looks like that shown in
Figure 7-47). It holds a label to show our current status (started recording, failed
recording, etc.) and a button that, when pressed, will show our recording dialog.

Figure 7-47. Label for status and button

Hook the label up to your code with the name statusLbl. Then hook your record
button to your interface under a method named record(). Your interface code
should look like this now:

7.13 Recording Audio in Your Watch App | 259

class InterfaceController: WKInterfaceController {

 @IBOutlet var statusLbl: WKInterfaceLabel!

 ...

Define the URL where your recording will be saved:

var url: URL{
 let fm = FileManager()
 let url = try! fm.url(for: .musicDirectory,
 in: FileManager.SearchPathDomainMask.userDomainMask,
 appropriateFor: nil, create: true)
 .appendingPathComponent("recording")
 return url
}

Also, because the completion block of our recording screen might not get called on
the main thread, create a variable that can set the text inside our status label on the
main thread:

var status = ""{
 willSet{
 DispatchQueue.main.async{
 self.statusLbl.setText(newValue)
 }
 }
}

When your record button is pressed, construct your options for the recording:

let oneMinute: TimeInterval = 1 * 60

let yes = NSNumber(value: true)
let no = NSNumber(value: false)

let options = [
 WKAudioRecorderControllerOptionsActionTitleKey : "Audio Recorder",
 WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey : yes,
 WKAudioRecorderControllerOptionsAutorecordKey : no,
 WKAudioRecorderControllerOptionsMaximumDurationKey : oneMinute
] as [AnyHashable : Any]

Last but not least, present your audio recorder to the user and then set the status
accordingly:

presentAudioRecorderController(
 withOutputURL: url,
 preset: WKAudioRecorderPreset.wideBandSpeech,
 options: options){
 success, error in

260 | Chapter 7: Apple Watch

 defer{
 self.dismissAudioRecorderController()
 }

 guard success && error == nil else{
 self.status = "Failed to record"
 return
 }

 self.status = "Successfully recorded"

}

See Also
Recipe 7.14

7.14 Playing Local and Remote Audio and Video in Your
Watch App
Problem
You want to play audio or video files, whether they are saved locally or online.

Solution
Use the presentMediaPlayerControllerWithURL(_:options:completion:)

instance method of your interface controller (WKInterfaceController). Close the
media player with the dismissMediaPlayerController() method.

Discussion
The first parameter to this method is just the URL from which the media must be
loaded. The options parameter is a dictionary that can have the following keys:

WKMediaPlayerControllerOptionsAutoplayKey

A Boolean value (wrapped inside an NSNumber instance) that dictates whether the
media should autoplay when it is opened. This is set to false by default.

WKMediaPlayerControllerOptionsStartTimeKey

The number of seconds (of type TimeInterval) into the media where you want to
start it.

7.14 Playing Local and Remote Audio and Video in Your Watch App | 261

WKMediaPlayerControllerOptionsVideoGravityKey

A value of type WKVideoGravity (place its raw integer value in your dictionary) that
dictates the scaling of the video. You can, for instance, specify WKVideoGravity.Resi
zeAspectFill.

WKMediaPlayerControllerOptionsLoopsKey

A Boolean value (wrapped inside NSNumber) that specifies whether the media has to
loop automatically. The default is false.

For this recipe, we are going to create a UI similar to that in Recipe 7.13 (see
Figure 7-47). Our UI looks like Figure 7-48.

Figure 7-48. Label to show the current status, and a button to start the playback

Hook up the label to an outlet called statusLbl and the action of the button to a
method called play(). Then create a variable in your code called status of type
String, just as we did in Recipe 7.13. In the play method, first construct your URL:

guard let url = URL(string: "http://localhost:8888/video.mp4") else{
 status = "Could not create url"
 return
}

I am running MAMP (free version) on my computer and I’m host‐
ing a video called video.mp4. You can download lots of public
domain files by just searching online.

Now construct your options dictionary. I want the media player to do the following:

262 | Chapter 7: Apple Watch

• Autoplay my video
• Loop the video
• Resize the video so that it fills the entire screen
• Start at 4 seconds into the video:

let gravity = WKVideoGravity.resizeAspectFill.rawValue

let options = [
 WKMediaPlayerControllerOptionsAutoplayKey : NSNumber(value: true),
 WKMediaPlayerControllerOptionsStartTimeKey : 4.0 as TimeInterval,
 WKMediaPlayerControllerOptionsVideoGravityKey : gravity,
 WKMediaPlayerControllerOptionsLoopsKey : NSNumber(value: true),
] as [AnyHashable : Any]

Now start the media player and handle any possible errors:

presentMediaPlayerController(with: url, options: options) {
 didPlayToEnd, endTime, error in

 self.dismissMediaPlayerController()

 guard error == nil else{
 self.status = "Error occurred \(error)"
 return
 }

 if didPlayToEnd{
 self.status = "Played to end of the file"
 } else {
 self.status = "Did not play to end of file. End time = \(endTime)"
 }

}

See Also
Recipe 7.13

7.14 Playing Local and Remote Audio and Video in Your Watch App | 263

CHAPTER 8

Contacts

The Contacts framework is for those who want to import, show, select, modify, and
save contacts on a user’s iOS device. This framework is fully compatible with Swift’s
lingo and is very easy to work with. At the heart of the Contacts framework is the
CNContact object, which represents a contact. You get access to the Contacts database
using the CNContactStore class.

Every time you want to access the address book, whether you are trying to create a
new contact or fetch an existing one, you need to ensure that you have sufficient
access to the address book. You can check your access privileges using the authoriza
tionStatus(for:) class method of your contact store. This method takes in one
parameter of type CNEntityType. You can pass the value of Contacts to this method,
for instance, to ask for access to the user’s contacts. If you do not have access, you can
use the requestAccess(for:completionHandler:) method of your contact store to
request access.

The concept of a partial contact is important enough to cover now as well. A partial
contact is a contact whose properties have not all been fetched from the store yet. For
instance, perhaps you can fetch only a contact’s first and last name, not her profile
photo or email addresses. This is a partial contact. A partial contact’s other informa‐
tion—such as email addresses—that has not been fetched yet can later be fetched
from the store using her identifier (part of the CNContact object).

Some of the classes that are part of the Contacts framework have immutable and
mutable flavors. An example is the CNContact and the CNMutableContact classes. The
former is a contact that you have fetched from the store and just use in your app,
while the latter is a contact that you have created in your app and want to save into
the store.

265

Contact objects on iOS are thread-safe. I suggest that you do all your fetch operations
on a background thread. Fetch the contacts in the background and safely display your
contacts on your UI by accessing the same contact object on the main thread.

In this chapter, it’s best to always reset the contents of your address
book on the simulator by resetting the simulator before testing the
code in each recipe, unless I’ve explicitly specified not to. This is
just to make sure that every recipe is working with a clear state of
the address book database. You can find the Contacts app on your
simulator. It should look like Figure 8-1 in a clear state.

Figure 8-1. Clean state of the Contacts app on the simulator

8.1 Creating Contacts
Problem
You want to insert a new contact into the Contacts database.

266 | Chapter 8: Contacts

Solution
Follow these steps:

1. Request access to the database if you don’t already have it.
2. Create an instance of the CNMutableContact class.
3. Set its various properties, such as givenName, middleName, and familyName.
4. Instantiate CNSaveRequest, call the addContact(_:toContainerWithIdenti

fier:) method on it, and pass your contact to it. Set the container ID to nil.
5. Once you have the request, execute it on your store instance using execute(_:).

Discussion
Create a single view app and first ask for permission to access contacts on the user’s
device:

// this is a separate helper class
public final class ContactAuthorizer{

 public class func authorizeContacts(completionHandler
 : @escaping (_ succeeded: Bool) -> Void){

 switch CNContactStore.authorizationStatus(for: .contacts){
 case .authorized:
 completionHandler(true)
 case .notDetermined:
 CNContactStore().requestAccess(for: .contacts){succeeded, err in
 completionHandler(err == nil && succeeded)
 }
 default:
 completionHandler(false)
 }

 }

}

// put this in your app delegate
func application(
 _ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]? = nil) -> Bool {

 ContactAuthorizer.authorizeContacts {succeeded in
 if succeeded{
 self.createContact()
 } else{
 print("Not handled")
 }

8.1 Creating Contacts | 267

 }

 return true
}

After I get the permission here, I am calling the createContact() method that we are
just about to code. Also, I am using a property on my class that is my instance of the
contact store:

var store = CNContactStore()

In the createContact() method, first let’s create the basics of the contact object with
the basic name and such:

let fooBar = CNMutableContact()
fooBar.givenName = "Foo"
fooBar.middleName = "A."
fooBar.familyName = "Bar"
fooBar.nickname = "Fooboo"

Then we set the profile photo:

// profile photo
if let img = UIImage(named: "apple"),
 let data = UIImagePNGRepresentation(img){
 fooBar.imageData = data
}

I’ve included a profile photo that I can use in the app. You don’t
have to do that if you don’t want to. This code will work even if you
don’t have a profile photo by jumping over this section if the image
cannot be found.

Now I am going to set the user’s phone numbers by setting an array of CNLabeled
Value on the phoneNumbers property of the contact object. Labeled values are instan‐
ces of the aforementioned class and can have a label and a value. The label is a string
such as CNLabelHome or CNLabelWork, and the value, in case of a phone number, is an
instance of the CNPhoneNumber class:

// set the phone numbers
let homePhone = CNLabeledValue(label: CNLabelHome,
 value: CNPhoneNumber(stringValue: "123"))
let workPhone = CNLabeledValue(label: CNLabelWork,
 value: CNPhoneNumber(stringValue: "567"))
fooBar.phoneNumbers = [homePhone, workPhone]

268 | Chapter 8: Contacts

I am then going to set the email addresses for this person by manipulating the
emailAddresses property of the contact. This property also accepts an array of CNLa
beledValue and the values of this labeled object are the email addresses, as string
objects:

// set the email addresses
let homeEmail = CNLabeledValue(label: CNLabelHome,
 value: "foo@home" as NSString)
let workEmail = CNLabeledValue(label: CNLabelWork,
 value: "bar@home" as NSString)
fooBar.emailAddresses = [homeEmail, workEmail]

Next up, I am going to write some information in this contact about her job using the
jobTitle, organizationName, and departmentName properties:

// job info
fooBar.jobTitle = "Chief Awesomeness Manager (CAM)"
fooBar.organizationName = "Pixolity"
fooBar.departmentName = "IT"

After that, I want to set the Facebook and Twitter profiles of this user. I do that by
setting the value of the socialProfiles array on the contact. This array takes items
of type CNLabeledValue, and the value of each one of these labeled objects should be
of type CNSocialProfile. You can set the service for each of the profiles using con‐
stants such as the following:

• CNSocialProfileServiceFacebook

• CNSocialProfileServiceTwitter

• CNSocialProfileServiceLinkedIn

• CNSocialProfileServiceFlickr

// social media
let facebookProfile = CNLabeledValue(label: "Facebook", value:
 CNSocialProfile(
 urlString: nil, username: "foobar",
 userIdentifier: nil, service: CNSocialProfileServiceFacebook))

let twitterProfile = CNLabeledValue(label: "Twitter", value:
 CNSocialProfile(
 urlString: nil, username: "foobar",
 userIdentifier: nil, service: CNSocialProfileServiceTwitter))

fooBar.socialProfiles = [facebookProfile, twitterProfile]

I’m also going to set some instant messaging information for my contact, such as her
Skype and AIM information. To do this, I need to set the value of the
instantMessageAddresses property, which takes in an array of, you guessed it,

8.1 Creating Contacts | 269

CNLabeledValue. Each of these values should be of type CNInstantMessageAddress,
and the service inside each message address object can be a string such as:

• CNInstantMessageServiceSkype

• CNInstantMessageServiceAIM

• CNInstantMessageServiceMSN

• CNInstantMessageServiceYahoo

// instant messaging
let skypeAddress = CNLabeledValue(label: "Skype", value:
 CNInstantMessageAddress(username: "foobar",
 service: CNInstantMessageServiceSkype))
let aimAddress = CNLabeledValue(label: "AIM", value:
 CNInstantMessageAddress(username: "foobar",
 service: CNInstantMessageServiceAIM))
fooBar.instantMessageAddresses = [skypeAddress, aimAddress]

I can also set some notes on my contact using the note property that is just a string:

// some additional notes
fooBar.note = "Some additional notes"

Next, I need to set the birthday property. This is a property of type DateComponents:

// birthday
var birthday = DateComponents()
birthday.year = 1980
birthday.month = 9
birthday.day = 27
fooBar.birthday = birthday

Every contact also has a property named dates that can contain dates such as the
user’s anniversary. This is an array of CNLabeledValue objects. Here I am going to set
the anniversary for this user:

// anniversary
let anniversaryDate = NSDateComponents()
anniversaryDate.month = 6
anniversaryDate.day = 13

let anniversary = CNLabeledValue(label: "Anniversary",
 value: anniversaryDate)

fooBar.dates = [anniversary]

270 | Chapter 8: Contacts

I did not set the year for the anniversary because an anniversary is
a repeating event.

I am finally done with my contact and will save her into the contact store:

// saving my contact to the contact store
let request = CNSaveRequest()
request.add(fooBar, toContainerWithIdentifier: nil)
do{
 try store.execute(request)
 print("Successfully stored the contact")
} catch let err{
 print("Failed to save the contact. \(err)")
}

If you run this code n times on the same device, you will get n of
the same contacts. The Contacts database does not prevent multi‐
ple saves on the same contact. They become different contacts
eventually. It is our responsibility to avoid this.

And now my contact appears in the list (Figure 8-2).

8.1 Creating Contacts | 271

Figure 8-2. The new contact in all its glory

8.2 Searching for Contacts
Problem
You want to search the contacts available on a device.

272 | Chapter 8: Contacts

Solution
There are various ways of fetching contacts from a store. Here are some of them, in
no particular order:

unifiedContacts(matching:keysToFetch:) method of CNContactStore
This allows you to fetch all contacts that match a certain predicate.

enumerateContacts(with:usingBlock:) method of CNContactStore
This allows you to enumerate through all contacts that match a fetch request. The
fetch request can have a predicate if you want it to. Otherwise, you can use this
method with a request object that does not have a predicate, in order to fetch all
contacts.

unifiedContact(withIdentifier:keysToFetch:) method of CNContactStore
This fetches only a single contact with a given identifier, if it can find one. Use
this method to fetch properties for a partially fetched contact.

The term “unified contacts” is iOS’s way of showing that the contact
objects that we get are intelligently merged from different sources,
if available. If you have “Foo bar” in your contacts and then you
sign into Facebook with its iOS app and bring your Facebook con‐
tacts into your phone, and you have “Foo bar” on Facebook as well,
iOS will merge that contact for you into one contact. Foo bar is
now a unified contact.

Discussion
Let’s have a look at a few examples. First, let’s write some code that will find anybody
in our address book whose name matches “John”. We start off by creating a predicate
using the predicateForContactsMatchingName(_:) class method of the CNContact
class:

let predicate = CNContact.predicateForContacts(matchingName: "john")

Then we are going to specify that we need the first and the last name of the contacts
that match that name:

let toFetch = [CNContactGivenNameKey as NSString, CNContactFamilyNameKey
 as NSString]

Once that is done, use the unifiedContacts(matching:keysToFetch:) method of
the contact store to fetch the contacts matching our predicate. Go through all match‐
ing contacts and print their first and last name alongside their identifier property:

8.2 Searching for Contacts | 273

do{
 let contacts = try store.unifiedContacts(
 matching: predicate, keysToFetch: toFetch)

 for contact in contacts{
 print(contact.givenName)
 print(contact.familyName)
 print(contact.identifier)
 }

} catch let err{
 print(err)
}

To ensure that I am doing the search on a background thread, I’ve
wrapped this code inside OperationQueue().addOperation(_:). I
suggest that you do the same.

Every contact object has a handy property called identifier. This identifier usually
looks like a UUID. If you keep an identifier to a contact, you can always refetch that
contact using the unifiedContact(withIdentifier:keysToFetch:) method of
CNContactStore. You do not have to explicitly fetch the identifier property of a
contact. This identifier is fetched whether you want it or not, for every contact that
you get from a store. So you can omit that in your keysToFetch.

Let’s look at another example. This time we are going to do the same thing that we did
in the previous example, but instead use the CNContactFetchRequest class mixed
with the enumerateContacts(with:usingBlock:) method of CNContactStore to
achieve the same results.

First, again I am going to specify what properties in the contacts I am interested in
reading:

let toFetch = [CNContactGivenNameKey as NSString, CNContactFamilyNameKey
 as NSString]

I will now construct my fetch request using these properties:

let request = CNContactFetchRequest(keysToFetch: toFetch)
request.predicate = CNContact.predicateForContacts(matchingName: "john")

Then I will fetch the contacts with the aforementioned method:

do{
 try store.enumerateContacts(with: request) {
 contact, stop in

274 | Chapter 8: Contacts

 print(contact.givenName)
 print(contact.familyName)
 print(contact.identifier)
 }
} catch let err{
 print(err)
}

The block that you pass to this method has two parameters. The first is the contact.
The second is a Boolean pointer that you can set to true whenever you want to exit
this enumeration. You can do that like this:

stop.memory = true

How about looking at another example. Let’s say that you want to fetch all contacts
whose name is similar to “Foo.” You then want to find out whether they have a profile
photo. If they do, we will refetch those contacts and get their profile photo. The pur‐
pose of this exercise is to show you that if you are interested in contacts with photos,
it is best to first see whether they have photos, and only if they do, fetch their profile
photos. I’ll start off by defining the keys that I want to fetch and I ask for a key that
tells me whether a contact has a photo:

var toFetch = [CNContactImageDataAvailableKey as NSString]

Then I will define my predicate:

let predicate = CNContact.predicateForContacts(matchingName: "foo")

Next, I will find all contacts that match my predicate:

let contacts = try store.unifiedContacts(matching: predicate,
 keysToFetch: toFetch)

The previous statement must be wrapped inside a do{}catch{}
block; otherwise, it won’t compile. I am not writing that statement
here in the book because I want to explain the code step by step. If I
paste the do{}catch{}, I’ll have to paste the whole code in a gigan‐
tic block and that’s not very good.

Now that we have our contacts, let’s go through them and find only the ones that do
have an image:

for contact in contacts{
 guard contact.imageDataAvailable else{
 continue
 }

8.2 Searching for Contacts | 275

 ...

The CNContact class offers an isKeyAvailable(_:) method that returns true or false
depending on whether or not a given key is available for access on a contact. So here I
am going to ask whether my contacts have images (the CNContactImageDataKey key)
and if they do, I am going to read the image:

// have we fetched image data?
if contact.isKeyAvailable(CNContactImageDataKey){
 print(contact.givenName)
 print(contact.identifier)
 print(UIImage(data: contact.imageData!))
}
else {

 ...

This example is for demonstration purposes—none of our contacts
at this point will have images because we have not fetched the
images yet in our original fetch request. The primary goal here is to
teach you how to use the isKeyAvailable(_:) method.

If the contacts don’t have their image data available at this point (which they won’t!),
we will use the identifier of each one of them and re-fetch them, but this time by
specifying that we need the image data as well:

else {

 toFetch += [CNContactImageDataKey as NSString,
 CNContactGivenNameKey as NSString]
 do{
 let contact = try store.unifiedContact(
 withIdentifier: contact.identifier, keysToFetch: toFetch)
 print(contact.givenName)
 print(UIImage(data: contact.imageData!))
 print(contact.identifier)
 } catch let err{
 print(err)
 }

}

And that was it, really. If you have the identifier of a contact, you can fetch that con‐
tact quite easily, as we saw. Now let’s say that you do have this identifier saved some‐
where inside your app and you want to directly fetch that contact. You do that using
the unifiedContact(withIdentifier:keysToFetch:) method of the contact store:

276 | Chapter 8: Contacts

OperationQueue().addOperation{[unowned store] in
 let id = "AECF6A0E-6BCB-4A46-834F-1D8374E6FE0A:ABPerson"
 let toFetch = [CNContactGivenNameKey as NSString,
 CNContactFamilyNameKey as NSString]

 do{

 let contact = try store.unifiedContact(withIdentifier: id,
 keysToFetch: toFetch)

 print(contact.givenName)
 print(contact.familyName)
 print(contact.identifier)

 } catch let err{
 print(err)
 }
}

See Also
Recipe 8.1

8.3 Updating Contacts
Problem
You have an existing contact whose properties you want to update.

Solution
Call the mutableCopy() method of your CNContact class. This will give you an
instance of the CNMutableContact. Once you have a mutable contact, you can change
her properties as you would with a contact of type CNContact. Once done editing,
instantiate CNSaveRequest, issue the updateContact(_:) method on it, and pass your
mutable contact to that method. Now that you have the request object, pass it to the
execute(_:) method of your store to update the contact.

Discussion
Let’s check an example. Let’s say that we want to find a contact named “John” (using
the steps outlined in Recipe 8.2) and then add a new email address to his contact
information, in case it’s not already set. Figure 8-3 shows the contact we will change.
The contact comes prefilled in your iOS simulator, with only one work email address.
We are going to add another work email to this list:

8.3 Updating Contacts | 277

OperationQueue().addOperation{[unowned store] in
 let predicate = CNContact.predicateForContacts(matchingName: "john")
 let toFetch = [CNContactEmailAddressesKey as NSString]

 do{
 let contacts = try store.unifiedContacts(matching: predicate,
 keysToFetch: toFetch)

 guard contacts.count > 0 else{
 print("No contacts found")
 return
 }

 // only do this to the first contact matching our criteria
 guard let contact = contacts.first else{
 return
 }

 ...

Figure 8-3. Current state of the contact

We are only adding this new email to the first contact that matches
our criteria.

Now we have a contact object that matches our criteria. Let’s see whether he already
has this email address, and bail out if he does:

278 | Chapter 8: Contacts

let newEmail = "newemail@work.com"

for email in contact.emailAddresses{
 if email.value as String == newEmail{
 print("This contact already has this email")
 return
 }
}

Now that we are sure he didn’t have this email address already in the list, we will
add it:

let john = contact.mutableCopy() as! CNMutableContact

let emailAddress = CNLabeledValue(label: CNLabelWork,
 value: "newemail@work.com" as NSString)

john.emailAddresses.append(emailAddress)

let req = CNSaveRequest()
req.update(john)

try store.execute(req)

print("Successfully added an email")

Now if we look at our contact in the list, we can see the new email address added (see
Figure 8-4).

8.3 Updating Contacts | 279

Figure 8-4. The new email address is added to our contact

Another example would be to go through all your contacts and fetch all their notes. If
there is no note set for a contact, set up a dummy note and save that contact back into
the database. You can therefore use the CNContactNoteKey key in our fetch request as
shown here:

OperationQueue().addOperation{[unowned store] in
 let keys = [CNContactNoteKey as NSString]
 let req = CNContactFetchRequest(keysToFetch: keys)
 do{
 try store.enumerateContacts(with: req){contact, stop in
 if contact.note.characters.count == 0{

 let updated = contact.mutableCopy() as! CNMutableContact
 updated.note = "Some note"
 let req = CNSaveRequest()
 req.update(updated)
 do{
 try store.execute(req)
 print("Successfully added a note")
 } catch let err{
 print(err)
 }
 }

280 | Chapter 8: Contacts

 }
 } catch let err{
 print(err)
 }
}

As another example, you can go through all the contacts on the device by fetching
their given name (CNContactGivenNameKey) and last name (CNContactFamilyName
Key. Then look at these names and find any characters in them that are not letters
(numbers, punctuation), and remove those illegal characters. First let’s read the con‐
tacts and their first names and last names, and also define what we consider illegal
characters:

OperationQueue().addOperation{[unowned store] in
 let keys = [CNContactGivenNameKey as NSString,
 CNContactFamilyNameKey as NSString]
 let req = CNContactFetchRequest(keysToFetch: keys)
 do{
 try store.enumerateContacts(with: req){contact, stop in

 let illegalCharacters = CharacterSet.letters
 .inverted

 let first = NSString(string: contact.givenName)
 let last = NSString(string: contact.familyName)

 ...

Then we find out whether the first or the last names have any illegal characters:

let foundIllegalCharactersInFirstName =
 first.rangeOfCharacter(from: illegalCharacters).location
 != NSNotFound

let foundIllegalCharactersInLastName =
 last.rangeOfCharacter(from: illegalCharacters).location
 != NSNotFound

If any illegal characters were found in either the first or last name, we remove them
and then save the contact back into the database:

if foundIllegalCharactersInFirstName ||
 foundIllegalCharactersInLastName{

 let cleanFirstName =
 (first.components(separatedBy: illegalCharacters)
 as NSArray).componentsJoined(by: "")

 let cleanLastName =
 (last.components(separatedBy: illegalCharacters)

8.3 Updating Contacts | 281

 as NSArray).componentsJoined(by: "")

 let newContact = contact.mutableCopy() as! CNMutableContact
 let req = CNSaveRequest()
 newContact.givenName = cleanFirstName
 newContact.familyName = cleanLastName
 req.update(newContact)

 do{
 try store.execute(req)
 print("Successfully removed illegal characters from contact")
 } catch let err{
 print(err)
 }

}

8.4 Deleting Contacts
Problem
You want to delete a contact on a device.

Solution
Follow these steps:

1. Find your contact using what you learned in Recipe 8.2.
2. Instantiate an object of type CNSaveRequest.
3. Issue the deleteContact(_:) function on the request and pass your mutable

contact to it.
4. Execute your request using the execute(_:) method of your contact store.

Deleting a contact from a store is irreversible. I suggest that you
test your code on the simulator first and as much as possible, ask
the user first whether they allow a contact to be deleted.

