ASP.NET

Data Presentation Controls Essentials

Master the standard ASP.NET server controls for displaying and
managing data

ww.allitebooks.cor

http://www.allitebooks.org

ASP.NET Data Presentation
Controls Essentials

Master the standard ASP.NET server controls for
displaying and managing data

Joydip Kanjilal

[PUBLISHING]

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

ASP.NET Data Presentation Controls Essentials

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1141207

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847193-95-7
www . packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Joydip Kanijilal

Reviewers
Steven M. Swafford

Anand Narayanaswamy

Senior Acquisition Editor

Douglas Patterson

Development Editor

Rashmi Phadnis

Technical Editor

Bhupali Khule

Code Testing
Mithun Sehgal

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader
Harminder Singh
Chris Smith
Cathy Cumberlidge
Angie Butcher

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Joydip Kanjilal is a Microsoft MVP in ASP.NET. He has over 12 years of

industry experience in IT with more than 6 years in Microsoft .NET and its related
technologies. He has authored a lot of articles for some of the most reputable sites
like, www . asptoday . com, www.devx.com, www.aspalliance.com, www.aspnetpro.
com, www . SSwug . com, www . sql -server-performance. com, etc. A lot of these articles
have been selected at www.asp.net —Microsoft's Official Site on ASP.NET. Joydip
was also a community credit winner at www. community-credit.coma number

of times.

He is currently working as a Senior Consultant in a reputable company in
Hyderabad, INDIA. He has years of experience in designing and architecting
solutions for various domains. His technical strengths include, C, C++, VC++, Java,
C#, Microsoft .NET, Ajax, Design Patterns, SQL Server, Operating Systems and
Computer Architecture. Joydip blogs at http://aspadvice.com/blogs/joydip

and spends most of his time reading books, blogs and writing books and articles. His
hobbies include watching cricket and soccer and playing chess.

Mail: joydipkanjilal@yahoo.com

[vww allitebooks.cond

http://www.allitebooks.org

Acknowledgements

I am grateful to my parents for their love, support, and inspiration throughout
my life and would like to express my deepest respects to them. I am thankful to
Piku, Indronil, and little Jini in particular for their co-operation, patience, and
support. I am also thankful to the other members of my family for their continued
encouragement and support.

I am thankful to Douglas Paterson and the entire PacktPub team for providing me
the opportunity to author my first book. I am also thankful to Steve Smith and the
entire AspAlliance team for providing me the opportunity to author my first ever
article at AspAlliance. I would also like to thank the reviewers of this book for their
invaluable feedback. I am thankful to Anand Narayanaswamy, Douglas Paterson,
and Steven M. Swafford for their excellent suggestions, which I hope have helped
a lot in improving the quality of the book. I am also thankful to Russell Jones of
DevX and Jude Kelly of Sql-Server-Performance for their valuable technical advices.
I am also thankful to Stephen Wynkoop of SSWUG and David Riggs of AspNetPro
for giving me the opportunity to author articles there. I would also like to thank
Abhishek Kant of Microsoft for the MVP award that I received in 2007.

I am thankful to my friends Sriram Putrevu, Rakesh Guijjar, and Tilak Tarafder and
the readers of my articles for their invaluable feedback and suggestions. My special
thanks to Balaji Desari, Ashish Agarwal, and Sanjay Golani for their inspiration
and support.

Writing my first ever book has been a challenging, learning and a rewarding
experience. It was really a nice time and I enjoyed it.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Steven M. Swafford began developing software in 1995 while serving in the
United States Air Force (USAF). Upon leaving the USAF he continued developing
leading-edge solutions in support of the America's war fighters as part of the original
USAF enterprise portal development team. His roots are now in Auburn, Alabama
where he works for Northrop Grumman Information Technology. Steven's credits
his wife Su Ok and daughter Sarah for supporting and inspiring his ongoing passion
for software development and the resultant challenges of life near the bleeding

edge as well as his mother Pat Harris and father Cliff Swafford for believing in

him. Steven would like to thank Tim Stewart and Edward Habal who were his
professional mentors and to this day remain close friends as well as Frankie Elston,
Joe Chaplin, and Glenn Regan all of whom are colleagues that Steven worked closely
with for years.

This is Steven's second technical review. Steven previously worked as a technical
editor on ODP.NET Developers Guide.

Mail: steven.swafforderadicaldevelopment.net
Website: http://www.radicaldevelopment .net

Blog: http://www.blog.radicaldevelopment.net

[vww allitebooks.cond

http://www.allitebooks.org

Anand Narayanaswamy works as an independent consultant and runs NetAns
Hosting Services (www.netans.com), which provides web hosting services based in
Trivandrum, Kerala State, India. Anand is a Microsoft Most Valuable Professional
(MVP) in Visual C# (https://mvp.support.microsoft.com/profile/Anand) and
is the author of Community Server Quickly (http://www.packtpub.com/community-
server/book) published by Packt Publishing.

He works as the chief technical editor for ASPAlliance.com (http://aspalliance.
com/author.aspx?uld=384030) and is also a member of ASPAlliance.com
Advisory Board. He regularly contributes articles, and book and product reviews
to ASPAlliance.com, C-Sharpcorner.com, Developer.com, Codeguru.com, Microsoft
Academic Alliance and asp.netPRO magazine.

Anand has worked as a technical editor for several popular publishers such as Sams,
Addison-Wesley Professional, Wrox, Deitel, and Manning. His technical editing
skills helped the authors of Sams Teach Yourself the C# Language in 21 Days, Core C#
and .NET, Professional ADO.NET 2, ASP.NET 2.0 Web Parts in Action and Internet and
World Wide Web (4th Edition) to fine-tune the content. He has also contributed articles
for Microsoft Knowledge Base and delivered podcast shows for Aspnetpodcast.com.
He is a moderator for Windows MarketPlace Newsgroups.

Anand also runs LearnXpress.com (www. learnxpress . com), Dotnetalbum.com (www.
dotnetalbum. com), CsharpFAQ.com (www.csharpfaqg. com) and Devreviews.com
(www .devreviews.com). LearnXpress.com is a featured site at MSDN's Visual C#
.NET communities section. Anand has won several prizes at Community-Credit.com
and has been featured as "All Time" contributor at the site. He is one of the founders
of Trivandrum Microsoft Usergroup. He regularly blogs under the banner "I type
what I feel" at http://msmvps.com/blogs/anandn.

Website: http://www.visualanand.net

Blog: http://weblogs.asp.net/anandn

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Introduction to Data Binding in ASP.NET 5
The ASP.NET Data Binding Model 6
Using the Data Binding Expressions 7
The Employee and the Data Manager Classes 8
New Data Source Controls in ASP.NET 2.0 13
The Object Data Source Control 14
Object Data Source Control Methods 14

The SQL Data Source Control 18
Using the SQL Data Source Control 18

The Access Data Source Control 22
Using the Access Data Source Control 23

The XML Data Source Control 25
Using the XML Data Source Control 25
User Interface and Data Source Paging 27
User Interface and Data Source Sorting 30
Filtering Data Using the Object Data Source Control 33
Summary 34
Chapter 2: Working with List Controls in ASP.NET 35
The ASP.NET List Controls 35
Working with the ListBox Control 36
Appending List Items to the ListBox Control 36
Selecting One or More List ltems 38
Removing List Items from the ListBox Control 39
Binding Data to the ListBox Control 40
Handling ListBox Control Events 40
Working with the DropDown List Control 41
Appending List ltems to the DropDownList Control 41
Selecting a List ltem 43
Removing List Items from the DropDownlList Control 43

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Binding Data to the DropDownList Control 44
Handling DropDownList Control Events 44
Associating Event Handlers to a dynamically generated DropDownList Control 45
Implementing a Simple Application 46
Working with the CheckBoxList Control 48
Appending List ltems to the CheckBoxList Control 48
Selecting One or More List ltems 49
Removing List Items from the CheckBoxList Control 50
Binding Data to the CheckBoxList Control 50
Handling CheckBoxList Control Events 51
Implementing a CustomCheckBoxList Control 51
Working with the BulletedList Control 54
Appending List ltems to the BulletedList Control 55
Selecting a List ltem 56
Removing List Items from the BulletedList Control 57
Binding Data to the BulletedList Control 57
Handling BulletedList Control Events 58
Working with the RadioButtonList Control 58
Appending List ltems to the RadioButtonList Control 58
Selecting a List ltem 59
Removing List Items from the RadioButtonList Control 60
Binding Data to the RadioButtonList Control 60
Handling RadioButtonList Control Events 60
Summary 61
Chapter 3: Working with the Repeater Control 63
The ASP.NET Repeater Control 63
Using the Repeater Control 64
Displaying Data Using the Repeater Control 67
Displaying Checkboxes in a Repeater Control 70
Implementing Data Paging Using the Repeater Control 73
The BindPagedData() Method 75
Navigating through the Pages 76
Sorting Data Using the Repeater Control 78
Revisiting the DataManager Class 79
Filtering Data Using the Repeater Control 81
Handling Repeater Control Events 87
Summary 89
Chapter 4: Working with the DataList Control 91
The ASP.NET DataList Control 91
Using the DataList Control 92
Displaying Data 93
Handling Events 98
Binding Images Dynamically 100
Selecting Data 102

Lii]

Table of Contents

Editing data 103
Deleting Data 107
Summary 108
Chapter 5: Working with the DataGrid Control in ASP.NET 109
The ASP.NET DataGrid Control 110
Creating a DataGrid Control 110
Implementing a Sample Application Using DataGrid Control 111
Displaying Data 121
Styling the DataGrid Control 123
Appending Data Using the DataGrid Control 127
Editing Data Using the DataGrid Control 132
Deleting Data Using the DataGrid Control 135
Paging Using the DataGrid Control 137
Summary 138
Chapter 6: Displaying Views of Data (Part I) 139
The ASP.NET GridView Control 140
Comparing DataGrid and GridView Controls 144
Displaying DropDownList in a GridView Control 144
Displaying CheckBox in a GridView Control 146
Change the Row Color of GridView Control Using JavaScript 148
Displaying Tool Tip in a GridView Control 151
Paging Using the GridView Control 151
Implementing a Hierarchical GridView 153
Sorting Data Using the GridView Control 162
Inserting, Updating and Deleting Data Using the GridView Control 163
Exporting the GridView Data 169
Formatting the GridView Control 172
Summary 182
Chapter 7: Displaying Views of Data (Part Il) 183
Working with the ASP.NET DetailsView Control 183
Using the DetailsView Control 184
Working with the ASP.NET FormView Control 196
Formatting Data Using the FormView Control 200
Working with the ASP.NET TreeView Control 204
Implementing a Directory Structure as a TreeView 210
Summary 214
Chapter 8: Working with LINQ 215
Introducing LINQ 215
Why LINQ? 216
Understanding the LINQ Architecture 216

[iii]

Table of Contents

Operators in LINQ

Querying Data Using LINQ

The New Data Controls in VS.NET 2008 (Orcas)
Using the ListView Control
Using the DataPager Control

Data Binding Using LINQ

Summary

Index

217
218
221
221
224
226
238

239

[iv]

Preface

When you design and implement an ASP.NET web application, you need to manage
and display data to the end user in more than one way. Data Presentation Controls
in ASP.NET are server controls to which you can bind data to organize and display
it in different ways. This book covers the major data controls in ASP.NET (from ASP.
NET 1.x to ASP.NET 3.5/Orcas). Packed with plenty of real-life code examples, tips,
and notes, this book is a good resource for readers who want to display and manage
complex data in web applications using ASP.NET by fully leveraging the awesome
features that these data controls provide.

What This Book Covers

Chapter 1 discusses the ASP.NET data binding model and how we can work with the
data source controls in ASP.NET.

Chapter 2 discusses how we can work with the various list controls in ASP.NET and
illustrates how we can implement a custom control that extends the CheckBoxList
control to provide added functionalities.

Chapter 3 discusses how we can display tables of data with the Repeater control. It
also discusses how we can perform other operations, like paging and sorting data
using this control.

Chapter 4 discusses how we can use the DataList control in ASP.NET. It also
illustrates how we can bind images to the DataList control dynamically.

Chapter 5 discusses how we can display, edit, delete, and format data for customized
display using the DataGrid control. It discusses how we can use this control

for paging and sorting data. It also illustrates the implementation of a sample
application using this control and how we can use this control to display data in a
customized format.

Preface

Chapter 6 presents a discussion on the GridView control and performing various
operation with it, like paging, sorting, inserting data, updating data, deleting data,
and displaying data in customized format. It also discusses how one can implement
a custom GridView control to display hierarchical data. It also discusses how one can
export a GridView control to MS Excel and MS Word.

Chapter 7 explores the other view controls in ASP.NET, like DetailsView, FormView,
and the TreeView control, and how we can use them to perform
various operations.

Chapter 8 discusses LINQ, its features and benefits, and how it can be used to bind
data to the new data controls in Orcas.

What You Need for This Book

This book is for ASP.NET developers who want to display or manage data in ASP.
NET applications. To use this book, you need to have access to ASP.NET and
SQL Server.

The following is the list of software required for this book:

e ASP.NET 2.0 (For Chapters 1 -7)
e ASP.NET 3.5 (Orcas) (For Chapter 8)
e SQL Server 2005

Who is This Book for

This book is for ASP.NET developers who want to display or manage data in ASP.
NET applications. The code examples are in C#.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are two styles for code. Code words in text are shown as follows: "You can
also use the static method Eval () of the bataBinder class for binding data to
your controls."

[2]

Preface

A block of code will be set as follows:

<asp:ListBox ID="ListBoxl" runat="server" Height="125px"
Width="214px">
<asp:ListItem Value="1">Joydip</asp:ListItem>
<asp:ListItem Value="2">Douglas</asp:ListItem>
<asp:ListItem Value="3">Jini</asp:ListItem>
<asp:ListItem Value="4">Piku</asp:ListItem>
<asp:ListItem Value="5">Rama</asp:ListItem>
<asp:ListItem Value="6">Amal</asp:ListItem>
<asp:ListItem Value="7">Indronil</asp:ListItem>

</asp:ListBox>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The second record is set to editable mode on clicking the Edit command button ".

% Important notes appear in a box like this.

N\l
Q Tips and tricks appear like this.

Reader Feedback

Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedbackepacktpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www . packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[31]

Preface

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book

Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in text or
code —we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

[4]

Introduction to Data Binding
in ASP.NET

In ASP.NET, the term Data Binding implies binding the controls to data that is
retrieved from the data source and hence providing a read or write connectivity
between these controls and the data, that they are bound to. These data sources can
be one of databases, xml files or even, flat files. We would use the word data controls
often in this book to imply controls that can be bound to data from external data
sources. In ASP.NET 1.x, you were introduced to a powerful data binding technique
where you could eliminate the need of writing lengthy code that was used in earlier
for binding data to data controls. With ASP.NET 2.0, you have a lot of new controls
and features added in this context. You now have simplified paging, filtering, sorting,
automatic updates, data source controls, and a host of other powerful features.

In this chapter, we will cover the following points:

e The ASP.NET Data Binding Model
e Data Binding Expressions
e The ASP.NET Data Source Controls

° Object Data Source Control
° SQL Data Source Control

Access Data Source Control
° XML Data Source Control

Introduction to Data Binding in ASP.NET

The ASP.NET Data Binding Model

In data binding, as we have discussed in the beginning, the controls are bound to
data from the data source resulting in read or write connectivity between the controls
and the data they are bound to. The controls are actually bound to the columns of the
result set that contains the data. This result set can be a data set, a data table, a data
reader, or any other instance of a collection type.

We need not write any code to display the control values after they are
% bound to these data sources. This kind of data binding allows you to bind
T data to the user interface controls without the need to write code.

In its simplest form, the syntax for using data binding in your ASPX pages is
as follows:

<%# Data Source Name %>

Depending on whether you require binding single value data or a multiple or
repeated value data to a control, you can have the following types of binding
mechanisms in ASP.NET data controls:

e Single Value Data Binding
e Repeated Value Data Binding
Single value data binding, as the name suggests implies, binding of a single value or

a single record, say, an employee's record. In contrast, repeated value data binding
implies binding a set or a table of employee records.

You can use any of the following for single value data binding;:

<%# Name of the Property %>
<%# Expression %>

)

<%# Method Name, Parameter List %>
For repeated value data binding, you can use the following syntax:
<%# Name of the Data Source %>

The following sections presents a discussion on how you can use the data binding
expressions in ASP.NET to bind data to the controls and a discussion on the newly
added data source controls in ASP.NET 2.0 and their usage.

[6]

Chapter 1

Using the Data Binding Expressions

What are data binding expressions? Well, they are the code snippets that you use
between the <%# and %> blocks in your ASP.NET web page. According to MSDN,
"Data-binding expressions create bindings between any property on an ASP.NET
page, including a server control property, and a data source when the DataBind ()
method is called on the page. You can include data-binding expressions on the value
side of an attribute or value pair in the opening tag of a server control or anywhere
in the page".

The following are the advantages of using Data Binding expressions in ASP.NET
controls in the presentation layer:

¢ Flexibility to use any data binding expressions provided that the value it
resolves to is one that the data control can use.

¢ You can use these expressions to bind any property to its corresponding data.

e Flexibility to bind one property to one data source and another property to

another data source.

You should use data binding in the ASP.NET web pages in the presentation layer of
your application. The syntax used for data binding in ASP.NET 1.x is as follows:

<%# Container.Dataltem("expression") %>

The following code snippet illustrates how you can bind data to a label control using
the syntax shown above:

<asp:Label id="1blUserName" runat="server"
Text='<%# Container.Dataltem("UserName") %>'>
</asp:Label>

You can also use the static method Eval () of the DataBinder class for binding data
to your controls. This method has an overloaded version that accepts the format
expression as an additional parameter that relates to the type of formatting that you
would require on the data to be displayed. The syntax for using the Eval () method
is shown as follows:

<%# DataBinder.Eval (Container.DatalItem, "expression"[, "format"]) %>
As shown in the code snippet the Eval () method accepts two parameters:

o The first of these parameters is the data container, that is, a data table, a data
set or a data view.

e The second parameter is a reference to the value that needs to be assigned to
the control.

[71

Introduction to Data Binding in ASP.NET

Refer to the following code snippet that illustrates, how you can use the
DataBinder.Eval () method to bind data:

<asp:Label id="1blUserName" runat="server"
Text='<%# DataBinder.Eval (Container.DatalItem, "UserName") %>'>
</asp:Label>

You can use the overloaded version of the Eval () method to specify the format
expression (as an additional optional parameter) to display the data in your required
format. Refer to the following code snippet:

<asp:Label id="1blLoginDate" runat="server"
Text='<%# DataBinder.Eval (Container.Dataltem, "LoginDate", "{0:dddd
d MMMM"]) %>'>

</asp:Label>

This code would display the Loginbate in the label control named 1blLoginDate as
Sunday 15, April.

With ASP.NET 2.0, you have a much simpler syntax as the DataBinder instance is
now the default context for all data binding expressions that are used for displaying
non-hierarchical data in your presentation layer. You can now use any of the
following overloaded versions of the Eval () method for binding data.

<%# Eval ("expression") %>
<%# Eval ("expression"[, "format"]) %>

The Employee and the Data Manager Classes

Before we dig into a discussion on the data source controls in ASP.NET that follows
this section, I would present here two classes that we would frequently be using here
and after in the book; I would use these classes throughout this book. In order to
reduce code duplication or redundancy, I am providing here the source code for both
these classes; we would refer them elsewhere.

The Employee class in this example is the Business Entity class. It contains a set of
public properties that expose the data members of the class. The source code for this
class is as follows:

public class Employee

{
private string empCode = String.Empty;
private string empName = String.Empty;
private double basic = 0.0;
private string deptCode = String.Empty;
private DateTime joiningDate;

[8]

Chapter 1

public string EmpCode
{

get
{

return empCode;

empCode = value;

}

public string EmpName
{

get
{

return empName;

empName = value;

}

public double Basic
{

get

{

return basic;

basic = value;

}

public string DeptCode
{

get
{

return deptCode;

deptCode = wvalue;

[o]

Introduction to Data Binding in ASP.NET

}

public DateTime JoiningDate

{

get

{

return joiningDate;
set

joiningDate = value;

We will use the fields basic and Salary interchangeably throughout
this book. You will find some code examples that refer to the former and
some that refer to the later. In either case, you can use the same Employee
class as the BusinessEntity with a minor change, that is, replace the name
of the public property called basic with Salary depending on whether
you need to use basic or Salary as the column for displaying data. So,
if you would like to use Salary as the name of the column data bound
to a data control, just change the public property called basic shown

as follows:

public double Salary

{

get

{

return basic;
set

basic = value;

}

To execute the programs listed in this book, ensure that the field names
used in the DataManager is the same as the field names that you have
used in the database table. We will revisit the Employee class in Chapter 5
of this book to incorporate some more variable and properties.

[10]

Chapter 1

The DataManager class contains a set of methods that return data that would be used
in the presentation layer of the application. The source code for the DataManager
class is as follows:

public class DataManager

{

ArrayList data = new ArrayList();
String connectionString = String.Empty;

public DataManager ()
{
connectionString = ConfigurationManager.ConnectionStrings
["joydipConnectionString"] .
ConnectionString.Trim() ;
}
public ArrayList GetAllEmployees ()
{
SglConnection conn = null;
ArrayList employeelist = null;
try
{
conn = new SglConnection (connectionString) ;
conn.Open () ;
string sql = "select EmpCode, EmpName, Basic,
JoiningDate, DeptCode from employee e, Department
d where e.DeptID = d.DeptID";
SglCommand cmd = new SglCommand(sqgl, conn) ;
SglDataReader dr = cmd.ExecuteReader() ;
employeelist = new ArrayList();
while (dr.Read())
{
Employee emp = new Employee() ;
if (dr["EmpCode"] != DBNull.Value)
emp.EmpCode = dr ["EmpCode"] .ToString() ;
if (dr["EmpName"] != DBNull.Value)

emp.EmpName = dr ["EmpName"] .ToString() ;
if (dr["Basic"] != DBNull.Value)
emp.Basic = Convert.ToDouble (dr["Basic"].
ToString()) ;
if (dr["JoiningDate"] != DBNull.Value)

emp.JoiningDate =
Convert.ToDateTime (dr ["JoiningDate"] .
ToString()) ;

if (dr["DeptCode"] != DBNull.Value)
emp.DeptCode = dr["DeptCode"] .ToString() ;

[11]

Introduction to Data Binding in ASP.NET

employeeList.Add (emp) ;
emp = null;

}

catch

{
}

finally

{
}

return employeelist;

throw;

conn.Close() ;

}

public ArrayList GetEmployeeByDept (string deptCode)
{

SglConnection conn = null;

ArrayList employeelist = null;

try

{

conn = new SglConnection (connectionString); conn.Open() ;

string sgl = «select EmpCode, EmpName, Basic,

JoiningDate, DeptCode from employee e, Department

d where e.DeptID = d.DeptID and

d.DeptCode = '‘» + deptCode + «'»;
SglCommand cmd = new SglCommand(sql, conn) ;
SglDataReader dr = cmd.ExecuteReader() ;
employeelist = new ArrayList () ;

while (dr.Read())

{

Employee emp = new Employee() ;

if (dr [«EmpCode»] != DBNull.Value)
emp . EmpCode = dr [«EmpCodex»] .ToString() ;
if (dr [«EmpName»] != DBNull.Value)
emp . EmpName = dr [«EmpName»] .ToString() ;
if (dr[«Basic»] != DBNull.Value)
emp.Basic = Convert.ToDouble (dr [«Basics»] .
ToString()) ;
if (dr([«JoiningDate»] != DBNull.Value)

emp.JoiningDate =

Convert.ToDateTime (dr [«JoiningDate»] .
ToString()) ;

if (dr [«DeptCode»] != DBNull.Value)

[12]

Chapter 1

emp.DeptCode = dr["DeptCode"] .ToString() ;
employeeList .Add (emp) ;
emp = null;
}
}

catch

{

throw;

}

finally

{

conn.Close () ;

}

return employeelist;

}

In this code, the GetAllEmployees () method returns all records from the Employee
table, whereas, the GetEmployeeByDept () method returns the records of all
employees of a specific department.

New Data Source Controls in ASP.NET 2.0

With ASP.NET 2.0, data binding has been simplified a lot with the introduction of
a number of data source controls. These data source controls are server controls
that can be used to bind data to a number of data sources. You now have a more
simplified, powerful, consistent, and extensible approach towards binding data
between your presentation layer controls and a number of data source controls.
You can use these controls to bind data between the data bound controls in your
presentation layer to a variety of data sources seamlessly. You only need to choose
the appropriate data source control that fits your requirement.

These data source controls facilitate a "Declarative programming model and

an automatic data binding behavior". You can use them declaratively in your
presentation layer or programmatically in your source code. The data store that
contains the data and the operations that are performed on this data are abstracted,
and you need not worry about how the data access and data binding logic works
underneath. In essence, the entire ADO.NET Object Model is abstracted using these
data source controls. Further, you can use these data source controls to display both
tabular data as well as hierarchical data in your presentation layer.

[13]

Introduction to Data Binding in ASP.NET

In ASP.NET 2.0, you have the following data source controls that are of utmost
importance; these would be discussed in detail later in this chapter:

¢ Object data source control: This control can be used to bind data to middle-
tier objects to the presentation layer components in an N-tier design.

e SQL data source control: This control enables you to connect to and bind
data to a number of underlying data sources, that is, Microsoft SQL Server,
OLEDB, ODBC or Oracle databases.

e Access data source control: This control can be used to bind data to
Microsoft Access databases.

e Xml data source control: This control can be used to bind data to XML data
sources, that is, external XML data files, dataset instances, etc.

With these data source controls, you can easily implement data driven ASP.NET
applications without the need to write the data access code. The only thing you have
to do is, add and configure a data source control in your web page and then associate
the DataSourcelD property of any web control in your web page to the ID property
of the data source control in use. The web control would now display the data using
the data source control that you have used in your web page. You are done!

In the sections that follow, we would explore how you can use each of these controls
to bind data to your controls seamlessly.

The Object Data Source Control

The Object data source control, one of the new data source controls added in ASP.
NET 2.0, can be used to de-couple the User Interface or the Presentation Layer of the
application from the Business Logic and the Data Access Layers. It is a non-visual
control and is typically used to bind data to the data-bound controls in a consistent
way and can be used for seamless CRUD (Create, Update, Read and Delete)
operations in your applications.

Object Data Source Control Methods

The following are the four main methods of the Object data source control aligned to
the CRUD operations that you need in your applications:

e Update Method: This method is used for updating data using the Object data
source control.

[14]

Chapter 1

e Insert Method: This method is used for inserting data using the Object data
source control.

e Select Method: This method is used for reading data using the Object data
source control.

¢ Delete Method: This method is used for deleting data using the Object data
source control.

We would use the Object data source control to bind data to data bound controls
with components that represent data collections, that is, those which return a

set of data. We would use the Object data source control to bind data to a data
bound component with a Dataset instance, a DataReader instance, a WebService
instance that returns Data and a Collection instance. Hence, we would create

a polymorphic method called Getbata () that would accept a parameter that

would indicate the source of the data that we need to retrieve the data from. The
term polymorphic used here implies that we can have multiple methods of name
GetData (), differing in their signatures. Hence, we may also say that the GetData ()
method is overloaded. We would use these methods throughout this book for all the
subsequent chapters that would require data retrieval.

Using the Object Data Source Control

To use the Object data source control:

1. Create a new web application in Visual Studio, open the default .aspx file
and then switch to design view mode.

2. Now, add the ObjectDataSource control by dragging it from the toolbox. An
ObjectDataSource control with the default name of ObjectDataSourcel is
added to the web page.

3. We now require a data bound control to which we would bind the data
using this control. We will choose the GridView control for this and drag
one from the toolbox onto the web page. The default name of the control is
GridViewl.

4. The next step is to configure the ObjectDataSource control.

[15]

Introduction to Data Binding in ASP.NET

5. We associate the Object data source control to the GridView Control
and set its DataSource property to the ObjectDataSource Control that we
have added in our web page. The following screenshot illustrates how
we associate the data source for the GridView control to our
ObjectDataSource control.

efault.aspx™ " Start Page
px 9

%hjectDataSource - ObjectDataSourcel |

[& olumn0 Columnl C olumnml
ahe abe abe Auto Format...

ahe abc ahc Choose Data Source: |(None) |E“
abc abc abc Edit Columns... [

abc abc abc Add New Column...

abc abc abc Edit Templates

Note how the data source for the GridView Control is associated with the
ObjectDataSource control using the Choose Data Source option.

To configure, click on the Configure Data Source option and then select the business
object that would be used for the CRUD operations. Then click on Next. The
Configure Data Source window pops up. Refer to the following screenshot:

r

Configure Data Source - ObjectDataSource1

Choose a Business Object

Select a business object that can be used to retrieve or update data (for example, an object defined in the Bin
or App_Code directary For this application).

Choose your business object:

DataManager [] show anly data companents

[16]

Chapter 1

In our example, the business object class is DataManager and the business entity class
is Employee. Hence, we would now select DataManager as the business object from
the Choose your business object option of the Configure Data Source window.

Then, click Next and select the GetAllEmployees(), returns ArrayList as our
business method (that would be used to retrieve data) from the Choose a method
option. Refer to the following screenshot:

Configure Data Source - ObjectDataSource @@

Define Data Methods

SELECT |UPDATE || INSERT | DELETE |

hoose a method of the business object that returns data to associate with the SELECT operation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Example: GetProducts(Int3Z categoryId), returns a Dataset.

Choose a method:

GetEmplovees(), returns ArrayList [} v|
tCode], returns Arraylist

GetEmployees(), returns ArrayLis

Then click on Finish. You are done!

When you execute the application, the output will be something like the
following screenshot:

<2 Untitled Page - Microsoft Internet Explorer g@@
File Edit View Favorites Tools Help ﬁ"
) Back _) E @ _h /'/:j Search \i? Favorites @3 [;-. - ; B - I_J % [ﬁ
Address @] http:fiocalhost:1489(Prajects(Defaul. aspx v Beo ks
FEwmployee Code Employee Name Employee Basic!

1 Toydip 000

2 Douglas 6500

3 Jini 2500

4 Pikcu 3900

5 Eama 2700

& Armal 2900

7 Indronil 4500 [%

@ Dane ‘3} Local intranet

[171]

vww allitebooks.conl

http://www.allitebooks.org

Introduction to Data Binding in ASP.NET

The SQL Data Source Control

Built on top of ADO.NET, the SQL data source control is a non-visual control and
uses the built in ADO.NET objects for its operation. The SQL data source control is
used to access data from any relational database, SQL Server database in particular.
You can follow some simple steps described below that can be used to connect

to your database and perform your CRUD operations in your applications with
minimal or no coding at all!

Using the SQL Data Source Control

To use the SQL data source control, drag-and-drop it from the toolbox into your web
page. The default name of the control would be SqlDataSourcel. Next, you need to
configure the data source as shown in the following screenshot:

F =

Configure Data Source - SglDataSource E]@

Choose Your Data Connection

Yhich data connection should your application use to connect to the database?

Connection string

V| [Mew Conneckion, .

< Prewiols Mext = Finish Cancel

[18]

Chapter 1

Click on the New Connection button to create a new connection with the database.
A window as shown in the following screenshot pops up.

lda Connection @@

Enter information ko connect to the selected data source or dlick,
"Change" to choose a different data source andfor provider,

g

Daka source:

|MicrosoFt SOL Server (SqiClisnt) H Change...]

Server name:

|I VH Refresh]

Log on to the server

(®) Use Windows Authentication
O Use SQL Server Authentication

User name: | |
Password: | |
Save my passwaord
Connect ko a database %

(®) Select or enter a database name!
|j0ydip w

() attach a database file:

| Browse...

Logical name:

| |
=)o

We would select the data source as Microsoft SQL Server and we would specify
the Server Name as . (a dot) to indicate that the database to be connected to, is a
local database. Select SQL Server Authentication mode and the database as shown
in the screenshot above. Test your connection to check whether the connection was
successful by clicking on the Test Connection button.

[19]

Introduction to Data Binding in ASP.NET

Once you click on OK, the next window that is displayed is as shown in the
following screenshot:

Configure Data Source - SqlDataSource]

| :éj_) Choose Your Data Connection

Which data connection should your application use to connect to the database?

|joydip.joydip.dbol V| [Mew Connection. ..

