
www.allitebooks.com

http://www.allitebooks.org

ASP.NET Data Presentation
Controls Essentials

Master the standard ASP.NET server controls for
displaying and managing data

Joydip Kanjilal

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

ASP.NET Data Presentation Controls Essentials

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1141207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-95-7

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Joydip Kanjilal

Reviewers

Steven M. Swafford

Anand Narayanaswamy

Senior Acquisition Editor

Douglas Patterson

Development Editor

Rashmi Phadnis

Technical Editor

Bhupali Khule

Code Testing

Mithun Sehgal

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Harminder Singh

Chris Smith

Cathy Cumberlidge

Angie Butcher

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Joydip Kanjilal is a Microsoft MVP in ASP.NET. He has over 12 years of
industry experience in IT with more than 6 years in Microsoft .NET and its related
technologies. He has authored a lot of articles for some of the most reputable sites
like, www.asptoday.com, www.devx.com, www.aspalliance.com, www.aspnetpro.
com, www.sswug.com, www.sql-server-performance.com, etc. A lot of these articles
have been selected at www.asp.net—Microsoft's Official Site on ASP.NET. Joydip
was also a community credit winner at www.community-credit.com a number
of times.

He is currently working as a Senior Consultant in a reputable company in
Hyderabad, INDIA. He has years of experience in designing and architecting
solutions for various domains. His technical strengths include, C, C++, VC++, Java,
C#, Microsoft .NET, Ajax, Design Patterns, SQL Server, Operating Systems and
Computer Architecture. Joydip blogs at http://aspadvice.com/blogs/joydip
and spends most of his time reading books, blogs and writing books and articles. His
hobbies include watching cricket and soccer and playing chess.

Mail: joydipkanjilal@yahoo.com

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

I am grateful to my parents for their love, support, and inspiration throughout
my life and would like to express my deepest respects to them. I am thankful to
Piku, Indronil, and little Jini in particular for their co-operation, patience, and
support. I am also thankful to the other members of my family for their continued
encouragement and support.

I am thankful to Douglas Paterson and the entire PacktPub team for providing me
the opportunity to author my first book. I am also thankful to Steve Smith and the
entire AspAlliance team for providing me the opportunity to author my first ever
article at AspAlliance. I would also like to thank the reviewers of this book for their
invaluable feedback. I am thankful to Anand Narayanaswamy, Douglas Paterson,
and Steven M. Swafford for their excellent suggestions, which I hope have helped
a lot in improving the quality of the book. I am also thankful to Russell Jones of
DevX and Jude Kelly of Sql-Server-Performance for their valuable technical advices.
I am also thankful to Stephen Wynkoop of SSWUG and David Riggs of AspNetPro
for giving me the opportunity to author articles there. I would also like to thank
Abhishek Kant of Microsoft for the MVP award that I received in 2007.

I am thankful to my friends Sriram Putrevu, Rakesh Gujjar, and Tilak Tarafder and
the readers of my articles for their invaluable feedback and suggestions. My special
thanks to Balaji Desari, Ashish Agarwal, and Sanjay Golani for their inspiration
and support.

Writing my first ever book has been a challenging, learning and a rewarding
experience. It was really a nice time and I enjoyed it.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Steven M. Swafford began developing software in 1995 while serving in the
United States Air Force (USAF). Upon leaving the USAF he continued developing
leading-edge solutions in support of the America's war fighters as part of the original
USAF enterprise portal development team. His roots are now in Auburn, Alabama
where he works for Northrop Grumman Information Technology. Steven's credits
his wife Su Ok and daughter Sarah for supporting and inspiring his ongoing passion
for software development and the resultant challenges of life near the bleeding
edge as well as his mother Pat Harris and father Cliff Swafford for believing in
him. Steven would like to thank Tim Stewart and Edward Habal who were his
professional mentors and to this day remain close friends as well as Frankie Elston,
Joe Chaplin, and Glenn Regan all of whom are colleagues that Steven worked closely
with for years.

This is Steven's second technical review. Steven previously worked as a technical
editor on ODP.NET Developers Guide.

Mail: steven.swafford@radicaldevelopment.net

Website: http://www.radicaldevelopment.net

Blog: http://www.blog.radicaldevelopment.net

www.allitebooks.com

http://www.allitebooks.org

Anand Narayanaswamy works as an independent consultant and runs NetAns
Hosting Services (www.netans.com), which provides web hosting services based in
Trivandrum, Kerala State, India. Anand is a Microsoft Most Valuable Professional
(MVP) in Visual C# (https://mvp.support.microsoft.com/profile/Anand) and
is the author of Community Server Quickly (http://www.packtpub.com/community-
server/book) published by Packt Publishing.

He works as the chief technical editor for ASPAlliance.com (http://aspalliance.
com/author.aspx?uId=384030) and is also a member of ASPAlliance.com
Advisory Board. He regularly contributes articles, and book and product reviews
to ASPAlliance.com, C-Sharpcorner.com, Developer.com, Codeguru.com, Microsoft
Academic Alliance and asp.netPRO magazine.

Anand has worked as a technical editor for several popular publishers such as Sams,
Addison-Wesley Professional, Wrox, Deitel, and Manning. His technical editing
skills helped the authors of Sams Teach Yourself the C# Language in 21 Days, Core C#
and .NET, Professional ADO.NET 2, ASP.NET 2.0 Web Parts in Action and Internet and
World Wide Web (4th Edition) to fine-tune the content. He has also contributed articles
for Microsoft Knowledge Base and delivered podcast shows for Aspnetpodcast.com.
He is a moderator for Windows MarketPlace Newsgroups.

Anand also runs LearnXpress.com (www.learnxpress.com), Dotnetalbum.com (www.
dotnetalbum.com), CsharpFAQ.com (www.csharpfaq.com) and Devreviews.com
(www.devreviews.com). LearnXpress.com is a featured site at MSDN's Visual C#
.NET communities section. Anand has won several prizes at Community-Credit.com
and has been featured as "All Time" contributor at the site. He is one of the founders
of Trivandrum Microsoft Usergroup. He regularly blogs under the banner "I type
what I feel" at http://msmvps.com/blogs/anandn.

Website: http://www.visualanand.net

Blog: http://weblogs.asp.net/anandn

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to Data Binding in ASP.NET 5

The ASP.NET Data Binding Model 6
Using the Data Binding Expressions 7

The Employee and the Data Manager Classes 8
New Data Source Controls in ASP.NET 2.0 13

The Object Data Source Control 14
Object Data Source Control Methods 14

The SQL Data Source Control 18
Using the SQL Data Source Control 18

The Access Data Source Control 22
Using the Access Data Source Control 23

The XML Data Source Control 25
Using the XML Data Source Control 25

User Interface and Data Source Paging 27
User Interface and Data Source Sorting 30
Filtering Data Using the Object Data Source Control 33
Summary 34

Chapter 2: Working with List Controls in ASP.NET 35
The ASP.NET List Controls 35

Working with the ListBox Control 36
Appending List Items to the ListBox Control 36
Selecting One or More List Items 38
Removing List Items from the ListBox Control 39
Binding Data to the ListBox Control 40
Handling ListBox Control Events 40

Working with the DropDown List Control 41
Appending List Items to the DropDownList Control 41
Selecting a List Item 43
Removing List Items from the DropDownList Control 43

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Binding Data to the DropDownList Control 44
Handling DropDownList Control Events 44
Associating Event Handlers to a dynamically generated DropDownList Control 45
Implementing a Simple Application 46

Working with the CheckBoxList Control 48
Appending List Items to the CheckBoxList Control 48
Selecting One or More List Items 49
Removing List Items from the CheckBoxList Control 50
Binding Data to the CheckBoxList Control 50
Handling CheckBoxList Control Events 51
Implementing a CustomCheckBoxList Control 51

Working with the BulletedList Control 54
Appending List Items to the BulletedList Control 55
Selecting a List Item 56
Removing List Items from the BulletedList Control 57
Binding Data to the BulletedList Control 57
Handling BulletedList Control Events 58

Working with the RadioButtonList Control 58
Appending List Items to the RadioButtonList Control 58
Selecting a List Item 59
Removing List Items from the RadioButtonList Control 60
Binding Data to the RadioButtonList Control 60
Handling RadioButtonList Control Events 60

Summary 61
Chapter 3: Working with the Repeater Control 63

The ASP.NET Repeater Control 63
Using the Repeater Control 64
Displaying Data Using the Repeater Control 67
Displaying Checkboxes in a Repeater Control 70

Implementing Data Paging Using the Repeater Control 73
The BindPagedData() Method 75
Navigating through the Pages 76

Sorting Data Using the Repeater Control 78
Revisiting the DataManager Class 79

Filtering Data Using the Repeater Control 81
Handling Repeater Control Events 87
Summary 89

Chapter 4: Working with the DataList Control 91
The ASP.NET DataList Control 91

Using the DataList Control 92
Displaying Data 93
Handling Events 98

Binding Images Dynamically 100
Selecting Data 102

Table of Contents

[iii]

Editing data 103
Deleting Data 107

Summary 108
Chapter 5: Working with the DataGrid Control in ASP.NET 109

The ASP.NET DataGrid Control 110
Creating a DataGrid Control 110

Implementing a Sample Application Using DataGrid Control 111
Displaying Data 121
Styling the DataGrid Control 123
Appending Data Using the DataGrid Control 127
Editing Data Using the DataGrid Control 132
Deleting Data Using the DataGrid Control 135
Paging Using the DataGrid Control 137

Summary 138
Chapter 6: Displaying Views of Data (Part I) 139

The ASP.NET GridView Control 140
Comparing DataGrid and GridView Controls 144
Displaying DropDownList in a GridView Control 144
Displaying CheckBox in a GridView Control 146
Change the Row Color of GridView Control Using JavaScript 148
Displaying Tool Tip in a GridView Control 151
Paging Using the GridView Control 151

Implementing a Hierarchical GridView 153
Sorting Data Using the GridView Control 162
Inserting, Updating and Deleting Data Using the GridView Control 163
Exporting the GridView Data 169
Formatting the GridView Control 172

Summary 182
Chapter 7: Displaying Views of Data (Part II) 183

Working with the ASP.NET DetailsView Control 183
Using the DetailsView Control 184

Working with the ASP.NET FormView Control 196
Formatting Data Using the FormView Control 200

Working with the ASP.NET TreeView Control 204
Implementing a Directory Structure as a TreeView 210
Summary 214

Chapter 8: Working with LINQ 215
Introducing LINQ 215

Why LINQ? 216
Understanding the LINQ Architecture 216

Table of Contents

[iv]

Operators in LINQ 217
Querying Data Using LINQ 218
The New Data Controls in VS.NET 2008 (Orcas) 221

Using the ListView Control 221
Using the DataPager Control 224

Data Binding Using LINQ 226
Summary 238

Index 239

Preface
When you design and implement an ASP.NET web application, you need to manage
and display data to the end user in more than one way. Data Presentation Controls
in ASP.NET are server controls to which you can bind data to organize and display
it in different ways. This book covers the major data controls in ASP.NET (from ASP.
NET 1.x to ASP.NET 3.5/Orcas). Packed with plenty of real-life code examples, tips,
and notes, this book is a good resource for readers who want to display and manage
complex data in web applications using ASP.NET by fully leveraging the awesome
features that these data controls provide.

What This Book Covers
Chapter 1 discusses the ASP.NET data binding model and how we can work with the
data source controls in ASP.NET.

Chapter 2 discusses how we can work with the various list controls in ASP.NET and
illustrates how we can implement a custom control that extends the CheckBoxList
control to provide added functionalities.

Chapter 3 discusses how we can display tables of data with the Repeater control. It
also discusses how we can perform other operations, like paging and sorting data
using this control.

Chapter 4 discusses how we can use the DataList control in ASP.NET. It also
illustrates how we can bind images to the DataList control dynamically.

Chapter 5 discusses how we can display, edit, delete, and format data for customized
display using the DataGrid control. It discusses how we can use this control
for paging and sorting data. It also illustrates the implementation of a sample
application using this control and how we can use this control to display data in a
customized format.

Preface

[2]

Chapter 6 presents a discussion on the GridView control and performing various
operation with it, like paging, sorting, inserting data, updating data, deleting data,
and displaying data in customized format. It also discusses how one can implement
a custom GridView control to display hierarchical data. It also discusses how one can
export a GridView control to MS Excel and MS Word.

Chapter 7 explores the other view controls in ASP.NET, like DetailsView, FormView,
and the TreeView control, and how we can use them to perform
various operations.

Chapter 8 discusses LINQ, its features and benefits, and how it can be used to bind
data to the new data controls in Orcas.

What You Need for This Book
This book is for ASP.NET developers who want to display or manage data in ASP.
NET applications. To use this book, you need to have access to ASP.NET and
SQL Server.

The following is the list of software required for this book:

ASP.NET 2.0 (For Chapters 1 - 7)
ASP.NET 3.5 (Orcas) (For Chapter 8)
SQL Server 2005

Who is This Book for
This book is for ASP.NET developers who want to display or manage data in ASP.
NET applications. The code examples are in C#.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are two styles for code. Code words in text are shown as follows: "You can
also use the static method Eval() of the DataBinder class for binding data to
your controls."

•

•

•

Preface

[3]

A block of code will be set as follows:

<asp:ListBox ID="ListBox1" runat="server" Height="125px"
 Width="214px">
 <asp:ListItem Value="1">Joydip</asp:ListItem>
 <asp:ListItem Value="2">Douglas</asp:ListItem>
 <asp:ListItem Value="3">Jini</asp:ListItem>
 <asp:ListItem Value="4">Piku</asp:ListItem>
 <asp:ListItem Value="5">Rama</asp:ListItem>
 <asp:ListItem Value="6">Amal</asp:ListItem>
 <asp:ListItem Value="7">Indronil</asp:ListItem>
</asp:ListBox>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The second record is set to editable mode on clicking the Edit command button ".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Data Binding
in ASP.NET

In ASP.NET, the term Data Binding implies binding the controls to data that is
retrieved from the data source and hence providing a read or write connectivity
between these controls and the data, that they are bound to. These data sources can
be one of databases, xml files or even, flat files. We would use the word data controls
often in this book to imply controls that can be bound to data from external data
sources. In ASP.NET 1.x, you were introduced to a powerful data binding technique
where you could eliminate the need of writing lengthy code that was used in earlier
for binding data to data controls. With ASP.NET 2.0, you have a lot of new controls
and features added in this context. You now have simplified paging, filtering, sorting,
automatic updates, data source controls, and a host of other powerful features.

In this chapter, we will cover the following points:

The ASP.NET Data Binding Model
Data Binding Expressions
The ASP.NET Data Source Controls

Object Data Source Control
SQL Data Source Control
Access Data Source Control
XML Data Source Control

•

•

•

°

°

°

°

Introduction to Data Binding in ASP.NET

[6]

The ASP.NET Data Binding Model
In data binding, as we have discussed in the beginning, the controls are bound to
data from the data source resulting in read or write connectivity between the controls
and the data they are bound to. The controls are actually bound to the columns of the
result set that contains the data. This result set can be a data set, a data table, a data
reader, or any other instance of a collection type.

We need not write any code to display the control values after they are
bound to these data sources. This kind of data binding allows you to bind
data to the user interface controls without the need to write code.

In its simplest form, the syntax for using data binding in your ASPX pages is
as follows:

<%# Data Source Name %>

Depending on whether you require binding single value data or a multiple or
repeated value data to a control, you can have the following types of binding
mechanisms in ASP.NET data controls:

Single Value Data Binding
Repeated Value Data Binding

Single value data binding, as the name suggests implies, binding of a single value or
a single record, say, an employee's record. In contrast, repeated value data binding
implies binding a set or a table of employee records.

You can use any of the following for single value data binding:

<%# Name of the Property %>

<%# Expression %>

<%# Method Name, Parameter List %>

For repeated value data binding, you can use the following syntax:

<%# Name of the Data Source %>

The following sections presents a discussion on how you can use the data binding
expressions in ASP.NET to bind data to the controls and a discussion on the newly
added data source controls in ASP.NET 2.0 and their usage.

•

•

Chapter 1

[7]

Using the Data Binding Expressions
What are data binding expressions? Well, they are the code snippets that you use
between the <%# and %> blocks in your ASP.NET web page. According to MSDN,
"Data-binding expressions create bindings between any property on an ASP.NET
page, including a server control property, and a data source when the DataBind()
method is called on the page. You can include data-binding expressions on the value
side of an attribute or value pair in the opening tag of a server control or anywhere
in the page".

The following are the advantages of using Data Binding expressions in ASP.NET
controls in the presentation layer:

Flexibility to use any data binding expressions provided that the value it
resolves to is one that the data control can use.
You can use these expressions to bind any property to its corresponding data.
Flexibility to bind one property to one data source and another property to
another data source.

You should use data binding in the ASP.NET web pages in the presentation layer of
your application. The syntax used for data binding in ASP.NET 1.x is as follows:

<%# Container.DataItem("expression") %>

The following code snippet illustrates how you can bind data to a label control using
the syntax shown above:

<asp:Label id="lblUserName" runat="server"
 Text='<%# Container.DataItem("UserName") %>'>
</asp:Label>

You can also use the static method Eval() of the DataBinder class for binding data
to your controls. This method has an overloaded version that accepts the format
expression as an additional parameter that relates to the type of formatting that you
would require on the data to be displayed. The syntax for using the Eval() method
is shown as follows:

<%# DataBinder.Eval(Container.DataItem, "expression"[, "format"]) %>

As shown in the code snippet the Eval() method accepts two parameters:

The first of these parameters is the data container, that is, a data table, a data
set or a data view.
The second parameter is a reference to the value that needs to be assigned to
the control.

•

•

•

•

•

Introduction to Data Binding in ASP.NET

[8]

Refer to the following code snippet that illustrates, how you can use the
DataBinder.Eval() method to bind data:

<asp:Label id="lblUserName" runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "UserName") %>'>
</asp:Label>

You can use the overloaded version of the Eval() method to specify the format
expression (as an additional optional parameter) to display the data in your required
format. Refer to the following code snippet:

<asp:Label id="lblLoginDate" runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem, "LoginDate", "{0:dddd
 d MMMM"]) %>'>
</asp:Label>

This code would display the LoginDate in the label control named lblLoginDate as
Sunday 15, April.

With ASP.NET 2.0, you have a much simpler syntax as the DataBinder instance is
now the default context for all data binding expressions that are used for displaying
non-hierarchical data in your presentation layer. You can now use any of the
following overloaded versions of the Eval() method for binding data.

<%# Eval("expression") %>
<%# Eval("expression"[, "format"]) %>

The Employee and the Data Manager Classes
Before we dig into a discussion on the data source controls in ASP.NET that follows
this section, I would present here two classes that we would frequently be using here
and after in the book; I would use these classes throughout this book. In order to
reduce code duplication or redundancy, I am providing here the source code for both
these classes; we would refer them elsewhere.

The Employee class in this example is the Business Entity class. It contains a set of
public properties that expose the data members of the class. The source code for this
class is as follows:

public class Employee
{
 private string empCode = String.Empty;
 private string empName = String.Empty;
 private double basic = 0.0;
 private string deptCode = String.Empty;
 private DateTime joiningDate;

Chapter 1

[9]

 public string EmpCode
 {
 get
 {
 return empCode;
 }
 set
 {
 empCode = value;
 }
 }

 public string EmpName
 {
 get
 {
 return empName;
 }
 set
 {
 empName = value;
 }
 }

 public double Basic
 {
 get
 {
 return basic;
 }
 set
 {
 basic = value;
 }
 }

 public string DeptCode
 {
 get
 {
 return deptCode;
 }
 set
 {
 deptCode = value;
 }

Introduction to Data Binding in ASP.NET

[10]

 }

 public DateTime JoiningDate
 {
 get
 {
 return joiningDate;
 }
 set
 {
 joiningDate = value;
 }
 }
}

We will use the fields basic and Salary interchangeably throughout
this book. You will find some code examples that refer to the former and
some that refer to the later. In either case, you can use the same Employee
class as the BusinessEntity with a minor change, that is, replace the name
of the public property called basic with Salary depending on whether
you need to use basic or Salary as the column for displaying data. So,
if you would like to use Salary as the name of the column data bound
to a data control, just change the public property called basic shown
as follows:

public double Salary
 {
 get
 {
 return basic;
 }
 set
 {
 basic = value;
 }
 }

To execute the programs listed in this book, ensure that the field names
used in the DataManager is the same as the field names that you have
used in the database table. We will revisit the Employee class in Chapter 5
of this book to incorporate some more variable and properties.

Chapter 1

[11]

The DataManager class contains a set of methods that return data that would be used
in the presentation layer of the application. The source code for the DataManager
class is as follows:

public class DataManager
{
 ArrayList data = new ArrayList();
 String connectionString = String.Empty;

 public DataManager()
 {
 connectionString = ConfigurationManager.ConnectionStrings
 ["joydipConnectionString"].
 ConnectionString.Trim();
 }

 public ArrayList GetAllEmployees()
 {
 SqlConnection conn = null;
 ArrayList employeeList = null;
 try
 {
 conn = new SqlConnection(connectionString);
 conn.Open();
 string sql = "select EmpCode, EmpName, Basic,
 JoiningDate, DeptCode from employee e, Department
 d where e.DeptID = d.DeptID";
 SqlCommand cmd = new SqlCommand(sql, conn);
 SqlDataReader dr = cmd.ExecuteReader();
 employeeList = new ArrayList();

 while (dr.Read())
 {
 Employee emp = new Employee();
 if (dr["EmpCode"] != DBNull.Value)
 emp.EmpCode = dr["EmpCode"].ToString();
 if (dr["EmpName"] != DBNull.Value)
 emp.EmpName = dr["EmpName"].ToString();
 if (dr["Basic"] != DBNull.Value)
 emp.Basic = Convert.ToDouble(dr["Basic"].
 ToString());
 if (dr["JoiningDate"] != DBNull.Value)
 emp.JoiningDate =
 Convert.ToDateTime(dr["JoiningDate"].
 ToString());
 if (dr["DeptCode"] != DBNull.Value)
 emp.DeptCode = dr["DeptCode"].ToString();emp.DeptCode = dr["DeptCode"].ToString();

Introduction to Data Binding in ASP.NET

[12]

 employeeList.Add(emp);employeeList.Add(emp);
 emp = null;
 }
 }
 catch
 {
 throw;
 }
 finally
 {
 conn.Close();
 }
 return employeeList;
 }

 public ArrayList GetEmployeeByDept(string deptCode)
 {
 SqlConnection conn = null;
 ArrayList employeeList = null;
 try
 {
 conn = new SqlConnection(connectionString); conn.Open();
 string sql = «select EmpCode, EmpName, Basic,
 JoiningDate, DeptCode from employee e, Department
 d where e.DeptID = d.DeptID and
 d.DeptCode = ‘» + deptCode + «'»;
 SqlCommand cmd = new SqlCommand(sql, conn);
 SqlDataReader dr = cmd.ExecuteReader();
 employeeList = new ArrayList();

 while (dr.Read())
 {
 Employee emp = new Employee();
 if (dr[«EmpCode»] != DBNull.Value)
 emp.EmpCode = dr[«EmpCode»].ToString();
 if (dr[«EmpName»] != DBNull.Value)
 emp.EmpName = dr[«EmpName»].ToString();
 if (dr[«Basic»] != DBNull.Value)
 emp.Basic = Convert.ToDouble(dr[«Basic»].
 ToString());
 if (dr[«JoiningDate»] != DBNull.Value)
 emp.JoiningDate =
 Convert.ToDateTime(dr[«JoiningDate»].
 ToString());
 if (dr[«DeptCode»] != DBNull.Value)

Chapter 1

[13]

 emp.DeptCode = dr["DeptCode"].ToString();emp.DeptCode = dr["DeptCode"].ToString();

 employeeList.Add(emp);employeeList.Add(emp);
 emp = null;
 }
 }
 catch
 {
 throw;
 }
 finally
 {
 conn.Close();
 }
 return employeeList;
 }

}

In this code, the GetAllEmployees() method returns all records from the Employeereturns all records from the Employee
table, whereas, the GetEmployeeByDept() method returns the records of all
employees of a specific department.

New Data Source Controls in ASP.NET 2.0
With ASP.NET 2.0, data binding has been simplified a lot with the introduction of
a number of data source controls. These data source controls are server controls
that can be used to bind data to a number of data sources. You now have a more
simplified, powerful, consistent, and extensible approach towards binding data
between your presentation layer controls and a number of data source controls.
You can use these controls to bind data between the data bound controls in your
presentation layer to a variety of data sources seamlessly. You only need to choose
the appropriate data source control that fits your requirement.

These data source controls facilitate a "Declarative programming model and
an automatic data binding behavior". You can use them declaratively in your
presentation layer or programmatically in your source code. The data store that
contains the data and the operations that are performed on this data are abstracted,
and you need not worry about how the data access and data binding logic works
underneath. In essence, the entire ADO.NET Object Model is abstracted using these
data source controls. Further, you can use these data source controls to display both
tabular data as well as hierarchical data in your presentation layer.

Introduction to Data Binding in ASP.NET

[14]

In ASP.NET 2.0, you have the following data source controls that are of utmost
importance; these would be discussed in detail later in this chapter:

Object data source control: This control can be used to bind data to middle-
tier objects to the presentation layer components in an N-tier design.
SQL data source control: This control enables you to connect to and bind
data to a number of underlying data sources, that is, Microsoft SQL Server,
OLEDB, ODBC or Oracle databases.
Access data source control: This control can be used to bind data to
Microsoft Access databases.
Xml data source control: This control can be used to bind data to XML data
sources, that is, external XML data files, dataset instances, etc.

With these data source controls, you can easily implement data driven ASP.NET
applications without the need to write the data access code. The only thing you have
to do is, add and configure a data source control in your web page and then associate
the DataSourceID property of any web control in your web page to the ID property
of the data source control in use. The web control would now display the data using
the data source control that you have used in your web page. You are done!

In the sections that follow, we would explore how you can use each of these controls
to bind data to your controls seamlessly.

The Object Data Source Control
The Object data source control, one of the new data source controls added in ASP.
NET 2.0, can be used to de-couple the User Interface or the Presentation Layer of the
application from the Business Logic and the Data Access Layers. It is a non-visual
control and is typically used to bind data to the data-bound controls in a consistent
way and can be used for seamless CRUD (Create, Update, Read and Delete)
operations in your applications.

Object Data Source Control Methods
The following are the four main methods of the Object data source control aligned to
the CRUD operations that you need in your applications:

Update Met�od: Met�od:Met�od: This method is used for updating data using the Object dataObject data
source control.

•

•

•

•

•

Chapter 1

[15]

Insert Met�od: Met�od:Met�od: This method is used for inserting data using the Object dataObject data
source control.
Select Met�od: Met�od:Met�od: This method is used for reading data using the Object dataObject data
source control.
Delete Met�od: Met�od:Met�od: This method is used for deleting data using the Object dataObject data
source control.

We would use the Object data source control to bind data to data bound controls
with components that represent data collections, that is, those which return a
set of data. We would use the Object data source control to bind data to a data
bound component with a DataSet instance, a DataReader instance, a WebService
instance that returns Data and a Collection instance. Hence, we would create
a polymorphic method called GetData() that would accept a parameter that
would indicate the source of the data that we need to retrieve the data from. The
term polymorp�ic used here implies that we can have multiple methods of name
GetData(), differing in their signatures. Hence, we may also say that the GetData()
method is overloaded. We would use these methods throughout this book for all the
subsequent chapters that would require data retrieval.

Using the Object Data Source Control
To use the Object data source control:Object data source control:control:

1. Create a new web application in Visual Studio, open the default.aspx.aspx file
and then switch to design view mode.

2. Now, add the ObjectDataSource control by dragging it from the toolbox. An
ObjectDataSource control with the default name of ObjectDataSource1 is
added to the web page.

3. We now require a data bound control to which we would bind the data
using this control. We will choose the GridView control for this and drag
one from the toolbox onto the web page. The default name of the control is
GridView1.

4. The next step is to configure the ObjectDataSource control.

•

•

•

Introduction to Data Binding in ASP.NET

[16]

5. We associate the Object data source control to theObject data source control to the control to the GridView Control
and set its DataSource property to the ObjectDataSource Control that we
have added in our web page. The following screenshot illustrates how
we associate the data source for the GridView control to our
ObjectDataSource control.

Note how the data source for the GridView Control is associated with the
ObjectDataSource control using the C�oose Data Source option.

To configure, click on the Configure Data Source option and then select the business
object that would be used for the CRUD operations. Then click on Next. The
Configure Data Source window pops up. Refer to the following screenshot:

Chapter 1

[17]

In our example, the business object class is DataManager and the business entity class
is Employee. Hence, we would now select DataManager as the business object from
the C�oose your business object option of the Configure Data Source window.

Then, click Next and select the GetAllEmployees(), returns ArrayList as our
business method (that would be used to retrieve data) from the C�oose a met�od
option. Refer to the following screenshot:

Then click on Finis�. You are done!

When you execute the application, the output will be something like the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Introduction to Data Binding in ASP.NET

[18]

The SQL Data Source Control
Built on top of ADO.NET, the SQL data source control is a non-visual control and
uses the built in ADO.NET objects for its operation. The SQL data source control is
used to access data from any relational database, SQL Server database in particular.
You can follow some simple steps described below that can be used to connect
to your database and perform your CRUD operations in your applications with
minimal or no coding at all!

Using the SQL Data Source Control
To use the SQL data source control, drag-and-drop it from the toolbox into your web
page. The default name of the control would be SqlDataSource1. Next, you need to
configure the data source as shown in the following screenshot:

Chapter 1

[19]

Click on the New Connection button to create a new connection with the database.
A window as shown in the following screenshot pops up.

We would select the data source as Microsoft SQL Server and we would specify
the Server Name as . (a dot) to indicate that the database to be connected to, is a
local database. Select SQL Server Aut�entication mode and the database as shown
in the screenshot above. Test your connection to check whether the connection was
successful by clicking on the Test Connection button.

Introduction to Data Binding in ASP.NET

[20]

Once you click on OK, the next window that is displayed is as shown in the
following screenshot:

You now need to configure the data source. Check to see whether the connection
string is as desired and then click on the Next button. The next window that is
displayed is as shown in the following screenshot:

You can save the connection string generated earlier in the configuration file of
your application by selecting the c�eck box as shown in this screenshot. The saved
connection string in the application's configuration file would resemble the following:

<connectionStrings>
 <add name="joydipConnectionString" connectionString="Data
 Source=.;Initial Catalog=joydip;User ID=sa;Password=sa"
 providerName="System.Data.SqlClient" />
</connectionStrings>

Chapter 1

[21]

Click on the Next button to proceed further. The next window that gets displayed
allows you to configure your Select statement. You can specify the fields, the
conditions, etc, that you require in the output. Once you are done, click on the
Next button.

The final window that gets displayed would allow you to test the query prior to
using it in the presentation layer of your application. Note that we have used the
Employee table in our example and it contains the same set of data as we used
when working with the Object data source control earlier in this chapter. Refer to the
following screenshot:

Introduction to Data Binding in ASP.NET

[22]

Notice the output of the query once the Test Query button is clicked. This is the
final step in this process of configuring the SQL data source control. Click on Finis�
button to complete the process. The code that is generated for the SQL data source
control in the .aspx file is as follows:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:joydipConnectionString %>"
 SelectCommand="SELECT * FROM [employee]"></asp:SqlDataSource>

Now we need to drag and drop a GridView control from the toolbox and configure
it with the SQL data source control, using the same process that we followed earlier,
for configuring it with the Object data source Control. Once we are done, we can
execute the web page; the output on execution of the web page is shown as follows:

The Access Data Source Control
The Access data source control can be used to connect to Microsoft Access databases
and perform CRUD operations in your applications. The following section discusses
how we can use this control in our applications.

Chapter 1

[23]

Using the Access Data Source Control
To start with, drag and drop the Access Data Source Control from the toolbox onto
your web page. Then configure the control by selecting the Configure Data Source
option. Refer to the following screenshot:

Specify the name and the path to the MS Access database as shown in the screenshot
above and click on the Next button. Now, configure the select statement as you did
earlier when working with SQL data sourceSQL data source control. Refer to the following screenshot:

Introduction to Data Binding in ASP.NET

[24]

Click on the Next button to invoke a window where you can test your query. Refer to
the following screenshot:

Note the output of the query once you click on the Test Query button as shown in
the screenshot above. Click on the Finis� button when done.

Next, drag-and-drop a GridView Control to display the data retrieved from the
Access Data Source Control. Now, bind the GridView control to the to the Access Data
Source control created earlier using the C�oose Data Source option, as shown in the
following screenshot.

Chapter 1

[25]

You are done! Execute the web page as the last step; the output on execution is
shown in the following screenshot:

The XML Data Source Control
The XML data source control introduced in ASP.NET 2.0 can be used to bind to an introduced in ASP.NET 2.0 can be used to bind to an
XML Document seamlessly. It can also be used to bind hierarchical data with data
controls that supports it.

Using the XML Data Source Control
To use this control, drag-and-drop the control from the toolbox onto your web
form. The default name of this control would be XmlDataSource1. Now, configure
the control by clicking on the Configure Data Source option as shown in the
following screenshot:

Introduction to Data Binding in ASP.NET

[26]

Specify the name and the path to the XML Data file as shown above. Then click on
the OK button. In our example, the XML data file is employee.xml, present in the
application's root directory. The following is the schema for the employee.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<Employees>
 <Employee Code ="1" Name = "Joydip" Basic ="5000"/>
 <Employee Code ="2" Name = "Douglas" Basic ="6500"/>
 <Employee Code ="2" Name = "Jini" Basic ="2500"/>
 <Employee Code ="2" Name = "Piku" Basic ="3900"/>
 <Employee Code ="2" Name = "Rama" Basic ="2700"/>
 <Employee Code ="2" Name = "Amal" Basic="2900"/>
 <Employee Code ="2" Name = "Indronil" Basic="4500"/>
</Employees>

We now need a data control for displaying the data that would be retrieved by
the XML data source control. For this, drag and drop a GridView control from
the toolbox and associate the data source of this control with the XMLDataSource
control created and configured earlier. Refer to the following screenshot:

Chapter 1

[27]

You are done! On execution of the web page, the output is as follows:

User Interface and Data Source Paging
Paging, Sorting, and Filtering of data is much more simplified using these Data
Source Controls. You have two options for data paging and data sorting when using
Object data source control. These are:

User Interface Paging or Sorting
Server Side Paging or Sorting

While the former is much simpler to use, the later can offer you much improved
performance. Let us now see how we can implement User Interface Paging using
Object data source c ccontrol.

Refer to our discussion on Object data source cObject data source c ccontrol earlier. For the sake of
simplicity, we would consider the same Object data source cObject data source c ccontrol data binding and
the GridView control to present data to the User Interface. For working with User
Interface Paging, simply set the Allow Paging property of the GridView to true.
Further, set the Page Size property to the number of records that you would like
to be displayed for each page. We would set the page size to a value of 5 for this
example. On execution of the web page, the output is as follows:

•

•

Introduction to Data Binding in ASP.NET

[28]

Though User InteUser Interface Paging is very easy to use, the major drawback of using this is very easy to use, the major drawback of using this
approach is that it would load all the records in the server's memory even though
only a specified number of records would actually be displayed. These drawbacks
can be overcome using the other option of paging, that is, Data Source Paging.Data Source Paging..