Discussion
Let’s have a look at an example. We want to find all contacts named John and then
delete the first one that we find (I am not showing an alert asking the user whether
this is OK or not, because that’s not the focus of this recipe—I suggest that you do so,
though):

282 | Chapter 8: Contacts

OperationQueue().addOperation{[unowned store] in
 let predicate = CNContact.predicateForContacts(matchingName: "john")
 let toFetch = [CNContactEmailAddressesKey as NSString]

 do{

 let contacts = try store.unifiedContacts(matching: predicate,
 keysToFetch: toFetch)

 guard contacts.count > 0 else{
 print("No contacts found")
 return
 }

 // only do this to the first contact matching our criteria
 guard let contact = contacts.first else{
 return
 }

 let req = CNSaveRequest()
 let mutableContact = contact.mutableCopy() as! CNMutableContact
 req.delete(mutableContact)

 do{
 try store.execute(req)
 print("Successfully deleted the user")

 } catch let e{
 print("Error = \(e)")
 }

 } catch let err{
 print(err)
 }
}

8.5 Formatting Contact Data
Problem
You want to present a local contact’s name and postal address in a localized and read‐
able way, regardless of the current language on the user’s device.

Solution
Use an instance of the CNContactFormatter or the CNPostalAddressFormatter
classes. The former one can easily be used to format the contact’s name, and the latter
is self-explanatory.

8.5 Formatting Contact Data | 283

Discussion
The CNContactFormatter class allows you to format the name of any contact, accord‐
ing to the localization settings of the current device. For instance, in some languages,
the last name of a person may be mentioned first. You can use the
string(from:style:) function of this method to get the full name.

You must fetch the full name of a contact from the store for this
method to work at all. Otherwise, you might get an exception.

We can build on Recipe 8.2, by writing a simple extension on CNContactStore that
allows us to fetch the first contact that it finds with a given name. I’ve named this
method firstUnifiedContactMatching(name:toFetch:output:) and it calls my
output block when it finds the contact or if an error occurs. You don’t have to know
the full implementation of this method because you already know how you can fetch
a contact with a given name.

So let’s look at an example where we fetch a contact from the store and print his full
name to the console:

let toFetch =
 CNContactFormatter.descriptorForRequiredKeys(for: .fullName)

store.firstUnifiedContactMatching(name: "john", toFetch: [toFetch]){
 guard let contact = $0 else{
 return
 }

 guard let name = CNContactFormatter().string(from: contact) else{
 return
 }

 print("The name of the contact is \(name)")

}

Note that I am using the descriptorForRequiredKeys(for:) class method of the
CNContactFormatter class to get an object of type CNKeyDescriptor and then pass
the results to firstUnifiedContactMatching(name:toFetch:output:) when fetch‐
ing the contact. The aforementioned method on CNContactFormatter tells the sys‐
tem what properties of the contact to fetch—in this case, all the properties that are
required for the full name, including the first, middle, and last names.

284 | Chapter 8: Contacts

Now imagine that we want to find a contact’s localized phonetic name. A phonetic
name is the name of a person, written as it is pronounced, rather than how the name
is spelled. For instance, a person’s name might be Julian, but in Swedish, because the J
is pronounced as “you,” this name would be pronounced as “you-lian.” So “you-lian”
is the phonetic equivalent of the name “Julian” in Swedish. These phonetic names are
very useful for Siri. So a Swedish speaker will ask Siri to phone up “you-lian” and Siri
will have no idea who that is unless the phonetic name has been set for that user.

Create a contact in your list. Set his first name to “Julian” and last name to “Julian‐
son.” Then tap the “add field” button at the bottom of the contact creation screen and
add the phonetic first and last name fields to the contact (see Figure 8-5).

8.5 Formatting Contact Data | 285

Figure 8-5. Add the phonetic first name and last name fields to your new contact

Set the phonetic first name to “Youlian” and the phonetic last name to “Youlianson”
until your contact looks like Figure 8-6.

286 | Chapter 8: Contacts

Figure 8-6. Your contact’s phonetic name is also displayed, if set

Let’s now look at an example where we fetch the phonetic name of a contact and then
format it according to the localization on the current device. First, we need to find the
fields in the contact store for phonetic name. We do that using the descriptor
ForRequiredKeys(for:) class method of CNContactFormatter and this time pass the
value of phoneticFullName to it. Because the string(from:style:) class method of
the CNContactFormatter class by default reads the full name, and not the phonetic
full name, we will have to start using the string(from:style:) instance method of
this class instead. The last parameter to this function allows us to pass a style of type
CNContactFormatterStyle that can be set to FullName or phoneticFullName:

let style = CNContactFormatterStyle.phoneticFullName

let toFetch =
 CNContactFormatter.descriptorForRequiredKeys(for: style)

store.firstUnifiedContactMatching(name: "julian", toFetch: [toFetch]){

 guard let contact = $0 else{
 return
 }

 guard let name = CNContactFormatter
 .string(from: contact, style: style) else{
 return
 }

 print("The phonetic name of the contact is \(name)")

}

Aside from getting the localized full name of a contact, you can also get her address
information, again, properly localized, using the CNPostalAddressFormatter class.
Follow these steps:

8.5 Formatting Contact Data | 287

1. Fetch your contact, making sure to include the CNContactPostalAddressesKey
key.

2. Get the address from the contact using the postalAddresses property of CNCon
tact. This will give you a value of type CNLabeledValue. Get the value of this
labeled value and cast it to CNPostalAddress.

3. Instantiate CNPostalAddressFormatter.
4. Pass the postal address to the string(from:) method of your postal address for‐

matter to get the formatted address:

let toFetch = [CNContactPostalAddressesKey as NSString]

store.firstUnifiedContactMatching(name: "john", toFetch: toFetch){
 guard let contact = $0 else{
 return
 }

 guard let firstAddress = contact.postalAddresses.first else{
 print("no postal address could be found")
 return
 }

 let formatter = CNPostalAddressFormatter()
 let formattedAddress = formatter.string(from: firstAddress.value)

 print("The address is \(formattedAddress)")

}

See Also
Recipe 8.1

8.6 Picking Contacts with the Prebuilt System UI
Problem
You want to use a built-in system dialog to allow your users to pick contacts from
their contact store.

Solution
Use an instance of the CNContactPickerViewController class inside the ContactsUI
framework.

288 | Chapter 8: Contacts

Instances of the CNContactPickerViewController cannot be
pushed to the stack. They need to be presented modally. Use the
present(_:animated:completion:) method of your view or navi‐
gation controller to display the contact picker modally.

Discussion
Let’s say that you want to allow the user to pick a contact. You will then attempt to
read the phone numbers from that contact. Instances of the CNContactPickerView
Controller class have a property called delegate of type CNContactPickerDelegate.

Some of the interesting methods in this delegate are:

contactPickerDidCancel(_:)

This gets called when the user cancels his request to pick a contact.

contactPicker(_:didSelectContact:)

This gets called when the user picks a contact from the list.

In this example, I want to allow the user to pick a contact, whereupon I will read all
the phone numbers from that contact. I have placed a button in my storyboard and
hooked that button to a method in my code called pickaContact(). In that code, I
present a simple contact picker:

let controller = CNContactPickerViewController()

controller.delegate = self

navigationController?.present(controller,
 animated: true, completion: nil)

I’m doing all this code inside a view controller and I’ve made my
view controller conform to CNContactPickerDelegate.

Then, when the user picks a contact, I just print out all the phone numbers of that
contact, if any, to the console:

8.6 Picking Contacts with the Prebuilt System UI | 289

func contactPickerDidCancel(_ picker: CNContactPickerViewController) {
 print("Cancelled picking a contact")
}

func contactPicker(_ picker: CNContactPickerViewController,
 didSelectContact contact: CNContact) {

 print("Selected a contact")

 if contact.isKeyAvailable(CNContactPhoneNumbersKey){
 // this is an extension I've written on CNContact
 contact.printPhoneNumbers()
 } else {
 /*
 TOOD: partially fetched, use what you've learned in this chapter to
 fetch the rest of this contact
 */
 print("No phone numbers are available")
 }

}

The printPhoneNumbers() function is a custom extension on
CNContact that I’ve written. You don’t have to know the implemen‐
tation of that, as it’s not relevant to this recipe. You already know
how to do that using what you learned in Recipe 8.2.

In this example, we are looking for contacts with phone numbers, but the user is
allowed to pick any contact, even if that contact has no phone numbers. How do we
remedy this? A property called predicateForEnablingContact of type NSPredicate,
on instances of CNContactPickerViewController, allows us to specify which con‐
tacts should be enabled and which ones should be disabled. Here we can create a
predicate that checks the @count of the phoneNumbers property. Also, for fun, let’s say
that we only want to allow contacts whose names start with “John” to be selectable
(see Figure 8-7):

let controller = CNContactPickerViewController()

controller.delegate = self

controller.predicateForEnablingContact =
 NSPredicate(format:
 "phoneNumbers.@count > 0 && givenName BEGINSWITH 'John'",
 argumentArray: nil)

navigationController?.present(controller,
 animated: true, completion: nil)

290 | Chapter 8: Contacts

Figure 8-7. Only people whose names start with “John” and who have at least one phone
number are retrieved

The predicateForEnablingContact property disables all contacts who do not pass
the predicate so that the user won’t even be able to select those contacts. There is
another property on CNContactPickerViewController that does something more
interesting: predicateForSelectionOfContact. The contacts that pass this predicate
will be selectable by the user so that when the user taps that contact, the controller is
dismissed and we get access to the contact object. The contacts that do not pass this
predicate will still be selectable, but upon selection, their details will be shown to the
user using the system UI. They won’t be returned to our app:

8.6 Picking Contacts with the Prebuilt System UI | 291

let controller = CNContactPickerViewController()

controller.delegate = self

controller.predicateForSelectionOfContact =
 NSPredicate(format:
 "phoneNumbers.@count > 0",
 argumentArray: nil)

navigationController?.present(controller,
 animated: true, completion: nil)

CNContactPickerViewController has another funky property—predicateForSelec

tionOfProperty—that dictates which property for any contact the user should be
able to pick. If you want to allow the user to pick a specific property—say the first
phone number—of any contact to be passed to your app, you also have to implement
the contactPicker(_:didSelectContactProperty:) method of the CNContactPick
erDelegate protocol. Let’s write sample code that allows the user to pick any contact
as long as that contact has at least one phone number, and then be able to pick the
first phone number of that contact to be returned to our app:

let controller = CNContactPickerViewController()

controller.delegate = self

controller.predicateForEnablingContact =
 NSPredicate(format:
 "phoneNumbers.@count > 0",
 argumentArray: nil)

controller.predicateForSelectionOfProperty =
 NSPredicate(format: "key == 'phoneNumbers'", argumentArray: nil)

navigationController?.present(controller,
 animated: true, completion: nil)

And then we provide an implementation of the contactPicker(_:didSelectContact
Property:) method:

func contactPicker(_ picker: CNContactPickerViewController,
 didSelect contactProperty: CNContactProperty) {

 print("Selected a property")

}

In addition to all of this, you can also allow the user to pick multiple contacts. Do that
by implementing the contactPicker(_:didSelectContacts:) method of the CNCon
tactPickerDelegate protocol (see Figure 8-8):

292 | Chapter 8: Contacts

func contactPicker(_ picker: CNContactPickerViewController,
 didSelect contacts: [CNContact]) {
 print("Selected \(contacts.count) contacts")
}

// allows multiple selection mixed with contactPicker:didSelectContacts:
func example5(){
 let controller = CNContactPickerViewController()

 controller.delegate = self

 navigationController?.present(controller,
 animated: true, completion: nil)
}

8.6 Picking Contacts with the Prebuilt System UI | 293

Figure 8-8. The user is able to select multiple contacts at the same time and return to our
app at the end

See Also
Recipes 8.1, 8.7, and 8.8

294 | Chapter 8: Contacts

8.7 Creating Contacts with a Prebuilt System UI
Problem
You want to specify some basic information for a new contact and let a system UI and
the user take care of the creation of this contact.

Solution
Follow these steps:

1. Create an instance of CNContactStore and ask for permission to use the store
(see Recipe 8.1).

2. Create a contact of type CNMutableContact and put your default values in it. This
is an optional step. You might want the user to create a whole new contact on her
own, with no predefined values from your side.

3. Instantiate an object of type CNContactViewController using the forNewContact
initializer and pass your contact to it.

4. Set the contactStore property of this view controller to a valid contact store
instance.

5. Optionally, set the delegate property of this view controller to a valid delegate
object that conforms to the CNContactViewControllerDelegate protocol.

Discussion
Recipe 8.1 covers how to create a contact programmatically. What if you have some
basic information about a contact, or no information at all, and you want your user to
supply the rest of the information? Of course you could create a UI to allow the user
to do that, but why do so if the SDK already comes with a prebuilt UI called CNCon
tactViewController?

You can simply push an instance of the CNContactViewController class on your nav‐
igation controller. When you become the delegate of this view controller, a delegate
method named contactViewController(_:didCompleteWith:) will get called if the
user cancels or accepts the contact creation. Use this method to dismiss (pop) the
contact view controller:

func contactViewController(_ viewController: CNContactViewController,
 didCompleteWith contact: CNContact?) {

 guard let nc = navigationController else {return}

 // whatever happens, pop back to our view controller
 defer{nc.popViewController(animated: true)}

8.7 Creating Contacts with a Prebuilt System UI | 295

 guard let contact = contact else{
 print("The contact creation was cancelled")
 return
 }

 print("Contact was created successfully \(contact)")
}

Let’s look at a simple example now. Create a simple contact with some basic informa‐
tion and then ask the user to complete the creation process:

let contact = CNContact().mutableCopy() as! CNMutableContact
contact.givenName = "Anthony"
contact.familyName = "Appleseed"

let controller = CNContactViewController(forNewContact: contact)
controller.contactStore = store
controller.delegate = self

navigationController?
 .pushViewController(controller, animated: true)

Then our user will see a UI similar to Figure 8-9.

Figure 8-9. The New Contact system UI is displayed, asking the user to finish off or can‐
cel the contact creation

296 | Chapter 8: Contacts

The contact that you pass to the aforementioned initializer of
CNContactViewController is optional. If you pass nil, the New
Contact dialog that the user sees will be empty and the user will
have to fill out every field in the UI.

See Also
Recipes 8.1, 8.6, and 8.8

8.8 Displaying Contacts with a Prebuilt System UI
Problem
You want to use a built-in system UI to display an existing contact’s information.

Solution
Use the forContact initializer of the CNContactViewController class and pass this
method an instance of the CNContact that you want to display.

Discussion
Sometimes you might want to display information for a particular contact but don’t
want to write the whole UI yourself. Why would you? It’s a lot of work to display all
the information. That’s where you can use the CNContactViewController class again.

This example uses my custom firstUnifiedContactMatch

ing(name:toFetch:output:) method to fetch an existing contact.
You learned about the implementation of this method in Recipe
8.2.

So this is what we are going to do: we fetch a contact whose name matches “John” and
display his information on the screen. Make sure that you fetch all the required keys
for your contact. Otherwise, the controller won’t be able to display the contact’s infor‐
mation. You can get the list of required keys by calling the descriptorForRequired
Keys() class function of the CNContactViewController:

8.8 Displaying Contacts with a Prebuilt System UI | 297

let toFetch = [CNContactViewController.descriptorForRequiredKeys()]
store.firstUnifiedContactMatching(name: "john", toFetch: toFetch){

 guard let contact = $0 else{
 print("No contact was found")
 return
 }

 let controller = CNContactViewController(for: contact)
 controller.contactStore = self.store
 controller.allowsEditing = false

 controller.displayedPropertyKeys =
 [CNContactEmailAddressesKey, CNContactPostalAddressesKey]

 self.navigationController?
 .pushViewController(controller, animated: true)

}

By default, when a contact is displayed, the contact controller allows the user to edit
that contact. You can disable that behavior by setting the allowsEditing property of
the controller to false. Also bear in mind that you have to set the contactStore
property of the controller to the same store from where you fetched your contact.

There is another interesting property on the controller: displayedPropertyKeys. As
its name implies, it allows you to pass a series of contact property keys that have to be
displayed. Other properties will be hidden. I have, in our code, enabled only email
and postal addresses. The results are shown in Figure 8-10. Some other information,
such as full name, is shown by default.

298 | Chapter 8: Contacts

Figure 8-10. Displaying a contact

See Also
Recipes 8.1, 8.6, and 8.7

8.8 Displaying Contacts with a Prebuilt System UI | 299

CHAPTER 9

Extensions

Apple increased the number of extensions that we developers can write in the new
iOS. One of the hot extensions that everybody seems to be talking about is the Safari
Content Blocker, which allows developers to specify which URLs or resources should
get blocked in Safari tabs.

Extensions are separate binaries that sit inside your app’s bundle. They usually have
their own naming convention and sit inside reserved folders inside your app bundle.
It’s best not to mention what they are called on disk because Apple can change that at
any time without us knowing. Because extensions sit in their own folders and have
their own bundles, they do not share the same physical space as their container app.
But, through some work, they can access the container app’s resources such as images
and text.

9.1 Creating Safari Content Blockers
Problem
You want to create a content blocker that the user can add to her Safari browser for
blocking specific web content.

Solution
Use the Safari Content Blocker extension.

Discussion
This is something I am very excited about. You can ignore the long list of content
blockers popping up on App Store every day from now on.

301

This is how the Apple blocker works. When you create an app, you can add a Safari
Content Blocker extension to it. In that extension, you define the rules for your con‐
tent blocking (whether you want to block images, style sheets, etc.). The user can
then, after opening your app at least once, go into the settings on her device and
enable your content blocker. From now on, if she visits a web page that your content
blocker applies to, she will see only the content that passes your filters.

Let’s create a simple single view controller app and then add a new target to your app.
From the iOS main section, choose Application Extension and then Content Blocker
Extension (see Figure 9-1).

Figure 9-1. Adding a new Content Blocker extension to our existing app

Give any name that you want to your extension. It doesn’t really
matter so much for this exercise.

Now go to the new extension’s new file called blockerList.json and place the following
content in it:

302 | Chapter 9: Extensions

[
 {
 "action": {
 "type": "block"
 },
 "trigger": {
 "url-filter": ".*",
 "resource-type" : ["image"],
 "if-domain" : ["edition.cnn.com"]
 }
 }
]

Even though there is a specific type of formatting to this file, I think you can just read
this as I’ve written it and understand what it is doing. It is blocking all images that are
under the edition.cnn.com domain name. Now head to your app delegate and import
the SafariServices framework. Every time you change your content blocker, you
will have to go to the Settings application on the simulator and turn it off and on
again so that the simulator understands that the extension is updated. We are now
going to write a piece of code that automates that for us:

func applicationDidBecomeActive(_ application: UIApplication) {

 // TODO: replace this with your own content blocker's identifier
 let id = "se.pixolity.Creating-Safari-Content-Blockers.Image-Blocker"
 SFContentBlockerManager.reloadContentBlocker(withIdentifier: id) {error in
 guard error == nil else {
 // an error happened, handle it
 print("Failed to reload the blocker")
 return
 }
 print("Reloaded the blocker")
 }
}

Then reset your simulator and run your app. Send your app to the background, open
Safari on the simulator, and type in cnn.com. This will redirect you to http://
edition.cnn.com/ (at the time of this writing). Safari will hit the filter we wrote and
discard all the images. The results will be lovely. (Well, I don’t know whether a web‐
site without images is lovely or not, but it’s what we set out to do.)

A user can always enable or disable a content blocker. To do that, you can go to the
Settings app on your device and in the search field type in blocker. Then tap the
Content Blockers item that pops up (see Figure 9-2).

9.1 Creating Safari Content Blockers | 303

Figure 9-2. Searching for blocker will allow you to go directly to the Content Blockers
settings section of Safari

Once there, you can enable or disable available Safari content blockers (see
Figure 9-3).

Figure 9-3. Our app is shown in the list of content blockers as the only available applica‐
tion as of now

Now that you have seen an example, let me bug you with some more details on that
JSON file. That file contains an array of dictionaries with various configurations that
you can enter. This book would grow very large if I thoroughly described everything
there, so I will simply explain the options for each field through some pseudo-JSON
code:

[
 {
 "action": {
 "type": "block" | "block-cookies" | "css-display-none",
 "selector" : This is a CSS selector that the action will be applied to
 },
 "trigger": {
 "url-filter": "this is a filter that will be applied on the WHOLE url",
 "url-filter-is-case-sensitive" : same as url-filter but case sensitive,
 "resource-type" : ["image" | "style-sheet" | "script" | "font" | etc],

304 | Chapter 9: Extensions

 "if-domain" : [an array of actual domain names to apply filter on],
 "unless-domain" : [an array of domain names to exclude from filter],
 "load-type" : "first-party" | "third-party"
 }
 }
]

Armed with this knowledge, let’s do some more experiments. Let’s now block all a
tags in macrumors.com:

{
 "action": {
 "type": "css-display-none",
 "selector" : "a"
 },
 "trigger": {
 "url-filter": ".*",
 "if-domain" : ["macrumors.com"]
 }
}

I have no affiliation with nor any hate toward MacRumors—I find
that website quite informative, actually. Check it out for yourself. I
am using this website as an example only, and I am not suggesting
that content on that website is worthy of blocking.

Or how about removing the a tag on top of the macrumors.com page that is an id
attribute equal to logo?

{
 "action": {
 "type": "css-display-none",
 "selector" : "a[id='logo']"
 },
 "trigger": {
 "url-filter": ".*",
 "if-domain" : ["macrumors.com"]
 }
}

Now let’s have a look at another example. Let’s start blocking all images on all web‐
sites except for reddit.com:

9.1 Creating Safari Content Blockers | 305

{
 "action": {
 "type": "block"
 },
 "trigger": {
 "url-filter": ".*",
 "resource-type" : ["image"],
 "unless-domain" : ["reddit.com"]
 }
}

Or how about blocking all elements of type a that have an href attribute on Apple’s
website?

{
 "action": {
 "type": "css-display-none",
 "selector" : "a[href]"
 },
 "trigger": {
 "url-filter": ".*",
 "if-domain" : ["apple.com"]
 }
}

9.2 Creating Shared Links for Safari
Problem
You want to display your own links inside Safari’s shared links on users’ devices.

Solution
Add the new Shared Links Extension target to your existing app and code the exten‐
sion. It is prepopulated, so you don’t really have to do much.

Discussion
Shared links are like bookmarks, but lead to content defined in your app or a website.
The links are visible inside Safari on iOS when the user taps the bookmarks button
and then the shared links icon. To get started, create a single view controller project
and then add a new target to your project. In the target selection screen, under the
iOS main section, choose Application Extension and then Shared Links Extension
(see Figure 9-4).

306 | Chapter 9: Extensions

Figure 9-4. Creating a new shared link extension in Xcode

I suggest that you also add some proper icons to your app’s bundle, because your app’s
icon will also appear in the list of shared links when iOS shows your shared link. You
can just do a Google search for “public domain icon” and find some really awesome
icons that you can use in your app. Also make sure to add a simple icon to your
shared link extension, because our code will show this icon in the list. Your exten‐
sion’s icon will appear on the left side of the link and your app icon on top right (see
Figure 9-5).

Figure 9-5. You can see our shared link’s icon on the left and our app’s icon on the upper-
right corner

9.2 Creating Shared Links for Safari | 307

Then head to the new file called RequestHandler.swift that has been created in your
extension. Xcode has already populated this file with all the code that you need to dis‐
play your shared link. All you need to do is uncomment the line that starts with exten
sionItem.attachments, load your extensions’ icon, and attach it to the extension
item like so:

import Foundation

class RequestHandler: NSObject, NSExtensionRequestHandling {

 func beginRequest(with context: NSExtensionContext) {
 let extensionItem = NSExtensionItem()

 extensionItem.userInfo = [
 "uniqueIdentifier": "uniqueIdentifierForSampleItem",
 "urlString": "http://reddit.com/r/askreddit",
 "date": Date()
]

 extensionItem.attributedTitle = NSAttributedString(string: "Reddit")

 extensionItem.attributedContentText = NSAttributedString(
 string: "AskReddit, one of the best subreddits there is")

 guard let img = Bundle.main.url(forResource: "ExtIcon",
 withExtension: "png") else {
 context.completeRequest(returningItems: nil, completionHandler: nil)
 return
 }

 extensionItem.attachments = [NSItemProvider(contentsOf: img)!]

 context.completeRequest(returningItems: [extensionItem],
 completionHandler: nil)
 }

}

Run your code and then open Safari on the device. Navigate to the bookmarks button
and then shared links to see your link displayed (Figure 9-6).

308 | Chapter 9: Extensions

Figure 9-6. Our shared link is displayed in the list

The user can also subscribe or unsubscribe from various shared link providers by tap‐
ping the Subscriptions button (see Figure 9-7).

Figure 9-7. The user can subscribe to or unsubscribe from shared links providers right in
Safari

9.3 Maintaining Your App’s Indexed Content
Problem
You want to know when iOS is about to delete your indexed items and you would like
to be able to provide new content to the search index.

This is an extension to the search capability explained in Recipe
10.1.

9.3 Maintaining Your App’s Indexed Content | 309

Solution
Add a Spotlight Index Extension to your app and update the index right in your
extension (see Figure 9-8).

Figure 9-8. Adding a Spotlight Index Extension will allow us to reindex our app’s search‐
able content

Discussion
Every now and then, iOS has to clean up the search index on a device. When this
happens, apps that have provided searchable content will be given a chance to reindex
their items. To get started, create a Spotlight index extension as shown in Figure 9-8.
I’ve given mine the name of Reindex. It’s up to you what you want to name your
extension. Now you will get a class called IndexRequestHandler in your extension. It
offers two methods:

• searchableIndex(_:reindexAllSearchableItemsWithAcknowledgementHan

dler:)

• searchableIndex(_:reindexSearchableItemsWithIdentifiers:acknowledge

mentHandler:)

310 | Chapter 9: Extensions

The first method gets called when you are asked to reindex all your previously
indexed items. This can happen if the index is corrupted on the device and you are
asked to reindex all of your content. The second method will be called on your exten‐
sion if you have to index specific items with the given identifiers. You will be given a
function called an acknowledgment handler to call when you are done indexing again.

In both of these methods, the first parameter that you are given is
an index into which you have to index your items. Use that index
instead of the default index.