Connection string -

Cancel

You now need to configure the data source. Check to see whether the connection
string is as desired and then click on the Next button. The next window that is
displayed is as shown in the following screenshot:

Configure Data Source - SqlDataSourcel @@

:éj_) Save the Connection 5tring to the Application Configuration File

Skaring connection strings in the application configuration file simplifies maintenance and deployment, To save
the connection string in application configuration file, enter a name in the text box and then dlick Mext, If vou
choose not ko do this, the connection string is saved in the page as a property of the data source contral,

Do you want Lo save the connection in the application configuration file?
s, save this connection as:

|]0ydipCDnnectionString

You can save the connection string generated earlier in the configuration file of
your application by selecting the check box as shown in this screenshot. The saved
connection string in the application's configuration file would resemble the following:

<connectionStringss>

<add name="joydipConnectionString" connectionString="Data

Source=.;Initial Catalog=joydip;User ID=sa;Password=sa"

providerName="System.Data.SglClient" />
</connectionStringss>

[20]

Chapter 1

Click on the Next button to proceed further. The next window that gets displayed
allows you to configure your Select statement. You can specify the fields, the

conditions, etc, that you require in the output. Once you are done, click on the
Next button.

Configure Data Source - SqlDataSource

{—ﬁ) Configure the Select Statement
.

How would you like to retrieve data from your database?
() Spedify a custom SCL statement or stored procedure
(=) Spedify columns from a table or view

Marme:
|Emplnyse v
Colurnins:
* & [] Designation [Return only unique rows
[Empr [1 JoiningDate WHERE. ..
EmpCode
Emphlame ORDER BY...
T
i

SELECT statement:
SELECT [EmpCode], [Emphlame], [Basic] FROM [Employee]

The final window that gets displayed would allow you to test the query prior to
using it in the presentation layer of your application. Note that we have used the
Employee table in our example and it contains the same set of data as we used

when working with the Object data source control earlier in this chapter. Refer to the
following screenshot:

Confipure Data Source - SglDataSource

{ ﬁJ;) Test Query
5

To preview the data returned by this data source, click Test Query, Ta complete this wizard, click Finish,

empCode | empMame | basic

Jovydip S000

z Douglas 6500
3 Jini 2500
4 Pk 3900
5

Rama Z700

Test Query

SELECT statement:
SELECT * FROM [emplayes]|

[21]

Introduction to Data Binding in ASP.NET

Notice the output of the query once the Test Query button is clicked. This is the
final step in this process of configuring the SQL data source control. Click on Finish
button to complete the process. The code that is generated for the SQL data source
control in the . aspx file is as follows:

<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="<%$ ConnectionStrings:joydipConnectionString %>"
SelectCommand="SELECT * FROM [employee]"></asp:SglDataSources>

Now we need to drag and drop a GridView control from the toolbox and configure
it with the SQL data source control, using the same process that we followed earlier,
for configuring it with the Object data source Control. Once we are done, we can

execute the web page; the output on execution of the web page is shown as follows:

/2 Untitled Page - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help ﬁ'
« > \ﬂ \ELI .;‘J /.-) Search :\7 Favorites 6-‘4 =" v ?5,! j‘i
Address] http:fflacalhost: 1489]Projects/SalDataSaurce. aspx v a Go Links ®
Fmployee Code Emplovee IName Fmployee Basic
1 Joydip 000
2 Douglas 6300
3 Jird 2500
4 Piku 3900
5 Ratna 2700
6 Atnal 2900
7 Indronid 4500
&] Done %J Local intranet

The Access Data Source Control

The Access data source control can be used to connect to Microsoft Access databases
and perform CRUD operations in your applications. The following section discusses
how we can use this control in our applications.

[22]

Chapter 1

Using the Access Data Source Control

To start with, drag and drop the Access Data Source Control from the toolbox onto

your web page. Then configure the control by selecting the Configure Data Source
option. Refer to the following screenshot:

r

Configure Data Source - AccessDataSource1 @E|

J_ Choose a Database
| I
G =

Microsoft Access data file:

Enter the relative path to a Microsoft | scess database file (*.MDB) or choose Browse to locate
the file on vour computer,

Specify the name and the path to the MS Access database as shown in the screenshot
above and click on the Next button. Now, configure the select statement as you did
earlier when working with SQL data source control. Refer to the following screenshot:

F

Configure Data Source - AccessDataSource

jgj_) Configure the Select Statement
] — 9 %
How would you like to retrieve data from your database?
() Specify a customn SQL statement or stored procedure
(%) Specify columns from a table ar view
Marne:
|Empl0yee '
Columns:
*] Return only unique raws
[] EmpCode WHERE. ..
[] EmpHame
[] Basic ORDER EY...
SELECT skatement:
SELECT * FROM [Emplovee]
< Previous] [Mext =

[23]

Introduction to Data Binding in ASP.NET

Click on the Next button to invoke a window where you can test your query. Refer to
the following screenshot:

Configure Data Source - AccessDataSource1

L l Test Query

To preview the data returned by this data source, dlick Test Query. To complete this wizard, click Finish.

EmpCods | Emphame | Basic
5000
6500

Douglas
Tini 2500
Piku 3900
Rama 2700

T e @ |~

Test Query

SELECT statement:
SELECT * FROM [Employee] ‘

Note the output of the query once you click on the Test Query button as shown in
the screenshot above. Click on the Finish button when done.

Next, drag-and-drop a GridView Control to display the data retrieved from the
Access Data Source Control. Now, bind the GridView control to the Access Data
Source control created earlier using the Choose Data Source option, as shown in the
following screenshot.

" Projects - Microsolt Visual Studio

Fin Bt Vw Webute Bukl Debug Fossl Layot Took Wrdow Commardy Help
AR N ST TR = L ., .1 - V- 2T BxEd,
= = B LU AL RS S rastiondl = &
Toobar =8 X AccesshataSouree.aspe » % | Solbion Exphorer - Sokton Prokets (L proeet) w8 X
e 5 2 allonme
= P ACCEHDOLASTUICE - Al 1 o) Solution Fropects’ (1 groject)
e | 505 o Columl Colunnd SNSRI = P piprojects)
A) 5 S LG # L] app_tode
& sz i . : PR : 1} App Data
77 Detatonew abc abc abe Dok Sourcs: (Hovs) - [Accismasource.aso
: Edt Cobars,., # 2] Defakaspr
e abe abe abe
= Ak Mo Cohurr, . 2] eckoyee.
! she he #he [—— ® [Sbsasouce. s
[SobataSouce abe abe abe | Testman
U AcumsDatasource p Web.Conly
£ CbiectDataSource. w3 D atource. as
& WmDataSourcn
{1, StoHapDastasouren
] Reportiever
= Validation -
v Mavigation Fropertes -0 %
SBiLogin GridView] System.Web, UL WebCortrols. Gridviess
-+ WebParts -
et HI| A
'+ Crystal Reports Barderandth -
= General Capton
Captionalan Norsat
‘::;”"'1 ColPsddrg -1
nthis group. Celipaong L]
o
b Cohaies (cotector)
CosClass
Datararhames
Datatermber
Dataourcell >
[—y
The ekl the det
|3 Desin | = Source +| | ebody> :mq:emmmu} SR,
Hesdy

[24]

Chapter 1

You are done! Execute the web page as the last step; the output on execution is

shown in the following screenshot:

2N Untitled Page - Microsoft Internet Explorer

Fle Edt “iew Favortes Tools Help I
€} > Iﬂ E _;‘J /-‘: Search ‘:“‘\?Favorltas G} = - % j‘i
Address | &] http:flocalhost: 1483 ProjectsfAccessDatasaurce aspix - E,Go Links **
FEmp Code EmplName Basic
1 Toydip 5000
2 Douglas 6500
3 Jini 2500
4 Piku 3300
5 Rama 2700
& Amal 2500
7 Indronl 4500
&] Dore & Local intranet

The XML Data Source Control

The XML data source control introduced in ASP.NET 2.0 can be used to bind to an
XML Document seamlessly. It can also be used to bind hierarchical data with data

controls that supports it.

Using the XML Data Source Control

To use this control, drag-and-drop the control from the toolbox onto your web
form. The default name of this control would be XmlDataSourcel. Now, configure

the control by clicking on the Configure Data Source option as shown in the

following screenshot:

Configure Data Source - XmlDataSource1

that will be used ta maodify the XML befare it is used by the contral,

Data file:

Specify the XML data file to use as the source For this contral, You can optionally specify additional files

|~,|’emp|0yee.xml| |[Browse. ..]

Transform file:

| | [Erowse. ..]

A transform file describes how the structure of the $ML file should be converted ko a different
structure,

rPath expression:

AN XPath expression allows you ta filker the data in the XML file and return only a subset of the file,

Ok Cancel

[25]

Introduction to Data Binding in ASP.NET

Specify the name and the path to the XML Data file as shown above. Then click on
the OK button. In our example, the XML data file is employee.xml, present in the
application's root directory. The following is the schema for the employee.xml file:

<?xml version="1.0" encoding="utf-8" ?>

<Employees>
<Employee Code ="1" Name = "Joydip" Basic ="5000"/>
<Employee Code ="2" Name = "Douglas" Basic ="6500"/>
<Employee Code ="2" Name = "Jini" Basic ="2500"/>
<Employee Code ="2" Name = "Piku" Basic ="3900"/>
<Employee Code ="2" Name = "Rama" Basic ="2700"/>
<Employee Code ="2" Name = "Amal" Basic="2900"/>
<Employee Code ="2" Name = "Indronil" Basic="4500"/>

</Employees>

We now need a data control for displaying the data that would be retrieved by
the XML data source control. For this, drag and drop a GridView control from
the toolbox and associate the data source of this control with the XMLDataSource
control created and configured earlier. Refer to the following screenshot:

7+ Projects - Microsoft Visual Studio

File Edit View ‘website FBuld Debug Format Layout Tools Window Community Help
HC AR =N I - =N A CRRA e R LY - MET x| | e B 3k Bl
H - - - B I U|A 2= -|i= = || Transitional ¢ - e | B
Toolbox ~ 3 X xMLDatﬂsuur(E_agpu*l w X ||Solution Explorer - DiiProjects), > 1 X
Standard @ i
£ Dat; ml B . .
= .a Smip e - smiDatasourcel [Solution Prajects' (1 project)
K Fointer . - & Di\Projects’,
GridWige l Grid¥iew Tasks
& Colmn0 Cohmnl Colun
02 Datalist Auto Format..,
B fabc abc abc
2 petasview i Chaoose Data Source!
iabc abc abc
5 Formbview 1
i Edit Calumns...
fabc abe abe
== Repeater H
= i Add Mew Colurmn. ..
D SgiDatasSource: ;abe abc abe
i Edit Templates
[AccessDatasource iabc abc abc ‘_
[3% objectbatasource
[, smiDatasource
% SiteMapDataSource
Reportyiswer
Yalidation
Navigation Properties ~ 1 X
Login Grid¥iew1 System Weh.UI WehControls. Gridview -
WebParts = ——
HTML @ =l
Crystal Reports Borderwidth A
= General Caption
Captionalign MotSet
There are no usable CellPadding -1 =
contrals in this group. " 13
Drag an ikem onko this kexk Celparing 0
to add it ko the toolbox. Columns {Collection)
CssClass
DatakeyNames
DataMember
DataSourcelD v
DataSourcelD
“ ||| The contral ID of an IDataSource that will be used as the data
Source | E <aspigridviewdgridviev! = E' source.
Ready

[26]

Chapter 1

You are done! On execution of the web page, the output is as follows:

) Untitled Page - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help #
. - a
\ ;) e " W . . al o
<) 7 \ﬂ \ELI |/ Search 7. Favorites €‘< = % '4“
Address @jhttp:.f.l’localhost:1489,1’Pr0jects,|’><MLDataSource.aspx b EGD Links **

Code Name Basic
Toydip 5000 [
Diouglas 6500
Jind 2500
Piku 3200
Eama 2700
Amal 2200
Indronil 4500

DN N DN D=

&] Done “J Local intranet

User Interface and Data Source Paging

Paging, Sorting, and Filtering of data is much more simplified using these Data
Source Controls. You have two options for data paging and data sorting when using
Object data source control. These are:

e User Interface Paging or Sorting

e Server Side Paging or Sorting

While the former is much simpler to use, the later can offer you much improved
performance. Let us now see how we can implement User Interface Paging using
Object data source control.

Refer to our discussion on Object data source control earlier. For the sake of
simplicity, we would consider the same Object data source control data binding and
the GridView control to present data to the User Interface. For working with User
Interface Paging, simply set the Allow Paging property of the Gridview to true.
Further, set the Page Size property to the number of records that you would like

to be displayed for each page. We would set the page size to a value of 5 for this
example. On execution of the web page, the output is as follows:

[27]

Introduction to Data Binding in ASP.NET

2N Untitled Page - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

2 — n.
¢} > Iﬂ \ELI 0 / ! Search < ¢ Favarites @ = @ e@' “:‘i

address | @] http: fflocalhost: 1459{Projects/Defaulk. aspx % ~ EGD Links **

Emplame Basic EmpCode
Joydip 5000 1
Douglas 6500 2

Jmi 2500 3

Pilm 3500 4

Fama 2700 5

12

@j Done % Local intranet

Though User Interface Paging is very easy to use, the major drawback of using this
approach is that it would load all the records in the server's memory even though
only a specified number of records would actually be displayed. These drawbacks
can be overcome using the other option of paging, that is, Data Source Paging.

For implementing Data Source Paging, you would require a method that returns
paged data and one that returns the count of the data from the database table. The
following two methods return a page of Employee records and the count of the
Employee records respectively, from the database table Employee.

public SglDataReader GetDataFromDataReader (int StartRowIndex, int

MaximumRows)
String connectionString = "Data Source=.;Initial
Catalog=joydip;User ID=sa;Password=sa";
String procedureName = "GetPagedEmployeeRecords";

SglConnection sglConnection = new
SglConnection (connectionString) ;
SglCommand sglCommand = new SglCommand (procedureName,

sglConnection) ;

sglCommand.CommandType = CommandType.StoredProcedure;
sglCommand.Parameters.AddWithValue ("@StartRowIndex",
StartRowIndex) ;

sglCommand.Parameters.AddWithvValue ("@MaximumRows",
MaximumRows) ;

sglConnection.Open() ;
return sglCommand.ExecuteReader
(CommandBehavior.CloseConnection) ;

}

public int GetDataCountFromDataReader ()

{

String connectionString = "Data Source=.;Initial
Catalog=joydip;User ID=sa;Password=sa";

[28]

Chapter 1

String sqglString = "Select count (*) from employee";
SglConnection sglConnection = new

SglConnection (connectionString) ;

SglCommand sglCommand = new SglCommand (sqglString,
sglConnection) ;

sglCommand.CommandType = CommandType.Text;
sglConnection.Open() ;

return int.Parse (sglCommand.ExecuteScalar () .ToString()) ;

}

The following is the stored procedure called Get PagedEmployeeRecords that returns
a page of Employee records from the Employee table:

Create Procedure GetPagedEmployeeRecords
(
@StartRowIndex int, @MaximumRows int
)
as

select a.empCode,a.empName,a.basic from employee a inner join employee
b on a.empcode = b.empCode where b.empCode >=@StartRowIndex and
b.empCode <(@StartRowIndex + @MaximumRows)

Set the selectMethod property of the Object data source control to the
GetDataFromDataReader () method and the SselectCountMethod property to the
GetDataCountFromDataReader () method. Ensure that the Al1lowPaging property
for the Gridview Control is set to true. Next, you need to set the EnablePaging
property of the Object data source control to true. On doing so, this control would
pass the parameters StartRowIndex and MaximumRows when calling the method
represented by the SelectMethod property. Refer to the following source code
snippet that gets generated for the . aspx file:

<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
EnablePaging="True"
SelectCountMethod="GetDataCountFromDataReader"

SelectMethod="GetDataFromDataReader" TypeName="DataManager"
>

</asp:0bjectDataSource>

<asp:GridvView ID="GridViewl" runat="server" AllowPaging="True"
DataSourceID="ObjectDataSourcel" PageSize="5">

</asp:Gridview>

[29]

Introduction to Data Binding in ASP.NET

The following is the output on execution:

23 Untitled Page - Microsoft Internet Explorer,

File Edit Wiew Favorikes Tools Help o
A, = I . % 2
> 2] \ﬂ \ELI W |/ Search ¢ Favorites é’:e = b w@, .“‘
Address @jhttp:,f.l’localhost:1489,|’Pr0jects,|’DeFauIt.aspx w aGo Links *

empCode emplName basic

1 Jowdip 5000
2 Douglas 6300
3 Tim 2500
4 Pikn 3900
3 Rama 2700
12
ks
@j Done % Local intranet

User Interface and Data Source Sorting

The previous section discussed how we can implement paging seamlessly using the
Object data source Control. This section will discuss how we can implement User
Interface and Data Source sorting of data.

For User Interface Sorting, set the AllowSorting property of the Gridview Control
to true. Note that automatic data sorting with Object data source Control is
supported with Dataview, DataTable or a DataSet only. The following method
illustrates how we can retrieve data from the Employee table, populate a Dataset
with it and then return it.

public DataSet GetDataFromDataSet ()

{

String connectionString = "Data Source=.;Initial
Catalog=joydip;User ID=sa;Password=sa";
String procedureName = "GetEmployeeRecords";

SglConnection sglConnection = new
SglConnection (connectionString) ;
sglConnection.Open() ;

SglDataAdapter sglDataAdapter = new
SglDataAdapter (procedureName, sglConnection) ;
DataSet dataSet = new DataSet() ;
sglDataAdapter.Fill (dataSet) ;

return dataSet;

[30]

Chapter 1

Now, set the Object data source Control's SelectMethod property to refer to the
GetDataFromDataSet () method shown above. The code generated in the . aspx file
is as follows.

<asp:0ObjectDataSource ID="ObjectDataSourcel" runat="server"
SelectMethod="GetDataFromDataSet"
TypeName="DataManager">
</asp:0bjectDataSource>
<asp:Gridview ID="GridViewl" runat="server" AllowSorting="True"
DataSourceID="ObjectDataSourcel">
</asp:Gridviews>

On execution, the following is the output:

< Untitled Page - Microsoft Internet Explorer,

Flle Edit Wiew Favorites Tools Help ,'

<« </ \ﬂ lg _;\l /qJSearch ‘g‘l’fFavorites 6‘3 A _,’_ E © _J % ﬁ

Address |£j http: fflocalhost: 1459]ProjectsjDefault, aspx v| Go | Links ™

empCode emplName basic

1 Joydip 5000
2 Donglas 6500
3 Titd 2500
4 Pl 3900 L
5 Rama 2700
6 Armnal 2500
7 Indroml 4500
@j Downloading from site: http:iflocalhost: 1489 /Projects/Default, aspx ‘3 Local inkranet

On clicking in the empName column, the output is sorted by employee name and
the resultant output is as shown in the following screenshot:

<2 Untitled Page - Microsoft Internet Explorer E"E|E|
File Edit \View Favorites Tools Help ,'
" - a =
GBack M > \ﬂ @ _l\J /- ! Search ‘:::(Favor\tes é} 2~ = o - _I % ﬁ
Address |2j httpiflocalhost: 1489 Projects/Default, asps: V| Go Links ¥

emp Code emplN @e basic
Amal 2500

&

2 Douglas 6500
7 Indrend 4500
3 Jin 2500
1 Joydip 5000
4 Pikn 3500
5 Eama 2700

@j javascript:_doPostBack]Gridview!','Sort$empliame’) ‘3 Local intranet

[31]

Introduction to Data Binding in ASP.NET

For data source sorting, you have to set the SortParameterName property of the
Object data source Control to the desired sort expression. If this property is set, Data
Source Sorting would be used in place of User Interface Sorting. Note that the
default sorting mode for this control, that is, if this property is not specified, is User
Interface Sorting.

The following is the stored procedure that fetches sorted Employee Records from
the Employee table:

create procedure GetSortedEmployeeRecords
(

@sortColumn int
)
as
select empCode, empName,basic from employee
order by
case when @sortColumn = 1 then empCode end asc,
case when @sortColumn = 2 then empName end asc,
case when @sortColumn = 3 then basic end

The following is the Get SortedEmployeeData () method that returns a list of sorted
Employee records using the GetSortedEmployeeRecords () stored procedure.

public SglDataReader GetSortedEmployeeData (int sortColumn)
{
String connectionString = "Data Source=.;Initial
Catalog=joydip;User ID=sa;Password=sa";
String procedureName = "GetSortedEmployeeRecords";
SglConnection sglConnection = new
SglConnection (connectionString) ;
SglCommand sqglCommand = new SglCommand (procedureName,
sglConnection) ;
sglCommand. Parameters.AddWithValue ("@sortColumn",
sortColumn) ;
sglConnection.Open() ;
return sglCommand.ExecuteReader
(CommandBehavior.CloseConnection) ;

[32]

Chapter 1

Filtering Data Using the Object Data
Source Control

The Object data source control supports filtering data provided the Select

method property returns a DataSet, DataTable or a DataView instance. The
FilterExpression property of the Object data source control can be used to specify
the expression that should be used to filter the data. Note that you can retrieve data
using the method that is specified by the SelectMethod property of the Object data
source control.

To apply a filter on the data, specify basic > 3500 in the FilterExpression property
of the Object data source control. Refer to the following screenshot:

@0 Projects - Microsoft Visual Studio

File Edit view Webste Buld Debug Format Layout Tools Window —Community Help
A-E-EE @ 8 G S5 b pebug ML) LT Rcller I 2 B
B Z U =i = @ & =
App_Code/DataManager.cs . Default.aspx » X | Solution Explarer - D:iProjectst >~ 1 X
B EREE e
[Solution ‘Projects' (1 praject}
i o 2P Di\Projects,
ﬁ]hie(tbataﬁnur(e - ObjertDataSourced ||
'ﬁmpln_ve-e Code Employee Name Employee Basic
Databound Databound Databound
Databound Databound Databound
Databound Databound Databound
Databound Databound Databound
Databound Databound Dratabound
DeleteMethod A
DeleteParameters {Collection)
EnableCaching True
EnablePaging False
EnableviewState True
B basic>3500] I
FilterParameters (Collection)
InsertMethod
InsertParameters (Collection)
MaximumRovwsPar ameterMame maximurmRows
OldvaluesPar ameterFormatstring 40
SelectCountMethod
SelectMethod GetDataFromDataSet
SelectParameters {Collection)
SortParameterblame
SolCacheDependency
ShartRamlndeyParameterilame skartRonTndey b
FilterExpression
Filter expression used when Select() is called. Filkering is only available when the SelectMethod returns a
&l saurce <body > | [<aspiobjectdatasourcestoh). > EHEER 7 QB3
Ready

Note the resultant code that gets generated in the . aspx file as a result of the
above screenshot:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server" SelectMeth
od="GetDataFromDataSet" TypeName="DataManager" EnableCaching="True"
FilterExpression=" basic>3500"></asp:0bjectDataSource>

[33]

The output on execution is shown in the following screenshot:

@ =
3 Untitled Page - Microsoft Internet Explorer g@]g|
File Edit VYiew Favorites Tools Help l';'

" n .
) > \ﬂ \ELI _'\J pe ! Search ‘:\?’ Favorites 6’-‘{ i - % ‘i‘i
address | 2] hitpyfflocalhost: 1489(Projects/Default, aspx v Go Llinks *

Employee Code Employee IName Employee Basic

1 Joydip 5000
2 Douglas 6500
4 Pily 3900
7 Tndronil 4500
&] Done &) Localintranet

Summary

This chapter gave a bird's eye view at ASP.NET's Data Binding Model and the Data
Source Controls. We have discussed how we can work with the Data Source Controls
like, Object data source, SQL data source, Xml data source and the Access data
source control. We also had a look at how we can implement Paging, Sorting, and
Filtering data using these controls. The next chapter, will discuss how we can bind
data to the List Controls in ASP.NET and use them in our ASP.NET applications.

Working with List Controls
in ASP.NET

In chapter 1, we saw the basics of Data Binding in ASP.NET and how we can

bind and retrieve data to and from the newly added Data Source controls in our
applications. In this chapter, we will explore ASP.NET List controls, which controls
those display lists of data items bound to them from where the user can select one or
more such list items.

We will discuss how we can Add, Display, Select, and Delete the items of each of
these controls and handle events of each of these controls. We will see how we can
associate event handlers to a dynamic DropDownList control and design. We will
also learn how to design and implement a custom CheckBoxList control that will
allow you to select one or more items at one go.

The ASP.NET List Controls

The List controls display a list of data items from where the user can select one or
more data items. These are all derived from the ListControl base class due to which
they have a common set of properties and methods. You can bind data to any of
the above controls using the DataSource property. In binding data to these controls,
you can have two approaches, the declarative data binding approach and the
programmatic data binding approach.

Note that while you use the declarative approach from your HTML
source code mode or in the design view mode and you hardly require
. any code to bind data to the controls, you use the programmatic approach
% to accomplish the same task from your code behind file. The declarative

L= approach comes in handy in situations where you need not, or want
to avoid writing code to bind data to the controls of your web form.
However, you can have more control and provide more flexibility or
customization when you do the same programmatically.

Working with List Controls in ASP.NET

You have a variety of List Controls in ASP.NET to choose from. These are as follows:

e ListBox Control

e DropDownlList Control
o CheckBoxList Control

e BulletedList Control

e RadioButtonList Control

Each of these controls will be discussed in the sections that follow. You would
learn how to bind static data to all of these controls through your .aspx page and
also dynamic data at runtime programmatically. We will discuss how we can add,
remove, and select list items for these controls.

Working with the ListBox Control

The ListBox control, a container of list items, can be used to create and display a list
of items and select one or multiple items from such list of items. However, you can
control the number of list items displayed in the control, and adjust the size of the
control, that is, height and width.

In order to work with a ListBox control, simply drag-and-drop an instance of the
control from the toolbox into your web form.

Appending List Items to the ListBox Control

You populate data in a ListBox control using the list items. You can add the list
items through the . aspx page as shown in the following code snippet:

<asp:ListBox ID="ListBoxl" runat="server" Height="125px"
Width="214px">
<asp:ListItem Value="1">Joydip</asp:ListItem>
<asp:ListItem Value="2">Douglas</asp:ListItem>
<asp:ListItem Value="3">Jini</asp:ListItem>
<asp:ListItem Value="4">Piku</asp:ListItem>
<asp:ListItem Value="5">Rama</asp:ListItem>
<asp:ListItem Value="6">Amal</asp:ListItem>
<asp:ListItem Value="7">Indronil</asp:ListItem>

</asp:ListBox>

[36]

Chapter 2

You can also add list items to the ListBox control programmatically using the
overloaded Add () method of the Items property of this control as shown in the
following code snippet:

protected void Page Load (object sender, EventArgs e)

{

if (!IsPostBack)

{

PopulateListItems() ;

private void PopulatelListItems ()

{

ListBoxl.Items.Add ("Joydip") ;

ListBoxl.
ListBoxl.
ListBoxl.
ListBoxl.
ListBoxl.
ListBoxl.

}
}

Items.
Items
Items
Items
Items
Items

Add ("Douglas") ;

(
.Add ("Jini") ;
.Add ("Piku") ;
.Add ("Rama") ;
.Add ("Amal") ;
(

.Add ("Indronil") ;

Now, the ListBox control is populated with data. The following figure displays the
ListBox control populated with data at runtime.

Joydip
Douglas
Jini
Piku
Rama
Amal
Indranil

[37]

vww allitebooks.conl

http://www.allitebooks.org

Working with List Controls in ASP.NET

Selecting One or More List Items

Now, let us see how to select one or more list items from the ListBox control. The
following figure displays the list items that have been selected from a ListBox control
in a Label control on click of a Button.

TF Untithed Page = Microsoft Intemet Explorer
File Edit View Favoriie Tools Help

Qua - @ [# [€ Psewenlprmones@ | (3 1 8
Lkl s .:-.'E-.j htpp:iflocathost 1 270 mjectsiLis®Box.aspy
x-"|-5-ur-=hw-h' & e @i

-.|-.1-||p.u-.-g|u.mm.-,.um|

This section discusses how to accomplish the above. You can select one of more list
items from a ListBox. Drag-and-drop a Button control and a Label control onto your
web form. In the click event of the Button, write the following code to retrieve the
selected text from the ListBox control in a single selection mode and display it in the
Label control once the Button control is clicked.

protected void Buttonl Click(object sender, EventArgs e)

{

Labell.Text = ListBoxl.SelectedItem.Text;

}

As you can see in the above code snippet, the SelectionMode property or a ListBox
control having an ID of ListBox1, is set to "Single", implying that we can select only
one List Item from the control at any point in time. The text of the selected item
from the ListBox control is being displayed in a Label control in the click event

of a Button.

Now, you need to change the selection mode of the ListBox control from the default
"Single" to "Multiple" so as to enable multiple list item selection from the control.
You can do this by changing the SelectionMode property in the design view or in
your .aspx file.

[38]

Chapter 2

. Irrespective of whether the ListBox control's selection mode is set to
& "Single" or "Multiple", the Count property of the Items collection of the
" control would always return you the total number of list items in
the control.

Now, refer to the following code snippet that shows how you can retrieve the
selected text for multiple selected list items from the ListBox control:

protected void Buttonl Click(object sender, EventArgs e)
{
string str = String.Empty;

for (int i 0; 1 < ListBoxl.Items.Count - 1; i++)

{

if (ListBoxl.Items[i].Selected)
str += ListBoxl.Items[i].Text+",";

}

str = str.Substring(0,str.LastIndexOf (‘,'));
Labell.Text = str;

You can select any Listltem in the ListBox control by its Text or by its
% Value properties. The following code snippets illustrate how you can
g do this.

ListBoxl.Items.FindByText ("Joydip") .Selected = true;
or

ListBoxl.Items.FindByValue ("Record 1") .Selected = true;

Removing List Items from the ListBox Control

You can remove a list item from the ListBox control using the Removeat () method
that accepts the index number of the list item that you need to remove from the
collection of list items.

ListBoxl.Items.RemoveAt (0) ;
To remove all the list items from the ListBox control, use the following code:

ListBoxl.Items.Clear () ;

[39]

Working with List Controls in ASP.NET

Binding Data to the ListBox Control

We have already discussed how we can bind static data to this control declaratively.
For programmatic data binding we can use the bataManager class that we designed
in Chapter 1. Note that we would use this class for programmatic data binding for
this and the other list controls that we would cover in this chapter.

To bind data to the ListBox control programmatically, we need to set the
DataTextField and the DatavalueField properties appropriately and then make a
call to the DataBind () method shown as follows:

protected void Page Load (object sender, EventArgs e)

{

if (!IsPostBack)

{
DataManager dataManager = new DataManager () ;
listBox.DataSource = dataManager.GetDataFromArrayList () ;
listBox.DataValueField = "EmpCode";
listBox.DataTextField = "EmpName";
listBox.DataBind () ;

}

The pataTextField property is used to retrieve the contents of the Text property
of the control, whereas the DatavalueField property is used to retrieve the
contents of the Value property of the control. Note that the Text property
contains text which is what is displayed in the web page and a Value property
which is in the HTML.

Value is a unique value of an item in any list control. Text is the value
% which is actually displayed in an item of the control. Moreover, you can
' have duplicate Text values.

Handling ListBox Control Events

The selectedIndexChanged event in the ListBox class is fired whenever the
SelectedIndex in the ListBox changes as and when your web page postbacks to the
Web Server. The following code snippet shows how this event can be used:

private void lstBox_ SelectedIndexChanged (object sender,
System.EventArgs e)

{
}

//Usual Code

[40]

Chapter 2

Working with the DropDown List Control

The DropDownlList control in ASP.NET consists of a list of options or data items
that allows the user to choose a data item. Hence, unlike the ListBox control, the
DropDownlList control allows you to select one data item only, at a time. These
selectable data items are actually referred to as a List Item.

Note that, like the ListBox control, you can bind data to this control either
= manually or by writing code.

Similar to the ListBox control, you can use the Add(), Insert(), RemoveAt(),

and Clear() methods of the Items collection of the DropDownlList control to
programmatically Add, Insert, Edit or Remove the list items. You can get the number
of items in the items collection, that is, the count of the list items in the control using
the count property.

The list items in a DropDownList control, as in a ListBox control, are indexed

with index 0 as the starting index. You can get the index of the selected item from
the DropDownlList control using the SelectedIndex property of this control. The
SelectedValue or SelectedItem.Value properties can be used to retrieve the value

of the selected List Item. The text of the selected list item can be retrieved using the
SelectedItem.Text property of the control. Note that once a web page is posted back,
the first index of this control is selected by default.

To start working with a DropDownList control, drag and drop a control from the
toolbox into your web form.

Appending List Items to the DropDownList Control

The following figure shows how a DropDownList control looks like when it is bound
with data. Note that by default, the selected index of the DropDownlList control is 0,
that is, the first list item in the control is selected.