For implementing Data Source Paging, you would require a method that returnsData Source Paging, you would require a method that returns, you would require a method that returns
paged data and one that returns the count of the data from the database table. The
following two methods return a page of Employee records and the count of the
Employee records respectively, from the database table Employee.

public SqlDataReader GetDataFromDataReader(int StartRowIndex,int
MaximumRows)
 {
 String connectionString = "Data Source=.;Initial
 Catalog=joydip;User ID=sa;Password=sa";
 String procedureName = "GetPagedEmployeeRecords";
 SqlConnection sqlConnection = new
 SqlConnection(connectionString);
 SqlCommand sqlCommand = new SqlCommand(procedureName,
 sqlConnection);
 sqlCommand.CommandType = CommandType.StoredProcedure;
 sqlCommand.Parameters.AddWithValue("@StartRowIndex",
 StartRowIndex);
 sqlCommand.Parameters.AddWithValue("@MaximumRows",
 MaximumRows);
 sqlConnection.Open();
 return sqlCommand.ExecuteReader
 (CommandBehavior.CloseConnection);
 }
 public int GetDataCountFromDataReader()
 {
 String connectionString = "Data Source=.;Initial
 Catalog=joydip;User ID=sa;Password=sa";

Chapter 1

[29]

 String sqlString = "Select count(*) from employee";
 SqlConnection sqlConnection = new
 SqlConnection(connectionString);
 SqlCommand sqlCommand = new SqlCommand(sqlString,
 sqlConnection);
 sqlCommand.CommandType = CommandType.Text;
 sqlConnection.Open();
 return int.Parse(sqlCommand.ExecuteScalar().ToString());
 }

The following is the stored procedure called GetPagedEmployeeRecords that returns
a page of Employee records from the Employee table::

Create Procedure GetPagedEmployeeRecords
(
 @StartRowIndex int, @MaximumRows int
)
as
select a.empCode,a.empName,a.basic from employee a inner join employee
b on a.empcode = b.empCode where b.empCode >=@StartRowIndex and
b.empCode <(@StartRowIndex + @MaximumRows)

Set the SelectMethod property of the Object data source control to theObject data source control to the control to thecontrol to theto the
GetDataFromDataReader() method and the and the SelectCountMethod property to the
GetDataCountFromDataReader() method. Ensure that the. Ensure that the AllowPaging property
for the GridView Control is set to true. Next, you need to set the EnablePaging
property of the Object data source control toObject data source control to control to true. On doing so, this control would
pass the parameters StartRowIndex and MaximumRows when calling the method
represented by the SelectMethod property. Refer to the following source code
snippet that gets generated for the .aspx file:

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 EnablePaging="True"
 SelectCountMethod="GetDataCountFromDataReader"
 SelectMethod="GetDataFromDataReader" TypeName="DataManager"
>
</asp:ObjectDataSource>
<asp:GridView ID="GridView1" runat="server" AllowPaging="True"
 DataSourceID="ObjectDataSource1" PageSize="5">
</asp:GridView>

Introduction to Data Binding in ASP.NET

[30]

The following is the output on execution:

User Interface and Data Source Sorting
The previous section discussed how we can implement paging seamlessly using the
Object data source Control. This section will discuss how we can implement User This section will discuss how we can implement User
Interface and Data Source sorting of data.

For User InterfacUser Interface Sorting, set the, set the AllowSorting property of the GridView Control
to true. Note that automatic data sorting with Object data source Control isObject data source Control is Control is
supported with DataView, DataTable or a DataSet only. The following method
illustrates how we can retrieve data from the Employee table, populate a DataSet
with it and then return it.

public DataSet GetDataFromDataSet()
 {
 String connectionString = "Data Source=.;Initial
 Catalog=joydip;User ID=sa;Password=sa";
 String procedureName = "GetEmployeeRecords";
 SqlConnection sqlConnection = new
 SqlConnection(connectionString);
 sqlConnection.Open();
 SqlDataAdapter sqlDataAdapter = new
 SqlDataAdapter(procedureName, sqlConnection);
 DataSet dataSet = new DataSet();
 sqlDataAdapter.Fill(dataSet);
 return dataSet;
 }

Chapter 1

[31]

Now, set the Object data source Control'sObject data source Control's Control's SelectMethod property to refer to the
GetDataFromDataSet() method shown above. The code generated in the .aspx file
is as follows.

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 SelectMethod="GetDataFromDataSet"
 TypeName="DataManager">
</asp:ObjectDataSource>
<asp:GridView ID="GridView1" runat="server" AllowSorting="True"
 DataSourceID="ObjectDataSource1">
 </asp:GridView>

On execution, the following is the output:

On clicking in the empName column, the output is sorted by employee name andemployee name and and
the resultant output is as shown in the following screenshot:

Introduction to Data Binding in ASP.NET

[32]

For data source sorting, you have to set the SortParameterName property of the
Object data source Control to the desired sort expression. If this property is set, Data
Source Sorting would be used in place of User Interface Sorting. Note that the
default sorting mode for this control, that is, if this property is not specified, is User
Interface Sorting.

The following is the stored procedure that fetches sorted Employee Records from
the Employee table:

create procedure GetSortedEmployeeRecords
(
 @sortColumn int
)
as
select empCode,empName,basic from employee
order by
case when @sortColumn = 1 then empCode end asc,
case when @sortColumn = 2 then empName end asc,
case when @sortColumn = 3 then basic end

The following is the GetSortedEmployeeData() method that returns a list of sorted
Employee records using the GetSortedEmployeeRecords() stored procedure.

 public SqlDataReader GetSortedEmployeeData(int sortColumn)
 {
 String connectionString = "Data Source=.;Initial
 Catalog=joydip;User ID=sa;Password=sa";
 String procedureName = "GetSortedEmployeeRecords";
 SqlConnection sqlConnection = new
 SqlConnection(connectionString);
 SqlCommand sqlCommand = new SqlCommand(procedureName,
 sqlConnection);
 sqlCommand.Parameters.AddWithValue("@sortColumn",
 sortColumn);
 sqlConnection.Open();
 return sqlCommand.ExecuteReader
 (CommandBehavior.CloseConnection);
 }

Chapter 1

[33]

Filtering Data Using the Object Data
Source Control
The Object data source control supports filtering data provided the SelectObject data source control supports filtering data provided the Select control supports filtering data provided the Select
method property returns a DataSet, DataTable or a DataView instance. The
FilterExpression property of the Object data sourceObject data source control can be used to specify
the expression that should be used to filter the data. Note that you can retrieve data
using the method that is specified by the SelectMethod property of the Object dataObject data
source control.

To apply a filter on the data, specify basic > 3500 in the FilterExpression property
of the Object data source control. Refer to the following screenshot:

Note the resultant code that gets generated in the .aspx file as a result of the
above screenshot:

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server" SelectMeth
od="GetDataFromDataSet" TypeName="DataManager" EnableCaching="True"
FilterExpression=" basic>3500"></asp:ObjectDataSource>

The output on execution is shown in the following screenshot:

Summary
This chapter gave a bird's eye view at ASP.NET's Data Binding Model and the Data
Source Controls. We have discussed how we can work with the Data Source Controls
like, Object data source, SQL data source, Xml data source and the Access data
source control. We also had a look at how we can implement Paging, Sorting, and
Filtering data using these controls. The next chapter, will discuss how we can bind
data to the List Controls in ASP.NET and use them in our ASP.NET applications.

Working with List Controls
in ASP.NET

In chapter 1, we saw the basics of Data Binding in ASP.NET and how we can
bind and retrieve data to and from the newly added Data Source controls in our
applications. In this chapter, we will explore ASP.NET List controls, which controls
those display lists of data items bound to them from where the user can select one or
more such list items.

We will discuss how we can Add, Display, Select, and Delete the items of each of
these controls and handle events of each of these controls. We will see how we can
associate event handlers to a dynamic DropDownList control and design. We will
also learn how to design and implement a custom CheckBoxList control that will
allow you to select one or more items at one go.

The ASP.NET List Controls
The List controls display a list of data items from where the user can select one or
more data items. These are all derived from the ListControl base class due to which
they have a common set of properties and methods. You can bind data to any ofYou can bind data to any of
the above controls using the DataSource property. In binding data to these controls,DataSource property. In binding data to these controls, property. In binding data to these controls,
you can have two approaches, the declarative data binding approach and the
programmatic data binding approach.

Note that while you use the declarative approach from your HTML
source code mode or in the design view mode and you hardly require
any code to bind data to the controls, you use the programmatic approach
to accomplish the same task from your code behind file. The declarative
approach comes in handy in situations where you need not, or want
to avoid writing code to bind data to the controls of your web form.
However, you can have more control and provide more flexibility or
customization when you do the same programmatically.

Working with List Controls in ASP.NET

[36]

You have a variety of List Controls in ASP.NET to choose from. These are as follows:

ListBox Control
DropDownList Control
CheckBoxList Control
BulletedList Control
RadioButtonList Control

Each of these controls will be discussed in the sections that follow. You would
learn how to bind static data to all of these controls through your .aspx page and
also dynamic data at runtime programmatically. We will discuss how we can add,
remove, and select list items for these controls.

Working with the ListBox Control
The ListBox control, a container of list items, can be used to create and display a list
of items and select one or multiple items from such list of items. However, you can
control the number of list items displayed in the control, and adjust the size of the
control, that is, height and width.

In order to work with a ListBox control, simply drag-and-drop an instance of the
control from the toolbox into your web form.

Appending List Items to the ListBox Control
You populate data in a ListBox control using the list items. You can add the list
items through the .aspx page as shown in the following code snippet:

<asp:ListBox ID="ListBox1" runat="server" Height="125px"
 Width="214px">
 <asp:ListItem Value="1">Joydip</asp:ListItem>
 <asp:ListItem Value="2">Douglas</asp:ListItem>
 <asp:ListItem Value="3">Jini</asp:ListItem>
 <asp:ListItem Value="4">Piku</asp:ListItem>
 <asp:ListItem Value="5">Rama</asp:ListItem>
 <asp:ListItem Value="6">Amal</asp:ListItem>
 <asp:ListItem Value="7">Indronil</asp:ListItem>
</asp:ListBox>

•

•

•

•

•

Chapter 2

[37]

You can also add list items to the ListBox control programmatically using the
overloaded Add() method of the Items property of this control as shown in the
following code snippet:

protected void Page_Load(object sender, EventArgs e)
{

 if (!IsPostBack)
 {
 PopulateListItems();
 }

private void PopulateListItems()
{

 ListBox1.Items.Add("Joydip");
 ListBox1.Items.Add("Douglas");
 ListBox1.Items.Add("Jini");
 ListBox1.Items.Add("Piku");
 ListBox1.Items.Add("Rama");
 ListBox1.Items.Add("Amal");
 ListBox1.Items.Add("Indronil");
}
}

Now, the List�ox control is populated with data. The following figure displays theList�ox control is populated with data. The following figure displays the control is populated with data. The following figure displays the
ListBox control populated with data at runtime. control populated with data at runtime.

www.allitebooks.com

http://www.allitebooks.org

Working with List Controls in ASP.NET

[38]

Selecting One or More List Items
Now, let us see how to select one or more list items from the ListBox control. The
following figure displays the list items that have been selected from a List�ox control
in a Label control on click of a Button.

This section discusses how to accomplish the above. You can select one of more list
items from a ListBox. Drag-and-drop a Button control and a Label control onto yourListBox. Drag-and-drop a Button control and a Label control onto your Drag-and-drop a Button control and a Label control onto yourButton control and a Label control onto your control and a Label control onto yourLabel control onto your control onto your
web form. In the Click event of the Button, write the following code to retrieve the
selected text from the ListBox control in a single selection mode and display it in theListBox control in a single selection mode and display it in the control in a single selection mode and display it in the
Label control once the Button control is clicked.Button control is clicked. control is clicked.

protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = ListBox1.SelectedItem.Text;
 }

As you can see in the above code snippet, the SelectionMode property or a ListBoxSelectionMode property or a ListBox property or a ListBoxListBox
control having an ID of ListBox1, is set to "Single", implying that we can select only
one List Item from the control at any point in time. The text of the selected itemList Item from the control at any point in time. The text of the selected item from the control at any point in time. The text of the selected item
from the ListBox control is being displayed in a Label control in theListBox control is being displayed in a Label control in the control is being displayed in a Label control in the Click event
of a Button.

Now, you need to change the selection mode of the ListBox control from the defaultListBox control from the default control from the default
"Single" to "Multiple" so as to enable multiple list item selection from the control.
You can do this by changing the SelectionMode property in the design view or inSelectionMode property in the design view or in property in the design view or in
your .aspx file.

Chapter 2

[39]

Irrespective of whether the ListBox control's selection mode is set to
"Single" or "Multiple", the Count property of the Items collection of the
control would always return you the total number of list items in
the control.

Now, refer to the following code snippet that shows how you can retrieve the
selected text for multiple selected list items from the ListBox control:ListBox control: control:

protected void Button1_Click(object sender, EventArgs e)
 {
 string str = String.Empty;
 for (int i = 0; i < ListBox1.Items.Count - 1; i++)
 {
 if (ListBox1.Items[i].Selected)
 str += ListBox1.Items[i].Text+",";
 }
 str = str.Substring(0,str.LastIndexOf(‘,'));
 Label1.Text = str;
 }

You can select any ListItem in the ListBox control by its Text or by its
Value properties. The following code snippets illustrate how you can
do this.

ListBox1.Items.FindByText("Joydip").Selected = true;

or

ListBox1.Items.FindByValue("Record 1").Selected = true;

Removing List Items from the ListBox Control
You can remove a list item from the ListBox control using theListBox control using the control using the RemoveAt() method
that accepts the index number of the list item that you need to remove from the
collection of list items.

ListBox1.Items.RemoveAt(0);

To remove all the list items from the ListBox control, use the following code:

ListBox1.Items.Clear();

Working with List Controls in ASP.NET

[40]

Binding Data to the ListBox Control
We have already discussed how we can bind static data to this control declaratively.
For programmatic data binding we can use the DataManager class that we designed
in Chapter 1. Note that we would use this class for programmatic data binding for
this and the other list controls that we would cover in this chapter.

To bind data to the ListBox control programmatically, we need to set the
DataTextField and the DataValueField properties appropriately and then make a
call to the DataBind() method shown as follows:

protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();
 listBox.DataSource = dataManager.GetDataFromArrayList();
 listBox.DataValueField = "EmpCode";
 listBox.DataTextField = "EmpName";
 listBox.DataBind();
 }
 }

The DataTextField property is used to retrieve the contents of the Text property
of the control, whereas the DataValueField property is used to retrieve the
contents of the Value property of the control. Note that the Text property
contains text which is what is displayed in the web page and a Value property
which is in the HTML.

Value is a unique value of an item in any list control. Text is the value
which is actually displayed in an item of the control. Moreover, you can
have duplicate Text values.

Handling ListBox Control Events
The SelectedIndexChanged event in the List�ox class is fired whenever the
SelectedIndex in the ListBox changes as and when your web page postbacks to the
Web Server. The following code snippet shows how this event can be used:

private void lstBox_SelectedIndexChanged(object sender,
 System.EventArgs e)
{

//Usual Code
}

Chapter 2

[41]

Working with the DropDown List Control
The DropDownList control in ASP.NET consists of a list of options or data itemsDropDownList control in ASP.NET consists of a list of options or data items control in ASP.NET consists of a list of options or data items
that allows the user to choose a data item. Hence, unlike the ListBox control, theListBox control, the control, the
DropDownList control allows you to select one data item only, at a time. These control allows you to select one data item only, at a time. These
selectable data items are actually referred to as a List Item.List Item..

Note that, like the ListBox control, you can bind data to this control either
manually or by writing code..

Similar to the ListBox control, you can use the Add(), Insert(), RemoveAt(),
and Clear() methods of the Items collection of the DropDownList control to
programmatically Add, Insert, Edit or Remove the list items. You can get the number
of items in the items collection, that is, the count of the list items in the control using
the count property.

The list items in a DropDownList control, as in a ListBox control, are indexed
with index 0 as the starting index. You can get the index of the selected item from
the DropDownList control using the SelectedIndex property of this control. The
SelectedValue or SelectedItem.Value properties can be used to retrieve the value
of the selected List Item. The text of the selected list item can be retrieved using the
SelectedItem.Text property of the control. Note that once a web page is posted back,
the first index of this control is selected by default.

To start working with a DropDownList control, drag and drop a control from the
toolbox into your web form.

Appending List Items to the DropDownList Control
The following figure shows how a DropDownList control looks like when it is bound
with data. Note that by default, the selected index of the DropDownList control is 0,
that is, the first list item in the control is selected.

Working with List Controls in ASP.NET

[42]

This section discusses how we can add list items to a DropDownList control. YouDropDownList control. You control. You
populate data in a DropDownList control using the list items. You can add the listDropDownList control using the list items. You can add the list control using the list items. You can add the list
items through the .aspx page as shown in the following code snippet:

<asp:DropDownList ID="ddlEmployee" runat="server" Width="147px">
 <asp:ListItem Value="1">Joydip</asp:ListItem>
 <asp:ListItem Value="2">Douglas</asp:ListItem>
 <asp:ListItem Value="3">Jini</asp:ListItem>
 <asp:ListItem Value="4">Piku</asp:ListItem>
 <asp:ListItem Value="5">Rama</asp:ListItem>
 <asp:ListItem Value="6">Amal</asp:ListItem>
 <asp:ListItem Value="7">Indronil</asp:ListItem>
</asp:DropDownList>

Similar to the ListBox control, you can also add list items to the DropDownListListBox control, you can also add list items to the DropDownList control, you can also add list items to the DropDownListDropDownList
control using the Add() method. This method accepts an object as a parameter and
adds it to the Items collection of the control. Refer to the following code snippet
which illustrates how this can be accomplished.

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 ddlEmployee.Items.Add("Joydip");
 ddlEmployee.Items.Add("Douglas");
 ddlEmployee.Items.Add("Jini");
 ddlEmployee.Items.Add("Piku");
 ddlEmployee.Items.Add("Rama");
 ddlEmployee.Items.Add("Amal");
 ddlEmployee.Items.Add("Indronil");
 }
}

Alternatively, you can also add ListItems to a DropDownList control and set a
Value field to each of these items added. Following is the code that shows you
how to do this.

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 ddlEmployee.Items.Add(new ListItem("Record 1","Joydip"));
 ddlEmployee.Items.Add(new ListItem("Record 2","Douglas"));
 ddlEmployee.Items.Add(new ListItem("Record 3","Jini"));
 ddlEmployee.Items.Add(new ListItem("Record 4","Piku"));

Chapter 2

[43]

 ddlEmployee.Items.Add(new ListItem("Record 5","Rama"));
 ddlEmployee.Items.Add(new ListItem("Record 6","Amal"));
 ddlEmployee.Items.Add(new ListItem("Record 7","Indronil"));
 }
}

Selecting a List Item
The SelectedItem.Text property of the DropDownList control would give you theSelectedItem.Text property of the DropDownList control would give you the property of the DropDownList control would give you theDropDownList control would give you the control would give you the
text of the selected list item. The following code snippet illustrates how you can
display the selected text from a DropDownList control in a Label control on yourDropDownList control in a Label control on your control in a Label control on yourLabel control on your control on your
web form.

protected void Button1_Click(object sender, EventArgs e)
 {
 lblEmployeeName.Text = ddlEmployee.SelectedItem.Text;
 }

You can select any ListItem in the DropDownList by its Text or by
its Value property. The following code snippets illustrate how you can
do this.

ddlEmployee.SelectedIndex = ddlEmployee.Items.
 IndexOf(ddlEmployee.Items.FindByText("Joydip"));

or
ddlEmployee.SelectedIndex = ddlEmployee.Items.
 IndexOf(ddlEmployee.Items.FindByValue("Record 1"));

You might require adding an extra ListItem to a DropDownList control
and displaying a custom message similar to, "--Click to Select--". In such
situations, the ListItem added should be the first one among the other
ListItems in the DropDownList control. In other words, the ListIndex for
such a ListItem should be typically be zero.
The following code shows how you can accomplish this:

dropDownList.Items.Add("--Click to Select--");

Removing List Items from the DropDownList
Control
To remove a specific list item from the list item collection of the DropDownLisDropDownList
control, use the RemoveAt() method of the Items collection property of the control as
shown in the following code snippet:

DropDownList1.Items.RemoveAt(0);

Working with List Controls in ASP.NET

[44]

To remove all the list items from the DropDownList control, use the following code:DropDownList control, use the following code: control, use the following code:

DropDownList1.Items.Clear();

Here, DropDownList1 is the name of the DropDownList control.DropDownList control. control.

Binding Data to the DropDownList Control
Like the ListBox control, you can bind data to the DropDownList control in either of
the following ways:

Declarative
Programmatic

We have already discussed how we can bind static data to the DropDownList control
declaratively through the .aspx page.

For programmatic data binding we can use the DataManager class that we designed
in the Chapter 1. To bind data to the DropDownList control programmatically, we
need to set the DataTextField and the DataValueField properties appropriately
and then make a call to the DataBind() method shown as follows:

protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();
 DropDownList1.DataSource = dataManager.GetDataFromArrayList();
 DropDownList1.DataValueField = "EmpCode";
 DropDownList1.DataTextField = "EmpName";
 DropDownList1.DataBind();
 }
}

Handling DropDownList Control Events
The SelectedIndexChanged event in the DropDownList class is executed
whenever the index of the selected item, that is the, SelectedIndex property in the
DropDownList, changes. The following code snippet illustrates how this event can
be used.

private void dropDownList_SelectedIndexChanged(object sender, System.
EventArgs e)
 {
//Custom code to handle the event
 }

•

•

Chapter 2

[45]

The section that follows illustrates how you can handle events when working with
the DropDownList control.

Associating Event Handlers to a dynamically
generated DropDownList Control
What happens when you want to associate event handler to a dynamically
generated DropDownList Control, that is, a DropDownList Control that has been
created at run time rather than at design time and the ListItems of it have been
populated dynamically.

Let us first have a look at the output once you execute the application. The following
is the screenshot of what we actually are looking for:

Once you select any of the List Items in the DropDownList control displayed in the
screen shot above, an event handler is fired and the selected employee's name is
displayed in a TextBox control just beneath the DropDownList.

Simple, just take a PlaceHolder to store your dynamically created DropDownList
control. Next, add the List Items using the Add() method of the Items collection of
the control. Finally, associate the event handler. That's it!

Following is the code that shows how to accomplish this task:

public partial class _Default : System.Web.UI.Page
{
 DropDownList ddlEmployee = null;
 protected void Page_Load(object sender, EventArgs e)
 {
 ddlEmployee = new DropDownList();
 ddlEmployee.Items.Add(new ListItem("Joydip","Record 1"));

Working with List Controls in ASP.NET

[46]

 ddlEmployee.Items.Add(new ListItem("Douglas","Record 2"));
 ddlEmployee.Items.Add(new ListItem("Jini","Record 3"));
 ddlEmployee.Items.Add(new ListItem("Piku","Record 4"));
 ddlEmployee.Items.Add(new ListItem("Rama","Record 5"));
 ddlEmployee.Items.Add(new ListItem("Amal","Record 6"));
 ddlEmployee.Items.Add(new ListItem("Indronil","Record 7"));
 ddlEmployee.AutoPostBack = true;
 ddlEmployee.SelectedIndexChanged += new
 EventHandler(ddlEmployee_SelectedIndexChanged);
 PlaceHolder1.Controls.Add(ddlEmployee);
 }

 protected void ddlEmployee_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 lblDisplay.Text = "The selected employee is: " +
 ddlEmployee.SelectedItem.Text;
 }
}

Following is the code in your .aspx file:

<form id="form1" runat="server">
 <div>
 <asp:PlaceHolder ID="PlaceHolder1"
 runat="server"></asp:PlaceHolder>

<asp:Label ID="lblDisplay" runat="server"
 Text=""></asp:Label>
 </div>
 </form>

Implementing a Simple Application
The following example makes use of the concepts learnt so far to implement a simple
application. The application contains a ListBox, DropDownList control, TextBox and
two Button controls that can Add and Remove list items from the ListBox control
at runtime. While the Add button can be used to add the text typed in the TextBox
control to the ListBox, the Remove button can be used to remove the list item that is
selected from the ListBox. The SelectionMode property of the ListBox control can be
set using the DropDownList control that displays Single and Multiple as the possible
selection modes.

Chapter 2

[47]

The output of the sample application is shown as follows:

The source code for this simple application is given as follows:

public partial class ListBox : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 DropDownList1.Items.Add("Single");
 DropDownList1.Items.Add("Multiple");
 DropDownList1.SelectedIndex = 0;
 ListBox1.Items.Add("Joydip");
 ListBox1.Items.Add("Douglas");
 ListBox1.Items.Add("Jini");
 ListBox1.Items.Add("Piku");
 ListBox1.Items.Add("Rama");
 ListBox1.Items.Add("Amal");
 ListBox1.Items.Add("Indronil");
 ListBox1.SelectionMode = ListSelectionMode.Single;
 }
 }

 protected void DropDownList1_SelectedIndexChanged(object sender,
 EventArgs e)
 {

Working with List Controls in ASP.NET

[48]

 if (DropDownList1.SelectedIndex == 0)
 ListBox1.SelectionMode = ListSelectionMode.Single;
 else
 ListBox1.SelectionMode = ListSelectionMode.Multiple;
 }
 protected void Add_Click(object sender, EventArgs e)
 {
 ListBox1.Items.Add(TextBox1.Text);
 }
 protected void Remove_Click(object sender, EventArgs e)
 {
 ListBox1.Items.RemoveAt(ListBox1.SelectedIndex);
 }
}

Working with the CheckBoxList Control
The CheckBoxList control consists of a group of check boxes that actually provides
a multi-selection checkbox with the capability of selecting one or more items from
the list of items. Compared to the CheckBox control, a CheckBoxList control is a
preferred choice in cases where you might require creation of a series of check boxes
and populate them with data from a data store like, a database table, an Xml file or
even a web service that fetches data.

Appending List Items to the CheckBoxList Control
The following figure shows how a C�eckBoxList control looks like at runtime when
it is bound with data.

Chapter 2

[49]

This section discusses how you can accomplish the above, that is, add list items to
the CheckBoxList control. You can create a CheckBoxList control and add static data
to it using list items as shown in the following code snippet:

<asp:checkboxlist id="dept" runat="server">
 <asp:listitem id="1" runat="server" value="IT" />
 <asp:listitem id="2" runat="server" value="Sales" />
 <asp:listitem id="3" runat="server" value="Admin" />
 <asp:listitem id="4" runat="server" value="HR" />
</asp:checkboxlist>

You can also add items to the CheckBoxList control programmatically. Refer to the
following code snippet:

protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 CheckBoxList1.AutoPostBack = true;
 CheckBoxList1.RepeatColumns = 1;
 CheckBoxList1.RepeatDirection = RepeatDirection.Vertical;
 CheckBoxList1.RepeatLayout = RepeatLayout.Flow;
 CheckBoxList1.TextAlign = TextAlign.Right;
 CheckBoxList1.Items.Add(new ListItem("Joydip"));
 CheckBoxList1.Items.Add(new ListItem("Douglas"));
 CheckBoxList1.Items.Add(new ListItem("Jini"));
 CheckBoxList1.Items.Add(new ListItem("Piku"));
 CheckBoxList1.Items.Add(new ListItem("Indronil"));
 CheckBoxList1.Items.Add(new ListItem("Rama"));
 CheckBoxList1.Items.Add(new ListItem("Amal"));
 }
 }

Selecting One or More List Items
You can find out which item in this list has been selected by iterating through the
items collection of this control. The following code snippet illustrates how you can
retrieve the list items that have been selected from CheckBoxList control called dept
by iterating through and checking the Selected property of each list item.

string message = String.Empty;

for(int i=0; i<dept.Items.COunt;i++)
{
 if(dept.Items[i].Selected)
 message += dept.Items[0].Text +
;
}

lblDept.Text = message;

Working with List Controls in ASP.NET

[50]

Note that the CheckBoxList class does not contain a SelectedItems property.
How about implementing a Custom CheckBoxList control that contains a
SelectedItems property that can be used to select one or more list items from
the control? We will design and implement a Custom CheckBoxList control to
accomplish this later in this chapter.

Removing List Items from the CheckBoxList
Control
To remove a specific list item from the list item collection of the Check�oxList
control, use the RemoveAt() method of the Items collection property of the control
as shown in the following code snippet:

CheckBoxList1.Items.RemoveAt(0);

To remove all the list items from the C�eckBoxList control, use the following code:

CheckBoxList1.Items.Clear();

Here, CheckBoxList1 is the name of the CheckBoxList control.CheckBoxList control. control.

Binding Data to the CheckBoxList Control
Like the ListBox control, you can bind data to the CheckBoxList control in either of
the following ways:

Declarative
Programmatic

We have already discussed how we can bind data to this control declaratively.
For programmatic data binding to the CheckBoxList control you have to use aCheckBoxList control you have to use a control you have to use a
valid data source and the DataBind() method. As usual, you need to specify
the DataTextField and the DataValueField properties to specify the TextText
and Value properties of each of the list items in the control. You can also set theValue properties of each of the list items in the control. You can also set the properties of each of the list items in the control. You can also set the
Checked property of the all the CheckBox controls in the list to either true or falseCheckBox controls in the list to either true or false controls in the list to either true or false
programmatically. When a Checked property of any of the CheckBox controls in thisCheckBox controls in this controls in this
list is set to true, the control is checked, that is, a check-mark appears in the control.
When the same property is false, the control is unchecked.

We have already discussed how we can bind static data to the CheckBoxList control
declaratively through the .aspx page.

The following code snippet illustrates how you can bind data to this with data from
an external data source programmatically.

•

•

Chapter 2

[51]

protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();DataManager dataManager = new DataManager();
 checkBoxList.DataSource = dataManager.GetDataFromArrayList();
 checkBoxList.DataTextField="EmpName";
 checkBoxList.DataValueField="EmpCode";
 checkBoxList.DataBind();
 }
}

Handling CheckBoxList Control Events
The SelectedIndexChanged event of the Check�oxList control is fired whenever
you select any check box in the list, that is, the SelectedIndex of the control changes.
The following code snippet shows how this event can be used for this control:

private void checkBoxList_SelectedIndexChanged(object sender,
 System.EventArgs e)
{
//Custom code to handle this event
}

In the section that follows, we will take a look at how we can handle events
with a CustomCheckBoxList control that we will implement by extending the
CheckBoxList control.

Implementing a CustomCheckBoxList Control
In this section, we will learn how to design and implement a CustomCheckBoxListCustomCheckBoxList
control that will enable you to retrieve the values and texts of a multi selection
CheckBoxList control. We will implement a CustomCheckBoxList class that will
contain a SelectedItems property. This property returns a collection of items, which
are the selected items—it just goes through the list of items and adds the selected
ones to its list.

This control will extend the CheckBoxListCheckBoxList control and attach this functionality
to it. Added to methods and properties of the CheckBoxListCheckBoxList class that it
automatically inherits on virtue of inheritance, it has two new methods, that is, the
GetCheckedItemValues() and the GetCheckedItemText() methods.

Working with List Controls in ASP.NET

[52]

Method GetCheckedItemValues is used to return a string array containing all the
item values that are checked. Following is the code for this method:

public string[] GetCheckedItemValues()
{
 string _selectedValues = String.Empty;
 foreach (System.Web.UI.WebControls.ListItem LI in this.Items)
 {
 if (LI.Selected)
 {
 if (_selectedValues.Equals(String.Empty))
 _selectedValues = LI.Value;
 else
 _selectedValues = _selectedValues + "," + LI.Value;
 }
 }
 _checkedItemList = _selectedValues.Split(‘,');
 return _checkedItemList;
 }

This method uses a loop on all the items in the current CheckBoxList control and
finds the items that have been checked. For Items that have been checked, the
values of the Value property are collected into a string array. This array is then
returned back.

The method GetCheckedItemText() returns all the Text values in a string array.
The code for this method is same as the above except that Text values are collected
into the array instead of the values of the Value property. The code snippet for this
method is as follows:

public string[] GetCheckedItemText()
{
string _selectedText = String.Empty;
foreach (System.Web.UI.WebControls.ListItem LI in this.Items)
 {
 if (LI.Selected)
 {
 if (_selectedText.Equals(String.Empty))
 _selectedText = LI.Text;
 else
 _selectedText = _selectedText + "," + LI.Text;
 }
 }
 _checkedItemList = _selectedText.Split(‘,');
 return _checkedItemList;
}

Chapter 2

[53]

Let us take a look at how to use this control.

Once the CustomCheck�oxList control is built, you can find it in the toolbox. Just
drag it on to the design view mode or you can go to the source view and key in.
By dragging the control, it is automatically registered onto the page. You can also
register it by writing the following code in your .aspx file:

<%@ Register TagPrefix="Sample" Namespace="Samples.Controls"%>

Now either add the items from the Design View or bind the data from the database.
This is a sample, therefore just added the items from the source view.

<Sample:CustomCheckBoxList ID="checkBoxList" runat="server">
 <asp:ListItem Value="0">Sunday</asp:ListItem>
 <asp:ListItem Value="1">Monday</asp:ListItem>
 <asp:ListItem Value="2">Tuesday</asp:ListItem>
 <asp:ListItem Value="3">Wednesday</asp:ListItem>
 <asp:ListItem Value="4">Thursday</asp:ListItem>
 <asp:ListItem Value="5">Friday</asp:ListItem>
 <asp:ListItem Value="6">Saturday</asp:ListItem>
</Sample:CustomCheckBoxList>

Following is a view of the CustomCheckBoxList control in design view mode.

We have two buttons S�ow Selected Values and S�ow Selected Text. When you
click on any of these Button controls, the respective event handlers of these controls
will be invoked.

Working with List Controls in ASP.NET

[54]

Let us have a look at the event handlers of these two buttons.

protected void btnValues_Click(object sender, EventArgs e)
 {
 string[] checkedItems = checkBoxList.GetCheckedItemValues();
 string printString = "The Selected Values are :
";
 foreach (string strSelect in checkedItems)
 {
 printString += strSelect + "
";
 }
 Response.Write(printString);
 }

 protected void btnText_Click(object sender, EventArgs e)
 {
 string[] checkedItems = checkBoxList.GetCheckedItemText();
 string printString = "The Selected Text :
";
 foreach (string strSelect in checkedItems)
 {
 printString += strSelect + "
";
 }
 Response.Write(printString);
 }

These event handlers just call the methods of the CustomCheckBoxList control.
The string array returned is just concatenated in a string by iterating in a loop and
displaying it to the user.

Working with the BulletedList Control
The BulletedList control in ASP.NET contains a collection of bulleted list items that
are arranged in ordered or unordered fashion. The list items can be any one of
the following:

Text
Hyperlink
Link Buttons

You can bind any number of these list items to this control either through your
.aspx page or using any external data source.

•

•

•

Chapter 2

[55]

Note that if you want to make the list items in the BulletedList control
either HyperLink or LinkButton type, you need to specify this mode
using the DisplayMode property of the control.

Similarly, you can change the style of the BulletedList control by specifying yourBulletedList control by specifying your control by specifying your
required style through the BulletStyle property of the control. These bullet styles canBulletStyle property of the control. These bullet styles can property of the control. These bullet styles can
be one of the following:

NotSet
Numbered
CustomImage
Disc
Circle
Square
LowerAlpha
UpperAlpha
LowerRoman
UpperRoman
UpperAlpha

Appending List Items to the BulletedList Control
The following figure displays how the �ulletedList control looks like when it isBulletedList control looks like when it is control looks like when it is
bound with data.

•

•

•

•

•

•

•

•

•

•

•

Working with List Controls in ASP.NET

[56]

We will now discuss how we can add list items to this control. Refer to the following
code snippet that illustrates how such a control can be constructed from your .aspx
page to display a list of static list items.

<asp:BulletedList ID="bListDept" DisplayMode="LinkButton"
runat="server" OnClick="bListDept_Click">
 <asp:listitem Selected = "True" text = "IT" value="IT" />
 <asp:listitem text = "Sales" value="Sales" />
 <asp:listitem text= "Admin" value="Admin" />
 <asp:listitem text = "HR" value="HR" />
</asp:BulletedList>

The above code snippet illustrates how the BulletedList control namedBulletedList control named control named bListDept
can be declared in your .aspx web page in ASP.NET. Note that the Selected
property of the control is used to set the default selected list item from among the
collection of list items in the control.

You can also add list items to this control programmatically. Following is the code:

protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 bListDept.Items.Add(new ListItem("IT"));
 bListDept.Items.Add(new ListItem("Sales"));
 bListDept.Items.Add(new ListItem("Admin"));
 bListDept.Items.Add(new ListItem("HR"));
 bListDept.Items[0].Selected = true;
 }
 }

Selecting a List Item
Drag-and-drop a Label control onto your web form. In theLabel control onto your web form. In the control onto your web form. In the Click event of the
BulletedList control, write the following code to retrieve the text of the selected list control, write the following code to retrieve the text of the selected list
item in the control.

protected void bListDept_Click(object sender, BulletedListEventArgs
 e)
{
Label1.Text = "You have clicked: "+bListDept.Items[e.Index].Text;
}

Chapter 2

[57]

Removing List Items from the BulletedList Control
To remove a specific list item from the list item collection of the �ulletedList control,BulletedList control, control,
use the RemoveAt() method of the Items collection property of the control, as shown
in the following code snippet:

BulletedList1.Items.RemoveAt(0);

To remove all the list items from the BulletedList control, use the following code:BulletedList control, use the following code: control, use the following code:

BulletedList1.Items.Clear();

Here, BulletedList1 is the name of the BulletedList control.BulletedList control. control.

Binding Data to the BulletedList Control
Like the earlier list controls, you can bind data to the BulletedList control in either of
the following ways:

Declarative
Programmatic

We have already seen how we can bind static data to this control declaratively
through the .aspx file. This section discusses how you can bind data to this control
programmatically.