Here is an example. Let’s define a protocol that dictates what indexable items have to
look like:

protocol Indexable{
 var id: String {get set}
 var title: String {get set}
 var description: String {get set}
 var url: URL? {get set}
 var thumbnail: UIImage? {get set}
}

And then a structure that conforms to our protocol:

struct Indexed : Indexable{
 // Indexable conformance
 var id: String
 var title: String
 var description: String
 var url: URL?
 var thumbnail: UIImage?
}

Later on we are going to go through an array of Indexed instances, grab all the IDs,
and put those in an array. Then, when we are asked by iOS to index certain items
with given IDs, we can just find that ID in our array, and then find the associated
indexed item using the ID. For this, we can use protocol extensions on sequence
types. I wrote about this in Recipe 5.12:

9.3 Maintaining Your App’s Indexed Content | 311

extension Sequence where Iterator.Element : Indexable{
 func allIds() -> [String]{
 var ids = [String]()
 for (_, v) in self.enumerated(){
 ids.append(v.id)
 }
 return ids
 }
}

And now the juicy part—our extension. We construct an array of indexed items:

lazy var indexedItems: [Indexed] = {

 var items = [Indexed]()
 for n in 1...10{
 items.append(
 Indexed(id: "id \(n)", title: "Item \(n)",
 description: "Description \(n)", url: nil, thumbnail: nil))
 }
 return items

}()

When we are asked to reindex all our items, we just go through this array and reindex
them (see Recipe 10.1):

override func searchableIndex(_ searchableIndex: CSSearchableIndex,
 reindexAllSearchableItemsWithAcknowledgementHandler
 acknowledgementHandler: @escaping () -> Void) {

 for _ in indexedItems{
 // TODO: you can index the item here.
 }

 // call this handler once you are done
 acknowledgementHandler()
}

When we are asked to reindex only specific items with given identifiers, we use our
sequence type extension to find all the IDs of our indexed items. Then we search
through these IDs for the IDs that iOS gave us. Should we find a match, we will rein‐
dex that item. Code for reindexing is not shown here, but Recipe 10.1 shows you how
to do it:

312 | Chapter 9: Extensions

override func searchableIndex(_ searchableIndex: CSSearchableIndex,
 reindexSearchableItemsWithIdentifiers identifiers: [String],
 acknowledgementHandler: @escaping () -> Void) {

 // get all the identifiers strings that we have
 let ourIds = indexedItems.allIds()

 // go through the items that we have and look for the given id
 var n = 0
 for i in identifiers{
 if let index = ourIds.index(of: i){
 let _ = indexedItems[index]
 // TODO: reindex this item.
 }
 n += 1
 }

 acknowledgementHandler()
}

9.3 Maintaining Your App’s Indexed Content | 313

CHAPTER 10

Web and Search

iOS brings with it some really exciting functionality, such as indexing contents inside
your app as searchable content on an iOS device. Even better, you can contribute to
iOS’s public search index so that your searchable content appears on devices that
don’t even have your app installed. That’s pretty cool, don’t you agree? In this chapter,
we’ll have a look at all these great features.

10.1 Making Your App’s Content Searchable
Problem
You want the user to be able to search within the contents inside your app, from iOS’s
search functionality (see Figure 10-1).

Solution
First, you will need to construct an object of type CSSearchableItemAttributeSet.
This will represent the metadata for any one item that you want to index in the
search. Having the metadata, construct an instance of the CSSearchableItem class
with your metadata and expiration date, plus some other properties that you will see
soon. Index an item using the CSSearchableIndex class. You’ll get a completion block
that will let you know whether or not things went well.

315

Figure 10-1. iOS has improved search functionality

Discussion
You have to keep quite a few things in mind when indexing items in the local device
search functionality. I’ll walk you through them one by one. Always keep this index in
a useful state. Don’t index stuff that you don’t need, and make sure you delete the old
items. You can specify an expiration date for your content, so I suggest that you
always do that.

Let’s look at an example. We will start off by including the two required frameworks
that we are going to use:

import CoreSpotlight
import MobileCoreServices

Then we will proceed by deleting all existing indexed items using the deleteAll
SearchableItems(completionHandler:) method of the CSSearchableIndex class.
This method takes in a closure that gives you an optional error. Check this error if
you want to find out whether something went wrong:

316 | Chapter 10: Web and Search

// delete the existing indexed items
CSSearchableIndex.default()
 .deleteAllSearchableItems {err in
 if let err = err{
 print("Error in deleting \(err)")
 }
}

Now let’s instantiate our metadata of type CSSearchableItemAttributeSet and give
it a title, description, path and URL, keywords, and a thumbnail:

let attr = CSSearchableItemAttributeSet(
 itemContentType: kUTTypeText as String)

attr.title = "My item"
attr.contentDescription = "My description"
attr.path = "http://reddit.com"
attr.contentURL = URL(string: attr.path!)!
attr.keywords = ["reddit", "subreddit", "today", "i", "learned"]

if let url = Bundle(for: type(of: self))
 .url(forResource: "Icon", withExtension: "png"){
 attr.thumbnailData = try? Data(contentsOf: url)
}

Then let’s create the actual searchable item of type CSSearchableItem and set its expi‐
ration date 20 seconds into the future:

// searchable item
let item = CSSearchableItem(
 uniqueIdentifier: attr.contentURL!.absoluteString,
 domainIdentifier: nil, attributeSet: attr)

let cal = Calendar.current

// our content expires in 20 seconds
item.expirationDate = cal.date(from: cal
 .dateComponents(in: cal.timeZone, from:
 Date().addingTimeInterval(20)))

Finally, use the indexSearchableItems(_:) method of the CSSearchableIndex class
to index the item that we just created. You can index an array of items, but we have
just one item, so let’s index that for now:

10.1 Making Your App’s Content Searchable | 317

// now index the item
CSSearchableIndex.default()
 .indexSearchableItems([item]) {err in
 guard err == nil else{
 print("Error occurred \(err!)")
 return
 }

 print("We successfully indexed the item. Will expire in 20 seconds")

}

When the user taps your item in the results list, your app will be opened and iOS will
call the application(_:continue:restorationHandler:) method on your app dele‐
gate. In this method, you have to do a few things:

1. Check the activity type that is given to you and make sure it is CSSearchableItem
ActionType. The aforementioned method gets called under various circumstan‐
ces—for example, with Handoff—so we have to make sure we are responding
only to activities that concern indexed items.

2. Check the userInfo property of the activity and read the value of the CSSearcha
bleItemActivityIdentifier key from it. This should be the identifier for your
indexed item.

func application(_ application: UIApplication,
 continue userActivity: NSUserActivity,
 restorationHandler: @escaping ([Any]?) -> Void) -> Bool {

 guard userActivity.activityType == CSSearchableItemActionType,
 let id = userActivity
 .userInfo?[CSSearchableItemActivityIdentifier] as? String
 else{
 return false
 }

 // now we have access to id of the activity. and that is the URL
 print(id)

 return true

}

Run your code and then send your app to the background. Open a search in your
iPhone and do a search on the item that we just indexed (see Figure 10-2).

318 | Chapter 10: Web and Search

Figure 10-2. Our item is listed in the search results

10.2 Making User Activities Searchable
Problem
You want to allow user activities inside your app to be searchable. User activities are
of type NSUserActivity.

10.2 Making User Activities Searchable | 319

Solution
Use the isEligibleForSearch and eligibleForPublicIndexing properties of the
NSUserActivity class to mark your activities as searchable.

Discussion
Let’s say that the user is inside your app and is editing the text inside a text field. You
start a user activity and want the user to be able to search for this activity in her home
screen, then continue with that activity later. Start with the UI. Drop a text field and a
text view on your view controller to make it look like Figure 10-3.

Figure 10-3. Put a text field and a text view on your UI

The text field will allow the user to enter whatever text she wants, and we will use the
text view to write log messages so that we (and the user) know what is going on under
the hood of our app. Hook these up to your code. I’ve named the text field textField
and the text view status. Also set the delegate of your text field to your view control‐
ler, because you are going to want to know when the text field becomes active and
inactive. That lets you update the user activity accordingly.

Make your view controller conform to UITextFieldDelegate and
NSUserActivityDelegate protocols and implement the user activity delegate meth‐
ods:

func userActivityWasContinued(_ userActivity: NSUserActivity) {
 log("Activity was continued")
}

func userActivityWillSave(_ userActivity: NSUserActivity) {
 log("Activity will save")
}

Let’s also write a handy method that allows us to log messages into our text view:

func log(_ t: String){
 DispatchQueue.main.async {

320 | Chapter 10: Web and Search

 self.status.text = t + "\n" + self.status.text
 }
}

We need another method that can read the contents of our text field and, if it’s nil,
give us an empty string:

func textFieldText() -> String{
 if let txt = self.textField.text{
 return txt
 } else {
 return ""
 }
}

Then create your user activity as a lazy variable and mark it as searchable:

// TODO: change this ID to something relevant to your app
let activityType = "se.pixolity.Making-User-Activities-Searchable.editText"
let activityTxtKey = "se.pixolity.Making-User-Activities-Searchable.txt"

lazy var activity: NSUserActivity = {
 let a = NSUserActivity(activityType: self.activityType)
 a.title = "Text Editing"
 a.isEligibleForHandoff = true
 a.isEligibleForSearch = true
 // do this only if it makes sense
 // a.isEligibleForPublicIndexing = true
 a.delegate = self
 a.keywords = ["txt", "text", "edit", "update"]

 let att = CSSearchableItemAttributeSet(
 itemContentType: kUTTypeText as String)
 att.title = a.title
 att.contentDescription = "Editing text right in the app"
 att.keywords = Array(a.keywords)

 if let u = Bundle.main.url(forResource: "Icon", withExtension: "png"){
 att.thumbnailData = try? Data(contentsOf: u)
 }
 a.contentAttributeSet = att

 return a
}()

Make sure that you import the CoreSpotlight and MobileCore
Services frameworks.

10.2 Making User Activities Searchable | 321

Once your text field becomes active, mark the activity as the current one:

func textFieldDidBeginEditing(_ textField: UITextField) {
 log("Activity is current")
 userActivity = activity
 activity.becomeCurrent()
}

func textFieldDidEndEditing(_ textField: UITextField) {
 log("Activity resigns being current")
 activity.resignCurrent()
 userActivity = nil
}

When the text field’s content changes, mark that the user activity needs to be updated:

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 activity.needsSave = true

 return true

}

A method in your view controller named updateUserActivityState(_:) gets called
periodically when the current activity needs to be updated. Here you get the chance
to update the user info dictionary of the activity:

override func updateUserActivityState(_ a: NSUserActivity) {

 log("We are asked to update the activity state")

 a.addUserInfoEntries(
 from: [self.activityTxtKey : self.textFieldText()])

 super.updateUserActivityState(a)

}

That’s it, really. Now when the user starts writing text in the text field, and then sends
the app to background, she will be able to search for the activity that she had started
right on her home screen and then continue where she left off. I will not cover the
details of handling the request to continue the user activity, because they are not new
APIs.

322 | Chapter 10: Web and Search

See Also
Recipes 10.1 and 10.2

10.3 Deleting Your App’s Searchable Content
Problem
You have indexed some items in Spotlight and you would like to get rid of that now.

Solution
Use a combination of the following methods on CSSearchableIndex:

• deleteAllSearchableItems(completionHandler:)

• deleteSearchableItems(withDomainIdentifiers:completionHandler:)

• deleteSearchableItems(withIdentifiers:completionHandler:)

Discussion
Let’s have a look at an example. Say that you have already indexed some items (see
Recipe 10.1) and you want to delete that content. The first step is to get a handle to
the CSSearchableIndex class:

let identifiers = [
 "com.yourcompany.etc1",
 "com.yourcompany.etc2",
 "com.yourcompany.etc3"
]

let i = CSSearchableIndex(name: Bundle.main.bundleIdentifier!)

Then use the fetchLastClientState(_:completionHandler:) method on the index
to get the latest application state that you had submitted to the index. After that, you
can begin deleting the items inside the identifiers array by using the beginIndex
Batch() function on the index. Then use the deleteSearchableItems(withIdentifi
ers:completionHandler:) function, which returns a completion handler. This han‐
dler will return an optional error that dictates whether the deletion went OK or not.
Once we are done, we end the batch updates on the index with the endBatch(with
ClientState:completionHandler:) method:

10.3 Deleting Your App’s Searchable Content | 323

i.fetchLastClientState {clientState, err in
 guard err == nil else{
 print("Could not fetch last client state")
 return
 }

 let state: Data
 if let s = clientState{
 state = s
 } else {
 state = Data()
 }

 i.beginBatch()

 i.deleteSearchableItems(withIdentifiers: identifiers) {err in
 if let e = err{
 print("Error happened \(e)")
 } else {
 print("Successfully deleted the given identifiers")
 }
 }
 i.endBatch(withClientState: state, completionHandler: {err in
 guard err == nil else{
 print("Error happened in ending batch updates = \(err!)")
 return
 }
 print("Successfully batch updated the index")
 })

}

The content identifiers that I’ve put in the identifiers array are
just an example. I don’t know what identifiers you want to use, but
make sure that you update this array before attempting to delete
the existing indexed items.

See Also
Recipe 10.2

324 | Chapter 10: Web and Search

CHAPTER 11

Multitasking

iOS has some really cool multitasking functionalities on select devices, such as the lat‐
est iPads. One of these functionalities is PiP, or Picture in Picture. In this chapter,
we’ll have a look at some of these exciting features.

11.1 Supporting Split Views
Problem
You would like your universal app on an iPad to allow a side-by-side view. That is to
say that you would like the user to be able to drag another completely different app
onto the right side of the screen, while your app is running, consuming a portion of
the screen, and forcing your application to resize its contents to fit the smaller screen.

Solution
The easiest solution to supporting side-by-side views is to create your project with the
latest version of Xcode, which by default ensures that your app will have split view
enabled on larger displays (such as the iPad).

Split view occurs when the user who is running your app slides the right edge of the
display toward the left, at which point a drawer of available apps that support split
view appears on the screen in a vertically scrollable list (see Figure 11-1). Then the
user can choose one of the available apps and tap on it, at which point the chosen app
is opened and starts consuming the right side of the screen’s real estate. There will
then be a bar visible between the app running on the right side and your app on the
left side. This bar can be dragged further to the left to give more space to the app on
the right or further to the right to give more space to the app on the left.

325

Figure 11-1. The split view is now enabled on our app that is on the lefthand side (empty
for now), and the available apps that support split view are shown in the list on the
righthand side; when the user chooses one, that app will be opened

Split views are available only on devices that have enough screen
real estate and device resources, such as memory, for this function‐
ality. iPad Pro is an example of such a device that allows split views.

If you, however, have an old project that you would like to support split screen for,
follow these steps:

1. Add a file to your project called LaunchScreen.storyboard (see Figure 11-2). This
will replace your launch screen static images. You will then have to set it as your
launch screen storyboard in your project settings (General tab), under the App
Icons and Launch Images section.

326 | Chapter 11: Multitasking

Figure 11-2. The LaunchScreen.storyboard is added as our app’s dynamic launch screen

2. Set the base SDK for your project to the latest SDK available in the latest Xcode
version.

3. In your info.plist file, under the UISupportedInterfaceOrientations~ipad key,
declare that you support all orientations. You can also do this under the General
tab of your target in Xcode, under the Deployment Info section.

4. Ensure that the UIRequiresFullScreen key in your plist is either removed or, if it
exists and you want to keep it, has the value of NO.

Discussion
Split view is a great feature, and as a developer you of course would like to support it
in your apps. However, you need to ensure that your UI components work correctly
with different size classes and screen orientations.

For instance, let’s say that you want to add a view of type UIView to your app’s main
view and you would like it to be resizable so that when split view is fired up, your
view gets resized correctly. You then have to think about the width, height, and hori‐
zontal and vertical positioning of this view. Assuming that it will fill up the whole
screen, you can add the proper constraints to this view in either IB, or in code. Let’s
look at the code:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 let newView = UIView()
 newView.backgroundColor = .orange

11.1 Supporting Split Views | 327

 newView.translatesAutoresizingMaskIntoConstraints = false

 view.addSubview(newView)

 newView.leadingAnchor.constraint(equalTo:
 view.leadingAnchor).isActive = true

 newView.trailingAnchor.constraint(equalTo:
 view.trailingAnchor).isActive = true

 newView.topAnchor.constraint(equalTo: view.topAnchor).isActive = true
 newView.bottomAnchor.constraint(equalTo: view.bottomAnchor).isActive = true

 }

}

You can create the same constraints in IB by simply dragging a new view instance on
top of your view controller and then from the Resolve Auto Layout Issues section in
IB, choose Reset to Suggested Constraints while you have selected your newly created
view.

11.2 Adding Picture in Picture Playback Functionality
Problem
You want to let a user shrink a video to occupy a portion of the screen, so that she can
view and interact with other content in other apps.

Solution
I’ll break the process down into small and digestible steps:

1. You need a view that has a layer of type AVPlayerLayer. This layer will be used by
a view controller to display the video.

2. Instantiate an item of type VPlayerItem that represents the video.
3. Take the player item and place it inside an instance of AVPlayer.
4. Assign this player to your view’s layer player object. (Don’t worry if this sounds

confusing. I’ll explain it soon.)
5. Assign this view to your view controller’s main view and issue the play() func‐

tion on the player to start normal playback.
6. Using KVO, listen to changes to the currentItem.status property of your player

and wait until the status becomes ReadyToPlay, at which point you create an
instance of the AVPictureInPictureController class.

328 | Chapter 11: Multitasking

7. Start a KVO listener on the pictureInPicturePossible property of your con‐
troller. Once this value becomes true, let the user know that she can now go into
Picture in Picture mode.

8. Now when the user presses a button to start Picture in Picture, read the value of
pictureInPicturePossible from your controller for safety’s sake, and if it
checks out, call the startPictureInPicture() function on the controller to start
the Picture in Picture eventually.

Discussion
Picture in Picture is finally here. Let’s get started. Armed with what you learned in
this recipe’s Solution, let’s start defining our view. Create a view class and call it Pip
View. Go into the PipView.swift file and start importing the right frameworks:

import Foundation
import UIKit
import AVFoundation

Then define what a “pippable” item is. It is any type that has a PiP layer and a PiP
player:

protocol Pippable{
 var pipLayer: AVPlayerLayer{get}
 var pipLayerPlayer: AVPlayer? {get set}
}

Extend UIView to make it pippable:

extension UIView : Pippable{

 var pipLayer: AVPlayerLayer{
 get{return layer as! AVPlayerLayer}
 }

 // shortcut into pipLayer.player
 var pipLayerPlayer: AVPlayer?{
 get{return pipLayer.player}
 set{pipLayer.player = newValue}
 }

 open public func awakeFromNib() {
 super.awakeFromNib()
 backgroundColor = .black

 }

}

Last but not least for this view, change the view’s layer class to AVPlayerLayer:

11.2 Adding Picture in Picture Playback Functionality | 329

class PipView : UIView{

 override class var layerClass: AnyClass{
 return AVPlayerLayer.self
 }

}

Go to your view controller’s storyboard and change the main view’s class to PipView.
Also embed your view controller in a navigation controller and put two bar button
items on the nav bar, namely:

• Play (give it a play button style)
• PiP (by pressing this we enable PiP; disable this button by default and hook it to

an outlet in your code)

So you’ll end up with something like Figure 11-3.

Figure 11-3. Your view controller should look like this

Hook up the two buttons to your view controller’s code. The play button will be
hooked to a method called play() and the PiP button to beginPip(). Now let’s head
to our view controller and import some frameworks we need:

330 | Chapter 11: Multitasking

import UIKit
import AVKit
import AVFoundation
import SharedCode

Define the KVO context for watching the properties of our player:

private var kvoContext = 0
let pipPossible = "pictureInPicturePossible"
let currentItemStatus = "currentItem.status"

Then our view controller becomes pippable:

protocol PippableViewController{
 var pipView: PipView {get}
}
extension ViewController : PippableViewController{
 var pipView: PipView{
 return view as! PipView
 }
}

If you want to, you can define your view controller as conformant
to AVPictureInPictureControllerDelegate to get delegate mes‐
sages from the PiP view controller.

I’ll also define a property for the PiP button on my view controller so that I can
enable this button when PiP is available:

 @IBOutlet var beginPipBtn: UIBarButtonItem!

We also need a player of type AVPlayer. Don’t worry about its URL; we will set it
later:

lazy var player: AVPlayer = {
 let p = AVPlayer()
 p.addObserver(self, forKeyPath: currentItemStatus,
 options: .new, context: &kvoContext)
 return p
}()

Here we define the PiP controller and the video URL. As soon as the URL is set, we
construct an asset to hold the URL, place it inside the player, and set the player on our
view’s layer:

11.2 Adding Picture in Picture Playback Functionality | 331

var pipController: AVPictureInPictureController?

var videoUrl: URL? = nil{
 didSet{
 if let u = videoUrl{
 let asset = AVAsset(url: u)
 let item = AVPlayerItem(asset: asset,
 automaticallyLoadedAssetKeys: ["playable"])
 player.replaceCurrentItem(with: item)
 pipView.pipLayerPlayer = player
 }
 }
}

I also need a method that returns the URL of the video I am going to play. I’ve
embedded a public domain video to my app and it resides in my app bundle. Check
out this book’s GitHub repo for sample code:

var embeddedVideo: URL?{
 return Bundle.main.url(forResource: "video", withExtension: "mp4")
}

We need to determine whether PiP is supported by calling the isPictureInPicture
Supported() class method of the AVPictureInPictureController class:

func isPipSupported() -> Bool{
 guard AVPictureInPictureController.isPictureInPictureSupported() else{
 // no pip
 return false
 }

 return true
}

When we start our PiP controller, we also need to make sure that the audio plays well
even though the player is detached from our app. For that, we have to set our app’s
audio playback category:

func setAudioCategory() -> Bool{
 // set the audio category
 do{
 try AVAudioSession.sharedInstance().setCategory(
 AVAudioSessionCategoryPlayback)
 return true
 } catch {
 return false
 }
}

332 | Chapter 11: Multitasking

When PiP playback is available, we can finally construct our PiP controller with our
player’s layer. Remember, if the layer is not ready yet to play PiP, constructing the PiP
view controller will fail:

func startPipController(){
 pipController = AVPictureInPictureController(playerLayer: pipView.pipLayer)
 guard let controller = pipController else{
 return
 }

 controller.addObserver(self, forKeyPath: pipPossible,
 options: .new, context: &kvoContext)
}

Write the code for play() now. We don’t have to check for availability of PiP just
because we want to play a video:

@IBAction func play() {
 guard setAudioCategory() else{
 alert("Could not set the audio category")
 return
 }

 guard let u = embeddedVideo else{
 alert("Cannot find the embedded video")
 return
 }

 videoUrl = u
 player.play()

}

As soon as the user presses the PiP button, we start PiP if the pictureInPicturePos
sible() method of our PiP controller returns true:

@IBAction func beginPip() {

 guard isPipSupported() else{
 alert("PiP is not supported on your machine")
 return
 }

 guard let controller = pipController else{
 alert("Could not instantiate the pip controller")
 return
 }

 controller.addObserver(self, forKeyPath: pipPossible,
 options: .new, context: &kvoContext)

11.2 Adding Picture in Picture Playback Functionality | 333

 if controller.isPictureInPicturePossible{
 controller.startPictureInPicture()
 } else {
 alert("Pip is not possible")
 }

}

Last but not least, we listen for KVO messages:

override func observeValue(
 forKeyPath keyPath: String?,
 of object: Any?, change: [NSKeyValueChangeKey : Any]?,
 context: UnsafeMutableRawPointer?) {

 guard context == &kvoContext else{
 return
 }

 if keyPath == pipPossible{
 guard let possibleInt = change?[NSKeyValueChangeKey.newKey]
 as? NSNumber else{
 beginPipBtn.isEnabled = false
 return
 }

 beginPipBtn.isEnabled = possibleInt.boolValue

 }

 else if keyPath == currentItemStatus{

 guard let statusInt = change?[NSKeyValueChangeKey.newKey] as? NSNumber,
 let status = AVPlayerItemStatus(rawValue: statusInt.intValue),
 status == .readyToPlay else{
 return
 }

 startPipController()

 }

}

Give this a go in an iPad Air 2 or a similar device that has PiP
support.

334 | Chapter 11: Multitasking

11.3 Handling Low Power Mode and Providing
Alternatives
Problem
You want to know whether the device is in low power mode and want to be updated
on the status of this mode as the user changes it.

Solution
To determine if the device is in low power mode, read the value of the low
PowerModeEnabled property of your process (of type NSProcessInfo), and listen to
NSProcessInfoPowerStateDidChangeNotification notifications to find out when
this state changes.

Discussion
Low power mode is a feature that Apple has placed inside iOS so that users can pre‐
serve battery whenever they wish to. For instance, if you have 10% battery while some
background apps are running, you can save power by:

• Disabling background apps
• Reducing network activity
• Disabling automatic mail pulls
• Disabling animated backgrounds
• Disabling visual effects

And that’s what low power mode does. In Figure 11-4, low power mode is disabled
because there is a good amount of battery left on this device. Should the battery reach
about 10%, the user will automatically be asked to enable low power mode.

11.3 Handling Low Power Mode and Providing Alternatives | 335

Figure 11-4. Low power mode in the Settings app

Let’s create an app that wants to download a URL but won’t do so when low power
mode is enabled. Instead, the app will defer the download until this mode is disabled.
So let’s start by listening to NSProcessInfoPowerStateDidChangeNotification noti‐
fications:

override func viewDidLoad() {
 super.viewDidLoad()

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(ViewController.powerModeChanged(_:)),
 name: NSNotification.Name.NSProcessInfoPowerStateDidChange, object: nil)

 downloadNow()

}

Our custom downloadNow() method has to avoid downloading the file if the device is
in low power mode:

func downloadNow(){

 guard let url = URL(string: "http://localhost:8888/video.mp4"),
 !processInfo.isLowPowerModeEnabled else{
 return
 }

 // do the download here
 print(url)

 mustDownloadVideo = false

336 | Chapter 11: Multitasking

}

Last but not least, write the powerModeChanged(_:) method that we have hooked to
our notification:

import UIKit

class ViewController: UIViewController {

 var mustDownloadVideo = true
 let processInfo = ProcessInfo.processInfo

 func powerModeChanged(_ notif: Notification){

 guard mustDownloadVideo else{
 return
 }

 downloadNow()

 }

 ...