[41]

Working with List Controls in ASP.NET

This section discusses how we can add list items to a DropDownList control. You
populate data in a DropDownList control using the list items. You can add the list
items through the . aspx page as shown in the following code snippet:

<asp:DropDownList ID="ddlEmployee" runat="server" Width="147px">
<asp:ListItem Value="1">Joydip</asp:ListItem>
<asp:ListItem Value="2">Douglas</asp:ListItem>
<asp:ListItem Value="3">Jini</asp:ListItem>
<asp:ListItem Value="4">Piku</asp:ListItem>
<asp:ListItem Value="5">Rama</asp:ListItem>
<asp:ListItem Value="6">Amal</asp:ListItem>
<asp:ListItem Value="7">Indronil</asp:ListItem>

</asp:DropDownList>

Similar to the ListBox control, you can also add list items to the DropDownList
control using the Add () method. This method accepts an object as a parameter and
adds it to the Items collection of the control. Refer to the following code snippet
which illustrates how this can be accomplished.

protected void Page Load (object sender, EventArgs e)

{

if (!Page.IsPostBack)

{
ddlEmployee.Items.Add ("Joydip") ;
ddlEmployee.Items.Add ("Douglas") ;
ddlEmployee.Items.Add ("Jini") ;
ddlEmployee.Items.Add ("Piku") ;
ddlEmployee.Items.Add ("Rama") ;
ddlEmployee.Items.Add ("Amal") ;
ddlEmployee.Items.Add ("Indronil") ;

}

Alternatively, you can also add ListItems to a DropDownlList control and set a
Value field to each of these items added. Following is the code that shows you
how to do this.

protected void Page Load (object sender, EventArgs e)

{

if (!Page.IsPostBack)

{
ddlEmployee.Items.Add (new ListItem
ddlEmployee.Items.Add (new ListItem
ddlEmployee.Items.Add (
ddlEmployee.Items.Add (new ListItem

"Record 1", "Joydip"));
"Record 2", "Douglas")) ;
"Record 3","Jini"));
"Record 4","Piku")) ;

new ListItem

(
(
(
(

[42]

Chapter 2

ddlEmployee.Items.Add (new ListItem("Record 5", "Rama")) ;
ddlEmployee.Items.Add (new ListItem("Record 6", "Amal")) ;
ddlEmployee.Items.Add (new ListItem("Record 7", "Indronil")) ;

}
}

Selecting a List Item

The SelectedItem.Text property of the DropDownList control would give you the
text of the selected list item. The following code snippet illustrates how you can
display the selected text from a DropDownList control in a Label control on your

web form.

protected void Buttonl Click(object sender, EventArgs e)

{

lblEmployeeName.Text = ddlEmployee.SelectedItem.Text;

}

You can select any ListItemin the DropDownlList by its Text or by
its Value property. The following code snippets illustrate how you can
do this.
ddlEmployee.SelectedIndex = ddlEmployee.Items.
IndexOf (ddlEmployee.Items.FindByText ("Joydip")) ;
or
ddlEmployee.SelectedIndex = ddlEmployee.Items.

Y:l IndexOf (ddlEmployee.Items.FindByValue ("Record 1")) ;

You might require adding an extra Listltem to a DropDownList control
and displaying a custom message similar to, "--Click to Select--". In such
situations, the Listltem added should be the first one among the other
ListItems in the DropDownList control. In other words, the ListIndex for
such a ListItem should be typically be zero.

The following code shows how you can accomplish this:
dropDownList.Items.Add("--Click to Select--");

Removing List Items from the DropDownList
Control

To remove a specific list item from the list item collection of the DropDownList

control, use the RemoveAt () method of the Items collection property of the control as

shown in the following code snippet:

DropDownListl.Items.RemoveAt (0) ;

[43]

Working with List Controls in ASP.NET

To remove all the list items from the DropDownList control, use the following code:

DropDownListl.Items.Clear () ;

Here, DropDownList1 is the name of the DropDownList control.

Binding Data to the DropDownList Control

Like the ListBox control, you can bind data to the DropDownlList control in either of
the following ways:

e Declarative

e Programmatic

We have already discussed how we can bind static data to the DropDownList control
declaratively through the .aspx page.

For programmatic data binding we can use the bataManager class that we designed
in the Chapter 1. To bind data to the DropDownList control programmatically, we
need to set the DataTextField and the DatavalueField properties appropriately
and then make a call to the DataBind () method shown as follows:

protected void Page Load (Object sender, EventArgs e)

{

if (!IsPostBack)

{
DataManager dataManager = new DataManager () ;
DropDownListl.DataSource = dataManager.GetDataFromArrayList () ;
DropDownListl.DataValueField = "EmpCode";
DropDownListl.DataTextField = "EmpName";
DropDownListl.DataBind() ;

Handling DropDownList Control Events

The selectedIndexChanged event in the DropDownlList class is executed
whenever the index of the selected item, that is the, SelectedIndex property in the
DropDownlList, changes. The following code snippet illustrates how this event can
be used.

private void dropDownList SelectedIndexChanged (object sender, System.
EventArgs e)

{

//Custom code to handle the event

}

[44]

Chapter 2

The section that follows illustrates how you can handle events when working with
the DropDownlList control.

Associating Event Handlers to a dynamically
generated DropDownList Control

What happens when you want to associate event handler to a dynamically
generated DropDownList Control, that is, a DropDownList Control that has been
created at run time rather than at design time and the ListItems of it have been
populated dynamically.

Let us first have a look at the output once you execute the application. The following
is the screenshot of what we actually are looking for:

@ Even Handling with DropDownlist Control - Windows Internet E

@'\JI hd |ii, http://localhost:49476/Chapter?e20I/Default.aspx
Google |G+ I~ Go{i@ 2~ | 7 B
ﬂ? ol [@ Even Handling with DropDownlList Control

Jini -

The selected employee is: Jini

s

Once you select any of the List Items in the DropDownList control displayed in the
screen shot above, an event handler is fired and the selected employee's name is
displayed in a TextBox control just beneath the DropDownList.

Simple, just take a PlaceHolder to store your dynamically created DropDownList
control. Next, add the List Items using the Add () method of the Items collection of
the control. Finally, associate the event handler. That's it!

Following is the code that shows how to accomplish this task:

public partial class Default : System.Web.UI.Page
{
DropDownList ddlEmployee = null;
protected void Page Load(object sender, EventArgs e)
{
ddlEmployee = new DropDownList () ;
ddlEmployee.Items.Add (new ListItem("Joydip", "Record 1"));

[45]

Working with List Controls in ASP.NET

ddlEmployee.Items.Add (new ListItem("Douglas", "Record 2")) ;
ddlEmployee.Items.Add (new ListItem("Jini", "Record 3")) ;

ddlEmployee.Items.Add (new ListItem("Piku", "Record 4")
()
(
(

)i
)i
)

1

ddlEmployee.Items.Add (new ListItem
ddlEmployee.Items.Add (new ListItem("Amal", "Record 6")
ddlEmployee.Items.Add (new ListItem("Indronil", "Record 7")) ;
ddlEmployee.AutoPostBack = true;

"Rama", "Record 5"

ddlEmployee.SelectedIndexChanged += new
EventHandler (ddl1Employee SelectedIndexChanged) ;
PlaceHolderl.Controls.Add (ddlEmployee) ;

}

protected void ddlEmployee SelectedIndexChanged(object sender,
EventArgs e)

lblDisplay.Text = "The selected employee is: " +
ddlEmployee.SelectedItem. Text;

}
Following is the code in your .aspx file:

<form id="forml" runat="server"s
<div>
<asp:PlaceHolder ID="PlaceHolderl"
runat="server"></asp:PlaceHolder>

<asp:Label ID="1blDisplay" runat="server"
Text=""></asp:Label>
</divs>
</form>

Implementing a Simple Application

The following example makes use of the concepts learnt so far to implement a simple
application. The application contains a ListBox, DropDownList control, TextBox and
two Button controls that can Add and Remove list items from the ListBox control

at runtime. While the Add button can be used to add the text typed in the TextBox
control to the ListBox, the Remove button can be used to remove the list item that is
selected from the ListBox. The SelectionMode property of the ListBox control can be
set using the DropDownList control that displays Single and Multiple as the possible
selection modes.

[46]

Chapter 2

The output of the sample application is shown as follows:

T} Untitled Page - Microsoft Intemet Explorer

File Edit View Favoriie Tools Help

=

Eanum - ki) |Eﬂ éﬂ &h _;:iamnhgianmnusﬁE} iﬁﬂ %; i
eddres .:sﬁj htpp:iflocaihost] 270 rajectsiLisBox.aspx
X7 - & [Wi}ﬁnmhﬁm"ﬁp e &=

Jory clge
Dounlas
Jini

[Piku

Rama
Armal

by

|Indranil .IiiiiququuumhLﬂmutﬁnul

The source code for this simple application is given as follows:

public partial class ListBox : System.Web.UI.Page

{

protected void Page Load(object sender, EventArgs e)

{

if (!IsPostBack)

{
DropDownListl.Items.Add("Single") ;
DropDownListl.Items.Add ("Multiple") ;
DropDownListl.SelectedIndex = 0;
ListBoxl.Items.Add ("Joydip") ;
ListBoxl.Items.Add ("Douglas") ;
ListBoxl.Items.Add("Jini") ;
ListBoxl.Items.Add ("Piku") ;
ListBoxl.Items.Add ("Rama") ;
ListBoxl.Items.Add ("Amal") ;
ListBoxl.Items.Add ("Indronil") ;

ListBoxl.SelectionMode = ListSelectionMode.Single;

}

protected void DropDownListl SelectedIndexChanged(object sender,

EventArgs e)

[47]

Working with List Controls in ASP.NET

if (DropDownListl.SelectedIndex == 0)
ListBoxl.SelectionMode = ListSelectionMode.Single;
else
ListBoxl.SelectionMode = ListSelectionMode.Multiple;

}

protected void Add Click (object sender, EventArgs e)

{
}
protected void Remove Click (object sender, EventArgs e)

{
}

ListBoxl.Items.Add (TextBoxl.Text) ;

ListBoxl.Items.RemoveAt (ListBoxl.SelectedIndex) ;

Working with the CheckBoxList Control

The CheckBoxList control consists of a group of check boxes that actually provides
a multi-selection checkbox with the capability of selecting one or more items from
the list of items. Compared to the CheckBox control, a CheckBoxList control is a
preferred choice in cases where you might require creation of a series of check boxes
and populate them with data from a data store like, a database table, an Xml file or
even a web service that fetches data.

Appending List Items to the CheckBoxList Control

The following figure shows how a CheckBoxList control looks like at runtime when
it is bound with data.

A§ Untitled Page - Microsoft Intemet Exploner
File Edit View Favoriie Tools Help

@m:ﬁ. = I\.-:i IH:'] I"_...’I] -"':'] _‘;-.‘tanarch H__‘::'::_-’Famrﬂn-:ﬁ "._f" .'::._,. i
vk rees ..-.ﬁ:j htpp:iflocathost1 270 FrojectsiTheckBoxList aspa

T - .f?'_ R L T e L - R

[Joydip
[] Douglas
[] Jdini

[Piku

[Indronil
[] Rama
] Amal

[48]

Chapter 2

This section discusses how you can accomplish the above, that is, add list items to
the CheckBoxList control. You can create a CheckBoxList control and add static data
to it using list items as shown in the following code snippet:

<asp:checkboxlist id="dept" runat="server"s>
<asp:listitem id="1" runat="server" value="IT" />
<asp:listitem id="2" runat="server" value="Sales" />
<asp:listitem id="3" runat="server" value="Admin" />
<asp:listitem id="4" runat="server" value="HR" />
</asp:checkboxlist>

You can also add items to the CheckBoxList control programmatically. Refer to the
following code snippet:

protected void Page Load (object sender, EventArgs e)

{

if (!IsPostBack)

{
CheckBoxListl.AutoPostBack = true;
CheckBoxListl.RepeatColumns = 1;
CheckBoxListl.RepeatDirection = RepeatDirection.Vertical;
CheckBoxListl.RepeatLayout = RepeatLayout.Flow;
CheckBoxListl.TextAlign = TextAlign.Right;

CheckBoxListl.Items.Add (new ListItem("Joydip")) ;
CheckBoxListl.Items.Add (new ListItem("Douglas")) ;
CheckBoxListl.Items.Add (new ListItem("Jini")) ;
CheckBoxListl.Items.Add (new ListItem("Piku")) ;
CheckBoxListl.Items.Add (new ListItem("Indronil")) ;
CheckBoxListl.Items.Add (new ListItem("Rama")) ;
CheckBoxListl.Items.Add (new ListItem("Amal")) ;

Selecting One or More List Items

You can find out which item in this list has been selected by iterating through the
items collection of this control. The following code snippet illustrates how you can
retrieve the list items that have been selected from CheckBoxList control called dept
by iterating through and checking the selected property of each list item.

string message = String.Empty;

for(int i=0; i<dept.Items.COunt;i++)

{

if (dept.Items[i] .Selected)
message += dept.Items[0].Text +
;

}

1blDept.Text = message;

[49]

Working with List Controls in ASP.NET

Note that the checkBoxList class does not contain a SelectedItems property.
How about implementing a Custom CheckBoxList control that contains a
SelectedItems property that can be used to select one or more list items from
the control? We will design and implement a Custom CheckBoxList control to
accomplish this later in this chapter.

Removing List Items from the CheckBoxList
Control

To remove a specific list item from the list item collection of the CheckBoxList
control, use the Removeat () method of the Items collection property of the control
as shown in the following code snippet:

CheckBoxListl.Items.RemoveAt (0) ;

To remove all the list items from the CheckBoxList control, use the following code:

CheckBoxListl.Items.Clear() ;

Here, checkBoxList1 is the name of the CheckBoxList control.

Binding Data to the CheckBoxList Control

Like the ListBox control, you can bind data to the CheckBoxList control in either of
the following ways:

e Declarative

e Programmatic

We have already discussed how we can bind data to this control declaratively.

For programmatic data binding to the CheckBoxList control you have to use a

valid data source and the DataBind () method. As usual, you need to specify

the DataTextField and the DatavalueField properties to specify the Text

and Value properties of each of the list items in the control. You can also set the
Checked property of the all the CheckBox controls in the list to either true or false
programmatically. When a Checked property of any of the CheckBox controls in this
list is set to true, the control is checked, that is, a check-mark appears in the control.
When the same property is false, the control is unchecked.

We have already discussed how we can bind static data to the CheckBoxList control
declaratively through the .aspx page.

The following code snippet illustrates how you can bind data to this with data from
an external data source programmatically.

[50]

Chapter 2

protected void Page Load (Object sender, EventArgs e)
if (!IsPostBack)
DataManager dataManager = new DataManager () ;
checkBoxList .DataSource = dataManager.GetDataFromArrayList () ;
checkBoxList .DataTextField="EmpName" ;
checkBoxList .DataValueField="EmpCode" ;
checkBoxList .DataBind () ;

Handling CheckBoxList Control Events

The selectedIndexChanged event of the CheckBoxList control is fired whenever
you select any check box in the list, that is, the SelectedIndex of the control changes.
The following code snippet shows how this event can be used for this control:

private void checkBoxList SelectedIndexChanged (object sender,
System.EventArgs e)

{

//Custom code to handle this event

}

In the section that follows, we will take a look at how we can handle events
with a CustomCheckBoxList control that we will implement by extending the
CheckBoxList control.

Implementing a CustomCheckBoxList Control

In this section, we will learn how to design and implement a CustomCheckBoxList
control that will enable you to retrieve the values and texts of a multi selection
CheckBoxList control. We will implement a CustomCheckBoxList class that will
contain a SelectedItems property. This property returns a collection of items, which
are the selected items —it just goes through the list of items and adds the selected
ones to its list.

This control will extend the CheckBoxList control and attach this functionality

to it. Added to methods and properties of the CheckBoxList class that it
automatically inherits on virtue of inheritance, it has two new methods, that is, the
GetCheckedItemValues () and the GetCheckedItemText () methods.

[51]

Working with List Controls in ASP.NET

Method GetCheckedItemvalues is used to return a string array containing all the
item values that are checked. Following is the code for this method:

public string[] GetCheckedItemValues ()
{
string selectedValues = String.Empty;
foreach (System.Web.UI.WebControls.ListItem LI in this.Items)
{
if (LI.Selected)
{
if (_selectedvValues.Equals (String.Empty))
_selectedvalues = LI.Value;

else
_selectedvValues = _selectedvalues + "," + LI.Value;
}
}
_checkedItemList = selectedvValues.Split(‘,"');

return _checkedItemList;

}

This method uses a loop on all the items in the current CheckBoxList control and
finds the items that have been checked. For Items that have been checked, the
values of the value property are collected into a string array. This array is then
returned back.

The method GetCheckedItemText () returns all the Text values in a string array.
The code for this method is same as the above except that Text values are collected
into the array instead of the values of the value property. The code snippet for this
method is as follows:

public string[] GetCheckedItemText ()
{
string selectedText = String.Empty;
foreach (System.Web.UI.WebControls.ListItem LI in this.Items)
{
if (LI.Selected)
{
if (_selectedText.Equals (String.Empty))
_selectedText = LI.Text;
else
_selectedText = _selectedText + "," + LI.Text;

}
_checkedItemList = selectedText.Split(',"');
return _checkedItemList;

[52]

Chapter 2

Let us take a look

at how to use this control.

Once the CustomCheckBoxList control is built, you can find it in the toolbox. Just
drag it on to the design view mode or you can go to the source view and key in.

By dragging the control, it is automatically registered onto the page. You can also
register it by writing the following code in your .aspx file:

<%@ Register TagPrefix="Sample" Namespace="Samples.Controls"$%>

Now either add the items from the Design View or bind the data from the database.
This is a sample, therefore just added the items from the source view.

<Sample:CustomCheckBoxList ID="checkBoxList" runat="server"s>

<asp:ListItem Value="0">Sunday</asp:ListItem>
<asp:ListItem Value="1">Monday</asp:ListItem>
<asp:ListItem Value="2">Tuesday</asp:ListItem>
<asp:ListItem Value="3">Wednesday</asp:ListItem>
<asp:ListItem Value="4">Thursday</asp:ListItem>
<asp:ListItem Value="5">Friday</asp:ListItem>
<asp:ListItem Value="6">Saturday</asp:ListItem>

</Sample:CustomCheckBoxList>

Following is a view of the CustomCheckBoxList control in design view mode.

File Edt Yiew ‘Websibe Build Debug Plnvokenet &NTS Formab Lawod
b] - 5 % B @9 - 0 3] b oeb
- - T T - - B — R =

|| web,config | App_Cods(Cust...eckboxlist.cs | Default.aspx.cs Default.aspy
§ HDSunday
E' O Xdeonday
E"ﬂ O Tuesday
:;;1 C'Wednesday
E_ [Thursday
= OFx day

O 2anurday

[ShowSelacted Values b [T Show Selected Text |

We have two buttons Show Selected Values and Show Selected Text. When you
click on any of these Button controls, the respective event handlers of these controls

will be invoked.

[53]

Working with List Controls in ASP.NET

Let us have a look at the event handlers of these two buttons.

protected void btnValues Click(object sender, EventArgs e)
{

string[] checkedItems = checkBoxList.GetCheckedItemValues() ;
string printString = "The Selected Values are :
";
foreach (string strSelect in checkedItems)

{

printString += strSelect + "
";

}

Response.Write (printString) ;

}

protected void btnText Click(object sender, EventArgs e)

{

string[] checkedItems = checkBoxList.GetCheckedItemText () ;
string printString = "The Selected Text :
";
foreach (string strSelect in checkedItems)

{

printString += strSelect + "
";

}

Response.Write (printString) ;

}

These event handlers just call the methods of the CustomCheckBoxList control.
The string array returned is just concatenated in a string by iterating in a loop and
displaying it to the user.

Working with the BulletedList Control

The BulletedList control in ASP.NET contains a collection of bulleted list items that

are arranged in ordered or unordered fashion. The list items can be any one of
the following:

o Text
e Hyperlink
e Link Buttons

You can bind any number of these list items to this control either through your
.aspx page or using any external data source.

[54]

Chapter 2

Note that if you want to make the list items in the BulletedList control
either HyperLink or LinkButton type, you need to specify this mode

using the DisplayMode property of the control.

Similarly, you can change the style of the BulletedList control by specifying your
required style through the BulletStyle property of the control. These bullet styles can

be one of the following:

NotSet
Numbered
CustomlImage
Disc

Circle

Square
LowerAlpha
UpperAlpha
LowerRoman
UpperRoman
UpperAlpha

Appending List Items to the BulletedList Control

The following figure displays how the BulletedList control looks like when it is
bound with data.

Z§ Untitled Page - Microsoft Intemel Exploser
File Edit View Favoriie Tools Help

C oy
Qo ©

vk rees ..-.ﬁ:j htpp:iflocathostl 270 rojectsBulletedList aspx

g @

IH:'] I"_...’I] :"':'] _‘;-.‘tanarch“wi-"FamrHHE} ::._f" .'::._,.

v'|-=q|r-=h'mu' = e @i i

d

=

= Sales
= Admin

[55]

Working with List Controls in ASP.NET

We will now discuss how we can add list items to this control. Refer to the following
code snippet that illustrates how such a control can be constructed from your .aspx
page to display a list of static list items.

<asp:BulletedList ID="bListDept" DisplayMode="LinkButton"
runat="server" OnClick="bListDept Click">

<asp:listitem Selected = "True" text = "IT" value="IT" />

<asp:listitem text = "Sales" value="Sales" />

<asp:listitem text= "Admin" value="Admin" />

<asp:listitem text = "HR" value="HR" />
</asp:BulletedList>

The above code snippet illustrates how the BulletedList control named bListDept
can be declared in your .aspx web page in ASP.NET. Note that the selected
property of the control is used to set the default selected list item from among the
collection of list items in the control.

You can also add list items to this control programmatically. Following is the code:

protected void Page Load(object sender, EventArgs e)
{

if (!IsPostBack)

{
bListDept.Items.Add(new ListItem("IT"));
bListDept.Items.Add(new ListItem("Sales")) ;
bListDept.Items.Add (new ListItem("Admin")) ;
bListDept.Items.Add(new ListItem("HR")) ;
bListDept.Items[0] .Selected = true;

Selecting a List Item

Drag-and-drop a Label control onto your web form. In the click event of the
BulletedList control, write the following code to retrieve the text of the selected list
item in the control.

protected void bListDept Click(object sender, BulletedListEventArgs
e)

{

Labell.Text = "You have clicked: "+bListDept.Items[e.Index] .Text;

}

[56]

Chapter 2

Removing List Items from the BulletedList Control

To remove a specific list item from the list item collection of the BulletedList control,
use the RemoveAt () method of the Items collection property of the control, as shown
in the following code snippet:

BulletedListl.Items.RemoveAt (0) ;

To remove all the list items from the BulletedList control, use the following code:

BulletedListl.Items.Clear() ;

Here, BulletedList1 is the name of the BulletedList control.

Binding Data to the BulletedList Control

Like the earlier list controls, you can bind data to the BulletedList control in either of
the following ways:

e Declarative

e Programmatic

We have already seen how we can bind static data to this control declaratively
through the . aspx file. This section discusses how you can bind data to this control
programmatically.

You can bind data to the BulletedList control using a valid data source and the
DataBind () method. Like the other list controls that we have already discussed, you
need to specify the DataTextField and the DatavalueField properties to specify
the Text and Value properties of each of the list items in the control.

The following code snippet shows how you can bind data to this control with data
from an external data source:

protected void Page Load (Object sender, EventArgs e)

{

if (!IsPostBack)

{
DataManager dataManager = new DataManager () ;
bulletedList.DataSource = dataManager.GetDataFromArrayList () ;
bulletedList.DataTextField="EmpName" ;
bulletedList.DataValueField="EmpCode";
bulletedList.DataBind() ;

[57]

Working with List Controls in ASP.NET

Handling BulletedList Control Events

The selectedIndexChanged event of the BulletedList control is fired whenever you
click on any list item in the control. The following code snippet shows how you can
use this event in your applications.

private void bulletedList SelectedIndexChanged (object sender,
System.EventArgs e)

{

//Usual code to handle the event

}

Working with the RadioButtonList Control

The RadioButtonList control in ASP.NET is used to display a collection of radio
buttons that provide the user a multiple set of choices to choose from. You can
select any one of the radio buttons from this list of radio buttons. You can bind data
statically or programmatically to this control. The SelectedItem property of this
control can be used to retrieve the radio button that has been selected.

Appending List Items to the RadioButtonList

Control
The following figure displays the RadioButtonList control bound with data.

:i Unfitled Page = Microsoft Intemet Explorer
File Edit View Favoriie Tools Help

@m:ﬁ. * g Ix'] ",..’I] 1l .__,:-k Search H._::':;_-’Faf-nrﬂn-:@ :’i" =
TEh :ﬁj htpp:iflocafhost 1 270 mojectsiRadsoButionListaspx

X - & el T N T - D

=T
() Sales
(3 Admin
O HR

Note that the first list item, that is, the list item at index 0 is selected. This section
would discuss how we can add list items to this control.

[58]

Chapter 2

The following code snippet illustrates how you can create a RadioButtonList
control in your . aspx page populated with list items that contain static data:

<asp:RadioButtonList ID="rbListDept" runat="server"s
<asp:listitem Selected = "True" text = "IT" value="IT" />
<asp:listitem text = "Sales" value="Sales" />
<asp:listitem text= "Admin" value="Admin" />
<asp:listitem text = "HR" value="HR" />
</asp:RadioButtonList>

Note that the selected property of the control is used to set the default selected list
item from among the collection of list items in the control.

You can also append the list items programmatically. Refer to the following code
snippet given:

protected void Page Load(object sender, EventArgs e)
{

if (!IsPostBack)

{
rbListDept.Items.Add (new ListItem("IT")) ;
rbListDept.Items.Add (new ListItem("Sales"));
rbListDept.Items.Add (new ListItem("Admin")) ;
rbListDept.Items.Add (new ListItem("HR")) ;
rbListDept.Items [0] .Selected = true;

Selecting a List Item

Drag-and-drop a button and a Label control onto your web form. In the click event
of the Button control, write the following code to retrieve the text of the selected list
item in the RadioButtonList control.

protected void Buttonl Click(object sender, EventArgs e)

{

Labell.Text = "You selected: " + rbListDept.SelectedItem.Text;

}

[59]

Working with List Controls in ASP.NET

Removing List Items from the RadioButtonList
Control

To remove a specific list item from the list item collection of the RadioButtonList
control, use the Removeat () method of the Items collection property of the control as
shown in the following code snippet:

RadioButtonListl.Items.RemoveAt (0) ;

To remove all the list items from the RadioButtonList control, use the following code:

RadioButtonListl.Items.Clear () ;

Here, RadioButtonListl is the name of the RadioButtonList control.

Binding Data to the RadioButtonList Control

We already have had a look at how we can bind static data to this control
declaratively. This section discusses how we can bind data to this control
programmatically.

You can bind data to the RadioButtonList control using a valid data source and the
DataBind () method. Like the other list controls that we have already discussed, you
need to specify the DataTextField and the DatavalueField properties to specify
the Text and value properties of each of the list items in the control.

The following code snippet shows how you can bind data to this control with data
from an external data source:

protected void Page Load (Object sender, EventArgs e)

{

if (!IsPostBack)

{

DataManager dataManager = new DataManager () ;
radioButtonList.DataSource = dataManager.GetDataFromArrayList () ;
radioButtonList.DataTextField="EmpName";
radioButtonList.DataValueField="EmpCode";
radioButtonList.DataBind () ;

Handling RadioButtonList Control Events

The selectedIndexChanged event of the RadioButtonList control is fired whenever
you click on any of the list items in the control. The following code snippet shows
how this event can be used in your applications.

[60]

Chapter 2

private void rButtonList SelectedIndexChanged (object sender,
System.EventArgs e)

{

//Custom code to handle the event

}

Summary

This chapter has had a detailed look at the various list controls available in

ASP.NET and how we can Add, Remove and Select list items from each of these
controls with sample code examples wherever appropriate. I have also demonstrated
how to design and implement a CustomCheckBoxList class in this chapter. We

will discuss the Repeater control and how we can use it to perform various CRUD
operations with it in the next chapter. We will also discuss when and why we will
choose a Repeater control in place of a DataGrid control in our applications.

[61]

Working with the
Repeater Control

In Chapter 2, we looked at the List controls in ASP.NET and how we can use these
controls to bind and display data in our applications. We discussed how we can
add, display, select and delete the items of each of the List controls and how to
handle events when working with them. We also looked at how we can implement a
Custom List control.

In this chapter we will discuss how we can use the Repeater control in ASP.NET.
Both Repeater and DataList controls in ASP.NET allow you to display data quickly,
and both support only templates for displaying data. We will discuss the DataList
and the other related data-bound controls in the forthcoming chapters of the book.

In this chapter, we will cover the ASP.NET Repeater control. We will learn about:

e Using the Repeater control
e Display data using the Repeater control
e Paging, sorting, and filtering data

¢ Handling Repeater control events

The ASP.NET Repeater Control

The Repeater control in ASP.NET is a data-bound container control that can be used
to automate the display of a collection of repeated list items. These items can be
bound to either of the following data sources:

e Database Table

e XML File

Working with the Repeater Control

In a Repeater control, the data is rendered as Dataltems that are defined using one
or more templates. You can even use HTML tags such as <1i>, <uls, or <divs> if
required. Similar to the DataGrid, DataList, or GridView controls (we try each of
these controls in detail in Chapters 4 and 5), the Repeater control has a DataSource
property that is used to set the DataSource of this control to any ICollection,
IEnumerable, or IListSource instance. Once this is set, the data from one of these
types of data sources can be easily bound to the Repeater control using its
DataBind () method.

However, the Repeater control by itself does not support paging or editing of data.
Unlike the DataGrid control that will be covered in Chapter 5 of this book, the
Repeater control is light weight and does not contain so many features as the former
contains. However, it enables you to place HTML code in its templates. We will learn
what templates in a Repeater control are. It is great in situations where you need

to display the data quickly and format the data to be displayed easily. We will be
covering the DataGrid control later in this book.

Using the Repeater Control

The Repeater control is a data-bound control that uses templates to display data.

It does not have any built-in support for paging, editing, or sorting of the data that
is rendered through one or more of its templates. The Repeater control works by
looping through the records in your data source and then repeating the rendering
of one of its templates called the [temTemplate, one that contains the records that
the control needs to render. We will learn more about the templates of the Repeater
control in this section. Before we learn about the templates and how to use them, let
us take a look at how we can get started with this control.

To use this control, drag and drop the control in the design view of the web form
onto a web form from the toolbox. Refer to the following screenshot:

@9 PacktPub - Microsoft Visual Studio

File Edit View Website Build Debug Format Layout Tools Window Community Help
HA-GE- S | % G “ - b Debug - NET - |
KHTML 1.0 Transition: ~ | &, | & _

Toolbox >0 x Chapter II/Repeater.aspx™ | App_Code/Employee.cs| App_Code/DataManager.cs | 'Web.Config | Default.aspx
- Data - @

B onier - hepestet
[l AccessDataSource Switch to source view to edit the control's templates. Choose Data Source: |(None) Hk
=] petailsView <MNew data source..>

| FormView

+ GridView

L '# ObjectDataSource

“* Repeater

| ReportViewer

Lj, siteMapDataSource

J SqlDataSource

..‘h“, XmiDataSource

[64]

Chapter 3

You can also drag and drop the Repeater control from the toolbox onto the source
view directly. This is shown in the following screenshot:

% PacktPub - Microsoft Visual Studic

File Edit View Website Build Debug Toels Window Community Help
j-J-jH‘j * By) - ‘-;ﬂv fr Debug - MET -
& H EiE| = XHTML 1.0 Transition: » | &, _
Toolbox - 1 X% Chapter Ill/Repeater.aspx™ | App_Code/Employee.cs App_Code/DataManager.cs
=l Data “ | Client Objects & Events v (No
* Fomisy €3@ Page Language="C#" AutocEventWireup="true" CodeFilg
L@ AccessDataSource
| Datalist <!'DOCTYPE html PUBLIC "-//W3C//DTD XHTHL 1.0 Transitid
&l DetailsView
L] FormView B <html xmlns="http:// /WwiWw.w3.o0org/1839/xhtml" >
.-| GridView f—] <head runat="server">
- or . <title>Untitled Page</titleX
L# ObjectDataSource | </heads
== Repeater E 3 <body>
%] ReportViewer E <form id="forml"™ runat="server">
L}, SiteMapDataSourc Repeater |- <div>
'J SqlDataSource <asp:Repeater ID="Repeaterl"” runat="server">
;‘L, KmlDataScurce .<,’a3p:Repeate:’>
= o </fdiwvs
+ Validation N </ form>
+/ Navigation F</body>
+ Login L« /html >
+ WebParts =

For customizing the behavior of this control, you have to use the built-in templates
that this control comes with. These templates are actually blocks of HTML code. The
Repeater control contains the following five templates:

1. HeaderTemplate

2. ItemTemplate

3. AlternatingltemTemplate
4. SeparatorTemplate

5. FooterTemplate

[65]

Working with the Repeater Control

The following screenshot shows how a Repeater control looks when populated
with data.

|Employee Code |Emp]oyee Name |]':mp]oyee Salary |Deparhuent Name

To Records §

Note that the templates (Header, Item, Footer, Alternate and Separator) have all
been used.