You can bind data to the BulletedList control using a valid data source and theBulletedList control using a valid data source and the control using a valid data source and the
DataBind() method. Like the other list controls that we have already discussed, you
need to specify the DataTextField and the DataValueField properties to specify
the Text and Value properties of each of the list items in the control.Text and Value properties of each of the list items in the control. and Value properties of each of the list items in the control.Value properties of each of the list items in the control. properties of each of the list items in the control.

The following code snippet shows how you can bind data to this control with data
from an external data source:

protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();DataManager dataManager = new DataManager();
 bulletedList.DataSource = dataManager.GetDataFromArrayList();
 bulletedList.DataTextField="EmpName";
 bulletedList.DataValueField="EmpCode";
 bulletedList.DataBind();
 }
}

•

•

Working with List Controls in ASP.NET

[58]

Handling BulletedList Control Events
The SelectedIndexChanged event of the �ulletedList control is fired whenever you�ulletedList control is fired whenever you control is fired whenever you
click on any list item in the control. The following code snippet shows how you can
use this event in your applications.

private void bulletedList_SelectedIndexChanged(object sender,
 System.EventArgs e)
{
//Usual code to handle the event
}

Working with the RadioButtonList Control
The RadioButtonList control in ASP.NET is used to display a collection of radio control in ASP.NET is used to display a collection of radio
buttons that provide the user a multiple set of choices to choose from. You can
select any one of the radio buttons from this list of radio buttons. You can bind data
statically or programmatically to this control. The SelectedItem property of thisSelectedItem property of this property of this
control can be used to retrieve the radio button that has been selected.

Appending List Items to the RadioButtonList
Control
The following figure displays the Radio�uttonList control bound with data.

Note that the first list item, that is, the list item at index 0 is selected. This section
would discuss how we can add list items to this control.

Chapter 2

[59]

The following code snippet illustrates how you can create a RadioButtonList
control in your .aspx page populated with list items that contain static data:

<asp:RadioButtonList ID="rbListDept" runat="server">
 <asp:listitem Selected = "True" text = "IT" value="IT" />
 <asp:listitem text = "Sales" value="Sales" />
 <asp:listitem text= "Admin" value="Admin" />
 <asp:listitem text = "HR" value="HR" />
</asp:RadioButtonList>

Note that the Selected property of the control is used to set the default selected list
item from among the collection of list items in the control.

You can also append the list items programmatically. Refer to the following code
snippet given:

protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 rbListDept.Items.Add(new ListItem("IT"));
 rbListDept.Items.Add(new ListItem("Sales"));
 rbListDept.Items.Add(new ListItem("Admin"));
 rbListDept.Items.Add(new ListItem("HR"));
 rbListDept.Items[0].Selected = true;
 }
 }

Selecting a List Item
Drag-and-drop a button and a Label control onto your web form. In theLabel control onto your web form. In the control onto your web form. In the Click event
of the Button control, write the following code to retrieve the text of the selected listButton control, write the following code to retrieve the text of the selected list control, write the following code to retrieve the text of the selected list
item in the RadioButtonList control.RadioButtonList control. control.

protected void Button1_Click(object sender, EventArgs e)
 {
Label1.Text = "You selected: " + rbListDept.SelectedItem.Text;
 }

Working with List Controls in ASP.NET

[60]

Removing List Items from the RadioButtonList
Control
To remove a specific list item from the list item collection of the Radio�uttonListRadioButtonList
control, use the RemoveAt() method of the Items collection property of the control as
shown in the following code snippet:

RadioButtonList1.Items.RemoveAt(0);

To remove all the list items from the RadioButtonList control, use the following code:RadioButtonList control, use the following code: control, use the following code:

RadioButtonList1.Items.Clear();

Here, RadioButtonList1 is the name of the RadioButtonList control.RadioButtonList control. control.

Binding Data to the RadioButtonList Control
We already have had a look at how we can bind static data to this control
declaratively. This section discusses how we can bind data to this control
programmatically.

You can bind data to the RadioButtonList control using a valid data source and theRadioButtonList control using a valid data source and the control using a valid data source and the
DataBind() method. Like the other list controls that we have already discussed, you
need to specify the DataTextField and the DataValueField properties to specify
the Text and Value properties of each of the list items in the control.

The following code snippet shows how you can bind data to this control with data
from an external data source:

protected void Page_Load(Object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();DataManager dataManager = new DataManager();
 radioButtonList.DataSource = dataManager.GetDataFromArrayList();
 radioButtonList.DataTextField="EmpName";
 radioButtonList.DataValueField="EmpCode";
 radioButtonList.DataBind();
 }
}

Handling RadioButtonList Control Events
The SelectedIndexChanged event of the Radio�uttonList control is fired wheneverRadio�uttonList control is fired whenever control is fired whenever
you click on any of the list items in the control. The following code snippet shows
how this event can be used in your applications.

Chapter 2

[61]

private void rButtonList_SelectedIndexChanged(object sender,
 System.EventArgs e)
{
//Custom code to handle the event
}

Summary
This chapter has had a detailed look at the various list controls available in
ASP.NET and how we can Add, Remove and Select list items from each of these
controls with sample code examples wherever appropriate. I have also demonstrated
how to design and implement a CustomCheckBoxList class in this chapter. We
will discuss the Repeater control and how we can use it to perform various CRUD
operations with it in the next chapter. We will also discuss when and why we will
choose a Repeater control in place of a DataGrid control in our applications.

Working with the
Repeater Control

In Chapter 2, we looked at the List controls in ASP.NET and how we can use these
controls to bind and display data in our applications. We discussed how we can
add, display, select and delete the items of each of the List controls and how to
handle events when working with them. We also looked at how we can implement a
Custom List control.

In this chapter we will discuss how we can use the Repeater control in ASP.NET.
Both Repeater and DataList controls in ASP.NET allow you to display data quickly,
and both support only templates for displaying data. We will discuss the DataList
and the other related data-bound controls in the forthcoming chapters of the book.

In this chapter, we will cover the ASP.NET Repeater control. We will learn about:

Using the Repeater control
Display data using the Repeater control
Paging, sorting, and filtering data
Handling Repeater control events

The ASP.NET Repeater Control
The Repeater control in ASP.NET is a data-bound container control that can be used
to automate the display of a collection of repeated list items. These items can be
bound to either of the following data sources:

Database Table
XML File

•

•

•

•

•

•

Working with the Repeater Control

[64]

In a Repeater control, the data is rendered as DataItems that are defined using oneDataItems that are defined using one that are defined using one
or more templates. You can even use HTML tags such as , , or <div> if
required. Similar to the DataGrid, DataList, or GridView controls (we try each of DataGrid, DataList, or GridView controls (we try each of, DataList, or GridView controls (we try each ofDataList, or GridView controls (we try each ofor GridView controls (we try each ofGridView controls (we try each of controls (we try each of
these controls in detail in Chapters 4 and 5), the Repeater control has a DataSourceRepeater control has a DataSource control has a DataSourceDataSource
property that is used to set the DataSource of this control to any ICollection,DataSource of this control to any ICollection, of this control to any ICollection,ICollection,
IEnumerable, or IListSource instance. Once this is set, the data from one of theseinstance. Once this is set, the data from one of these
types of data sources can be easily bound to the Repeater control using itsRepeater control using its control using its
DataBind() method.

However, the Repeater control by itself does not support paging or editing of data.
Unlike the DataGrid control that will be covered in Chapter 5 of this book, the
Repeater control is light weight and does not contain so many features as the former
contains. However, it enables you to place HTML code in its templates. We will learn
what templates in a Repeater control are. It is great in situations where you need
to display the data quickly and format the data to be displayed easily. We will be
covering the DataGrid control later in this book.

Using the Repeater Control
The Repeater control is a data-bound control that uses templates to display data.
It does not have any built-in support for paging, editing, or sorting of the data that
is rendered through one or more of its templates. The Repeater control works by
looping through the records in your data source and then repeating the rendering
of one of its templates called the ItemTemplate, one that contains the records that
the control needs to render. We will learn more about the templates of the Repeater
control in this section. Before we learn about the templates and how to use them, let
us take a look at how we can get started with this control.

To use this control, drag and drop the control in the design view of the web form
onto a web form from the toolbox. Refer to the following screenshot:

Chapter 3

[65]

You can also drag and drop the Repeater control from the toolbox onto the source
view directly. This is shown in the following screenshot:

For customizing the behavior of this control, you have to use the built-in templates
that this control comes with. These templates are actually blocks of HTML code. TheHTML code. The code. The
Repeater control contains the following five templates: control contains the following five templates:

1. HeaderTemplate
2. ItemTemplate
3. AlternatingItemTemplate
4. SeparatorTemplate
5. FooterTemplate

Working with the Repeater Control

[66]

The following screenshot shows how a Repeater control looks when populatedRepeater control looks when populated control looks when populated
with data.

Note that the templates (Header, Item, Footer, Alternate and Separator) have all
been used.

The following code snippet is an example of the order in which the templates of the
Repeater control are used.

<asp:Repeater id="repEmployee" runat="server">
<HeaderTemplate>
...
</HeaderTemplate>
<ItemTemplate>
</ItemTemplate>
<FooterTemplate>
...
</FooterTemplate>
</asp:Repeater>

Chapter 3

[67]

When the Repeater control is bound to a data source, the data from the data source
is displayed using the ItemTemplate element and any other optional elements, if
used. Note that the contents of the HeaderTemplate and the FooterTemplate are
rendered once for each Repeater control. The contents of the ItemTemplate are
rendered for each record in the control.

You can also use the additional AlternatingItemTemplate element after the
ItemTemplate element for specifying the appearance of each alternate record. You
can also use the SeparatorTemplate element between each record for specifying the
separators for the records.

Displaying Data Using the Repeater Control
This section discusses how we can display data using the Repeater control. AsRepeater control. As control. As
discussed earlier, the Repeater control uses templates for formatting the data that itRepeater control uses templates for formatting the data that it control uses templates for formatting the data that it
displays. The following code snippet displays the code in an .aspx file that contains
a Repeater control.Repeater control. control.

Note that we would be making use of templates and that the data
would be bound to the control from the code-behind file using the
DataManager class.

<asp:Repeater ID="Repeater1" runat="server">
 <HeaderTemplate>
 <table border="1">
 <tr>
 <th>
 <asp:Label id="Emp_Code" Text="Employee Code"
 runat="server" /></th>
 <th>
 <asp:Label id="Emp_Name" Text="Employee Name"
 runat="server" /></th>
 <th>
 <asp:Label id="Emp_Salary" Text="Employee Salary"
 runat="server" /></th>
 <th>
 <asp:Label id="Dept_Code" Text="Department Name"
 runat="server" /> </th>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr bgcolor="#0xbbcc">
 <td><td>
 <%# DataBinder.Eval(Container.DataItem, "EmpCode")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, "EmpName")%>

Working with the Repeater Control

[68]

 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, "Salary")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, "DeptName")%>
 </td>
 </tr>
 </ItemTemplate>
 <SeparatorTemplate>
 <tr bgcolor="#ffbbcc">
 <td>
 <hr>
 </td>
 <td>
 <hr>
 </td></td>
 <td>
 <hr>
 </td>
 <td>
 <hr>
 </td>
 </tr>
 </SeparatorTemplate>
 <AlternatingItemTemplate>
 <tr bgcolor=»#ccaabb»>
 <td>
 <%# DataBinder.Eval(Container.DataItem, «EmpCode»)%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, «EmpName»)%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, «Salary»)%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, «DeptName»)%>
 </td>
 </tr>
 </AlternatingItemTemplate>
 <FooterTemplate>
 <table border=»1»>
 <tr bgcolor=»#0xffaa»>
 <td> Total Records: <%#totalRecords%> </td>
 </tr>
 </table>
 </table>
 </FooterTemplate>
</asp:Repeater>

Chapter 3

[69]

The Repeater control is populated with data in the Page_Load event by reusing the
DataManager(), which we used in Chapters 1 and 2 .which we used in Chapters 1 and 2 .

public int totalRecords;
 protected void Page_Load(object sender, EventArgs e)
 {
 DataManager dataManager = new DataManager();
 Repeater1.DataSource = dataManager.GetEmployees();
 totalRecords = dataManager.GetEmployees().Count;
 Repeater1.DataBind();
 }

Note how the SeparatorTemplate and the AlternatingItemTemplate have been
used in the previous code example. Further, the DataBinder.Eval() method has
been used to display the values of the corresponding fields from the data container,
(in our case, the DataSet instance) in the Repeater control. The FooterTemplate
uses the Total Records variable and substitutes its value to display the total number
of records displayed by the control.

The following is the output on execution.

Working with the Repeater Control

[70]

The Header and the Footer templates of the Repeater control are stillHeader and the Footer templates of the Repeater control are still and the Footer templates of the Repeater control are stillFooter templates of the Repeater control are still templates of the Repeater control are stillRepeater control are still control are still
rendered even if the data source does not contain any data. If you want to
suppress their display, you can use the Visible property of the Repeater
control and use it to suppress the display of these templates with a simple
logic. Here is how you specify the Visible property of this control in
your .aspx file to achieve this:
Visible="<%# Repeater1.Items.Count > 0 %>"

When you specify the Visible property as shown here, the Repeater is
made visible only if there are records in your data source.

Displaying Checkboxes in a Repeater Control
Let us now understand how we can display checkboxes in a Repeater Control and
retrieve the number of checked items. We will use a Button control and a LabelButton control and a Label control and a LabelLabel
control in our page. When you click on the Button control, the number of checkedButton control, the number of checked control, the number of checked
items in the Repeater Control will be displayed in the Label control. The output onLabel control. The output on control. The output on
execution is similar to what is shown in the following screenshot:

Chapter 3

[71]

Here is the code that we will use in the .aspx file to display checkboxes in a
Repeater control.

<form id="form1" runat="server">
 <asp:Repeater ID="Repeater1" runat="server">
 <HeaderTemplate>
 <table border="1">
 <tr>
 <th>
 <asp:Label id="Emp_Code" Text="Employee Code"
 runat="server" /></th>
 <th>
 <asp:Label id="Emp_Name" Text="Employee Name"
 runat="server" /></th>
 <th>
 <asp:Label id="Emp_Salary" Text="Employee Salary"
 runat="server" /></th>
 <th>
 <asp:Label id="Dept_Code" Text="Department Name"
 runat="server" /> </th>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr bgcolor="#0xbbcc">
 <td>
 <asp:CheckBox id="chkbox1" runat="server"
 Checked="false" Text = ‘<%#
 DataBinder.Eval(Container.DataItem,
 "EmpCode")%>'></asp:CheckBox>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, "EmpName")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, "Salary")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem, "DeptName")%>
 </td>
 </tr>
 </ItemTemplate>
</asp:Repeater>
 <table border="0" width="300px">
 <tr>

Working with the Repeater Control

[72]

 <td>
 <asp:Button ID="btnClick" runat="server" Width="100px"
 Text="Click here" OnClick="btnClick_Click" /></td>
 <td>
 <asp:Label ID="lblDisplay" runat="server"
 Width="200px"></asp:Label> </td>
 </tr>
</form>

The data is bound to the Repeater control in the Page_Load event as follows:

public int totalRecords;
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();
 Repeater1.DataSource = dataManager.GetEmployees();
 totalRecords = dataManager.GetEmployees().Count;
 Repeater1.DataBind();
 }
 }

Note that we have used the Page.IsPostBack to check whether the page has posted
back in the Page_Load method. If you don't bind data by checking whether the page
has posted back, the Repeater control will be rebound to data once again after a Repeater control will be rebound to data once again after a control will be rebound to data once again after a
postback and all the checkboxes in your web page will be reset to the unchecked state.

The source code for the click event of the Button control that we have used isButton control that we have used is control that we have used is
as follows:

protected void btnClick_Click(object sender, EventArgs e)
{
 int counter = 0;
 foreach (RepeaterItem r in Repeater1.Items)
 {
 CheckBox chk = (CheckBox)r.FindControl("chkbox1");
 if (chk.Checked) counter++;
 }
 lblDisplay.Text = " No of checked records is: " +
 counter.ToString();
}

When you execute the application, the Repeater control is displayed with recordsRepeater control is displayed with records control is displayed with records
from the employee table. Now you check one or more of the checkboxes and then
click on the Button control just beneath the Repeater control as follows:Button control just beneath the Repeater control as follows: control just beneath the Repeater control as follows:Repeater control as follows: control as follows:

Chapter 3

[73]

Note that the number of checked records is displayed in the Label control.Label control. control.

Implementing Data Paging Using the
Repeater Control
Data paging is a concept that allows you to retrieve a specified number of records
and display them in the user interface. The data is displayed one page at a time. You
can use data paging to split the data rendered to the user into multiple pages forpaging to split the data rendered to the user into multiple pages for split the data rendered to the user into multiple pages for
faster download of pages, provide a flexible user interface, and minimize the load on
the database server. You use paging when the volume of data to be displayed is huge
and you need to divide it into pages of data for efficient display of the records.

We have had a look at how we can display data using the Repeater control. Let usRepeater control. Let us control. Let us
now understand how we can display data using the Repeater controlRepeater control control one page at a
time, using the PagedDataSource class. It should be noted that the Repeater controlPagedDataSource class. It should be noted that the Repeater control class. It should be noted that the Repeater controlRepeater control control
does not support paging by default. Hence, we need to implement our custom
paging logic for data paging with this control.

We will first add four integer variables, namely: currentPageIndex, PAGESIZE,
totalRecords, and maxNumberOfPages. The following code snippet displays these
variables. Note that the PAGESIZE variable is constant because its value will not
change throughout the execution of the application. You can, however, change

Working with the Repeater Control

[74]

the value of this variable manually if you so desire. As we have few records in our
employee table, the value of this variable is set to 3. This implies that each page of This implies that each page of
records that will be displayed will contain 3 records. The maximum number of pages
that would be displayed is determined by the variable called maxNumberOfPages.
The variable currentPageIndex implies the index of the current page being
displayed. Though the value of this index has been set to 0 in the code, its value
when displayed to the user will be 1. The variable totalRecords indicates the total
number of records in the result set.

public static int currentPageIndex = 0;
public const int PAGESIZE = 3;
public static int totalRecords;
public static int maxNumberOfPages;

private static String sortColumn = String.Empty;

Note the case difference for the variable PAGESIZE above. It is just to imply that
it is a constant variable. In the Page_Load event we make calls to the methods
InitializePaging() and BindPagedData(). While the former initializes the above
variables, the later is responsible for binding data to the Repeater control, one page atRepeater control, one page at control, one page at
a time.

The InitializePaging() method is shown below.

private void InitializePaging()
{
 currentPageIndex = 0;
 totalRecords = GetTotalRecordCount();
 maxNumberOfPages = totalRecords / PAGESIZE;
}

The above method initializes the currentPageIndex, totalRecords, and
maxNumberOfPages variables. The currentPageIndex is set to a value of 0 and the
GetTotalRecordCount() method is called to retrieve the total number of records in
the result set. The maxNumberOfPages variable determines the total number of pages
that will be displayed. This is calculated using the values of the totalRecords and
the PAGESIZE variables.

The following is the source code for the GetTotalRecordCount() method:

private int GetTotalRecordCount()
{
 DataManager dataManager = new DataManager();
 return dataManager.GetEmployees().Count;
}

Chapter 3

[75]

This method makes use of the DataManager class to determine the total number of
records in the employee result set.

In the Page_Load event, the InitializePaging() and the BindPagedData()
methods are called as follows:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 InitializePaging();
 BindPagedData(currentPageIndex, PAGESIZE);
 }
}

The following section discusses the BindPagedData() method, that is, a method
that actually binds the data from the employee result set to the repeater control in a
paged fashion.

The BindPagedData() Method
The BindPagedData() method that follows accepts the current page index and
the page size as parameters. A DataSet instance is populated with data using the
DataManager class (remember, we used the same class in Chapters 1 and 2 to
bind data to the data controls). Next, an instance of the PagedDataSource class is
created and the DataSet instance is set to the DataSource property of an instance
of the PagedDataSource class. Note that you cannot store an object of any type inyou cannot store an object of any type in
a PagedDataSource; it has to be an enumerable object only. Once the DataSourcePagedDataSource; it has to be an enumerable object only. Once the DataSource; it has to be an enumerable object only. Once the DataSourceDataSource
property of the PagedDataSource instance is set, the next step is to set the DataSourcePagedDataSource instance is set, the next step is to set the DataSource instance is set, the next step is to set the DataSourceDataSource
property of the Repeater control with the instance of the PagedDataSource class.Repeater control with the instance of the PagedDataSource class. control with the instance of the PagedDataSource class.PagedDataSource class. class.
Refer to the following code snippet:

private void BindPagedData(int currentPageIndex, int pageSize)
{
 DataManager dataManager = new DataManager();
 PagedDataSource pagedDataSource = new PagedDataSource();
 pagedDataSource.PageSize =
 pageSize;pagedDataSource.CurrentPageIndex =
 currentPageIndex;pagedDataSource.AllowPaging = true;
 pagedDataSource.DataSource = dataManager.GetEmployees();
 Repeater1.DataSource = pagedDataSource;
 Repeater1.DataBind();
}

Working with the Repeater Control

[76]

Fine, but how do we navigate from one page of data to another? Well, the next
section discusses how we can tune our user interface so that it will have the
navigation links so as to enable us to navigate from one page of data to another.

Navigating through the Pages
We will now add four Link Buttons to the Repeater control that we created earlier.
For this, add the following code to the Repeater control in the .aspx file.

<asp:LinkButton id="First" Text="<< First" OnClick="FirstPage"
 runat="server"/>;
<asp:LinkButton id="Prev" Text="< Previous" OnClick="PreviousPage"
 runat="server"/>;
<asp:LinkButton id="Next" Text="Next >" OnClick="NextPage"
 runat="server"/>;
<asp:LinkButton id="Last" Text=">> Last" OnClick="LastPage"

 runat="server"/>

These controls correspond to the following operations on the data to be displayed:

1. Display the Records of the First Page
2. Display the Records of the Previous Page (Relative)
3. Display the Records of the Next Page (Relative)
4. Display the Records of the Last Page

All the above Link Buttons invoke the respective event handlers in theirLink Buttons invoke the respective event handlers in their invoke the respective event handlers in their OnClick
events. These event handlers are responsible for setting theThese event handlers are responsible for setting the currentPageIndex
appropriately and then displaying the data for the page selected by the user. To
accomplish this, the necessary logic to set the currentPageIndex is used and then
the BindPagedData() method called with the currentPageIndex and the PAGESIZE
as parameters.

The following is the source code for these event handlers that would be triggered as
and when we click on the navigation links in the user interface.

protected void FirstPage(object sender, EventArgs e)
{
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
}

protected void LastPage(object sender, EventArgs e)
{

Chapter 3

[77]

 currentPageIndex = maxNumberOfPages;
 BindPagedData(currentPageIndex, PAGESIZE);
}

protected void PreviousPage(object sender, EventArgs e)
{
 currentPageIndex--;
 if (currentPageIndex < 0)
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
}

protected void NextPage(object sender, EventArgs e)
{
 currentPageIndex++;
 if (currentPageIndex > maxNumberOfPages)
 currentPageIndex = maxNumberOfPages;
 BindPagedData(currentPageIndex, PAGESIZE);
}

We are done! The following screenshot displays the output on execution.

You can navigate to any of the pages by clicking on the links that correspond to
the First, Previous, Next, or the Last pages. The next section discusses how we can
implement custom sorting with that Repeater control.Repeater control. control.

Working with the Repeater Control

[78]

Sorting Data Using the Repeater Control
For sorting data, we have links that correspond to the columns in the employee
result set, in the header section of the Repeater control.Repeater control. control.

<tr>
 <th>
 <asp:LinkButton id="Emp_Code" OnClick="EmpCodeSort"
 Text="Employee Code" runat="server" /></th>
 <th>
 <asp:LinkButton id="Emp_Name" OnClick="EmpNameSort"
 Text="Employee Name" runat="server" /></th>
 <th>
 <asp:LinkButton id="Emp_Basic" OnClick="EmpBasicSort"
 Text="Employee Basic" runat="server" /></th>
 <th>
 <asp:LinkButton id="Dept_Code" OnClick="DeptCodeSort"
 Text="Department Code" runat="server" /></th>
</tr>

All of these link buttons have associated event handlers that get called on their
OnClick events. These event handlers set the sortColumn variable to the name of the
column on which the sort has to be performed. Refer to the following code snippets:

protected void EmpCodeSort(object sender, EventArgs e)
{
 sortColumn = "EmpCode";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
}

protected void EmpNameSort(object sender, EventArgs e)
{
 sortColumn = "EmpName";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
}

protected void EmpBasicSort(object sender, EventArgs e)
{
 sortColumn = "Basic";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
}

protected void DeptCodeSort(object sender, EventArgs e)

Chapter 3

[79]

{
 sortColumn = "DeptCode";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
}

Revisiting the DataManager Class
We will now add a method in the DataManager class that will return a sorted result
set based on the name of the sort column, that is, the column on which to sort the
data. The code for this method is as follows:

public ArrayList GetSortedEmployees(string sortColumn)
{
 SqlConnection conn = null;
 ArrayList employeeList = null;
 try
 {
 conn = new SqlConnection(connectionString);
 conn.Open();
 string sql = "select EmpCode, EmpName, Basic,
 JoiningDate, DeptCode from employee e, Department d
 where e.DeptID = d.DeptID" + " Order By "+sortColumn;
 SqlCommand cmd = new SqlCommand(sql, conn);
 SqlDataReader dr = cmd.ExecuteReader();
 employeeList = new ArrayList();

 while (dr.Read())
 {
 Employee emp = new Employee();
 if (dr["EmpCode"] != DBNull.Value)
 emp.EmpCode = dr["EmpCode"].ToString();
 if (dr["EmpName"] != DBNull.Value)
 emp.EmpName = dr["EmpName"].ToString();
 if (dr["Basic"] != DBNull.Value)
 emp.Basic = Convert.ToDouble(dr["Basic"].ToString());
 if (dr["JoiningDate"] != DBNull.Value)
 emp.JoiningDate =
 Convert.ToDateTime(dr["JoiningDate"].ToString());
 if (dr["DeptCode"] != DBNull.Value)
 emp.DeptCode = dr["DeptCode"].ToString();emp.DeptCode = dr["DeptCode"].ToString();
 employeeList.Add(emp);employeeList.Add(emp);
 emp = null;
 }
 }

Working with the Repeater Control

[80]

 catch
 {
 throw;
 }
 finally
 {
 Dr.Close(); conn.Close();
 }
 return employeeList;
}

Once you are done with the DataReader, you must always close itDataReader, you must always close it, you must always close it
by calling the Close() method on the DataReader instance. UnlessDataReader instance. Unless instance. Unless
you close a DataReader, you cannot execute any commands using theDataReader, you cannot execute any commands using the, you cannot execute any commands using the
Connection instance on which the DataReader has been used.DataReader has been used. has been used.

You should not use the Finalize() method of your class to close
a database connection or a DataReader instance due to the non-DataReader instance due to the non- instance due to the non-
deterministic nature of finalization in Microsoft .NET. To learn more onMicrosoft .NET. To learn more on. To learn more on
when and how you can use Dispose() and Finalize() efficiently,
refer to my article at:
http://www.devx.com/dotnet/Article/33167

The GetSortedEmployees() method needs to be called in place of the
GetEmployees() method for displaying the sorted employee data in the user
interface based on the sort column selected by the user.

Now we have to make the following change in the BindPagedData() method to
incorporate the sorting functionality:

if(sortColumn == String.Empty)
pagedDataSource.DataSource = dataManager.GetEmployees();
else
pagedDataSource.DataSource = dataManager.GetSortedEmployees(sortColum
n);

We are done! You can now click on any of the links on the header (those that
correspond to the respective columns in the employee result set) and see the data
being displayed in the Repeater control in a sorted manner.Repeater control in a sorted manner. control in a sorted manner.

Chapter 3

[81]

Filtering Data Using the Repeater Control
This section discusses how we can implement custom filtering of the data displayed
in the Repeater control. For filtering data from the employee result set, we will use a
DropDownList that is populated with the department names and, depending on
the user's selection, the employee records for the selected department will be
displayed in the Repeater control. The code that creates a DropDownList in the
.aspx file follows:

<asp:DropDownList ID="drpDept" AutoPostBack = true runat="server"

 OnSelectedIndexChanged="drpDept_SelectedIndexChanged"> </asp:
DropDownList>

This control is bound to data using the DataManager class as usual.

protected void BindDepartmentList()
 {
 drpDept.DataSource = new DataManager().GetDepartmentList();
 drpDept.DataTextField = "DeptName";
 drpDept.DataValueField = "DeptCode";
 drpDept.DataBind();
 drpDept.Items.Insert(0, "All");
 }

The string value All is stored in the initial index of the control, i.e., index 0. Hence,
selection of the first index would imply that the employee data of all the departments
would be displayed.

We will now take a variable called filterCondition that will contain the condition
based on which the data needs to be filtered.

private static String filterCondition = String.Empty;

The above variable is set to the appropriate department name based on the user's
selection in the DropDownList control.DropDownList control. control.

The event handler drpDept_SelectedIndexChanged is called whenever the selected
index of the DropDownList control is changed. The source code for this eventDropDownList control is changed. The source code for this event control is changed. The source code for this event
handler is as follows:

protected void drpDept_SelectedIndexChanged(object sender, EventArgs
 e)
 {
 if (drpDept.SelectedIndex == 0)
 {
 filterCondition = String.Empty;

Working with the Repeater Control

[82]

 BindPagedData(currentPageIndex, PAGESIZE);
 }
 else
 {
 filterCondition = drpDept.SelectedValue;
 BindPagedData(currentPageIndex, PAGESIZE);
 }
 }

The value of the SelectedValue property of the DropDownList control actuallyDropDownList control actuallycontrol actually
contains the name of the selected department. Accordingly, the variable
filterCondition is set to this value in the drpDept_SelectedIndexChanged
event handler.

The updated BindPagedData() method that incorporates the filtering, paging, and
sorting functionality (all in one) is as follows:

private void BindPagedData(int currentPageIndex, int pageSize)
 {
 ArrayList dataList = null;
 DataManager dataManager = new DataManager();
 PagedDataSource pagedDataSource = new PagedDataSource();
 pagedDataSource.PageSize = pageSize;
 pagedDataSource.CurrentPageIndex = currentPageIndex;
 pagedDataSource.AllowPaging = true;
 if (sortColumn == String.Empty)
 {
 dataList = dataManager.GetEmployees();
 pagedDataSource.DataSource = dataList;
 totalRecords = dataList.Count;
 maxNumberOfPages = totalRecords / PAGESIZE;
 }
 else
 {
 if (filterCondition == String.Empty)
 {
 dataList =
 dataManager.GetSortedEmployees(sortColumn);
 pagedDataSource.DataSource = dataList;
 totalRecords = dataList.Count;
 maxNumberOfPages = totalRecords / PAGESIZE;
 }
 else
 {
 dataList =

Chapter 3

[83]

 dataManager.GetEmployeeByDept(filterCondition);
 pagedDataSource.DataSource = dataList;
 totalRecords = dataList.Count;
 maxNumberOfPages = totalRecords / PAGESIZE;
 }
 }
 Repeater1.DataSource = pagedDataSource;
 Repeater1.DataBind();
 }

The filter condition is checked and if the value of the variable filterCondition is
non-empty, the GetEmployeeByDept() method of the DataManager class is called.

The figure below shows the output of the sample application with filtering
functionality. The user can select a department of his/her choice based on which the
employee data for that department would be displayed in the Repeater control.Repeater control. control.

The complete code for our Repeater class (that contains all the functionality that we
have discussed so far) in the Repeater.aspx.cs file is shown here, for reference:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;

Working with the Repeater Control

[84]

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Repeater:System.Web.UI.Page
{
 public static int currentPageIndex;
 public const int PAGESIZE = 3;
 public static int totalRecords = 0;
 public static int maxNumberOfPages = 0;
 private static String sortColumn = String.Empty;
 private static String filterCondition = String.Empty;

 protected void PageLoad(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 InitializePaging();
 BindPagedData(currentPageIndex, PAGESIZE);
 BindDepartmentList();
 }
 }

 private void InitializePaging()
 {
 currentPageIndex = 0;
 totalRecords = GetTotalRecordCount();
 maxNumberOfPages = totalRecords / PAGESIZE;
 }

 private int GetTotalRecordCount()
 {
 DataManager dataManager = new DataManager();
 return dataManager.GetEmployees().Count;
 }

 protected void FirstPage(object sender, EventArgs e)
 {
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void LastPage(object sender, EventArgs e)
 {
 currentPageIndex = maxNumberOfPages;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void PreviousPage(object sender, EventArgs e)

Chapter 3

[85]

 {
 currentPageIndex--;
 if (currentPageIndex < 0)
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void NextPage(object sender, EventArgs e)
 {
 currentPageIndex++;
 if (currentPageIndex > maxNumberOfPages)
 currentPageIndex = maxNumberOfPages;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 private void BindPagedData(int currentPageIndex, int pageSize)
 {
 ArrayList dataList = null;
 DataManager dataManager = new DataManager();
 PagedDataSource pagedDataSource = new PagedDataSource();
 pagedDataSource.PageSize = pageSize;
 pagedDataSource.CurrentPageIndex = currentPageIndex;
 pagedDataSource.AllowPaging = true;
 if (sortColumn == String.Empty)
 {
 dataList = dataManager.GetEmployees();
 pagedDataSource.DataSource = dataList;
 totalRecords = dataList.Count;
 maxNumberOfPages = totalRecords / PAGESIZE;
 }
 else
 {
 if (filterCondition == String.Empty)
 {
 dataList =
 dataManager.GetSortedEmployees(sortColumn);
 pagedDataSource.DataSource = dataList;
 totalRecords = dataList.Count;
 maxNumberOfPages = totalRecords / PAGESIZE;
 }
 else
 {
 dataList =
 dataManager.GetEmployeeByDept(filterCondition);
 pagedDataSource.DataSource = dataList;
 totalRecords = dataList.Count;

Working with the Repeater Control

[86]

 maxNumberOfPages = totalRecords / PAGESIZE;
 }
 }

 Repeater1.DataSource = pagedDataSource;
 Repeater1.DataBind();
 }

 protected void BindDepartmentList()
 {
 drpDept.DataSource = new DataManager().GetDepartmentList();
 drpDept.DataTextField = "DeptName";
 drpDept.DataValueField = "DeptCode";
 drpDept.DataBind();
 drpDept.Items.Insert(0, "All");
 }

 protected void EmpCodeSort(object sender, EventArgs e)
 {
 sortColumn = "EmpCode";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void EmpNameSort(object sender, EventArgs e)
 {
 sortColumn = "EmpName";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void EmpBasicSort(object sender, EventArgs e)
 {
 sortColumn = "Basic";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void DeptCodeSort(object sender, EventArgs e)
 {
 sortColumn = "DeptCode";
 currentPageIndex = 0;
 BindPagedData(currentPageIndex, PAGESIZE);
 }

 protected void drpDept_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 if (drpDept.SelectedIndex == 0)
 {

Chapter 3

[87]

 filterCondition = String.Empty;
 BindPagedData(currentPageIndex, PAGESIZE);
 }
 else
 {
 filterCondition = drpDept.SelectedValue;
 BindPagedData(currentPageIndex, PAGESIZE);
 }
 }
}

This concludes our discussion on how we can implement custom paging, sorting,
and filtering using the Repeater control. The next and concluding section discussesRepeater control. The next and concluding section discusses control. The next and concluding section discusses
the salient events of the Repeater control and their applicability.Repeater control and their applicability. control and their applicability.