11.3 Handling Low Power Mode and Providing Alternatives | 337

CHAPTER 12

Maps and Location

In this chapter, we will have a look at some awesome updates to the MapKit and Core
Location frameworks.

12.1 Displaying a Specific Location on the Map
Problem
You have a latitude and a longitude of a location on Earth that you would like to dis‐
play as a pin on the map.

Solution
Follow these steps:

1. Import MapKit as a framework into your project.
2. Create a class that conforms to both NSObject and MKAnnotation. Conforming to

the MKAnnotation protocol requires defining its variables—particularly coordi
nate, title, and subtitle—and methods. Instances of classes that conform to
MKAnnotation can be added to the map view via its addAnnotation(_:) method.

3. For the map to know where to set the visible region that the user actually sees,
instead of seeing the entire map of the earth, instantiate MKCoordinateSpan with
a latitude delta and longitude delta of type double. The smaller the deltas, the
closer the camera is to the earth.

4. Instantiate MKCoordinateRegion with the location you want to be the center of
the map, and pass the coordinate span instance that you created in the previous
step to the coordinate region.

339

5. Call the addAnnotation(_:) method of your map view to set the annotation at
the right spot.

6. Call the setRegion(_:animated:) method of your map view to set the visible
region of your map.

Discussion
Let’s have a look at an example. Create a single view application in Xcode and open
the Main.storyboard file in Interface Builder. From the Object Library, drag and drop
a map view on your view controller and make sure it covers the entire screen
(Figure 12-1). Also connect the reference outlet of the map view to a variable in your
view controller, called mapView.

Figure 12-1. The map view is placed on the view controller and covers the entire screen

340 | Chapter 12: Maps and Location

Following this recipe’s Solution, we now create our Annotation instance that con‐
forms to both NSObject and MKAnnotation:

import UIKit
import MapKit

class Annotation : NSObject, MKAnnotation{
 let coordinate: CLLocationCoordinate2D
 let title: String?
 let subtitle: String?

 init(latitude: CLLocationDegrees, longitude: CLLocationDegrees,
 title: String?, subtitle: String?){
 self.coordinate = CLLocationCoordinate2D(latitude: latitude,
 longitude: longitude)
 self.title = title
 self.subtitle = subtitle
 }

}

Since the Annotation class now has references to the coordinates, and coordinates are
required to find the region that has to be displayed, we can extend this class to return
the region of type MKCoordinateRegion:

extension Annotation{
 var region: MKCoordinateRegion{
 let span = MKCoordinateSpan(latitudeDelta: 0.05, longitudeDelta: 0.05)
 return MKCoordinateRegion(center: coordinate, span: span)
 }
}

Now we start with the definition of our view controller:

class ViewController: UIViewController {

 @IBOutlet var mapView: MKMapView!

 ...

We can then code a method that takes in a latitude, longitude, title, and subtitle for a
pin to be displayed on the screen, instantiates the annotation, and adds that annota‐
tion to the map:

12.1 Displaying a Specific Location on the Map | 341

func display(latitude: CLLocationDegrees,
 longitude: CLLocationDegrees,
 title: String? = nil,
 subtitle: String? = nil){

 let annotation = Annotation(latitude: latitude,
 longitude: longitude,
 title: title,
 subtitle: subtitle)

 mapView.addAnnotation(annotation)

 mapView.setRegion(annotation.region, animated: false)

}

We can then simply call this function and display, for instance, a pin where Stock‐
holm’s Central Station is:

override func viewDidLoad() {
 super.viewDidLoad()

 let stockholmCentralStation = (lat: 59.330139, long: 18.058155)

 display(latitude: stockholmCentralStation.lat,
 longitude: stockholmCentralStation.long,
 title: "Central Station",
 subtitle: "Stockholm")

}

Experiment a little bit with the latitude and longitude delta values of the region
instance of type MKCoordinateRegion, and see how decreasing this value zooms the
map more into the center. Also, change the latitude and the longitude and see how
that affects where the point is displayed.

12.2 Requesting the User’s Location a Single Time
Problem
You want an optimized and energy-efficient way of requesting the current location of
the user only once.

Solution
You will need to use the requestLocation() method of the CLLocationManager class.
The new location will be sent to your location manager’s locationManager(_:didUp

342 | Chapter 12: Maps and Location

dateLocations:) delegate method. Errors will be reported on locationMan

ager(_:didFailWithError:). You can make only one request to this method at any
given time. A new request will cancel the previous one.

Discussion
Place a button on your interface inside IB and then hook it up to a method in your
code called requestLocation(). Then go into your info.plist file and set the value of
the NSLocationWhenInUseUsageDescription key to a valid string that explains to the
user why you want to get her location. You will also have to import the CoreLocation
framework and make your view controller conform to CLLocationManagerDelegate.

Implement a variable in your view controller to represent the location manager:

lazy var locationManager: CLLocationManager = {
 let manager = CLLocationManager()
 manager.delegate = self
 manager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
 return manager
}()

When your button is pressed, request access to the user’s location. This request sends
the user’s location to your app only when it is in the foreground. As soon as your app
is sent to the background, iOS stops delivering location updates to you:

@IBAction func requestLocation() {

 locationManager.requestWhenInUseAuthorization()

}

Then wait for the user to accept or reject the request. If everything is going smoothly,
request the user’s location:

func locationManager(_ manager: CLLocationManager,
 didChangeAuthorization status: CLAuthorizationStatus) {

 if case .authorizedWhenInUse = status{
 manager.requestLocation()
 } else {
 // TODO: we didn't get access, handle this
 }

}

Last but not least, wait for the location-gathering mechanism to fail or succeed:

12.2 Requesting the User’s Location a Single Time | 343

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 // TODO: now you have access to the location--do your work
}

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 // TODO: handle the error
}

See Also
Recipe 12.3

12.3 Requesting the User’s Location in the Background
Problem
You want to receive updates on the user’s location while your app is in the back‐
ground. Being a good iOS citizen, you won’t ask for this unless you really need it for
the main functionality of your app.

Solution
Set the allowsBackgroundLocationUpdates property of your location manager to
true and ask for location updates using the requestAlwaysAuthorization()

function.

Discussion
When linked against iOS 10, apps that want to ask for a user’s location when the app
is in the background have to set the allowsBackgroundLocationUpdates property of
their location manager to true. We will need to have a look at an example. Start a
single view controller app, place a button on your UI with IB, and give it a title similar
to “Request background location updates.” Then hook it to a method in your view
controller and name the method requestBackgroundLocationUpdates(). In your
info.plist file, set the string value of the NSLocationAlwaysUsageDescription key and
make sure that it explains exactly why you want to access the user’s location even in
the background. Then go into the Capabilities section of your target, and under Back‐
ground Modes, enable “Location updates” (see Figure 12-2).

344 | Chapter 12: Maps and Location

Figure 12-2. Enabling location updates in Background Modes in your project

Now import CoreLocation in your code and make your view controller conformant
to CLLocationManagerDelegate. Create your location manager and make sure that
the allowsBackgroundLocationUpdates property is set to true:

lazy var locationManager: CLLocationManager = {
 let m = CLLocationManager()
 m.delegate = self
 m.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
 m.allowsBackgroundLocationUpdates = true
 return m
}()

When the user presses the button, ask for location updates:

@IBAction func requestBackgroundLocationUpdates() {
 locationManager.requestAlwaysAuthorization()
}

Wait until the user accepts the request and then start looking for location updates:

func locationManager(
 _ manager: CLLocationManager,
 didChangeAuthorization status: CLAuthorizationStatus) {

 if case CLAuthorizationStatus.authorizedAlways = status{
 manager.startUpdatingLocation()
 }

12.3 Requesting the User’s Location in the Background | 345

}

Last but not least, implement the usual location manager methods to get to know
when the user’s location has changed:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 // TODO: now you have access to the location--do your work

}

func locationManager(_ manager: CLLocationManager,
 didFailWithError error: Error) {
 // TODO: handle the error
}

See Also
Recipe 12.2

12.4 Customizing the Tint Color of Pins on the Map
Problem
You want to set the tint color of pin annotations on your map manually.

Solution
Use the pinTintColor property of the MKPinAnnotationView class.

Discussion
Let’s check out an example. Create a single view controller project and dump a map
view on top of your view. Make sure that you set the delegate of this map view to your
view controller. Also link it to a variable named map in your view controller.

In the view controller, we are going to create annotations with reusable identifiers, so
let’s use the color as the ID:

import Foundation
import UIKit

public extension UIColor{
 final func toString() -> String{

 var red = 0.0 as CGFloat
 var green = 0.0 as CGFloat
 var blue = 0.0 as CGFloat

346 | Chapter 12: Maps and Location

 var alpha = 0.0 as CGFloat
 getRed(&red, green: &green, blue: &blue, alpha: &alpha)

 return "\(Int(red))\(Int(green))\(Int(blue))\(Int(alpha))"
 }
}

Now we create our annotation:

import Foundation
import MapKit

public class Annotation : NSObject, MKAnnotation{
 public var coordinate: CLLocationCoordinate2D
 public var title: String?
 public var subtitle: String?

 public init(coordinate: CLLocationCoordinate2D,
 title: String, subtitle: String){
 self.coordinate = coordinate
 self.title = title
 self.subtitle = subtitle
 }

}

Now ensure that your view controller conforms to the MKMapViewDelegate protocol,
define the location that you want to display on the map, and create an annotation for
it:

let color = UIColor(red: 0.4, green: 0.8, blue: 0.6, alpha: 1.0)
let location = CLLocationCoordinate2D(latitude: 59.33, longitude: 18.056)

lazy var annotations: [MKAnnotation] = {
 return [Annotation(coordinate: self.location,
 title: "Stockholm Central Station",
 subtitle: "Stockholm, Sweden")]
}()

When your view appears on the screen, add the annotation to the map:

 override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 map.removeAnnotations(annotations)
 map.addAnnotations(annotations)

}

12.4 Customizing the Tint Color of Pins on the Map | 347

And when the map view asks for an annotation view for your annotation, return an
annotation view with the custom color (see Figure 12-3):

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 let view: MKPinAnnotationView
 if let v = mapView.dequeueReusableAnnotationView(
 withIdentifier: color.toString()), v is MKPinAnnotationView{
 view = v as! MKPinAnnotationView
 } else {
 view = MKPinAnnotationView(annotation: annotation,
 reuseIdentifier: color.toString())
 }

 view.pinTintColor = color

 return view

}

Figure 12-3. Our custom color pin is displayed on the map

348 | Chapter 12: Maps and Location

12.5 Providing Detailed Pin Information with Custom
Views
Problem
When the user taps on an annotation in a map, you want to display details for that
annotation in a view.

Solution
Set the detailCalloutAccessoryView property of your MKAnnotationView instances
to a valid UIView instance.

Discussion
Create your project following the steps outlined in Recipe 12.4. In this recipe, I am
going to reuse a lot of code from the aforementioned recipe, except for the implemen‐
tation of the mapView(_:viewForAnnotation:) delegate method of our view control‐
ler. Instead, we are going to construct instances here of MKAnnotationView and then
set the detail callout accessory view:

func mapView(
 _ mapView: MKMapView,
 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {

 let view: MKAnnotationView
 if let v = mapView
 .dequeueReusableAnnotationView(withIdentifier: identifier){
 // reuse
 view = v
 } else {
 // create a new one
 view = MKAnnotationView(annotation: annotation,
 reuseIdentifier: identifier)

 view.canShowCallout = true

 if let img = UIImage(named: "Icon"){
 view.detailCalloutAccessoryView = UIImageView(image: img)
 }

 if let extIcon = UIImage(named: "ExtIcon"){
 view.image = extIcon
 }
 }

 return view

12.5 Providing Detailed Pin Information with Custom Views | 349

}

Figure 12-4 shows the image of an annotation on a map. The image inside the callout
is the detail callout accessory view.

Figure 12-4. Annotation with detail callout accessory

I am using two public domain images in this recipe. You also can
find public domain images on Google.

12.6 Displaying Traffic, Scale, and Compass Indicators on
the Map
Problem
You want to display traffic as well as the little compass and scale indicators on the
map view.

350 | Chapter 12: Maps and Location

Solution
Set the following properties of your map view to true:

• showsCompass

• showsTraffic

• showsScale

Discussion
Place a map view on your view and set the appropriate constraints on it so that it
stretches across the width and height of your view controller’s view. This is really
optional, but useful so the user can see the map view properly on all devices. Then
follow the steps outlined in Recipe 12.4 to place an annotation on the map. Write
code similar to the following in a method such as viewDidLoad:

map.showsCompass = true
map.showsTraffic = true
map.showsScale = true

The results will be similar to those shown in Figure 12-5. The scale is shown on the
top left and the compass on the top right. You have to rotate the map for the compass
to appear.

12.6 Displaying Traffic, Scale, and Compass Indicators on the Map | 351

Figure 12-5. Map with scale, compass, and traffic

12.7 Providing an ETA for Transit Transport Type
Problem
You want your app to provide routing options to users when they are in the iOS Maps
app.

352 | Chapter 12: Maps and Location

Solution
You will need to mark your app as a routing app and construct an instance of the
MKDirectionsRequest class. Set the transportType property of that request to
Transit and send your request to Apple to calculate an estimated time of arrival
(ETA), using the calculateETA(completionHandler:) method of the MKDirections
class.

We use Geo JSON files here, so be sure to read the spec for that for‐
mat before proceeding with this recipe.

Discussion
Create a single view application. Then head to the Capabilities tab in Xcode, enable
the Maps section, and mark the routing options that you believe your app will be able
to provide (see Figure 12-6). I’ve enabled all these items for demonstration purposes.
You probably wouldn’t want to enable all of these in your app.

Figure 12-6. Transportation routing options

Create a new Directions.geoJson file in your app and then head over to GeoJson.io to
create the polygon that defines your routing coverage area. Then copy and paste the
generated content and place it in the aforementioned file in your project. Now go and
edit your target’s scheme. Under Run and then Options, find the Routing App Cover‐
age file section and select your file (see Figure 12-7).

12.7 Providing an ETA for Transit Transport Type | 353

http://geojson.org/geojson-spec.html
http://geojson.io/

Figure 12-7. Here I am selecting the routing coverage file for my project

You can always go to GeoJsonLint to validate your Geo JSON files.

This will allow the Maps app to open your app whenever the user asks for transit
information on the iOS Maps app. Now code the application(_:open

URL:options:) method of your app delegate and handle the routing request there:

func application(_ app: UIApplication,
 open url: URL,
 options:
 [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

 guard MKDirectionsRequest.isDirectionsRequest(url) else{
 return false
 }

 // now we have the URL
 let req = MKDirectionsRequest(contentsOf: url)

 guard req.source != nil && req.destination != nil else{
 return false
 }

 req.transportType = .transit
 req.requestsAlternateRoutes = true

354 | Chapter 12: Maps and Location

http://geojsonlint.com/

 let dir = MKDirections(request: req)

 dir.calculateETA {response, error in
 guard let resp = response, error == nil else{
 // handle the error
 print(error!)
 return
 }

 print("ETA response = \(resp)")

 }

 return true

}

Now open the Maps app and ask for directions from one location to another. If the
Maps app couldn’t handle the request, it will show a little “View Routing Apps” but‐
ton. Even if the Maps app wasn’t able to show the routing options, the user can always
press the little navigation button to open alternative routing apps (see Figure 12-8).
Your app will be displayed in the list of routing apps if the user asks for a routing
option you support, and if the starting and stopping points are within the shape you
defined in your Geo JSON file. When the user opens your app, your app delegate will
be informed and will calculate an ETA.

Figure 12-8. Our app, displayed in the list of routing apps

See Also
Recipe 12.5

12.7 Providing an ETA for Transit Transport Type | 355

12.8 Launching the iOS Maps App in Transit Mode
Problem
You want to launch iOS’s Maps app in transit mode.

Solution
When calling the openMaps(with:launchOptions:) class method of MKMapItem, in
the options collection, set the value of the MKLaunchOptionsDirectionsModeKey key
to MKLaunchOptionsDirectionsModeTransit.

Discussion
Let’s create a single view controller app and place a button on the view controller to
open a map. Set the title of this button to something like “Open Maps app in transit
mode.” Then hook it up to your view controller. For every coordinate of type CLLoca
tionCoordinate2D, you have to create an instance of MKPlacemark and then from the
placemark, create an instance of MKMapItem.

Here is the source map item:

let srcLoc = CLLocationCoordinate2D(latitude: 59.328564,
 longitude: 18.061448)
let srcPlc = MKPlacemark(coordinate: srcLoc, addressDictionary: nil)
let src = MKMapItem(placemark: srcPlc)

Followed by the destination map item:

let desLoc = CLLocationCoordinate2D(latitude: 59.746148,
 longitude: 18.683281)
let desPlc = MKPlacemark(coordinate: desLoc, addressDictionary: nil)
let des = MKMapItem(placemark: desPlc)

You can use the Get Latitude Longitude website to find the latitude
and longitude of any point on the map.

Now we can launch the app, under transit mode, with the source and the destination
points:

let options = [
 MKLaunchOptionsDirectionsModeKey : MKLaunchOptionsDirectionsModeTransit
]

356 | Chapter 12: Maps and Location

http://www.latlong.net/

MKMapItem.openMaps(with: [src, des], launchOptions: options)

See Also
Recipe 12.4

12.9 Showing Maps in Flyover Mode
Problem
You want to display your maps in a flyover state, where the regions on the map are
translated onto a 3D globe, rather than a 2D flattened map.

Solution
Set the mapType property of your MKMapView to either hybridFlyover or satellite
Flyover.

Discussion
The flyover mode of a map view represents the map as if it were on a globe, rather
than flat. So keep that in mind when placing a camera on the map to show to the user.

Let’s start off with a single view controller app. Place a map view on your view and
hook it up to your code. I’ve named mine “map.” When your view gets loaded, make
sure that your map type is one of the aforementioned flyover modes:

map.mapType = .satelliteFlyover
map.showsBuildings = true

Then when your view appears on the screen, set the camera on your map:

let loc = CLLocationCoordinate2D(latitude: 59.328564,
 longitude: 18.061448)

let altitude: CLLocationDistance = 500
let pitch: CGFloat = 45
let heading: CLLocationDirection = 90

let c = MKMapCamera(
 lookingAtCenter: loc,
 fromDistance: altitude, pitch: pitch, heading: heading)

map.setCamera(c, animated: true)

12.9 Showing Maps in Flyover Mode | 357

Run this code on a real device (this doesn’t work very well on simulator) and you’ll
get a display along the lines of Figure 12-9.

Figure 12-9. The Stockholm Central Station is shown here under satellite flyover mode

358 | Chapter 12: Maps and Location

CHAPTER 13

UI Testing

Apple added quite a good framework for UI testing in the latest Xcode. This is so
much fun, I am sure you are going to enjoy writing UI tests. UI tests go hand in hand
with accessibility, so knowing a bit about that is very useful, if not necessary.

When you are debugging accessibility-enabled apps on the simulator, you may want
to use a really handy dev tool that comes with Xcode: the Accessibility inspector
(Figure 13-1). You can find it by right-clicking Xcode’s icon in the Dock and then
choosing Accessibility Inspector from Open Developer Tool. The Accessibility
inspector allows you to move your mouse over items on the screen and then get
information about their accessibility properties, such as their values, identifiers, and
so on. I suggest that you use this program whenever you want to figure out the identi‐
fiers, labels, and values of UI components on your views.

In this chapter, we will have a look at how to write UI tests and evaluate the results.
We will use Xcode’s automated UI tests and also write some tests by hand.

13.1 Preparing Your Project for UI Testing
Problem
You either have an existing app or want to create a new app, and you want to ensure
that you have some UI testing capabilities built into your app so that you can get
started writing UI tests.

359

Figure 13-1. The Accessibility inspector shows information for a button on the screen, in
the simulator

Solution
If you have an existing project, simply add a new UI Test target to your project. If you
are creating a new project from scratch, you can add a UI Test target in the creation
process.

Discussion
If you are starting a new app from scratch, upon setting your project’s properties, you
will be given a chance to create a UI testing target (see Figure 13-2). Enable the
“Include UI Tests” option.

If you have an existing project and want to add a new UI testing target to it, create a
new target. In the templates screen, under iOS, choose Test and then “Cocoa Touch
UI Testing Bundle” (see Figure 13-3).

360 | Chapter 13: UI Testing

Figure 13-2. The “Include UI Tests” option in the Xcode’s new project sheet

In the next screen, you will then be asked on which target inside your project you
want to create the UI testing target. Make sure that you choose the right target. You
can change this later, if you want, from the properties of your UI Test target (see
Figure 13-4).

13.1 Preparing Your Project for UI Testing | 361

Figure 13-3. You can also add a new UI testing bundle to your existing apps

Figure 13-4. You can change the target to which your UI tests are attached even after the
creation of your UI Test target

13.2 Automating UI Test Scripts
Problem
You want Xcode to generate most, if not all, of your UI testing code. You can write
more UI testing code in Swift, but it’s useful to take advantage of what Xcode gives
you for free.

362 | Chapter 13: UI Testing

Solution
Use the new record button in Xcode when you are in your UI testing target’s code
(see the red circle near the upper-left corner of Figure 13-5). This will really be handy
if you want to automatically get all your UI test codes written for you (but sometimes
you’ll still have to write some yourself).

Figure 13-5. The little circular record button on the debugger section of Xcode’s window
automatically gets UI test codes

You can write all your UI tests in pure Swift code. No more muck‐
ing around with JavaScript. Jeez, isn’t that a relief?!

Discussion
Let’s say that you have a UI that looks similar to that shown in Figure 13-6. In this UI,
the user is allowed to enter some text in the text field at the top of the screen. Once
she is done, she can just press the button and the code will translate her input into its
equivalent capitalized string and place it in the label at the bottom.

Figure 13-6. Sample UI with text fields and button

I assume that you have arranged these UI components inside a storyboard. In the
Identity inspector in IB, set the accessibility label of your text field to “Full Name,” the

13.2 Automating UI Test Scripts | 363

label for your button to “Capitalize,” and your label to “Capitalized String.” Now hook
up your text field and your label to your code under the names of “lbl” and “txtField”
as I’ve done. It just makes understanding the code easier. Otherwise, you can name
them what you want. Then hook the action of your button to your code. I’ve named
this action method capitalize(). Now when the user presses the button, we read the
text and capitalize it:

 @IBAction func capitalize() {
 guard let txt = txtField.text, txt.characters.count > 0 else{
 return
 }
 lbl.text = txt.uppercased()
 lbl.accessibilityValue = lbl.text
 }

Now head over to the main Swift file for your UI tests and you should see a simple
and empty method, usually named testExample(). Put your cursor inside that
method and then press the record button. Xcode will open your app and you will be
able to interact with your app as you would normally. Acting as a user would be
expected to act, select the text field by tapping on it and then type some text in it like
“Hello, World!” Finally, press the capitalize button. Xcode will generate a test that
looks more or less like:

let app = XCUIApplication()
let fullNameTextField = app.textFields["Full Name"]
fullNameTextField.tap()
fullNameTextField.typeText(enteredString)
app.buttons["Capitalize"].tap()

We have a problem, Watson! We now need to make sure that the capitalized text
inside our label is correctly capitalized. How can we do that in Xcode and get Xcode
to generate the code for us? Well, the answer is: we can’t! This is a logical task that you
cannot automate with Xcode, so let’s do it ourselves. In the app object, there is a prop‐
erty called staticTexts, so let’s get our label from there:

let lbl = app.staticTexts["Capitalized String"]

This will give us an item of type XCUIElement. Just so you know, the app object is of
type XCUIApplication. Every element has a value property that is an optional value
of type AnyObject. For our label, this is going to contain a string. So let’s read its value
as a string and then compare it with the string that we expect it to be:

let app = XCUIApplication()
let fullNameTextField = app.textFields["Full Name"]
fullNameTextField.tap()
fullNameTextField.typeText(enteredString)
app.buttons["Capitalize"].tap()

364 | Chapter 13: UI Testing

I took the opportunity to put the entered and expected strings
inside string objects so that we don’t have to write them multiple
times.

Now press the little play button next to your test method and let Xcode do its thing.
You should now see that the text has succeeded if everything went well.

See Also
Recipe 13.1

13.3 Testing Text Fields, Buttons, and Labels
Problem
You want to create UI tests to work with instances of UITextField, UIButton, and
UILabel.

Solution
All the aforementioned items are instances of type XCUIElement. That means that you
can work with some really cool properties of them in UI testing, such as the
following:

• exists

• title

• label

• enabled

• frame

• debugDescription

• descendantsMatchingType(_:)

• childrenMatchingType(_:)

The last two in the list are a bit more advanced, so we won’t work with them until
later in this chapter when we discuss queries.

Discussion
Let’s say that you have a label and a button. When the button is pressed, you are hid‐
ing the label (by setting its hidden property to true). You now want to write a UI test
to see whether the desired effect actually happens. I assume that you’ve already set up

13.3 Testing Text Fields, Buttons, and Labels | 365

your UI and you’ve given an accessibility label of “Button” to the button and “Label”
to the label.

I recommend working as much as possible in Xcode’s automated
recording system, where you can just visually see your UI and then
let Xcode write your UI test code for you. This is the approach I
take, not only in this recipe but in all other recipes in this book
where appropriate.

So open the recording section of UI tests (see Figure 13-5) and press the button. The
code that you’ll get will be similar to this:

let app = XCUIApplication()
app.buttons["Button"].tap()

You can see that the app object has a property called buttons that returns an array of
all buttons that are on the screen. That itself is awesome, in my opinion. Then the
tap() method is called on the button. We want to find the label now:

let lbl = app.staticTexts["Label"]

As you can see, the app object has a property called staticTexts that is an array of
labels. Any label, anywhere. That’s really cool and powerful. Regardless of where the
label is and who is the parent of the label, this property will return that label. Now we
want to find whether that label is on screen:

XCTAssert(lbl.exists == false)

You can, of course, also read the value of a text field. You can also use the debugger to
inspect the value property of a text field element using the po command. You can
find all text fields that are currently on the screen using the textFields property of
the app that you instantiated with XCUIApplication().