The following code snippet is an example of the order in which the templates of the
Repeater control are used.

<asp:Repeater id="repEmployee" runat="server"s>
<HeaderTemplates>

</HeaderTemplate>
<ItemTemplate>
</ItemTemplate>
<FooterTemplates>

</FooterTemplate>
</asp:Repeaters>

[66]

Chapter 3

When the Repeater control is bound to a data source, the data from the data source
is displayed using the ItemTemplate element and any other optional elements, if
used. Note that the contents of the HeaderTemplate and the FooterTemplate are
rendered once for each Repeater control. The contents of the ItemTemplate are
rendered for each record in the control.

You can also use the additional AlternatingItemTemplate element after the
ItemTemplate element for specifying the appearance of each alternate record. You
can also use the separatorTemplate element between each record for specifying the
separators for the records.

Displaying Data Using the Repeater Control

This section discusses how we can display data using the Repeater control. As
discussed earlier, the Repeater control uses templates for formatting the data that it
displays. The following code snippet displays the code in an . aspx file that contains
a Repeater control.

Note that we would be making use of templates and that the data
% would be bound to the control from the code-behind file using the

DataManager class.

<asp:Repeater ID="Repeaterl" runat="server"s>
<HeaderTemplate>
<table border="1">
<tr>
<th>
<asp:Label id="Emp Code" Text="Employee Code"
runat="server" /></th>
<th>
<asp:Label id="Emp Name" Text="Employee Name"
runat="server" /></th>
<th>
<asp:Label id="Emp_ Salary" Text="Employee Salary"
runat="server" /></th>
<th>
<asp:Label id="Dept Code" Text="Department Name"
runat="server" /> </th>
</tr>
</HeaderTemplate>
<ItemTemplates>
<tr bgcolor="#0xbbcc">
<td>
<%# DataBinder.Eval (Container.Dataltem, "EmpCode") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem, "EmpName") $>

[67]

Working with the Repeater Control

</td>
<td>
<%# DataBinder.Eval (Container
</td>
<td>
<%# DataBinder.Eval (Container
</td>
</tr>
</ItemTemplate>
<SeparatorTemplate>
<tr bgcolor="#ffbbcc">
<td>
<hr>
</td>
<td>
<hr>
</td>
<td>
<hr>
</td>
<td>
<hr>
</td>
</tr>
</SeparatorTemplate>
<AlternatingItemTemplates>
<tr bgcolor=»#ccaabb»>
<td>
<%# DataBinder.Eval (Container
</td>
<td>
<%# DataBinder.Eval (Container
</td>
<td>
<%# DataBinder.Eval (Container
</td>
<td>
<%# DataBinder.Eval (Container
</td>
</tr>
</AlternatingItemTemplate>
<FooterTemplate>
<table border=»1»>
<tr bgcolor=»#0xffaa»>

.Dataltem,

.Dataltem,

.Dataltem,

.Dataltem,

.Dataltem,

.Dataltem,

"Salary") %>

"DeptName") %>

«EmpCode») $>

«EmpName») $>

«Salary») %>

«DeptName») %>

<td> Total Records: <%#totalRecords%$> </td>

</tr>
</table>
</table>
</FooterTemplate>

</asp:Repeater>

[68]

Chapter 3

The Repeater control is populated with data in the page_Load event by reusing the
DataManager (), which we used in Chapters 1 and 2.

public int totalRecords;
protected void Page Load(object sender, EventArgs e)
{
DataManager dataManager = new DataManager () ;
Repeaterl.DataSource = dataManager.GetEmployees() ;
totalRecords = dataManager.GetEmployees () .Count;
Repeaterl.DataBind() ;

}

Note how the separatorTemplate and the AlternatingItemTemplate have been
used in the previous code example. Further, the DataBinder.Eval () method has
been used to display the values of the corresponding fields from the data container,
(in our case, the Dataset instance) in the Repeater control. The FooterTemplate
uses the Total Records variable and substitutes its value to display the total number
of records displayed by the control.

The following is the output on execution.

|Employee Code |Employee Name |Employee Salarv |Depamnent Name
3 Joydp 200 T
I I i i

4 Douglas 75000 T

I I I I

s Wi 15500 MKIG
I I I I

6 Rama 18500 HR

I I I I

7 Amad 2000 FINANCE
I I I I

8 Piku 9000 PERSONNEL

I I I I

9 el 19000 MKIG
I I | |

27 Bapila 32500 FINANCE

Total Records: §

[69]

Working with the Repeater Control

The Header and the Footer templates of the Repeater control are still
rendered even if the data source does not contain any data. If you want to
suppress their display, you can use the Visible property of the Repeater
control and use it to suppress the display of these templates with a simple
logic. Here is how you specify the Visible property of this control in
your .aspx file to achieve this:

é}'ﬁ.

Visible="<%# Repeaterl.Items.Count > 0 %>"

When you specify the Visible property as shown here, the Repeater is
made visible only if there are records in your data source.

Displaying Checkboxes in a Repeater Control

Let us now understand how we can display checkboxes in a Repeater Control and
retrieve the number of checked items. We will use a Button control and a Label
control in our page. When you click on the Button control, the number of checked
items in the Repeater Control will be displayed in the Label control. The output on
execution is similar to what is shown in the following screenshot:

{2 Working with the Repeater Control - Windows Internet Explorer

sorlusBll © hitp://localhost49295/PackiPub/ Chapter %201/ Repeater.aspx
Google Gl :l Go{r@ B~ | Y7 Bookmarksw 5 76 blocked

o I @ Working with the Repeater Centrol] l

|Employee Code |Employee Name |Employee Salary |Dep:lrtment Name

Click here

[70]

Chapter 3

Here is the code that we will use in the . aspx file to display checkboxes in a
Repeater control.

<form id="forml" runat="server"s
<asp:Repeater ID="Repeaterl" runat="server">
<HeaderTemplate>
<table border="1">
<tr>
<th>
<asp:Label id="Emp Code" Text="Employee Code"
runat="server" /></th>
<th>
<asp:Label id="Emp Name" Text="Employee Name"
runat="server" /></th>
<th>
<asp:Label id="Emp Salary" Text="Employee Salary"
runat="server" /></th>
<th>
<asp:Label id="Dept Code" Text="Department Name"
runat="server" /> </th>
</tr>
</HeaderTemplate>
<ItemTemplates>
<tr bgcolor="#0xbbcc">
<td>
<asp:CheckBox id="chkboxl" runat="server"
Checked="false" Text = ‘<%#
DataBinder.Eval (Container.Dataltem,
"EmpCode") $>'></asp:CheckBox>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem, "EmpName") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem, "Salary") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem, "DeptName") %>
</td>
</tr>
</ItemTemplate>
</asp:Repeaters>
<table border="0" width="300px">

<tr>

[71]

Working with the Repeater Control

<td>
<asp:Button ID="btnClick" runat="server" Width="100px"
Text="Click here" OnClick="btnClick Click" /></td>

<td>
<asp:Label ID="1blDisplay" runat="server"

Width="200px"></asp:Label> </td>
</tr>
</form>

The data is bound to the Repeater control in the Page Load event as follows:

public int totalRecords;
protected void Page Load (object sender, EventArgs e)

{

if (!IsPostBack)
DataManager dataManager = new DataManager() ;
Repeaterl.DataSource = dataManager.GetEmployees() ;
totalRecords = dataManager.GetEmployees () .Count;
Repeaterl.DataBind() ;

}

Note that we have used the page . IsPostBack to check whether the page has posted
back in the Page Load method. If you don't bind data by checking whether the page
has posted back, the Repeater control will be rebound to data once again after a
postback and all the checkboxes in your web page will be reset to the unchecked state.

The source code for the click event of the Button control that we have used is
as follows:

protected void btnClick Click(object sender, EventArgs e)

{

int counter = 0;

foreach (RepeaterItem r in Repeaterl.Items)

{
CheckBox chk = (CheckBox)r.FindControl ("chkboxl") ;

if (chk.Checked) counter++;

}

lblDisplay.Text = " No of checked records is: " +
counter.ToString() ;

}

When you execute the application, the Repeater control is displayed with records
from the employee table. Now you check one or more of the checkboxes and then
click on the Button control just beneath the Repeater control as follows:

[72]

Chapter 3

{2 Working with the Repeater Control - Windows Intemet Explorer

(ol htp://localhost:49295/PacktPub/Chapter %201/ Repeater.aspx
Gpc;gle |Cv :lGo+p@ E - | * Bookmarks El?ﬁblocked

Wk [& Working with the Repeater Control] I

|Emp10yee Code |Employee Name |Employee Salary |D epartment Name

3 Jeydp 2000 T
5 T 1SS0 MKTG

7 Amd 2000 FINANCE
9 Tdosdl 19000 MKTG

No of checked records is: 4

Note that the number of checked records is displayed in the Label control.

Implementing Data Paging Using the
Repeater Control

Data paging is a concept that allows you to retrieve a specified number of records
and display them in the user interface. The data is displayed one page at a time. You
can use data paging to split the data rendered to the user into multiple pages for
faster download of pages, provide a flexible user interface, and minimize the load on
the database server. You use paging when the volume of data to be displayed is huge
and you need to divide it into pages of data for efficient display of the records.

We have had a look at how we can display data using the Repeater control. Let us
now understand how we can display data using the Repeater control one page at a
time, using the PagedDataSource class. It should be noted that the Repeater control
does not support paging by default. Hence, we need to implement our custom
paging logic for data paging with this control.

We will first add four integer variables, namely: currentPageIndex, PAGESIZE,
totalRecords, and maxNumberOfPages. The following code snippet displays these
variables. Note that the PAGESIZE variable is constant because its value will not
change throughout the execution of the application. You can, however, change

[73]

Working with the Repeater Control

the value of this variable manually if you so desire. As we have few records in our
employee table, the value of this variable is set to 3. This implies that each page of
records that will be displayed will contain 3 records. The maximum number of pages
that would be displayed is determined by the variable called maxNumberofPages.
The variable currentpPageIndex implies the index of the current page being
displayed. Though the value of this index has been set to 0 in the code, its value
when displayed to the user will be 1. The variable totalRecords indicates the total
number of records in the result set.

public static int currentPageIndex = 0;
public const int PAGESIZE = 3;

public static int totalRecords;

public static int maxNumberOfPages;

private static String sortColumn = String.Empty;

Note the case difference for the variable PAGESIZE above. It is just to imply that

it is a constant variable. In the Page Load event we make calls to the methods
InitializePaging () and BindPagedData (). While the former initializes the above
variables, the later is responsible for binding data to the Repeater control, one page at
a time.

The InitializePaging () method is shown below.

private void InitializePaging()

{
currentPageIndex = 0;
totalRecords = GetTotalRecordCount () ;
maxNumberOfPages = totalRecords / PAGESIZE;

}

The above method initializes the current PageIndex, totalRecords, and
maxNumberOfPages variables. The currentPageIndex is set to a value of 0 and the
GetTotalRecordCount () method is called to retrieve the total number of records in
the result set. The maxNumberOfPages variable determines the total number of pages
that will be displayed. This is calculated using the values of the totalRecords and
the PAGESIZE variables.

The following is the source code for the GetTotalRecordCount () method:

private int GetTotalRecordCount ()

{

DataManager dataManager = new DataManager () ;
return dataManager.GetEmployees () .Count;

[74]

Chapter 3

This method makes use of the DataManager class to determine the total number of
records in the employee result set.

In the Page Load event, the InitializePaging () and the BindPagedData ()
methods are called as follows:

protected void Page Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
InitializePaging() ;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

The following section discusses the BindpagedData () method, that is, a method
that actually binds the data from the employee result set to the repeater control in a
paged fashion.

The BindPagedData() Method

The Bindpagedbata () method that follows accepts the current page index and

the page size as parameters. A DataSet instance is populated with data using the
DataManager class (remember, we used the same class in Chapters 1 and 2 to

bind data to the data controls). Next, an instance of the PagedDataSource class is
created and the DataSet instance is set to the DataSource property of an instance

of the PagedDataSource class. Note that you cannot store an object of any type in

a PagedDataSource; it has to be an enumerable object only. Once the DataSource
property of the PagedDataSource instance is set, the next step is to set the DataSource
property of the Repeater control with the instance of the PagedDataSource class.
Refer to the following code snippet:

private void BindPagedData (int currentPageIndex, int pageSize)

{
DataManager dataManager = new DataManager () ;
PagedDataSource pagedDataSource = new PagedDataSource () ;
pagedDataSource.PageSize =
pageSize;pagedDataSource.CurrentPageIndex =
currentPageIndex;pagedDataSource.AllowPaging = true;
pagedDataSource.DataSource = dataManager.GetEmployees () ;
Repeaterl.DataSource = pagedDataSource;
Repeaterl.DataBind () ;

[75]

Working with the Repeater Control

Fine, but how do we navigate from one page of data to another? Well, the next
section discusses how we can tune our user interface so that it will have the
navigation links so as to enable us to navigate from one page of data to another.

Navigating through the Pages

We will now add four Link Buttons to the Repeater control that we created earlier.
For this, add the following code to the Repeater control in the . aspx file.

<asp:LinkButton id="First" Text="<< First" OnClick="FirstPage"
runat="server"/>;

<asp:LinkButton id="Prev" Text="< Previous" OnClick="PreviousPage"
runat="server"/>;

<asp:LinkButton id="Next" Text="Next >" OnClick="NextPage"
runat="server"/>;

<asp:LinkButton id="Last" Text=">> Last" OnClick="LastPage"

runat="server"/>
These controls correspond to the following operations on the data to be displayed:

1. Display the Records of the First Page

2. Display the Records of the Previous Page (Relative)
3. Display the Records of the Next Page (Relative)

4. Display the Records of the Last Page

All the above Link Buttons invoke the respective event handlers in their onclick
events. These event handlers are responsible for setting the currentpPageIndex
appropriately and then displaying the data for the page selected by the user. To
accomplish this, the necessary logic to set the currentPageIndex is used and then
the BindPagedData () method called with the current PageIndex and the PAGESIZE
as parameters.

The following is the source code for these event handlers that would be triggered as
and when we click on the navigation links in the user interface.

protected void FirstPage (object sender, EventArgs e)

{

currentPageIndex = 0;
BindPagedData (currentPageIndex, PAGESIZE) ;

protected void LastPage (object sender, EventArgs e)

{

[76]

Chapter 3

currentPageIndex = maxNumberOfPages;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

protected void PreviousPage (object sender, EventArgs e)
{
currentPageIndex--;
if (currentPageIndex < 0)
currentPageIndex = 0;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

protected void NextPage (object sender, EventArgs e)

{

currentPageIndex++;
if (currentPageIndex > maxNumberOfPages)

currentPageIndex = maxNumberOfPages;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

We are done! The following screenshot displays the output on execution.

=X Untitled Page - Microsoft Internet Explorer
Fle Edit View Favortes Took Help

Qe - @ - (] B € Psexcr Spreois @ -
Address .@-I-';:tn:mtrcalhust: 1270/ rojects Repeater aspx] i
Y! i ‘:—;fv : o :=|' EBal"Cl'l |I'I.I'H|:| Ve _.:,;) Ev .ﬂv @

.mn]cmee Code ?Fm]}lnﬂrt Namne - IEI‘II]_!]OVE"P Basic Departinent Code

E0002 Douglas 125000 ISAL

<< First < Previous MNest> =>Last

You can navigate to any of the pages by clicking on the links that correspond to
the First, Previous, Next, or the Last pages. The next section discusses how we can
implement custom sorting with that Repeater control.

[77]

Working with the Repeater Control

Sorting Data Using the Repeater Control

For sorting data, we have links that correspond to the columns in the employee
result set, in the header section of the Repeater control.

<tr>
<th>
<asp:LinkButton id="Emp Code" OnClick="EmpCodeSort"
Text="Employee Code" runat="server" /></th>
<th>
<asp:LinkButton id="Emp Name" OnClick="EmpNameSort"
Text="Employee Name" runat="server" /></th>
<th>
<asp:LinkButton id="Emp Basic" OnClick="EmpBasicSort"
Text="Employee Basic" runat="server" /></th>
<th>
<asp:LinkButton id="Dept Code" OnClick="DeptCodeSort"
Text="Department Code" runat="server" /></th>
</tr>

All of these link buttons have associated event handlers that get called on their
onClick events. These event handlers set the sortColumn variable to the name of the
column on which the sort has to be performed. Refer to the following code snippets:

protected void EmpCodeSort (object sender, EventArgs e)

sortColumn = "EmpCode";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;
protected void EmpNameSort (object sender, EventArgs e)

sortColumn = "EmpName";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;
protected void EmpBasicSort (object sender, EventArgs e)

sortColumn = "Basic";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;

}

protected void DeptCodeSort (object sender, EventArgs e)

[78]

Chapter 3

sortColumn = "DeptCode";
currentPageIndex = 0;
BindPagedData (currentPageIndex, PAGESIZE) ;

Revisiting the DataManager Class

We will now add a method in the DataManager class that will return a sorted result
set based on the name of the sort column, that is, the column on which to sort the

data. The code for this method is as follows:

public ArraylList GetSortedEmployees (string sortColumn)
SglConnection conn = null;
ArrayList employeelList = null;
try
conn = new SglConnection (connectionString) ;
conn.Open() ;
string sqgl = "select EmpCode, EmpName, Basic,

JoiningDate, DeptCode from employee e, Department d
where e.DeptID = d.DeptID" + " Order By "+sortColumn;

SglCommand cmd = new SglCommand (sgl, conn) ;
SglDataReader dr = cmd.ExecuteReader() ;
employeelist = new ArrayList () ;

while (dr.Read())

{

Employee emp = new Employee() ;

if (dr["EmpCode"] != DBNull.Value)
emp.EmpCode = dr["EmpCode"] .ToString() ;
if (dr["EmpName"] != DBNull.Value)
emp.EmpName = dr["EmpName"] .ToString() ;
if (dr["Basic"] != DBNull.Value)

emp.Basic = Convert.ToDouble (dr["Basic"].ToString()) ;

if (dr["JoiningDate"] != DBNull.Value)
emp.JoiningDate =

Convert.ToDateTime (dr ["JoiningDate"] .ToString()) ;

if (dr["DeptCode"] != DBNull.Value)
emp.DeptCode = dr["DeptCode"].ToString() ;
employeelList.Add (emp) ;
emp = null;

[79]

Working with the Repeater Control

catch

{

throw;

}

finally

{

Dr.Close(); conn.Close() ;

return employeelist;

. Once you are done with the DataReader, you must always close it
% by calling the Close () method on the DataReader instance. Unless
= you close a DataReader, you cannot execute any commands using the
Connection instance on which the DataReader has been used.

You should not use the Finalize () method of your class to close
a database connection or a DataReader instance due to the non-
Ry deterministic nature of finalization in Microsoft .NET. To learn more on
Q when and how you can use Dispose () and Finalize () efficiently,
refer to my article at:

http://www.devx.com/dotnet /Article/33167

The GetSortedEmployees () method needs to be called in place of the
GetEmployees () method for displaying the sorted employee data in the user
interface based on the sort column selected by the user.

Now we have to make the following change in the BindPagedbata () method to
incorporate the sorting functionality:

if (sortColumn == String.Empty)
pagedDataSource.DataSource = dataManager.GetEmployees() ;
else

pagedDataSource.DataSource = dataManager.GetSortedEmployees (sortColum

n) ;

We are done! You can now click on any of the links on the header (those that
correspond to the respective columns in the employee result set) and see the data
being displayed in the Repeater control in a sorted manner.

[80]

Chapter 3

Filtering Data Using the Repeater Control

This section discusses how we can implement custom filtering of the data displayed
in the Repeater control. For filtering data from the employee result set, we will use a
DropDownlList that is populated with the department names and, depending on
the user's selection, the employee records for the selected department will be
displayed in the Repeater control. The code that creates a DropDownList in the

. aspx file follows:

<asp:DropDownList ID="drpDept" AutoPostBack = true runat="server"

OnSelectedIndexChanged="drpDept SelectedIndexChanged"> </asp:
DropDownList>

This control is bound to data using the DataManager class as usual.

protected void BindDepartmentList ()
{
drpDept .DataSource = new DataManager () .GetDepartmentList () ;
drpDept .DataTextField = "DeptName";
drpDept .DataValueField = "DeptCode";
drpDept .DataBind() ;
drpDept.Items.Insert (0, "All");

}

The string value 211 is stored in the initial index of the control, i.e., index 0. Hence,
selection of the first index would imply that the employee data of all the departments
would be displayed.

We will now take a variable called filterCondition that will contain the condition
based on which the data needs to be filtered.

private static String filterCondition = String.Empty;

The above variable is set to the appropriate department name based on the user's
selection in the DropDownList control.

The event handler drpDept SelectedIndexChanged is called whenever the selected
index of the DropDownlList control is changed. The source code for this event
handler is as follows:

protected void drpDept SelectedIndexChanged(object sender, EventArgs
e)

{

if (drpDept.SelectedIndex == 0)

{

filterCondition = String.Empty;

[81]

Working with the Repeater Control

BindPagedData (currentPageIndex, PAGESIZE) ;

}

else

{
filterCondition = drpDept.SelectedValue;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

The value of the selectedvalue property of the DropDownList control actually
contains the name of the selected department. Accordingly, the variable
filterCondition is set to this value in the drpDept SelectedIndexChanged
event handler.

The updated BindpPagedData () method that incorporates the filtering, paging, and
sorting functionality (all in one) is as follows:

private void BindPagedData (int currentPageIndex, int pageSize)
{
ArrayList datalList = null;
DataManager dataManager = new DataManager () ;
PagedDataSource pagedDataSource = new PagedDataSource () ;
pagedDataSource.PageSize = pageSize;
pagedDataSource.CurrentPageIndex = currentPagelndex;
pagedDataSource.AllowPaging = true;
if (sortColumn == String.Empty)
{
datalist = dataManager.GetEmployees() ;
pagedDataSource.DataSource = datalist;
totalRecords = dataList.Count;
maxNumberOfPages = totalRecords / PAGESIZE;

}

else
{
if (filterCondition == String.Empty)
{
datalList =
dataManager .GetSortedEmployees (sortColumn) ;
pagedDataSource.DataSource = datalist;
totalRecords = dataList.Count;
maxNumberOfPages = totalRecords / PAGESIZE;

}

else

{

datalList =

[82]

Chapter 3

}

dataManager .GetEmployeeByDept (filterCondition) ;
pagedDataSource.DataSource = datalist;
totalRecords = datalList.Count;
maxNumberOfPages = totalRecords / PAGESIZE;

}

Repeaterl.DataSource = pagedDataSource;
Repeaterl.DataBind() ;

The filter condition is checked and if the value of the variable filtercondition is
non-empty, the GetEmployeeByDept () method of the DataManager class is called.

The figure below shows the output of the sample application with filtering
functionality. The user can select a department of his/her choice based on which the
employee data for that department would be displayed in the Repeater control.

<A Untitled Page - Microsoft Internet Explorer
File Edit View Favorites Tools Help

@Back W > |£| E :‘] /"_\' Search \-_xj‘_«'l'-awrites &£ -- _f i
Address vﬂ bitpefilocakost: L 270 Projects [Repeaber, aspe
Y‘r 2 é’-| w L searchweb v o0 [+ @ @

Fmplovees Code Fmploves Mame Fmplovees Basic Department (ode

E000& Lmal G5000 METG

== First < Previcus Dlest = == Last

Departrents:
|Mammmg b

The complete code for our Repeater class (that contains all the functionality that we
have discussed so far) in the Repeater.aspx. cs file is shown here, for reference:

using
using
using
using
using
using

System;

System.Data;
System.Configuration;
System.Collections;
System.Web;
System.Web.Security;

[83]

Working with the Repeater Control

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class Repeater:System.Web.UI.Page
{
public static int currentPageIndex;
public const int PAGESIZE = 3;
public static int totalRecords = 0;
public static int maxNumberOfPages = 0;
private static String sortColumn = String.Empty;
private static String filterCondition = String.Empty;

protected void PageLoad (object sender, EventArgs e)

{

if (!IsPostBack)

{
InitializePaging() ;
BindPagedData (currentPageIndex, PAGESIZE) ;
BindDepartmentList () ;

}
private void InitializePaging()

currentPageIndex = 0;

totalRecords = GetTotalRecordCount () ;

maxNumberOfPages = totalRecords / PAGESIZE;
private int GetTotalRecordCount ()

DataManager dataManager = new DataManager () ;

return dataManager.GetEmployees () .Count;

}

protected void FirstPage (object sender, EventArgs e)

{

currentPageIndex = 0;
BindPagedData (currentPageIndex, PAGESIZE) ;

protected void LastPage (object sender, EventArgs e)

{

currentPageIndex = maxNumberOfPages;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

protected void PreviousPage (object sender, EventArgs e)

[84]

Chapter 3

currentPageIndex--;
if (currentPageIndex < 0)
currentPageIndex = 0;
BindPagedData (currentPageIndex, PAGESIZE) ;
protected void NextPage (object sender, EventArgs e)
currentPageIndex++;
if (currentPageIndex > maxNumberOfPages)
currentPageIndex = maxNumberOfPages;
BindPagedData (currentPageIndex, PAGESIZE) ;
private void BindPagedData (int currentPageIndex, int pageSize)
ArrayList datalList = null;
DataManager dataManager = new DataManager () ;
PagedDataSource pagedDataSource = new PagedDataSource () ;
pagedDataSource.PageSize = pageSize;
pagedDataSource.CurrentPageIndex = currentPagelndex;
pagedDataSource.AllowPaging = true;
if (sortColumn == String.Empty)
datalist = dataManager.GetEmployees() ;
pagedDataSource.DataSource = datalist;
totalRecords = dataList.Count;
maxNumberOfPages = totalRecords / PAGESIZE;

else

if (filterCondition == String.Empty)
datalist =
dataManager .GetSortedEmployees (sortColumn) ;
pagedDataSource.DataSource = datalist;
totalRecords = dataList.Count;
maxNumberOfPages = totalRecords / PAGESIZE;
else
datalist =
dataManager .GetEmployeeByDept (filterCondition) ;
pagedDataSource.DataSource = datalist;
totalRecords = dataList.Count;

[85]

Working with the Repeater Control

maxNumberOfPages = totalRecords / PAGESIZE;

}

Repeaterl.DataSource = pagedDataSource;
Repeaterl.DataBind() ;

}

protected void BindDepartmentList ()

{

drpDept .DataSource = new DataManager () .GetDepartmentList () ;

drpDept .DataTextField = "DeptName";

drpDept .DataValueField = "DeptCode";

drpDept .DataBind() ;

drpDept.Items.Insert (0, "All");
}
protected void EmpCodeSort (object sender, EventArgs e)
{

sortColumn = "EmpCode";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;
}
protected void EmpNameSort (object sender, EventArgs e)
{

sortColumn = "EmpName";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;
}
protected void EmpBasicSort (object sender, EventArgs e)
{

sortColumn = "Basic";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;
}
protected void DeptCodeSort (object sender, EventArgs e)
{

sortColumn = "DeptCode";

currentPageIndex = 0;

BindPagedData (currentPageIndex, PAGESIZE) ;

}

protected void drpDept SelectedIndexChanged (object sender,
EventArgs e)

{

if (drpDept.SelectedIndex == 0)

{

[86]

Chapter 3

filterCondition = String.Empty;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

else

{

filterCondition = drpDept.SelectedValue;
BindPagedData (currentPageIndex, PAGESIZE) ;

}

This concludes our discussion on how we can implement custom paging, sorting,
and filtering using the Repeater control. The next and concluding section discusses
the salient events of the Repeater control and their applicability.

Handling Repeater Control Events

Similar to the other data-bound controls in ASP.NET, you can use the Repeater
control to handle events raised by user actions. Apart from the other regular events,
the most notable events of the Repeater control are:

e DataBinding
e JtemCreated
e [temDataBound

e JtemCommand

The DataBinding event is fired when the Repeater control is bound to a data source.
While the ItemCreated event is fired each time an item in the control is created,

the ItemDataBound event gets fired when each of the items in the collection is
bound to data from the data source. Lastly, the ItemCommand event is fired
whenever a control within the Repeater raises an event. It should be noted that the
ItemDataBound event creates a collection of primary keys and stores them in the
ViewState. The DataBinding event on the other hand deletes these keys as and when
the Repeater control is rebound to the data source. This is required in cases where
you need to perform CRUD (Create, Read, Update, and Delete) operations using the
Repeater control and then re-bind the control to refresh the data contained within.

The following code example illustrates how you can use panels within a Repeater
control and then use the ItembataBound event of the control to turn the visibility of
the panels on or off, depending on your requirements.

[87]

[vww allitebooks.cond

http://www.allitebooks.org

Working with the Repeater Control

Here is the code for the Repeater control in your . aspx file:

<asp:Repeater ID="Repeaterl" runat="server"
OnItemDataBound="Repeaterl ItemDataBound"s>
<ItemTemplates>
<asp:Panel ID="Panell" runat="server" Visible="false"
BackColor="DodgerBlue" >
<divs>
<asp:Label ID="1lblEmployeeCode" runat="server"
Text="Code"
Width="50px"/>
<asp:Label ID="lblEmployeeName" runat="server"
Text="Employee Name"
Width="200px"/>
<asp:Label ID="lblSalary" runat="server"
Text="Salary"
Width="100px"/>
<asp:Label ID="lblDepartment" runat="server"
Text="Department"
Width="100px"/>
</div>
</asp:Panel>
<asp:Panel ID="Panel2" runat="server" Visible="false"
BackColor="BurlyWood">
<divs>
<asp:Label ID="Labell" runat="server" Text="Code"
Width="50px"/>
<asp:Label ID="Label2" runat="gerver"
Text="Employee Name"
Width="200px"/>
<asp:Label ID="Label3" runat="server"
Text="Salary"
Width="100px"/>
<asp:Label ID="Label4" runat="server"
Text="Department"
Width="100px"/>
</div>
</asp:Panel>
</ItemTemplate>
</asp:Repeater>

[88]

Chapter 3

The event handler method shows how you can set the visible property of the
Panels within the Repeater control to true or false based on your requirements.

protected void Repeaterl ItemDataBound (object sender,
System.Web.UI.WebControls.RepeaterItemEventArgs e)

{

if (e.Item.ItemType == ListItemType.Item)

{
Panel first = (Panel)e.Item.FindControl ("Panell") ;
Panel second = (Panel)e.Item.FindControl ("Panel2") ;

//Write your custom code to set the Visible property of the Panels
//to true or false as shown below.
//first.Visible = false; second.Visible = true;
//or
//first.Visible = true; second.Visible = false;
}
}

Note how we have used the Findcontrol () method to retrieve references to the
Panels contained within the Repeater control.

Summary

This chapter discussed the Repeater control and how we can use it in our
ASP.NET applications. It has demonstrated how we can use this control for custom
paging, sorting, and filtering of data. Though this control does not support all the
functionalities of other data controls, like DataGrid and GridView, it is still a good
choice if you want faster rendering of data as it is light weight, and is very

flexible. You can still write your own code to implement paging, sorting, or

editing functionalities.

[89]

Working with the
DataList Control

In Chapter 3, we saw the Repeater control in ASP.NET and how we can use it to bind
and unbind data in our applications. In this chapter, we will discuss the DataList
control, which, like the Repeater control, can be used to display a list of repeated
data items.

In this chapter, we will cover the ASP.NET DataList control. We will learn about
the following:

e Using the DataList control

¢ Binding images to a DataList control dynamically

¢ Displaying data using the DataList control

e Selecting, editing and delete data using this control

e Handling the DataList control events

The ASP.NET DataList Control

The DataList control like the Repeater control is a template driven, light weight
control, and acts as a container of repeated data items. The templates in this control
are used to define the data that it will contain. It is flexible in the sense that you can
easily customize the display of one or more records that are displayed in the control.
You have a property in the DataList control called RepeatDirection that can be used
to customize the layout of the control.

Working with the DataList Control

The RepeatDirection property can accept one of two values, that is, Vertical or
Horizontal. The RepeatDirection is Vertical by default. However, if you change it
to Horizontal, rather than displaying the data as rows and columns, the DataList
control will display them as a list of records with the columns in the data rendered
displayed as rows.

This comes in handy, especially in situations where you have too many columns in
your database table or columns with larger widths of data. As an example, imagine
what would happen if there is a field called Address in our Employee table having
data of large size and you are displaying the data using a Repeater, a DataGrid, or
a GridView control. You will not be able to display columns of such large data sizes
with any of these controls as the display would look awkward. This is where the
DatalList control fits in.

In a sense, you can think the DataList control as a combination of the DataGrid

and the Repeater controls. You can use templates with it much as you did with a
Repeater control and you can also edit the records displayed in the control, much
like the DataGrid control of ASP.NET. The next section compares the features of the
three controls that we have mentioned so far, that is, the Repeater, the DataList, and
the DataGrid control of ASP.NET.