Handling Repeater Control Events
Similar to the other data-bound controls in ASP.NET, you can use the RepeaterRepeater
control to handle events raised by user actions. Apart from the other regular events,
the most notable events of the Repeater control are:Repeater control are: control are:

DataBinding
ItemCreated
ItemDataBound
ItemCommand

The Data�inding event is fired when the Repeater control is bound to a data source.Data�inding event is fired when the Repeater control is bound to a data source. event is fired when the Repeater control is bound to a data source.Repeater control is bound to a data source. control is bound to a data source.
While the ItemCreated event is fired each time an item in the control is created,ItemCreated event is fired each time an item in the control is created, event is fired each time an item in the control is created,
the ItemData�ound event gets fired when each of the items in the collection isItemData�ound event gets fired when each of the items in the collection is event gets fired when each of the items in the collection is
bound to data from the data source. Lastly, the ItemCommand event is firedItemCommand event is fired event is fired
whenever a control within the Repeater raises an event. It should be noted that theRepeater raises an event. It should be noted that the raises an event. It should be noted that the
ItemDataBound event creates a collection of primary keys and stores them in the event creates a collection of primary keys and stores them in the
ViewState. The DataBinding event on the other hand deletes these keys as and when. The DataBinding event on the other hand deletes these keys as and whenDataBinding event on the other hand deletes these keys as and when event on the other hand deletes these keys as and when
the Repeater control is rebound to the data source. This is required in cases whereRepeater control is rebound to the data source. This is required in cases where control is rebound to the data source. This is required in cases where
you need to perform CRUD (Create, Read, Update, and Delete) operations using theCRUD (Create, Read, Update, and Delete) operations using the (Create, Read, Update, and Delete) operations using theCreate, Read, Update, and Delete) operations using the, Update, and Delete) operations using theUpdate, and Delete) operations using the) operations using the
Repeater control and then re-bind the control to refresh the data contained within. control and then re-bind the control to refresh the data contained within.

The following code example illustrates how you can use panels within a RepeaterRepeater
control and then use the ItemDataBound event of the control to turn the visibility of
the panels on or off, depending on your requirements.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Working with the Repeater Control

[88]

Here is the code for the Repeater control in your .aspx file:

<asp:Repeater ID="Repeater1" runat="server"
 OnItemDataBound="Repeater1_ItemDataBound">
 <ItemTemplate>
 <asp:Panel ID="Panel1" runat="server" Visible="false"
 BackColor="DodgerBlue">
 <div>
 <asp:Label ID="lblEmployeeCode" runat="server"
 Text="Code"
 Width="50px"/>
 <asp:Label ID="lblEmployeeName" runat="server"
 Text="Employee Name"
 Width="200px"/>
 <asp:Label ID="lblSalary" runat="server"
 Text="Salary"
 Width="100px"/>
 <asp:Label ID="lblDepartment" runat="server"
 Text="Department"
 Width="100px"/>
 </div>
 </asp:Panel>

 <asp:Panel ID="Panel2" runat="server" Visible="false"
 BackColor="BurlyWood">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Code"
 Width="50px"/>
 <asp:Label ID="Label2" runat="server"
 Text="Employee Name"
 Width="200px"/>
 <asp:Label ID="Label3" runat="server"
 Text="Salary"
 Width="100px"/>
 <asp:Label ID="Label4" runat="server"
 Text="Department"
 Width="100px"/>
 </div>
 </asp:Panel>
 </ItemTemplate>
</asp:Repeater>

Chapter 3

[89]

The event handler method shows how you can set the Visible property of the
Panels within the Repeater control to true or false based on your requirements.Repeater control to true or false based on your requirements. control to true or false based on your requirements.

protected void Repeater1_ItemDataBound(object sender,
 System.Web.UI.WebControls.RepeaterItemEventArgs e)
{
if (e.Item.ItemType == ListItemType.Item)
{
 Panel first = (Panel)e.Item.FindControl("Panel1");
 Panel second = (Panel)e.Item.FindControl("Panel2");
 //Write your custom code to set the Visible property of the Panels
 //to true or false as shown below.
 //first.Visible = false; second.Visible = true;
 //or
 //first.Visible = true; second.Visible = false;
 }
 }

Note how we have used the FindControl() method to retrieve references to the
Panels contained within the Repeater control.

Summary
This chapter discussed the Repeater control and how we can use it in our
ASP.NET applications. It has demonstrated how we can use this control for custom
paging, sorting, and filtering of data. Though this control does not support all the
functionalities of other data controls, like DataGrid and GridView, it is still a good
choice if you want faster rendering of data as it is light weight, and is very
flexible. You can still write your own code to implement paging, sorting, or
editing functionalities.

Working with the
DataList Control

In Chapter 3, we saw the Repeater control in ASP.NET and how we can use it to bind
and unbind data in our applications. In this chapter, we will discuss the DataList
control, which, like the Repeater control, can be used to display a list of repeated
data items.

In this chapter, we will cover the ASP.NET DataList control. We will learn about
the following:

Using the DataList control
Binding images to a DataList control dynamically
Displaying data using the DataList control
Selecting, editing and delete data using this control
Handling the DataList control events

The ASP.NET DataList Control
The DataList control like the Repeater control is a template driven, light weight
control, and acts as a container of repeated data items. The templates in this control
are used to define the data that it will contain. It is flexible in the sense that you can
easily customize the display of one or more records that are displayed in the control.
You have a property in the DataList control called RepeatDirection that can be used
to customize the layout of the control.

•

•

•

•

•

Working with the DataList Control

[92]

The RepeatDirection property can accept one of two values, that is, Vertical orRepeatDirection property can accept one of two values, that is, Vertical or property can accept one of two values, that is, Vertical orVertical or or
Horizontal. The RepeatDirection is Vertical by default. However, if you change it. The RepeatDirection is Vertical by default. However, if you change itRepeatDirection is Vertical by default. However, if you change it is Vertical by default. However, if you change itVertical by default. However, if you change it by default. However, if you change it
to Horizontal, rather than displaying the data as rows and columns, the DataListHorizontal, rather than displaying the data as rows and columns, the DataList, rather than displaying the data as rows and columns, the DataListrather than displaying the data as rows and columns, the DataList
control will display them as a list of records with the columns in the data rendered
displayed as rows.

This comes in handy, especially in situations where you have too many columns in
your database table or columns with larger widths of data. As an example, imagine
what would happen if there is a field called Address in our Employee table having
data of large size and you are displaying the data using a Repeater, a DataGrid, or
a GridView control. You will not be able to display columns of such large data sizes
with any of these controls as the display would look awkward. This is where the
DataList control fits in.

In a sense, you can think the DataList control as a combination of the DataGridDataList control as a combination of the DataGrid control as a combination of the DataGridDataGrid
and the Repeater controls. You can use templates with it much as you did with aRepeater controls. You can use templates with it much as you did with a controls. You can use templates with it much as you did with a
Repeater control and you can also edit the records displayed in the control, muchcontrol and you can also edit the records displayed in the control, much
like the DataGrid control of ASP.NET. The next section compares the features of theDataGrid control of ASP.NET. The next section compares the features of the control of ASP.NET. The next section compares the features of theASP.NET. The next section compares the features of the. The next section compares the features of the
three controls that we have mentioned so far, that is, the Repeater, the DataList, andRepeater, the DataList, and and
the DataGrid control of ASP.NET.DataGrid control of ASP.NET. control of ASP.NET.ASP.NET..

When the web page is in execution with the data bound to it using the Page�LoadPage�Load
event, the data in the DataList control is rendered as DataListItem objects, that is,DataList control is rendered as DataListItem objects, that is, control is rendered as DataListItem objects, that is,DataListItem objects, that is, objects, that is,
each item displayed is actually a DataListItem. Similar to the Repeater control, theDataListItem. Similar to the Repeater control, the. Similar to the Repeater control, theRepeater control, the control, the
DataList control does not have Paging and Sorting functionalities built into it. control does not have Paging and Sorting functionalities built into it.Paging and Sorting functionalities built into it. functionalities built into it.

Using the DataList Control
To use this control, drag and drop the control in the design view of the web form
onto a web form from the toolbox.

Refer to the following screenshot, which displays a DataList control on a web form:

Chapter 4

[93]

The following list outlines the steps that you can follow to add a DataList control in
a web page and make it working:

1. Drag and drop aDrag and drop a DataList control in the web form from the toolbox.
2. Set theSet the DataSourceID property of the control to the data source that you

will use to bind data to the control, that is, you can set this to an SQL DataSQL Data
Source control. control.

3. Open theOpen the .aspx file, declare the <ItemTemplate> element and define the
fields as per your requirements.

4. Use data binding syntax through theUse data binding syntax through the Eval() method to display data in these
defined fields of the control.

You can bind data to the DataList control in two different ways, that is, using the
DataSourceID and the DataSource properties. You can use the inbuilt features like
selecting and updating data when using the DataSourceID property. Note that you
need to write custom code for selecting and updating data to any data source that
implements the ICollection and IEnumerable data sources. We will discuss more
on this later. The next section discusses how you can handle the events in the
DataList control.

Displaying Data
Similar to the Repeater control that we looked at in Chapter 3, the DataList control
contains a template that is used to display the data items within the control. Since
there are no data columns associated with this control, you use templates to display
data. Every column in a DataList control is rendered as a element.

A DataList control is useless without templates. Let us now lern what templates are,DataList control is useless without templates. Let us now lern what templates are, control is useless without templates. Let us now lern what templates are,
the types of templates, and how to work with them. A template is a combination
of HTML elements, controls, and embedded server controls, and can be used toHTML elements, controls, and embedded server controls, and can be used to elements, controls, and embedded server controls, and can be used to
customize and manipulate the layout of a control. A template comprises HTML tagstemplate comprises HTML tags comprises HTML tagsHTML tags tags
and controls that can be used to customize the look and feel of controls like Repeater,Repeater,
DataGrid, or DataList. There are seven templates and seven styles in all. You can use. There are seven templates and seven styles in all. You can use
templates for the DataList control in the same way you did when using the RepeaterDataList control in the same way you did when using the Repeater control in the same way you did when using the RepeaterRepeater
control. The following is the list of templates and their associated styles in the
DataList control. control.

The Templates are as follows:

1. ItemTemplate
2. AlternatingItemTemplate
3. EditItemTemplate

Working with the DataList Control

[94]

4. FooterTemplate
5. HeaderTemplate
6. SelectedItemTemplate
7. SeparatorTemplate

The following screenshot illustrates the different templates of this control.

As you can see from this figure, the templates are grouped under three broad
categories. These are:

1. Item Templates
1. Header and Footer TemplatesHeader and Footer Templates
2. Separator TemplateSeparator Template

Note that out of the templates given above, the ItemTemplate is the one and only
mandatory template that you have to use when working with a DataList control.
Here is a sample of how your DataList control's templates are arranged:

<asp:DataList id="dlEmployee" runat="server">
<HeaderTemplate>
...
</HeaderTemplate>
<ItemTemplate>
...
</ItemTemplate>
<AlternatingItemTemplate>
...
</AlternatingItemTemplate>
<FooterTemplate>
...
</FooterTemplate>
</asp:DataList>

Chapter 4

[95]

The following screenshot displays a DataList control populated with data and with
its templates indicated.

Customizing a DataList control at run time
You can customize the DataList control at run time using the
ListItemType property in the ItemCreated event of this control as follows:
private void DataList1_ItemCreated(object
sender,System.Web.UI.WebControls.
DataListItemEventArgs e)
{
 switch (e.Item.ItemType)
 {
 case System.Web.UI.WebControls.ListItemType.Item :
 e.Item.BackColor = Color.Red;
 break;
 case System.Web.UI.WebControls.ListItemType.
 AlternatingItem : e.Item.BackColor = Color.Blue;
 break;
 case System.Web.UI.WebControls.ListItemType.
 SelectedItem : e.Item.BackColor = Color.Green;
 break;
 default :
 break;
 }
}

Working with the DataList Control

[96]

The Styles that you can use with the DataList control to customize the look and
feel are:

1. AlternatingItemStyleAlternatingItemStyle
2. EditItemStyleEditItemStyle
3. FooterStyleFooterStyle
4. HeaderStyleHeaderStyle
5. ItemStyleItemStyle
6. SelectedItemStyleSelectedItemStyle
7. SeparatorStyleSeparatorStyle

You can use any of these styles to format the control, that is, format the HTML code
that is rendered.

You can also use layouts of the DataList control for formatting, that is, further
customization of your user interface. The available layouts are as follows:

FlowLayout
TableLayout
VerticalLayout
HorizontalLayout

You can specify your desired flow or table format at design time by specifying the
following in the .aspx file.

RepeatLayout = "Flow"

You can also do the same at run time by specifying your desired layout using
the RepeatLayout property of the DataList control as shown in the following
code snippet:

DataList1.RepeatLayout = RepeatLayout.Flow

In the code snippet, it is assumed that the name of the DataList control is DataList1.

Let us now understand how we can display data using the DataList control. For this,
we would first drag and drop a DataList control in our web form and specify the
templates for displaying data. The code in the .aspx file is as follows:

<asp:DataList ID="DataList1" runat="server">
 <HeaderTemplate>
 <table border="1">
 <tr>
 <th>

•

•

•

•

Chapter 4

[97]

 Employee Code
 </th>
 <th>
 Employee Name
 </th>
 <th>
 Basic
 </th>
 <th>
 Dept Code
 </th>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>
 <tr bgcolor="#0xbbbb">
 <td>
 <%# DataBinder.Eval(Container.DataItem,
 "EmpCode")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,
 "EmpName")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,
 "Basic")%>
 </td>
 <td><td>
 <%# DataBinder.Eval(Container.DataItem,
 "DeptCode")%>
 </td></td>
 </tr>
 </ItemTemplate>
 <FooterTemplate>
 </FooterTemplate>
</asp:DataList>

The DataList control is populated with data in the Page_Load event of the web
form using the DataManager class as usual.

protected void Page_Load(object sender, EventArgs e)
 {
 DataManager dataManager = new DataManager();
 DataList1.DataSource = dataManager.GetEmployees();dataManager.GetEmployees();
 DataList1.DataBind();
 }

Working with the DataList Control

[98]

Note that the DataBinder.Eval() method has been used as usual to display the
values of the corresponding fields from the data container in the DataList control.
The data container in our case is the DataSet instance that is returned by the
GetEmployees () method of the DataManager class.

When you execute the application, the output is as follows:

Handling Events
The Repeater, DataList, and DataGrid controls support event bubbling. What is event
bubbling? Event Bubbling refers to the ability of a control to capture the events in a
child control and bubble up the event to the container whenever an event occurs. The
DataList control supports the following six events::

ItemCreated
ItemCommand
EditCommand
UpdateCommand
DeleteCommand
CancelCommand

We will now discuss how we can work with the events of the DataList control. In
order to handle events when working with a DataList control, include a Button or a
LinkButton control in the DataList control. These controls have click events that
can be used to bubble up the triggered event to the container control, that is,
the DataList.

•

•

•

•

•

•

Chapter 4

[99]

The following code snippet illustrates how you can attach a handler to an
ItemCommand event of a DataList control:

<asp:DataList ID="DataList1" runat="server" onItemCommand =
 "ItemCommandEventHandler"/>

The corresponding handler that gets called whenever the event is fired is as follows:

void ItemCommandEventHandler (Object src, DataListCommandEventArgs e
....)
{
 //Some event handling code
}

Similarly, you can handle the ItemCreated event by specifying the handler in the
.aspx file as follows::

<asp:DataList ID="DataList1" runat="server" onItemCreated =
 "ItemCreatedEventHandler" />

The corresponding handler that is triggered whenever this event occurs is as follows.

void ItemCreatedEventHandler (Object src, DataListCommandEventArgs e
)
{
 //Some event handling code
}

Similarly, you can use the CancelCommand event by specifying the event handler in
your .aspx file as follows::

<asp:DataList ID="DataList1" runat="server" onCancelCommand =
.........."CancelCommandEventHandler" />

The corresponding event handler that would get fired is as follows::

void CancelCommandEventHandler (Object src, DataListCommandEventArgs
 e)
{
 //Some event handling code
}

You can handle any of the other events similarly and execute your event handlers
appropriately. We will discuss more about using these events to Select, Edit, andSelect, Edit, and
Delete data using the DataList control later in this chapter. data using the DataList control later in this chapter.DataList control later in this chapter. control later in this chapter.

We will explore how we can display images using the DataList control in the
next section..

Working with the DataList Control

[100]

Binding Images Dynamically
Let us now see how we can display images using the DataList control. Here is a
situation where this control scores over the other data-bound controls as you can set
the RepeatDirection property of this control to Horizontal so that we can display
the columns of a particular record in one single row.

The following screenshot illustrates how the output of the application would look
when it is executed:

We will now discuss how we can implement this application that displays the
employee details, like code, name, and the individual's photo. We need an Image
control that we will use inside the ItemTemplate of the DataList control in use. HereItemTemplate of the DataList control in use. Here of the DataList control in use. HereDataList control in use. Here control in use. Here
is how you can use the Image control.

<img src='<%# DataBinder.Eval(Container.DataItem, "EmpName") %>.png'
style="height:100px;width:100px;border:1px solid gray;"/>

Note that all the images have a primary name corresponding to the employee's name
with a .png extension. The complete source code of the DataList control in your
.aspx file would be similar to what follows:

<asp:DataList ID="DataList1" runat="server" RepeatColumns="2"
 RepeatDirection="Horizontal">
 <ItemTemplate>

Chapter 4

[101]

 <table id="Table1" cellpadding="1" cellspacing="1"
 visible ="true">
 <tr>
 <td width="50px">
 <p align="left">
 <asp:Label ID="lblEmpCode" runat ="server"
 CssClass="LabelStyle" Text=' <%#
 DataBinder.Eval(Container.DataItem,
 "EmpCode")%>'></asp:Label>
 </p>
 <td>
 <td width="200px">
 <p align="left">
 <asp:Label ID="lblEmpName" runat ="server"
 CssClass="LabelStyle" Text=' <%#
 DataBinder.Eval(Container.DataItem,
 "EmpName")%>'></asp:Label>
 </p>
 </td>
 <td width="100px">
 <p align="left">
 <img src='<%# DataBinder.Eval(Container.DataItem, "EmpName")
 %>.png' style="height:100px;width:100px;border:1px
 solid gray;"/>
 </td>
 </p>
 </td>
 </table>
 </ItemTemplate>
</asp:DataList>

Note the use of the properties RepeatColumns and RepeatDirection in this code
snippet. While the former implies the number of columns that you would like to
display per record in the rendered output, the later implies the direction of the
rendered output, that is, horizontal or vertical.

Binding data to the control is simple. You need to bind the data to this control in the
Page_Load event of this control in your code-behind file. Here is how you do event of this control in your code-behind file. Here is how you do
the binding:

DataManager dataManager = new DataManager();
DataList1.DataSource = dataManager.GetEmployees();
DataList1.DataBind();

Working with the DataList Control

[102]

Wow! When you execute the application, the images are displayed along with the
employee's details. The output is similar to what we have seen in the screenshot
earlier in this section.

In the following sections, we will explore how to Select, Edit, and Delete data using
the DataList control.

Selecting Data
You need to specify the event handler that will be invoked in the OnItemCommand
event as follows:

OnItemCommand = "Employee_Select"

You also need to specify a LinkButton that the user would have to click on to select
a particular row of data in the DataList control. This command button would be
specified in the ItemTemplate as shown here:

<asp:LinkButton ID="lnkSelect" runat="server" CommandName="Select" >
Select </asp:LinkButton>

The reason why we choose to use the ItemTemplate to place the command button to
select data is that the contents of this template are rendered once for each row of data
in the DataList control. The code for the event handler is as follows:

protected void Employee_Select(object source,
 DataListCommandEventArgs e)
 {
 DataList1.EditItemIndex = e.Item.ItemIndex;
 DataList1.DataBind();
 }

The output on execution is shown in the following screenshot.

Chapter 4

[103]

Resizing a DataList control w�en t�e browser's size c�anges
When you change the width or height of a browser that has a DataList
control in it, the size of the DataList doesn't change. Here is a workaround
to this.
Create a CSS class that you will use in as the control's CssClass as
shown below.

<script type="text/css">
 .ResizeDataList
 {
 height:100%;width:100%;
 }
</script>
Next, use this CSS class in the DataList control as
shown here.
<asp:DataList ID="dl" runat="server" CssClass="ResizeDa
taList">
<!-- Usual code here -->
</asp:DataList>

Editing data
The DataList control can be used to edit your data, bound to this control from a data
store. This section discusses how we can edit data using this control. You can edit
data using the DataList control by providing a command-type button control in the
ItemTemplate of the DataList control. These command-type button can be one of
the following.

Button
LinkButton
ImageButton

In our example, we will be using an ImageButton control. Further, you need to
specify the OnEditCommand event and the corresponding event handler that will be
triggered whenever the user wants to edit data in the DataList control by clicking on
the ImageButton meant for editing the data.

Note that whenever the user clicks on the command button for editing
the data, the data items in the DataList control are set to editable mode
to enable the user to edit the data. This is accomplished by the use of
the EditItemTemplate. It should be noted that the EditItemTemplate is
rendered for a data item that is currently in the edit mode of operation.

•

•

•

Working with the DataList Control

[104]

The following code listing shows how your .aspx code for this control with edit
mode enabled would look:

<asp:DataList ID="DataList1" DataKeyField = "EmpCode" GridLines =
 "Both" CellPadding="3"
 CellSpacing="0"
 Font-Names="Verdana"
 Font-Size="12pt"
 Width="150px"
 OnEditCommand = "Employee_Edit" runat="server">
 <HeaderTemplate>
 <table border="1">
 <tr>
 <th>
 Employee Code
 </th>
 <th>
 Employee Name
 </th>
 <th>
 Basic
 </th>
 <th>
 Dept Code
 </th>
 </tr>
 </HeaderTemplate>
 <EditItemTemplate>
 EmpCode: <asp:Label ID="lblEmpCode" runat="server"
 Text='<%# Eval("EmpCode") %>'>
 </asp:Label>

 EmpName: <asp:TextBox ID="txtEmpName" runat="server"
 Text='<%#
 DataBinder.Eval(Container.DataItem,
 "EmpName") %>'>
 </asp:TextBox>

 Basic: <asp:TextBox ID="txtBasic"
 runat="server"
 Text='<%# DataBinder.Eval(Container.DataItem,
 "Basic") %>'>
 </asp:TextBox>

Chapter 4

[105]

 </EditItemTemplate>
 <ItemTemplate>
 <tr bgcolor="#0xbbbb">
 <td><td>
 <%# DataBinder.Eval(Container.DataItem,
 "EmpCode")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,
 "EmpName")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,
 "Basic")%>
 </td>
 <td>
 <%# DataBinder.Eval(Container.DataItem,
 "DeptCode")%>
 </td></td>
 <td>
 <asp:LinkButton ID=»lnkEdit» runat=»server»
 CommandName=»Edit» >
 Edit
 </asp:LinkButton>
 </td>
 </tr>
 </ItemTemplate>
 </asp:DataList>

The corresponding event handler to handle the edit operation, Employee_Edit, is
defined as follows:

protected void Employee_Edit(object source, DataListCommandEventArgs
 e)
 {
 DataList1.EditItemIndex = e.Item.ItemIndex;
 DataList1.DataBind();
 }

The .ItemIndex property of the DataListCommandEventArgs instance gives us the
row index of the DataList control that is being edited. This index starts with a value
of zero, that is, the index for the first row of data that is rendered in the DataList
control is 0.

Working with the DataList Control

[106]

The following screenshot shows the output on execution.

Note that the Edit command button is rendered for each of the rows of the DataList
control. Now, when you click on this button on any of the rows to edit the data for
that row, the output is as follows:

Note that the second record is set to editable mode on clicking the Edit command
button that corresponds to the second record.

How to enable/disable an embedded control wit�in t�e
DataList control
To enable or disable any control contained within the DataList control,
use the following technique in the ItemDataBound event of the control.

Chapter 4

[107]

DataListProduct_ItemDataBound(object sender,
 System.Web.UI.WebControls.DataListItemEventArgs e)
{
 if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem)
 {
 TextBox txtBox = e.Item.FindControl("txtEmpName") as TextBox;
 txtBox.Visble=false;
 }
}

Deleting Data
This section discusses how we can delete data using the DataList control. SimilarDataList control. Similar control. Similar
to what we have done in the previous section for editing data using the DataListDataList
control, you need to specify the event handler that will be triggered for the delete
operation in the .aspx file. You also require a Link�utton as usual.LinkButton as usual. as usual.

The following code snippet illustrates the code that you need to write for the .aspx
file to specify the event handler that will be invoked for the delete operation.

OnDeleteCommand = "Employee_Delete"

The code for the Employee_Delete event handler that you need to write in the
code-behind file, that is, DataList.aspx.cs, is as follows:

protected void Employee_Delete(object source,
DataListCommandEventArgs e)
 {
 DataList1.EditItemIndex = e.Item.ItemIndex;
 //Code to delete the row represented by ItemIndex
 DataList1.EditItemIndex = -1; //Reset the index
 DataList1.DataBind();
 }

The following is the output on execution.

Working with the DataList Control

[108]

As is apparent from the given screenshot, you just need to click the Delete Link
Button that corresponds to the employee record that you need to delete. Once you do
so, the specific record gets deleted.

Summary
We have had a bird's eye view of the DataList control in this chapter and how we
can use it in our ASP.NET applications. We have discussed how to select, edit, and
delete data with this control and how to work with the events of this control. We
also discussed how we can bind images to the DataList control programmatically.
The next chapter will discuss the DataGrid control, one of the most widely used data
controls in ASP.NET.

Working with the DataGrid
Control in ASP.NET

In Chapter 4, we had a look at the DataList control in ASP.NET, and how we can
use it to bind and unbind data in our applications. In this chapter, we will discuss
the DataGrid control and implement a sample application that would contain all the
necessary operations that we generally require with this control.

In this chapter, we will learn about the following:

Creating a DataGrid control
Implementing a sample application using the DataGrid control
Displaying data using the DataGrid control
Styling the DataGrid control
Appending data using the DataGrid control
Editing data using the DataGrid control
Deleting data using the DataGrid control
Paging using the DataGrid control

Note that we will cover how to bind data using master detail relationships in the
chapter on GridView control. Also note that we will be reusing our DataManager
class throughout this chapter. You can also use SQLDataSource, AccessDataSource,
or an XmlDataSource to retrieve data. We have already discussed these controls in
the first chapter.

•

•

•

•

•

•

•

•

Working with the DataGrid Control in ASP.NET

[110]

The ASP.NET DataGrid Control
The DataGrid control in ASP.NET is a very powerful and flexible control that can beDataGrid control in ASP.NET is a very powerful and flexible control that can becontrol in ASP.NET is a very powerful and flexible control that can beASP.NET is a very powerful and flexible control that can be is a very powerful and flexible control that can be
used to display data in a tabular fashion. It allows you to format your data the way
you want it. Note that in ASP.NET 2.0, you won't find this control in the toolbox. You
have to embed HTML code, in the code behind it. Rather, in ASP.NET 2.0, you have
the GridView control in place of DataGrid that is more like an improved version ofGridView control in place of DataGrid that is more like an improved version of control in place of DataGrid that is more like an improved version ofDataGrid that is more like an improved version of that is more like an improved version of
the DataGrid control. This control is more in use amongst the ASP.NET communityDataGrid control. This control is more in use amongst the ASP.NET communitycontrol. This control is more in use amongst the ASP.NET community
compared to its earlier counterpart. We will discuss the GridView control in theGridView control in the control in the
next chapter.

Note that the output of the DataGrid control, like other data list controls, is in HTMLDataGrid control, like other data list controls, is in HTMLcontrol, like other data list controls, is in HTML
format. The next section discusses how we can get started with a DataGrid controlDataGrid controlcontrol
in ASP.NET.

Creating a DataGrid Control
Follow these simple steps to create a DataGrid control.

1. Start Visual Studio .NET.
2. Next, create a new ASP.NET web application project and name it of

your choice.
3. Then in the web form file, that is, the .aspx file, paste the following code

within the Form tag of the web form.Form tag of the web form. tag of the web form.

<asp:datagrid runat="server" id="dgEmployee"/>

You are done! This will create a DataGrid control that has an ID of dgEmployee.
The following screenshot illustrates how the control looks in the design view of the
web form:

Chapter 5

[111]

Implementing a Sample Application
Using DataGrid Control
I will now talk about how we can implement a sample application using the
DataGrid control. This sample application will initially display the records from the
Employee table with provisions to perform all CRUD operations. You can append,
edit and delete records using the user interface that gets displayed once you invoke
the application.

The following screenshot displays the output on execution of the application:

I will now run through the steps that you can follow for implementing this sample
application. Follow these simple steps in the same sequence that is given below.

Step 1: Create a DataGrid control either by dragging and dropping in your web
form from the toolbox, or by writing code in the .aspx file. Here is how we can use a
TemplateColumn in our DataGrid.

<asp:TemplateColumn HeaderText="Employee Code">
<ItemTemplate>
<asp:Label Text='<%# Convert.ToString(DataBinder.Eval(Container.
DataItem,"EmpCode")) %>'
runat="server" ID="lblEmpCode"></asp:Label>
<asp:TextBox runat="server" ID="txtEmpCode" Visible="False"
MaxLength="30" Text='<%# Convert.ToString(DataBinder.Eval(Container.
DataItem,"EmpCode")) %>'
Width="40">
</asp:TextBox>
</ItemTemplate>
</asp:TemplateColumn>

Working with the DataGrid Control in ASP.NET

[112]

Step 2: Repeat the same for the other columns, that is, Employee Name, Salary and
Department Name. Here is how the columns tag of the DataGrid control will look
like after you have used TemplateColumn for each of the above fields..

<Columns>lumns>

 <asp:TemplateColumn HeaderText="Employee Code">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.
ToString(DataBinder.Eval(Container.DataItem,"EmpCode")) %>'
 runat="server" ID="lblEmpCode">
 </asp:Label>
 <asp:TextBox runat="server"
ID="txtEmpCode" Visible="False" MaxLength="30" Text='<%# Convert.
ToString(DataBinder.Eval(Container.DataItem,"EmpCode")) %>'
 Width="40">
 </asp:TextBox>
 </ItemTemplate>
 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Employee Name">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.
ToString(DataBinder.Eval(Container.DataItem,"EmpName")) %>'
 runat="server" ID="lblEmpName">
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="Salary">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.
ToString(DataBinder.Eval(Container.DataItem,"Basic")) %>'
 runat="server" ID="lblBasic">
 </asp:Label>
 </ItemTemplate>

 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Department">
 <ItemTemplate>
 <asp:Label Text='
 <%# Convert.ToString(DataBinder.
 Eval(Container.DataItem,"DeptName")) %>'
 runat="server" ID="lblDeptCode">
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>

Chapter 5

[113]

Here is how the DataGrid will now look with template columns bound to it:

Step 3: Now you need to use EditItemTemplate to make the data in the DataGrid
control editable. Here is the updated columns tag of the DataGrid control with
EditItemTemplate used for editing its fields based on selection of a particular
employee. Here is an example of how to use the EditItemTemplate in the
DataGrid control.

<EditItemTemplate>
 <asp:TextBox runat="server" ID="txtEmpName_Edit" MaxLength="30"
Text='<%# Convert.ToString(DataBinder.Eval(Container.
DataItem,"EmpName")) %>'
 Width="150">
 </asp:TextBox>
 *
 </EditItemTemplate>

Note that the TextBox control is used to allow the user to type in the editable data.
Repeat this for all the other fields. Here is how the columns tag of the DataGrid
control will look after the EditItemTemplate has been used for the other fields.

<Columns>
 <asp:TemplateColumn HeaderText="Employee Code">
 <ItemTemplate>
 <asp:Label Text= '<%# Convert.ToString(DataBinder
 .Eval(Container.DataItem,"EmpCode")) %>'
 runat="server" ID="lblEmpCode">
 </asp:Label>
 <asp:TextBox runat="server" ID="txtEmpCode"
 Visible="False" MaxLength="30" Text='<%# Convert
 ToString(DataBinder.
 Eval(Container.DataItem,"EmpCode")) %>'
 Width="40">
 </asp:TextBox>
 </ItemTemplate>
 <FooterTemplate>
 </FooterTemplate>

Working with the DataGrid Control in ASP.NET

[114]

 <EditItemTemplate>
 <asp:TextBox runat="server" ID="txtEmpCode_Edit"
 MaxLength="30" Convert
 Text='<%#.ToString(DataBinder.
 Eval(Container.DataItem,"EmpCode")) %>'
 Width="40" Enabled="false">
 </asp:TextBox>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Employee Name">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.ToString (DataBinder.
 Eval(Container.DataItem,"EmpName")) %>'
 runat="server" ID="lblEmpName">
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox ID="txtEmpName_Add" Width="150"
 MaxLength="30" runat="server" />
 *
 </FooterTemplate>
 <EditItemTemplate>
 <asp:TextBox runat="server"
 ID="txtEmpName_Edit" MaxLength="30"
 Text='<%# Convert.ToString(DataBinder.
 Eval(Container.DataItem,"EmpName")) %>'
 Width="150">
 </asp:TextBox>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Salary">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.ToString(DataBinder.
 Eval(Container.DataItem,"Basic")) %>'
 runat="server" ID="lblBasic">
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox ID="txtBasic_Add"
 Width="150" MaxLength="30"
 runat="server" />
 *
 </FooterTemplate>

Chapter 5

[115]

 <EditItemTemplate>
 <asp:TextBox runat="server"
 ID="txtBasic_Edit" MaxLength="30"
 Text='<%# Convert.ToString(DataBinder.
 Eval(Container.DataItem,"Basic")) %>'
 Width="150">
 </asp:TextBox>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Department">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.ToString(DataBinder
 .Eval(Container.DataItem,"DeptName")) %>'
 runat="server" ID="lblDeptCode">
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:DropDownList ID="ddlDeptCode_Add"
 runat="server" DataValueField="DeptCode"
 DataTextField="DeptName" DataSource='<%#
 FillDept()%>'></asp:DropDownList>
 *
 </FooterTemplate>
 <EditItemTemplate>
 <asp:DropDownList ID="ddlDeptCode_Edit"
 runat="server" DataValueField="DeptCode"
 DataTextField="DeptName" DataSource='<%#
 FillDept()%>'></asp:DropDownList>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:EditCommandColumn ButtonType="LinkButton"
 UpdateText="Save" CancelText="Cancel"
 EditText="Edit"></asp:EditCommandColumn>
 <asp:TemplateColumn>
 <ItemTemplate>
 <asp:LinkButton CommandName="Delete" Text="Delete"
 ID="btnDelete" runat="server" />
 </ItemTemplate>
 <FooterTemplate>
 <asp:LinkButton CommandName="Insert" Text="Add"
 ID="btnAdd" runat="server" />
 </FooterTemplate>
 </asp:TemplateColumn>
</Columns>

Working with the DataGrid Control in ASP.NET

[116]

Note how we have used links for editing and deleting data in the DataGrid control,
as shown in the previous code snippet.

Here is how our DataGrid control looks with ItemTemplate and EditItemTemplate
used for each of its fields:

Note the Edit and Delete links in this screenshot.

Step 4: The next step is binding data to the DataGrid control in the Page_Load
event handler of our web page using the DataManager class and invoking the
GetEmployees() method of the class.

This is shown in the code snippet that follows.

protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 this.BindGrid();
 this.lblMessage.Text = String.Empty;
 }

The BindGrid() method shown above, is responsible for binding data to the
DataGrid by reusing the DataManager class. BindGrid() method is given as follows:

 public void BindGrid()
 {
 DataManager dataManager = new DataManager();
 ArrayList arrayList = dataManager.GetEmployees();
 dgEmployees.DataSource = arrayList;
 dgEmployees.DataBind();
 }

Note the usage of the Label control named lblMessage in the above code snippet.
We will discuss the usage of the Label control used later in this section.

Chapter 5

[117]

Step 5: We will now incorporate Paging in the DataGrid control and apply some
custom styles for its rows, header, and footer. We will also use the OnItemCommand,
OnEditCommand, and OnDeleteCommand events of the DataGrid control to invoke
respective event handlers to perform the actual Select, Add, Edit, or Delete
operations using the control. These event handlers will be discussed in the next
section of this chapter.

The following is the complete HTML source code of the control looks with all the
event handlers set.