Here is an example where I try to find a text field on the screen with a specific acces‐
sibility label that I have set in my storyboard:

let app = XCUIApplication()

let txtField = app.textFields["MyTextField"]
XCTAssert(txtField.exists)
XCTAssert(txtField.value != nil)

let txt = txtField.value as! String

XCTAssert(txt.characters.count > 0)

See Also
Recipe 13.1

366 | Chapter 13: UI Testing

13.4 Finding UI Components
Problem
You want to be able to find your UI components wherever they are, using simple to
complex queries.

Solution
Construct queries of type XCUIElementQuery. Link these queries together to create
even more complicated queries and find your UI elements.

The XCUIElement class conforms to the XCUIElementTypeQueryProvider protocol. I
am not going to waste space here and copy/paste Apple’s code in that protocol, but if
you have a look at it yourself, you’ll see that it is made out of a massive list of proper‐
ties (groups, windows, dialogs, buttons, etc.).

Here is how I recommend going about finding your UI elements using this
knowledge:

1. Instantiate your app with XCUIApplication().
2. Refer to the windows property of the app object to get all the windows in the app

as a query object of type XCUIElementQuery.
3. Now that you have a query object, use the childrenMatchingType(_:) method

to find children inside this query.

Let’s say that you have a simple view controller. Inside that view controller’s view, you
dump another view, and inside that view you dump a button so that your view hierar‐
chy looks something like Figure 13-7.

13.4 Finding UI Components | 367

Figure 13-7. Hierarchy of views in this sample app

We created this hierarchy by placing a view inside the view controller’s view, and plac‐
ing a button inside that view. We are now going to try to find that button and tap it:

let app = XCUIApplication()
let view = app.windows.children(matching: .other)
let innerView = view.children(matching: .other)
let btn = innerView.children(matching: .button).element(boundBy: 0)
XCTAssert(btn.exists)
btn.tap()

Discussion
Let’s write the code that we wrote just now, but in a more direct and compact way
using the descendantsMatchingType(_:) method:

let app = XCUIApplication()

let btn = app.windows.children(matching: .other)
 .descendants(matching: .button).element(boundBy: 0)

XCTAssert(btn.exists)
btn.tap()

368 | Chapter 13: UI Testing

Here I am looking at the children of all my windows that are of type Unknown (view)
and then finding a button inside that view, wherever that button may be and in
whichever subview it may have been bundled up. Can this be written in a simpler
way? You betcha:

let app = XCUIApplication()

let btn = app.windows.children(matching: .other)
 .descendants(matching: .button).element(boundBy: 0)

XCTAssert(btn.exists)
btn.tap()

The buttons property of our app object is a query that returns all
the buttons that are descendants of any window inside the app. Isn’t
that awesome?

Those of you with a curious mind are probably thinking, “Can this be written in a
more complex way?” Well, yes, I am glad you asked:

let app = XCUIApplication()

let btn = app.windows.children(matching: .other)
 .descendants(matching: .button).element(boundBy: 0)

XCTAssert(btn.exists)
btn.tap()

Here I first find the main view inside the view controller that is on screen. Then I find
all views that have a button inside them as a first child using the awesome contai
ningType(_:identifier:) method. After I have all the views that have buttons in
them, I find the first button inside the first view and then tap it.

Now let’s take the same view hierarchy, but this time we will use predicates of type
NSPredicate to find our button. There are two handy methods on XCUIElementQuery
that we can use to find elements with predicates:

• element(matching predicate: NSPredicate) -> XCUIElement

• matching(_ predicate: NSPredicate) -> XCUIElementQuery

The first method will find an element that matches a given predicate (so your result
has to be unique), and the second method finds all elements that match a given predi‐
cate. I now want to find a button inside my UI with a specific title:

13.4 Finding UI Components | 369

let app = XCUIApplication()

let btns = app.buttons.matching(
 NSPredicate(format: "title like[c] 'Button'"))

XCTAssert(btns.count >= 1)

let btn = btns.element(boundBy: 0)

XCTAssert(btn.exists)

Now another example. Let’s say we want to write a test script that goes through all the
disabled buttons on our UI:

let app = XCUIApplication()

let btns = app.buttons.matching(
 NSPredicate(format: "title like[c] 'Button'"))

XCTAssert(btns.count >= 1)

let btn = btns.element(boundBy: 0)

XCTAssert(btn.exists)

See Also
Recipe 13.1

13.5 Long-Pressing on UI Elements
Problem
You want to be able to simulate long-pressing on a UI element using UI tests.

Solution
Use the pressForDuration(_:) method of XCUIElement.

Discussion
Create a single view app and when your view gets loaded, add a long gesture recog‐
nizer to your view. The following code waits until the user long-presses the view for 5
seconds:

370 | Chapter 13: UI Testing

override func viewDidLoad() {
 super.viewDidLoad()

 view.isAccessibilityElement = true

 let gr = UILongPressGestureRecognizer(target: self,
 action: #selector(ViewController.handleLongPress))

 gr.minimumPressDuration = 5

 view.addGestureRecognizer(gr)

}

The gesture recognizer is hooked to a method. In this method, we will show an alert
controller and ask the user for her name. Once she has answered the question and
pressed the save button on the alert, we will set the entered value as the accessibility
value of our view so that we can read it in our UI tests:

func handleLongPress(){
 let c = UIAlertController(title: "Name", message: "What is your name?",
 preferredStyle: .alert)

 c.addAction(UIAlertAction(title: "Cancel", style: .destructive,
 handler: nil))

 c.addAction(UIAlertAction(title: "Save", style: .destructive){
 action in

 guard let fields = c.textFields, fields.count == 1 else{
 return
 }

 let txtField = fields[0]
 guard let txt = txtField.text, txt.characters.count > 0 else{
 return
 }

 self.view.accessibilityValue = txt

 })

 c.addTextField {txt in
 txt.placeholder = "Foo Bar"
 }

 present(c, animated: true, completion: nil)

}

13.5 Long-Pressing on UI Elements | 371

Now let’s go to our UI test code and do the following:

1. Get an instance of our app.
2. Find our view object with the childrenMatchingType(_:) method of our app.
3. Call the pressForDuration(_:) method on it.
4. Call the typeText(_:) method of our app object and find the save button on the

dialog.
5. Programmatically press the save button using the tap() method.
6. Check the value of our view and check it against the value that we entered earlier.

They should match:

let app = XCUIApplication()
let view = app.windows.children(matching: .other).element(boundBy: 0)
view.press(forDuration: 5)

XCTAssert(app.alerts.count > 0)

let text = "Foo Bar"
app.typeText(text)

let alert = app.alerts.element(boundBy: 0)
let saveBtn = alert.descendants(matching: .button).matching(
 NSPredicate(format: "title like[c] 'Save'")).element(boundBy: 0)

saveBtn.tap()

XCTAssert(view.value as! String == text)

I highly recommend that you always start by using the automati‐
cally recorded and written UI tests that Xcode can create for you.
This will give you insight into how you can find your UI elements
better on the screen. Having said that, Xcode isn’t always so intelli‐
gent in finding the UI elements.

See Also
Recipe 13.1

13.6 Typing Inside Text Fields
Problem
You would like to write UI tests for an app that contains text fields. You want to be
able to activate a text field, type some text in it, deactivate it, and then run some tests
on the results, or a combination of the aforementioned scenarios.

372 | Chapter 13: UI Testing

Solution
Follow these steps:

1. Find your text field with the textFields property of your app or one of the other
methods mentioned in Recipe 13.4.

2. Call the tap() method on your text field to activate it.
3. Call the typeText(_:) method on the text field to type whatever text you want.
4. Call the typeText(_:) method of your app with the value of XCUIKeyboardKeyRe

turn as the parameter. This will simulate pressing the Enter button on the key‐
board. Check out other XCUIKeyboardKey constant values, such as XCUIKeyboard
KeySpace or XCUIKeyboardKeyCommand.

5. Once you are done, read the value property of your text field element as String
and do your tests on that.

Discussion
Create a single view app and place a text field on it. Set the accessory label of that text
field to “myText.” Set your text field’s delegate as your view controller and make your
view controller conform to UITextFieldDelegate. Then implement the notoriously
redundant delegate method named textFieldShouldReturn(_:) so that pressing the
return button on the keyboard will dismiss the keyboard from the screen:

import UIKit

class ViewController: UIViewController, UITextFieldDelegate {

 func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 textField.resignFirstResponder()
 return true
 }

}

Then, inside your UI tests, let’s write code similar to what I suggested in this recipe’s
Solution:

13.6 Typing Inside Text Fields | 373

let app = XCUIApplication()
let myText = app.textFields["myText"]
myText.tap()

let text1 = "Hello, World!"

myText.typeText(text1)
myText.typeText(XCUIKeyboardKeyDelete)
app.typeText(XCUIKeyboardKeyReturn)

XCTAssertEqual((myText.value as! String).characters.count,
 text1.characters.count - 1)

See Also
Recipe 13.1

13.7 Swiping on UI Elements
Problem
You want to simulate swiping on various UI components in your app.

Solution
Use the various swipe methods on XCUIElement such as the following:

• swipeUp()

• swipeDown()

• swipeRight()

• swipeleft()

Discussion
Let’s set our root view controller to a table view controller and program the table view
controller so that it shows 10 hardcoded cells inside it:

import UIKit

class ViewController: UITableViewController {

 let id = "c"

 lazy var items: [String] = {
 return (0..<10).map{"Item \($0)"}
 }()

374 | Chapter 13: UI Testing

 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return items.count
 }

 override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let c = tableView.dequeueReusableCell(withIdentifier: id,
 for: indexPath)

 c.textLabel!.text = items[(indexPath as NSIndexPath).row]

 return c

 }

 override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {

 items.remove(at: (indexPath as NSIndexPath).row)
 tableView.deleteRows(at: [indexPath],
 with: .automatic)

 }

}

With this code, the user can swipe left on any cell and then press the delete button to
delete that cell. Let’s test this in our UI test. This is what you’ll need to do:

1. Get the handle to the app.
2. Using the cells property of the app, you will first need to count to make sure

there are initially 10 items in the table view.
3. Then find the fifth item and swipe left on it.
4. After that, find the delete button using the buttons property of the app object

and tap on it with the tap() method.
5. Finally, assert that the cell was deleted for sure by making sure the cell’s count is

now 9 instead of 10:

let app = XCUIApplication()
let cells = app.cells
XCTAssertEqual(cells.count, 10)
app.cells.element(boundBy: 4).swipeLeft()
app.buttons["Delete"].tap()
XCTAssertEqual(cells.count, 9)

13.7 Swiping on UI Elements | 375

See Also
Recipes 13.1 and 13.5

13.8 Tapping UI Elements
Problem
You want to be able to simulate various ways of tapping UI elements when writing
your UI tests.

Solution
Use one or a combination of the following methods of the XCUIElement class:

• tap()

• doubleTap()

• twoFingerTap()

Double tapping is two taps, with one finger. The two-finger tap is
one tap, but with two fingers.

Discussion
Create a single view app and then add a gesture recognizer to the view that sets the
accessibility of the view whenever two fingers have been tapped on the view:

import UIKit

class ViewController: UIViewController {

 func handleTap(){
 view.accessibilityValue = "tapped"
 }

 override func viewDidLoad() {
 super.viewDidLoad()

 view.isAccessibilityElement = true
 view.accessibilityValue = "untapped"
 view.accessibilityLabel = "myView"

 let tgr = UITapGestureRecognizer(
 target: self, action: #selector(ViewController.handleTap))

376 | Chapter 13: UI Testing

 tgr.numberOfTapsRequired = 1
 tgr.numberOfTouchesRequired = 2
 view.addGestureRecognizer(tgr)

 }

}

Now our UI tests will do a two-finger tap on the view and check its value before and
after to make sure it checks out:

let app = XCUIApplication()
let view = app.descendants(matching: .other)["myView"]

XCTAssert(view.exists)
XCTAssert(view.value as! String == "untapped")

view.twoFingerTap()

XCTAssert(view.value as! String == "tapped")

See Also
Recipes 13.1 and 13.5

13.8 Tapping UI Elements | 377

CHAPTER 14

Core Motion

This year, Apple finally brought some long-awaited features into the Core Motion
framework. It’s especially exciting that the same capabilities, or some version of them,
are also available on the Apple Watch. This is great news for us developers because we
can program for the watch in a more native way, rather than reading this data from
the user’s iPhone and sending it to the watch with Bluetooth.

There are a couple key terms I’ll be using throughout this chapter that you need to
know about:

Cadence
I use a cadence sensor on my bicycle. It helps me figure out how many times I spin
my pedals, which can be crucial knowledge. Think about riding downhill on a bicy‐
cle, at a 45-degree angle, for 20 minutes, out of a total 40-minute bike ride. Your total
calories burned and effort will be miscalculated because you might not even have
pedaled when going downhill. The watch actually includes a cadence sensor for
running.

Pace
This is a ratio, dividing the time you have moved by the distance. If you’re counting
in meters, for instance, your pace might be 0.5 seconds per meter, meaning that you
travelled 1 meter in half a second.

iOS devices can provide pace and cadence information when it’s available from the
pedometer. Some pedometers might not have this information available. You can call
the isPaceAvailable() class function of CMPedometer to check whether pace infor‐
mation is available. Similarly, you can call the isCadenceAvailable() class method of
CMPedometer to determine whether cadence information is available.

379

Import the Core Motion framework into your project before
attempting to run the code we write in this chapter.

14.1 Querying Pace and Cadence Information
Problem
You want to get cadence and pace information from the pedometer on an iOS device.

Solution
Follow these steps:

1. Find out whether cadence and pace are available.
2. Call the startUpdates(from:withHandler:) function of CMPedometer.
3. In your handler block, read the currentPace and currentCadence properties of

the incoming optional CMPedometerData object.

Discussion
Let’s check out an example:

guard CMPedometer.isCadenceAvailable() &&
 CMPedometer.isPaceAvailable() else{
 print("Pace and cadence data are not available")
 return
}

let oneWeekAgo = Date(timeIntervalSinceNow: -(7 * 24 * 60 * 60))
pedometer.startUpdates(from: oneWeekAgo) {data, error in

 guard let pData = data, error == nil else{
 return
 }

 if let pace = pData.currentPace{
 print("Pace = \(pace)")
 }

 if let cadence = pData.currentCadence{
 print("Cadence = \(cadence)")
 }

}

// remember to stop the pedometer updates with stopPedometerUpdates()

380 | Chapter 14: Core Motion

// at some point

When you finish querying pedometer data, always remember to
call the stopPedometerUpdates() function on your instance of
CMPedometer.

14.2 Recording and Reading Accelerometer Data
Problem
You want iOS to accumulate some accelerometer data for a specific number of sec‐
onds and then batch-update your app with all the accelerometer data in one go.

Solution
Follow these steps:

1. Call the isAccelerometerRecordingAvailable() class function on CMSensorRe
corder and abort if it returns false, because that means that accelerometer
recording is not available.

2. Instantiate CMSensorRecorder.
3. Call the recordAccelerometer(forDuration:) function on your sensor recorder

and pass the number of seconds for which you want to record accelerometer
data.

4. Go into a background thread and wait for your data if you want.
5. Call the accelerometerData(from:to:) function on your sensor recorder to get

the accelerometer data from a given date to another date. The return value of this
function is a CMSensorDataList object, which is enumerable. Each item in this
enumeration is of type CMRecordedAccelerometerData.

6. Read the value of each CMRecordedAccelerometerData. You’ll have properties
like startDate, timestamp, and acceleration, which is of type CMAcceleration.

Discussion
I mentioned that CMSensorDataList is enumerable. That means it conforms to the
NSFastEnumeration protocol, but you can not use the for x in ... syntax on this
type of enumerable object. You’ll have to make it conform to the Sequence protocol
and implement the makeIterator() function like so:

14.2 Recording and Reading Accelerometer Data | 381

extension CMSensorDataList : Sequence{
 public func makeIterator() -> NSFastEnumerationIterator {
 return NSFastEnumerationIterator(self)
 }
}

So I’m going to first define a lazily allocated sensor recorder. If sensor information is
not available, my object won’t hang around in the memory:

lazy var recorder = CMSensorRecorder()

Then I check whether sensor information is available:

guard CMSensorRecorder.isAccelerometerRecordingAvailable() else {
 print("Accelerometer data recording is not available")
 return
}

Next, I will record my sensor data for a period:

let duration = 3.0
recorder.recordAccelerometer(forDuration: duration)

Then I will go to the background and read the data:

OperationQueue().addOperation{[unowned recorder] in

 Thread.sleep(forTimeInterval: duration)
 let now = Date()
 let past = now.addingTimeInterval(-(duration))
 guard let data = recorder.accelerometerData(from: past, to: now) else{
 return
 }

 print(data)

}

It is important to enumerate the result of accelerometer

Data(from:to:) on a non-UI thread, because there may be thou‐
sands of data points in the results.

382 | Chapter 14: Core Motion

CHAPTER 15

Security

iOS 10 didn’t change much with regard to the Security framework. A few things were
added, mainly about the keychain. There are also some additions that are about
Application Transport Security, or ATS. ATS is now incorporated into iOS, so all apps
compiled with the new Xcode, and running under the latest iOS version, will by
default use HTTPS for all their network traffic. There are some pros and cons to this:
it is good because it strongly encourages the use of secure connections for everything,
but sometimes it can be annoying to force using a secure connection for everything!

There are also some changes that affect the way we can store values in the keychain,
but overall, not much to worry about.

15.1 Protecting Your Network Connections with ATS
Problem
You want to control the details about the HTTPS channels through which your net‐
work connections go, or use a non-secure channel (HTTP).

I do not personally suggest using non-secure connections. However, in some cases, if
you are using a backend that does not provide an HTTPS variant, you will be eventu‐
ally forced to go through HTTP. In this chapter, I’ll help you figure out how to do that
as well.

Solution
As I said, by default, all domain names that you use in your URLs will be going
through secure channels. But you can indicate specific exceptions. ATS has a dictio‐
nary key in your info.plist file called NSAppTransportSecurity. Under that, you have

383

another dictionary key called NSExceptionDomains. Under this key you can list spe‐
cific domain names that don’t use ATS.

Discussion
If you want to disable ATS entirely so that all your network connections go through
channels specified in your code, simply insert the NSAllowsArbitraryLoads key
under the NSExceptionDomains key. The NSAllowsArbitraryLoads key accepts a
Boolean value. If set to true, your HTTP connections will be HTTP and HTTPS will
be HTTPS.

Alternatively, under the NSExceptionDomains key, you can specify the name of your
domain and set its data type to be a dictionary. Under this dictionary, you can have
the following keys:

NSExceptionAllowsInsecureHTTPLoads

If set to true, allows HTTP loads on the given domain.

NSIncludesSubdomains

If set to true, includes all the subdomains of the given domain as an exception from
ATS.

NSRequiresCertificateTransparency

Dictates that the SSL certificate of the given URL has to include certificate-
transparency information. Check certificate transparency out on the Web for more
information.

NSExceptionMinimumTLSVersion

This is a key to which you assign a string value to specify the minimum TLS version
for the connection. Values can be TLSv1.0, TLSv1.1, or TLSv1.2.

So if I want to disable ATS completely, my plist will look like this:

<plist version="1.0">
<dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>
</dict>
</plist>

How about if I want to have ATS enabled but not for mydomain.com? I’d also like to
request certificate transparency and I’d like ATS to be disabled for subdomains as
well:

384 | Chapter 15: Security

<plist version="1.0">
<dict>
<key>NSExceptionDomains</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <false/>
 <key>mydomain.com</key>
 <dict>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <true/>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSRequiresCertificateTransparency</key>
 <true/>
 </dict>
</dict>
</dict>
</plist>

How about if I want to enable ATS only for mydomain.com?

<plist version="1.0">
<dict>
<key>NSExceptionDomains</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
 <key>mydomain.com</key>
 <dict>
 <key>NSExceptionAllowsInsecureHTTPLoads</key>
 <false/>
 <key>NSIncludesSubdomains</key>
 <true/>
 </dict>
</dict>
</dict>
</plist>

15.2 Binding Keychain Items to Passcode and Touch ID
Problem
You want to create a secure item in the keychain that is accessible only if the user has
set a passcode on her device and has opted in to using the device with Touch ID. So at
least one finger has to have been registered.

Solution
Follow these steps:

15.2 Binding Keychain Items to Passcode and Touch ID | 385

1. Create your access control flags with the SecAccessControlCreateWithFlags
function.
Pass the value of kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly as the
protection parameter and the value of SecAccessControlCreate

Flags.touchIDAny as the flags parameter.
2. In your secure dictionary, add a key named kSecUseAuthenticationUI and set

its value to kSecUseAuthenticationUIAllow. This allows the user to unlock the
secure key with her device passcode or Touch ID.

3. In your secure dictionary, add a key named kSecAttrAccessControl and set its
value to the return value of the SecAccessControlCreateWithFlags function
that you called earlier.

Discussion
For extra security, you might want to sometimes bind secure items in the keychain to
Touch ID and a passcode on a device. As explained before, you’d have to first create
your access control flags with the SecAccessControlCreateWithFlags function and
then proceed to use the SecItemAdd function as you normally would, to add the
secure item to the keychain.

The following example saves a string (as a password) into the keychain, and binds it
to the user’s passcode and Touch ID. First, start off by creating the access control
flags:

guard let flags =
 SecAccessControlCreateWithFlags(
 kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 SecAccessControlCreateFlags.touchIDAny, nil) else{
 print("Could not create the access control flags")
 return
}

Then define the data that you want to store in the keychain:

let password = "some string"

guard let data = password.data(using: String.Encoding.utf8) else{
 print("Could not get data from string")
 return
}

The next step is to create the dictionary that you need to pass to the SecItemAdd
function later with all your flags:

386 | Chapter 15: Security

let service = "onlinePasswords"

let attrs = [
 kSecClass.str() : kSecClassGenericPassword.str(),
 kSecAttrService.str() : service,
 kSecValueData.str() : data,
 kSecUseAuthenticationUI.str() : kSecUseAuthenticationUIAllow.str(),
 kSecAttrAccessControl.str() : flags,
]

Last but not least, asynchronously add the item to the keychain:

OperationQueue().addOperation{
 guard SecItemAdd(attrs, nil) == errSecSuccess else{
 print("Could not add the item to the keychain")
 return
 }

 print("Successfully added the item to keychain")
}

Earlier, we used the value of SecAccessControlCreateFlags.touchIDAny in the
flags parameter of the SecAccessControlCreateWithFlags function to specify that
we need Touch ID to be enabled on the current device before our secure item can be
read. There is another value in SecAccessControlCreateFlags that you might find
useful: touchIDCurrentSet. If you use this value, your secure item will still require
Touch ID, but it will be invalidated by a change to the current set of enrolled Touch
ID fingers. If the user adds a new finger to Touch ID or removes an existing one, your
item will be invalidated and won’t be readable.

See Also
Recipe 15.4

15.3 Opening URLs Safely
Problem
You want to find out whether an app on the user’s device can open a specific URL.

Solution
Follow these steps:

1. Define the key of LSApplicationQueriesSchemes in your plist file as an array.

15.3 Opening URLs Safely | 387

2. Under that array, define your URL schemes as strings. These are the URL
schemes that you want your app to be able to open.

3. In your app, issue the canOpenUrl(_:) method on your shared app.
4. If you can open the URL, proceed to open it using the open(_:options:comple

tionHandler:) method of the shared app.
5. If you cannot open the URL, offer an alternative to your user if possible.

Discussion
In iOS, previously, apps could issue the canOpenUrl(_:) call to find out whether a
URL could be opened on the device by another application. For instance, I could find
out whether I can open “instagram://app” (see iPhone Hooks: Instagram Documenta‐
tion). If that’s possible, I would know that Instagram is installed on the user’s device.
This technique was used by some apps to find which other apps are installed on the
user’s device. This information was then used for marketing, among other things.

In the latest iOS, you need to use the plist file to define the URLs that you want to be
able to open or to check whether URLs can be opened. If you define too many APIs
or unrelated APIs, your app might get rejected. If you try to open a URL that you
have not defined in the plist, you will get a failure. You can use canOpenUrl(_:) to
check whether you can access a URL before trying to open it: the method returns
true if you have indicated that you can open that kind of URL, and false otherwise.

Let’s check out an example. I’ll try to find first whether I can open the Instagram app
on the user’s device:

guard let url = URL(string: "instagram://app"),
 UIApplication.shared.canOpenURL(url) else{
 return
}

Now that I know I can open the URL, I’ll proceed to do so:

UIApplication.shared.open(url){succeeded in
 if succeeded{
 print("Successfully opened Instagram")
 } else {
 print("Could not open Instagram")
 }
}

I’ll then go into the plist file and tell iOS that I want to open URL schemes starting
with “instagram”:

388 | Chapter 15: Security

https://instagram.com/developer/mobile-sharing/iphone-hooks/
https://instagram.com/developer/mobile-sharing/iphone-hooks/

<plist version="1.0">
<array>
 <string>instagram</string>
</array>
</plist>

15.4 Authenticating the User with Touch ID and Timeout
Problem
You want to ask the user for permission to read secure content in the keychain. This
includes setting a timeout after which you will no longer have access.

Solution
Follow these steps:

1. Create your access control flags with SecAccessControlCreateWithFlags, as you
saw in Recipe 15.2.

2. Instantiate a context object of type LAContext.
3. Set the touchIDAuthenticationAllowableReuseDuration property of your con‐

text to LATouchIDAuthenticationMaximumAllowableReuseDuration, so your
context will lock out only after the maximum allowed number of seconds.

4. Call the evaluateAccessControl(_:operation:localizedReason:) method on
your context to get access to the access control.

5. If you gain access, create your keychain request dictionary and include the
kSecUseAuthenticationContext key. The value of this key will be your context
object.