When the web page is in execution with the data bound to it using the Page_Load
event, the data in the DataList control is rendered as DataListltem objects, that is,
each item displayed is actually a DataListItem. Similar to the Repeater control, the
DataList control does not have Paging and Sorting functionalities built into it.

Using the DataList Control

To use this control, drag and drop the control in the design view of the web form
onto a web form from the toolbox.

Refer to the following screenshot, which displays a DataList control on a web form:

1 Datalist Tasks

Auto Format. .,
Right-click or choose the Edit Templates kask bo edit template conkent,

The ItemTemplate is required. hoose Data Source: | (None) v

|}i)ataList - Dataliskl

Property Builder. ..
Edit Templates

[92]

Chapter 4

The following list outlines the steps that you can follow to add a DataList control in
a web page and make it working;:

1. Drag and drop a DataList control in the web form from the toolbox.

2. Set the DataSourceID property of the control to the data source that you
will use to bind data to the control, that is, you can set this to an SQL Data
Source control.

3. Open the .aspx file, declare the <ItemTemplate> element and define the
fields as per your requirements.

4. Use data binding syntax through the Eval () method to display data in these
defined fields of the control.

You can bind data to the DataList control in two different ways, that is, using the
DataSourcelD and the DataSource properties. You can use the inbuilt features like
selecting and updating data when using the DataSourcelD property. Note that you
need to write custom code for selecting and updating data to any data source that
implements the ICollection and IEnumerable data sources. We will discuss more
on this later. The next section discusses how you can handle the events in the
DataList control.

Displaying Data

Similar to the Repeater control that we looked at in Chapter 3, the DataList control
contains a template that is used to display the data items within the control. Since
there are no data columns associated with this control, you use templates to display
data. Every column in a DataList control is rendered as a element.

A DatalList control is useless without templates. Let us now lern what templates are,
the types of templates, and how to work with them. A template is a combination

of HTML elements, controls, and embedded server controls, and can be used to
customize and manipulate the layout of a control. A template comprises HTML tags
and controls that can be used to customize the look and feel of controls like Repeater,
DataGrid, or DataList. There are seven templates and seven styles in all. You can use
templates for the DataList control in the same way you did when using the Repeater
control. The following is the list of templates and their associated styles in the
DatalList control.

The Templates are as follows:

1. ItemTemplate
2. AlternatingltemTemplate
3. EditltemTemplate

[93]

Working with the DataList Control

4. FooterTemplate

5. HeaderTemplate

6. SelectedltemTemplate
7. SeparatorTemplate

The following screenshot illustrates the different templates of this control.

Chapter IV/DataList.aspx.cs " Chapter IV/Datalist.aspx*®

Ei@ EL Datalist Tasks
| DatalListl - Item Templat
; At e Template Editing Mode

LEENTEE IEE Item Template

Item Templates

ItemTemplate

AlternatingltemTemplate

SelectedlternTemplate
EditltemTemplate

Header and Footer Templates
HeaderTemplate
FooterTemplate

Separator Template

As you can see from this figure, the templates are grouped under three broad
categories. These are:

1. Item Templates

1. Header and Footer Templates

2. Separator Template
Note that out of the templates given above, the ItemTemplate is the one and only

mandatory template that you have to use when working with a DataList control.
Here is a sample of how your DataList control's templates are arranged:

<asp:DatalList id="dlEmployee" runat="server"s>
<HeaderTemplate>

</HeaderTemplate>
<ItemTemplates>

</ItemTemplate>
<AlternatingItemTemplates>

</AlternatingItemTemplate>
<FooterTemplate>

</FooterTemplate>
</asp:DatalList>

[94]

Chapter 4

The following screenshot displays a DataList control populated with data and with
its templates indicated.

Q

iEmpln:r'H Cade :Emplwez‘ Manae |Baa'if IIJ'Ept {*nde | Hoader Template
E0001 | ayep 42000 DOODT T e Temolate

- - - -

ECTGZNNN EECEEENN 000 OGN ~ternating Ttem Template
- - .
ECGOZ R i N (5000 D00z

| | | | Separator Tamplaba
|- |- I-I_
|- |- I-F
__-_

i'I"u:-tal records: i? Foater Templake

Customizing a DataList control at run time
You can customize the DataList control at run time using the

ListltemType property in the ItemCreated event of this control as follows:

private void DataListl ItemCreated (object
sender, System.Web.UI.WebControls.
DatalListItemEventArgs e)

{

switch (e.Item.ItemType)

{

case System.Web.UI.WebControls.ListItemType.Item

e.Item.BackColor = Color.Red;
break;
case System.Web.UI.WebControls.ListItemType.

AlternatingItem : e.Item.BackColor = Color.Blue;

break;
case System.Web.UI.WebControls.ListItemType.

SelectedItem : e.Item.BackColor = Color.Green;

break;
default
break;

[95]

Working with the DataList Control

The Styles that you can use with the DataList control to customize the look and
feel are:

1. AlternatingltemStyle

2. EditltemStyle

3. FooterStyle

4. HeaderStyle

5. ItemStyle

6. SelectedItemStyle
7. SeparatorStyle

You can use any of these styles to format the control, that is, format the HTML code
that is rendered.

You can also use layouts of the DataList control for formatting, that is, further
customization of your user interface. The available layouts are as follows:

¢ FlowLayout

e TableLayout

e VerticalLayout

e HorizontalLayout

You can specify your desired flow or table format at design time by specifying the
following in the . aspx file.

RepeatLayout = "Flow"

You can also do the same at run time by specifying your desired layout using
the RepeatLayout property of the DataList control as shown in the following
code snippet:

DataListl.RepeatLayout = RepeatLayout.Flow
In the code snippet, it is assumed that the name of the DataList control is DataList1.

Let us now understand how we can display data using the DataList control. For this,
we would first drag and drop a DataList control in our web form and specify the
templates for displaying data. The code in the . aspx file is as follows:

<asp:DatalList ID="DataListl" runat="server"s>
<HeaderTemplate>
<table border="1">
<tr>
<th>

[96]

Chapter 4

Employee Code
</th>
<th>
Employee Name
</th>
<th>
Basic
</th>
<th>
Dept Code
</th>
</tr>
</HeaderTemplate>
<ItemTemplate>
<tr bgcolor="#0xbbbb">
<td>
<%# DataBinder.Eval (Container.Dataltem,
"EmpCode") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem,
"EmpName") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem,
"Basic") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem,
"DeptCode") %>
</td>
</tr>
</ItemTemplates>
<FooterTemplate>
</FooterTemplate>
</asp:Datalist>

The DataList control is populated with data in the Page Load event of the web
form using the DataManager class as usual.

protected void Page Load (object sender, EventArgs e)
DataManager dataManager = new DataManager() ;
Datalistl.DataSource = dataManager.GetEmployees() ;
DatalListl.DataBind() ;

[97]

Working with the DataList Control

Note that the DataBinder.Eval () method has been used as usual to display the
values of the corresponding fields from the data container in the DataList control.
The data container in our case is the DataSet instance that is returned by the

GetEmployees () method of the bataManager class.

When you execute the application, the output is as follows:

3 Jovdip
4 Douglas
5 Jini

6 Rama

7 Amal

8 Piku

9 Indronil
27 Bapila

20000
75000

Emplovee Code |[Emplovee Name Salary | Dept Name

IT

IT

MKTG

HR
FINANCE
PERSONNEL
MKTG
FINANCE

Handling Events

The Repeater, DataList, and DataGrid controls support event bubbling. What is event
bubbling? Event Bubbling refers to the ability of a control to capture the events in a
child control and bubble up the event to the container whenever an event occurs. The

DataList control supports the following six events:

We will now discuss how we can work with the events of the DataList control. In
order to handle events when working with a DataList control, include a Button or a
LinkButton control in the DataList control. These controls have click events that
can be used to bubble up the triggered event to the container control, that is,

ItemCreated
ItemCommand
EditCommand
UpdateCommand
DeleteCommand

CancelCommand

the DataList.

Chapter 4

The following code snippet illustrates how you can attach a handler to an
ItemCommand event of a DataList control:

<asp:DatalList ID="DataListl" runat="server" onItemCommand =
"ItemCommandEventHandler" />

The corresponding handler that gets called whenever the event is fired is as follows:

void ItemCommandEventHandler (Object src, DatalListCommandEventArgs e

ceed)
{
}

Similarly, you can handle the ItemCreated event by specifying the handler in the
.aspx file as follows:

//Some event handling code

<asp:DatalList ID="DataListl" runat="server" onltemCreated =
"ItemCreatedEventHandler" />

The corresponding handler that is triggered whenever this event occurs is as follows.

void ItemCreatedEventHandler (Object src, DataListCommandEventArgs e
)

}

Similarly, you can use the cancelCommand event by specifying the event handler in
your .aspx file as follows:

//Some event handling code

<asp:DataList ID="DataListl" runat="server" onCancelCommand =
.......... "CancelCommandEventHandler" />

The corresponding event handler that would get fired is as follows:

void CancelCommandEventHandler (Object src, DatalListCommandEventArgs
e)

{
}

You can handle any of the other events similarly and execute your event handlers
appropriately. We will discuss more about using these events to Select, Edit, and
Delete data using the DataList control later in this chapter.

//Some event handling code

We will explore how we can display images using the DataList control in the
next section.

[99]

Working with the DataList Control

Binding Images Dynamically

Let us now see how we can display images using the DataList control. Here is a
situation where this control scores over the other data-bound controls as you can set
the RepeatDirection property of this control to Horizontal so that we can display
the columns of a particular record in one single row.

The following screenshot illustrates how the output of the application would look
when it is executed:

f,“ Working with the Datalist Control - Windows Internet Explorer

"‘_ * & http://localhost49205/PacktPub/Chapter3:201V/Datalist.aspx

W | (€ Working with the DataList Control | |

E001 Joydip Kanjilal E002 Oindrilla Roy Chowdhury

EQ03 Soma Roy Chowdhury E004 Indronil Roy Chowdhury

E00S Rakesh

We will now discuss how we can implement this application that displays the
employee details, like code, name, and the individual's photo. We need an Image
control that we will use inside the ItemTemplate of the DataList control in use. Here
is how you can use the Image control.

<img src='<%# DataBinder.Eval (Container.Dataltem, "EmpName") %>.png'
style="height:100px;width:100px;border:1px solid gray;"/>

Note that all the images have a primary name corresponding to the employee's name
with a . png extension. The complete source code of the DataList control in your
. aspx file would be similar to what follows:

<asp:DatalList ID="DataListl" runat="server" RepeatColumns="2"
RepeatDirection="Horizontal">
<ItemTemplates>

[100]

Chapter 4

<table id="Tablel" cellpadding="1" cellspacing="1"
visible ="true">
<tr>
<td width="50px">
<p align="left">
<asp:Label ID="1lblEmpCode" runat ="server"
CssClass="LabelStyle" Text=' <%#
DataBinder.Eval (Container.Dataltem,
"EmpCode") $>'></asp:Label>
</p>
<td>
<td width="200px">
<p align="left">
<asp:Label ID="lblEmpName" runat ="server"
CssClass="LabelStyle" Text=' <%#
DataBinder.Eval (Container.Dataltem,
"EmpName") $>'></asp:Label>
</p>
</td>
<td width="100px">
<p align="left">
<img src='<%# DataBinder.Eval (Container.DataItem, "EmpName")
$>.png' style="height:100px;width:100px;border:1lpx
solid gray;"/>
</td>
</p>
</td>
</table>
</ItemTemplates>
</asp:Datalist>

Note the use of the properties RepeatColumns and RepeatDirection in this code
snippet. While the former implies the number of columns that you would like to
display per record in the rendered output, the later implies the direction of the
rendered output, that is, horizontal or vertical.

Binding data to the control is simple. You need to bind the data to this control in the
Page_Load event of this control in your code-behind file. Here is how you do
the binding:

DataManager dataManager = new DataManager() ;
Datalistl.DataSource = dataManager.GetEmployees() ;
DataListl.DataBind() ;

[101]

Working with the DataList Control

Wow! When you execute the application, the images are displayed along with the
employee's details. The output is similar to what we have seen in the screenshot
earlier in this section.

In the following sections, we will explore how to Select, Edit, and Delete data using
the DataList control.

Selecting Data

You need to specify the event handler that will be invoked in the onItemCommand
event as follows:

OnItemCommand = "Employee Select"

You also need to specify a LinkButton that the user would have to click on to select
a particular row of data in the DataList control. This command button would be
specified in the ItemTemplate as shown here:

<asp:LinkButton ID="lnkSelect" runat="server" CommandName="Select" >
Select </asp:LinkButtons>

The reason why we choose to use the ItemTemplate to place the command button to
select data is that the contents of this template are rendered once for each row of data
in the DataList control. The code for the event handler is as follows:

protected void Employee Select (object source,
DatalListCommandEventArgs e)

DatalListl.EditItemIndex = e.Item.ItemIndex;
DataListl.DataBind() ;

}

The output on execution is shown in the following screenshot.

Employee .. Dept
Name B35 |code

EmpCode: EODO3
EmpName: Q
Jini ‘

Employee Code

Basic
45000

[102]

Chapter 4

Resizing a DataList control when the browser's size changes
When you change the width or height of a browser that has a DataList
control in it, the size of the DataList doesn't change. Here is a workaround
to this.
Create a CSS class that you will use in as the control's CssClass as
shown below.

<script type="text/css">

.ResizeDatalist
Ky {
Q height:100%;width:100%;
</scripts>

Next, use this CSS class in the DatalList control as
shown here.

<asp:DatalList ID="dl" runat="server" CssClass="ResizeDa
taList">

<!-- Usual code here -->

</asp:DatalList>

Editing data

The DataList control can be used to edit your data, bound to this control from a data
store. This section discusses how we can edit data using this control. You can edit
data using the DataList control by providing a command-type button control in the
ItemTemplate of the DataList control. These command-type button can be one of
the following.

e Button
e LinkButton

¢ ImageButton

In our example, we will be using an ImageButton control. Further, you need to
specify the OnEditCommand event and the corresponding event handler that will be
triggered whenever the user wants to edit data in the DataList control by clicking on
the ImageButton meant for editing the data.

Note that whenever the user clicks on the command button for editing
+ the data, the data items in the DataList control are set to editable mode

to enable the user to edit the data. This is accomplished by the use of
’ the EditltemTemplate. It should be noted that the EditltemTemplate is
rendered for a data item that is currently in the edit mode of operation.

[103]

Working with the DataList Control

The following code listing shows how your .aspx code for this control with edit
mode enabled would look:

<asp:DatalList ID="DataListl" DataKeyField = "EmpCode" GridLines =
"Both" CellPadding="3"
CellSpacing="0"
Font-Names="Verdana"
Font-Size="12pt"
Width="150px"

OnEditCommand = "Employee Edit" runat="server"s
<HeaderTemplate>
<table border="1">
<tr>
<th>
Employee Code
</th>
<th>
Employee Name
</th>
<th>
Basic
</th>
<th>
Dept Code
</th>
</tr>
</HeaderTemplate>
<EditItemTemplate>

EmpCode: <asp:Label ID="1lblEmpCode" runat="server"
Text="'<%# Eval ("EmpCode") %>'>
</asp:Label>

EmpName: <asp:TextBox ID="txtEmpName" runat="server"
Text="'<%#
DataBinder.Eval (Container.Dataltem,
"EmpName") %>'s>
</asp:TextBox>

Basic: <asp:TextBox ID="txtBasic"
runat="server"
Text="'<%# DataBinder.Eval (Container.Dataltem,
"Basic") %>'>
</asp:TextBox>

[104]

Chapter 4

</EditItemTemplate>
<ItemTemplates>
<tr bgcolor="#0xbbbb">
<td>
<%# DataBinder.Eval (Container.Dataltem,
"EmpCode") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem,
"EmpName") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem,
"Basic") %>
</td>
<td>
<%# DataBinder.Eval (Container.Dataltem,
"DeptCode") %>
</td>
<td>
<asp:LinkButton ID=»1nkEdit» runat=»server»
CommandName=»Edit» >
Edit
</asp:LinkButton>
</td>
</tr>
</ItemTemplate>
</asp:DatalList>

The corresponding event handler to handle the edit operation, Employee Edit, is
defined as follows:

protected void Employee Edit (object source, DataListCommandEventArgs
e)

DataListl.EditItemIndex = e.Item.ItemIndex;
DataListl.DataBind() ;

}

The .1temIndex property of the DatalListCommandEventArgs instance gives us the
row index of the DataList control that is being edited. This index starts with a value
of zero, that is, the index for the first row of data that is rendered in the DataList
control is 0.

[105]

Working with the DataList Control

The following screenshot shows the output on execution.

Employee Employee Dept
Code Name Code

‘ Basic

Note that the Edit command button is rendered for each of the rows of the DataList
control. Now, when you click on this button on any of the rows to edit the data for
that row, the output is as follows:

Employee . Dept
Name Basic Code

EmpCode: E0002
EmpName: k

Douglas

Employee Code

Basic:
125000

Note that the second record is set to editable mode on clicking the Edit command
button that corresponds to the second record.

How to enable/disable an embedded control within the

DatalList control

To enable or disable any control contained within the DataList control,
use the following technique in the ItemDataBound event of the control.

[106]

Chapter 4

DataListProduct ItemDataBound (object sender,
System.Web.UI.WebControls.DatalListItemEventArgs e)

if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
ListItemType.AlternatingItem)

{

TextBox txtBox = e.Item.FindControl ("txtEmpName") as TextBox;
txtBox.Visble=false;

}

Deleting Data

This section discusses how we can delete data using the DataList control. Similar
to what we have done in the previous section for editing data using the DataList

control, you need to specify the event handler that will be triggered for the delete
operation in the .aspx file. You also require a LinkButton as usual.

The following code snippet illustrates the code that you need to write for the .aspx
file to specify the event handler that will be invoked for the delete operation.

OnDeleteCommand = "Employee Delete"

The code for the Employee Delete event handler that you need to write in the
code-behind file, that is, DataList .aspx.cs, is as follows:

protected void Employee Delete (object source,
DataListCommandEventArgs e)
{
DatalListl.EditItemIndex = e.Item.ItemIndex;
//Code to delete the row represented by ItemIndex
DataListl.EditItemIndex = -1; //Reset the index
DataListl.DataBind() ;

}

The following is the output on execution.

Employee Employee . Dept
Code Name | POS€ Code

[107]

Working with the DataList Control

As is apparent from the given screenshot, you just need to click the Delete Link
Button that corresponds to the employee record that you need to delete. Once you do
s0, the specific record gets deleted.

Summary

We have had a bird's eye view of the DataList control in this chapter and how we
can use it in our ASP.NET applications. We have discussed how to select, edit, and
delete data with this control and how to work with the events of this control. We
also discussed how we can bind images to the DataList control programmatically.
The next chapter will discuss the DataGrid control, one of the most widely used data
controls in ASP.NET.

[108]

Working with the DataGrid
Control in ASP.NET

In Chapter 4, we had a look at the DataList control in ASP.NET, and how we can
use it to bind and unbind data in our applications. In this chapter, we will discuss
the DataGrid control and implement a sample application that would contain all the
necessary operations that we generally require with this control.

In this chapter, we will learn about the following:

e Creating a DataGrid control

e Implementing a sample application using the DataGrid control

e Displaying data using the DataGrid control

e Styling the DataGrid control

¢ Appending data using the DataGrid control

o Editing data using the DataGrid control

¢ Deleting data using the DataGrid control

e Paging using the DataGrid control
Note that we will cover how to bind data using master detail relationships in the
chapter on GridView control. Also note that we will be reusing our DataManager
class throughout this chapter. You can also use SQLDataSource, AccessDataSource,

or an XmlDataSource to retrieve data. We have already discussed these controls in
the first chapter.

Working with the DataGrid Control in ASP.NET

The ASP.NET DataGrid Control

The DataGrid control in ASP.NET is a very powerful and flexible control that can be
used to display data in a tabular fashion. It allows you to format your data the way
you want it. Note that in ASP.NET 2.0, you won't find this control in the toolbox. You
have to embed HTML code, in the code behind it. Rather, in ASP.NET 2.0, you have
the GridView control in place of DataGrid that is more like an improved version of
the DataGrid control. This control is more in use amongst the ASP.NET community
compared to its earlier counterpart. We will discuss the GridView control in the

next chapter.

Note that the output of the DataGrid control, like other data list controls, is in HTML
format. The next section discusses how we can get started with a DataGrid control
in ASP.NET.

Creating a DataGrid Control

Follow these simple steps to create a DataGrid control.

1. Start Visual Studio .NET.

2. Next, create a new ASP.NET web application project and name it of
your choice.

3. Then in the web form file, that is, the . aspx file, paste the following code
within the Form tag of the web form.

<asp:datagrid runat="server" id="dgEmployee"/>

You are done! This will create a DataGrid control that has an ID of dgEmployee.
The following screenshot illustrates how the control looks in the design view of the
web form:

@0 DataGrid - Microsoft Visual Studio

File Edit View Website Build Debug Format Layout Tools Window Community Help
F-E-5dd B9 b Desug v MNeT) CEETYI=E
Mone » TimesNewRom:» 12pt ~ B 7 U A & =-|i= iz XHTML 1.0 Transition: + | &, | 24 .
3| Default2.aspx” - x
gl
2 || Column(Columnl Columnl
abc abc abc
abc abc abc
abc abc abc
abc abc abc
abc abc abc

[110]

Chapter 5

Implementing a Sample Application
Using DataGrid Control

I will now talk about how we can implement a sample application using the
DataGrid control. This sample application will initially display the records from the
Employee table with provisions to perform all CRUD operations. You can append,
edit and delete records using the user interface that gets displayed once you invoke
the application.

The following screenshot displays the output on execution of the application:

~ Employee List - Windows Internet Explorer

(ol @ e ocahost A9 DaaGridemplyeeitas ~|4]x]
Google[G- [r]%o 1@ B~ | % Bookmaris~ 52 blocked | P Check » 4 Autolink »] futofil [Sendtow
%5 &t | 48 Employes List] | 0
Notow (=] & - IFFaUd MONKOFNGHE on :

| Employee Code Employee Name Salary Department

13 Joydip 25000 IT Edit Delete

4 Douglas 75000 T Edit Delete

|5 Jini 15500 MKTG Edit Delete

6 Rema 18000 HR Edit Delete

-, - : = - il

—
([3=]

I will now run through the steps that you can follow for implementing this sample
application. Follow these simple steps in the same sequence that is given below.

Step 1: Create a DataGrid control either by dragging and dropping in your web
form from the toolbox, or by writing code in the . aspx file. Here is how we can use a
TemplateColumn in our DataGrid.

<asp:TemplateColumn HeaderText="Employee Code">

<ItemTemplates>

<asp:Label Text='<%# Convert.ToString(DataBinder.Eval (Container.
DataItem, "EmpCode")) %>'

runat="server" ID="1blEmpCode"></asp:Label>

<asp:TextBox runat="server" ID="txtEmpCode" Visible="False"
MaxLength="30" Text='<%# Convert.ToString(DataBinder.Eval (Container.
DataItem, "EmpCode")) %>'

Width="40">

</asp:TextBox>

</ItemTemplate>

</asp:TemplateColumn>

[111]

Working with the DataGrid Control in ASP.NET

Step 2: Repeat the same for the other columns, that is, Employee Name, Salary and
Department Name. Here is how the columns tag of the DataGrid control will look
like after you have used TemplateColumn for each of the above fields.

<Columns>
<asp:TemplateColumn HeaderText="Employee Code">
<ItemTemplates>
<asp:Label Text='<%# Convert.
ToString (DataBinder.Eval (Container.Dataltem, "EmpCode")) %>'

runat="server" ID="1lblEmpCode">
</asp:Label>
<asp:TextBox runat="server"
ID="txtEmpCode" Visible="False" MaxLength="30" Text='<%# Convert.
ToString (DataBinder.Eval (Container.Dataltem, "EmpCode")) %>'
Width="40">
</asp:TextBox>
</ItemTemplate>
</asp:TemplateColumn>

<asp:TemplateColumn HeaderText="Employee Name">
<ItemTemplates>

<asp:Label Text='<%# Convert.
ToString (DataBinder.Eval (Container.Dataltem, "EmpName")) %>'

runat="server" ID="lblEmpName">
</asp:Label>
</ItemTemplate>
</asp:TemplateColumn>

<asp:TemplateColumn HeaderText="Salary"s>
<ItemTemplates>
<asp:Label Text='<%# Convert.
ToString (DataBinder.Eval (Container.Dataltem, "Basic")) %>'
runat="server" ID="1blBasic">
</asp:Label>
</ItemTemplate>

</asp:TemplateColumn>
<asp:TemplateColumn HeaderText="Department"s>
<ItemTemplates>
<asp:Label Text="
<%# Convert.ToString(DataBinder.
Eval (Container.Dataltem, "DeptName")) %>'
runat="gerver" ID="1lblDeptCode">
</asp:Label>
</ItemTemplate>
</asp:TemplateColumn>
</Columns>

[112]

Chapter 5

Here is how the DataGrid will now look with template columns bound to it:

émEmployee Code Employee MName Salary Department "
Databound Databound Databound Databound

Databound Databound Databound Databound

Databound Databound Databound Databound ?
Databound Databound Databound Databound

Databeound Databound Databound Databound ;

Step 3: Now you need to use EditItemTemplate to make the data in the DataGrid
control editable. Here is the updated columns tag of the DataGrid control with
EditItemTemplate used for editing its fields based on selection of a particular
employee. Here is an example of how to use the EditItemTemplate in the
DataGrid control.

<EditItemTemplate>

<asp:TextBox runat="server" ID="txtEmpName Edit" MaxLength="30"
Text="<%# Convert.ToString(DataBinder.Eval(Eontainer.
DataItem, "EmpName")) %>'

Width="150">

</asp:TextBox>

*

</EditItemTemplate>

Note that the TextBox control is used to allow the user to type in the editable data.
Repeat this for all the other fields. Here is how the columns tag of the DataGrid
control will look after the EditItemTemplate has been used for the other fields.

<Columns>
<asp:TemplateColumn HeaderText="Employee Code">

<ItemTemplate>
<asp:Label Text= '<%# Convert.ToString(DataBinder
.Eval (Container.Dataltem, "EmpCode")) %>

runat="server" ID="lblEmpCode">
</asp:Label>
<asp:TextBox runat="server" ID="txtEmpCode"
Visible="False" MaxLength="30" Text='<%# Convert
ToString (DataBinder.
Eval (Container.Dataltem, "EmpCode")) %>'
Width="40">
</asp:TextBox>
</ItemTemplate>
<FooterTemplate>
</FooterTemplate>

[113]

Working with the DataGrid Control in ASP.NET

<EditItemTemplates>
<asp:TextBox runat="server" ID="txtEmpCode Edit"
MaxLength="30" Convert
Text="'<%#.ToString (DataBinder.
Eval (Container.DatalItem, "EmpCode")) %>'
Width="40" Enabled="false">
</asp:TextBox>
*</fonts>
</EditItemTemplate>
</asp:TemplateColumn>
<asp:TemplateColumn HeaderText="Employee Name">

<ItemTemplate>
<asp:Label Text='<%# Convert.ToString (DataBinder.
Eval (Container.Dataltem, "EmpName")) $%>'

runat="server" ID="lblEmpName">
</asp:Label>
</ItemTemplate>
<FooterTemplate>
<asp:TextBox ID="txtEmpName Add" Width="150"
MaxLength="30" runat="server" />
*
</FooterTemplate>
<EditItemTemplates>
<asp:TextBox runat="server"
ID="txtEmpName Edit" MaxLength="30"
Text="'<%# Convert.ToString(DataBinder.
Eval (Container.Dataltem, "EmpName")) %>'
Width="150">
</asp:TextBox>
*
</EditItemTemplate>
</asp:TemplateColumn>
<asp:TemplateColumn HeaderText="Salary"s>

<ItemTemplate>
<asp:Label Text='<%# Convert.ToString(DataBinder.
Eval (Container.Dataltem, "Basic")) %>'

runat="server" ID="1lblBasic">
</asp:Label>
</ItemTemplate>
<FooterTemplate>
<asp:TextBox ID="txtBasic_ Add"
Width="150" MaxLength="30"
runat="server" />
*
</FooterTemplate>

[114]

Chapter 5

<EditItemTemplates>
<asp:TextBox runat="server"
ID="txtBasic_Edit" MaxLength="30"
Text="'<%# Convert.ToString(DataBinder.
Eval (Container.DataItem, "Basic")) %>'
Width="150">
</asp:TextBox>
*
</EditItemTemplate>
</asp:TemplateColumns>
<asp:TemplateColumn HeaderText="Department"s>

<ItemTemplate>
<asp:Label Text='<%# Convert.ToString(DataBinder

.Eval (Container.Dataltem, "DeptName")) %>'
runat="server" ID="lblDeptCode">
</asp:Label>
</ItemTemplate>
<FooterTemplate>
<asp:DropDownList ID="ddlDeptCode Add"
runat="server" DataValueField="DeptCode"
DataTextField="DeptName" DataSource='<%#
FillDept () $>'></asp:DropDownList>
*</fonts>
</FooterTemplate>
<EditItemTemplate>
<asp:DropDownList ID="ddlDeptCode Edit"
runat="server" DataValueField="DeptCode"
DataTextField="DeptName" DataSource='<%#
FillDept () $>'></asp:DropDownList>
*</fonts>
</EditItemTemplate>
</asp:TemplateColumns>
<asp:EditCommandColumn ButtonType="LinkButton"
UpdateText="Save" CancelText="Cancel"
EditText="Edit"></asp:EditCommandColumn>
<asp:TemplateColumn>

<ItemTemplate>
<asp:LinkButton CommandName="Delete" Text="Delete"

ID="btnDelete" runat="server" />

</ItemTemplate>

<FooterTemplate>
<asp:LinkButton CommandName="Insert" Text="Add"

ID="btnAdd" runat="server" />
</FooterTemplate>
</asp:TemplateColumn>

</Columns>

[115]

Working with the DataGrid Control in ASP.NET

Note how we have used links for editing and deleting data in the DataGrid control,
as shown in the previous code snippet.

Here is how our DataGrid control looks with ItemTemplate and EditItemTemplate
used for each of its fields:

giﬂEmployee Code Emplovee Nare Salary Department E‘
Databound Databound Databound Databound Edit Delete
Databound Databound Databound Databound Edit Delete
Databound Databound Databound Databound Edit Delete 0
Databound Databound Databound Databound Edit Delete
Databound Databound Databound Databound Edit Delete ,3

Note the Edit and Delete links in this screenshot.

Step 4: The next step is binding data to the DataGrid control in the page_Load
event handler of our web page using the DataManager class and invoking the
GetEmployees () method of the class.

This is shown in the code snippet that follows.

protected void Page Load (object sender, EventArgs e)
{
if (!Page.IsPostBack)
this.BindGrid() ;
this.lblMessage.Text = String.Empty;

}

The BindGrid () method shown above, is responsible for binding data to the
DataGrid by reusing the bataManager class. BindGrid () method is given as follows:

public void BindGrid()

{
DataManager dataManager = new DataManager () ;
ArrayList arrayList = dataManager.GetEmployees() ;
dgEmployees.DataSource = arrayList;
dgEmployees.DataBind() ;

}

Note the usage of the Label control named 1blMessage in the above code snippet.
We will discuss the usage of the Label control used later in this section.

[116]

Chapter 5

Step 5: We will now incorporate Paging in the DataGrid control and apply some
custom styles for its rows, header, and footer. We will also use the onItemCommand,
OnEditCommand, and onDeleteCommand events of the DataGrid control to invoke
respective event handlers to perform the actual select, Add, Edit, or Delete
operations using the control. These event handlers will be discussed in the next
section of this chapter.

The following is the complete HTML source code of the control looks with all the
event handlers set.