<body>
 <form id="frmEmployeeList" runat="server">
 <div>
 <asp:Label ID="lblMessage" runat="server" ForeColor="red"
 Font-Italic="true" Font-Bold="true"></asp:Label></div>

 <div>
 <asp:DataGrid ID="dgEmployees" runat="server"
 BorderStyle="None" PageSize="4" AllowPaging="True"
 OnItemCommand="onAdd" OnDeleteCommand="onDelete"
 OnUpdateCommand="onUpdate" OnCancelCommand="onCancel"
 OnEditCommand="onEdit" DataKeyField="EmpCode"
 ShowFooter="True" AutoGenerateColumns="False"
 CellPadding="4" BorderWidth="1px" BorderColor="#333366"
 BackColor="White" Width="80%"
 OnItemDataBound="dgEmployees_ItemDataBound"
 OnPageIndexChanged="dgEmployees_PageIndexChanged">
 <SelectedItemStyle Font-Bold="True" ForeColor="#663399"
 BackColor="#FFCC66">
 </SelectedItemStyle>
 <ItemStyle ForeColor="#330099"
 BackColor="White">
 </ItemStyle>
 <HeaderStyle Font-Bold="True"></HeaderStyle>
 <FooterStyle VerticalAlign="Middle"></FooterStyle>
 <Columns>
 <asp:TemplateColumn HeaderText="Employee Code">
 <ItemTemplate>
 <asp:Label Text='<%#
 Convert.ToString(DataBinder.
 Eval(Container.DataItem,"EmpCode")) %>'
 runat="server" ID="lblEmpCode">
 </asp:Label>
 <asp:TextBox runat="server" ID="txtEmpCode"

Working with the DataGrid Control in ASP.NET

[118]

 Visible="False" MaxLength="30" Text='<%#
 Convert.ToString(DataBinder
 .Eval(Container.DataItem,"EmpCode")) %>'
 Width="40">
 </asp:TextBox>
 </ItemTemplate>
 <FooterTemplate>
 </FooterTemplate>
 <EditItemTemplate>
 <asp:TextBox runat="server" ID="txtEmpCode_Edit"
 MaxLength="30" Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"EmpCode"))
 %>'
 Width="40" Enabled="false">
 </asp:TextBox>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Employee Name">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,
 "EmpName")) %>'
 runat="server" ID="lblEmpName">
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox ID="txtEmpName_Add" Width="150"
 MaxLength="30" runat="server" />
 *
 </FooterTemplate>
 <EditItemTemplate>
 <asp:TextBox runat="server" ID="txtEmpName_Edit"
 MaxLength="30" Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"EmpName"))
 %>'
 Width="150">
 </asp:TextBox>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Salary">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.ToString

Chapter 5

[119]

 (DataBinder.Eval(Container.DataItem,
 "Basic")) %>'
 runat="server" ID="lblBasic">
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox ID="txtBasic_Add" Width="150"
 MaxLength="30" runat="server" />
 *
 </FooterTemplate>
 <EditItemTemplate>
 <asp:TextBox runat="server" ID="txtBasic_Edit"
 MaxLength="30" Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"Basic"))
 %>'
 Width="150">
 </asp:TextBox>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Department">
 <ItemTemplate>
 <asp:Label Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,
 "DeptName")) %>'
 runat="server" ID="lblDeptCode">
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:DropDownList ID="ddlDeptCode_Add"
 runat="server" DataValueField="DeptCode"
 DataTextField="DeptName" DataSource='<%#
 FillDept()%>'></asp:DropDownList>
 *
 </FooterTemplate>
 <EditItemTemplate>
 <asp:DropDownList ID="ddlDeptCode_Edit"
 runat="server" DataValueField="DeptCode"
 DataTextField="DeptName" DataSource='<%#
 FillDept()%>'></asp:DropDownList>
 *
 </EditItemTemplate>
 </asp:TemplateColumn>
 <asp:EditCommandColumn ButtonType="LinkButton"

Working with the DataGrid Control in ASP.NET

[120]

 UpdateText="Save" CancelText="Cancel"
 EditText="Edit"></asp:EditCommandColumn>
 <asp:TemplateColumn>
 <ItemTemplate>
 <asp:LinkButton CommandName="Delete"
 Text="Delete" ID="btnDelete" OnClick
 ="fnCheckDelete();" runat="server" />
 </ItemTemplate>
 <FooterTemplate>
 <asp:LinkButton CommandName="Insert" Text="Add"
 ID="btnAdd" runat="server" />
 </FooterTemplate>
 </asp:TemplateColumn>
 </Columns>
 <PagerStyle HorizontalAlign="Center"
 Mode="NumericPages"></PagerStyle>
 </asp:DataGrid>
 </div>
 </form>
</body>

Step 6: Before any of the records are deleted, we should prompt the user for
confirmation. Note that in the code snippet shown above, the JavaScript method,
fnCheckDelete() is called, as shown here:

<asp:LinkButton CommandName="Delete" Text="Delete" ID="btnDelete"
 OnClick ="fnCheckDelete();" runat="server" />

Let us now incorporate a JavaScript method in our .aspx file that will be invoked
each time you click on the Delete link in the user interface.

function fnCheckDelete()
{
 if (confirm("Are you sure you want to delete this record ?"))
 return true;
 return false;
}

Note that the department names are displayed using a DropDownList control
within the DataGrid control. The above method actually prompts for confirmationThe above method actually prompts for confirmation
from the user prior to deleting the selected record.

We will see more on this as we proceed further.

Step 7: Now we need to populate the DropDownList control with data from the
Department table. Let us now incorporate the FillDept() method in the code
behind file to bind data to this control from the department table.

Chapter 5

[121]

public DataTable FillDept()
{
 DataManager dataManager = new DataManager();
 return dataManager.GetDepartmentList().Tables[0];
}

When you run the application for the first time, you will see a list of records
displayed. This concludes our discussion on how data is bound to the DataGrid,
inclusive of the DropDownList control that displays the department names within
the DataGrid control. In the sections that follow, we'll discuss how we can perform
various operations using the DataGrid control.

Suppose you want to display the record number of each row in a
DataGrid control. You can use a TemplateColumn for this and display
the value of the ItemIndex property, as shown below.

<asp:templatecolumn HeaderText="Record No">
 <itemtemplate>
 <%# Container.ItemIndex + 1 %>
 </itemtemplate>
</asp:templatecolumn>

Note that the value of the ItemIndex property starts with a value of
zero, to which we have added 1, as shown in the code snippet above.

Displaying Data
Let us now learn how we can display data in our web forms using the DataGrid
control. This is how the DataGrid will look once you bind data to it.

Working with the DataGrid Control in ASP.NET

[122]

How do we accomplish this? It's really simple. Just drag-and-drop the control from
the toolbox (if you are using ASP.NET 1.1) or write the code for the control in the
.aspx file manually (if you are using ASP.NET 2.0 or higher).

Based on how data is bound in the columns of a DataGrid control,
you can have either a BoundColumn or a TemplateColumn. A
BoundColumn implies one where the data is bound directly and you do
not have control of customizing it using custom HTML code. In contrast,
you can customize the markup as per your requirements when using
a TemplateColumn. You can use the syntax of both HTML and Web
Controls in a TemplateColumn. You generally use a TemplateColumn
when you need to edit data in a DataGrid control.

Here is how we have used the BoundColumn in the following code snippet:

<asp:BoundColumn DataField="EmpCode"
 HeaderText="Emp Code"></asp:BoundColumn>
<asp:BoundColumn DataField="EmpName"
 HeaderText="Employee Name"></asp:BoundColumn>
<asp:BoundColumn DataField="Salary"
 HeaderText="Salary"></asp:BoundColumn>
<asp:BoundColumn DataField="DeptName"
 HeaderText="Department"></asp:BoundColumn>

Each of the BoundColumn, as shown in the code snippet above, is used to bind data
retrieved from the database to the respective columns of the DataGrid control.

Here is the how you can declaratively write code to create a DataGrid control with
its data bound columns:

<asp:DataGrid id="dgEmployee" HeaderStyle-CssClass="Header"
 runat="server" Width="100%" AutoGenerateColumns="False"
 CellPadding="3">
<ItemStyle CssClass="GridRow"></ItemStyle>
<HeaderStyle CssClass="GridHeader"></HeaderStyle>
 <Columns>
 <asp:BoundColumn DataField="EmpCode"
 HeaderText="Emp Code"></asp:BoundColumn>
 <asp:BoundColumn DataField="EmpName"
 HeaderText="Employee Name"></asp:BoundColumn>
 <asp:BoundColumn DataField="Salary"
 HeaderText="Salary"></asp:BoundColumn>
 <asp:BoundColumn DataField="DeptName"
 HeaderText="Department"></asp:BoundColumn>
 </Columns>
</asp:DataGrid>

Chapter 5

[123]

We will retrieve data in the code behind, using the DataManager class and bind the
data to our DataGrid control from the code behind file for our web page. For this, we
will call the GetEmployees() method of this class in the Page_Load event, shown
as follows:

protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();
 dgEmployee.DataSource = dataManager.GetEmployees();
 dgEmployee.DataBind();
 }
 }

The DataGrid that we have just created lacks a good look and feel. We can apply
custom styles or even use style sheets in the DataGrid control to improve the look
and feel of it. The next section discusses how we can do this.

Styling the DataGrid Control
In this section, we will learn how we can apply styles to the DataGrid control. We
will explore how we can customize the look and feel of our DataGrid control using
Cascading Style S�eets. We will display the records from the employee table and
customize the header and the row style of the control using the style sheet. We will
also display a horizontal bar that displays an employee's salary graphically, relative
to the max salary. Here is the stylesheet that we will use.

body{
}
GridHeader
{
 font-family :Verdana ;
 font-size :12;
 color :White ;
 background-color :Black ;
}
GridRow
{
 font-family:Verdana ;
 font-size :11;
 background-color : White ;
}
SalaryBar

Working with the DataGrid Control in ASP.NET

[124]

{
 font-family:Verdana ;
 font-size :10;
 background-color : Red ;
}

The CSS classes correspond to the Header, Row and the Bar that we will use in the
DataGrid control. Following is the output of the application when you execute it.

When you move your mouse on any of the bars shown above, the employee's salary
is displayed as a tool tip. The following screenshot illustrates this:

Chapter 5

[125]

Wow! Note that when you place the mouse cursor on top of the Salary bar for the
employee Douglas, the salary is displayed as a tool tip.

Now we will discuss how we can implement such an application. Here is the source
code of the .aspx file that contains the DataGrid control, its templates, and the styles
that have been applied to the control.

<form id="Form1" method="post" runat="server">
 <table id="Table1" cellspacing="0" cellpadding="0" width="400"
 border="1">
 <tr>
 <td>
 <asp:DataGrid id="dgEmployee".HeaderStyle-
 CssClass="Header"runat="server" Width="100%"
 AutoGenerateColumns="False" CellPadding="3">
 <ItemStyle.CssClass="GridRow">
 </ItemStyle>
 <HeaderStyle CssClass="GridHeader">
 </HeaderStyle>
 <Columns>
 <asp:BoundColumn DataField="EmpName" HeaderText="Employee
 Name"></asp:BoundColumn>
 <asp:TemplateColumn HeaderText="Salary">
 <ItemTemplate>
 <table width="100%">
 <tr>
 <td>
 <a title='<%#
 DataBinder.Eval(Container.DataItem,"Salary").ToS
 tring()%>' style="cursor:hand">
 <div class="SalaryBar" style="width:
 <%#((int.Parse(DataBinder.Eval(Container
 DataItem,"Salary").ToString())*100)/MAXSALARY
)%>%;"></div>

 </td>
 <td style="width:<%# 100-
 ((int.Parse(DataBinder.Eval(Container.DataItem,
 "Salary").ToString())*100)/ MAXSALARY)%> +
 MAXSALARY %;"></td>
 </tr>
 </table>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:BoundColumn DataField="DeptName" HeaderText

Working with the DataGrid Control in ASP.NET

[126]

 ="Department"></asp:BoundColumn>
 </Columns>
 </asp:DataGrid></td>
 </tr>
 </table>
</form>

Note how the styles have been applied using the style sheet given earlier in this
section. We have used the SalaryBar class of our style sheet to customize the <td>
tag that relates to salary. Here is the source code that illustrates how you will bind
data to the DataGrid control.

protected double MAXSALARY;
 private void Page_Load(object sender, System.EventArgs e)
 {
 if (!IsPostBack)
 {
 DataManager dataManager = new DataManager();
 MAXSALARY = double.Parse(dataManager.GetMaxSalary());
 dgEmployee.DataSource = dataManager.GetEmployees();
 dgEmployee.DataBind();
 }
 }

The GetMaxSalary() has been introduced new to our DataManager class. The intent
of this method is returning the maximum salary of all the employees in the table.
Following is the source code for the method.

public String GetMaxSalary()
 {
 SqlConnection conn = null;
 try
 {
 conn = new SqlConnection(connectionString);
 conn.Open();
 string sql = "Select Max(Salary) from Employee";
 SqlCommand cmd = new SqlCommand(sql, conn);
 return cmd.ExecuteScalar().ToString();
 }
 catch
 {
 throw;
 }
 finally
 {
 conn.Close();
 }
 }

Chapter 5

[127]

For formatting the date type values in a DataGrid control you can use
DataFormatString as shown below.

<asp:BoundColumn DataField="JoinDate"
HeaderText="Joining Date"
 DataFormatString="{0:MM-dd-yyyy}"/>

Appending Data Using the DataGrid Control
A blank row is displayed just beneath the last record of the page in view, as shown
in the screenshot earlier, in this chapter. You can type in your required data and
then click on the Add link to append the record in the employee table. Refer to the
following screenshot:

A new record is inserted in the employee table. The following screenshot displays
the newly added record:

Working with the DataGrid Control in ASP.NET

[128]

When you click on the Add LinkButton in the user interface, the onAdd()
event handler is triggered. This has already been set in the .aspx file using the
following statement:

OnItemCommand="onAdd"

The command name for the Add LinkButton has already been specified using the
following statement in the .aspx file.

<asp:LinkButton CommandName="Insert" Text="Add" ID="btnAdd"
 runat="server" />

Next, the FindControl() method is called to retrieve the control instances within
the DataGrid control. Here is the code that we will use the FindControl() method,
in our code behind file, to retrieve the reference to the controls txtEmpName_Add and
txtBasic_Add that are contained within the DataGrid control.

if (e.CommandName == "Insert")
 {
 if (((TextBox)e.Item.FindControl("txtEmpName_Add")).Text == "")
 {
 this.lblMessage.Text = "** Please Enter Employee Name **";
 return;
 }

 if (((TextBox)e.Item.FindControl("txtBasic_Add")).Text == "")
 {
 this.lblMessage.Text = "** Please Enter Employee Basic **";
 return;
 }

First we need to check the command name as shown in the source code given
above. Note that in the code snippet shown above, that is, an instance of
DataGridCommandArgs.

The complete source code for the onAdd() method is shown below:

public void onAdd(object source, DataGridCommandEventArgs e)
{
 if (e.CommandName == "Insert")
 {
 if (((TextBox)e.Item.FindControl("txtEmpName_Add")).Text == "")
 {
 this.lblMessage.Text = "** Please Enter Employee Name **";
 return;
 }

 if (((TextBox)e.Item.FindControl("txtBasic_Add")).Text == "")

Chapter 5

[129]

 {
 this.lblMessage.Text = "** Please Enter Employee Basic **";
 return;
 }
 Employee employee = new Employee();
 employee.DeptCode = ((DropDownList)e.Item.FindControl
 ("ddlDeptCode_Add")).SelectedValue;
 employee.EmpName = ((TextBox)e.Item.FindControl("txtEmpName_Add"))
 .Text.Replace("'", "");
 employee.Basic = Convert.ToDouble(((TextBox)e
 .Item.FindControl("txtBasic_Add")).Text.Replace("'", ""));
 DataManager dataManager = new DataManager();
 dataManager.AddEmployee(employee);
 this.dgEmployees.EditItemIndex = -1;
 this.BindGrid();
 }
 }

As we can see in the code snippet above, once we have retrieved the reference to
the controls within our DataGrid control, we can easily retrieve the data from these
controls using their respective properties. Once done, we can set these values to the
respective properties of an instance of our Business Entity class called Employee.
The Employee class contains a list of private variables that correspond to the fields
in the employee table. These variables are exposed using their corresponding
public properties.

Here is the source code for the Employee class.

public class Employee
{
 private string empCode = String.Empty;
 private string empName = String.Empty;
 private double basic = 0.0;
 private string deptCode = String.Empty;
 private string deptName = String.Empty;
 private DateTime joiningDate;
 private bool active = false;

 public string EmpCode
 {
 get
 {
 return empCode;
 }
 set
 {

Working with the DataGrid Control in ASP.NET

[130]

 empCode = value;
 }
 }
 public string EmpName
 {
 get
 {
 return empName;
 }
 set
 {
 empName = value;
 }
 }
 public double Basic
 {
 get
 {
 return basic;
 }
 set
 {
 basic = value;
 }
 }
 public string DeptCode
 {
 get
 {
 return deptCode;
 }
 set
 {
 deptCode = value;
 }
 }
 public string DeptName
 {
 get
 {
 return deptName;
 }
 set
 {
 deptName = value;
 }
 }

Chapter 5

[131]

 public DateTime JoiningDate
 {
 get
 {
 return joiningDate;
 }
 set
 {
 joiningDate = value;
 }
 }
 public bool Active
 {
 get
 {
 return active;
 }
 set
 {
 active = value;
 }
 }
}

As with a typical business entity class, the Employee class that represents the
Employee Business Entity contains private members that are exposed using their
corresponding public properties.

Next, an instance of the DataManager class is created and the AddEmployee()
method of the DataManager class is called and the Business Entity instance,that is,
the instance of the Employee class is passed to it as a parameter. The source code for
the AddEmployee() method is given as follows:

public int AddEmployee(Employee e)
 {
 String sqlString = "insert into Employee(EmployeeName,
 Salary, DepartmentID) values('" + e.EmpName + "', '" +
 e.Basic + "', '" + e.DeptCode + "')";
 SqlConnection sqlConnection = new
 SqlConnection(connectionString);
 sqlConnection.Open();
 SqlCommand sqlCommand = new SqlCommand(sqlString,
 sqlConnection);
 return sqlCommand.ExecuteNonQuery();
 }

Working with the DataGrid Control in ASP.NET

[132]

Editing Data Using the DataGrid Control
You can edit a record using the Edit LinkButton, as shown in the
following screenshot:

Note that we have changed the basic Salary from 18000 to 18500 for the employee
Rama. Now, when you click on the Save LinkButton, the record is saved with these
changes. The following screenshot displays the edited record once the page refreshes
after the Save operation is successful.

In order to edit data in the DataGrid control, we require a TemplateColumn called
EditCommandColumn. The following is the code snippet which illustrates the same:

<asp:EditCommandColumn ButtonType="LinkButton" UpdateText="Save"
 CancelText="Cancel" EditText="Edit"></asp:EditCommandColumn>

Chapter 5

[133]

Once defined, we need a method that should be executed to make the record
editable. Note that the method to be executed is specified using the OnEditCommand
attribute of the DataGrid, as shown in the following code snippet:

<asp:DataGrid ID="dgEmployees" runat="server" BorderStyle="None"
 PageSize="4" AllowPaging="True"
 OnItemCommand="onAdd" OnDeleteCommand="onDelete"
 OnUpdateCommand="onUpdate" OnCancelCommand="onCancel"
 OnEditCommand="onEdit" DataKeyField="EmpCode" ShowFooter="True"
 AutoGenerateColumns="False"
 CellPadding="4" BorderWidth="1px" BorderColor="#333366"
 BackColor="White" Width="80%"
 OnItemDataBound="dgEmployees_ItemDataBound"
 OnPageIndexChanged="dgEmployees_PageIndexChanged">

Now, when you click on the Edit LinkButton, the onEdit() event handler method
gets fired. The code for this event handler is as follows:

public void onEdit(Object source, DataGridCommandEventArgs e)
 {
 this.dgEmployees.ShowFooter = false;
 this.dgEmployees.EditItemIndex = e.Item.ItemIndex;
 this.BindGrid();
 }

Note that when this event is fired, the EditItemIndex of the DataGrid control is
set to the current row. This implies that all fields of the EditItemTemplate in the
DataGrid become active and all the fields of the ItemTemplate become hidden.
Hence, the controls in the EditItemTemplate become editable. Note that we have
not made the Employee code field editable as this is the primary key. The following
code snippet shows the EditItemTemplate of the Employee Name field in our
DataGrid control.

<EditItemTemplate>
<asp:TextBox runat="server" ID="txtEmpName_Edit" MaxLength="30"
 Text='<%# Convert.ToString(DataBinder.Eval
 (Container.DataItem,"EmpName")) %>' Width="150">
</asp:TextBox>

</EditItemTemplate>

Working with the DataGrid Control in ASP.NET

[134]

Once you are done with the required changes, you can click on either the Save
LinkButton to update the record, or, the to update the record, or, the Cancel LinkButton to undo the changesLinkButton to undo the changes to undo the changes
made. The onUpdate() method shown below is the event handler that is triggered
whenever you click on the Save LinkButton after editing the selected record. TheLinkButton after editing the selected record. The after editing the selected record. The
following is the code for onUpdate() method:

public void onUpdate(Object source, DataGridCommandEventArgs e)
 {
 if (((TextBox)e.Item.FindControl("txtEmpName_Edit")).Text == "")
 {
 this.lblMessage.Text = "** Please Enter Employee Name **";
 return;
 }
 if (((TextBox)e.Item.FindControl("txtBasic_Edit")).Text == "")
 {
 this.lblMessage.Text = "** Please Enter Employee Basic **";
 return;
 }
 Employee employee = new Employee();
 employee.EmpCode = ((TextBox)e
 Item.FindControl("txtEmpCode_Edit")).Text;
 employee.DeptCode ((DropDownList)e
 =.Item.FindControl("ddlDeptCode_Edit")).SelectedValue;
 employee.EmpName = ((TextBox)e.
 Item.FindControl("txtEmpName_Edit")).Text.Replace("'", "");
 employee.Basic = Convert.ToDouble(((TextBox)e.
 Item.FindControl("txtBasic_Edit")).Text.Replace("'", ""));
 DataManager dataManager = new DataManager();
 dataManager.UpdateEmployee(employee);
 this.dgEmployees.EditItemIndex = -1;
 this.BindGrid();
 }

Note that we make a call to the UpdateEmployee() method of the DataManager to
update the record in the employee table. The following is the source code for the
UpdateEmployee() method:

public int UpdateEmployee(Employee e)
{
 string sqlString = "update Employee set EmployeeName = '" +
 e.EmpName + "', Salary = '" + e.Basic + "', DepartmentID = '" +
 e.DeptCode + "' where EmployeeID = '" + e.EmpCode + "'";
 SqlConnection sqlConnection = new SqlConnection(connectionString);
 sqlConnection.Open();
 SqlCommand sqlCommand = new SqlCommand(sqlString, sqlConnection);
 return sqlCommand.ExecuteNonQuery();
}

The BindGrid() method is called to rebind data to the DataGrid control so as to
refresh the display after the edited record has been saved to the table.

Chapter 5

[135]

Deleting Data Using the DataGrid Control
You can delete a record by clicking on the Delete LinkButton next to a record, as
shown in the following screenshot:

When you click on the Delete LinkButton, a dialog box pops up and prompts for
confirmation. Refer to the following screenshot:

Working with the DataGrid Control in ASP.NET

[136]

Now, click on the OK button to delete this record. The following screenshot captures
the output after the record is deleted:

Once the record is deleted, the page refreshes and you can see that the record you
just deleted, that is, the employee called Debanjan with an Employee Code 11, is no
longer displayed in the DataGrid.

The following is the source code for the onDelete() event handler method that is
fired once you click on the Delete LinkButton.

public void onDelete(object source, DataGridCommandEventArgs e)
{
 String employeeCode = dgEmployees.DataKeys
 [e.Item.ItemIndex].ToString().Replace("'", "");
 DataManager dataManager = new DataManager();
 dataManager.DeleteEmployee(employeeCode);
 this.dgEmployees.EditItemIndex = -1;
 this.BindGrid();
}

The above event handler method makes use of the DataManager class, as
usual, to delete an employee record. The following is the source code for the
DeleteEmployee() method of the DataManager class.

public int DeleteEmployee(String empCode)
{
 string sqlString = "Delete from Employee where EmployeeID = '" +
 empCode + "'";
 SqlConnection sqlConnection = null;
 sqlConnection = new SqlConnection(connectionString);
 sqlConnection.Open();
 SqlCommand sqlCommand = new SqlCommand(sqlString, sqlConnection);
 return sqlCommand.ExecuteNonQuery();
}

Chapter 5

[137]

If you want to provide the user a confirmation alert before he or she
deletes the record, you can use the RowDataBound event for this. The
code snippet given below illustrates that you can achieve this.
protected void dgEmployee_RowDataBound (object sender,
System.Web.UI.WebControls.GridViewRowEventArgs e)

{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 ((LinkButton)(e.Row.Cells[0].Controls[5])).
 Attributes.Add("onclick",
 "return confirm('Please confirm before the
 record is deleted');");
 }
}

When you click on the Cancel LinkButton in the dialog box, the EditItemIndex is
set to 1 to make the record non-editable. Once this is done, the EditItemTemplate is
hidden and the ItemTemplate is made active.

Paging Using the DataGrid Control
You can also use paging with the DataGrid control. To enable paging, you need to
set the AllowPaging property of the control, as shown in the following code snippet:

AllowPaging="True""

The event handler that should be called whenever the page index changes is also set
in the .aspx file as shown here.

OnPageIndexChanged="dgEmployees_PageIndexChanged"

The dgEmployees_PageIndexChanged() event handler is called each time the
data results are changed by clicking on the links that correspond to the page
numbers. Refer to the first screenshot in this chapter. The source code for this
event handler is as follows:

protected void dgEmployees_PageIndexChanged(object source,
 System.Web.UI.WebControls.DataGridPageChangedEventArgs e)
{
 this.dgEmployees.CurrentPageIndex = e.NewPageIndex;
 this.BindGrid();
}

Working with the DataGrid Control in ASP.NET

[138]

The BindGrid() method is called and the CurrentPageIndex property, that holds
the index of the most recent page in use, is set to the value of the NewPageIndex
property of the instance of the DataGridPageChangedEventArgs class.

The source code for the dgEmployees_ItemDataBound() event handler is as follows.

protected void dgEmployees_ItemDataBound(object sender,
 System.Web.UI.WebControls.DataGridItemEventArgs e)
{
 if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
 ListItemType.AlternatingItem || e.Item.ItemType ==
 ListItemType.EditItem)
{
 ((LinkButton)e.Item.FindControl("btnDelete")).
 Attributes["onClick"] = "return fnCheckDelete()";
}
if (e.Item.ItemType == ListItemType.EditItem)
{
 try
 {
 ((DropDownList)e.Item.FindControl
 ("ddlDeptCode_Edit")).Items.FindByValue
 (Convert.ToString(DataBinder.Eval(e.Item.DataItem,
 "DeptCode"))).Selected = true;
 }
 catch { }
}
}

Summary
In this chapter we discussed the DataGrid control and how we can implement
a sample application that contains all the necessary functionalities, like display,
append, edit, and delete data using this control. We have discussed how we can
work with the events of DataGrid control. In addition, we looked at how we can
style our DataGrid using CSS classes in a sample application. In the next two
chapters, we will learn how we can work with the DataView, GridView, FormView,
DetailsView, and the TreeView controls in ASP.NET. In the concluding chapter of
this book, we will discuss how we can bind data to the new data controls of Orcas
using LINQ.

Displaying Views of
Data (Part I)

In Chapter 5, we have looked at how we can work with the DataGrid control in
ASP.NET. This is the first in the series of two chapters on how we can use the view
controls, like, GridView, DetailsView and FormView controls to display different
views of data in ASP.NET 2.0. In this chapter, I will present the GridView control
and how the data source controls can be used to bind data to it. We will also discuss
how we can export data from this control to Excel or Word documents with sample
code in each case.

In this chapter, we will learn the following:

Using the GridView control
Displaying data using the GridView control
Displaying CheckBox and DropDownList inside a GridView control
Selecting a row inside a GridView control
Displaying a hierarchical GridView control
Paging data using the GridView control
Sorting data using the GridView control
Inserting, editing and deleting data using the GridView control
Exporting the GridView control
Formatting the GridView control

•

•

•

•

•

•

•

•

•

•

Displaying Views of Data (Part I)

[140]

The ASP.NET GridView Control
The idea behind the development of this data control is to display data in one of the
simplest ways possible, without having to write even a single line of code. Amazing,
isn't it? You only require proper configuration of the data source controls, that is,
the SqlDataSource, AccessDataSource, ObjectDataSource or the XmlDataSource
control and setting this as the data source property of the GridView data control.
Once the application is executed, this control is rendered as a table tag in HTML. We
will learn more on this as we progress through the chapter.

To use the GridView web control, you can drag and drop it from theweb control, you can drag and drop it from the, you can drag and drop it from the Toolbox as
shown in the following snapshot:

You can also create the GridView control programmatically in your .aspx file. The
complete syntax for using the GridView control is shown as follows:

<asp:GridView id="value" Runat="Server"
 AllowPaging="True|False"
 AllowSorting="True|False"
 AutoGenerateColumns="True|False"
 Caption="string"
 CaptionAlign="Left|NotSet|Right|Justify"
 CellPadding="n"
 CellSpacing="n"
 DataSourceID="datasourceid"
 EmptyDataText="string"
 GridLines="Both|Horizontal|Vertical|None"

Chapter 6

[141]

 PageSize="n"
 ShowHeader="True|False"
 ShowFooter="True|False"
 property="value"
 Style="style"
 HeaderStyle-property="value"
 RowStyle-property="value"
 AlternatingRowStyle-property="value"
 FooterStyle-property="value"
/>

You can bind data to this web control using any of the data source controls available
with ASP.NET 2.0. We will take SqlDataSource control in this chapter. We have
already discussed data source controls in Chapter 1 of this book. The following
figure displays the GridView control in its design view. Note that you have the
generic columns associated with the control before you bind any data source to it.
These columns have names like Column0, Column1, Column2, until a data source is
bound to it.

As we have seen in Chapter 1 of this book, you can associate a data source with this
control easily from the New Data Source option. Once a data source is associated
with this control, the control can display data once you execute your web page. The
following screenshot shows a GridView control with data from our Employee table.

Displaying Views of Data (Part I)

[142]

If you look at the above figure, you will observe that the data displayed in the
JoiningDate and the Salary fields are not properly formatted. We will learn how to
format data using the GridView control later in this chapter.

DataGrid is generally used in ASP.NET 1.1 and not in ASP.NET 2.0. In ASP.NET 2.0,
we prefer using the GridView control. You need not write much code to render the
control. This is what makes the life of a developer much easier.

Our GridView as displayed in the previous figure lacks visual appeal. Let us learnGridView as displayed in the previous figure lacks visual appeal. Let us learn as displayed in the previous figure lacks visual appeal. Let us learn
how we can use proper formatting at column level or cell level of this control to
produce visually appealing displays.

You have in the GridView control one column per column of the Data Source controlGridView control one column per column of the Data Source control control one column per column of the Data Source control
that you use. Let us now take a look at the declarative mark-up of the GridView
control in the source code view, that is, in the .aspx file. Refer to the following code
snippet that illustrates this:

<asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False" DataKeyNames="EmployeeID"
 DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID"
 InsertVisible="False" ReadOnly="True"
 SortExpression="EmployeeID" />
 <asp:BoundField DataField="EmployeeName"
 HeaderText="EmployeeName" SortExpression="EmployeeName" />
 <asp:BoundField DataField="JoiningDate" HeaderText="JoiningDate"
 SortExpression="JoiningDate" />
 <asp:BoundField DataField="DepartmentID"
 HeaderText="DepartmentID" SortExpression="DepartmentID" />
 <asp:BoundField DataField="Salary" HeaderText="Salary"
 SortExpression="Salary" />
 </Columns>
</asp:GridView>

The corresponding code in the .aspx file for the SqlDataSource control (that we
have used to bind data to this control) is as follows:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=.;Initial Catalog=Test;User
 ID=sa;Password=sa"
 ProviderName="System.Data.SqlClient" SelectCommand="SELECT
 [EmployeeID], [EmployeeName], [JoiningDate], [DepartmentID],
 [Salary] FROM [Employee]">
</asp:SqlDataSource>

Chapter 6

[143]

Note that these mark-ups are actually rendered as HTML tags when the page isHTML tags when the page is tags when the page is
executed. Let us now customize the look and feel of the GridView control. You canGridView control. You can control. You can
customize the GridView control at the control level, that is, the GridView Level, theGridView control at the control level, that is, the GridView Level, the control at the control level, that is, the GridView Level, theGridView Level, the Level, theLevel, the, the
row level or at the column level or at the column levelcolumn level.

The following code snippet shows how you can set the background colour at the
column level and the GridView level for customized display.level for customized display. for customized display.

<asp:GridView ID="GridView1" runat="server" RowStyle-BackColor =
 "CadetBlue" AutoGenerateColumns= "False" DataKeyNames="EmployeeID"
 DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="EmployeeID" HeaderStyle-BackColor =
 "Aqua" HeaderText="EmployeeID" InsertVisible="False"
 ReadOnly="True" SortExpression="EmployeeID" />
 <asp:BoundField DataField="EmployeeName" HeaderStyle-BackColor =
 "Aqua" HeaderText="EmployeeName" SortExpression="EmployeeName"
 />
 <asp:BoundField DataField="JoiningDate" HeaderStyle-BackColor =
 "Aqua" HeaderText="JoiningDate" SortExpression="JoiningDate"
 />
 <asp:BoundField DataField="DepartmentID" HeaderStyle-BackColor =
 "Aqua" HeaderText="DepartmentID" SortExpression="DepartmentID"
 />
 <asp:BoundField DataField="Salary" HeaderStyle-BackColor =
 "Aqua" HeaderText="Salary" SortExpression="Salary" />
 </Columns>
</asp:GridView>

The following screenshot shows the GridView control populated with data from the
Employee table and with a customized look and feel.

You can even use your Cascading Style Sheets for customizing the look and feel of
the GridView control.

Displaying Views of Data (Part I)

[144]

Note the use of both paging and sorting functionalities in a GridView control.
The sections that follow look at how you can work with the GridView control to
implement paging and sorting functionalities.

Comparing DataGrid and GridView Controls
In this section we will discuss how the two data controls DataGrid and GridView
differ. While both DataGrid and GridView controls are used for binding and
displaying data in tabular format, there are subtle differences between the two as far
as their suitability is concerned. When you use a DataGrid control, you need to write
your own code for binding, sorting, and paging data. In contrast, these features are
inbuilt in the GridView control and you can display, insert, edit or delete your data
using this control without having to write code. However, some of these pitfalls of
the DataGrid control have been addressed with ASP.NET 2.0 and after. Let us take a
look at the salient features of the GridView control. These are as follows:

Support for data source binding using the new Data Source controls available
in ASP.NET 2.0 and after
Advanced event model
In-built support for paging and sorting of data
Better design time support and added templates from its earlier counterparts

Displaying DropDownList in a GridView
Control
In this section we will learn how to display a DropDownList in a GridView control.
We will display the department names of the employees using the DropDownList
control. Following is the output when you execute the application:

•

•

•

•

Chapter 6

[145]

Following is the code in the .aspx file that illustrates how you can associate a
DropDownList control with the department names of an employee.

<Columns>
 <asp:TemplateField HeaderText="Rec No" HeaderStyle-BackColor =
 "DarkOrange" Visible="True">
 <ItemTemplate>
 <%# Container.DisplayIndex + 1 %>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField Visible="False">
 <ItemTemplate>
 <asp:Label ID="lblDept" runat="server" Text='<%#
 Eval("DepartmentID") %>' />
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="EmployeeName" HeaderStyle-BackColor =
 "DarkOrange" HeaderText="EmployeeName"/>
 <asp:TemplateField ControlStyle-ForeColor="Black" HeaderStyle-
 BackColor = "DarkOrange" HeaderText="Department">
 <ItemTemplate>
 <asp:DropDownList ID="drpDept" ForeColor="Black"
 BackColor="Khaki" runat="server">
 </asp:DropDownList>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="JoiningDate" HeaderStyle-BackColor =
 "DarkOrange" HeaderText="JoiningDate" DataFormatString="{0:d}"/>
 <asp:BoundField DataField="Salary" HeaderStyle-BackColor =
 "DarkOrange" HeaderText="Salary" DataFormatString="{0:C}"/>
</Columns>

Refer to the code snippet above. The DisplayIndex property of the Container object
has been used to display the record number for each record of the GridView control.
The value of this property starts with 0, hence the necessity of adding 1 to it. Note
that we have taken a TemplateField to use a DropDownList control called drpDept
that will display the department names in the list control. The department to which
a particular employee belongs would be selected by default. To achieve this, we
need to write the following code in the RowDataBound event handler of the
GridView control.

protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
 {
 if (e.Row.RowType == DataControlRowType.DataRow)

Displaying Views of Data (Part I)

[146]

 {
 String deptID = ((Label)e.Row.
 FindControl("lblDept")).Text;
 DataSet ds = new DataSet();
 ds = dataManager.GetDepartmentList();
 DropDownList ddl =
 (DropDownList)e.Row.FindControl("drpDept");
 ddl.DataSource = ds.Tables[0];
 ddl.DataTextField = "DeptName";
 ddl.DataValueField = "DeptCode";
 ddl.DataBind();
 ddl.SelectedIndex =
 ddl.Items.IndexOf(ddl.Items.FindByValue(deptID));
 }
 }

The department name of each employee is actually stored in a hidden label control
called lblDept. A reference to this control is retrieved using the FindControl()
method. The GetDepartmentList() method returns the department names as a
DataSet. Using the FindControl() method, a reference to the DropDownList control
called drpDept, is retrieved. Next, the DataTextField and the DataValueField
properties of the DropDownList control are set properly. The FindByValue()
method is used to set the SelectedIndex property of the control to the appropriate
department name.