6. Use the SecItemCopyMatching function with your dictionary to read a secure
object with the given access controls.

Discussion
Whenever you write an item to the keychain, you can do so with the access controls
as we saw in Recipe 15.2. So assume that your item requires Touch ID. If you want to
read that item now, you need to request permission to do so. Let’s define our context
and the reason why we want to read the item:

let context = LAContext()
let reason = "To unlock previously stored security phrase"

Then define your access controls as before:

15.4 Authenticating the User with Touch ID and Timeout | 389

guard let flags =
 SecAccessControlCreateWithFlags(
 kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 SecAccessControlCreateFlags.touchIDAny, nil) else{
 print("Could not create the access control flags")
 return
}

Also specify how long you can get access. After this time passes, the user will be
forced to use Touch ID again to unlock the context:

context.touchIDAuthenticationAllowableReuseDuration =
LATouchIDAuthenticationMaximumAllowableReuseDuration

Last but not least, gain access to the given access controls and read the item if
possible:

context.evaluateAccessControl(
 flags,
 operation: LAAccessControlOperation.useItem,
 localizedReason: reason) {[unowned context] succ, err in

 guard succ && err == nil else {
 print("Could not evaluate the access control")
 if let e = err {
 print("Error = \(e)")
 }
 return
 }

 print("Successfully evaluated the access control")

 let service = "onlinePasswords"

 let attrs = [
 kSecClass.str() : kSecClassGenericPassword.str(),
 kSecAttrService.str() : service,
 kSecUseAuthenticationUI.str() : kSecUseAuthenticationUIAllow.str(),
 kSecAttrAccessControl.str() : flags,
 kSecReturnData.str() : kCFBooleanTrue,
 kSecUseAuthenticationContext.str() : context,
] as NSDictionary

 // now attempt to use the attrs with SecItemCopyMatching

 print(attrs)

}

390 | Chapter 15: Security

The operation argument of the evaluateAccessControl(_:operation:localize
dReason:) method takes in a value of type LAAccessControlOperation that indicates
the type of operation you want to perform. Some of the values that you can use are
useItem, createItem, createKey, and useKeySign.

See Also
Recipe 15.2

15.4 Authenticating the User with Touch ID and Timeout | 391

CHAPTER 16

Multimedia

The current version of iOS brings some changes to multimedia playback and func‐
tionality, especially the AVFoundation framework. In this chapter, we will have a look
at those additions and some of the changes.

Make sure that you have imported the AVFoundation framework
in your app before running the code in this chapter.

16.1 Reading Out Text with the Default Siri Alex Voice
Problem
You want to use the default Siri Alex voice on a device to speak some text.

Solution
Instantiate AVSpeechSynthesisVoice with the identifier initializer and pass the
value of AVSpeechSynthesisVoiceIdentifierAlex to it.

Discussion
Let’s create an example out of this. Create your UI so that it looks like Figure 16-1.
Place a text view on the screen and a bar button item in your navigation bar. When
the button is pressed, you will ask Siri to speak out the text inside the text view.

393

Figure 16-1. Text view and button in the UI

I’ve linked the text view to a property in my view controller called textView:

 @IBOutlet var textView: UITextView!

When the read button is pressed, check first whether Alex is available:

guard let voice = AVSpeechSynthesisVoice(identifier:
 AVSpeechSynthesisVoiceIdentifierAlex) else{
 print("Alex is not available")
 return
}

Instances of AVSpeechSynthesisVoice have properties such as identifier, quality,
and name. The identifier can be used later to reconstruct another speech object. If all
you know is the identifier, then you can re-create the speech object using that. The
quality property is of type AVSpeechSynthesisVoiceQuality and can be equal to
values such as default or enhanced. Let’s print these values to the console:

print("id = \(voice.identifier)")
print("quality = \(voice.quality)")
print("name = \(voice.name)")

Then create the voice object (of type AVSpeechUtterance) with your text view’s text:

394 | Chapter 16: Multimedia

let toSay = AVSpeechUtterance(string: textView.text)
toSay.voice = voice

Last but not least, instantiate the voice synthesizer of type AVSpeechSynthesizer and
ask it to speak out the voice object:

let alex = AVSpeechSynthesizer()
alex.delegate = self
alex.speak(toSay)

16.2 Downloading and Preparing Remote Media for
Playback
Problem
You have some remote assets, such as sound files, and would like to download them,
even if in the background. Along the way, you want to provide real-time feedback of
the download process.

Solution
Follow these steps:

1. Create an instance of AVURLAsset with the URL to your asset.
2. Use the background(withIdentifier:) class method on URLSessionConfigura

tion to create a background session configuration.
3. Create a session of type AVAssetDownloadURLSession and pass your configura‐

tion to it.
4. Construct the URL where your asset has to be downloaded onto the disk.
5. Use the makeAssetDownloadTask(asset:destinationURL:options) method of

your session to create a download task of type AVAssetDownloadTask.
6. Call the resume() method on your task to start the task.
7. Conform to the AVAssetDownloadDelegate protocol to get events from your

task.

All the classes I discussed whose names start with “AV” are in the
AVFoundation framework, so make sure to import it.

16.2 Downloading and Preparing Remote Media for Playback | 395

Discussion
Let’s imagine that you have an .mp4 file that you want to download and play back in
your app. First set up your view controller:

import UIKit
import AVFoundation

class ViewController: UIViewController, AVAssetDownloadDelegate {

 let url = URL(string: "http://localhost:8888/video.mp4")!
 let sessionId = "com.mycompany.background"
 let queue = OperationQueue()
 var task: AVAssetDownloadTask?
 var session: AVAssetDownloadURLSession?

 ...

I am using MAMP to start a local server on my machine and host
the file video.mp4 on my own computer, hence the URL that you
are seeing. You can and probably should change this URL to a valid
media file that AVFoundation can handle, like mov or mp4.

Now define some of the delegate methods defined in AVAssetDownloadDelegate and
URLSessionTaskDelegate:

func urlSession(_ session: URLSession, task: URLSessionTask,
 didCompleteWithError error: Error?) {
 // code this
}

func urlSession(_ session: URLSession,
 assetDownloadTask: AVAssetDownloadTask,
 didLoad timeRange: CMTimeRange,
 totalTimeRangesLoaded loadedTimeRanges: [NSValue],
 timeRangeExpectedToLoad: CMTimeRange) {
 // code this
}

func urlSession(_ session: URLSession,
 assetDownloadTask: AVAssetDownloadTask,
 didResolve resolvedMediaSelection: AVMediaSelection) {

}

Next, create an asset by its URL. At the same time, tell the system that you don’t want
cross-site references to be resolved using a dictionary with a key equal to AVURLAsse

396 | Chapter 16: Multimedia

tReferenceRestrictionsKey and value of AVAssetReferenceRestrictions.forbid
CrossSiteReference:

let options = [AVURLAssetReferenceRestrictionsKey :
 AVAssetReferenceRestrictions.forbidCrossSiteReference.rawValue]

let asset = AVURLAsset(url: url, options: options)

Now it’s time to create the configuration object of type URLSessionConfiguration:

let config = URLSessionConfiguration
 .background(withIdentifier: sessionId)

Create the session of type AVAssetDownloadURLSession:

let session = AVAssetDownloadURLSession(
 configuration: config,
 assetDownloadDelegate: self, delegateQueue: queue)

self.session = session

You must have noticed that I keep a reference to the session and the
task that we are going to create soon. This is so we can refer to
them later and cancel or reuse them if necessary.

And last but not least, construct the task and start it:

guard let task = session.makeAssetDownloadTask(
 asset: asset,
 assetTitle: "Asset title",
 assetArtworkData: nil,
 options: nil) else {
 print("Could not create the task")
 return
}

self.task = task

task.resume()

16.2 Downloading and Preparing Remote Media for Playback | 397

16.3 Enabling Spoken Audio Sessions
Problem
You have an ebook reading app (or similar app) and would like to enable a specific
audio session that allows your app’s audio to be paused—but another app is playing
back voice on top of yours (such as an app that provides navigation information with
voice).

Solution
Follow these steps:

1. First, you will need to go through the available audio session categories inside the
availableCategories property of your audio session and find AVAudioSession
CategoryPlayback.

2. Then go through values inside the availableModes property of your audio
session (of type AVAudioSession). If you cannot find AVAudioSessionModeSpoke
nAudio, exit gracefully.

3. After you find the AVAudioSessionModeSpokenAudio mode, set your audio cate‐
gory to AVAudioSessionCategoryPlayback using the setCategory(_:with:)
method of the audio session.

4. Activate your session with the setActive(_:with:) method of your audio ses‐
sion.

Discussion
Suppose you are developing an ebook app and have a “Read” button in the UI that
the user presses to ask the app to read the contents of the book out loud. For this you
can use the AVAudioSessionModeSpokenAudio audio session mode, but you have to
check first whether that mode exists. To find out, use the availableModes property of
your audio session.

Let’s work on an example. Let’s find the AVAudioSessionCategoryPlayback category
and the AVAudioSessionModeSpokenAudio mode:

guard session.availableCategories.filter(
 {$0 == AVAudioSessionCategoryPlayback}).count == 1 &&
 session.availableModes.filter(
 {$0 == AVAudioSessionModeSpokenAudio}).count == 1 else{
 print("Could not find the category or the mode")
 return
}

398 | Chapter 16: Multimedia

After you confirm that the category and mode are available, set the category and
mode and then activate your audio session:

do{
 try session.setCategory(AVAudioSessionCategoryPlayback,
 with:
 AVAudioSessionCategoryOptions.interruptSpokenAudioAndMixWithOthers)

 try session.setMode(AVAudioSessionModeSpokenAudio)

 try session.setActive(true, with:
 AVAudioSessionSetActiveOptions.notifyOthersOnDeactivation)

} catch let err{
 print("Error = \(err)")
}

16.3 Enabling Spoken Audio Sessions | 399

CHAPTER 17

UI Dynamics

UI Dynamics allow you to create very nice effects on your UI components, such as
gravity and collision detection. Let’s say that you have two buttons on the screen that
the user can move around. You could create opposing gravity fields on them so that
they repel each other and cannot be dragged into each other. Or, for instance, you
could provide a more dynamic UI by creating a turbulence field under all your UI
components so that they move around automatically ever so slightly (or through a
noise field, as described in Recipe 17.4) even when the user is not interacting with
them. All of this is possible with the tools that Apple has given you in UIKit. You
don’t have to use any other framework to dig into UI Dynamics.

One of the basic concepts in UI Dynamics is an animator. Animator objects, which
are of type UIDynamicAnimator, hold every other effect together and orchestrate all
the effects. For instance, if you have collision detection and gravity effects, the anima‐
tor decides how the pull on an object through gravity will work hand in hand with
the collision detection around the edges of your reference view.

Reference views are like canvases where all your animations happen. Effects are added
to views and then added to an animator, which itself is placed on a reference view. In
other words, the reference view is the canvas and the views on your UI (buttons, lab‐
les, etc.) will have effects.

17.1 Adding a Radial Gravity Field to Your UI
Problem
You want to add a radial gravity field to your UI, with animations.

401

Solution
Use the radialGravityFieldWithPosition(_:) class method of UIFieldBehavior
and add this behavior to a dynamic animator of type UIDynamicAnimator.

Discussion
A typical gravity behavior pulls items in a direction. A radial gravity field has a center
and a region in which everything is drawn to the center, just like gravity on earth,
whereby everything is pulled toward the core of this sphere.

For this recipe, I designed a UI like Figure 17-1. The gravity is at the center of the
main view and the orange view is affected by it.

402 | Chapter 17: UI Dynamics

Figure 17-1. A main view and another view that is an orange square

The gravity field here is not linear. I would also like this gravity field to repel the
orange view, instead of pulling it toward the core of gravity. Then I’d like the user to
be able to pan this orange view around the screen and release it to see how the gravity
affects the view at that point in time (think about pan gesture recognizers).

Let’s create a single view app that has no navigation bar and then go into IB and add a
simple colorful view to your main view. I’ve created mine, colored it orange(ish), and
linked it to my view controller under the name orangeView (see Figure 17-2).

17.1 Adding a Radial Gravity Field to Your UI | 403

Figure 17-2. My view is added on top of the view controller’s view and hooked to the
view controller’s code

Then from the Object Library, find a pan gesture recognizer (see Figure 17-3) and
drop it onto your orange view so that it gets associated with that view. Find the pan
gesture recognizer by typing its name into the Object Library’s search field.

Figure 17-3. Getting the pan gesture recognizer

You should then associate the pan gesture recognizer’s code to a method in your code
called panning(_:). So now your view controller’s header should look like this:

import UIKit
import SharedCode

class ViewController: UIViewController {

 @IBOutlet var orangeView: UIView!

404 | Chapter 17: UI Dynamics

 ...

Whenever I write a piece of code that I want to share between vari‐
ous projects, I put it inside a framework that I’ve written called
SharedCode. You can find this framework in the GitHub repo of
this book. In this example, I’ve extended CGSize so that I can find
the CGPoint at the center of CGSize like so:

import Foundation

extension CGSize{

 public var center: CGPoint{
 return CGPoint(x: width / 2.0, y: height / 2.0)
 }

}

Then in the view controller, create your animator, specifying this view as the refer‐
ence view:

lazy var animator: UIDynamicAnimator = {
 let animator = UIDynamicAnimator(referenceView: self.view)
 animator.isDebugEnabled = true
 return animator
 }()

If you are writing this code, you’ll notice that you’ll get a compiler error saying that
the debugEnabled property is not available on an object of type UIDynamicAnimator.
That is absolutely right. This is a debug only method that Apple has provided to us
and which we should only use when debugging our apps. Because this property isn’t
actually available in the header file of UIDynamicAnimator, we need to create a bridg‐
ing header (with some small Objective-C code) to enable this property. Create your
bridging header and then extend UIDynamicAnimator:

@import UIKit;

#if DEBUG

@interface UIDynamicAnimator (DebuggingOnly)
@property (nonatomic, getter=isDebugEnabled) BOOL debugEnabled;
@end

#endif

When the orange view is repelled by the reversed radial gravity field, it should collide
with the edges of your view controller’s view and stay within the bounds of the view:

17.1 Adding a Radial Gravity Field to Your UI | 405

lazy var collision: UICollisionBehavior = {
 let collision = UICollisionBehavior(items: [self.orangeView])
 collision.translatesReferenceBoundsIntoBoundary = true
 return collision
 }()

Then create the radial gravity of type UIFieldBehavior. Two properties in this class
are quite important:

region

This is of type UIRegion and specifies the region covered by this gravity.

strength

A floating-point value that indicates (if positive) the force by which items get pulled
into the gravity field. If you assign a negative value to this property, items get repelled
by this gravity field.

In our example, I want the gravity field to consume an area with the radius of 200
points and I want it to repel items:

lazy var centerGravity: UIFieldBehavior = {
 let centerGravity =
 UIFieldBehavior.radialGravityField(position: self.view.center)
 centerGravity.addItem(self.orangeView)
 centerGravity.region = UIRegion(radius: 200)
 centerGravity.strength = -1 // repel items
 return centerGravity
 }()

When the user rotates the device, recenter the gravity:

override func viewWillTransition(to size: CGSize,
 with
 coordinator: UIViewControllerTransitionCoordinator) {

 super.viewWillTransition(to: size,
 with: coordinator)

 centerGravity.position = size.center

}

Remember the center property that we just added on top of
CGSize?

406 | Chapter 17: UI Dynamics

When your view is loaded, add your behaviors to the animator:

 override func viewDidLoad() {
 super.viewDidLoad()

 animator.addBehavior(collision)
 animator.addBehavior(centerGravity)

 }

To handle the panning, consider a few things:

• When panning begins, you have to disable your animators so that none of the
behaviors have an effect on the orange view.

• When the panning is in progress, you have to move the orange view where the
user’s finger is pointing.

• When the panning ends, you have to re-enable your behaviors.

All this is accomplished in the following code:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 centerGravity.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 centerGravity.addItem(orangeView)
 default: ()
 }

}

17.2 Creating a Linear Gravity Field on Your UI
Problem
You want to create gravity that follows a vector on your UI.

Solution
Use the linearGravityFieldWithVector(_:) class method of UIFieldBehavior to
create your gravity. The parameter to this method is of type CGVector. You can pro‐
vide your own x- and y-values for this vector when you construct it. This is now your
gravity field and you can add it to an animator of type UIDynamicAnimator.

17.2 Creating a Linear Gravity Field on Your UI | 407

I am basing this recipe on Recipe 17.1. There are some things, such
as the bridging header to enable debugging, that I mentioned in
Recipe 17.1 and won’t mention again in this recipe. I might skim
over them but won’t go into details.

Discussion
Whereas the example we looked at in Recipe 17.1 has a center and a radius, a linear
gravity has a direction only (up, down, right, left, etc.). In this example, we are going
to have the exact same UI that we created in Recipe 17.1. So create the little orange
view on your storyboard and link it to an orangeView outlet on your code. Add a pan
gesture recognizer to it as well and add it to a method called panning(_:).

Right now, your view controller’s code should look like this:

import UIKit
import SharedCode

class ViewController: UIViewController {

@IBOutlet var orangeView: UIView!

 lazy var animator: UIDynamicAnimator = {
 let animator = UIDynamicAnimator(referenceView: self.view)
 animator.isDebugEnabled = true
 return animator
 }()

 lazy var collision: UICollisionBehavior = {
 let collision = UICollisionBehavior(items: [self.orangeView])
 collision.translatesReferenceBoundsIntoBoundary = true
 return collision
 }()

 ...

The next step is to create your linear gravity:

lazy var gravity: UIFieldBehavior = {
 let vector = CGVector(dx: 0.4, dy: 1.0)
 let gravity =
 UIFieldBehavior.linearGravityField(direction: vector)
 gravity.addItem(self.orangeView)
 return gravity
 }()

Last but not least, handle the panning and add the effects to the animator (see Recipe
17.1):

408 | Chapter 17: UI Dynamics

override func viewDidLoad() {
 super.viewDidLoad()

 animator.addBehavior(collision)
 animator.addBehavior(gravity)

}

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 gravity.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 gravity.addItem(orangeView)
 default: ()
 }

}

If you run your app now, you should see an interface similar to Figure 17-4. Our lin‐
ear gravity pulls all objects down and to the right. This is because in our vector earlier
I specified a positive y-delta that pulls everything down and a positive x-delta that
pulls everything to the right. I suggest that you play around with the delta values of
type CGVector to get a feeling for how they affect gravity.

17.2 Creating a Linear Gravity Field on Your UI | 409

Figure 17-4. Linear gravity acting on an object

You can also go ahead and change some aspects of your gravity field. For instance, set
the strength property of the gravity to 20 and see how much more gravity is applied
to your objects. Similarly, play with the animationSpeed property of your gravity to
set the animation speed.

410 | Chapter 17: UI Dynamics

17.3 Creating Turbulence Effects with Animations
Problem
You want to simulate turbulence in your animator and have your UI components flail
about when they hit the turbulent region.

Solution
Instantiate your turbulence with the turbulenceFieldWithSmoothness(_:animation
Speed:) class method of UIFieldBehavior. Then do the following:

1. Set the UIFieldBehavior class’s strength property according to your needs.
2. Set its region property to an instance of UIRegion. This defines in which region

of the screen your turbulence behavior is effective.
3. Set its position property to a CGPoint instance in your reference view.

After you are done setting up the turbulence behavior, add it to your animator of type
UIDynamicAnimator.

Discussion
In this recipe, I want to create an effect very similar to what we got in Recipe 17.2, but
also add a turbulence field in the center of the screen so that, when we take our little
orange view (see Figure 17-1) and drop it from the top-left corner of the screen, it
will fall down (and to the right; see Figure 17-4). But on its way down, it will hit our
turbulence field and its movements will be affected.

Set up your gravity exactly as we did in Recipe 17.2. I won’t go through that here
again. Then create a turbulence field in the center of the screen with a radius of 200
points:

lazy var turbulence: UIFieldBehavior = {
 let turbulence = UIFieldBehavior.turbulenceField(smoothness: 0.5,
 animationSpeed: 60.0)
 turbulence.strength = 12.0
 turbulence.region = UIRegion(radius: 200.0)
 turbulence.position = self.orangeView.bounds.size.center
 turbulence.addItem(self.orangeView)
 return turbulence
}()

Make sure to add this field to your animator. When the user is panning with the ges‐
ture recognizer (see Recipe 17.1), disable all your behaviors, and re-enable them
when the panning is finished:

17.3 Creating Turbulence Effects with Animations | 411

override func viewDidLoad() {
 super.viewDidLoad()

 animator.addBehavior(collision)
 animator.addBehavior(gravity)
 animator.addBehavior(turbulence)

}

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 gravity.removeItem(orangeView)
 turbulence.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 gravity.addItem(orangeView)
 turbulence.addItem(orangeView)
 default: ()
 }

}

Give it a go and see the results for yourself. Drag the orange view from the top-left
corner of the screen and drop it. It will be dragged down and to the right, and when it
hits the center of the screen (inside a radius of 200 points), it will wiggle around a bit
because of turbulence.

17.4 Adding Animated Noise Effects to Your UI
Problem
You want to add a noise field on your UI and have your UI components surf in all
directions on this field.

Solution
1. Create a noise field using the noiseFieldWithSmoothness(_:animationSpeed:)

class method of UIFieldBehavior.
2. Add the views you want affected by this noise to the field using its addItem(_:)

method.

412 | Chapter 17: UI Dynamics

3. Add your noise field to an animator of type UIDynamicAnimator (see Recipe
17.1).

This recipe is based on what you learned in Recipe 17.1—refer back
to that recipe if you need a refresher.

Discussion
Noise is great for having an item constantly move around on your reference view in
random directions. Have a look at the noise field in Figure 17-5. This noise field is
shown graphically on our UI using a UI Dynamics debugging trick.

17.4 Adding Animated Noise Effects to Your UI | 413

Figure 17-5. Noise field affecting a square view

The direction of the noise that you see on the fields dictates in which direction the
field repels the items attached to it. In this case, I’ve used negative gravity (think of it
that way). If you want to limit the effective region of your noise field on your refer‐
ence view, simply set the region property of your field. This is of type UIRegion.

Now create your UI exactly as you did in Recipe 17.1. You should have an orange
view that is accessible through the orangeView property of your view controller. Cre‐
ate a collision detector and an animator using what you learned in the aforemen‐
tioned recipe. Now go ahead and create your noise field:

414 | Chapter 17: UI Dynamics

lazy var noise: UIFieldBehavior = {
 let noise = UIFieldBehavior.noiseField(smoothness: 0.9,
 animationSpeed: 1)
 noise.addItem(self.orangeView)
 return noise
}()

Add the noise field to your animator:

 override func viewDidLoad() {
 super.viewDidLoad()
 animator.addBehavior(collision)
 animator.addBehavior(noise)
 }

Last but not least, handle your pan gesture recognizer’s event, so that when the user
starts dragging the orange view across the screen, your dynamic behaviors will shut
down. And as soon as the user is done with dragging, they will come back up:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 noise.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 noise.addItem(orangeView)
 default: ()
 }

}

17.5 Creating a Magnetic Effect Between UI Components
Problem
You want to create a magnetic field between two or more UI elements.

Solution
Follow these steps:

1. Create your animator (see Recipe 17.1).
2. Create a collision detector of type UICollisionBehavior.

17.5 Creating a Magnetic Effect Between UI Components | 415

3. Create a magnetic field of type UIFieldBehavior using the magneticField()
class method of UIFieldBehavior.

4. Add your magnetic field and collision detector to your animator.

I am basing this recipe on what we learned in Recipes 17.1 and
17.4.

Discussion
Create a UI that looks similar to Figure 17-6.

Figure 17-6. Place three colorful views on your UI

Then link all views to an outlet collection called views in your code:

class ViewController: UIViewController {

 @IBOutlet var views: [UIView]!

 ...

Now that you have an array of views to which you want to apply a noise field and a
magnetic field, it’s best to extend UIFieldBehavior so that you can pass it an array of
UI elements instead of one element at a time:

416 | Chapter 17: UI Dynamics

extension UIFieldBehavior{
 public func addItems(_ items: [UIDynamicItem]){
 for item in items{
 addItem(item)
 }
 }
}

Also, it’s best to extend UIDynamicAnimator so that you can add all our behaviors to
your animator at once:

extension UIDynamicAnimator{
 public func addBehaviors(_ behaviors: [UIDynamicBehavior]){
 for behavior in behaviors{
 addBehavior(behavior)
 }
 }
}

Now add a noise and collision behavior, plus your animator, using what you learned
in Recipe 17.4. I won’t repeat that code here. Create a magnetic field and enable it on
all your views (see Figure 17-7):

lazy var magnet: UIFieldBehavior = {
 let magnet = UIFieldBehavior.magneticField()
 magnet.addItems(self.views)
 return magnet
}()

Last but not least, add your behaviors to the animator:

var behaviors: [UIDynamicBehavior]{
 return [collision, noise, magnet]
}

override func viewDidLoad() {
 super.viewDidLoad()
 animator.addBehaviors(behaviors)
}

Run the app and see the results for yourself.

17.5 Creating a Magnetic Effect Between UI Components | 417

Figure 17-7. The magnetic field causes all the views to attract one another

17.6 Designing a Velocity Field on Your UI
Problem
You want to apply force, following a vector, onto your UI components.

Solution
Follow these steps:

1. Create an animator of type UIDynamicAnimator (see Recipe 17.1).
2. Create your collision detector of type UICollisionBehavior.
3. It’s best to also have gravity or other forces applied to your field (see Recipes 17.1

and 17.2).
4. Create your velocity of type UIFieldBehavior using this class’s velocityField

WithVector(_:) method and supplying a vector of type CGVector.
5. Set the position property of your velocity field to an appropriate point on your

reference view.
6. Then set the region property of your velocity to an appropriate region (of type

UIRegion) of your reference view.
7. Once done, add your behaviors to your animator.

418 | Chapter 17: UI Dynamics

I recommend having a look at Recipe 17.1, where I described most
of the basics of setting up a scene with gravity and an animator. I
won’t go into those in detail again.
In this recipe, I am also going to use a few extensions that we coded
in Recipe 17.5.