<body>
<form id="frmEmployeeList" runat="server"s
<divs>
<asp:Label ID="lblMessage" runat="server" ForeColor="red"
Font-Italic="true" Font-Bold="true"></asp:Label></div>

<divs>
<asp:DataGrid ID="dgEmployees" runat="server"
BorderStyle="None" PageSize="4" AllowPaging="True"
OnItemCommand="onAdd" OnDeleteCommand="onDelete"
OnUpdateCommand="onUpdate" OnCancelCommand="onCancel"
OnEditCommand="onEdit" DataKeyField="EmpCode"
ShowFooter="True" AutoGenerateColumns="False"
CellPadding="4" BorderWidth="1px" BorderColor="#333366"
BackColor="White" Width="80%"
OnItemDataBound="dgEmployees ItemDataBound"
OnPageIndexChanged="dgEmployees PageIndexChanged">
<SelectedItemStyle Font-Bold="True" ForeColor="#663399"
BackColor="#FFCC66" >
</SelectedItemStyle>
<ItemStyle ForeColor="#330099"
BackColor="White">
</ItemStyle>
<HeaderStyle Font-Bold="True"></HeaderStyle>
<FooterStyle VerticalAlign="Middle"></FooterStyle>
<Columns>
<asp:TemplateColumn HeaderText="Employee Code">
<ItemTemplate>
<asp:Label Text='<%#
Convert.ToString (DataBinder.
Eval (Container.DatalItem, "EmpCode")) %>'
runat="server" ID="lblEmpCode">
</asp:Label>
<asp:TextBox runat="server" ID="txtEmpCode"

[117]

Working with the DataGrid Control in ASP.NET

Visible="False" MaxLength="30" Text='<%#
Convert.ToString (DataBinder
.Eval (Container.Dataltem, "EmpCode")) %>'
Width="40">
</asp:TextBox>
</ItemTemplate>
<FooterTemplate>
</FooterTemplate>
<EditItemTemplates>
<asp:TextBox runat="server" ID="txtEmpCode Edit"
MaxLength="30" Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "EmpCode"))
%>
Width="40" Enabled="false">
</asp:TextBox>
*
</EditItemTemplate>
</asp:TemplateColumn>
<asp:TemplateColumn HeaderText="Employee Name">
<ItemTemplates>
<asp:Label Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem,
"EmpName")) %>'
runat="server" ID="lblEmpName">
</asp:Label>
</ItemTemplates>
<FooterTemplate>
<asp:TextBox ID="txtEmpName Add" Width="150"
MaxLength="30" runat="server" />
*</fonts>
</FooterTemplate>
<EditItemTemplates>
<asp:TextBox runat="server" ID="txtEmpName Edit"
MaxLength="30" Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "EmpName"))
%>
Width="150">
</asp:TextBox>
*</fonts>
</EditItemTemplate>
</asp:TemplateColumns>
<asp:TemplateColumn HeaderText="Salary"s>
<ItemTemplates>
<asp:Label Text='<%# Convert.ToString

[118]

Chapter 5

(DataBinder.Eval (Container.Dataltem,
"Basic")) %>
runat="server" ID="lblBasic">
</asp:Label>
</ItemTemplates>
<FooterTemplate>
<asp:TextBox ID="txtBasic Add" Width="150"
MaxLength="30" runat="server" />
*</fonts>
</FooterTemplate>
<EditItemTemplates>
<asp:TextBox runat="server" ID="txtBasic Edit"
MaxLength="30" Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "Basic"))
%>
Width="150">
</asp:TextBox>
*</fonts>
</EditItemTemplate>
</asp:TemplateColumn>
<asp:TemplateColumn HeaderText="Department"s>
<ItemTemplates>
<asp:Label Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem,
"DeptName")) %>'
runat="server" ID="lblDeptCode">
</asp:Label>
</ItemTemplates>
<FooterTemplate>
<asp:DropDownList ID="ddlDeptCode Add"
runat="server" DataValueField="DeptCode"
DataTextField="DeptName" DataSource='<%#
FillDept () %$>'></asp:DropDownList>
*</fonts>
</FooterTemplate>
<EditItemTemplates>
<asp:DropDownList ID="ddlDeptCode Edit"
runat="server" DataValueField="DeptCode"
DataTextField="DeptName" DataSource='<%#
FillDept () %$>'></asp:DropDownList>
*
</EditItemTemplate>
</asp:TemplateColumns>
<asp:EditCommandColumn ButtonType="LinkButton"

[119]

Working with the DataGrid Control in ASP.NET

UpdateText="Save" CancelText="Cancel"
EditText="Edit"></asp:EditCommandColumn>
<asp:TemplateColumn>
<ItemTemplates>
<asp:LinkButton CommandName="Delete"
Text="Delete" ID="btnDelete" OnClick
="fnCheckDelete () ;" runat="server" />
</ItemTemplates>
<FooterTemplate>
<asp:LinkButton CommandName="Insert" Text="Add"
ID="btnAdd" runat="server" />
</FooterTemplate>
</asp:TemplateColumns>
</Columns>
<PagerStyle HorizontalAlign="Center"
Mode="NumericPages"></PagerStyle>
</asp:DataGrids>
</div>
</form>
</body>

Step 6: Before any of the records are deleted, we should prompt the user for
confirmation. Note that in the code snippet shown above, the JavaScript method,
fnCheckDelete () is called, as shown here:

<asp:LinkButton CommandName="Delete" Text="Delete" ID="btnDelete"
OnClick ="fnCheckDelete () ;" runat="server" />

Let us now incorporate a JavaScript method in our .aspx file that will be invoked
each time you click on the Delete link in the user interface.

function fnCheckDelete ()

{

if (confirm("Are you sure you want to delete this record ?"))
return true;
return false;

}

Note that the department names are displayed using a DropDownList control
within the DataGrid control. The above method actually prompts for confirmation
from the user prior to deleting the selected record.

We will see more on this as we proceed further.

Step 7: Now we need to populate the DropDownList control with data from the
Department table. Let us now incorporate the FillDept () method in the code
behind file to bind data to this control from the department table.

[120]

Chapter 5

public DataTable FillDept ()

{

DataManager dataManager = new DataManager() ;
return dataManager.GetDepartmentList () .Tables[0];

}

When you run the application for the first time, you will see a list of records
displayed. This concludes our discussion on how data is bound to the DataGrid,
inclusive of the DropDownlList control that displays the department names within
the DataGrid control. In the sections that follow, we'll discuss how we can perform
various operations using the DataGrid control.

Suppose you want to display the record number of each row in a
DataGrid control. You can use a TemplateColumn for this and display
the value of the ItemIndex property, as shown below.
<asp:templatecolumn HeaderText="Record No">
K <itemtemplate>
Q <%# Container.ItemIndex + 1 %>
</itemtemplate>
</asp:templatecolumns>

Note that the value of the ItemIndex property starts with a value of
L zero, to which we have added 1, as shown in the code snippet above.

Displaying Data
Let us now learn how we can display data in our web forms using the DataGrid
control. This is how the DataGrid will look once you bind data to it.

ff Working with the DataGrid Control - Windows Internet Explorer

& http://localhost:43295/PacktPub/Chapteria20V/SampleDataGrid.as

Google [Gl~ |~|Ge |c.j B~ | ¥% Bookmarksw &
S0 i | @ Working with the DataGrid Control

Emp Code Emplovee Name Salary Department

3 Jovdip 20000 IT

4 Donglas 75000 IT

5 Jind 15300 MKTG

6 Rama 18500 HR

7 Amal 22000 FINANCE

g Pikm 9000 PERSONNEL

9 Indronil 19000 MKTG

27 Bapila 32500 FINANCE

[121]

Working with the DataGrid Control in ASP.NET

How do we accomplish this? It's really simple. Just drag-and-drop the control from
the toolbox (if you are using ASP.NET 1.1) or write the code for the control in the
.aspx file manually (if you are using ASP.NET 2.0 or higher).

Based on how data is bound in the columns of a DataGrid control,
you can have either a BoundColumn or a TemplateColumn. A
. BoundColumn implies one where the data is bound directly and you do
% not have control of customizing it using custom HTML code. In contrast,
/i~ you can customize the markup as per your requirements when using

a TemplateColumn. You can use the syntax of both HTML and Web
Controls in a TemplateColumn. You generally use a TemplateColumn
when you need to edit data in a DataGrid control.

Here is how we have used the BoundColumn in the following code snippet:

<asp:BoundColumn DataField="EmpCode"
HeaderText="Emp Code"></asp:BoundColumn>
<asp:BoundColumn DataField="EmpName"
HeaderText="Employee Name"></asp:BoundColumn>
<asp:BoundColumn DataField="Salary"
HeaderText="Salary"></asp:BoundColumn>
<asp:BoundColumn DataField="DeptName"
HeaderText="Department"></asp:BoundColumn>

Each of the BoundColumn, as shown in the code snippet above, is used to bind data
retrieved from the database to the respective columns of the DataGrid control.

Here is the how you can declaratively write code to create a DataGrid control with
its data bound columns:

<asp:DataGrid id="dgEmployee" HeaderStyle-CssClass="Header"
runat="server" Width="100%" AutoGenerateColumns="False"
CellPadding="3">
<ItemStyle CssClass="GridRow"></ItemStyle>
<HeaderStyle CssClass="GridHeader"></HeaderStyle>
<Columns>
<asp:BoundColumn DataField="EmpCode"
HeaderText="Emp Code"></asp:BoundColumn>
<asp:BoundColumn DataField="EmpName"
HeaderText="Employee Name"></asp:BoundColumn>
<asp:BoundColumn DataField="Salary"
HeaderText="Salary"></asp:BoundColumn>
<asp:BoundColumn DataField="DeptName"
HeaderText="Department"></asp:BoundColumn>
</Columns>
</asp:DataGrid>

[122]

Chapter 5

We will retrieve data in the code behind, using the DataManager class and bind the
data to our DataGrid control from the code behind file for our web page. For this, we
will call the GetEmployees () method of this class in the Page Load event, shown

as follows:

protected void Page Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
DataManager dataManager = new DataManager() ;
dgEmployee.DataSource = dataManager.GetEmployees() ;
dgEmployee.DataBind () ;

}

The DataGrid that we have just created lacks a good look and feel. We can apply
custom styles or even use style sheets in the DataGrid control to improve the look
and feel of it. The next section discusses how we can do this.

Styling the DataGrid Control

In this section, we will learn how we can apply styles to the DataGrid control. We
will explore how we can customize the look and feel of our DataGrid control using
Cascading Style Sheets. We will display the records from the employee table and
customize the header and the row style of the control using the style sheet. We will
also display a horizontal bar that displays an employee's salary graphically, relative
to the max salary. Here is the stylesheet that we will use.

body{

}

GridHeader

{
font-family :Verdana ;
font-size :12;
color :White ;
background-color :Black ;

}

GridRow

{
font-family:Verdana ;
font-size :11;
background-color : White ;

}

SalaryBar

[123]

Working with the DataGrid Control in ASP.NET

{

font-family:Verdana ;
font-size :10;
background-color : Red ;

}

The CSS classes correspond to the Header, Row and the Bar that we will use in the
DataGrid control. Following is the output of the application when you execute it.

5 daf | @ Employee DataGrid
Employee Name __|Salary
Joydip | IT

Douglas [| IT

Jini | MKTG

Rama | HR

Amal | FINANCE

Piku | PERSONNEL
Indronil | MKTG

Bapila [| FINANCE

When you move your mouse on any of the bars shown above, the employee's salary
is displayed as a tool tip. The following screenshot illustrates this:

i g | & Employee DataGrid
Employee Name —|Salary
Joydip | IT

Douglas mIT

Jini [7590 MKTG

Rama | HR

Amal | FINANCE

Piku | PERSONNEL
Indronil | MKTG

Bapila [] FINANCE

[124]

Chapter 5

Wow! Note that when you place the mouse cursor on top of the Salary bar for the
employee Douglas, the salary is displayed as a tool tip.

Now we will discuss how we can implement such an application. Here is the source
code of the .aspx file that contains the DataGrid control, its templates, and the styles
that have been applied to the control.

<form id="Forml" method="post" runat="server"s>
<table id="Tablel" cellspacing="0" cellpadding="0" width="400"
border="1">
<tr>
<td>
<asp:DataGrid id="dgEmployee".HeaderStyle-
CssClass="Header"runat="server" Width="100%"
AutoGenerateColumns="False" CellPadding="3">
<ItemStyle.CssClass="GridRow" >
</ItemStyle>
<HeaderStyle CssClass="GridHeader">
</HeaderStyle>
<Columns>
<asp:BoundColumn DataField="EmpName" HeaderText="Employee
Name"></asp:BoundColumn>
<asp:TemplateColumn HeaderText="Salary"s>
<ItemTemplate>
<table width="100%">
<tr>
<td>
<a title='<%#
DataBinder.Eval (Container.Dataltem, "Salary") .ToS
tring () %$>' style="cursor:hand"s>
<div class="SalaryBar" style="width:
<%# ((int.Parse (DataBinder.Eval (Container
Dataltem, "Salary") .ToString())*100)/MAXSALARY
)%$>%; "></div>

</td>
<td style="width:<%# 100-
((int.Parse (DataBinder.Eval (Container.Dataltem,
"Salary") .ToString())*100)/ MAXSALARY) %> +
MAXSALARY %;"></td>
</tr>
</table>
</ItemTemplate>
</asp:TemplateColumn>
<asp:BoundColumn DataField="DeptName" HeaderText

[125]

Working with the DataGrid Control in ASP.NET

="Department"></asp:BoundColumn>
</Columns>
</asp:DataGrid></td>
</tr>
</table>
</form>

Note how the styles have been applied using the style sheet given earlier in this
section. We have used the salaryBar class of our style sheet to customize the <td>
tag that relates to salary. Here is the source code that illustrates how you will bind
data to the DataGrid control.

protected double MAXSALARY;
private void Page Load(object sender, System.EventArgs e)

{

if (!IsPostBack)

{

DataManager dataManager = new DataManager () ;
MAXSALARY = double.Parse (dataManager.GetMaxSalary()) ;
dgEmployee.DataSource = dataManager.GetEmployees() ;

dgEmployee.DataBind () ;

}

The GetMaxSalary () has been introduced new to our DataManager class. The intent
of this method is returning the maximum salary of all the employees in the table.
Following is the source code for the method.

public String GetMaxSalary ()
{

SglConnection conn = null;

try

{
conn = new SglConnection (connectionString) ;
conn.Open() ;
string sqgl = "Select Max(Salary) from Employee";
SglCommand cmd = new SglCommand(sqgl, conn) ;
return cmd.ExecuteScalar () .ToString() ;

}

catch

{
}
finally

{
}

throw;

conn.Close () ;

[126]

Chapter 5

For formatting the date type values in a DataGrid control you can use
+ DataFormatString as shown below.

%@‘\ <asp:BoundColumn DataField="JoinDate"
HeaderText="Joining Date"

DataFormatString="{0:MM-dd-yyyy}"/>

Appending Data Using the DataGrid Control

A blank row is displayed just beneath the last record of the page in view, as shown
in the screenshot earlier, in this chapter. You can type in your required data and
then click on the Add link to append the record in the employee table. Refer to the
following screenshot:

7 Employee List - Windows Internet Explorer

o

&) http://localhost49341/DataGrid/EmployeeList aspx <%=

Googe[C- [7]6o)® B v | T Bookmorkse 28 bocked | Check vy Autolink v 5 utofl b Sendtor
W & [gsmplmun [B~
Notor 1§ Fraud moniioring s on :

Employee Code Employee Name Salary Department

3 Toydip 25000 I Edit Delete

4 Douglas 75000 IT Edt Delete

5 Jini 15500 MKTG Edit Delete

6 Rama 18000 HR Edit Delete

Debanjan * 9500 = T v %{Elg
12

A new record is inserted in the employee table. The following screenshot displays
the newly added record:

> Employee List - Windows Internet Explorer

SRR = http//localhost:45341 DetaGrid/Employeclistaspx S
Google |G~ - Gl B - | ¥ Bookmarks~) blocked | P Check » 3 Autolink ~] Autofil [ab Sendtor)
% g | @ Eployeelit]7| B

Norto” (=] & - FraudImonioringicon

Employee Code Employee Name Salary Department
1 Amal 22000 FINANCE Edit Delete
3 Piku 9000 PERSONNEL Edit Delete
9 Indronil 19000 MKTG Edit Delete
11 Debanjan 19500 IT Edit Delete
* * m - Add
12

[127]

Working with the DataGrid Control in ASP.NET

When you click on the Add LinkButton in the user interface, the onadd ()
event handler is triggered. This has already been set in the . aspx file using the
following statement:

OnItemCommand="onAdd"

The command name for the Add LinkButton has already been specified using the
following statement in the . aspx file.

<asp:LinkButton CommandName="Insert" Text="Add" ID="btnAdd"
runat="server" />

Next, the FindControl () method is called to retrieve the control instances within
the DataGrid control. Here is the code that we will use the FindControl () method,
in our code behind file, to retrieve the reference to the controls txt EmpName Add and
txtBasic_ Add that are contained within the DataGrid control.

if (e.CommandName == "Insert")
{
if (((TextBox)e.Item.FindControl ("txtEmpName Add")) .Text == "")
{
this.lblMessage.Text = "** Please Enter Employee Name **";
return;
}
if (((TextBox)e.Item.FindControl ("txtBasic Add")) .Text == "")
{
this.lblMessage.Text = "** Please Enter Employee Basic **";
return;

}

First we need to check the command name as shown in the source code given
above. Note that in the code snippet shown above, that is, an instance of
DataGridCommandArgs

The complete source code for the onadd () method is shown below:

public void onAdd(object source, DataGridCommandEventArgs e)

{

if (e.CommandName == "Insert")
{
if (((TextBox)e.Item.FindControl ("txtEmpName Add")) .Text == "")
{
this.lblMessage.Text = "** Please Enter Employee Name **";
return;
}
if (((TextBox)e.Item.FindControl ("txtBasic Add")) .Text == "")

[128]

Chapter 5

this.lblMessage.Text = "** Please Enter Employee Basic **";
return;
}
Employee employee = new Employee() ;
employee.DeptCode = ((DropDownList)e.Item.FindControl
("dd1lDeptCode Add")) .SelectedvValue;
employee.EmpName = ((TextBox)e.Item.FindControl ("txtEmpName Add"))
.Text .Replace("'", "m);
employee.Basic = Convert.ToDouble (((TextBox)e
.Item.FindControl ("txtBasic_Add")) .Text.Replace("'"™, ""));
DataManager dataManager = new DataManager () ;
dataManager .AddEmployee (employee) ;
this.dgEmployees.EditItemIndex = -1;
this.BindGrid() ;
}
}

As we can see in the code snippet above, once we have retrieved the reference to
the controls within our DataGrid control, we can easily retrieve the data from these
controls using their respective properties. Once done, we can set these values to the
respective properties of an instance of our Business Entity class called Employee.
The Employee class contains a list of private variables that correspond to the fields
in the employee table. These variables are exposed using their corresponding
public properties.

Here is the source code for the Employee class.

public class Employee

{
private string empCode String.Empty;
private string empName = String.Empty;
private double basic = 0.0;
private string deptCode = String.Empty;
private string deptName = String.Empty;
private DateTime joiningDate;
private bool active = false;

public string EmpCode

{

get

{
}

set

return empCode;

[129]

Working with the DataGrid Control in ASP.NET

empCode = value;

}
public string EmpName
{

get

{

return empName;

empName = value;

}
public double Basic

{

get

{

return basic;

basic = value;

}
public string DeptCode

{

get

{

return deptCode;

deptCode = wvalue;

}
public string DeptName
{

get
{

return deptName;

deptName = value;

[130]

Chapter 5

public DateTime JoiningDate

{

get

{

return joiningDate;

}
set
{
joiningDate = value;
}
}
public bool Active
{
get
{
return active;
}
set
{
active = value;
}
}

}

As with a typical business entity class, the Employee class that represents the

Employee Business Entity contains private members that are exposed using their
corresponding public properties.

Next, an instance of the DataManager class is created and the AddEmployee ()
method of the DataManager class is called and the Business Entity instance,that is,
the instance of the Employee class is passed to it as a parameter. The source code for
the AddEmployee () method is given as follows:

public int AddEmployee (Employee e)

{

String sqglString = "insert into Employee (EmployeeName,
Salary, DepartmentID) values('" + e.EmpName + "', '" +
e.Basic + "', '" + e.DeptCode + "')";

SglConnection sglConnection = new
SglConnection (connectionString) ;
sglConnection.Open/() ;

SglCommand sglCommand = new SglCommand (sglString,
sglConnection) ;

return sglCommand.ExecuteNonQuery () ;

[131]

Working with the DataGrid Control in ASP.NET

Editing Data Using the DataGrid Control

You can edit a record using the Edit LinkButton, as shown in the
following screenshot:

/= Employee List - Windows Internet Explorer

K olwsRdl = nitp://localhost:4g341/DataGirid/EmployeeList aspx v |4 | %
Google [Gi+ [7]Go{ & & v | ¥ Bookmarksy 34 blocked | % Check v Autolink = " AufcF | [Send tow

% e | @ employee List [
Norton™ (] @ raud monitoringis on =

Employee Code Employee Name Salary Department

3 Joydip 25000 IT Edit Delete

4 Douglas 75000 IT Edit Delete

5 Jini 15500 MKTG Edit Delete

I
I
T
Ie}
B
2
m,

Delete

b Rama = m-% b HR v =

Note that we have changed the basic Salary from 18000 to 18500 for the employee
Rama. Now, when you click on the Save LinkButton, the record is saved with these

changes. The following screenshot displays the edited record once the page refreshes
after the Save operation is successful.

£ | http://localhost49341/DataGrid/Employeelist.aspx |4 x
Google |G~ : Go I.@ B | % Bookmarks» 34 blocked ‘ "% Check v & Autolink » = AutoFill (e Sendtow I

W [@ Employee List ol N~
Norton™ E @ - Fraud'monitoringis on =

Employee Code Employee Name Salary Department

3 Joydip 25000 IT Edit Delete

4 Douglas 75000 T Edit Delete

5 Jini 15500 MKTG Edit Delete

6 Rama 18500 HR Edit Delete

—
()

In order to edit data in the DataGrid control, we require a TemplateColumn called
EditCommandColumn. The following is the code snippet which illustrates the same:

<asp:EditCommandColumn ButtonType="LinkButton" UpdateText="Save"
CancelText="Cancel" EditText="Edit"></asp:EditCommandColumns>

[132]

Chapter 5

Once defined, we need a method that should be executed to make the record
editable. Note that the method to be executed is specified using the onEditCommand
attribute of the DataGrid, as shown in the following code snippet:

<asp:DataGrid ID="dgEmployees" runat="server" BorderStyle="None"
PageSize="4" AllowPaging="True"
OnItemCommand="onAdd" OnDeleteCommand="onDelete"
OnUpdateCommand="onUpdate" OnCancelCommand="onCancel"
OnEditCommand="onEdit" DataKeyField="EmpCode" ShowFooter="True"
AutoGenerateColumns="False"
CellPadding="4" BorderWidth="1px" BorderColor="#333366"
BackColor="White" Width="80%"
OnItemDataBound="dgEmployees ItemDataBound"
OnPageIndexChanged="dgEmployees PageIndexChanged">

Now, when you click on the Edit LinkButton, the onEdit () event handler method
gets fired. The code for this event handler is as follows:

public void onEdit (Object source, DataGridCommandEventArgs e)
{
this.dgEmployees.ShowFooter = false;
this.dgEmployees.EditItemIndex = e.Item.ItemIndex;
this.BindGrid() ;

}

Note that when this event is fired, the Edit ItemIndex of the DataGrid control is
set to the current row. This implies that all fields of the EditItemTemplate in the
DataGrid become active and all the fields of the ItemTemplate become hidden.
Hence, the controls in the EditItemTemplate become editable. Note that we have
not made the Employee code field editable as this is the primary key. The following
code snippet shows the EditItemTemplate of the Employee Name field in our
DataGrid control.

<EditItemTemplate>
<asp:TextBox runat="server" ID="txtEmpName Edit" MaxLength="30"
Text="'<%# Convert.ToString(DataBinder.Eval
(Container.DataItem, "EmpName")) %>' Width="150">
</asp:TextBox>

</EditItemTemplate>

[133]

Working with the DataGrid Control in ASP.NET

Once you are done with the required changes, you can click on either the Save
LinkButton to update the record, or, the Cancel LinkButton to undo the changes
made. The onuUpdate () method shown below is the event handler that is triggered
whenever you click on the Save LinkButton after editing the selected record. The
following is the code for onUpdate () method:

public void onUpdate (Object source, DataGridCommandEventArgs e)

{

if (((TextBox)e.Item.FindControl ("txtEmpName Edit")).Text == "")
this.lblMessage.Text = "** Please Enter Employee Name **'";
return;
if (((TextBox)e.Item.FindControl ("txtBasic Edit")) .Text == "")
this.lblMessage.Text = "** Please Enter Employee Basic **";
return;

}

Employee employee = new Employee () ;

employee.EmpCode = ((TextBox)e
Item.FindControl ("txtEmpCode Edit")) .Text;
employee.DeptCode ((DropDownList)e
=.Item.FindControl ("ddlDeptCode Edit")) .SelectedValue;
employee.EmpName = ((TextBox)e.
Item.FindControl ("txtEmpName Edit")) .Text.Replace("'", "");
employee.Basic = Convert.ToDouble (((TextBox)e.
Item.FindControl ("txtBasic Edit")) .Text.Replace("'", ""));

DataManager dataManager = new DataManager () ;
dataManager .UpdateEmployee (employee) ;
this.dgEmployees.EditItemIndex = -1;
this.BindGrid () ;

}
Note that we make a call to the UpdateEmployee () method of the DataManager to
update the record in the employee table. The following is the source code for the
UpdateEmployee () method:

public int UpdateEmployee (Employee e)

{

string sqglString = "update Employee set EmployeeName = '" +
e.EmpName + "', Salary = '" + e.Basic + "', DepartmentID = '" +
e.DeptCode + "' where EmployeeID = '" + e.EmpCode + "'";

SglConnection sglConnection = new SglConnection (connectionString) ;
sglConnection.Open() ;

SglCommand sglCommand = new SglCommand (sglString, sglConnection) ;
return sglCommand.ExecuteNonQuery () ;

}

The BindGrid () method is called to rebind data to the DataGrid control so as to
refresh the display after the edited record has been saved to the table.

[134]

Chapter 5

Deleting Data Using the DataGrid Control

You can delete a record by clicking on the Delete LinkButton next to a record, as
shown in the following screenshot:

£ hitp:/flocalhost49341/DataGrid/ Employeelist.aspx it B Al 28
Google (G~ Z| Go {8 By~ | ¥ Bookmarksw [3 blocked | ¥ Check v 4 Autolink ~ Gstobill | Send tow
Wi 4 | @ Employee List)_} =
Nortor™ (=] &
Employee Code Employee Name Salary Department
7 Amal 12000 FINANCE Edit Delete
8 Piku 9000 PERSONNEL Edit Delete
9 Indrond 19000 MKTG Edit Delete
1 Debanjan 19500 T Edt Dyete
L
* . T - " Ad

When you click on the Delete LinkButton, a dialog box pops up and prompts for
confirmation. Refer to the following screenshot:

= Em ployee List - Windows Internet Explorer

@ - - & http://localhost:49341/DataGrid/Employeelist.aspx =% X
Google (G~ [] Go{rg;'jj 8- | % Bookmarks~ 5134 blocked | “% Check v § Autolink - Autofill [a Send tow
T 0| @ Employee List I &
Norton™ (] [Eratid monitoringyis on 57

Employee Code Employee Name Salary Department

7 Amal 22000 FINANCE Edit Delete

8 Piku 2000 PERSONNEL Edit Delete

9 Indronil 19000 MKTG Edit Delete

11 Debanjan 19500 Edit Delete

- (EH(E'

* Windows Internat Explorar Add
@A Areyou sure you want to delete this record 7

[135]

Working with the DataGrid Control in ASP.NET

Now, click on the OK button to delete this record. The following screenshot captures
the output after the record is deleted:

@ httpi//lacalhost49341/DataGrid/Employeelist.aspx |4 X

Google |G~ [~]eo {,-@ B~ ‘ % Bookmarks+ & 34 blocked | "% Check v 4 Autolink v = Autofill [Sendtow
7 4 @ Employee List o~
Norton™ (L] @ raud monitoringiision)

Employee Code Employee Name Salary Department

7 Amal 22000 FINANCE Edit Delete

8 Piku 9000 PERSONNEL Edit Delete

9 Indronil 19000 MKTG Edit Delete

® * T - ® Add
12

Once the record is deleted, the page refreshes and you can see that the record you
just deleted, that is, the employee called Debanjan with an Employee Code 11, is no
longer displayed in the DataGrid.

The following is the source code for the onDelete () event handler method that is
tired once you click on the Delete LinkButton.

public void onDelete (object source, DataGridCommandEventArgs e)
{
String employeeCode = dgEmployees.DataKeys
[e.Item.ItemIndex] .ToString() .Replace("'", "");
DataManager dataManager = new DataManager () ;
dataManager .DeleteEmployee (employeeCode) ;
this.dgEmployees.EditItemIndex = -1;
this.BindGrid () ;

}

The above event handler method makes use of the bataManager class, as
usual, to delete an employee record. The following is the source code for the
DeleteEmployee () method of the DataManager class.

public int DeleteEmployee (String empCode)

{

string sglString = "Delete from Employee where EmployeeID = +
empCode + "'";

SglConnection sqglConnection = null;

sglConnection = new SglConnection (connectionString) ;

sglConnection.Open () ;

SglCommand sglCommand = new SglCommand (sglString, sglConnection) ;

return sglCommand.ExecuteNonQuery () ;

[136]

Chapter 5

If you want to provide the user a confirmation alert before he or she
deletes the record, you can use the RowDataBound event for this. The
code snippet given below illustrates that you can achieve this.
protected void dgEmployee RowDataBound (object sender,
System.Web.UI.WebControls.GridViewRowEventArgs e)
. {
% if (e.Row.RowType == DataControlRowType.DataRow)
= {
((LinkButton) (e.Row.Cells [0] .Controls[5])) .
Attributes.Add ("onclick",
"return confirm('Please confirm before the
record is deleted');");

- } -

When you click on the Cancel LinkButton in the dialog box, the EditItemIndex is
set to 1 to make the record non-editable. Once this is done, the EditItemTemplate is
hidden and the ItemTemplate is made active.

Paging Using the DataGrid Control

You can also use paging with the DataGrid control. To enable paging, you need to
set the AllowPaging property of the control, as shown in the following code snippet:

AllowPaging="True"

The event handler that should be called whenever the page index changes is also set
in the . aspx file as shown here.

OnPageIndexChanged="dgEmployees PageIndexChanged"

The dgEmployees PageIndexChanged () event handler is called each time the
data results are changed by clicking on the links that correspond to the page
numbers. Refer to the first screenshot in this chapter. The source code for this
event handler is as follows:

protected void dgEmployees PageIndexChanged (object source,
System.Web.UI.WebControls.DataGridPageChangedEventArgs e)

this.dgEmployees.CurrentPageIndex = e.NewPageIndex;
this.BindGrid() ;

[137]

Working with the DataGrid Control in ASP.NET

The BindGrid () method is called and the currentPageIndex property, that holds
the index of the most recent page in use, is set to the value of the NewPageIndex
property of the instance of the DataGridPageChangedEventArgs class.

The source code for the dgEmployees ItemDataBound () event handler is as follows.

protected void dgEmployees ItemDataBound (object sender,
System.Web.UI.WebControls.DataGridItemEventArgs e)

if (e.Item.ItemType == ListItemType.Item || e.Item.ItemType ==
ListItemType.AlternatingItem || e.Item.ItemType ==
ListItemType.EditItem)

((LinkButton)e.Item.FindControl ("btnDelete")) .
Attributes["onClick"] = "return fnCheckDelete()";

}

if (e.Item.ItemType == ListItemType.EditItem)
{

try

{

((DropDownList)e.Item.FindControl
("dd1lDeptCode Edit")) .Items.FindByValue
(Convert.ToString (DataBinder.Eval (e.Item.DatalItem,
"DeptCode"))) .Selected = true;

}

catch { }

Summary

In this chapter we discussed the DataGrid control and how we can implement

a sample application that contains all the necessary functionalities, like display,
append, edit, and delete data using this control. We have discussed how we can
work with the events of DataGrid control. In addition, we looked at how we can
style our DataGrid using CSS classes in a sample application. In the next two
chapters, we will learn how we can work with the DataView, GridView, FormView,
DetailsView, and the TreeView controls in ASP.NET. In the concluding chapter of
this book, we will discuss how we can bind data to the new data controls of Orcas
using LINQ.

[138]

Displaying Views of
Data (Part 1)

In Chapter 5, we have looked at how we can work with the DataGrid control in
ASP.NET. This is the first in the series of two chapters on how we can use the view
controls, like, GridView, DetailsView and FormView controls to display different
views of data in ASP.NET 2.0. In this chapter, I will present the GridView control
and how the data source controls can be used to bind data to it. We will also discuss
how we can export data from this control to Excel or Word documents with sample
code in each case.

In this chapter, we will learn the following;:

e Using the GridView control

¢ Displaying data using the GridView control

¢ Displaying CheckBox and DropDownList inside a GridView control
e Selecting a row inside a GridView control

e Displaying a hierarchical GridView control

e Paging data using the GridView control

e Sorting data using the GridView control

e Inserting, editing and deleting data using the GridView control

e Exporting the GridView control

¢ Formatting the GridView control

Displaying Views of Data (Part I)

The ASP.NET GridView Control

The idea behind the development of this data control is to display data in one of the
simplest ways possible, without having to write even a single line of code. Amazing,
isn't it? You only require proper configuration of the data source controls, that is,
the SqlDataSource, AccessDataSource, ObjectDataSource or the XmlDataSource
control and setting this as the data source property of the GridView data control.
Once the application is executed, this control is rendered as a table tag in HTML. We
will learn more on this as we progress through the chapter.