Displaying CheckBox in a GridView Control
We will now explore how to display a CheckBox in each of the records in a
GridView control. Following is the output of the application on execution.

Chapter 6

[147]

Note that there is a CheckBox control in the EmployeeID column of the GridView
control for each of its records displayed. When you select one or more check
boxes and click on the Click button control beneath the GridView control, the
employee names for the selected employee records are displayed as shown in the
following figure:

Let us now understand how we can achieve this. To display a CheckBox that is
bound to the EmployeeID column, we will use a TemplateField, as shown in the
following code snippet:

<asp:TemplateField Visible="True" ControlStyle-ForeColor="Black"
 HeaderStyle-BackColor = "DarkOrange" HeaderText="EmployeeID">
 <ItemTemplate>
 <asp:CheckBox ID="chkSelect" runat="server" Text='<%#
 Eval("EmployeeID") %>'/>
 </ItemTemplate>
</asp:TemplateField>

In the Click event of the button control, we need to iterate through all the rows of
the GridView control and check whether the CheckBox for that row is checked. If so,
the employee name corresponding to that record is displayed. Following is the code
for the event handler for the Click event of the button control.

protected void btnClick_Click(object sender, EventArgs e)
{
 Response.Write("The following employees have been selected:--
 ");
 for (int i = 0; i < GridView1.Rows.Count; i++)
 {

Displaying Views of Data (Part I)

[148]

 if (((CheckBox)GridView1.Rows[i].FindControl
 ("chkSelect")).Checked)
 {
 Response.Write("
" + GridView1
 .Rows[i].Cells[3].Text);
 }
 }
}

Note that we have used the FindControl() method as usual to retrieve a reference
to the CheckBox control of each of the rows of the GridView control. In the next
section we will learn how we can display tool tips in a GridView control.

Change the Row Color of GridView Control
Using JavaScript
We will now explore how we can change the color of a GridViewRow using
JavaScript. First, let us understand how we can change the row color in the Click
event of any particular row of the GridView control. Following is a screenshot that
illustrates that the color of the clicked row has been changed.

When the same row is clicked again, the original color is displayed for that row.
Following is the output when you click on the same row for which the color has been
changed on account of the Click.

Chapter 6

[149]

To achieve this; it is simple. Use the following code in the RowDataBound event
handler to set up the JavaScript() method to be called when any of the rows of the
GridView control is clicked. The name of this method is ChangeGridRowColor().
Following is the complete source for the RowDataBound event handler.

protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
 {
 if (e.Row.RowType == DataControlRowType.DataRow)
 e.Row.Attributes["onclick"] =
 "javascript:ChangeGridRowColor(this);";
 }

The JavaScript() method ChangeGridRow is given as follows:

function ChangeGridRowColor(element)
{
 if(element.style.backgroundColor == 'cyan')
 element.style.backgroundColor='deepskyblue';
 else
 element.style.backgroundColor='cyan';
}

Displaying Views of Data (Part I)

[150]

C�anging row color of t�e GridView control using JavaScript w�en t�e
mouse moves over t�e control's rows
We can also change the color of a row in the GridView as and when you
move the mouse pointer from one row to the other. You need to write the
following code in the RowDataBound event handler of the control.

protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.
DataRow)
 {
 e.Row.Attributes["onmouseover"] =
"javascript:ToggleRowColor(this);";
 e.Row.Attributes["onmouseout"] =
"javascript:ToggleRowColor(this);";
 }
}

Note that the ToggleRowColor() JavaScript() method is called
on the onmouseover and the onmouseout events of the row of the
GridView control. Following is the code for the ToggleRowColor()
method.

function ToggleRowColor(element)
{
 if(element.style.backgroundColor == 'cyan')
 {
 element.style.backgroundColor='deepskyblue';
 element.style.cursor='hand';
 element.style.textDecoration='none';
 }
 else
 {
 element.style.backgroundColor='cyan';
 element.style.cursor='hand';
 element.style.textDecoration='underline';
 }
}

Chapter 6

[151]

Displaying Tool Tip in a GridView Control
Let us now learn how we can display tool tip in a GridView control to display an
employee's address. Following is the output when you execute the application.

Refer to the screenshot above. Note that the employee Douglas's address is
displayed as a tool tip as and when you place the cursor on the record. To achieve
this, you need to specify the following code in the RowDataBound event of the
GridView control.

protected void GridView1_RowDataBound(object sender,
 GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 e.Row.ToolTip = "Employee Address: " +
 Convert.ToString(DataBinder.Eval(e.Row.DataItem,
 "EmployeeAddress"));
 e.Row.Style.Add("Cursor", "Hand");
 }
}

Paging Using the GridView Control
Paging is a feature that displays a specified number of records from the entire result
set. You need to set the page size appropriately to display a set of records of the
entire result set. As we have seen, the data source that we have used so far displays
all the records retrieved from the Employee table. This might look clumsy if thereEmployee table. This might look clumsy if there table. This might look clumsy if there
are hundreds or thousands of records in your resultset. With this in mind, we can
use the paging feature with this control to ensure that the display is appealing. The
user can then navigate to different pages of the result set simply by clicking the page
numbers displayed with the control.

Displaying Views of Data (Part I)

[152]

For this, we need to set the AllowPaging property of the control to true and set the
PageSize property of the control to the required page size as appropriate. As our
data source contains a few records only, let us set the PageSize property to 4. The
following code snippet illustrates this:

<asp:GridView ID="GridView1" runat="server" AllowPaging ="true"
 PageSize = "4" RowStyle-BackColor = "CadetBlue"
 AutoGenerateColumns= "False" DataKeyNames="EmployeeID"
 DataSourceID="SqlDataSource1">

Once this is set, execute the page to get a display, that is identical to what is shown in
the following screenshot:

Note that you can navigate to the other pages simply by clicking the page index
displayed at the bottom of the GridView control, as shown above.

You can also apply PagerTemplate to customize the paging behaviour. Here is how
you specify the PagerTemplate in the GridView control's source:.

<PagerTemplate>
 Number of Pages: <%=GridView1.PageCount %>
 <asp:button ID="btnFirst" runat = "server" CommandName="Page"
 CommandArgument="First" Text="<<"/>
 <asp:button/>
 <asp:button ID="btnPrev" runat = "server" CommandName="Page"
 CommandArgument="Prev" Text="<"/>
 <asp:button/>
 <asp:button ID="btnNext" runat = "server" CommandName="Page"
 CommandArgument="Next" Text=">"/>
 <asp:button/>
 <asp:button ID="btnLast" runat = "server" CommandName="Page"
 CommandArgument="Last" Text=">>"/>
 <asp:button/>
</PagerTemplate>

Chapter 6

[153]

Note that you have four buttons in the PagerTemplate of the GridView control's
source code that corresponds to the First, Previous, Next and the Last Page of
display. The following screenshot shows the output on execution:

Implementing a Hierarchical GridView
The following section presents a Hierarc�ical GridView control, which is just a
customized format of a GridView control. We'll just manipulate the markup code in
the HTML source to make it hierarchical. This would display the employees grouped
by each of the departments in the department table. Following is the output on
execution of the sample application.

Displaying Views of Data (Part I)

[154]

Note from the previous figure that the GridView is in the collapsed mode, that
is, the department names are displayed with a plus sign preceding each of them.
Once you click on the plus (+) signs of any of the department names, the employees
belonging to the departments are displayed as shown in the following figure:

Let us now understand how we can implement this application. But, before we go
into how this can be done, we just need to understand how a GridView control is
rendered. The GridView control displays the data in rows and columns format.
Therefore this control is rendered into a table tag. The headings would be rendered
into in the first row which is a <tr> tag, and its heading names in a <th> tag. The
actual row data is rendered in the successive <tr> tags with all the column data
rendered into a <td> tag.

Chapter 6

[155]

Following is a sample GridView markup code at design time, and its corresponding
HTML code after rendering in the browser.

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns=
 "False" DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1"
 HeaderStyle-Font-Names="Verdana"
 HeaderStyle-Font-Size="11pt"
 RowStyle-ForeColor ="Black"
 RowStyle-BackColor = "DeepSkyBlue"
 RowStyle-Font-Names="Verdana"
 RowStyle-Font-Size="10pt">
 <Columns>
 <asp:TemplateField Visible="False">
 <ItemTemplate>
 <asp:Label ID="lblDept" runat="server" Text='<%#
 Eval("DepartmentID") %>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField Visible="True" ControlStyle-ForeColor="Black"
 HeaderStyle-BackColor = "DarkOrange" HeaderText="EmployeeID">
 <ItemTemplate>
 <asp:CheckBox ID="chkSelect" runat="server" Text='<%#
 Eval("EmployeeID") %>'/>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField ControlStyle-ForeColor="Black" HeaderStyle-
 BackColor = "DarkOrange" HeaderText="Department">
 <ItemTemplate>
 <asp:DropDownList ID="drpDept" ForeColor="Black"
 BackColor="Khaki" runat="server">
 </asp:DropDownList>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:BoundField DataField="EmployeeName" HeaderStyle-BackColor =
 "DarkOrange" HeaderText="EmployeeName"/>
 <asp:BoundField DataField="Salary" HeaderStyle-BackColor =
 "DarkOrange" HeaderText="Salary" DataFormatString="{0:C}" />
 </Columns>
</asp:GridView>

Displaying Views of Data (Part I)

[156]

The HTML code after the GridView is rendered in the web browser is shown
as follows:

<table cellspacing="0" rules="all" border="1" id="GridView1"
 style="border-collapse:collapse;">
 <tr style="font-family:Verdana;font-size:11pt;">
 <th scope="col" style="background-color:DarkOrange;">
 EmployeeID
 </th>
 <th scope="col" style="background-color:DarkOrange;">
 Department
 </th>
 <th scope="col" style="background-color:DarkOrange;">
 EmployeeName
 </th>
 <th scope="col" style="background-color:DarkOrange;">
 Salary
 </th>
 </tr>
 <tr style="color:Black;background-color:DeepSkyBlue;font-
 family:Verdana;font-size:10pt;">
 <td>
 <input id=
 "GridView1_ctl02_chkSelect" type="checkbox"
 name="GridView1$ctl02$chkSelect" /><label
 for="GridView1_ctl02_chkSelect">3</label>
 </td>
 <td>
 <select name="GridView1$ctl02$drpDept"
 id="GridView1_ctl02_drpDept" style="color:Black;background-
 color:Khaki;">
 <option selected="selected" value="1">IT</option>
 <option value="2">MKTG</option>
 <option value="3">HR</option>
 <option value="4">FINANCE</option>
 <option value="5">PERSONNEL</option>
 </select>
 </td>
 <td>Joydip
 </td>
 <td>Rs. 20,000.00
 </td>
 </tr>

Chapter 6

[157]

 <tr style="color:Black;background-color:DeepSkyBlue;font-
 family:Verdana;font-size:10pt;">
 <td>
 <input id=
 "GridView1_ctl03_chkSelect" type="checkbox"
 name="GridView1$ctl03$chkSelect" /><label
 for="GridView1_ctl03_chkSelect">4</label>
 </td>
 <td>
 <select name="GridView1$ctl03$drpDept"
 id="GridView1_ctl03_drpDept" style="color:Black;background-
 color:Khaki;">
 <option selected="selected" value="1">IT</option>
 <option value="2">MKTG</option>
 <option value="3">HR</option>
 <option value="4">FINANCE</option>
 <option value="5">PERSONNEL</option>
 </select>
 </td>
 <td>Douglas
 </td>
 <td>Rs. 75,000.00
 </td>
 </tr>
</table>

Observe code example, you can find that the data bound to the GridView control at
runtime is rendered into the HTML code in the form of <table> tag. So, in essence,
we can say that the GridView tag is converted to <table> tag; <ItemTemplate> and
<asp:BoundColumn> tags in the <asp:TemplateField> tag are converted into <th>
and <td> tags respectively. The <th> tag is for the first row which holds the header
name for each of the column presented. The <td> tags are generated for data in
each row. The <tr> tags are generated for each row bound to the GridView
control dynamically.

Since we now understand how a GridView control is rendered, we'll look into
the customization of this control to get the hierarchical behavior. This behavior is
achieved by playing around with its rendering mechanism. Let us look at the HTML
markup of the customized GridView control which can hold hierarchical data. Here
is the HTML markup of hierarchical GridView control.

<asp:GridView ID="gvDepartment" runat="server"
 AutoGenerateColumns="False" OnRowDataBound=
 "gvDepartmentRowDataBound"
 HeaderStyle-Font-Names="Verdana" HeaderStyle-Font-Size="11pt"

Displaying Views of Data (Part I)

[158]

 RowStyle-ForeColor="Black"
 RowStyle-BackColor="DeepSkyBlue" RowStyle-Font-Names="Verdana"
 RowStyle-Font-Size="10pt">
 <Columns>
 <asp:TemplateField>
 <ItemTemplate>
 <asp:ImageButton ImageUrl="~/Chapter V/Images/Plus.gif"
 CommandName="Expand" ID="btnExpandEmployee"
 runat="server"></asp:ImageButton>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Department Name">
 <ItemTemplate>
 <asp:Label ID="lblDeptID" runat="server" Text='<%#
 Convert.ToString(DataBinder.Eval
 (Container.DataItem,"DeptName")) %>'>
 </asp:Label>
 <asp:TextBox ID="txtDeptID" Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"DeptCode")) %>'
 runat="server" Visible="false"></asp:TextBox>
 <asp:Table ID="TabEmp" runat="server"
 HorizontalAlign="Center" Style="display: none;">
 <asp:TableRow>
 <asp:TableCell Width="5"> </asp:TableCell>
 <asp:TableCell ColumnSpan="3">
 <asp:GridView ID="gvEmployee" runat="server"
 AutoGenerateColumns="false" HeaderStyle-Font-
 Names="Verdana" HeaderStyle-Font-Size="11pt"
 RowStyle-ForeColor="Black" RowStyle-
 BackColor="DeepSkyBlue"
 RowStyle-Font-Names="Verdana" RowStyle-Font-
 Size="10pt">
 <Columns>
 <asp:TemplateField HeaderText="Employee ID">
 <ItemTemplate>
 <asp:Label ID="lblEmployeeID" runat="server"
 Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"EmpCode"))
 %>'></asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Employee Name">
 <ItemTemplate>

Chapter 6

[159]

 <asp:Label ID="lblEmployeeName" runat="server"
 Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"EmpName"))
 %>'>
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 <asp:TemplateField HeaderText="Salary">
 <ItemTemplate>
 <asp:Label ID="lblSalary" runat="server"
 Text='<%# Convert.ToString
 (DataBinder.Eval(Container.DataItem,"Salary"))
 %>'>
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
 </asp:TableCell>
 </asp:TableRow>
 </asp:Table>
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
</asp:GridView>

If you observe in this markup, we are trying to display all the Department
information in the first GridView control, and under each department, we would
display its employees in another GridView control. The first <asp:TemplateField>
of the GridView gvDepartment holds an image indicating it is collapsed or not,
in the form of plus (+) and minus (—) symbol. The minus symbol indicates, the
employees GridView is seen on the browser, and plus symbol for a row indicates
that it is collapsed and cannot be seen. The second <asp:TemplateField> holds
the Department Name field. It also holds a textbox (which is hidden) that holds a
Department ID, which is used to query the corresponding employees under it in
the code behind. As soon as the Department Name template field is done, we are not
closing the <ItemTemplate> and <asp:TemplateField> tag. We are just closing
it with a </td></tr> and opening a new <tr> and <td> tag, which holds a <asp:
Table> tag. At runtime, when this control is rendered, the first row after the
heading is rendered as a <tr> and the data for DepartmentName is rendered into
a <td> tag. Since the closing </ItemTemplate> tag is placed at the end of the
internal GridView for employee data, its closing </td> would be generated after

Displaying Views of Data (Part I)

[160]

the employee GridView is rendered. So, what we've done by adding the manual
closing </td> tag at design time is that we are forcing the completion of a <td> for
the department name and opening a new <tr> under it to hold the employee data in
a new GridView control. The GridView for the employee data is placed in a server
side <asp:Table> tag so that this is accessible in the server side to bind data to it
dynamically, and to also hide and show the table on a Javascript event when the
plus (+) or minus (—) image is clicked. We are generating the event from the code
behind in the RowDataBound event for every row dynamically.

Let us now look at the server code on how we are binding the hierarchical data. If
you observe the attribute OnRowDataBound in the GridView's markup, we have a
method being called gvDepartmentRowDataBound. This event is fired for every row
when the GridView gvDepartment is bound. To be specific, this event is fired when
gvDepartment.DataBind() method is invoked. The following is the code snippet for
binding department information, which is called in the page load event.

private void BindData()
{
 DataSet dsDepartment = new DataSet();
 dsDepartment = dataManager.GetDepartmentList();
 gvDepartment.DataSource = dsDepartment;
 gvDepartment.DataBind();
}

Now when gvDepartment.DataBind() method is invoked,
gvDepartmentRowDataBound event is fired. This method is fired for each department
record that is bound to the GridView–gvDepartment. In this method, firstly, we
render the JavaScript onclick for the control btnExpandEmployee, which represents
the plus (+) or minus (—) for hiding or showing the employee GridView. Then,
we pass the DeptCode required to retrieve the employees under this department
and bind it to the internal GridView control–gvEmployee. Since this GridView,
gvEmployee is inside the <asp:Table> tag, it is not recognized in the design time
in your code behind file. So we are trying to find the control in this method, and
then fetch data bind to this control. This happens for every department row bound
to the gvDepartment control. So, all the hierarchical data is bound at once on the
server side and the GridView, gvDepartment is displayed on the browser by hiding
the employee information for every department. But remember, the employee
information for every department is already bound with the internal GridView–
gvEmployee. This is not displayed initially and is hidden. As we've generated the
JavaScript event for every department row, just by clicking the image plus (+), the
employee GridView is displayed. The JavaScript function fnChangeImage() is
rendered for every department row which accepts the parameters the image client
ID, and the table client ID of the corresponding Employee GridView.

Chapter 6

[161]

protected void gvDepartmentRowDataBound(object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 ((ImageButton)e.Row.FindControl("btnExpandEmployee"))
 .Attributes["onClick"] = "return fnChangeImage('" +
 ((ImageButton)e.Row.FindControl("btnExpandEmployee"))
 .ClientID + "','" + ((Table)e.Row.
 FindControl("TabEmp")).ClientID + "')";
 string strDeptID =
 ((TextBox)e.Row.FindControl("txtDeptID")).Text;
 GridView gvEmp = (GridView)e.Row.
 Cells[gvDepartment.Columns.Count -
 1].FindControl("gvEmployee");
 ArrayList employeeList =
 dataManager.GetEmployeeByDept(strDeptID);
 if (employeeList != null)
 {
 gvEmp.DataSource = employeeList;
 gvEmp.DataBind();
 if (employeeList.Count < 1)
 {
 ((ImageButton)e.Row.Cells[0].FindControl
 ("btnExpandEmployee")).Visible = false;
 }
 }
 }
}

The JavaScript function fnChangeImage code snippet is as follows:

<script language="javascript" type="text/javascript">
 function fnChangeImage(ClientId,TableId)
 {
 if (document.getElementById(ClientId).getAttribute
 ("src").indexOf("Plus.gif") !=-1)
 {
 document.getElementById(ClientId).setAttribute
 ("src","Images/Minus.gif");
 }
 else
 {
 document.getElementById(ClientId).setAttribute
 ("src","Images/Plus.gif");
 }
 var aa = document.getElementById(TableId).style;

Displaying Views of Data (Part I)

[162]

 if(aa.display=="none") aa.display="block";
 else aa.display="none";
 return false;
 }
</script>

The JavaScript function shown in the code example above gets the attribute for
the image ID and employee table ID to hide or show it. We are done! We have
implemented a hierarchical GridView control.

Sorting Data Using the GridView Control
You can also enable sorting in the GridView control with minimal effort. When youGridView control with minimal effort. When you control with minimal effort. When you
enable sorting in the GridView control, the field headers in the GridView controlGridView control, the field headers in the GridView control control, the field headers in the GridView controlGridView control control
will show a link; when you click on this link, the ASP.NET page will be posted back.ASP.NET page will be posted back. page will be posted back.
After a postback, the GridView control will be populated with data from its dataGridView control will be populated with data from its data control will be populated with data from its data
source control and the appropriate sort command will be invoked to sort the data
being displayed. When you click on the field header links, the data for that column
will be sorted once again, but, this time in the reverse order.

Note that when you click on the field header links the first time, the data
in that column will be sorted in the ascending order.

To enable sorting for the GridView control, simply set the AllowSorting property of
the control to true as depicted in the following code snippet:

<asp:GridView ID="GridView1" runat="server" AllowSorting="true"
 AllowPaging ="true" PageSize = "4" RowStyle-BackColor =
 "CadetBlue" AutoGenerateColumns= "False" DataKeyNames="EmployeeID"
 DataSourceID="SqlDataSource1">

Now when you execute the page, you get an output similar to the following.

As you can see from the above figure, both paging and sorting for our GridView
control is enabled.

Chapter 6

[163]

You can sort any of the columns simply by clicking the column header link.
The following screenshot illustrates how the output looks once you click on the
EmployeeName column in the GridView control.

Note how the employee names are sorted once you click on the EmployeeName
column in the GridView control.

You can customize the sorting functionality of the GridView control. You can also
specify the columns that you don't want to be sortable, that is, disable sorting at the
column level, even if you enable sorting at the control level. To do this, you need to
go to the design view of the GridView control and then click on the EditColumns
option from the control's Smart Tag option. Then you need to specify the columns
that you do not want to be sorted on.

You have two events associated with the sorting functionality of the GridView
control, namely, Sorting and Sorted.

While the former is invoked prior to sorting of data within the control, the latter is
fired after the data in the control has been sorted. You can override the respective
event handlers and write your custom logic there.

Inserting, Updating and Deleting Data Using
the GridView Control
The GGridView control can also be used to insert, update and delete data. Moreover, control can also be used to insert, update and delete data. Moreover,insert, update and delete data. Moreover, data. Moreover,
we need not write even a single line of code for these operations. Let us understand
how we can use the GridView control to insert data.GridView control to insert data. control to insert data.

Displaying Views of Data (Part I)

[164]

To insert, update or delete data using the GridView control we need to firstGridView control we need to first control we need to first
configure the data source. The steps for configuring the data source are simple.
Go to the design view of your web page and drag-and-drop the SqlDataSource
control. Configure the data source by following the same steps that we discussed
in Chapter 1 of the book. Now, after the appropriate database and the connection
string are specified, select the Employee table from the list of the tables displayed in
the dropdown and select the fields that you want to be displayed. Now we need to
set up the SqlDataSource to support the insert, update, and delete operations. For
this, click the Advanced button which will open up the Advanced SQL Generation
Options dialog box. Refer to the following snapshot that illustrates this.

The next screenshot shows a dialog box that opens up, displays two check boxes,
that is, Generate INSERT, UPDATE, and DELETE statements and Use optimistic
concurrency. Fine, but what is optimistic currency? optimistic concurrency is a
database concurrency handling technique that handles concurrency without the need
to lock the particular database in use. In this methodology, concurrency is controlled
using logic in the code such that the database need not be locked. The record being
updated by a user is not accessible to another user for an update operation unless the
updated operation is done. In this regard, MSDN states, "When a user wants to update

Chapter 6

[165]

a row, the application must determine whether another user has changed the row
since it was read. Optimistic concurrency is generally used in environments with
a low contention for data. This improves performance as no locking of records is
required, and locking of records requires additional server resources. Also, in order
to maintain record locks, a persistent connection to the database server is required.
Since, this is not the case in an optimistic concurrency model; connections to the
server are free to serve a larger number of clients in less time."

When you click on the first checkbox, as shown in the following figure, INSERT,
UPDATE and DELETE statements are generated automatically.

You need to check the second check box if you require optimistic concurrency. Once
this is checked, the control will allow updates and deletes to data, if the data has
not changed since the data was last accessed. Let us select the first check box and
then click on the OK button. The declarative mark up that is generated now looks as
shown in the following code snippet:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=.;Initial Catalog=Test;User ID=sa"
 DeleteCommand="DELETE FROM [Employee] WHERE [EmployeeID] =
 @EmployeeID" InsertCommand="INSERT INTO [Employee] ([EmployeeName],
 [JoiningDate], [Salary], [DepartmentID]) VALUES (@EmployeeName,
 @JoiningDate, @Salary, @DepartmentID)"
 ProviderName="System.Data.SqlClient" SelectCommand="SELECT
 [EmployeeID], [EmployeeName], [JoiningDate], [Salary],
 [DepartmentID] FROM [Employee]"

Displaying Views of Data (Part I)

[166]

 UpdateCommand="UPDATE [Employee] SET [EmployeeName] =
 @EmployeeName, [JoiningDate] = @JoiningDate, [Salary] = @Salary,
 [DepartmentID] = @DepartmentID WHERE [EmployeeID] = @EmployeeID">
 <DeleteParameters>
 <asp:Parameter Name="EmployeeID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="EmployeeName" Type="String" />
 <asp:Parameter Name="JoiningDate" Type="DateTime" />
 <asp:Parameter Name="Salary" Type="Decimal" />
 <asp:Parameter Name="DepartmentID" Type="Int32" />
 <asp:Parameter Name="EmployeeID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="EmployeeName" Type="String" />
 <asp:Parameter Name="JoiningDate" Type="DateTime" />
 <asp:Parameter Name="Salary" Type="Decimal" />
 <asp:Parameter Name="DepartmentID" Type="Int32" />
 </InsertParameters>
</asp:SqlDataSource>

Once you execute the application, the output is similar to what is shown in the
following screenshot:

Chapter 6

[167]

Note the footer row in the GridView control shown in the previous screenshot.
Also note that data for a new record is being entered. After you have finished
entering data for a new record, click on the InsertData button to add a new record to
the Employee table.

Editing and deleting data with the GridView control is very simple. You simply
have to check the EnableEditing or the EnableDeleting checkboxes, as shown in the
following figure:

Displaying Views of Data (Part I)

[168]

Once you select these checkboxes, a corresponding link is displayed with the
respective captions that indicate the action to be performed. When you click on the
Edit button, the fields become editable. Moreover, you have the Update and Cancel
links displayed in place of the Edit link in the GridView control, as displayed in the
following screenshot:

Refer to the previous screenshot. Now you can make your changes and click on the
Update button to update the data or Cancel to cancel the changes made. Similarly,
you can enable the EnableDeleting property so that you can make the GridView
support deletion of data. Note that you can enable both the EnableEditing and
EnableDeleting properties so as to make the GridView both editable and also make
it support deletion of data. The best part here is that you can do all this without
writing even a single line of code! The following screenshot illustrates the GridView
control in design view with both Editing and Deleting enabled.

Chapter 6

[169]

Exporting the GridView Data
In this section we will explore how we can export the data displayed in a GridView
control to MS Excel and MS Word.MS Excel and MS Word.

In order to export data from a GridView control, ensure that the AllowSorting and
AllowPaging properties are turned off. I will add two buttons in the user interface
that correspond to the export format types, that is, I will show you how to export
data to MS Excel and MS WordMS Excel and MS Word. Refer to the following screenshot which illustrates
the application in execution with two buttons that can be used to export the data in
the GridView control to MS Excel and MS Word respectively.MS Excel and MS Word respectively. respectively.

Note the two buttons with their respective captions beneath the GridView control
populated with data.

Displaying Views of Data (Part I)

[170]

Now once you click on the Export to Excel button, a window pops up, as shown in
the following screenshot:

Once you click on the Open button, the data from the GridView control is exported
to Excel and displayed in an Excel Works�eet, as shown in the following screenshot:

Chapter 6

[171]

Let us now understand how we achieved this. In the click event of these buttons,
you need to write the necessary code to export the data. Following is the code for the
Click events of these buttons:

protected void btnExportGridViewToExcel_Click(object sender,
 EventArgs e)
{
 ExportToExcel();
}

protected void btnExportGridViewToWord_Click(
 object sender, EventArgs e)
{
 ExportToWord();
}

Note that we have invoked the ExportToExcel() and the ExportToWord() methods
respectively in the Click events of these buttons. Following is the source code for
these two methods:

private void ExportToExcel()
{
 Response.ClearContent();
 Response.AddHeader("content-disposition", "attachment;
 filename=Employee.xls");
 Response.ContentType = "application/ms-excel";
 StringWriter stringWriter = new StringWriter();
 HtmlTextWriter htmlTextWriter = new HtmlTextWriter(stringWriter);
 HtmlForm htmlForm = new HtmlForm();
 GridView1.Parent.Controls.Add(htmlForm);
 htmlForm.Attributes["runat"] = "server";
 htmlForm.Controls.Add(GridView1);
 htmlForm.RenderControl(htmlTextWriter);
 Response.Write(stringWriter.ToString());
 Response.End();
}

private void ExportToWord()
{
 Response.ClearContent();
 Response.AddHeader("content-disposition", "attachment;
 filename=Employee.doc");
 Response.ContentType = "application/ms-word";
 StringWriter stringWriter = new StringWriter();
 HtmlTextWriter htmlTextWriter = new HtmlTextWriter(stringWriter);
 HtmlForm htmlForm = new HtmlForm();

Displaying Views of Data (Part I)

[172]

 GridView1.Parent.Controls.Add(htmlForm);
 htmlForm.Attributes["runat"] = "server";
 htmlForm.Controls.Add(GridView1);
 htmlForm.RenderControl(htmlTextWriter);
 Response.Write(stringWriter.ToString());
 Response.End();
}

Refer to the code snippets above. The Response.ClearContent() method is
used to erase the content in the Response object. The AddHeader() method of the
Response object is used to add a header and its corresponding value or the content
to the response being rendered. The Response.AddHeader() method accepts two
parameters, that is, the name of the header of the response being rendered, and, its
corresponding value. While the first argument is used to specify the name of the
header to be added to the response, the second is used to specify the corresponding
value of the header, or, its content. Note that we have created an HtmlForm object to
store the GridView object inside it.

Adding Bound Fields to a GridView at RuntimeBound Fields to a GridView at Runtime Fields to a GridView at Runtime
To add a bound field to a GridView control at runtime, use the
following code..

BoundField boundField = new BoundField();
boundField.DataField = "JoiningDate";
boundField.HeaderText = "Joining Date";
boundField.DataFormatString = "{0:d}";
GridView1.Columns.Add(boundField);

Formatting the GridView Control
You can format the GridView rows as per your requirements. You can use the
AlternatingRowStyle property by specifying the style for each alternate row. Here
is how you can specify this property at design time in the .aspx file.

AlternatingRowStyle-BackColor ="AliceBlue""

Chapter 6

[173]

Once you execute the application, the GridView displays the data from the Employee
table with its alternate rows in AliceBlue. Following is a screenshot of the output:

You can also specify the same at runtime using the OnRowCreated event of the
GridView control. Here is how you specify the event handler for this event in the
.aspx file.

OnRowCreated="OnRowCreated"

The source code for the event handler is shown as follows:

protected void OnRowCreated(object sender, GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 if (((e.Row.RowIndex + 1) % 3) == 0)
 {
 e.Row.BackColor = System.Drawing.Color.AliceBlue;
 }
 }
}

Displaying Views of Data (Part I)

[174]

Refer to the code snippet shown. Note how the background color for every third row
of the GridView control has been set using the BackColor property of the Row object.
The following is the output on execution.

Let us now understand how we can set attributes to the rows of the GridView
control using client side scripts, such that it highlights the row it is pointed to,
with a specified color. Here is the code that illustrates how you can highlight and
unhighlight the rows using the OnRowCreated event when the mouse pointer is
being moved across the rows of the GridView control.

protected void OnRowCreated(object sender, GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 e.Row.Attributes.Add("onmouseover",
 "this.style.backgroundColor='AliceBlue'");
 e.Row.Attributes.Add("onmouseout",
 "this.style.backgroundColor='CadetBlue'");
 }
}

Chapter 6

[175]

The following screenshot shows the output on execution:

The background color of the row of the GridView control, on which the mouse
pointer hovers, is set to AliceBlue color.

You can also use client side scripting to retrieve the row index in the GridView
control that has been clicked. You only need to add the script to the Attributes
collection of the Row object of the GridViewEventArgs instance, as shown in the
following code snippet:

protected void OnRowCreated(object sender, GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 int rowIndex = e.Row.DataItemIndex;
 rowIndex += 1;
 e.Row.Attributes.Add("onClick", "alert('You have clicked row :
 " + rowIndex.ToString()+ "')");
 }
}

Execute the application and click on any row of the GridView control to see an alert
message box displayed. The output is similar to the following.

Displaying Views of Data (Part I)

[176]

You can also retrieve the value of a specific cell using client side scripting. Following
is the output:

Chapter 6

[177]

I will now show you how this can be accomplished. The following is the code
snippet that illustrates how you can use the OnRowDataBound event handler to
retrieve the name of the employee that corresponds to the row of the GridView
control that is clicked by the user:

protected void OnRowDataBound(object sender, GridViewRowEventArgs e)
{
 if (null != e.Row.Cells)
 {
 e.Row.Attributes.Add("onClick", "alert('The Selected
 Employee is: " + e.Row.Cells[1].Text + "')");
 }
}

The GridView control that we have used so far does not have a proper Font applied
to it. Let us format the display by specifying Font styles and sizes to the GridView
control's header and rows. For this, you need to specify the following at the
GridView control level in the .aspx file.

HeaderStyle-BackColor="Cyan"
HeaderStyle-ForeColor="Black"
HeaderStyle-Font-Names="Verdana"
HeaderStyle-Font-Size="10pt"
RowStyle-BackColor = "CadetBlue"
RowStyle-Font-Names="Verdana"
RowStyle-Font-Size=»10pt»

Following is the screenshot of the output on execution of the application.

Displaying Views of Data (Part I)

[178]

Refer to the screenshot shown previously. The output is much better with font style
and size applied to the GridView header and also the rows of the GridView control.

If you look at the GridView displayed in the previous screenshot, you'll find that
the JoiningDate and the Salary columns are not properly formatted. The output
still looks awkward, doesn't it? Following, is how you can apply proper formatting
to these columns using the DataFormatString property of the GridView control at
design time in your .aspx file.

<asp:BoundField DataField="JoiningDate" HeaderStyle-BackColor =
 "Aqua" HeaderText="JoiningDate" SortExpression="JoiningDate"
 HtmlEncode="False" DataFormatString="{0:d}"/>
<asp:BoundField DataField="Salary" HeaderStyle-BackColor = "Aqua"
 HeaderText="Salary" SortExpression="Salary"
 HtmlEncode="False" DataFormatString="{0:C}"/>

When you execute the application, the output will look like this:

This looks like a much more polished output with the header, the rows, the columns
and the data displayed in GridView control properly formatted. In this section, we
have seen how we can have our custom look and feel of the GridView control by
using its various attributes, and also format the data rendered by it. Note that
you can even use custom format strings for formatting data displayed in the
GridView control.