Discussion
A velocity field applies a force toward a given direction to dynamic items, such as
UIView instances. In this recipe, I am going to design a field that looks like our field in
Recipe 17.5. On top of that, I am going to apply a slight upward and leftbound force
that is positioned smack dab in the center of the screen. I am also going to position an
orange view on my main storyboard and have all the forces applied to this little poor
guy. I will then place the orange view on top of the reference view so that when I run
the app, a few things will happen:

1. The southeast-bound gravity will pull the orange view to the bottom right of the
screen.

2. The orange view will keep falling down until it hits the northwest-bound velocity
field, at which point the orange view will get uncomfortable and move up and left
a bit a few times, and keep falling until it gets out of the velocity field.

3. The orange view will then eventually settle at the bottom right of the view.

I now need you to set up your gravity, animator, and collision detector just as you did
in Recipe 17.2 so that I don’t have to repeat that code. Then set up the velocity field:

lazy var velocity: UIFieldBehavior = {
 let vector = CGVector(dx: -0.4, dy: -0.5)
 let velocity = UIFieldBehavior.velocityField(direction: vector)
 velocity.position = self.view.center
 velocity.region = UIRegion(radius: 100.0)
 velocity.addItem(self.orangeView)
 return velocity
}()

Then batch up all your forces into one variable that you can give to our animator,
using the extension we wrote in Recipe 17.5:

var behaviors: [UIDynamicBehavior]{
 return [self.collision, self.gravity, self.velocity]
}

override func viewDidLoad() {
 super.viewDidLoad()
 animator.addBehaviors(behaviors)
}

17.6 Designing a Velocity Field on Your UI | 419

And when the user starts panning your orange view around, stop all the forces, then
restart them when she is done dragging:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItem(orangeView)
 gravity.removeItem(orangeView)
 velocity.removeItem(orangeView)
 case .changed:
 orangeView.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItem(orangeView)
 gravity.addItem(orangeView)
 velocity.addItem(orangeView)
 default: ()
 }

}

17.7 Handling Collisions Between Nonrectangular Views
Problem
You want to create nonrectangular-shaped views in your app, and want your collision
detection to work properly with these views.

Solution
Follow these steps:

1. First, you’ll need to subclass UIView and override the collisionBoundsType vari‐
able of type UIDynamicItemCollisionBoundsType. In there, return UIDynamicI
temCollisionBoundsType.Path. This makes sure that you have your own Bézier
path of type UIBezierPath, and you want that to define the edges of your view,
which are essentially the edges that your collision detector has to detect.

2. Override the collisionBoundingPath variable of type UIBezierPath in your
view and in there, return the path that defines your view’s edges.

3. In your UIBezierPath, create the shape you want for your view. The first point in
this shape needs to be the center of your shape. You must draw your shape in a
convex and counterclockwise manner.

4. Override the drawRect(_:) method of your view and draw your path there.
5. Add your behaviors to your new and awesome view and then create an animator

of type UIDynamicAnimator (see Recipe 17.1).

420 | Chapter 17: UI Dynamics

6. Optionally, throw in a noise field as well to create some random movements
between your dynamic items (see Recipe 17.4).

I am going to draw a pentagon view in this recipe. I won’t teach
how that is drawn because you can find the basic rules of drawing a
pentagon online, and that is entirely outside the scope of this book.

Discussion
Here, we are aiming to create a dynamic field that looks like Figure 17-8. The views I
have created are a square and a pentagon. We will have proper collision detection
between the two views.

Figure 17-8. Square and pentagon with collision detection

Let’s start off by creating a little extension on the StrideThrough structure. You’ll see
soon, when we code our pentagon view, that I am going to go through five points of
the pentagon that are drawn on the circumference of the bounding circle, plot them
on the path, and draw lines between them. I will use stride(from:through:by:) to

17.7 Handling Collisions Between Nonrectangular Views | 421

create the loop. I would like to perform a function over every item in this array of
numbers, hence the following extension:

extension StrideThrough{
 func forEach(_ f: (Iterator.Element) -> Void){
 for item in self{
 f(item)
 }
 }
}

Let’s move on to creating a class named PentagonView that subclasses UIView. I want
this view to be constructed only by a diameter. This will be the diameter of the
bounding circle within which the pentagon will reside. Therefore, we need a diameter
variable, along with our constructor and perhaps a nice class method constructor for
good measure:

class PentagonView : UIView{

 private var diameter: CGFloat = 0.0

 class func pentagonViewWithDiameter(_ diameter: CGFloat) -> PentagonView{
 return PentagonView(diameter: diameter)
 }

 init(diameter: CGFloat){
 self.diameter = diameter
 super.init(frame: CGRect(x: 0, y: 0, width: diameter, height: diameter))
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

 var radius: CGFloat{
 return diameter / 2.0
 }

 ...

We need next to create our UIBezierPath. There are five slices inside a pentagon and
the angle between each slice, from the center of the pentagon, is 360/5 or 72 degrees.
Using this knowledge, we need to be able to, given the center of our pentagon, plot
the five points onto the circumference of the bounding circle:

422 | Chapter 17: UI Dynamics

func pointFromAngle(_ angle: Double) -> CGPoint{

 let x = radius + (radius * cos(CGFloat(angle)))
 let y = radius + (radius * sin(CGFloat(angle)))
 return CGPoint(x: x, y: y)

}

lazy var path: UIBezierPath = {
 let path = UIBezierPath()
 path.move(to: self.pointFromAngle(0))

 let oneSlice = (M_PI * 2.0) / 5.0
 let lessOneSlice = (M_PI * 2.0) - oneSlice

 stride(from: oneSlice, through: lessOneSlice, by: oneSlice).forEach{
 path.addLine(to: self.pointFromAngle($0))
 }

 path.close()
 return path
 }()

That was the most important part of this recipe, if you are curious. Once we have the
path, we can draw our view using it:

override func draw(_ rect: CGRect) {
 guard let context = UIGraphicsGetCurrentContext() else{
 return
 }
 UIColor.clear.setFill()
 context.fill(rect)
 UIColor.yellow.setFill()
 path.fill()
}

The next and last step in creating our pentagon view is to override the collision
BoundsType and the collisionBoundingPath variable:

override var collisionBoundsType: UIDynamicItemCollisionBoundsType{
 return .path
}

override var collisionBoundingPath: UIBezierPath{
 let path = self.path.copy() as! UIBezierPath
 path.apply(CGAffineTransform(translationX: -radius, y: -radius))
 return path
}

17.7 Handling Collisions Between Nonrectangular Views | 423

I am applying a translation transform on our Bézier path before
giving it to the collision detector. The reason behind this is that the
first point of our path is in the center of our shape, so we need to
subtract the x and y position of the center from the path to trans‐
late our path to its actual value for the collision detector to use.
Otherwise, the path will be outside the actual pentagon shape.
Because the x and y position of the center of our pentagon are in
fact the radius of the pentagon and the radius is half the diameter,
we provide the radius here to the translation.

Now let’s extend UIView so that we can add a pan gesture recognizer to it with one
line of code. Both the square and our pentagon view will easily get a pan gesture
recognizer:

extension UIView{
 func createPanGestureRecognizerOn(_ obj: AnyObject){
 let pgr = UIPanGestureRecognizer(
 target: obj, action: #selector(ViewController.panning(_:)))
 addGestureRecognizer(pgr)
 }
}

Let’s move on to the view controller. Add the following components to your view
controller, just as we did in Recipe 17.4:

• An animator of type UIDynamicAnimator
• A collision detector of type UICollisionBehavior
• A noise field of type UIFieldBehavior

Let’s bundle the collision detector and the noise field into an array. This lets us add
them to our animator faster with the extensions that we created in Recipe 17.5:

var behaviors: [UIDynamicBehavior]{
 return [self.collision, self.noise]
}

The next step is to create our square view. This one is easy. It is just a simple view
with a pan gesture recognizer:

lazy var squareView: UIView = {
 let view = UIView(frame: CGRect(x: 0, y: 0, width: 100, height: 100))
 view.createPanGestureRecognizerOn(self)
 view.backgroundColor = UIColor.brown
 return view
 }()

424 | Chapter 17: UI Dynamics

Now for the juicy part—the pentagon view! Create it with the constructor of Penta
gonView and then place it in the center of your view:

lazy var pentagonView: PentagonView = {
 let view = PentagonView.pentagonViewWithDiameter(100)
 view.createPanGestureRecognizerOn(self)
 view.backgroundColor = UIColor.clear
 view.center = self.view.center
 return view
 }()

Group your views and add them to your reference view:

var views: [UIView]{
 return [self.squareView, self.pentagonView]
}

override func viewDidLoad() {
 super.viewDidLoad()
 view.addSubview(squareView)
 view.addSubview(pentagonView)
 animator.addBehaviors(behaviors)
}

Finally, handle panning. As soon as the user starts to pan one of our views around,
pause all the behaviors. Once the panning is finished, re-enable the behaviors:

@IBAction func panning(_ sender: UIPanGestureRecognizer) {

 switch sender.state{
 case .began:
 collision.removeItems()
 noise.removeItems()
 case .changed:
 sender.view?.center = sender.location(in: view)
 case .ended, .cancelled:
 collision.addItems(views)
 noise.addItems(views)
 default: ()
 }

}

Wrapping up, I want to clarify a few things. We extended UIDynamicAnimator and
added the addBehaviors(_:) method to it in Recipe 17.5. In the same recipe, we
added the addItems(_:) method to UIFieldBehavior. But in our current recipe, we
also need removeItems(), so I think it’s best to show that extension again with the
new code:

17.7 Handling Collisions Between Nonrectangular Views | 425

extension UIFieldBehavior{
 public func addItems(_ items: [UIDynamicItem]){
 for item in items{
 addItem(item)
 }
 }
 public func removeItems(){
 for item in items{
 removeItem(item)
 }
 }
}

You should extend UICollisionBehavior in the exact same way and add the
addItems(_:) and removeItems() methods to that class as well.

426 | Chapter 17: UI Dynamics

Index

Numbers & Symbols
#available syntax, 100
%@ operator, 89
&& operator, 89
.TextInput property, 148
3D globe map, 357
== operator, 89
==[c] statement, 91
[c] syntax, 90
\(char)*, 90

A
accelerometer data, 381
access control, 385
Accessibility Inspector (Xcode), 359
acknowledgments, xiv
activateSession() method, 181
activeConversation.selectedMessage property,

27
Add Missing Constraints (Interface Builder),

144
add...

addAnnotation(_:) method, 339
addContact(_:toContainerWithIdentifier:)

method, 267
addItem(_:) method, 412
addKeyCommand(_:) method, 164

address book database, 266
(see also Contacts framework)

allowsBackgroundLocationUpdates property,
344

ambiguity APIs, 52
anchor properties, 143
animated noise effects, 412

animation, 129
ANY statement, 90
Apple blocker (see Safari Content Blocker)
Apple Watch

cadence sensor on, 379
communicating interactively with, 203-212
Core Motion framework and, 379
custom complications

set up for, 213-220
small with text and images, 220-230

displaying dates, 239-245
displaying time intervals, 251-258
displaying time offsets, 231-238
displaying times, 245-251
downloading files onto, 175-180
FIFO dictionary transfer, 193-198
new features, 173
noticing pairing state changes, 180-184
overview of, xi
pace information on, 379
playing local/remote audio and video,

261-263
recording audio on, 258-260
set up, 173
"time travel" feature, 222
transferring files to/from, 198-202
transferring small pieces of data to/from,

184-193
application context, 185
Application Transport Security (ATS)

authenticating users with Touch ID and
timeout, 389

building keychain items to passcode and
Touch ID, 385

427

disabling, 384
opening URLs safely, 387
overview of, xii
protecting network connections with, 383

application(_:continue:restorationHandler:)
method, 318

applicationDidFinishLaunching() function, 184
assets

bundling and reading, 123-127
downloading dynamically, 101
exporting device-specific, 105

attributions, xiii
audio

downloading/preparing for playback, 395
enabling spoken audio sessions, 398
playing local and remote on Apple Watch,

261-263
recording on Apple Watch, 258-260

authorizationStatus(for:) class method, 265
automaticallyMergesChangesFromParent prop‐

erty, 91
availableCategories property, 398
availableModes property, 398
AVFoundation framework

AVAssetDownloadDelegate, 395
AVAssetDownloadTask, 395
AVAssetDownloadURLSession, 395
AVAudioSessionCategoryPlayback, 398
AVPictureInPictureController, 328
AVPlayerLayer, 328
AVSpeechSynthesisVoice, 393
AVSpeechSynthesisVoiceIdentifierAlex, 393
AVURLAsset, 395
AVURLAssetReferenceRestrictionsKey, 396

B
background(withIdentifier:) class method, 395
backgroundSessionConfigurationWithIdenti‐

fier(_:), 180
bar buttons, 107
barButtonItems property, 108
battery power, 335
beginIndexBatch() function, 323
behavior property, 148
Bézier paths, 420
binaries

achieving smaller, 101
exporting device specific, 105

bitcode, 105

body1TextProvider property, 255
body2TextProvider property, 255
bridging headers, 405
built-in dialog boxes, 288, 295, 297
buttons

adding to navigation bars, 107
arranging, 143
UI testing, 365

C
caches folder, 199
cadence and pace information, 379
calculateETA(completionHandler:) method,

353
cancel() method, 196
canOpenUrl(_:) method, 387
caption: String? property, 27
case statements, 122
CFAbsoluteTimeGetCurrent function, 108
chat programs, 203
cleanup code, 98
CLK...

CLKComplicationDataSource protocol, 221
CLKComplicationPrivacyBehavior, 228
CLKComplicationRingStyle, 227
CLKComplicationTemplate, 219, 223
CLKComplicationTemplateModularLarge

StandardBody, 231, 255
CLKComplicationTemplateModularLarge‐

Columns, 239
CLKComplicationTemplateModularSmall‐

ColumnsText, 223
CLKComplicationTemplateModularSmall‐

RingImage, 223
CLKComplicationTemplateModularSmall‐

RingText, 223
CLKComplicationTemplateModularSmall‐

SimpleImage, 223
CLKComplicationTemplateModularSmall‐

SimpleText, 223
CLKComplicationTemplateModularSmall‐

StackImage, 223
CLKComplicationTemplateModularSmall‐

StackText, 223
CLKComplicationTimelineEntry, 221, 223
CLKComplicationTimeTravelDirections,

221
CLKDateTextProvider, 239
CLKRelativeDateTextProvider, 231

428 | Index

CLKSimpleTextProvider, 226, 252
CLKTextProvider, 226, 239
CLKTimeIntervalTextProvider, 252
CLKTimeTextProvider, 246

CN...
CNContact class, 277
CNContact object, 265
CNContactFormatter, 283
CNContactNoteKey, 280
CNContactPickerDelegate, 289
CNContactPickerViewController, 288
CNContactStore, 265, 273, 295
CNContactViewController, 295, 297
CNContactViewControllerDelegate, 295
CNEntityType , 265
CNInstantMessageAddress, 269
CNMutableContact, 265, 277, 295
CNPostalAddressFormatter, 283, 287
CNSaveRequest, 267, 277, 282
CNSocialProfile, 269

coalescedTouchesForTouch(_:) method, 156
code examples, obtaining and using, xii
collision detection, 420
collisionBoundsType variable, 420
ComplicationController class, 213, 235
complications (Apple Watch)

Circular Small, 218
complicationEnabled property, 182
displaying dates in, 239-245
displaying time intervals in, 251-258
displaying time offsets in, 231-238
displaying times in, 245-251
enabling, 174
Modular Large, 218, 231, 239, 246
Modular Small, 213, 218, 220-230
setting up, 213
Utilitarian Large, 218
Utilitarian Small, 218

components, arranging, 137, 143
conditional loops, 118
confirm(_:completion:), 60
constraints, 137
contact information, xiii
contactPicker(_:didSelectContact:) method,

289
contactPickerDidCancel(_:) method, 289
Contacts framework

compatibility with Swift, 265
creating contacts, 266-271

creating contacts with prebuilt UI, 295
deleting contacts, 282
displaying contacts with prebuilt UI, 297
formatting contact data, 283
overview of, xi
partial contacts, 265
picking contacts with prebuilt UI, 288-294
searching for contacts, 272-276
unified contacts, 273
updating contacts, 277-281

ContactsUI framework, 288
contactViewController(_:didCompleteWith:),

295
contain function, 113
containingType(_:identifier:) method, 369
content blockers (see Safari Content Blocker)
Core Data framework

designing database schemes, 78-83
importing into applications, 77
overview of, x
performing background tasks with, 91-94
reading data from databases, 85-88
searching for data in databases, 88-91
writing to databases, 83

Core Location framework
CLLocationCoordinate2D, 356
CLLocationManager, 342
CLLocationManagerDelegate, 343
overview of, xi

Core Motion framework
CMAcceleration, 381
CMPedometer, 379
CMPedometerData, 380
CMRecordedAccelerometerData, 381
CMSensorDataList, 381
CMSensorRecorder, 381
new features, 379
overview of, xii
querying pace and cadence information,

380
recording and reading accelerometer data,

381
CoreSpotlight framework, 321
createContact() method, 268
CS...

CSSearchableIndex, 315, 323
CSSearchableItem, 315
CSSearchableItemActionType, 318
CSSearchableItemActivityIdentifier, 318

Index | 429

CSSearchableItemAttributeSet, 315
currentPace/currentCadence, 380
custom views (map pins), 349
CustomDebugStringConvertible protocol, 114

D
data

bundling and reading, 123-127
transferring to/from Apple Watch, 184-193

data storage (see Core Data framework)
debugging (see also UI Testing framework)

Accessibility Inspector tool for, 359
debugEnabled property, 405
setting custom descriptions, 114

defer syntax, 99
delete...

deleteAllSearchableItems(completionHan‐
dler:) method, 316

deleteAllSearchableItems..., 323
deleteContact(_:) function, 282
deleteSearchableItems(withIdentifiers:com‐

pletionHandler:) function, 323
descendantsMatchingType(_:) method, 368
descriptorForRequiredKeys(for:) class method,

284
detailCalloutAccessoryView property, 349
device-specific binaries, exporting, 105
device-specific data, bundling and reading,

123-127
device-specific views, 139
dictionaries, transferring to/from Apple Watch,

193-198
Dimension class, 65

(see also measurements and units)
dismissAudioRecordingController() method,

258
do, try, catch syntax, 95
doubleTap() method, 376
do{}catch{} blocks, 275
drawRect(_:) method, 420

E
element(matching predicate: NSPredicate) ->

XCUIElement, 369
eligibleForPublicIndexing property, 320
emailAddresses property, 269
endBatch(withClientState:completionHandler:)

method, 323
entities, 79

(see also Core Data framework)
enumerateContacts(with:usingBlock:) method,

273
equality-checking functionality, 117
ETA (estimated time of arrival), 352
evaluateAccessControl(_:operation:localize‐

dReason:), 389
exceptions, 95
execute(_:) method, 277, 282
expanded view, in sticker pack apps, 16-23
ExtensionDelegate class, 183, 201, 209
extensions (see also SiriKit; sticker packs)

iMessage, 15
new features, 301
overview of, xi
protocol extensions, 115
Safari Content Blocker, 301-306
Shared Links, 306-309
Spotlight Index Extension, 309-312
storage and organization of, 301

F
Facebook contacts, 273
fallthrough syntax, 122
fetch operations, 266
fetch(_:) function, 86, 88
fetchLastClientState(_:completionHandler:)

method, 323
fetchLimit: Int property, 85
fetchRequest() function, 85, 88
FIFO dictionary transfer, 193
files

downloading onto Apple Watch, 175-180
transferring to/from Apple Watch, 198-202

fillFraction property, 226
final keyword, 110
flyover maps, 357
for loops, 119
for x in y where syntax, 119
forContact initializer, 297
forNewContact initializer, 295
frequency units, 70

G
Generated Interface Assistant Editor (Xcode),

112
Geo JSON files, 353
get...

430 | Index

getCurrentTimelineEntryForComplica‐
tion(_:withHandler:) method, 224

getNextRequestedUpdateDateWithHan‐
dler(_:) method, 221

getPlaceholderTemplateForComplica‐
tion(_:withHandler:) method, 219

getPrivacyBehaviorForComplica‐
tion(_:withHandler:) method, 228

getSupportedTimeTravelDirectionsFor‐
Complication(_:withHandler:) method,
221

getTimelineEndDateForComplica‐
tion(_:withHandler:), 221

getTimelineEntriesForComplication
(_:beforeDate:limit:withHandler:)
method, 221

getTimelineEntriesForComplication(_:after‐
Date:limit:withHandler:), 221, 229

getTimelineEntriesForComplica‐
tion(_:beforeDate:limit:beforeDate:)
method, 228

getTimelineStartDateForComplication
(_:withHandler:) method, 221

glance scene (Apple Watch), 174
gravity fields

linear, 407
radial, 401

guard syntax, 97

H
headerTextProvider property, 255
HideOnLockScreen, 228
HTTPS

controlling details of use, 383
default use of, 383
overview of, xii

hybridFlyover property, 357

I
icons, public domain, 307
image: UIImage? property, 27
images

downloading dynamically, 102
exporting device-specific, 105

imageSubtitle: String? property, 27
imageTitle: String? property, 27
iMessage (see also Messages framework)

App Store, 3
new features, ix, 1, 7

stand-alone applications
adding to existing apps, 15
building, 6-14
creating interactive conversations, 27-36
overview of, x, 1

sticker packs
adding captions and titles, 24-27
adjusting sticker sizes, 4
App Store, 3
formats accepted, 4
overview of, x, 1
setting up new applications, 2
utilizing expanded view, 16-23

indexed content, 309
indexSearchableItems(_:) method, 317
insert(_:completion Handler:), 24
instant messaging information, 269
Intents framework (see also SiriKit)

INBookRestaurantReservationIntent, 38
INCancelWorkoutIntent, 38
INPersonResolutionResult, 52
INPreferences, 37
INSendPaymentIntent, 38, 52
INSendPaymentIntentHandling, 52
INSendPaymentIntentResponseCode, 60
intent handlers, 44-51, 62
IntentsRestrictedWhileLocked, 43
IntentsSupported, 43
XHandling protocol, 46, 52, 60, 62

Interface Builder (IB)
Add Missing Constraints option, 144
designing interface objects, 120-121
linking storyboards together, 106
overview of, x
Refactor to Storyboard feature, 106
Resolve Auto Layout issues button, 144
size class customization features, 139
stacked views in, 138
view properties in, 159

invalidateAndCancel() method, 179
iOS 10

checking version availability, 100
new features

Apple Watch, 173
Core Motion, 379
iMessage, ix, 1
Security framework, 383
SiriKit, ix, 37
web and search, 315

Index | 431

prerequisites to using, ix
is...

isAccelerometerRecordingAvailable() class
function, 381

isCadenceAvailable() class method, 379
isEligibleForSearch property, 320
isKeyAvailable(_:) method, 276
isPaceAvailable() class function, 379
isSupported() class function, 181

J
JSONSerialization, 189

K
kCFBundleIdentifierKey, 195
keyboard shortcuts, 164
keychain items, 385, 389
kSec...

kSecAttrAccessControl, 385
kSecAttrAccessibleWhenPasscodeSetThis‐

DeviceOnly, 385
kSecUseAuthenticationContext, 389
kSecUseAuthenticationUI, 385

L
labels

arranging horizontally or vertically, 138
UI testing, 365

languages, right-to-left, 159
LATouchIDAuthenticationMaximumAllowa‐

bleReuseDuration, 389
layout anchors, 143
leadingAnchor property, 143
LIKE syntax, 90
linear gravity fields, 407
linearGravityFieldWithVector(_:) class method,

407
live previews, 121, 133-136
localization, 283
location (see maps and location)
locationManager(_:didFailWithError:), 342
locationManager(_:didUpdateLocations:), 342
long-press events, 370
loop statements, 119
loops, conditional, 118
low power mode, 335
LSApplicationQueriesSchemes, 387

M
magnetic effects, 415
magneticField() class method, 415
makeAssetDownloadTask(asset:destinatio‐

nURL:options) method, 395
MapKit framework

loading, 339
MKAnnotation, 339
MKAnnotationView, 349
MKCoordinateRegion, 339
MKCoordinateSpan, 339
MKDirections, 353
MKDirectionsRequest, 353
MKLaunchOptionsDirectionsModeKey, 356
MKLaunchOptionsDirectionsModeTransit,

356
MKMapItem, 356
MKMapView, 357
MKPinAnnotationView, 346
MKPlacemark, 356

maps and location
customizing pin color, 346
displaying specific locations, 339
displaying traffic, scale and compass, 350
launching iOS maps in transit mode, 356
overview of, xi
providing detailed pin information, 349
providing routing options, 352
requesting user's location a single time, 342
requesting user's location in background,

344
showing maps in flyover mode, 357

mapType property, 357
mapView(_:viewForAnnotation:) delegate

method, 349
matching(_ predicate: NSPredicate) -> XCUI

ElementQuery, 369
measurements and units

angle units, 67
classes and structures, 65
converted(to:) function, 66
frequency units, 70
length units, 65
overview of, x
power units, 72
temperature units, 73
time duration units, 68
volume units, 74

Messages framework

432 | Index

MSMessagesAppPresentationStyle, 17
MSMessagesAppViewController, 7, 17, 24,

27
MSMessageTemplateLayout, 26
MSSticker, 7
MSStickerBrowserViewController, 7
MSStickerView, 8

messaging applications, 1
(see also iMessage)

metadata property, 198
methods

ensuring code block execution, 98
specifying preconditions for, 97

MobileCoreServices framework, 321
multimedia

downloading/preparing remote media for
playback, 395

enabling spoken audio sessions, 398
reading text with Siri Alex voice, 393

multitasking
handling low power mode, 335
overview of, xi
Picture in Picture (PiP), 328-334
split views, 325

mutableCopy() method, 277

N
navigation bars, adding multiple buttons to,

107
needsIndefiniteExecution: Bool property, 136
newBackgroundContext() function, 91
noise effects, 412
noiseFieldWithSmoothness(_:animationSpeed:)

class method, 412
non-secure connections, 383
notifications, text responses to, 148
NS...