To use the GridView web control, you can drag and drop it from the Toolbox as
shown in the following snapshot:

|| = Data |
| R Pointer
| - Gridview |
] Datalist

| Detailsview

Ixoqoo) S|

_._5 FormView
Repeater

_j SqlDataSource

I g AccessDataSource

,3 ObjectDataSource

h %miDataSource

[;g} SiteMapDataSource

2] ReportViewer

You can also create the GridView control programmatically in your .aspx file. The
complete syntax for using the GridView control is shown as follows:

<asp:Gridview id="value" Runat="Server"
AllowPaging="True|False"
AllowSorting="True|False"
AutoGenerateColumns="True |False"
Caption="string"
CaptionAlign="Left |NotSet |Right |Justify"
CellPadding="n"
CellSpacing="n"
DataSourceID="datasourceid"
EmptyDataText="string"
GridLines="Both|Horizontal|Vertical |None"

[140]

Chapter 6

PageSize="n"

ShowHeader="True |False"

ShowFooter="True |False"
property="value"
Style="gtyle"
HeaderStyle-property="value"
RowStyle-property="value"
AlternatingRowStyle-property="value"
FooterStyle-property="value"

/>

You can bind data to this web control using any of the data source controls available
with ASP.NET 2.0. We will take SqlDataSource control in this chapter. We have
already discussed data source controls in Chapter 1 of this book. The following
figure displays the GridView control in its design view. Note that you have the
generic columns associated with the control before you bind any data source to it.
These columns have names like Column0, Column1, Column2, until a data source is

bound to it.
if
- !twww.ixﬁmM

—= fucko Format...

i-abl: EbC Elb'l:

in.bc e abe

lahe abe ke Edd:[‘:“’" s

i - Acd Mg Colren, .
|a.'¢-c Ak abe e mm.;n
FLT abe akc £

, :qu'naba."juurce '-!Sdnateﬁmmt |

As we have seen in Chapter 1 of this book, you can associate a data source with this
control easily from the New Data Source option. Once a data source is associated
with this control, the control can display data once you execute your web page. The
following screenshot shows a GridView control with data from our Employee table.

Employvee ID EmploveeName Joining Date Department ID Salary

3 Joydip 08-09-2007 1 Rs. 20,000.00
4 Douglas 08-09-2007 1 Rs. 75,000.00
5 Jini 08-09-2007 2 Rs. 15,500.00
6 Rama 01-09-2007 3 Rs. 18,500.00
7 Amal 10-12-2006 4 Rs. 22,000.00
8 Piku 01-09-2007 5 Rs. 9.000.00
9 Indronil 08-09-2007 2 Rs. 19,000.00
27 Bapila 02-01-2005 4 Rs. 32,500.00

[141]

Displaying Views of Data (Part I)

If you look at the above figure, you will observe that the data displayed in the
JoiningDate and the Salary fields are not properly formatted. We will learn how to
format data using the GridView control later in this chapter.

DataGrid is generally used in ASP.NET 1.1 and not in ASP.NET 2.0. In ASP.NET 2.0,
we prefer using the GridView control. You need not write much code to render the
control. This is what makes the life of a developer much easier.

Our GridView as displayed in the previous figure lacks visual appeal. Let us learn
how we can use proper formatting at column level or cell level of this control to
produce visually appealing displays.

You have in the GridView control one column per column of the Data Source control
that you use. Let us now take a look at the declarative mark-up of the Gridview
control in the source code view, that is, in the . aspx file. Refer to the following code
snippet that illustrates this:

<asp:Gridview ID="GridViewl" runat="server"
AutoGenerateColumns="False" DataKeyNames="EmployeeID"
DataSourcelID="SglDataSourcel">
<Columns>
<asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID"
InsertVisible="False" ReadOnly="True"
SortExpression="EmployeeID" />
<asp:BoundField DataField="EmployeeName"
HeaderText="EmployeeName" SortExpression="EmployeeName" />
<asp:BoundField DataField="JoiningDate" HeaderText="JoiningDate"
SortExpression="JoiningDate" />
<asp:BoundField DataField="DepartmentID"
HeaderText="DepartmentID" SortExpression="DepartmentID" />
<asp:BoundField DataField="Salary" HeaderText="Salary"
SortExpression="Salary" />
</Columns>
</asp:Gridview>

The corresponding code in the . aspx file for the SqglDatasource control (that we
have used to bind data to this control) is as follows:

<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="Data Source=.;Initial Catalog=Test;User
ID=sa;Password=sa"
ProviderName="System.Data.SglClient" SelectCommand="SELECT
[EmployeeID], [EmployeeName], [JoiningDate], [DepartmentID],
[Salary] FROM [Employee] ">
</asp:SglDataSource>

[142]

Chapter 6

Note that these mark-ups are actually rendered as HTML tags when the page is
executed. Let us now customize the look and feel of the GridView control. You can
customize the GridView control at the control level, that is, the GridView Level, the
row level or at the column level.

The following code snippet shows how you can set the background colour at the
column level and the Gridview level for customized display.

<asp:Gridview ID="GridViewl" runat="server" RowStyle-BackColor =
"CadetBlue" AutoGenerateColumns= "False" DataKeyNames="EmployeeID"
DataSourceID="SglDataSourcel">
<Columns>
<asp:BoundField DataField="EmployeeID" HeaderStyle-BackColor =
"Aqua" HeaderText="EmployeeID" InsertVisible="False"
ReadOnly="True" SortExpression="EmployeeID" />
<asp:BoundField DataField="EmployeeName" HeaderStyle-BackColor =
"Aqua" HeaderText="EmployeeName" SortExpression="EmployeeName"
/>
<asp:BoundField DataField="JoiningDate" HeaderStyle-BackColor =
"Aqua" HeaderText="JoiningDate" SortExpression="JoiningDate"
/>
<asp:BoundField DataField="DepartmentID" HeaderStyle-BackColor =
"Aqua" HeaderText="DepartmentID" SortExpression="DepartmentID"
/>
<asp:BoundField DataField="Salary" HeaderStyle-BackColor =
"Aqua" HeaderText="Salary" SortExpression="Salary" />
</Columns>
</asp:Gridviews>

The following screenshot shows the GridView control populated with data from the
Employee table and with a customized look and feel.

You can even use your Cascading Style Sheets for customizing the look and feel of
the GridView control.

[143]

Displaying Views of Data (Part I)

Note the use of both paging and sorting functionalities in a GridView control.
The sections that follow look at how you can work with the GridView control to
implement paging and sorting functionalities.

Comparing DataGrid and GridView Controls

In this section we will discuss how the two data controls DataGrid and GridView
differ. While both DataGrid and GridView controls are used for binding and
displaying data in tabular format, there are subtle differences between the two as far
as their suitability is concerned. When you use a DataGrid control, you need to write
your own code for binding, sorting, and paging data. In contrast, these features are
inbuilt in the GridView control and you can display, insert, edit or delete your data
using this control without having to write code. However, some of these pitfalls of
the DataGrid control have been addressed with ASP.NET 2.0 and after. Let us take a
look at the salient features of the GridView control. These are as follows:

e Support for data source binding using the new Data Source controls available
in ASP.NET 2.0 and after

e Advanced event model

e In-built support for paging and sorting of data

e Better design time support and added templates from its earlier counterparts

Displaying DropDownL.ist in a GridView
Control

In this section we will learn how to display a DropDownlList in a GridView control.
We will display the department names of the employees using the DropDownList
control. Following is the output when you execute the application:

[144]

Chapter 6

Following is the code in the . aspx file that illustrates how you can associate a
DropDownList control with the department names of an employee.

<Columns>
<asp:TemplateField HeaderText="Rec No" HeaderStyle-BackColor =
"DarkOrange" Visible="True">
<ItemTemplates>
<%# Container.DisplayIndex + 1 %>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField Visible="False">
<ItemTemplates>
<asp:Label ID="1lblDept" runat="server" Text='<%#
Eval ("DepartmentID") %>' />
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="EmployeeName" HeaderStyle-BackColor =
"DarkOrange" HeaderText="EmployeeName"/>
<asp:TemplateField ControlStyle-ForeColor="Black" HeaderStyle-
BackColor = "DarkOrange" HeaderText="Department"s>
<ItemTemplate>
<asp:DropDownList ID="drpDept" ForeColor="Black"
BackColor="Khaki" runat="server"s
</asp:DropDownList >
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="JoiningDate" HeaderStyle-BackColor =
"DarkOrange" HeaderText="JoiningDate" DataFormatString="{0:d4}"/>
<asp:BoundField DataField="Salary" HeaderStyle-BackColor =
"DarkOrange" HeaderText="Salary" DataFormatString="{0:C}"/>
</Columns>

Refer to the code snippet above. The DisplayIndex property of the Container object
has been used to display the record number for each record of the Gridview control.
The value of this property starts with 0, hence the necessity of adding 1 to it. Note
that we have taken a TemplateField to use a DropDownList control called drpbept
that will display the department names in the list control. The department to which

a particular employee belongs would be selected by default. To achieve this, we

need to write the following code in the RowDataBound event handler of the

Gridview control.

protected void GridViewl RowDataBound (object sender,
GridviewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)

[145]

Displaying Views of Data (Part I)
{

String deptID = ((Label)e.Row.

FindControl ("1lblDept")) .Text;
DataSet ds = new DataSet () ;
ds = dataManager.GetDepartmentList () ;
DropDownList ddl =

(DropDownList) e.Row.FindControl ("drpDept") ;
ddl.DataSource = ds.Tables[0];
ddl.DataTextField = "DeptName";
ddl.DataValueField = "DeptCode";
ddl.DataBind () ;
ddl.SelectedIndex =

ddl.Items.IndexOf (ddl.Items.FindByValue (deptID)) ;

}

The department name of each employee is actually stored in a hidden label control
called 1blDept. A reference to this control is retrieved using the FindControl ()
method. The GetDepartmentList () method returns the department names as a
DataSet. Using the FindControl () method, a reference to the DropDownList control
called drpDept, is retrieved. Next, the DataTextField and the DatavalueField
properties of the DropDownList control are set properly. The FindByvalue ()

method is used to set the selectedIndex property of the control to the appropriate
department name.

Displaying CheckBox in a GridView Control

We will now explore how to display a CheckBox in each of the records in a
GridView control. Following is the output of the application on execution.

Click

=
1

[146]

Chapter 6

Note that there is a CheckBox control in the EmployeeID column of the GridView
control for each of its records displayed. When you select one or more check

boxes and click on the Click button control beneath the GridView control, the
employee names for the selected employee records are displayed as shown in the
following figure:

The following employees have been selected:--
Joydip
Douglas

E E <
5%

Let us now understand how we can achieve this. To display a CheckBox that is
bound to the EmployeelD column, we will use a TemplateField, as shown in the
following code snippet:

<asp:TemplateField Visible="True" ControlStyle-ForeColor="Black"
HeaderStyle-BackColor = "DarkOrange" HeaderText="EmployeeID">
<ItemTemplates>
<asp:CheckBox ID="chkSelect" runat="server" Text='<%#
Eval ("EmployeeID") %>'/>
</ItemTemplate>
</asp:TemplateFields>

In the click event of the button control, we need to iterate through all the rows of
the GridView control and check whether the checkBox for that row is checked. If so,
the employee name corresponding to that record is displayed. Following is the code
for the event handler for the c1ick event of the button control.

protected void btnClick Click(object sender, EventArgs e)

{

Response.Write ("The following employees have been selected:--
") ;
for (int i = 0; 1 < GridvViewl.Rows.Count; i++)

{

[147]

Displaying Views of Data (Part I)

if (((CheckBox)GridvViewl.Rows[i] .FindControl
("chkSelect")) .Checked)

Response.Write ("
" + GridViewl
.Rows [i] .Cells [3] .Text) ;

}

Note that we have used the Findcontrol () method as usual to retrieve a reference
to the CheckBox control of each of the rows of the Gridview control. In the next
section we will learn how we can display tool tips in a GridView control.

Change the Row Color of GridView Control
Using JavaScript

We will now explore how we can change the color of a GridViewRow using
JavaScript. First, let us understand how we can change the row color in the click
event of any particular row of the GridView control. Following is a screenshot that
illustrates that the color of the clicked row has been changed.

{= Working with the GridView Control - Windows Intemet Explorer

ol © http://localhost49295/PacktPub/Chapter¥20V1/GridViewWithCheckbo

W [@ Working with the GridView Control] \

iiii | iI

When the same row is clicked again, the original color is displayed for that row.
Following is the output when you click on the same row for which the color has been
changed on account of the Click.

[148]

Chapter 6

EmployeeID JoiningDate
05-08-2007
= 08-09-2007
fy 0s-05-2007
01-09-2007
10-12-2005
01-09-2007
03-09-2007

H

E
=

To achieve this; it is simple. Use the following code in the RowDataBound event
handler to set up the Javascript () method to be called when any of the rows of the
GridView control is clicked. The name of this method is ChangeGridRowColor ().
Following is the complete source for the RowDataBound event handler.

protected void Gridviewl RowDataBound(object sender,
GridviewRowEventArgs e)
{
if (e.Row.RowType == DataControlRowType.DataRow)
e.Row.Attributes["onclick"] =
"javascript :ChangeGridRowColor (this) ; ";

}
The Javascript () method ChangeGridRrow is given as follows:

function ChangeGridRowColor (element)
{
if (element.style.backgroundColor == 'cyan')
element.style.backgroundColor="'deepskyblue';
else
element.style.backgroundColor="'cyan';

[149]

Displaying Views of Data (Part I)

Changing row color of the GridView control using JavaScript when the

mouse moves over the control's rows

We can also change the color of a row in the GridView as and when you

move the mouse pointer from one row to the other. You need to write the

following code in the RowDataBound event handler of the control.
protected void GridViewl RowDataBound (object sender,

GridviewRowEventArgs e)
if (e.Row.RowType == DataControlRowType.
DataRow)

{
e.Row.Attributes ["onmouseover"] =
"javascript:ToggleRowColor (this) ;" ;
e.Row.Attributes ["onmouseout"] =
"javascript:ToggleRowColor (this) ;" ;

}

Note that the ToggleRowColor () JavaScript () method is called
on the onmouseover and the onmouseout events of the row of the
GridView control. Following is the code for the ToggleRowColor ()
method.

function ToggleRowColor (element)

{

if (element.style.backgroundColor == 'cyan')

{
element.style.backgroundColor="'deepskyblue';
element.style.cursor="'hand';
element.style.textDecoration="'none';

}

else

{
element.style.backgroundColor="'cyan';
element.style.cursor="'hand';
element.style.textDecoration="'underline';

}

[150]

Chapter 6

Displaying Tool Tip in a GridView Control

Let us now learn how we can display tool tip in a GridView control to display an
employee's address. Following is the output when you execute the application.

Employee Address: Packt Pub, 32 Lincoln Road, Olton,
Birmingharm B27 6PA, UK

Click

Refer to the screenshot above. Note that the employee Douglas's address is
displayed as a tool tip as and when you place the cursor on the record. To achieve
this, you need to specify the following code in the RowDataBound event of the
GridView control.

protected void Gridviewl RowDataBound(object sender,
GridviewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)
{
e.Row.ToolTip = "Employee Address: " +
Convert.ToString (DataBinder.Eval (e.Row.Dataltem,
"EmployeeAddress")) ;
e.Row.Style.Add ("Cursor", "Hand");

Paging Using the GridView Control

Paging is a feature that displays a specified number of records from the entire result
set. You need to set the page size appropriately to display a set of records of the
entire result set. As we have seen, the data source that we have used so far displays
all the records retrieved from the Employee table. This might look clumsy if there
are hundreds or thousands of records in your resultset. With this in mind, we can
use the paging feature with this control to ensure that the display is appealing. The
user can then navigate to different pages of the result set simply by clicking the page
numbers displayed with the control.

[151]

Displaying Views of Data (Part I)

For this, we need to set the AllowPaging property of the control to true and set the
pageSize property of the control to the required page size as appropriate. As our
data source contains a few records only, let us set the PageSize property to 4. The
following code snippet illustrates this:

<asp:Gridview ID="GridViewl" runat="server" AllowPaging ="true"
PageSize = "4" RowStyle-BackColor = "CadetBlue"
AutoGenerateColumns= "False" DataKeyNames="EmployeeID"
DataSourceID="SglDataSourcel">

Once this is set, execute the page to get a display, that is identical to what is shown in
the following screenshot:

EmploveeID EmploveeName JoiningDate DeparimentID) Salary

Note that you can navigate to the other pages simply by clicking the page index
displayed at the bottom of the GridView control, as shown above.

You can also apply PagerTemplate to customize the paging behaviour. Here is how
you specify the PagerTemplate in the GridView control's source:.

<PagerTemplate>
Number of Pages: <%=GridViewl.PageCount %>
<asp:button ID="btnFirst" runat = "server" CommandName="Page"

CommandArgument="First" Text="<<"/>

<asp:button/>

<asp:button ID="btnPrev" runat = "server" CommandName="Page"
CommandArgument="Prev" Text="<"/>

<asp:button/>

<asp:button ID="btnNext" runat = "server" CommandName="Page"
CommandArgument="Next" Text=">"/>

<asp:button/>

<asp:button ID="btnLast" runat = "server" CommandName="Page"
CommandArgument="Last" Text=">>"/>

<asp:button/>

</PagerTemplate>

[152]

Chapter 6

Note that you have four buttons in the PagerTemplate of the Gridview control's
source code that corresponds to the First, Previous, Next and the Last Page of
display. The following screenshot shows the output on execution:

= Working with Grid View - Windows Internet Explorer

ol S - itp://localhost:49210/GridView/GridView.aspx

Google |G~ E Go{p@ B~ | % Bookmarks~
Te b [EWorking with Grid View I]
EmployeelD EmployeeName JoiningDate DepartmentID Salary
Douglas 08-09-2007 1 Rs. 75,000.00
Rama 01-09-2007 3 Rs. 18,500.00
Number of Pages: 2 E E E E

Implementing a Hierarchical GridView

The following section presents a Hierarchical GridView control, which is just a
customized format of a GridView control. We'll just manipulate the markup code in
the HTML source to make it hierarchical. This would display the employees grouped
by each of the departments in the department table. Following is the output on
execution of the sample application.

,f Untitled Page - Windows Internet Explorer

ohssRll < http://localhost:49295/PacktPub/Ch

w o I@ Untitled Page

Department Name

[153]

Displaying Views of Data (Part I)

Note from the previous figure that the GridView is in the collapsed mode, that

is, the department names are displayed with a plus sign preceding each of them.
Once you click on the plus (+) signs of any of the department names, the employees
belonging to the departments are displayed as shown in the following figure:

/2 Untitled Page - Windows Internet Explorer

ol Rl © htp://localhost49295/PackiPub/Chapter20VL/Hierarg

o dhe [@ Untitled Page

Department Name
ﬂ—

Employee ID Employee Name Salary

Employee ID Employee Name Salary

Let us now understand how we can implement this application. But, before we go
into how this can be done, we just need to understand how a GridView control is
rendered. The GridView control displays the data in rows and columns format.
Therefore this control is rendered into a table tag. The headings would be rendered
into in the first row which is a <tr> tag, and its heading names in a <th> tag. The
actual row data is rendered in the successive <tr> tags with all the column data
rendered into a <td> tag.

[154]

Chapter 6

Following is a sample Gridview markup code at design time, and its corresponding
HTML code after rendering in the browser.

<asp:Gridview ID="GridViewl" runat="server" AutoGenerateColumns=
"False" DataKeyNames="EmployeeID" DataSourcelID="SglDataSourcel"
HeaderStyle-Font-Names="Verdana"
HeaderStyle-Font-Size="11lpt"
RowStyle-ForeColor ="Black"
RowStyle-BackColor = "DeepSkyBlue"
RowStyle-Font-Names="Verdana"
RowStyle-Font-Size="10pt">
<Columns>
<asp:TemplateField Visible="False">
<ItemTemplate>
<asp:Label ID="1lblDept" runat="server" Text='<%#
Eval ("DepartmentID") %>'/>
</ItemTemplates>
</asp:TemplateFields>
<asp:TemplateField Visible="True" ControlStyle-ForeColor="Black"
HeaderStyle-BackColor = "DarkOrange" HeaderText="EmployeeID">
<ItemTemplate>
<asp:CheckBox ID="chkSelect" runat="server" Text='<%#
Eval ("EmployeeID") %>'/>
</ItemTemplates>
</asp:TemplateField>
<asp:TemplateField ControlStyle-ForeColor="Black" HeaderStyle-
BackColor = "DarkOrange" HeaderText="Department"s>
<ItemTemplate>
<asp:DropDownList ID="drpDept" ForeColor="Black"
BackColor="Khaki" runat="server"s
</asp:DropDownList >
</ItemTemplates>
</asp:TemplateField>
<asp:BoundField DataField="EmployeeName" HeaderStyle-BackColor =
"DarkOrange" HeaderText="EmployeeName"/>
<asp:BoundField DataField="Salary" HeaderStyle-BackColor =
"DarkOrange" HeaderText="Salary" DataFormatString="{0:C}" />
</Columns>
</asp:Gridviews>

[155]

Displaying Views of Data (Part I)

The HTML code after the GridView is rendered in the web browser is shown
as follows:

<table cellspacing="0" rules="all" border="1" id="GridViewl"
style="border-collapse:collapse; ">
<tr style="font-family:Verdana;font-size:1lpt;">
<th scope="col" style="background-color:DarkOrange; ">

EmployeeID

</th>

<th scope="col" style="background-color:DarkOrange; ">
Department

</th>

<th scope="col" style="background-color:DarkOrange; ">
EmployeeName

</th>

<th scope="col" style="background-color:DarkOrange; ">
Salary

</th>

</tr>

<tr style="color:Black;background-color:DeepSkyBlue; font-
family:Verdana; font-size:10pt;">
<td>
<input id=
"Gridviewl_ctl02_chkSelect" type="checkbox"
name="GridViewl$ctl02%chkSelect" /><label
for="Gridviewl ctl02 chkSelect">3</label>
</td>
<td>
<select name="GridViewl$ctl02$drpDept"
id="Gridviewl ctl02 drpDept" style="color:Black;background-
color:Khaki; ">
<option selected="selected" value="1">IT</optionx>
<option value="2">MKTG</optionx>
<option value="3">HR</options>
<option value="4">FINANCE</option>
<option value="5">PERSONNEL</options>
</select>
</td>
<td>Joydip
</td>
<td>Rs. 20,000.00
</td>
</tr>

[156]

Chapter 6

<tr style="color:Black;background-color:DeepSkyBlue; font-
family:Verdana; font-size:10pt;">
<td>
<input id=
"GridvViewl ctl03 chkSelect" type="checkbox"
name="GridViewlS$ctl033$chkSelect" /><label
for="Gridviewl ctl03 chkSelect">4</label>
</td>
<td>
<select name="GridvViewl$ctl03S$drpDept"
id="Gridviewl ctl03 drpDept" style="color:Black;background-
color:Khaki; ">
<option selected="selected" value="1">IT</option>
<option value="2">MKTG</options>
<option value="3">HR</option>
<option value="4">FINANCE</option>
<option value="5">PERSONNEL</option>
</select>
</td>
<td>Douglas
</td>
<td>Rs. 75,000.00
</td>
</tr>
</table>

Observe code example, you can find that the data bound to the GridView control at
runtime is rendered into the HTML code in the form of <tables> tag. So, in essence,
we can say that the Gridview tag is converted to <table> tag; <ItemTemplate> and
<asp:BoundColumn> tags in the <asp:TemplateField> tag are converted into <th>
and <td> tags respectively. The <th> tag is for the first row which holds the header
name for each of the column presented. The <td> tags are generated for data in
each row. The <tr> tags are generated for each row bound to the Gridview

control dynamically.

Since we now understand how a GridView control is rendered, we'll look into

the customization of this control to get the hierarchical behavior. This behavior is
achieved by playing around with its rendering mechanism. Let us look at the HTML
markup of the customized Gridview control which can hold hierarchical data. Here
is the HTML markup of hierarchical Gridview control.

<asp:Gridview ID="gvDepartment" runat="server"
AutoGenerateColumns="False" OnRowDataBound=
"gvDepartmentRowDataBound"
HeaderStyle-Font-Names="Verdana" HeaderStyle-Font-Size="11pt"

[157]

Displaying Views of Data (Part I)

RowStyle-ForeColor="Black"
RowStyle-BackColor="DeepSkyBlue" RowStyle-Font-Names="Verdana"
RowStyle-Font-Size="10pt">
<Columns>
<asp:TemplateField>
<ItemTemplates>
<asp:ImageButton ImageUrl="~/Chapter V/Images/Plus.gif"
CommandName="Expand" ID="btnExpandEmployee"
runat="server"></asp:ImageButton>
</ItemTemplates>
</asp:TemplateField>
<asp:TemplateField HeaderText="Department Name">
<ItemTemplates>
<asp:Label ID="1lblDeptID" runat="server" Text='<%#
Convert.ToString (DataBinder.Eval
(Container.Dataltem, "DeptName")) %>'>
</asp:Label>
<asp:TextBox ID="txtDeptID" Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "DeptCode")) %>'
runat="server" Visible="false"></asp:TextBox>
<asp:Table ID="TabEmp" runat="server"
HorizontalAlign="Center" Style="display: none;">
<asp:TableRow>
<asp:TableCell Width="5"> </asp:TableCell>
<asp:TableCell ColumnSpan="3">
<asp:Gridview ID="gvEmployee" runat="server"
AutoGenerateColumns="false" HeaderStyle-Font-
Names="Verdana" HeaderStyle-Font-Size="11lpt"
RowStyle-ForeColor="Black" RowStyle-
BackColor="DeepSkyBlue"
RowStyle-Font-Names="Verdana" RowStyle-Font-
Size="10pt">
<Columns>
<asp:TemplateField HeaderText="Employee ID">
<ItemTemplates>
<asp:Label ID="lblEmployeeID" runat="server"
Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "EmpCode"))
%$>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Employee Name">
<ItemTemplates>

[158]

Chapter 6

<asp:Label ID="lblEmployeeName" runat="server"
Text='<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "EmpName"))
> >
</asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Salary">
<ItemTemplates>
<asp:Label ID="lblSalary" runat="server"
Text="'<%# Convert.ToString
(DataBinder.Eval (Container.Dataltem, "Salary"))
> >
</asp:Label>
</ItemTemplates>
</asp:TemplateField>
</Columns>
</asp:Gridview>
</asp:TableCell>
</asp:TableRow>
</asp:Table>
</ItemTemplates>
</asp:TemplateField>
</Columns>
</asp:Gridview>

If you observe in this markup, we are trying to display all the Department
information in the first Gridview control, and under each department, we would
display its employees in another Gridview control. The first <asp:TemplateField>
of the Gridview gvDepartment holds an image indicating it is collapsed or not,

in the form of plus (+) and minus (—) symbol. The minus symbol indicates, the
employees GridView is seen on the browser, and plus symbol for a row indicates
that it is collapsed and cannot be seen. The second <asp:TemplateFields> holds
the Department Name field. It also holds a textbox (which is hidden) that holds a
Department ID, which is used to query the corresponding employees under it in
the code behind. As soon as the Department Name template field is done, we are not
closing the <ItemTemplate> and <asp:TemplateFields> tag. We are just closing

it with a </td></tr> and opening a new <tr> and <td> tag, which holds a <asp:
Table> tag. At runtime, when this control is rendered, the first row after the
heading is rendered as a <tr> and the data for DepartmentName is rendered into

a <td> tag. Since the closing </ItemTemplate> tag is placed at the end of the
internal Gridview for employee data, its closing </td> would be generated after

[159]

Displaying Views of Data (Part I)

the employee Gridview is rendered. So, what we've done by adding the manual
closing </td> tag at design time is that we are forcing the completion of a <td> for
the department name and opening a new <tr> under it to hold the employee data in
a new GridView control. The Gridview for the employee data is placed in a server
side <asp:Table> tag so that this is accessible in the server side to bind data to it
dynamically, and to also hide and show the table on a Javascript event when the
plus (+) or minus (—) image is clicked. We are generating the event from the code
behind in the RowDataBound event for every row dynamically.

Let us now look at the server code on how we are binding the hierarchical data. If
you observe the attribute onRowDataBound in the GridView's markup, we have a
method being called gvDepartmentRowDataBound. This event is fired for every row
when the Gridview gvDepartment is bound. To be specific, this event is fired when
gvDepartment .DataBind () method is invoked. The following is the code snippet for
binding department information, which is called in the page load event.

private void BindData ()
DataSet dsDepartment = new DataSet () ;
dsDepartment = dataManager.GetDepartmentList () ;
gvDepartment .DataSource = dsDepartment;
gvDepartment .DataBind () ;

}

Now when gvDepartment .DataBind () method is invoked,
gvDepartmentRowDataBound event is fired. This method is fired for each department
record that is bound to the Gridview-gvDepartment. In this method, firstly, we
render the JavaScript onclick for the control btnExpandEmployee, which represents
the plus (+) or minus (—) for hiding or showing the employee Gridview. Then,

we pass the DeptCode required to retrieve the employees under this department
and bind it to the internal GridView control-gvEmployee. Since this Gridview,
gvEmployee is inside the <asp:Tables> tag, it is not recognized in the design time
in your code behind file. So we are trying to find the control in this method, and
then fetch data bind to this control. This happens for every department row bound
to the gvDepartment control. So, all the hierarchical data is bound at once on the
server side and the Gridview, gvDepartment is displayed on the browser by hiding
the employee information for every department. But remember, the employee
information for every department is already bound with the internal Gridview-
gvEmployee. This is not displayed initially and is hidden. As we've generated the
JavaScript event for every department row, just by clicking the image plus (+), the
employee Gridview is displayed. The gavascript function fnChangeImage () is
rendered for every department row which accepts the parameters the image client
ID, and the table client ID of the corresponding Employee GridView.

[160]

Chapter 6

protected void gvDepartmentRowDataBound (object sender,
System.Web.UI.WebControls.GridViewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)

{

((ImageButton)e.Row.FindControl ("btnExpandEmployee"))

.Attributes["onClick"] = "return fnChangeImage('" +

((ImageButton)e.Row.FindControl ("btnExpandEmployee"))
.ClientID + "','" + ((Table)e.Row.

FindControl ("TabEmp")) .ClientID + "')";

string strDeptID =

((TextBox)e.Row.FindControl ("txtDeptID")) .Text;
Gridview gvEmp = (GridView)e.Row.

Cells [gvDepartment.Columns.Count -

1] .FindControl ("gvEmployee") ;

ArrayList employeelist =
dataManager.GetEmployeeByDept (strDeptID) ;
if (employeeList != null)

{

gvEmp.DataSource = employeelList;
gvEmp.DataBind() ;
if (employeeList.Count < 1)

{

((ImageButton)e.Row.Cells [0] .FindControl
("btnExpandEmployee")) .Visible = false;

}
The gavascript function £nChangeImage code snippet is as follows:

<script language="javascript" type="text/javascript"s>
function fnChangeImage (ClientId, TableId)

{

if (document.getElementById(ClientId) .getAttribute
("src") .indexOf ("Plus.gif") !=-1)

document .getElementById (ClientId) .setAttribute
("src","Images/Minus.gif") ;

document .getElementById (ClientId) .setAttribute
("src","Images/Plus.gif") ;

}

var aa = document.getElementById(TableId) .style;

[161]

Displaying Views of Data (Part I)

if (aa.display=="none") aa.display="block";
else aa.display="none";
return false;

}

</script>

The Javascript function shown in the code example above gets the attribute for
the image ID and employee table ID to hide or show it. We are done! We have
implemented a hierarchical GridView control.

Sorting Data Using the GridView Control

You can also enable sorting in the GridView control with minimal effort. When you
enable sorting in the GridView control, the field headers in the GridView control
will show a link; when you click on this link, the ASP.NET page will be posted back.
After a postback, the GridView control will be populated with data from its data
source control and the appropriate sort command will be invoked to sort the data
being displayed. When you click on the field header links, the data for that column
will be sorted once again, but, this time in the reverse order.

Note that when you click on the field header links the first time, the data
o in that column will be sorted in the ascending order.

To enable sorting for the Gridview control, simply set the AllowSorting property of
the control to true as depicted in the following code snippet:

<asp:GridvView ID="GridViewl" runat="server" AllowSorting="true"
AllowPaging ="true" PageSize = "4" RowStyle-BackColor =
"CadetBlue" AutoGenerateColumns= "False" DataKeyNames="EmployeeID"
DataSourceID="SglDataSourcel">

Now when you execute the page, you get an output similar to the following.

EmploveelD EmploveeName JoiningDate DepartmentID) Salary

As you can see from the above figure, both paging and sorting for our GridView
control is enabled.

[162]

Chapter 6

You can sort any of the columns simply by clicking the column header link.
The following screenshot illustrates how the output looks once you click on the
EmployeeName column in the GridView control.

Note how the employee names are sorted once you click on the EmployeeName
column in the GridView control.