Chapter 6

[179]

Let us now learn how we can apply images to the column headers of the GridView
control. We will see how to apply images that correspond to the ascending and
descending operations while we sort a column of the GridView control. Note that
you should enable sorting in the control as usual by setting the AllowSorting
property to true in your .aspx file, shown as follows:

AllowSorting ="true"

Further, you need to use the OnRowCreated event and write the necessary code
there to apply images to the column headers of the GridView control. Following is
the code for the OnRowCreated event, that is, the source code for the OnRowCreated
event handler.

protected void OnRowCreated(object sender, GridViewRowEventArgs e)
{
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 if (((e.Row.RowIndex + 1) % 2) == 0)
 {
 e.Row.BackColor = System.Drawing.Color.AliceBlue;
 }
 }
 SetGridViewImageForSort(e, "lamp.gif", "up.gif", "down.gif");
}

Note that the SetGridImageForSort() method is called in the above method with
the GridViewRowEventArgs instance and the respective images as parameters.
Following is the source code for the SetGridImageForSort() method:

private void SetGridViewImageForSort(GridViewRowEventArgs e, String
 defaultImageFileName, String upArrowImageFileName, String
 downArrowImageFileName)
{
 if (e.Row != null && e.Row.RowType ==
 DataControlRowType.Header)
 {
 foreach (TableCell cell in e.Row.Cells)
 {
 LinkButton linkButton = (LinkButton)cell.Controls[0];
 if (null != linkButton)
 {
 Image image = new Image();
 if (GridView1.SortExpression ==
 linkButton.CommandArgument)

Displaying Views of Data (Part I)

[180]

 image.ImageUrl = (GridView1.SortDirection ==
 SortDirection.Ascending) ?
 downArrowImageFileName : upArrowImageFileName;
 else
 image.ImageUrl = defaultImageFileName;
 cell.Controls.Add(image);
 }
 }
 }
}

The logic is simple; you set the respective images after checking whether the value of
SortDirection is Ascending or Descending. After you execute the application, the
output will look like this:

Chapter 6

[181]

Initially the data in the GridView displayed above is unsorted. The default
image is displayed in the column headers of all columns. Once you click on the
EmployeeName column header, the rows in the control are sorted in ascending
order of employee names. The sorted employee records now resemble the following:

The image associated with the EmployeeName column header illustrates that the
records have been sorted in ascending order of the employee names. When you
click on the column header once again, the records are now sorted in the reverse
order, that is, descending order of employee names and the corresponding image
is displayed in the column header of the column on which the records have been
sorted. The output is captured in the following screenshot:

Displaying Views of Data (Part I)

[182]

Summary
In this chapter, we've seen the working of GridView control and how we can use
it to perform CRUD (Create, Update, Read and Delete) operations, and export data
without writing even a single line of code. This control makes use of the data source
controls available with ASP.NET 2.0 to bind data to it and perform various CRUD
operations. In this chapter, we've used SqlDataSource control to bind data and
perform data modification operations; however you can also use other data source
controls too, for binding data to the GridView control. We have learnt how we can
format the data rendered by this control, use CheckBox and DropDownList controls
inside GridView and even export the GridView control to MS Excel and MS Word.
We will learn the other view controls in the next chapter.

Displaying Views of
Data (Part II)

In Chapter 6, we discussed how we can work with the GridView control in ASP.
NET. This is the last part in the series of two chapters on how we can use the view
controls to display different views of data in ASP.NET. In this chapter, I will present
the DetailsView and the FormView control and show how we can use these controls
to bind data to them and perform various CRUD operations.

In this chapter, we will learn about:

Working with the DetailsView Control
Working with the FormView Control
Working with the TreeView Control
Implementing a Directory Structure as a TreeView

Working with the ASP.NET DetailsView
Control
The DetailsView control available in ASP.NET 2.0 is actually complementary to
the GridView control with its added ability to display data in a Master—Detail
relationship—a feature not provided by the GridView control by default. Unlike
the GridView control, you can use the DetailsView control to insert data into the
database. However, you can bind data to this control much the same as what you did
with the GridView. It should be noted that the default view type of the DetailsView
control is vertical; you would find that each column of the associated record is
displayed actually as a separate column. To use the DetailsView control, you can
drag and drop it from the toolbox as shown in the screenshot on the next page:

•

•

•

•

Displaying Views of Data (Part II)

[184]

You can also create the DetailsView control programmatically in your .aspx file.
Here is the corresponding source code for the DetailsView control in your .aspx
file once you drag and drop a DetailsView control from the toolbox onto your web
page in the design mode.

<asp:DetailsView ID="DetailsView1" runat="server">
</asp:DetailsView>

You can bind data to this web control using any of the data source controls available
with ASP.NET 2.0. We will use the SQL datasource control in this chapter.

Using the DetailsView Control
I will now show you how you can implement a Master—Details relationship of data
using the DetailsView control. Consider our Employee table that we discussed
in Chapter 1 of this book. We will take a DropDownList control that will display
the names of all the employees in the database table. On selection of a particular
employee, the corresponding record will be displayed in the DetailsView control.
When you execute the application, the output will be similar to what is shown
as follows:

Chapter 7

[185]

Note that the details pertaining to the employee called Joydip have been displayed
in the DetailsView control just beneath the DropDownList control. Now, select
a different employee and see how the corresponding details in the DetailsView
control changes.

Displaying Views of Data (Part II)

[186]

Let us now understand how we can accomplish the above. In the design view
of your web page, drag and drop two SqlDataSource controls and configure
them accordingly. While one of these controls would be used to bind data to the
DropDownList control, the other would be used to bind data to the DetailsView
control based on the employee selected by the user. We have discussed how we
can use the data source controls of ASP.NET in Chapter 1 of this book. Therefore, I
will skip some steps while discussing on the configuration of these SqlDataSource
controls that we will use in this section:

Configuring the select statement for the first SqlDataSource control is simple, just
specify two fields from the list of the fields displayed shown as follows:

Chapter 7

[187]

Now click on Next and make sure that you test the query to check whether it
is fine. Following is the output once you test your query by clicking on the
Test Query button:

Displaying Views of Data (Part II)

[188]

The next step is to drag and drop a DropDownList control from the tool box and
associate the control with the SqlDataSource control that we just configured. The
following screenshot illustrates how you can associate this control to the data source
control and specify its display and the value fields.

Chapter 7

[189]

Now, click on the OK button to complete the process. Next, drag and drop another
SqlDataSource control from the tool box and configure the Select statement for the
control as shown in the following screenshot:

Displaying Views of Data (Part II)

[190]

Note that we have specified the fields we want to display using the DetailsView
control. Now, we have to display the details of the employee selected by the user.
Hence, we need to specify the where clause in this query to restrict the output. When
you click on the WHERE button, a window pops up where you can specify the same.
This is shown as follows:

Note how the Column, Source and Control ID properties have been specified.
Now, click on the Add button to finish off this process. What we are left with now
is the DetailsView control that we would use to display the details for the
selected employee.

Chapter 7

[191]

Drag-and-drop a DetailsView control onto the web form in its design view mode
and associate its data source with the data source control that we just configured.
Refer to the following screenshot:

You are done! When you execute the application, the output is similar to what is
shown in the following screenshot:

The output shown above is not well formatted. Similar to the GridView control,
you can use the style properties of the DetailsView control and its templates to
customize the display. I will not discuss much on how these styles and templates
work as we have had a detailed discussion on this in the Chapter 6 on the
GridView control.

Displaying Views of Data (Part II)

[192]

Displaying a DropDownList inside t�e DetailsView control a DropDownList inside t�e DetailsView control
You can display a DropDownList control inside a DetailsView and bind
data to it at design time using the <asp:TemplateField> tag in the
markup as shown in the code snippet below.

<asp:TemplateField HeaderText = "Department Name">
 <ItemTemplate>
 <asp:DropDownList
 ID="DeptDropDown" runat="server"
 DataSourceID="SqlDataSource1"
 DataTextField="DepartmentName"
 DataValueField="DepartmentID"
 SelectedValue=
 '<%# Eval("DepartmentID") %>' />
 </ItemTemplate>
</asp:TemplateField>

The above markup code will display a DropDownList control named
DeptDropDown containing all the department names.

C�anging t�e DetailsView mode
Suppose you want to change the DetailsView mode to Insert if
there are no records in the control. You can do this in the code
behind by using the ChangeMode() method of the control. Here is
the code snippet that illustrates how you can achieve this:

if (DetailsView1.Rows.Count == 0)
 DetailsView1.ChangeMode(DetailsViewMode.Insert);

else
 DetailsView1.ChangeMode(DetailsViewMode.ReadOnly);

Note that we have changed the mode to Insert if there are no records in
the control and tocontrol and to and to ReadOnly if there are records within it.

The following code snippet illustrates that the source code for the control looks like
after formatting, using the style properties and the templates of the control:

<asp:DetailsView ID="DetailsView1" runat="server" Height="50px"
 Width="727px" BorderStyle="None" BorderColor="Black"
 BorderWidth="1px" AutoGenerateRows="False"
 DataSourceID="SqlDataSource1" AllowPaging="True">
 <FooterStyle ForeColor="Blue" BackColor="White"></FooterStyle>
 <RowStyle ForeColor="Teal"></RowStyle>
 <PagerStyle ForeColor="Blue" HorizontalAlign="Left"
 BackColor="White"></PagerStyle>
 <Fields>

Chapter 7

[193]

 <asp:BoundField DataField="EmployeeName"
 HeaderText="EmployeeName" SortExpression="EmployeeName" />
 <asp:BoundField DataField="JoiningDate"
 HeaderText="JoiningDate"
 SortExpression="JoiningDate" HtmlEncode="False"
 DataFormatString="{0:d}"/>
 <asp:BoundField DataField="Salary" HeaderText="Salary"
 SortExpression="Salary" HtmlEncode="False"
 DataFormatString="{0:C}"/>
 <asp:BoundField DataField="DepartmentID"
 HeaderText="DepartmentID"
 SortExpression="DepartmentID" />
 <asp:BoundField DataField="EmployeeAddress"
 HeaderText="EmployeeAddress"
 SortExpression="EmployeeAddress" />
 </Fields>
 <HeaderStyle ForeColor="White" Font-Bold="True"
 BackColor="#336699"></HeaderStyle>
</asp:DetailsView>

When you execute the application now, the output is similar to the one shown in the
following screenshot:

Displaying Views of Data (Part II)

[194]

As you can see from the figure, the output looks much better. The following is
the complete source code in the .aspx file for the simple application that we
have designed.

<form id="form1" runat="server">
 <div>
 Select Employee:
 <asp:DropDownList ID="DropDownList1" runat="server"
 AutoPostBack="True" DataSourceID="SqlDataSource2"
 DataTextField="EmployeeName" DataValueField="EmployeeID"
 Width="140px">
 </asp:DropDownList>

 The details of the selected employee are:--

 <asp:DetailsView ID="DetailsView1" runat="server"
 Height="50px" Width="727px" BorderStyle="None"
 BorderColor="Black" BorderWidth="1px
 AutoGenerateRows="False" DataSourceID="SqlDataSource1"
 AllowPaging="True">
 <FooterStyle ForeColor="Blue"
 BackColor="White"></FooterStyle>
 <RowStyle ForeColor="Teal"></RowStyle>
 <PagerStyle ForeColor="Blue" HorizontalAlign="Left"
 BackColor="White"></PagerStyle>
 <Fields>
 <asp:BoundField DataField="EmployeeName"
 HeaderText="EmployeeName" SortExpression="EmployeeName" />
 <asp:BoundField DataField="JoiningDate"
 HeaderText="JoiningDate" SortExpression="JoiningDate"
 HtmlEncode="False" DataFormatString="{0:d}"/>
 <asp:BoundField DataField="Salary" HeaderText="Salary"
 SortExpression="Salary" HtmlEncode="False"
 DataFormatString="{0:C}"/>
 <asp:BoundField DataField="DepartmentID"
 HeaderText="DepartmentID" SortExpression="DepartmentID" />
 <asp:BoundField DataField="EmployeeAddress"
 HeaderText="EmployeeAddress"
 SortExpression="EmployeeAddress" />
 </Fields>
 <HeaderStyle ForeColor="White" Font-Bold="True"
 BackColor="#336699"></HeaderStyle>
 </asp:DetailsView>
 </div>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=.;
 Initial Catalog=Test;User ID=sa;Password=sa"

Chapter 7

[195]

 ProviderName="System.Data.SqlClient"
 SelectCommand="SELECT [EmployeeName], [JoiningDate],
 [Salary], [DepartmentID], [EmployeeAddress] FROM
 [Employee] WHERE ([EmployeeID] = @EmployeeID)">
 <SelectParameters>
 <asp:ControlParameter ControlID="DropDownList1"
 Name="EmployeeID" PropertyName="SelectedValue"
 Type="Int32" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:SqlDataSource ID="SqlDataSource2" runat="server"
 ConnectionString="<%$
 ConnectionStrings:TestConnectionString %>"
 SelectCommand="SELECT [EmployeeID], [EmployeeName] FROM
 [Employee]">
 </asp:SqlDataSource>

</form>

The best part as we have seen so far is that we didn't write even a single line of code.
Awesome, isn't it?

Finding Controls inside a DetailsView control
You can find a control nested within a DetailsView control using the
FindControl() method in the DataBound event of the control as
shown in the following code snippet:

protected void DetailsView1_DataBound(object sender,
EventArgs e)
 {
 if (((DetailsView)sender).
 CurrentMode == DetailsViewMode.Edit)
 {
 TextBox txtBox = (TextBox)((DetailsView)
 sender).FindControl("txtEmployeeName");
 if (myTextBox != null)
 {
 //Write your custom code here
 }
 }
 }

Displaying Views of Data (Part II)

[196]

Accessing bound fields of a DetailsView control in the code behind
To access the bound fields of a DetailsView control from the code behind,
you can write the following code in the DataBound event of the control.

protected void DetailsView1_DataBound(object sender,
EventArgs e)
 {
 foreach (DetailsViewRow dvr in
 DetailsView1.Rows)
 {
 Response.Write("
 " +
 dvr.Cells[1].Text);
 }
 }

Using a C�eckBox inside a DetailsView control
You can use a CheckBox control inside the DetailsView control
using the <asp:TemplateField> tag and then creating the control
inside the <ItemTemplate> and binding data using the Bind()
method. Here is the markup code for the control:

<asp:TemplateField HeaderText = "Employee Name">
 <ItemTemplate>
 <asp:Checkbox ID="ChkSelect" Runat="Server"
 Text='<%# Bind("EmployeeName") %>'
 Checked ="false"/>
 </ItemTemplate>
</asp:TemplateField>

Working with the ASP.NET FormView
Control
The ASP.NET FormView control is a data-bound control that renders a single record
at a time from its associated data source. It is quite similar to the DetailsView control
except that while the DetailsView renders itself into a tabular format, the FormView
control requires user-defined templates for rendering. According to the MSDN,
"When using the FormView control, you specify templates to display and edit bound bound
values. The templates contain formatting, controls, and binding expressions to create
the form. The FormView control is often used in combination with a GridViewFormView control is often used in combination with a GridView control is often used in combination with a GridView
control for master or detail scenarios."

Chapter 7

[197]

To use the FormView control, simply drag and drop it from the tool box andFormView control, simply drag and drop it from the tool box and control, simply drag and drop it from the tool box and
then associate the control with a data source. In our example we will take the
SqlDataSource control to bind data to the FormView control. You can use an existing control to bind data to the FormView control. You can use an existing
data source or create a fresh new one using the smart tag of the control.

As we have seen in Chapter 1, the SqlDataSource is a data source control with simpleSqlDataSource is a data source control with simple is a data source control with simple
configuration needs and can be used to bind data to a databound control without
the need to write even a single line of code. It merely involves the steps of creating
the connection string, generating or writing SQL query or Stored Procedure, andSQL query or Stored Procedure, and query or Stored Procedure, andStored Procedure, and Procedure, and
generating an optional insert, update and delete statements. Once this configurationinsert, update and delete statements. Once this configuration, update and delete statements. Once this configurationupdate and delete statements. Once this configuration and delete statements. Once this configurationdelete statements. Once this configuration statements. Once this configuration
is done, it can be bound to a data bound control seamlessly. The following screenshot
illustrates the FormView control and the SqlDataSource control that it is bound to in
design view mode:

Displaying Views of Data (Part II)

[198]

You can also apply templates and styles just as you did with the other data bound
controls in the previous chapters. We will also enable paging for this control so that
it can display multiple records with one record per page. Here is the display once
you execute the application.

Specifying t�e PrimaryKey of t�e DataSource using t�e
DataKeyNames property
The purpose of the DataKeyNames property for the data controls we
have used so far is to specify the PrimaryKey(in this case EmployeeID)
field from the DataSource that is used to bind data to these controls. You
can use this property in the markup code in the .aspx file as shown
as follows:

DataKeyNames="EmployeeID"

Finding controls wit�in a FormView control
Similar to the DetailsView control, you can use the FindControl()
method to find nested controls within a FormView control. The following
code snippet illustrates how this can be achieved.

if (FormView1.CurrentMode == FormViewMode.Edit ||
FormView1.CurrentMode == FormViewMode.Insert)
 {
 //Write your custom code here
 }

Chapter 7

[199]

Note that the FormView control shown in the screenshot above has paging enabled
and it displays the details of the employees, one in each page. The following code
snippet shows the source code that gets generated in your .aspx file.

<asp:FormView ID="FormView1" runat="server" AllowPaging="True"
 BackColor="White" BorderColor="Red" BorderStyle="None"
 BorderWidth="1px" CellPadding="3" CellSpacing="2"
 DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1"
 GridLines="Both">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <EditRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="White" />
 <RowStyle BackColor="White" ForeColor="Black" />
 <PagerStyle ForeColor="Blue" HorizontalAlign="Center" />
 <ItemTemplate>
 EmployeeID:<asp:Label ID="EmployeeIDLabel" runat="server"
 Text='<%# Eval("EmployeeID") %>'>
 </asp:Label>

 EmployeeName:<asp:Label ID="EmployeeNameLabel"
 runat="server" Text='<%# Bind("EmployeeName") %>'>
 </asp:Label>

 JoinDate:<asp:Label ID="JoiningDateLabel" runat="server"
 Text='<%# Bind("JoiningDate") %>'></asp:Label>

 Salary:<asp:Label ID="SalaryLabel" runat="server" Text='<%#
 Bind("Salary") %>'></asp:Label>

 DepartmentID:<asp:Label ID="DepartmentIDLabel"
 runat="server" Text='<%# Bind("DepartmentID") %>'>
 </asp:Label>

 </ItemTemplate>
 <HeaderStyle BackColor="Black" Font-Bold="True" ForeColor="White" />
</asp:FormView>

And here is the markup code for the SqlDataSource control that we have used to
bind data to the FormView control.

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=.;
 Initial Catalog=Test;UserID=sa;Password=sa"
 SelectCommand="SELECT [EmployeeID], [EmployeeName],
 [JoiningDate], [Salary], [DepartmentID] FROM [Employee]">
</asp:SqlDataSource>

Displaying Views of Data (Part II)

[200]

Formatting Data Using the FormView Control
As you can see from the figure given earlier, the employee data displayed in the
FormView control is not properly formatted. In this section we will learn how we
can use custom formatting to display data in the FormView control in a properly
formatted manner.

To ensure that the FormView control displays a custom text when there are no records
in the control, we will use the property called EmptyDataText shown as follows:

EmptyDataText="No Records"

Now, to test whether the above message is displayed, let us bind an empty data
source to the FormView control. We will make the data source empty by changing its
Select statement shown as follows:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=.;
 Initial Catalog=Test;UserID=sa;Password=sa"
 SelectCommand="SELECT [EmployeeID], [EmployeeName],
 [JoiningDate], [Salary], [DepartmentID] FROM [Employee] where
 1=0">
</asp:SqlDataSource>

The above data source is empty as the condition specified 1=0 is always false. When
you bind such a data source to the FormView control with its EmptyDataText
property set, the text gets displayed in place of the records which would otherwise
have been displayed if the data source contained data. Here is the output on execution:

The JoiningDate and the Salary fields displayed in the FormView control shown
in the earlier section were not properly formatted. Here is how you can use the
Bind() method in the markup code in the .aspx file to format the display of these
fields in the control.

</asp:Label>

 Joining Date:<asp:Label ID="lblJoiningDate" runat="server"
 Text='<%# Bind("JoiningDate","{0:d}") %>'></asp:Label>

 Salary:<asp:Label ID="lblSalary" runat="server" Text='<%#
 Bind("Salary","{0:c}") %>'>
</asp:Label>

Chapter 7

[201]

Note how we have used the data format string in the second parameter to the
Bind() method.

We can also use a DropDownList control within the FormView control to display the
department names with the department to which the specific employee belongs as
the selected department in the DropDownList. The markup code follows:

<asp:DropDownList ID="DeptDropDownList" runat="server"
 DataSourceID="SqlDataSource2" DataTextField="DepartmentName"
 DataValueField="DepartmentID" SelectedValue='<%#
 Eval("DepartmentID") %>'/>

To customize paging, we can use the PagerTemplate of the FormView control with
LinkButtons and appropriate texts on them. Here is the markup code in the .aspx
file that illustrates how you can use the PagerTemplate of the FormView control to
display a customized pager. Note that the AllowPaging property should be set to
true to enable paging for the control.

<PagerTemplate>
 <table>
 <tr>
 <td>
 <asp:LinkButton ID="FirstButton" CommandName="Page"
 CommandArgument="First" Text="First" RunAt="server"/>
 </td>
 <td>
 <asp:LinkButton ID="PrevButton" CommandName="Page"
 CommandArgument="Prev" Text="Prev" RunAt="server"/>
 </td>
 <td>
 <asp:LinkButton ID="NextButton" CommandName="Page"
 CommandArgument="Next" Text="Next" RunAt="server"/>
 </td>
 <td>
 <asp:LinkButton ID="LastButton" CommandName="Page"
 CommandArgument="Last" Text="Last" RunAt="server"/>
 </td>
 </tr>
 </table>
</PagerTemplate>

Displaying Views of Data (Part II)

[202]

Here is the complete source code for the FormView control with the customized
formatting we have just discussed.

<asp:FormView ID="FormView1" runat="server" AllowPaging="True"
 BackColor="White" DefaultMode="ReadOnly"
 BorderColor="Red" BorderStyle="Solid" EmptyDataText="No Records"
 BorderWidth="1px" CellPadding="3" CellSpacing="2"
 DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1"
 GridLines="Both">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <EditRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="White" />
 <RowStyle BackColor="White" ForeColor="Black" />
 <PagerStyle ForeColor="Blue" HorizontalAlign="Center" />
 <ItemTemplate>
 Employee ID:<asp:Label ID="lblEmpID" runat="server"
 Text='<%# Eval("EmployeeID") %>'>
 </asp:Label>

 Employee Name:<asp:Label ID="lblEmpName" runat="server"
 Text='<%# Bind("EmployeeName") %>'>
 </asp:Label>

 Joining Date:
 <asp:Label ID="lblJoiningDate" runat="server" Text='<%#
 Bind("JoiningDate","{0:d}") %>'></asp:Label>

 Salary:<asp:Label ID="lblSalary" runat="server"
 Text='<%# Bind("Salary","{0:c}") %>'>
 </asp:Label>

 Department Name:
 <asp:DropDownList ID="DeptDropDownList"
 runat="server" DataSourceID="SqlDataSource2"
 DataTextField="DepartmentName"DataValueField=
 "DepartmentI D"
 SelectedValue='<%# Eval("DepartmentID") %>' />

 </ItemTemplate>
 <PagerTemplate>
 <table>
 <tr>
 <td><asp:LinkButton ID=»FirstButton» CommandName=»Page»<td><asp:LinkButton ID=»FirstButton» CommandName=»Page»
 CommandArgument=»First» Text=»First»
 RunAt=»server»/></td>
 <td><asp:LinkButton ID=»PrevButton» CommandName=»Page»
 CommandArgument=»Prev» Text=»Prev»
 RunAt=»server»/></td>

Chapter 7

[203]

 <td><asp:LinkButton ID=»NextButton» CommandName=»Page»
 CommandArgument=»Next» Text=»Next»
 RunAt=»server»/></td>
 <td><asp:LinkButton ID=»LastButton» CommandName=»Page»
 CommandArgument=»Last» Text=»Last»
 RunAt=»server»/></td>
 </tr>
 </table>
 </PagerTemplate>
 <HeaderStyle BackColor=»Black» Font-Bold=»True»
 ForeColor=»White» />
</asp:FormView>

The markup code for the data source controls used for binding data to the FormView
control and the DropDownList control contained within it is shown as follows:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="Data Source=.;
 Initial Catalog=Test;UserID=sa;Password=sa"
 SelectCommand="SELECT [EmployeeID], [EmployeeName],
 [JoiningDate], [Salary], [DepartmentID] FROM [Employee]">
</asp:SqlDataSource>

<asp:SqlDataSource ID="SqlDataSource2" runat="server"
 ConnectionString="<%$ ConnectionStrings:TestConnectionString %>"
 SelectCommand="SELECT [DepartmentID], [DepartmentName] FROM
 [Department]">
</asp:SqlDataSource>

When you execute the application, the output is similar to what is shown in the
following screenshot:

Displaying Views of Data (Part II)

[204]

Data binding using t�e DataSource and DataSourceID properties
The ASP.NET data controls facilitate binding data to it using either of
the two properties. DataSource and DataSourceID. While you can
use the DataSource property to bind the control to DataSet and
DataReader instances, the DatasourceID property is typically used
to bind data to the DataSource controls such as the SqlDataSource or
ObjectDataSource controls. The latter is the recommended approach
since you can exploit the built-in capabilities of the control to perform the
CRUD (Create, Update, Read and Delete) operations without having to
write much code in
your applications.

I will now quickly run you through some of the most important properties of the
FormView control. You can find similar properties for the other ASP.NET data
controls as well. You can refer to MSDN for more information in this regard.

DefaultMode: You can set the default behavior of the control using this
property. It can accept one of the three possible values. ReadOnly, EditReadOnly, Edit
and Insert.
EmptyDataText: You can use this property to display text in the control if
there are no records, that is, the data source is empty.
AllowPaging: This is a boolean property that, if set to true, will enable
paging and if set to false, paging will be disabled for the control. The page
numbers will also be displayed at the bottom; you can, however, change
those using custom styles.
DataKeyNames: This is the PrimaryKey of the data source.
DataSourceID: This typically will be the ID of the data source control that is
used to bind data to the FormView control.

In the section that follows, we will explore the ASP.NET TreeView control and learn
how we can work with it to display hierarchical data.

Working with the ASP.NET TreeView
Control
The ASP.NET 2.0 TreeView control can be used to display hierarchical data from a
data source. You can create a TreeView control programmatically in the .aspx file as
shown in the following code snippet:

<asp:TreeView ID="TreeView1" runat="server"></asp:TreeView>

•

•

•

•

•

Chapter 7

[205]

When you switch over to the design view of the web form, the control looks as
shown in the following screenshot:

You can easily add nodes to the TreeView control programmatically. You need
to remember how to associate one node with another. Refer to the following code
snippet that shows how we can create a simple TreeView control with two
child nodes:

TreeNode root = new TreeNode();
root.Text = "Root Node";
this.TreeView1.Nodes.Add(root);
TreeNode child1 = new TreeNode();
child1.Text = "Child 1";
root.ChildNodes.Add(child1);
TreeNode child2 = new TreeNode();
child2.Text = "Child 2";
root.ChildNodes.Add(child2);
this.TreeView1.ExpandAll();

Displaying Views of Data (Part II)

[206]

Notice how we have created new nodes using the TreeNode class and associated
the child nodes to the parent node using the ChildNodes property of the
TreeNode instance. When you execute the sample application, the output is
similar to the following.

Fine, let us now examine how we can bind data to the TreeView data control
without writing even a single line of code. We haven't used the XMLDataSource
control so far, right? Let us now discuss how we can use the XMLDataSource control
to bind data to the TreeView Control.

First, drag and drop an XMLDataSource control onto your web form in design
view mode. Then associate this control to the Employee_Addresses.xml file that
contains the addresses of all the employees in the Employee table as shown in the
following screenshot:

Chapter 7

[207]

Here is what the Employee_Addresses.xml file looks like.

<?xml version="1.0" encoding="utf-8" ?>
<Employee_Addresses>
 <Employee Name="Joydip">
 <Address Value="20/12 Northern Avenue, Paikpara, P.O. Belgachia,
 Kolkata. PinCode: 700 037. INDIA.">
 </Address>
 </Employee>
 <Employee Name="Douglas">
 <Address Value="Packt Pub, United Kingdom">
 </Address>
 </Employee>
 <Employee Name="Jini">
 <Address Value="25/1 Anath Nath Deb Lane, Paikpara, Kolkata.
 PinCode:700 037.INDIA.">
 </Address>
 </Employee>
 <Employee Name="Rama">
 <Address Value="13/G Northern Avenue, Paikpara, Kolkata.
 PinCode:700 037.INDIA.">
 </Address>
 </Employee>
 <Employee Name="Amal">
 <Address Value="25/1 Rani Branch Road, Paikpara, Kolkata.
 PinCode: 700 002. INDIA.">
 </Address>
 </Employee>
</Employee_Addresses>

Displaying Views of Data (Part II)

[208]

Next use the DataBindings Editor as shown below to specify the bindings for the
nodes of the TreeView control.

You can customize the display by specifying the color, font and node styles of
your choice using the ParentNodeStyle, SelectedNodeStyle and the NodeStyle
properties of the TreeView control. The source code for the TreeView control now
looks like:

<asp:TreeView ID="TreeView1" runat="server"
 DataSourceID="XmlDataSource1" BackColor="White" Font
 Bold="True" Font-Italic="True" ForeColor="Black">
 <ParentNodeStyle Font-Bold="True" ForeColor="Black"
 BackColor="SkyBlue" />
 <SelectedNodeStyle Font-Underline="True" HorizontalPadding="0px"
 VerticalPadding="0px" BackColor="#C04000" />
 <NodeStyle Font-Names="Verdana" Font-Size="8pt" ForeColor="Black"
 HorizontalPadding="5px" NodeSpacing="0px"

Chapter 7

[209]

 VerticalPadding="0px" BackColor="#00C0C0" />
 <DataBindings>
 <asp:TreeNodeBinding DataMember="Address" ValueField="Value"/>
 <asp:TreeNodeBinding DataMember="Employee" ValueField="Name"/>
 </DataBindings>
 <LeafNodeStyle BackColor="#FFE0C0" />
</asp:TreeView>

You are done! When you execute the application, the output is similar to
the following:

Note how the node with the caption as Joydip expands once you click on it. The
corresponding address for the employee Joydip is then displayed as text.

SelectedNodeChanged event of t�e TreeView control
The SelectedNodeChanged event of the TreeView control is used
to detect whether a selection has changed. This event gets fired when
the user selects a particular node of the TreeView control. However,
this event will not be fired if the SelectedNodeChanged property is
changed programmatically.

Displaying Views of Data (Part II)

[210]

Creating t�e nodes of TreeView control programmatically
You can create the nodes of a TreeView control programmatically. The
following code snippet illustrates how this can be achieved.

private void CreateTreeView()
 {
 for (int i = 0; i < 10; i++)
 {
 TreeNode treeNode = new TreeNode();
 treeNode.Text = "Node Item: " + i.ToString();
 treeNode.Value = "Node Item: " + i.ToString();
 treeNode.ShowCheckBox = true;
 treeNode.ToolTip =
 "This is Node Item: " + i.ToString();
 TreeView1.Nodes.Add(treeNode);
 }
 this.Panel1.Controls.Add(TreeView1);
 }

In this code snippet, the TreeView control is placed inside a
Panel control.

Implementing a Directory Structure as a
TreeView
In this section I will demonstrate how we can make use of the TreeView control
to display the list of directories and files in your system. The directories will be
displayed as parent nodes with the child nodes displaying the files under those
directories. When you execute the sample application, the output is similar to what is
shown in the following screenshot: following screenshot:

Chapter 7

[211]

Note that the directories are displayed as parent nodes with the files under those
directories displayed as child nodes and are marked with check boxes. Let us now
see how we can implement such an application.

Simply create a TreeView control with the following markup code in your
.aspx file:

<asp:TreeView ID="TreeView1" runat="server" SelectedNodeStyle
 ForeColor="Green" SelectedNodeStyle-VerticalPadding="0
 ShowCheckBoxes="Leaf" BackColor="White" Font-Size="Medium"
 ForeColor="Blue">
</asp:TreeView>

Displaying Views of Data (Part II)

[212]

From the code behind, we will invoke a method called CreateDirectoryTreeView()
in the Page_Load event of the web page as shown as follows:

if (!IsPostBack)
{
 String directoryPath = "C:\\Projects";
 DirectoryInfo directoryInfo = new
 System.IO.DirectoryInfo(directoryPath);
 if (directoryInfo != null)
 {
 TreeNode rootDirectoryNode =
 CreateDirectoryTreeView(directoryInfo, null);
 if (rootDirectoryNode != null)
 TreeView1.Nodes.Add(rootDirectoryNode);
 }
}

Note that we have set the base directory path as "C:\\Projects". You can change
this path depending on your requirements. The CreateDirectoryTreeView()
method is a recursive method that accepts two arguments, one is an instance of
DirectoryInfo that points to the base directory and the other is the parent node. We
will pass the second parameter as null.

Inside the CreateDirectoryTreeView() method the base node is created using
the TreeNode instance. The sub-directories and the files contained under a specific
directory are retrieved using the DirectoryInfo and the FileInfo classes as shown
in the following code snippet:

TreeNode baseNode = new TreeNode(directoryInfo.Name);
DirectoryInfo[] subDirectories = directoryInfo.GetDirectories();
FileInfo[] filesInDirectory = directoryInfo.GetFiles();

Now, the sub-directories inside the base directory are iteratively retrieved inside a
loop and the CreateDirectoryTreeView() method is recursively called. Then the
child nodes under a particular parent node are added. Refer to the following
code snippet:

for (int i = 0, n = subDirectories.Length; i < n; i++)
 CreateDirectoryTreeView(subDirectories[i], baseNode);

Chapter 7

[213]

Note how the CreateDirectoryTreeView() method is recursively called with
the sub-directory and the base node as parameters. The sub-directories collection
contains a collection of all directories under a particular directory.

for (int ctr = 0, cnt = filesInDirectory.Length; ctr < cnt; ctr++)
{
 TreeNode childNode = new TreeNode(filesInDirectory[ctr].Name);
 baseNode.ChildNodes.Add(childNode);
}

Refer to the code snippet above. The filesInDirectory collection contains a
collection of the list of files under a particular directory. Next, the base node (if the
parent node is null) or the parent node itself is returned. Here is the complete source
code for the CreateDirectoryTreeView() method:

TreeNode CreateDirectoryTreeView(DirectoryInfo directoryInfo,
 TreeNode parentNode)
 {
 TreeNode baseNode = new TreeNode(directoryInfo.Name);
 DirectoryInfo[] subDirectories =
 directoryInfo.GetDirectories();
 FileInfo[] filesInDirectory = directoryInfo.GetFiles();
 for (int i = 0, n = subDirectories.Length; i < n; i++)
 CreateDirectoryTreeView(subDirectories[i], baseNode);
 for (int ctr = 0, cnt = filesInDirectory.Length; ctr < cnt;
 ctr++)
 {
 TreeNode childNode = new
 TreeNode(filesInDirectory[ctr].Name);
 baseNode.ChildNodes.Add(childNode);
 }

 if (parentNode == null)
 return baseNode;
 parentNode.ChildNodes.Add(baseNode);
 return parentNode;
 }

Displaying Views of Data (Part II)

[214]

Using t�e TreeView SelectedNodeC�anged event �andler
You can use the SelectedNodeChanged event handler of the
TreeView control to perform any custom operations such as,
collasping the nodes. You can also check the depth of the selected
nodes using the Depth property. Here is the code snippet that
illustrates this:

protected void TreeView1_SelectedNodeChanged
 (object sender, EventArgs e)
 {
 if (TreeView1.SelectedNode.Depth == 0)
 {
 TreeView1.CollapseAll();
 }
 else if (TreeView1.SelectedNode.Depth == 1)
 {
 Response.Write(TreeView1.SelectedNode.Text);
 }
 }

Summary
In this chapter, we saw some of the data view controls like the DetailsView,
FormView and the TreeView controls and how we can use them in our ASP.NET
applications. In the following and the concluding chapter of this book we will have a
look at LINQ and how we can use it to bind data to the new data controls available
in Orcas.

Working with LINQ
This is the last chapter in our journey. I will show you how to work with the new
data source controls using LINQ and how we can use LINQ to bind data to these
controls and perform various other operations. LINQ is a part of the new versions of
the C# and VB.NET compilers and it comes with a powerful set of operators to ease
the task of querying different data sources, like, SQL Server, XML and so on.

In this chapter, we will learn about the following:

Introducing LINQ; its benefits and features
The architecture of LINQ
Querying data using LINQ
Using the ListView Control
Using the DataPager Control
Data binding using LINQ

Introducing LINQ
In this section we will explore how we can use LINQ with the new data source
controls that have been shipped as part of Orcas. Fine, but, what is LINQ anyway?
LINQ or Language Integrated Query is a query translation pipeline that has been
introduced as part of the C# 3.0 library. Microsoft states, "The LINQ Project is
a codename for a set of extensions to the .NET Framework that encompasses
language-integrated query, set, and transform operations. It extends C# and Visual
Basic with native language syntax for queries and provides class libraries to take
advantage of these capabilities." It is Microsoft's offering for an Object Relational
Mapping between your business objects and the underlying data sources. These data
sources can be databases or even XML document files. As of now, C# 3.0, F# and V�
9 have support for LINQ. You can get more information from the LINQ FAQ at the
MSDN forums.