NSAllowsArbitraryLoads, 384
NSAppTransportSecurity, 383
NSAttributedString, 127
NSBundleResourceRequest, 102
NSCharacterEncodingDocumentAttribute,

127
NSData type, 97
NSDocumentTypeDocumentAttribute, 127
NSException, 96
NSExceptionAllowsInsecureHTTPLoads,

384
NSExceptionDomains, 383

NSExceptionMinimumTLSVersion, 384
NSFetchRequest<T>, 85
NSIncludesSubdomains, 384
NSLocationWhenInUseUsageDescription,

343
NSManagedObjectContext, 91
NSObject, 339
NSPersistentContainer, 91
NSPredicate, 369
NSProcessInfo, 335
NSProcessInfoPowerStateDidChangeNotifi‐

cation, 335
NSRequiresCertificateTransparency, 384
NSRTFTextDocumentType, 127
NSSiriUsageDescription, 37
NSUserActivity, 319
NSUserActivityDelegate, 320

O
Open Developer Tool (Xcode), 359
open(_:options:completionHandler:) method,

387
OpenGL framework, 129
openMaps(with:launchOptions:) class method,

356
OperationQueue().addOperation(_:), 274
optimization, 108
OptionSet protocol, 114
outstandingUserInfoTransfers property, 196

P
pace and candence information, 379
pairing state, 180
pan gesture recognizers, 404
partial contacts, 265
pedometer, 380

(see also Core Motion framework)
perform(_:) function, 91
permission, obtaining, xiii
persistentContainer.viewContext: NSManage‐

dObjectContext property, 83
Picture in Picture (PiP), xi, 328-334
pinTintColor property, 346
pixels, 139
placeholder templates, 219
playgrounds

attaching live views to, 133-136
designing interface objects in, 120-121
overview of, xi

Index | 433

running as interactive and continuous apps,
136

PlaygroundSupport framework
PlaygroundPage.current.liveView, 133
PlaygroundPage.current.needsIndefiniteEx‐

ecution, 136
plist-serializable content, 184
power units, 72
predefined messages, 203
Predicate class, 88
predicate property, 88
predicateForContactsMatchingName(_:) class

method, 273
predictedTouchesForTouch(_:) method, 156
present(_:animated:completion:) method, 289
presentAudioRecorderController(withOutpu‐

tURL:preset:options:completion:) method,
258

pressForDuration(_:) method, 370
profile photos, 268
propertiesToFetch: [AnyObject]?, 86
protocol extensions, 115
public domain icons, 307

R
radial gravity fields, 401
radialGravityFieldWithPosition(_:) class

method, 402
reachability flags, 181
readableContentGuide property, 155
readData() function, 87
Reader Mode (Safari), 154
recordAccelerometer(forDuration:) function,

381
Refactor to Storyboard (IB), 106
reference views, 401
relationshipKeyPathsForPrefetching: [String]?,

85
removeKeyCommand(_:) method, 164
repeat...while syntax, 132
ReplayKit framework, 165
request...

requestAccess(for:completionHandler:)
method, 265

requestAlwaysAuthorization() function, 344
requestLocation() method, 342
requestPresentationStyle(_:), 17
requestSiriAuthorization(_:), 37

resizable views, 327

Resolve Auto Layout (Interface Builder), 144
resolve...

resolveCurrencyAmount(forSendPay‐
ment:with:), 55

resolveNote(forSendPayment:with), 57
resolvePayee(forSendPayment:with:), 52

Retina displays, 129
right-to-left languages, 159
ringStyle property, 227
routing options, 352

S
Safari (O'Reilly content delivery), xiii
Safari Content Blocker, xi, 301-306
Safari Services framework

importing into applications, 303
SFSafariViewController, 154
SFSafariViewControllerDelegate, 154
showing web content in Safari view control‐

ler, 154
satelliteFlyover property, 357
save() function, 91
saveContext() function, 84
schemes, 78

(see also Core Data framework)
screenshots, 165
search indexes

deleting searchable content, 323
expiration dates, 316
maintaining indexed content, 309
making activities searchable, 319
making content searchable, 315
new features, 315
overview of, xi

searchableIndex(_:reindexAllSearchableItems‐
WithAcknowledgementHandler:), 310

searchableIndex(_:reindexSearchableItemsWi‐
thIdentifiers:acknowledgementHandler:),
310

secure content, 389
Security framework

additions to, 383
overview of, xii
SecAccessControlCreateWithFlags, 385, 389
SecItemCopyMatching function , 389

selectedMessage property, 27
semanticContentAttribute property, 159
sendMessage(_:replyHandler:errorHandler:)

method, 203

434 | Index

session...
session(_:didFinishFileTransfer:error:) dele‐

gate method, 198
session(_:didReceiveApplicationContext:)

delegate method, 184, 191
session(_:didReceiveFile:) delegate method,

198
session(_:didReceiveMessage:replyHan‐

dler:) method, 203
session(_:didReceiveUserInfo:) method, 194
sessionReachabilityDidChange(_:) method,

181
sessionWatchStateDidChange(_:) method,

181
set types

building equality functionality into, 117
conditionally extending, 115
creating your own, 113

setActive(_:with:) method, 398
setCategory(_:with:) method, 398
setRegion(_:animated:) method, 339
Shared Links Extension, 306
ShowOnLockScreen, 228
showsCompass property, 351
showsScale property, 351
showsTraffic property, 351
side-by-side views, 325
SiriKit (see also Intents framework)

Alex (Siri voice), 393
defining intent handlers, 44-51
enabling interactions with Siri, 37-44
handling intents, 62
new features, ix, 37
overview of, x
reporting resolution progress, 60
resolving ambiguity in intents, 52-59

size classes (Xcode), 139
socialProfiles array, 269
speech synthesis, 393
split views, 325
Spotlight Index Extension, xi, 309-312
stacked views

creating, 137
customizing for screen size, 139-143
manipulating programmatically, 152

startAnimation() function, 129
startUpdates(from:withHandler:) function, 380
state changes, 181
sticker packs

adding captions and titles, 24-27
adjusting sticker sizes, 4
App Store, 3
formats accepted, 4
overview of, x, 1
setting up new applications, 2
utilizing expanded view, 16-23

storyboards, linking together, 106
string(from:style:) function, 284
subcaption: String? property, 27
Swift 3

Apple's documentation on, xii
checking for API availability, 100
compatibility with Contacts framework, 265
creating set types, 113
ensuring code block execution, 98
equality-checking functionality, 117
error handling in, 95
grouping switch statement cases, 122
looping conditionally, 118
new features, 119
optimizing code, 108-112
overview of, x
prerequisites to using, ix
protocol extensions in, 115
showing header view of classes, 112
specifying preconditions for methods, 97
updates to, ix

swipe methods, 374
switch statements, 122

T
tap() method, 373, 376
temperature units, 73
text responses, 148
text-based content, 155, 365, 372
textFields property, 373
textFieldShouldReturn(_:), 373
.TextInput property, 148
3D globe map, 357
throw syntax, 95
time duration, 68

(see also measurements and units)
"time travel" feature, 222
timeouts, 389
Touch ID, 385, 389
touch rates, 156-159
touchIDAuthenticationAllowableReuseDura‐

tion property, 389

Index | 435

trailingAnchor property, 143
trailingCaption: String? property, 27
trailingSubcaption: String? property, 27
transferFile(_:metadata:) method, 198
transferUserInfo(_:) method, 194, 196
transportType property, 353
turbulence effects, 411
turbulenceFieldWithSmoothness(_:animation‐

Speed:) class method, 411
twoFingerTap() method, 376
typeText(_:) method, 373

U
UI design

adding multiple buttons to navigation bars,
107

allowing text responses to notifications,
148-151

animating views, 129-133
arranging components, 137, 143
associating keyboard shortcuts, 164
creating anchored constraints in code,

143-148
device-specific stack views, 139-143
emulating apps during design, 136
frameworks available, 129
improving touch rates, 156-159
live previews, 120-121, 133-136
overview of, xi
recording, editing and sharing screens, 165
showing web content using Safari view con‐

troller, 154
stacked views in code, 152
supporting right-to-left languages, 159-163
text-based content, 155

UI Dynamics
adding animated noise effects, 412
adding radial gravity fields, 401
animator objects in, 401
creating linear gravity fields, 407
creating magnetic effects, 415
creating turbulence effects, 411
creating velocity fields, 418
handling collisions, 420
overview of, xii
possible effects created in, 401
UIDynamicAnimator, 401

UI Testing framework
Accessibility Inspector (Xcode), 359

automating UI test scripts, 362
finding UI components, 367
long-pressing on UI elements, 370
preparing your project for, 359
swiping on UI elements, 374
tapping UI elements, 376
testing text fields, buttons and labels, 365
typing inside text fields, 372

UIKit framework (see also UI Dynamics)
UIBarButtonItem, 107
UIBezierPath, 420
UIButton, 365
UICollisionBehavior, 415, 418
UIDynamicAnimator, 402, 407, 411, 412,

418, 420
UIDynamicItemCollisionBoundsType, 420
UIEvent, 156
UIFieldBehavior, 402, 407, 411, 412, 415,

418
UIKeyCommand, 164
UILabel, 365
UIRegion, 406, 411
UIRequiresFullScreen, 327
UISemanticContentAttribute, 159
UIStackView, 152
UISupportedInterfaceOrientations~ipad,

327
UITextField, 365
UIUserNotificationAction, 148
UIView, 129, 133, 143, 155, 159, 327, 349
UIViewPropertyAnimator, 129
vs. other frameworks, 129

UITextFieldDelegate protocol, 320, 373
unified contacts, 273
unifiedContact(withIdentifier:keysToFetch:)

method, 273
unifiedContacts(matching:keysToFetch:)

method, 273
units

converting, 65
(see also measurements and units)

time duration, 68
UnitAngle, 67
UnitDuration, 66, 68
UnitFrequency , 70
UnitLength, 66
UnitPower, 72
UnitTemperature, 73
UnitVolume, 74

436 | Index

update...
updateApplicationContext(_:) method, 184
updateContact(_:) method, 277
updateSendButton() function, 187
updateUserActivityState(_:) method, 322

URLs, opening safely, 387
URLSession

delegate method queues, 178
URLSession(_:downloadTask:didFinish‐

DownloadingToURL:) method, 178, 188
URLSessionConfiguration, 180, 395, 397
URLSessionDelegate, 179
URLSessionDownloadDelegate protocol,

178, 179
URLSessionTaskDelegate, 396
using on phone vs. watch, 176

userInterfaceLayoutDirectionForSemanticCon‐
tentAttribute(_:), 159

V
velocity fields, 418
velocityFieldWithVector(_:) method , 418
video

downloading/preparing for playback, 395
playing on Apple Watch, 261-263
sharing, 165

volume units, 74

W
WatchConnectivity framework

WCSession, 194
WCSession.default().transferUserInfo(_:) ,

195
WCSessionDelegate, 181, 184, 194, 198
WCSessionFile, 198
WCSessionUserInfoTransfer, 196

WatchKit (see Apple Watch)

watchOS (see Apple Watch)
where clauses, 119
whole module optimization, 108
WKInterfaceController class, 258
writeData() function, 87

X
Xcode 8

Accessibility Inspector, 359
adding Core Data to projects, 77
adding multiple navigation buttons, 107
default use of HTTPS, 383
exporting device-specific binaries, 105
Generated Interface Assistant Editor, 112
new features, 112, 133
Open Developer Tool, 359
overview of, x
playgrounds in, 133
prerequisites to using, ix
record button for UI testing, 363, 366
size class customization features, 139
tagging and downloading assets, 101-105
updates to, ix

XCUI...
XCUIElement, 365, 370, 374, 376
XCUIElementQuery, 367
XCUIElementTypeQueryProvider, 367
XCUIKeyboardKey, 373
XCUIKeyboardKeyCommand, 373
XCUIKeyboardKeyReturn, 373
XCUIKeyboardKeySpace, 373

XHandling protocol
ambiguity APIs, 52
confirm(_:completion:), 60
conforming to, 46
handle(_:completion:), 62

Index | 437

About the Author
Vandad Nahavandipoor currently lives in Sweden and is an iOS and OS X program‐
mer for an international media group with over 7,000 employees in more than 29
countries. Previously he worked for Lloyds Banking Group in England to deliver
their iOS apps to millions of users in the UK. He has led an international team of
more than 30 iOS developers, and some of the projects he has overseen include the
NatWest and RBS iOS apps running on millions of iPhones and iPads in the UK.
Vandad received his B.Sc and M.Sc in Information Technology for E-Commerce from
the University of Sussex in England.

Vandad’s programming experience started when he first learned BASIC on his father’s
Commodore 64. He then took this experience and applied it on his uncle’s computer,
running BASIC on DOS. At this point, he found programming for personal comput‐
ers exciting indeed and moved on to learn Object Pascal. This allowed him to learn
Borland Delphi quite easily. He wrote a 400-page book on Borland Delphi and dedi‐
cated the book to Borland. From then, he picked up x86 Assembly programming and
wrote a hobby 32-bit operating system named Vandior. It wasn’t until late 2007 when
iOS programming became his main focus.

Colophon
The red-billed tropicbird (Phaethon aethereus) is also called the boatswain bird. Tro‐
picbirds look like terns but are not genetically related to them; in fact, tropicbirds
have no close living relative species, making them a bit of an evolutionary mystery.
The red-billed tropicbird was featured on the Bermudan $50 bill starting in 2009, but
it was subsequently replaced by the native white-tailed tropicbird, which has a higher
population in Bermuda.

Red-billed tropicbirds are large, with long tails, white bodies, and the eponymous red
bill that curves downward. With the tail feathers included, they are almost 40 inches
long; a wingspan of one meter balances out their bodies and makes them graceful fly‐
ers. They have black markings on their flight feathers and in their eyes. Male and
female birds look similar, but males can have longer tails. Red-billed tropicbirds’ feet
are located very far back on their bodies, so their movements on land are almost
comically awkward and occur mostly on their bellies. They are not nimble swimmers
either, but they move comfortably through the air over the ocean, where they hover
in hopes of catching flying fish. Flying fish appear to be a favorite prey, but tropic‐
birds will eat other fish and even cephalopods as well.

Red-billed tropicbirds live in places like the Galápagos islands, the Cape Verde
islands, the West Indies, and even the Persian Gulf. Despite their preference for
warm, tropical waters, a particular single red-billed tropicbird keeps returning to Seal

Island in coastal Maine every year. There is a large seabird population in that part of
the state, but this individual is the only one of his kind to be found that far north.
Some years ago, locals placed a wood decoy carving of a tropicbird out and the inex‐
plicable visitor tried to court and mate with it. The chance of seeing this bird has
meant good business for the boat charters that take birdwatchers out to see the puf‐
fins and black Guillemots that otherwise dominate the local bird scene.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from the Riverside Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Audience
	Organization of This Book
	Additional Resources
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. iMessage Stickers and Apps
	1.1 Setting Up a Sticker Pack Application
	Problem
	Solution
	Discussion
	See Also

	1.2 Adjusting Sticker Sizes
	Problem
	Solution
	Discussion
	See Also

	1.3 Building a Full-Fledged iMessage Application
	Problem
	Solution
	Discussion
	See Also

	1.4 Adding an iMessage App Extension to an Existing App
	Problem
	Solution
	Discussion
	See Also

	1.5 Utilizing an Expanded View in a Sticker Pack App
	Problem
	Solution
	Discussion
	See Also

	1.6 Appending Rich Information to Stickers
	Problem
	Solution
	Discussion
	See Also

	1.7 Creating Interactive Conversations with iMessage Apps
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. SiriKit
	2.1 Setting Up Your Project for Siri
	Problem
	Solution
	Discussion
	See Also

	2.2 Defining an Intent Handler
	Problem
	Solution
	Discussion
	See Also

	2.3 Resolving Ambiguity in an Intent
	Problem
	Solution
	Discussion
	See Also

	2.4 Reporting Progress for Resolving an Intent
	Problem
	Solution
	Discussion
	See Also

	2.5 Handling an Intent
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Measurements and Units
	3.1 Converting Between and Working with Length Units
	Problem
	Solution
	Discussion
	See Also

	3.2 Working with and Switching Between Angle Units
	Problem
	Solution
	Discussion
	See Also

	3.3 Representing and Converting Between Durations of Time
	Problem
	Solution
	Discussion
	See Also

	3.4 Using and Working with Frequency Units
	Problem
	Solution
	Discussion
	See Also

	3.5 Working with and Using Power Units
	Problem
	Solution
	Discussion
	See Also

	3.6 Representing and Comparing Temperature Units
	Problem
	Solution
	Discussion
	See Also

	3.7 Working with and Converting Volume Units
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Core Data
	4.1 Designing Your Database Scheme
	Problem
	Solution
	Discussion
	See Also

	4.2 Writing Data to the Database
	Problem
	Solution
	Discussion
	See Also

	4.3 Reading Data from the Database
	Problem
	Solution
	Discussion
	See Also

	4.4 Searching for Data in the Database
	Problem
	Solution
	Discussion
	See Also

	4.5 Performing Background Tasks with Core Data
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Swift 3.0, Xcode 8, and Interface Builder
	5.1 Handling Errors in Swift
	Problem
	Solution
	Discussion
	See Also

	5.2 Specifying Preconditions for Methods
	Problem
	Solution
	Discussion
	See Also

	5.3 Ensuring the Execution of Code Blocks Before Exiting Methods
	Problem
	Solution
	Discussion

	5.4 Checking for API Availability
	Problem
	Solution
	Discussion
	See Also

	5.5 Categorizing and Downloading Assets to Get Smaller Binaries
	Problem
	Solution
	Discussion

	5.6 Exporting Device-Specific Binaries
	Problem
	Solution
	Discussion

	5.7 Linking Separate Storyboards Together
	Problem
	Solution
	Discussion
	See Also

	5.8 Adding Multiple Buttons to the Navigation Bar
	Problem
	Solution
	Discussion
	See Also

	5.9 Optimizing Your Swift Code
	Problem
	Solution
	Discussion
	See Also

	5.10 Showing the Header View of Your Swift Classes
	Problem
	Solution
	Discussion
	See Also

	5.11 Creating Your Own Set Types
	Problem
	Solution
	Discussion
	See Also

	5.12 Conditionally Extending a Type
	Problem
	Solution
	Discussion
	See Also

	5.13 Building Equality Functionality into Your Own Types
	Problem
	Solution
	Discussion
	See Also

	5.14 Looping Conditionally Through a Collection
	Problem
	Solution
	Discussion

	5.15 Designing Interactive Interface Objects in Playgrounds
	Problem
	Solution
	Discussion

	5.16 Grouping Switch Statement Cases Together
	Problem
	Solution
	Discussion

	5.17 Bundling and Reading Data in Your Apps
	Problem
	Solution
	Discussion

	Chapter 6. The User Interface
	6.1 Animating Views
	Problem
	Solution
	Discussion

	6.2 Attaching Live Views to Playgrounds
	Problem
	Solution
	Discussion

	6.3 Running Playgrounds as Interactive and Continuous Apps
	Problem
	Solution
	Discussion

	6.4 Arranging Your Components Horizontally or Vertically
	Problem
	Solution
	Discussion

	6.5 Customizing Stack Views for Different Screen Sizes
	Problem
	Solution
	Discussion

	6.6 Creating Anchored Constraints in Code
	Problem
	Solution
	Discussion

	6.7 Allowing Users to Enter Text in Response to Local and Remote Notifications
	Problem
	Solution
	Discussion
	See Also

	6.8 Dealing with Stacked Views in Code
	Problem
	Solution
	Discussion

	6.9 Showing Web Content in Safari View Controller
	Problem
	Solution
	Discussion

	6.10 Laying Out Text-Based Content on Your Views
	Problem
	Solution
	Discussion

	6.11 Improving Touch Rates for Smoother UI Interactions
	Problem
	Solution
	Discussion

	6.12 Supporting Right-to-Left Languages
	Problem
	Solution
	Discussion

	6.13 Associating Keyboard Shortcuts with View Controllers
	Problem
	Solution
	Discussion

	6.14 Recording the Screen and Sharing the Video
	Problem
	Solution
	Discussion

	Chapter 7. Apple Watch
	7.1 Downloading Files onto the Apple Watch
	Problem
	Solution
	Discussion

	7.2 Noticing Changes in Pairing State Between the iOS and Watch Apps
	Problem
	Solution
	Discussion

	7.3 Transferring Small Pieces of Data to and from the Watch
	Problem
	Solution
	Discussion

	7.4 Transferring Dictionaries in Queues to and from the Watch
	Problem
	Solution
	Discussion

	7.5 Transferring Files to and from the Watch
	Problem
	Solution
	Discussion
	See Also

	7.6 Communicating Interactively Between iOS and watchOS
	Problem
	Solution
	Discussion
	See Also

	7.7 Setting Up Apple Watch for Custom Complications
	Problem
	Solution
	Discussion
	See Also

	7.8 Constructing Small Complications with Text and Images
	Problem
	Solution
	Discussion

	7.9 Displaying Time Offsets in Complications
	Problem
	Solution
	Discussion
	See Also

	7.10 Displaying Dates in Complications
	Problem
	Solution
	Discussion
	See Also

	7.11 Displaying Times in Complications
	Problem
	Solution
	Discussion
	See Also

	7.12 Displaying Time Intervals in Complications
	Problem
	Solution
	Discussion
	See Also

	7.13 Recording Audio in Your Watch App
	Problem
	Solution
	Discussion
	See Also

	7.14 Playing Local and Remote Audio and Video in Your Watch App
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Contacts
	8.1 Creating Contacts
	Problem
	Solution
	Discussion

	8.2 Searching for Contacts
	Problem
	Solution
	Discussion
	See Also

	8.3 Updating Contacts
	Problem
	Solution
	Discussion

	8.4 Deleting Contacts
	Problem
	Solution
	Discussion

	8.5 Formatting Contact Data
	Problem
	Solution
	Discussion
	See Also

	8.6 Picking Contacts with the Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	8.7 Creating Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	8.8 Displaying Contacts with a Prebuilt System UI
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Extensions
	9.1 Creating Safari Content Blockers
	Problem
	Solution
	Discussion

	9.2 Creating Shared Links for Safari
	Problem
	Solution
	Discussion

	9.3 Maintaining Your App’s Indexed Content
	Problem
	Solution
	Discussion

	Chapter 10. Web and Search
	10.1 Making Your App’s Content Searchable
	Problem
	Solution
	Discussion

	10.2 Making User Activities Searchable
	Problem
	Solution
	Discussion
	See Also

	10.3 Deleting Your App’s Searchable Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Multitasking
	11.1 Supporting Split Views
	Problem
	Solution
	Discussion

	11.2 Adding Picture in Picture Playback Functionality
	Problem
	Solution
	Discussion

	11.3 Handling Low Power Mode and Providing Alternatives
	Problem
	Solution
	Discussion

	Chapter 12. Maps and Location
	12.1 Displaying a Specific Location on the Map
	Problem
	Solution
	Discussion

	12.2 Requesting the User’s Location a Single Time
	Problem
	Solution
	Discussion
	See Also

	12.3 Requesting the User’s Location in the Background
	Problem
	Solution
	Discussion
	See Also

	12.4 Customizing the Tint Color of Pins on the Map
	Problem
	Solution
	Discussion

	12.5 Providing Detailed Pin Information with Custom Views
	Problem
	Solution
	Discussion

	12.6 Displaying Traffic, Scale, and Compass Indicators on the Map
	Problem
	Solution
	Discussion

	12.7 Providing an ETA for Transit Transport Type
	Problem
	Solution
	Discussion
	See Also

	12.8 Launching the iOS Maps App in Transit Mode
	Problem
	Solution
	Discussion
	See Also

	12.9 Showing Maps in Flyover Mode
	Problem
	Solution
	Discussion

	Chapter 13. UI Testing
	13.1 Preparing Your Project for UI Testing
	Problem
	Solution
	Discussion

	13.2 Automating UI Test Scripts
	Problem
	Solution
	Discussion
	See Also

	13.3 Testing Text Fields, Buttons, and Labels
	Problem
	Solution
	Discussion
	See Also

	13.4 Finding UI Components
	Problem
	Solution
	Discussion
	See Also

	13.5 Long-Pressing on UI Elements
	Problem
	Solution
	Discussion
	See Also

	13.6 Typing Inside Text Fields
	Problem
	Solution
	Discussion
	See Also

	13.7 Swiping on UI Elements
	Problem
	Solution
	Discussion
	See Also

	13.8 Tapping UI Elements
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Core Motion
	14.1 Querying Pace and Cadence Information
	Problem
	Solution
	Discussion

	14.2 Recording and Reading Accelerometer Data
	Problem
	Solution
	Discussion

	Chapter 15. Security
	15.1 Protecting Your Network Connections with ATS
	Problem
	Solution
	Discussion

	15.2 Binding Keychain Items to Passcode and Touch ID
	Problem
	Solution
	Discussion
	See Also

	15.3 Opening URLs Safely
	Problem
	Solution
	Discussion

	15.4 Authenticating the User with Touch ID and Timeout
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Multimedia
	16.1 Reading Out Text with the Default Siri Alex Voice
	Problem
	Solution
	Discussion

	16.2 Downloading and Preparing Remote Media for Playback
	Problem
	Solution
	Discussion

	16.3 Enabling Spoken Audio Sessions
	Problem
	Solution
	Discussion

	Chapter 17. UI Dynamics
	17.1 Adding a Radial Gravity Field to Your UI
	Problem
	Solution
	Discussion

	17.2 Creating a Linear Gravity Field on Your UI
	Problem
	Solution
	Discussion

	17.3 Creating Turbulence Effects with Animations
	Problem
	Solution
	Discussion

	17.4 Adding Animated Noise Effects to Your UI
	Problem
	Solution
	Discussion

	17.5 Creating a Magnetic Effect Between UI Components
	Problem
	Solution
	Discussion

	17.6 Designing a Velocity Field on Your UI
	Problem
	Solution
	Discussion

	17.7 Handling Collisions Between Nonrectangular Views
	Problem
	Solution
	Discussion

	Index
	About the Author