•

•

•

•

•

•

Working with LINQ

[216]

LINQ comprises of a standard set of operators to facilitate query operations. We will comprises of a standard set of operators to facilitate query operations. We will
learn more on LINQ query operators later in this chapter.LINQ query operators later in this chapter. query operators later in this chapter.

Why LINQ?
LINQ is an awesome, new feature available as part of C# 3.0 and allows you to
integrate queries right into your programs. It is an extension to the C# language and
provides a simplified framework for accessing relational data in an Object Oriented
manner. Here is how you can search for an employee from our employee table
using LINQ:

var result =
 from emp in Employee
 where emp.EmpName == "Jini"
 select c.EmpCode;

So, how do you benefit? Well, in using LINQ, the complexities are much reduced and
you can easily debug your queries.

Understanding the LINQ Architecture
In this section we will discuss the basic components of the architecture of LINQ. I
will now familiarize you with what LINQ is all about, the components involved in its
architecture, and so on. The following figure illustrates the LINQ architecture:

Chapter 8

[217]

LINQ to XML maps your LINQ queries or LINQ statements to the correspondingXML maps your LINQ queries or LINQ statements to the corresponding maps your LINQ queries or LINQ statements to the correspondingLINQ queries or LINQ statements to the corresponding queries or LINQ statements to the correspondingLINQ statements to the corresponding statements to the corresponding
XML data sources. It helps you to use the LINQ standard query operators to retrieve data sources. It helps you to use the LINQ standard query operators to retrieveLINQ standard query operators to retrievestandard query operators to retrieve
XML data. LINQ to XML is commonly known asLINQ to XML is commonly known as to XML is commonly known asXML is commonly known as is commonly known as XLINQ. You can also use LINQLINQ
to query your in-memory collections and business entities (objects that contain data
related to a particular entity) seamlessly.

Similar to XLINQ (for querying your XML documents), you also have DLINQ
which is an implementation of LINQ that allow you to query your databases. LINQ
to SQL is or DLINQ as it is called is actually an ORM (Object relational Mapping)
tool. When using LINQ to SQL, the DataContext class in the System.Data.Linq
namespace is used to create your data contexts. All your data context classes will
derive from the base DataContext class. DataContexts are responsible for generating
the corresponding SQL statements when using LINQ to SQL. In other words, the
DataContext accepts the LINQ statements as input, processes them, and produces
the corresponding T-SQL statements as output. We will learn more on DataContexts
later in this chapter.

Creating Business Entities t�at are mapped to database tables
You can use either the Designer included in VS.NET or the SqlMetal.exe
tool for creating business entities that are mapped to database tables.

Before we start using LINQ to bind data to the data controls, let us have a look at the
new data controls introduced in Orcas. We will then use LINQ to bind data to those
controls. We will discuss these new data controls later in this chapter.

Operators in LINQ
Powered by a rich set of query operators and expressions, you can use LINQ with
absolutely any data source! You can use LINQ with any supported data sources like
relational databases, XML files. Moreover, LINQ is type safe and extensible.

LINQ offers you a collection of some powerful operators that make your task of offers you a collection of some powerful operators that make your task of
querying data much easier.

The following is the list of some commonly used operators in LINQ:LINQ::

Select
SelectAll
Where
OrderBy
Skip
SkipWhile

•
•
•
•
•
•

Working with LINQ

[218]

I recommend taking a look at the LINQ specification documents to have a moreLINQ specification documents to have a more specification documents to have a more
detailed reference to these operators and how they are used.

Required namespaces
You should include the System.Data.DLinq namespace if you want to
use LINQ for SQL. For LINQ to XML or XLINQ, include the System.
Xml.Linq namespace. If you want LINQ to Business entities, include the
System.Linq in your applications. For using Lamda expressions, you
should include the System.Linq.Expressions namespace.

Querying Data Using LINQ
Let us take a look at how we can use LINQ to query data in our applications. TheLINQ to query data in our applications. The to query data in our applications. The
following code snippet illustrates how you can use LINQ to display the contents ofLINQ to display the contents of to display the contents of
an array:

String[] employees = {"Joydip", "Douglas", "Jini", "Piku", "Amal",
 "Rama", "Indronil"};
var employeeNames = from employee in employees select employee;
foreach (var empName in employeeNames)
 Response.Write(empName);

Let us now understand how we can use LINQ to query a generic list. Consider the
Generic Employee List given as follows:

private static List<String> GenericEmployeeList = new List<String>()
{
 "Joydip", "Douglas", "Jini", "Piku",
 "Rama", "Amal", "Indronil"
};

Now you can use LINQ to query this list as shown in the following code snippet:

IEnumerable<String> employees = from emp in GenericEmployeeList
 select emp;
 foreach (string employee in employees)
 {
 Response.Write(employee);
 }

You can use conditions with your LINQ query too. The following example
shows how.

IEnumerable<String> employees = from emp in GenericEmployeeList where
emp.Length > 4 select emp;
 foreach (string employee in employees)

Chapter 8

[219]

 {
 Response.Write(employee);
 }

In this code snippet, we used LINQ to display the employee names that are more
than 4 characters in length. The above query displays the following output:

Joydip
Douglas
Indronil

Here is another example of how you can use conditional queries with LINQ. To
display the names of the employees whose names start with the letter "J", you can
use the following:

IEnumerable<String> employees = from emp in GenericEmployeeList where
 emp.StartsWith("J")
 select emp;
foreach (String employee in employees)
{
 Response.Write(employee);
}

This code snippet will result in the following employee names being displayed.

Joydip
Jini

As you can see from the above output, only those employees whose names start with
the letter "J" are displayed.

Alternatively, you can use LINQ with any other collections too. As an example,
the following code illustrates how you can use LINQ to retrieve the details of
selective employees from a DataTable instance that contains a collection
of employees:

DataTable empDataTable = new DataTable();
empDataTable.Columns.Add("EmpCode", typeof(String));
empDataTable.Columns.Add("EmpName", typeof(String));
empDataTable.Columns.Add("DeptCode", typeof(String));
empDataTable.Columns.Add("Salary", typeof(Decimal));
empDataTable.Rows.Add("E0001", "Joydip", "D0001",23000);
empDataTable.Rows.Add("E0002", "Douglas", "D0002", 45000);
empDataTable.Rows.Add("E0003", "Jini", "D0001", 12000);
empDataTable.Rows.Add("E0004", "Piku", "D0003", 13000);
empDataTable.Rows.Add("E0005", "Rama", "D0003", 27500);
empDataTable.Rows.Add("E0006", "Amal", "D0002", 19500);

Working with LINQ

[220]

var empRecords = from row in empDataTable.AsEnumerable()
 where row.Field<decimal>("Salary") > 15000
 select row;

foreach (var emp in empRecords)
Response.Write("
"+emp["EmpCode"].ToString() + "\t" +
emp["EmpName"].ToString() + "\t" + emp["Salary"].ToString());

I will now show you how you can use LINQ to query data from a generic list. Here is
the code that illustrates this.

List<Employee> empList = new List<Employee>()
{
 new Employee
 {
 EmpCode = "E0001", EmpName = "Joydip", DeptCode =
 "D0001", Salary = 23000
 },
 new Employee
 {
 EmpCode = "E0002", EmpName = "Douglas", DeptCode =
 "D0003", Salary = 45000
 },
 new Employee
 {
 EmpCode = "E0003", EmpName = "Jini", DeptCode = "D0002",
 Salary = 15000
 }
};

var empRecords = from row in empList.AsEnumerable()
 where row.Salary > 15000
 select row;

foreach (var emp in empRecords)
 Response.Write("
" + emp.EmpCode.ToString() + "\t" +
 emp.EmpName.ToString() + "\t" + emp.Salary.ToString());

Here is the code for our Employee class.

public class Employee
{
 public string EmpCode { get; set;}
 public string EmpName { get; set;}
 public string DeptCode { get; set;}
 public DateTime JoiningDate { get; set;}
 public decimal Salary { get; set;}
}

Chapter 8

[221]

The New Data Controls in VS.NET 2008
(Orcas)
Orcas, as it is called, is the next release of Microsoft's Visual Studio .NET (VS.NET
2008) and is compliant with the Microsoft's Vista Operating System. The new data
controls added with Orcas include the DataPager control and the ListView control.
In this section we will discuss how we can use LINQ to bind data to these controls
seamlessly. We will use the DataManager class as we did in the earlier chapters to
retrieve data from the database and bind the data retrieved to the data controls.

Using the ListView Control
Using the ListView control you have complete control over the generated HTML
code. Moreover, you can use the ListView control for CRUD (Create, Update, Read
and Delete) operations and data paging too. To use the ListView control, switch to
the design view mode of your web page and then simply drag and drop the control
from the toolbox as shown in the following screenshot:

The corresponding code that gets generated in the .aspx file is as follows.

<asp:ListView ID="ListView1" runat="server"></ asp:ListView>

Working with LINQ

[222]

The ListView control in ASP.NET supports the following templates for customization.

ItemTemplate
LayoutTemplate
EmptyItemTemplate
EmptyDataTemplate
SelectedItemTemplate
EditItemTemplate
AlternatingItemTemplate
InsertItemTemplate
ItemSeparatorTemplate
GroupTemplate
GroupSeparatorTemplate

I will now show you how to use the ListView control to display data without writing
even a single line of code. Configure the DataSource property of the ListView
control to a valid DataSource. Refer to the following screenshot:

•

•

•

•

•

•

•

•

•

•

•

Chapter 8

[223]

We will skip this section on configuring the DataSource as we have already
discussed it with other controls in Chapter 1 of this book. Once you have
configured the DataSource, you can configure the ListView control using the
ConfigureListView option of then of the of the ListView control in the design view mode of the
web page. When you select the above option, the window shown in the following
screenshot pops up:

Working with LINQ

[224]

Select Professional in the Select a Style option and then click on the OK button.
When you execute the application, the output is similar to what is shown in the
following screenshot:

Using the DataPager Control
The DDataPager control in Orcas can be used for custom paging using the ListView control in Orcas can be used for custom paging using the ListViewOrcas can be used for custom paging using the ListViewcan be used for custom paging using the ListViewListView
control. Here is the code that you can write in your .aspx file to use a DataPager
control.

<asp:DataPager ID="dataPager" runat="server"
 PagedControlID="GridView1" PageSize="4">
 <Fields>
 <asp:NumericPagerField NextPageText="Next Page"
 PreviousPageText="Previous Page"/>
 </Fields>
</asp:DataPager>

Note that you can specify the list control with which you want to enable paging
using the PagedControlID and you can set the page size of your choice using the
PageSize property. I will now illustrate how easily you can achieve customized
paging with the ListView control using a DataPager. Here is the code that you need
to write in your .aspx file.

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="SqlDataSource1"
 DataKeyNames="EmployeeID" ItemContainerID="SqlDataSource1">
 <layouttemplate>

Chapter 8

[225]

 <table id="employeeTable" runat="server" border="1">
 <tr>
 <th>EmployeeID</th>
 <th>EmployeeName</th>
 <th>JoiningDate</th>
 <th>Salary</th>
 <th>DepartmentID</th>
 </tr>
 <tbody id="SqlDataSource1"
 runat="server">
 </tbody>
 </table>
<asp:Panel ID="itemContainer" runat="server">
 <asp:DataPager ID="dataPager" runat="server"
 PageSize="4" PagedControlID="ListView1">
 <Fields>
 <asp:NumericPagerField/>
 </Fields>
 </asp:DataPager>
</asp:Panel>
 </layouttemplate>
 <ItemTemplate>
 <tr>
 <td>
 <asp:Label ID="EmployeeIDLabel" runat="server"
 Text='<%# Eval("EmployeeID") %>'/>
 </td>
 <td>
 <asp:Label ID="EmployeeNameLabel" runat="server"
 Text='<%# Eval("EmployeeName") %>'/>
 </td>
 <td>
 <asp:Label ID="JoiningDateLabel" runat="server"
 Text='<%# Eval("JoiningDate") %>'/>
 </td>
 <td>
 <asp:Label ID="SalaryLabel" runat="server" Text='<%#
 Eval("Salary") %>'/>
 </td>
 <td>
 <asp:Label ID="DepartmentIDLabel" runat="server"
 Text='<%# Eval("DepartmentID") %>'/>
 </td>
 </tr>

Working with LINQ

[226]

 </ItemTemplate>
</asp:ListView>
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$
 ConnectionStrings:joydipConnectionString %>"
 SelectCommand="SELECT [EmployeeID], [EmployeeName],
 [JoiningDate], [Salary], [DepartmentID] FROM [Employee]">
</asp:SqlDataSource>

And, here is the output when you execute the sample application.

The next section discusses how you can use LINQ to bind data to ASP.NET data
controls. We will learn how we can use LINQ to bind data to GridView and the
newly introduced ListView control of Orcas.

Data Binding Using LINQ
In this section we will explore how we can use LINQ to bind data to the new data
controls introduced in Orcas, ListView and use the DataPager control for paging
through the records of the ListView control. The DataPager control is used for
providing paging features to the ListView control as the latter does not support this
feature by default. I will first show you how you can use LINQ to bind data to the
GridView control.

Drag and drop a GridView control onto your web form from the toolbox. Now, we
will create an Employee Collection class and name it as Employees. This class will
hold a collection of Employee instances.

Chapter 8

[227]

We will add the following method to our existing DataManager class:

public Employees GetAllEmployees()
{
 SqlConnection conn = null;
 Employees employeeList = null;
 try
 {
 conn = new SqlConnection(connectionString);
 conn.Open();
 string sql = "select EmployeeID as EmpCode, EmployeeName
 as EmpName, Salary as Salary, e.DepartmentID as
 DeptCode, d.DepartmentName as DeptName from employee e,
 Department d where e.DepartmentID = d.DepartmentID";
 SqlCommand cmd = new SqlCommand(sql, conn);
 SqlDataReader dr = cmd.ExecuteReader();
 employeeList = new Employees();

 while (dr.Read())
 {
 Employee emp = new Employee();
 if (dr["EmpCode"] != DBNull.Value)
 emp.EmpCode = dr["EmpCode"].ToString();
 if (dr["EmpName"] != DBNull.Value)
 emp.EmpName = dr["EmpName"].ToString();
 if (dr["Salary"] != DBNull.Value)
 emp.Basic =
 Convert.ToDouble(dr["Salary"].ToString());
 if (dr["DeptCode"] != DBNull.Value)
 emp.DeptCode = dr["DeptCode"].ToString();
 if (dr[«DeptName»] != DBNull.Value)if (dr[«DeptName»] != DBNull.Value)
 emp.DeptName = dr[«DeptName»].ToString();
 employeeList.Add(emp);
 emp = null;
 }
 }
 catch
 {
 throw;
 }
 finally
 {
 conn.Close();
 }
 return employeeList;
}

Working with LINQ

[228]

Note that the GetAllEmployees() method returns an instance of Employees class.
The Employees class is actually List type and comprises of a collection of Employee
instances. In the Page�Load event of the web form, write the following code:

DataManager dataManager = new DataManager();
GridView1.DataSource = from emp in dataManager.GetAllEmployees()
 where emp.Basic > 10000
 select new
 {
 emp.EmpCode,
 emp.EmpName,
 emp.Basic
 };
GridView1.DataBind();

Note that we have used the Where clause to restrict the display. Only those
employees whose Basic is greater then 10000 will be retrieved by the LINQ statementLINQ statement statement
and the result set bound to the GridView control.GridView control. control.

Let us now take a look at how we can use LINQ with the ListView control. We willLINQ with the ListView control. We will with the ListView control. We willListView control. We will control. We will
use the same ListView control that we used earlier. We will however need to change
the DataSourceID and the ItemContainerID of the ListView control to point to theDataSourceID and the ItemContainerID of the ListView control to point to the and the ItemContainerID of the ListView control to point to theItemContainerID of the ListView control to point to the of the ListView control to point to the
LINQ DataSource that we will create. Here is the source code for the LINQ dataDataSource that we will create. Here is the source code for the LINQ data that we will create. Here is the source code for the LINQ dataLINQ data data
source control that we will use.

<asp:LinqDataSource ID="linkDataSource" runat="server"
 ContextTypeName="DataClassesDataContext"
 TableName="Employee" Select="new (EmployeeID as EmployeeID,
 EmployeeName as EmployeeName, JoiningDate as JoiningDate, Salary
 as Salary, DepartmentID as DepartmentID)"
 OrderBy="EmployeeName" />

Note that we have used the OrderBy clause to sort the result set in ascending order
of employee names.

Chapter 8

[229]

As you can see in this code snippet, we have used a DataContext. You use a
DataContext to convert your requests in LINQ for objects into corresponding
queries in Sql. Data contexts are supported using the System.Data.Linq.
DataContext class. Note that we specified our DataContext using the
ContextTypeName clause in the above code snippet. Let us now understand how
we can create our own DataContext.

Create a new data class and name it DataClasses.dbml as shown in the
following screenshot:

Working with LINQ

[230]

Switch to the designer view of the newly created file and create a DataContext by
dragging and dropping the employee table from the ServerExplorer as shown in the
following screenshot:

Save and you are done! Your DataContext class is created.

To put it simply, the DataContext accepts LINQ statements, processes them andDataContext accepts LINQ statements, processes them and accepts LINQ statements, processes them andLINQ statements, processes them and statements, processes them and
generates corresponding T-SQL code. You can generate a DataContext either usingT-SQL code. You can generate a DataContext either using code. You can generate a DataContext either usingDataContext either using either using
the Designer as we have seen or even using a tool called SqlMetal. Note that allSqlMetal. Note that all. Note that all
DataContext classes actually derive from the DataContext class that belongs to the
System.Data.Linq namespace.

Here is the compiler generated code for the DataContext we just created.DataContext we just created. we just created.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Linq;

Chapter 8

[231]

using System.Linq.Expressions;
using System.Reflection;

[System.Data.Linq.Mapping.DatabaseAttribute(Name="Test")]
public partial class DataClassesDataContext:
 System.Data.Linq.DataContext
{
 private static System.Data.Linq.Mapping.MappingSource
 mappingSource = new AttributeMappingSource();

 #region Extensibility Method Definitions
 partial void OnCreated();
 partial void InsertEmployee(Employee instance);
 partial void UpdateEmployee(Employee instance);
 partial void DeleteEmployee(Employee instance);
 #endregion
 static DataClassesDataContext()
 {
 }
 public DataClassesDataContext(string connection):
 base(connection, mappingSource)
 {
 OnCreated();
 }
 public DataClassesDataContext(System.Data.IDbConnection
 connection): base(connection, mappingSource)
 {
 OnCreated();
 }
 public DataClassesDataContext(string connection,
 System.Data.Linq.Mapping.MappingSource mappingSource):
 base(connection, mappingSource)
 {
 OnCreated();
 }
 public DataClassesDataContext(System.Data.IDbConnection
 connection, System.Data.Linq.Mapping.MappingSource
 mappingSource): base(connection, mappingSource)
 {
 OnCreated();
 }
 public DataClassesDataContext():
 base(global::System.Configuration.ConfigurationManager.Connection
 Strings["TestConnectionString"].ConnectionString, mappingSource)
 {
 OnCreated();

Working with LINQ

[232]

 }
 public System.Data.Linq.Table<Employee> Employees
 {
 get
 {
 return this.GetTable<Employee>();
 }
 }
}

[Table(Name="dbo.Employee")]
public partial class Employee:INotifyPropertyChanging,
 INotifyPropertyChanged
{
 private static PropertyChangingEventArgs emptyChangingEventArgs =
 new PropertyChangingEventArgs(String.Empty);
 private int _EmployeeID;
 private string _EmployeeName;
 private string _EmployeeAddress;
 private System.Nullable<System.DateTime> _JoiningDate;
 private decimal _Salary;
 private int _DepartmentID;
 #region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 partial void OnEmployeeIDChanging(int value);
 partial void OnEmployeeIDChanged();
 partial void OnEmployeeNameChanging(string value);
 partial void OnEmployeeNameChanged();
 partial void OnEmployeeAddressChanging(string value);
 partial void OnEmployeeAddressChanged();
 partial void OnJoiningDateChanging(System.Nullable
 <System.DateTime> value);
 partial void OnJoiningDateChanged();
 partial void OnSalaryChanging(decimal value);
 partial void OnSalaryChanged();
 partial void OnDepartmentIDChanging(int value);
 partial void OnDepartmentIDChanged();
 #endregion
 public Employee()
 {
 OnCreated();
 }
 [Column(Storage="_EmployeeID", AutoSync=AutoSync.OnInsert,

Chapter 8

[233]

 DbType="Int NOT NULL IDENTITY", IsPrimaryKey=true,
 IsDbGenerated=true)]
 public int EmployeeID
 {
 get
 {
 return this._EmployeeID;
 }
 set
 {
 if ((this._EmployeeID != value))
 {
 this.OnEmployeeIDChanging(value);
 this.SendPropertyChanging();
 this._EmployeeID = value;
 this.SendPropertyChanged("EmployeeID");
 this.OnEmployeeIDChanged();
 }
 }
 }
 [Column(Storage="_EmployeeName", DbType="VarChar(50) NOT NULL",
 CanBeNull=false)]
 public string EmployeeName
 {
 get
 {
 return this._EmployeeName;
 }
 set
 {
 if ((this._EmployeeName != value))
 {
 this.OnEmployeeNameChanging(value);
 this.SendPropertyChanging();
 this._EmployeeName = value;
 this.SendPropertyChanged("EmployeeName");
 this.OnEmployeeNameChanged();
 }
 }
 }
 [Column(Storage="_EmployeeAddress", DbType="VarChar(MAX)")]
 public string EmployeeAddress
 {
 get

Working with LINQ

[234]

 {
 return this._EmployeeAddress;
 }
 set
 {
 if ((this._EmployeeAddress != value))
 {
 this.OnEmployeeAddressChanging(value);
 this.SendPropertyChanging();
 this._EmployeeAddress = value;
 this.SendPropertyChanged("EmployeeAddress");
 this.OnEmployeeAddressChanged();
 }
 }
 }
 [Column(Storage="_JoiningDate", DbType="DateTime")]
 public System.Nullable<System.DateTime> JoiningDate
 {
 get
 {
 return this._JoiningDate;
 }
 set
 {
 if ((this._JoiningDate != value))
 {
 this.OnJoiningDateChanging(value);
 this.SendPropertyChanging();
 this._JoiningDate = value;
 this.SendPropertyChanged("JoiningDate");
 this.OnJoiningDateChanged();
 }
 }
 }
 [Column(Storage="_Salary", DbType="Money NOT NULL")]
 public decimal Salary
 {
 get
 {
 return this._Salary;
 }
 set
 {
 if ((this._Salary != value))
 {

Chapter 8

[235]

 this.OnSalaryChanging(value);
 this.SendPropertyChanging();
 this._Salary = value;
 this.SendPropertyChanged("Salary");
 this.OnSalaryChanged();
 }
}
 }
 [Column(Storage="_DepartmentID", DbType="Int NOT NULL")]
 public int DepartmentID
 {
 get
 {
 return this._DepartmentID;
 }
 set
 {
 if ((this._DepartmentID != value))
 {
 this.OnDepartmentIDChanging(value);
 this.SendPropertyChanging();
 this._DepartmentID = value;
 this.SendPropertyChanged("DepartmentID");
 this.OnDepartmentIDChanged();
 }
 }
 }
 public event PropertyChangingEventHandler PropertyChanging;
 public event PropertyChangedEventHandler PropertyChanged;
 protected virtual void SendPropertyChanging()
 {
 if ((this.PropertyChanging != null))
 {
 this.PropertyChanging(this, emptyChangingEventArgs);
 }
 }
 protected virtual void SendPropertyChanged(String propertyName)
 {
 if ((this.PropertyChanged != null))
 {
 this.PropertyChanged(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}

Working with LINQ

[236]

You can even use your DataContext in more ways than one. The following code
illustrates how you can play with the DataContext to retrieve the EmployeeID of the
employee whose name is "Jini".

using (DataClassesDataContext context = new DataClassesDataContext())
 {
 Employee emp = context.Employees.Single<Employee>
 (e => e.EmployeeName.Equals("Jini"));
 Response.Write(emp.EmployeeID);
 }

Next we need the ListView control in our web form which will be used to display theListView control in our web form which will be used to display the control in our web form which will be used to display the
employee records. This ListView control will make use of the LINQ data source thatListView control will make use of the LINQ data source that control will make use of the LINQ data source thatLINQ data source that data source that
we just created to retrieve data from the employee table.

The following is the source code for the ListView control in ourListView control in our control in our .aspx file.

<asp:ListView ID="ListView1" runat="server"
 DataSourceID="linkDataSource"
 DataKeyNames="EmployeeID" ItemContainerID="linkDataSource">
<layouttemplate>
 <table id="employeeTable" runat="server" border="1">
 <tr>
 <th>EmployeeID</th>
 <th>EmployeeName</th>
 <th>JoiningDate</th>
 <th>Salary</th>
 <th>DepartmentID</th>
 </tr>
 <tbody id="linkDataSource"
 runat="server">
 </tbody>
 </table>
<asp:Panel ID="itemContainer" runat="server">
 <asp:DataPager ID="dataPager" runat="server"
PageSize="4" PagedControlID="ListView1">
 <Fields>
 <asp:NumericPagerField/>
 </Fields>
 </asp:DataPager>
 </asp:Panel>
 </layouttemplate>
 <ItemTemplate>
 <tr>
 <td>

Chapter 8

[237]

 <asp:Label ID="EmployeeIDLabel" runat="server"
 Text='<%# Eval("EmployeeID") %>' />
 </td>
 <td>
 <asp:Label ID="EmployeeNameLabel" runat="server"
 Text='<%# Eval("EmployeeName") %>' />
 </td>
 <td>
 <asp:Label ID="JoiningDateLabel" runat="server"
 Text='<%# Bind("JoiningDate","{0:d}") %>' />
 </td>
 <td>
 <asp:Label ID="SalaryLabel" runat="server" Text='<%#
 Bind("Salary","{0:c}") %>' />
 </td>
 <td>
 <asp:Label ID="DepartmentIDLabel" runat="server"
 Text='<%# Eval("DepartmentID") %>' />
 </td>
 </tr>
</ItemTemplate>
</asp:ListView>

The following screenshot shows the output on execution of the application:

As you can see from the above output, the output is sorted based on the
employee names.

Working with LINQ

[238]

Summary
In this final chapter we have had a look at LINQ and how we can use it to bind data
to the ASP.NET data controls and the newly introduced ListView control of Orcas. I
admit that LINQ is too powerful and extensive to be covered in one single chapter.
However, I have thrown light on the most important areas and presented you with,
how you can use the awesome power of LINQ in our applications to query and bind
data to the data controls. That's the end of our journey! Happy reading!

Index
A
ASP.NET

data binding 5
data binding model 6
DataGrid control 109, 110
DataList control 91
DetailsView control 183
FormView control 196
GridView control 139, 140
LINQ, working with 215
list controls 35
ListView control, templates 222
Repeater control 63, 64
TreeView control 204

B
BulletedList control, list controls types

about 54
BulletStyle property 55
bullet styles 55
data binding 57
data binding, ways 57
events, handling 58
list items 54
list items, appending 55, 56
list items, removing 57
list items, selecting 56

C
C�eckBoxList control, list controls types

about 48
CustomCheckBoxList control,

design view mode 53

CustomCheckBoxList control,
event handlers 54

CustomCheckBoxList control, implement-
ing 51, 52

CustomCheckBoxList control, using 53
data binding 50
events, handling 51
list items, appending 48, 49
list items, removing 50
list items, selecting 49

classes, data binding expressions
Data Manager class 12, 13
Employee class 8, 10

D
data, filtering

Object data source control used 33
data binding

about 5
data binding expressions 7
data binding model 6
data source controls 13

data binding expressions
about 7
advantages 7
classes 8

DataGrid control
about 110
creating 110
customizing, Cascading Style Sheets

used 123
data, appending 127-131
data, deleting 135-137
data, displaying 121, 122
data, editing 132-134

[240]

paging 137, 138
simple application, implementing 111-121
styles, applying 123-127

DataList control
about 91, 92
adding in web page, steps 93
application, implementing 100, 101
data, deleting 107, 108
data, displaying 93
data, editing 103-106
data, selecting 102, 103
data binding, ways 93
data editing, ImageButton control used 103
event bubbling 98
events 98
events, handling 98, 99
images, binding 100
layouts, used 96
RepeatDirection, property 91
styles, used 96
template arrangement 94
template categories 94
templates 93

data source controls
about 13
Access data source control 14, 22
Access data source control, using 23-25
Object data source control 14
Object data source control, using 15-17
Object data source control methods 14, 15
SQL data source control 14, 18
SQL data source control, using 18-22
Xml data source control 14, 25
Xml data source control, using 25-27

Data Source Paging
implementing, Object data source

control used 28, 29
Data Source Sorting

implementing, Object data source
control used 32

DetailsView control
about 183, 184
master-details relationship of data,

implementing 184-196
DropDownList control, list controls types

about 41
data binding 44

events, handling 44
events handlers, associating 45, 46
list items, appending 41, 42
list items, removing 43
list items, selecting 43
simple application, implementing 46, 47

F
FormView control

about 196-199
data, formatting 200-203

G
GridView control

about 140-143
CheckBox, displaying 146-148
comparing, with DataGrid control 144
data, deleting 164-168
data, exporting 169-171
data, inserting 163-168
data, sorting 162, 163
data, updating 164-168
data binding, LINQ used 226-228
design view 141
DropDownList, displaying 144, 145
formatting 172-181
GridViewRow, color changing 148-150
paging 151, 152
tool tip, displaying 151
uses 140

H
Hierarc�ical GridView control

implementing 153-161

L
LINQ

about 215, 216
architecture 216, 217
ASP.NET, working with 215
data, querying 218-220
operators 217

ListBox control, list controls types
about 36

[241]

data binding 40
events, handling 40
list items, appending 36, 37
list items, removing 39
list items, selecting 38, 39
SelectionMode property 38

list controls
about 35
BulletedList control, types 54
CheckBoxList control, types 48
DropDownList control, types 41
ListBox control, types 36
RadioButttonList control, types 58
types 36

ListView control, VS.NET 2008
about 221
data binding, LINQ used 228-237

O
Orcas. See also VS.NET 2008

R
RadioButttonList control, list controls types

about 58
data binding 60
list items, appending 58, 59
list items, removing 60
list items, selecting 59
SelectedItem property 58

Repeater control
about 63, 64
behavior, customizing 65
BindpageData() method, data paging 75

checkboxes, displaying 70-72
data, displaying 64-69
data, filtering 81-86
data, sorting 78
DataManager class, revisiting 79, 80
data paging, implementing 73, 75
events, handling 87, 89
pages, navigating 76, 77
templates 65

T
TreeView control

about 204-208
directory structure, implementing 210-213

U
User Interface Paging

implementing, Object data source
control used 27, 28

User Interface Sorting
implementing, Object data source

control used 30, 31

V
VS.NET 2008

about 221
data, displaying ListView control used

222-224
data controls 221
DataPager control, used for custom paging

224-226
ListView control 221

LINQ Quickly
ISBN: 978-1-847192-54-7 Paperback: 250 pages

A Practical Guide to Programming Language
Integrated Query with C#

1. LINQ to Objects

2. LINQ to XML

3. LINQ to SQL

4. LINQ to DataSets

5. LINQ to XSD

Microsoft AJAX Library
Essentials
ISBN: 978-1-847190-98-7 Paperback: 300 pages

A practical tutorial to enhancing the user experience
of your ASP.NET web applications with the final
release of the Microsoft AJAX Library

1. A rapid and practical guide to including AJAX
features in your .NET applications

2. Learn practical development strategies
and techniques

3. Go through a case study that demonstrates the
theory you learned throughout the book.

Please check www.PacktPub.com for information on our titles

Programming Windows Workflow
Foundation
ISBN: 978-1-904811-21-3 Paperback: 252 pages

A C# developer's guide to the features and
programming interfaces of Windows Workflow
Foundation

 Add event-driven workflow capabilities to your
.NET applications.
Highlights the libraries, services and internals
programmers need to know

�uilds a practical "bug reporting" workflow
solution example app

1.

2.

3.

ODP.NET Developer’s Guide
ISBN: 978-1-847191-96-0 Paperback: 328 pages

A practical guide for developers working with the
Oracle Data Provider for .NET and the Oracle Developer
Tools for Visual Studio 2005

 Application development with ODP.NET
Dealing with XML DB using ODP.NET
Oracle Developer Tools for Visual Studio .NET

1.
2.
3.

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction to Data Binding in ASP.NET
	The ASP.NET Data Binding Model
	Using the Data Binding Expressions
	The Employee and the Data Manager Classes

	New Data Source Controls in ASP.NET 2.0
	The Object Data Source Control
	Object Data Source Control Methods

	The SQL Data Source Control
	Using the SQL Data Source Control

	The Access Data Source Control
	Using the Access Data Source Control

	The XML Data Source Control
	Using the XML Data Source Control

	User Interface and Data Source Paging
	User Interface and Data Source Sorting
	Filtering Data Using the Object Data Source Control
	Summary

	Chapter 2: Working with List Controls in ASP.NET
	The ASP.NET List Controls
	Working with the ListBox Control
	Appending List Items to the ListBox Control
	Selecting one or more List Items
	Removing List Items from the ListBox Control
	Binding Data to the ListBox Control
	Handling ListBox Control Events

	Working with the DropDown List Control
	Appending List Items to the DropDownList Control
	Selecting a List Item
	Removing List Items from the DropDownList Control
	Binding Data to the DropDownList Control
	Handling DropDownList Control Events
	Associating Event Handlers to a dynamically generated DropDownList Control
	Implementing a Simple Application

	Working with the CheckBoxList Control
	Appending List Items to the CheckBoxList Control
	Selecting one or more List Items
	Removing List Items from the CheckBoxList Control
	Binding Data to the CheckBoxList Control
	Handling CheckBoxList Control Events
	Implementing a CustomCheckBoxList Control

	Working with the BulletedList Control
	Appending List Items to the BulletedList Control
	Selecting a List Item
	Removing List Items from the BulletedList Control
	Binding Data to the BulletedList Control
	Handling BulletedList Control Events

	Working with the RadioButtonList Control
	Appending List Items to the RadioButtonList Control
	Selecting a List Item
	Removing List Items from the RadioButtonList Control
	Binding Data to the RadioButtonList Control
	Handling RadioButtonList Control Events

	Summary

	Chapter 3: Working with the Repeater Control
	The ASP.NET Repeater Control
	Using the Repeater Control
	Displaying Data Using the Repeater Control
	Displaying Checkboxes in a Repeater Control

	Implementing Data Paging Using the Repeater Control
	The BindPagedData() Method
	Navigating through the Pages

	Sorting Data Using the Repeater Control
	Revisiting the DataManager Class

	Filtering Data Using the Repeater Control
	Handling Repeater Control Events
	Summary

	Chapter 4: Working with the DataList Control
	The ASP.NET DataList Control
	Using the DataList Control
	Displaying Data
	Handling Events

	Binding Images Dynamically
	Selecting Data
	Editing data
	Deleting Data

	Summary

	Chapter 5: Working with the DataGrid Control in ASP.NET
	The ASP.NET DataGrid Control
	Creating a DataGrid Control

	Implementing a Sample Application Using DataGrid Control
	Displaying Data
	Styling the DataGrid Control
	Appending Data Using the DataGrid Control
	Editing Data Using the DataGrid Control
	Deleting Data Using the DataGrid Control
	Paging Using the DataGrid Control

	Summary

	Chapter 6: Displaying Views of Data (Part I)
	The ASP.NET GridView Control
	Comparing DataGrid and GridView Controls
	Displaying DropDownList in a GridView Control
	Displaying CheckBox in a GridView Control
	Change the Row Color of GridView Control Using JavaScript
	Displaying Tool Tip in a GridView Control
	Paging Using the GridView Control

	Implementing a Hierarchical GridView
	Sorting Data Using the GridView Control
	Inserting, Updating and Deleting Data Using the GridView Control
	Exporting the GridView Data
	Formatting the GridView Control

	Summary

	Chapter 7: Displaying Views of Data (Part II)
	Working with the ASP.NET DetailsView Control
	Using the DetailsView Control

	Working with the ASP.NET FormView Control
	Formatting Data Using the FormView Control

	Working with the ASP.NET TreeView Control
	Implementing a Directory Structure as a TreeView
	Summary

	Chapter 8: Working with LINQ
	Introducing LINQ
	Why LINQ?

	Understanding the LINQ Architecture
	Operators in LINQ

	Querying Data Using LINQ
	The New Data Controls in VS.NET 2008 (Orcas)
	Using the ListView Control
	Using the DataPager Control

	Data Binding Using LINQ
	Summary

	Index