You can customize the sorting functionality of the GridView control. You can also
specify the columns that you don't want to be sortable, that is, disable sorting at the
column level, even if you enable sorting at the control level. To do this, you need to
go to the design view of the GridView control and then click on the EditColumns
option from the control's Smart Tag option. Then you need to specify the columns
that you do not want to be sorted on.

You have two events associated with the sorting functionality of the GridView
control, namely, Sorting and Sorted.

While the former is invoked prior to sorting of data within the control, the latter is
fired after the data in the control has been sorted. You can override the respective
event handlers and write your custom logic there.

Inserting, Updating and Deleting Data Using
the GridView Control

The GridView control can also be used to insert, update and delete data. Moreover,
we need not write even a single line of code for these operations. Let us understand
how we can use the GridView control to insert data.

[163]

Displaying Views of Data (Part I)

To insert, update or delete data using the GridView control we need to first
configure the data source. The steps for configuring the data source are simple.

Go to the design view of your web page and drag-and-drop the SqlDataSource
control. Configure the data source by following the same steps that we discussed

in Chapter 1 of the book. Now, after the appropriate database and the connection
string are specified, select the Employee table from the list of the tables displayed in
the dropdown and select the fields that you want to be displayed. Now we need to
set up the SqlDataSource to support the insert, update, and delete operations. For
this, click the Advanced button which will open up the Advanced SQL Generation
Options dialog box. Refer to the following snapshot that illustrates this.

Configure Data Source - SglDataSourcel liléj
- Configure the Select Statement
4 = '__-I

How would you like to retrieve data from your database?

Specify a custom SQL statement or stered procedure

@ Specify columns from a table or view

Mame:
|Emp|0yee hd
Columns:
* Return only unique rows
V| EmployeelD ‘ WHERE...
| EmployeeName
V| JoiningDate ‘ ORDER BY ‘
/| Salary
g DepartmentiD | | Adenced. |
SELECT statement:
SELECT [EmployeelD], [EmployeeMame], [JoiningDate], [Salary], [DepartmentlD] FROM [Employee] I

< Previous | l Mext > Cancel

The next screenshot shows a dialog box that opens up, displays two check boxes,

that is, Generate INSERT, UPDATE, and DELETE statements and Use optimistic
concurrency. Fine, but what is optimistic currency? optimistic concurrency is a
database concurrency handling technique that handles concurrency without the need
to lock the particular database in use. In this methodology, concurrency is controlled
using logic in the code such that the database need not be locked. The record being
updated by a user is not accessible to another user for an update operation unless the
updated operation is done. In this regard, MSDN states, "When a user wants to update

[164]

Chapter 6

a row, the application must determine whether another user has changed the row
since it was read. Optimistic concurrency is generally used in environments with

a low contention for data. This improves performance as no locking of records is
required, and locking of records requires additional server resources. Also, in order
to maintain record locks, a persistent connection to the database server is required.
Since, this is not the case in an optimistic concurrency model; connections to the
server are free to serve a larger number of clients in less time."

When you click on the first checkbox, as shown in the following figure, INSERT,
UPDATE and DELETE statements are generated automatically.

Advanced SQL Generation Options N [[

b
Additional INSERT, UPDATE, and DELETE statements can be generated to update the data

SOUrce,

/| Generate INSERT, UPDATE, and DELETE statements

Generates INSERT, UPDATE, and DELETE staternents based on your SELECT
staternent, You must have all primary key fields selected for this option to be
enabled.

Use optimistic concurrency

Modifies UPDATE and DELETE staternents to detect whether the database has
changed since the record was loaded into the DataSet. This helps prevent
cencurrency cenflicts,

(0]4] | Cancel

You need to check the second check box if you require optimistic concurrency. Once
this is checked, the control will allow updates and deletes to data, if the data has

not changed since the data was last accessed. Let us select the first check box and
then click on the OK button. The declarative mark up that is generated now looks as
shown in the following code snippet:

<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="Data Source=.;Initial Catalog=Test;User ID=sa"
DeleteCommand="DELETE FROM [Employee] WHERE [EmployeeID] =
@EmployeeID" InsertCommand="INSERT INTO [Employee] ([EmployeeName],
[JoiningDate], [Salaryl], [DepartmentID]) VALUES (@EmployeeName,
@JoiningDate, @Salary, @DepartmentID)"
ProviderName="System.Data.SglClient" SelectCommand="SELECT
[EmployeeID], [EmployeeName], [JoiningDatel], [Salary],
[DepartmentID] FROM [Employeel™"

[165]

Displaying Views of Data (Part I)

UpdateCommand="UPDATE [Employee] SET [EmployeeName] =
@EmployeeName, [JoiningDate] = @JoiningDate, [Salary] = @Salary,
[DepartmentID] = @DepartmentID WHERE [EmployeeID] = @EmployeeID">
<DeleteParameters>
<asp:Parameter Name="EmployeeID" Type="Int32" />
</DeleteParameters>
<UpdateParameters>
<asp:Parameter Name="EmployeeName" Type="String" />
<asp:Parameter Name="JoiningDate" Type="DateTime" />
<asp:Parameter Name="Salary" Type="Decimal" />
<asp:Parameter Name="DepartmentID" Type="Int32" />
<asp:Parameter Name="EmployeeID" Type="Int32" />
</UpdateParameters>
<InsertParameters>
<asp:Parameter Name="EmployeeName" Type="String" />
<asp:Parameter Name="JoiningDate" Type="DateTime" />
<asp:Parameter Name="Salary" Type="Decimal" />
<asp:Parameter Name="DepartmentID" Type="Int32" />
</InsertParameterss>
</asp:SglDataSource>

Once you execute the application, the output is similar to what is shown in the
following screenshot:

/5 Untitled Page - Windows Internet Explorer

ol Bl © http://localhost:£9210/ GridView/CRUDWithGridView.aspx

Google |G~ [~] Gu{.@ B~ | 7% Bookmarksw & 37 blocked | "% Check » % Autolink v = Zutofill [Sendtow
v ke /€& Untitled Page

EmployeelD EmployeeName JoiningDate Salary DepartmentID

Edit Delete 3 Joydip 08-09-2007 00:00:00 2000.0000 1
Edit Delete 4 Douglas 08-09-2007 00:00:00 75000.0000 1
Edit Delete 5 Jini 08-09-2007 00:00:00 15500.0000 2
Edit Delete 6 Rama 01-09-2007 00:00:00 18500.0000 3
Edit Delete 7 Amal 10-12-2006 00:00:00 22000.0000 4
Edit Delete 8 Piku 01-09-2007 00:00:00 9000.0000 5
Edit Delete 9 Indronil 08-09-2007 00:00:00 19000.0000 2

Bapila 01-02-2005 32500 4

Insert Data I}

[166]

Chapter 6

Note the footer row in the GridView control shown in the previous screenshot.

Also note that data for a new record is being entered. After you have finished
entering data for a new record, click on the InsertData button to add a new record to
the Employee table.

£ Untitied Page Windows Intemet Faploees

.S e O/GridVieny CRUDA i » =| 45| x| Live Search 1Bl
Coogle (G- v Gt B = | € Bockmariae [37 blocked | M Check = % Autelink = I e Send tee) Settings=
W | 8 Unbtled Page fi = B = dwov Page~ () Teok =
EmplovesID EmploveeName JoiningDate Salary DeparrmentID
] Jovdip 08-09.2007 00-00:00 20000000 1
Douglas 08-09-2007 00:00:00 T5000.0000 1
Jum 08-09-2007 00:00:00 15500.0000 2
Fama 01-09-2007 00:00:00 18500.0000 :
Amal 10-12-2006 000000 22000,0000 4
Piku 01-09-2007 00:00:00 90000000 5
Indrosi 08-09.2007 00:00:00 19000.0000 2
Bapila Ln’ 02-01-2005 000000 325000000 4
Insert Data
Dene ¥ & Internet | Protected Mode: On £100% =

Editing and deleting data with the GridView control is very simple. You simply
have to check the EnableEditing or the EnableDeleting checkboxes, as shown in the
following figure:

File Edit View Website Build Debug Format Layout Tools Window Community Help

BH-E-SHdP| % a9 b Debug - NET - S RAERRE D
- B I U A HKHTMLLO Transition: + | & | 5 _

CRUDWithGridView.aspx™ + x || Solution Explorer - CAProjects\GridView\,
N NS e ==

%qiDataSource - SqiDatsSourcel =] Solution GridView (L project)

=B CAPciects\GridView\

i EmployeeID EmployeeName JoiningDate Salary DepartmentID h Data

Edit0 abe 01-08-200700:00.00 0 0 Aot Eoumsl [ufeGridicmspe

b 1 abe 01-08-2007 00:00:00 0.1 1 Cheose Data Source: |SqlDataSourcel [+] |v|e;~:spx

1Edit2 abe 01-08-2007 00:00:00 02 2 Configure Data Source... >.Config

b 3 abe 01-08-2007 00:00:00 0.3 3 Refresh Schema

{Edit4 abe 01-08-2007 00:00:00 04 4 Edit Columns.

Databound Databound Databound Databound Add New Column..

i Label
FButton 7] Enable Paging

[] Enable Sorting
nable Editing

[¥ Enable editing of a row on the GridView
[7] Enable Selection

Edit Templates

[167]

Displaying Views of Data (Part I)

Once you select these checkboxes, a corresponding link is displayed with the
respective captions that indicate the action to be performed. When you click on the
Edit button, the fields become editable. Moreover, you have the Update and Cancel
links displayed in place of the Edit link in the GridView control, as displayed in the
following screenshot:

Refer to the previous screenshot. Now you can make your changes and click on the
Update button to update the data or Cancel to cancel the changes made. Similarly,
you can enable the EnableDeleting property so that you can make the GridView
support deletion of data. Note that you can enable both the EnableEditing and
EnableDeleting properties so as to make the GridView both editable and also make
it support deletion of data. The best part here is that you can do all this without
writing even a single line of code! The following screenshot illustrates the GridView
control in design view with both Editing and Deleting enabled.

File Edit View Website Build Debug Format Layout Tools Window Community Help
A-EH-SHd %2R 9 b Debug - NET - | - REFERBEO-
- - B I UA S XHTML1.0 Transition: - | &, | &1 _
CRUDWithGridView.aspx.cs ' CRUDWithGridView.aspx* ~ x |[So

" qIDataSource - SqiDataSourcel

DEE EmployeelD EmployeeName JoiningDate Salary DepartmentID R GridVicw Tasks
Edit Delete 0 abc 01-08-2007 00:00:00 0 0 AuvcER
Edit Delete 1 abc 01-08-2007 00-00-00 0.1 1 Choose Data Source: | SqiDataSourcel E
Edit Delete 2 abc 01-08-2007 00:00:00 0.2 2 Configure Data Source...
Edit Delete 3 abc 01-08-2007 00:00:00 0.3 3 Refresh Schema
Edit Delete 4 abc 01-08-2007 00:00:00 04 4 Edit Columns...
Databound Databound Databound Databound Add New Column...

Enable Paging
Enable Sorting

| Enable Editing
Enable Deleting

Enable Selection

Edit Templates

[168]

Chapter 6

Exporting the GridView Data

In this section we will explore how we can export the data displayed in a GridView
control to MS Excel and MS Word.

In order to export data from a GridView control, ensure that the AllowSorting and
AllowPaging properties are turned off. I will add two buttons in the user interface
that correspond to the export format types, that is, I will show you how to export
data to MS Excel and MS Word. Refer to the following screenshot which illustrates
the application in execution with two buttons that can be used to export the data in
the GridView control to MS Excel and MS Word respectively.

Note the two buttons with their respective captions beneath the GridView control
populated with data.

/= Working with Grid View - Windows Internet Explorer

e Bl = http://localhost49210/GridView/ GridView.aspx

GDOglE |C|v il Goib@ E - | 2 Bookmarks= E]d&hiocked "'.? Check =
v Igwqming with Grid View]_]

Export to Excel Export to Word
70y

[169]

Displaying Views of Data (Part I)

Now once you click on the Export to Excel button, a window pops up, as shown in
the following screenshot:

/= Working with Grid View - Windows Intemnet Explorer

- S & http://localhost:49210/GridView/ GridView.aspx
Google Gl+ :l Go{b@ - | 7 Bookmarks~ 5 48 blocked

W [t':;a Warking with Grid View]]

% Check ~ 3 Autolink = = AutoFill

File Download

Do you want to open or save this file?

@ MName: Employee.xls
Type: Microsoft Excel Worksheet, 2.57KB

From: localhost

[OpenL\gJ[Save]i Cancel]

Export to Excel Export to Word

ham your computer. f you do not trust the source, do net open or

|§ While files from the Intemet can be useful, some files can potentially
save this file. What's the risk?

Once you click on the Open button, the data from the GridView control is exported
to Excel and displayed in an Excel Worksheet, as shown in the following screenshot:

Ed Microsoft Excel - Employee[1]
File Edit View Inset Format Tools Data Window Help
DeEdst SV &R Axz-jilmen 7
Al - 3
A B | C | D | E| F | & |
1
2 Empl D|Empl ame | JoiningDate entlD | Sal
3
4
5
6
I
8
9
10
11
12
13

[170]

Chapter 6

Let us now understand how we achieved this. In the click event of these buttons,
you need to write the necessary code to export the data. Following is the code for the

Click events of these buttons:

protected void btnExportGridViewToExcel Click (object sender,
EventArgs e)

ExportToExcel () ;
1

protected void btnExportGridvViewToWord Click(
object sender, EventArgs e)

ExportToWord () ;

}

Note that we have invoked the ExportToExcel () and the ExportToWord () methods
respectively in the Click events of these buttons. Following is the source code for

these two methods:

private void ExportToExcel ()
{
Response.ClearContent () ;
Response.AddHeader ("content-disposition", "attachment;
filename=Employee.xls") ;
Response.ContentType = "application/ms-excel";
StringWriter stringWriter = new StringWriter() ;

HtmlTextWriter htmlTextWriter = new HtmlTextWriter (stringWriter) ;

HtmlForm htmlForm = new HtmlForm() ;
Gridviewl.Parent.Controls.Add (htmlForm) ;
htmlForm.Attributes["runat"] = "server";
htmlForm.Controls.Add (GridvViewl) ;
htmlForm.RenderControl (htmlTextWriter) ;
Response.Write (stringWriter.ToString()) ;
Response.End() ;

}

private void ExportToWord ()

{
Response.ClearContent () ;
Response.AddHeader ("content-disposition", "attachment;

filename=Employee.doc") ;

Response.ContentType = "application/ms-word";
StringWriter stringWriter = new StringWriter() ;

HtmlTextWriter htmlTextWriter = new HtmlTextWriter (stringWriter) ;

HtmlForm htmlForm = new HtmlForm() ;

[171]

Displaying Views of Data (Part I)

GridViewl.Parent.Controls.Add (htmlForm) ;
htmlForm.Attributes ["runat"] = "server";
htmlForm.Controls.Add (Gridviewl) ;
htmlForm.RenderControl (htmlTextWriter) ;
Response.Write (stringWriter.ToString()) ;
Response.End() ;

}

Refer to the code snippets above. The Response.ClearContent () method is
used to erase the content in the Response object. The AddHeader () method of the
Response object is used to add a header and its corresponding value or the content
to the response being rendered. The Response . AddHeader () method accepts two
parameters, that is, the name of the header of the response being rendered, and, its
corresponding value. While the first argument is used to specify the name of the
header to be added to the response, the second is used to specify the corresponding
value of the header, or, its content. Note that we have created an Html1Form object to
store the Gridview object inside it.
B Adding Bound Fields to a GridView at Runtime 7
To add a bound field to a GridView control at runtime, use the
following code.

- BoundField boundField = new BoundField() ;

C& boundField.DataField = "JoiningDate";
boundField.HeaderText = "Joining Date";
boundField.DataFormatString = "{0:d}";

Gridviewl.Columns.Add (boundField) ;

Formatting the GridView Control

You can format the GridView rows as per your requirements. You can use the
AlternatingRowStyle property by specifying the style for each alternate row. Here
is how you can specify this property at design time in the . aspx file.

AlternatingRowStyle-BackColor ="AliceBlue"

[172]

Chapter 6

Once you execute the application, the GridView displays the data from the Employee
table with its alternate rows in AliceBlue. Following is a screenshot of the output:

> Working with Grid View - Windows Internet Explorer

£ hitp://localhost:49210/ GridView/GridView.aspx

Google G :lGD{ v B - ‘ ¥ Bookmarksw
e IgWorkmgwrth Grid View l l

01-09-2007 00:00:003

01-09-2007 00:00:00 5 9000.0000

27 Bapila 02-01-2005 00:00:00 4
[Export to Excel] [Export to Word]

You can also specify the same at runtime using the onrRowCreated event of the

GridView control. Here is how you specify the event handler for this event in the
.aspx file.

OnRowCreated="OnRowCreated"
The source code for the event handler is shown as follows:

protected void OnRowCreated(object sender, GridViewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)
{
if (((e.Row.RowIndex + 1) % 3) == 0)

{
e.Row.BackColor = System.Drawing.Color.AliceBlue;

}

[173]

Displaying Views of Data (Part I)

Refer to the code snippet shown. Note how the background color for every third row
of the GridView control has been set using the BackColor property of the Row object.
The following is the output on execution.

{= Working with Grid View - Windows Internet Explorer

£ http:/flocalhost:49210/GridView/GridView.aspx

GvDOglE le :lGo+ (Fied m | ©f Bookmarksw E]d&biocked

Wk [& Working with Grid View] l

% Che

01-09-2007 00:00:00 5 2000.0000

Export to Excel Export to Word

Let us now understand how we can set attributes to the rows of the GridView
control using client side scripts, such that it highlights the row it is pointed to,
with a specified color. Here is the code that illustrates how you can highlight and
unhighlight the rows using the onRowCreated event when the mouse pointer is
being moved across the rows of the GridView control.

protected void OnRowCreated(object sender, GridViewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)
{
e.Row.Attributes.Add ("onmouseover",
"this.style.backgroundColor="'AliceBlue'") ;
e.Row.Attributes.Add ("onmouseout",
"this.style.backgroundColor="'CadetBlue'") ;

[174]

Chapter 6

The following screenshot shows the output on execution:

/= Working with Grid View - Windows Internet Explorer

& | http://localhost49210/GridView/GridView.aspx

Google [Gl~ :|Ga+p@ D ~ | ¥% Bookmarksv 48 blocked

Wk [& Working with Grid View

pr e

Export to Excel Export to Word

The background color of the row of the GridView control, on which the mouse
pointer hovers, is set to AliceBlue color.

You can also use client side scripting to retrieve the row index in the GridView

control that has been clicked. You only need to add the script to the Attributes
collection of the Row object of the GridviewEventArgs instance, as shown in the
following code snippet:

protected void OnRowCreated(object sender, GridViewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)

{

int rowIndex = e.Row.DataltemIndex;

rowIndex += 1;

e.Row.Attributes.Add ("onClick", "alert ('You have clicked row :
" + rowIndex.ToString()+ "')");

}

Execute the application and click on any row of the GridView control to see an alert
message box displayed. The output is similar to the following.

[175]

Displaying Views of Data (Part I)

{= Working with Grid View - Windows Internet Explorer

ol S - hitp.//localhost:49210/GridView/ GridView.aspx
Google (G~ :lGo{ v By | ©% Bookmarksw (549 blocked | %% Check

W [ﬁWorkmgmthGnd‘uﬁew l l

EmployeelD EmployeeName JoiningDate DepartmentID

Douglis 08-09-2007 1

Rama 01-09-2007 | Windows Internet Explorer

8 Pikcu 01-09-2007

27 Bapila 02-01-2005 -
[Export to Excel H Export to Word]

Salary

Rs. 75,000.00

You can also retrieve the value of a specific cell using client side scripting. Following
is the output:

/= Working with Grid View - Windows Internet Explorer

ol £ | http://localhost:49210/GridView/ GridView.aspx
Google Cl+ :l Go 1)@ B~ | 7 Bookmarksw (549 blocked | "% Check » ' Auto

ﬁ‘i[& Working with Grid View]_‘

EmployeelD EmployeeName JoiningDate DepartmentiD
——

Douglas 08-09-2007 1

Salary

Rs. 75,000.00

51 Rama

8 Piku 01-09-2007

__ l\ The Selected Employee is: Douglas
27 Bapila 02-01-2005 R

[Export to Excel] [Export to Word

[176]

Chapter 6

I will now show you how this can be accomplished. The following is the code
snippet that illustrates how you can use the onRowDataBound event handler to
retrieve the name of the employee that corresponds to the row of the GridView
control that is clicked by the user:

protected void OnRowDataBound (object sender, GridViewRowEventArgs e)

{

if (null != e.Row.Cells)

{
e.Row.Attributes.Add ("onClick", "alert('The Selected
Employee is: " + e.Row.Cells([1l].Text + "')");

}

The GridView control that we have used so far does not have a proper Font applied
to it. Let us format the display by specifying Font styles and sizes to the GridView
control's header and rows. For this, you need to specify the following at the
GridView control level in the . aspx file.

HeaderStyle-BackColor="Cyan"
HeaderStyle-ForeColor="Black"
HeaderStyle-Font-Names="Verdana"
HeaderStyle-Font-Size="10pt"
RowStyle-BackColor = "CadetBlue"
RowStyle-Font-Names="Verdana"
RowStyle-Font-Size=»10pt>»

Following is the screenshot of the output on execution of the application.

/= Working with Grid View - Windows Internet Explorer

BBl © http://localhost:49210/ GridView/GridView.aspx

Google (G~ B :lGo+b@ B~ | Y% Bookmarksw 5048 blocked | % Check +
oo [@Working with Grid View l_l

JoiningDate DepartmentID Salary

75000.0000
18500.0000
9000.0000

02-01-2005 00:00:00 4 32500.0000
[Export to Excel][Export to Word l

[177]

Displaying Views of Data (Part I)

Refer to the screenshot shown previously. The output is much better with font style
and size applied to the GridView header and also the rows of the GridView control.

If you look at the GridView displayed in the previous screenshot, you'll find that
the JoiningDate and the Salary columns are not properly formatted. The output
still looks awkward, doesn't it? Following, is how you can apply proper formatting
to these columns using the DataFormatString property of the GridView control at
design time in your . aspx file.

<asp:BoundField DataField="JoiningDate" HeaderStyle-BackColor =
"Aqua" HeaderText="JoiningDate" SortExpression="JoiningDate"
HtmlEncode="False" DataFormatString="{0:4}"/>

<asp:BoundField DataField="Salary" HeaderStyle-BackColor = "Aqua"
HeaderText="Salary" SortExpression="Salary"
HtmlEncode="False" DataFormatString="{0:C}"/>

When you execute the application, the output will look like this:

S Working with Grid View - Windows Internet Explorer

> N bt/ localhost49210/GridView/GridView aspx

Google Cl= :|50+ v BN - | ¢ Bookmarksw
W [gWorkmg with Grid View l I

EmployeelD EmployeeName JoiningDate DepartmentID

Douglas 08-09-2007 1

01-09-2007 3

Salary

. 9,000.00

27 Bapila 02-01-2005 4
[Export to Excel][Export to Word]

This looks like a much more polished output with the header, the rows, the columns
and the data displayed in GridView control properly formatted. In this section, we
have seen how we can have our custom look and feel of the GridView control by
using its various attributes, and also format the data rendered by it. Note that

you can even use custom format strings for formatting data displayed in the
GridView control.

[178]

Chapter 6

Let us now learn how we can apply images to the column headers of the GridView
control. We will see how to apply images that correspond to the ascending and
descending operations while we sort a column of the GridView control. Note that
you should enable sorting in the control as usual by setting the AllowSorting
property to true in your .aspx file, shown as follows:

AllowSorting ="true"

Further, you need to use the onRowCreated event and write the necessary code
there to apply images to the column headers of the GridView control. Following is
the code for the onRowCreated event, that is, the source code for the onRowCreated
event handler.

protected void OnRowCreated (object sender, GridViewRowEventArgs e)

{

if (e.Row.RowType == DataControlRowType.DataRow)
{

if (((e.Row.RowIndex + 1) % 2) == 0)

{

e.Row.BackColor = System.Drawing.Color.AliceBlue;

}

SetGridViewImageForSort (e, "lamp.gif", "up.gif", "down.gif");

}

Note that the SetGridImageForSort () method is called in the above method with
the GridviewRowEventArgs instance and the respective images as parameters.
Following is the source code for the setGridImageForSort () method:

private void SetGridviewImageForSort (GridvViewRowEventArgs e, String
defaultImageFileName, String upArrowImageFileName, String
downArrowImageFileName)

if (e.Row != null && e.Row.RowType ==
DataControlRowType .Header)

{

foreach (TableCell cell in e.Row.Cells)
{
LinkButton linkButton = (LinkButton)cell.Controls[O0];
if (null != linkButton)
{
Image image = new Image () ;
if (Gridviewl.SortExpression ==
linkButton.CommandArgument)

[179]

Displaying Views of Data (Part I)

image.ImageUrl = (GridViewl.SortDirection ==

SortDirection.Ascending) °?

downArrowImageFileName : upArrowlImageFileName;
else

image.ImageUrl = defaultImageFileName;

cell.Controls.Add (image) ;

}

The logic is simple; you set the respective images after checking whether the value of
SortDirection is Ascending or Descending. After you execute the application, the
output will look like this:

/2 Working with Grid View - Windows Internet Explorer

bRl & hitp:/localhost49210/GridView/GridView.aspx
Google (G~ - Ga+@ B~ ‘ ¥% Bookmarksw [Gh 49 blocked | *% Check v

Te [@ Working with Grid View] l

Export to Excel Export to Word

[180]

Chapter 6

Initially the data in the GridView displayed above is unsorted. The default

image is displayed in the column headers of all columns. Once you click on the
EmployeeName column header, the rows in the control are sorted in ascending
order of employee names. The sorted employee records now resemble the following;:

= Working with Grid View - Windows Internet Explorer

KX BN - hitp://localhost49210/ GridView/GridView.aspx

[- Go+@ B~ | ¥% Bookmarksw 49 blocked | %% Check
5 & Igwmingwnh Grid View I_‘

Export to Excel Export to Word

The image associated with the EmployeeName column header illustrates that the
records have been sorted in ascending order of the employee names. When you
click on the column header once again, the records are now sorted in the reverse
order, that is, descending order of employee names and the corresponding image
is displayed in the column header of the column on which the records have been
sorted. The output is captured in the following screenshot:

> Working with Grid View - Windows Internet Explorer

K sl < http:/flocalhost49210/ GridView/GridView.aspx
Google |G- - Go+@ B~ | Y% Bookmarksw 549 blocked | "% Check «

W [& Working with Grid View] ‘

Export to Excel Export to Word

[181]

Displaying Views of Data (Part I)

Summary

In this chapter, we've seen the working of GridView control and how we can use

it to perform CRUD (Create, Update, Read and Delete) operations, and export data
without writing even a single line of code. This control makes use of the data source
controls available with ASP.NET 2.0 to bind data to it and perform various CRUD
operations. In this chapter, we've used SqlDataSource control to bind data and
perform data modification operations; however you can also use other data source
controls too, for binding data to the GridView control. We have learnt how we can
format the data rendered by this control, use CheckBox and DropDownList controls
inside GridView and even export the GridView control to MS Excel and MS Word.
We will learn the other view controls in the next chapter.

[182]

Displaying Views of
Data (Part Il)

In Chapter 6, we discussed how we can work with the GridView control in ASP.
NET. This is the last part in the series of two chapters on how we can use the view
controls to display different views of data in ASP.NET. In this chapter, I will present
the DetailsView and the FormView control and show how we can use these controls
to bind data to them and perform various CRUD operations.

In this chapter, we will learn about:

e Working with the DetailsView Control
e Working with the FormView Control
e Working with the TreeView Control

e Implementing a Directory Structure as a TreeView

Working with the ASP.NET DetailsView
Control

The DetailsView control available in ASP.NET 2.0 is actually complementary to

the GridView control with its added ability to display data in a Master — Detail
relationship —a feature not provided by the GridView control by default. Unlike

the GridView control, you can use the DetailsView control to insert data into the
database. However, you can bind data to this control much the same as what you did
with the GridView. It should be noted that the default view type of the DetailsView
control is vertical; you would find that each column of the associated record is
displayed actually as a separate column. To use the DetailsView control, you can
drag and drop it from the toolbox as shown in the screenshot on the next page:

Displaying Views of Data (Part 11)

2% GndView - Microsoft Visual Studio

File Edit View Website Build Debug Data Format Layout Teols Window Community Help
H-Em-El HE@ ¥ S) - b Debug = Mixed Platforms - &
- - B I O A ._.’); KHTML 1.0 Transition: =

Toolbox -3 x DetailsView.aspx™ " Default.aspx ' Start Page

= CustomGridView Comp... T] i\ e T el

K Pointer Column0 abc

< GridViewEx Co 1 abe Auto Format...

+ Standard Cohmn? abe Choose Data Scurce: | (Mone) E

~ Data Edit Fields..

il Add New Field

1 Gridview ik’

] DataList Edit Templates

\=l DetailsView »

-_J FormView

== Repeater

You can also create the DetailsView control programmatically in your . aspx file.
Here is the corresponding source code for the Detailsview control in your .aspx
file once you drag and drop a DetailsView control from the toolbox onto your web
page in the design mode.

<asp:DetailsView ID="DetailsViewl" runat="server">
</asp:DetailsView>

You can bind data to this web control using any of the data source controls available
with ASP.NET 2.0. We will use the SQL datasource control in this chapter.

Using the DetailsView Control

I will now show you how you can implement a Master — Details relationship of data
using the DetailsView control. Consider our Employee table that we discussed

in Chapter 1 of this book. We will take a DropDownList control that will display
the names of all the employees in the database table. On selection of a particular
employee, the corresponding record will be displayed in the DetailsView control.
When you execute the application, the output will be similar to what is shown

as follows:

[184]

Chapter 7

ﬂ" Untitled Page - Windows Internet Explorer
e ol]

& httpe//localhost49210/ GridView/DetailsView.aspx

Google [Cl+

|Z| Go {r@ ﬁ - | * Bookmarks= 51?0 blocked
v e (& Untitled Page

"% Check v % Autolink v =] SutoFill

Select Employee: Joydip
The details of the selected emplovee are:--

EmploveeName Jovdip
JoiningDate 08-09-2007 00:00:00

Salary 2000.0000
Department]D 1

EmploveeAddress 20/12 Northern Avenue, 1st Floor, Paikpara, P.O. Belgachia, Kolkata. PinCode: 700 037. INDIA

Note that the details pertaining to the employee called Joydip have been displayed
in the DetailsView control just beneath the DropDownList control. Now, select

a different employee and see how the corresponding details in the DetailsView
control changes.

ﬂ" Untitled Page - Windows Internet Explorer

K sl © htte://localhost49210/GridView/DetailsView.aspx
Gox ;gle G-

A /& Untitled Page

|z| Go 1,@ E - | % Bookmarksv @?0 blocked

% Check v % Autolink ~ "= AutoFil

Select Employee: Douglas

The details of the selected emplovee are:--

EmployeeName Douglas

JoiningDate 08-09-2007 00:00:00
Salary 75000.0000
Department[D 1

EmploveeAddress

Packt Pub, 32 Lincoln Road, Olton, Birmingham B27 6PA, UK

[185]

Displaying Views of Data (Part 11)

Let us now understand how we can accomplish the above. In the design view

of your web page, drag and drop two SqlDataSource controls and configure

them accordingly. While one of these controls would be used to bind data to the
DropDownlList control, the other would be used to bind data to the DetailsView
control based on the employee selected by the user. We have discussed how we
can use the data source controls of ASP.NET in Chapter 1 of this book. Therefore, I
will skip some steps while discussing on the configuration of these SqlDataSource
controls that we will use in this section:

Configuring the select statement for the first SqlDataSource control is simple, just
specify two fields from the list of the fields displayed shown as follows:

Configure Data Seurce - SglDataSource2 lil_g_hj
j_ Configure the Select Statement
__u_ '__-I

How would you like to retrieve data from your database?

Specify a custom SQL statement or stored procedure
@ Specify columns from a table or view

Mame:

|Emp|0yee hd

Columns:

* Return cnly unigque rows
| EmployeelD ‘
| EmployeeMame
Erﬁglo}reeﬂ\ddress ‘ ORDER BY... |
JoiningDate

Salary ‘ Advanced... |
DepartmentlD

WHERE... |

SELECT statement:
SELECT [EmployeelD], [EmployeeMame] FROM [Employee]

< Previous ‘ ‘ Next% ‘ Cancel

[186]

Chapter 7

Now click on Next and make sure that you test the query to check whether it
is fine. Following is the output once you test your query by clicking on the
Test Query button:

Confgare Dta Source Sqbtasoure=2 I N ==

% Test Query

To preview the data returned by this data source, click Test Query. Te complete this wizard, click Finish.

EmployeelD EmployeeMame

4 Douglas
5 Jini
4] Rama
7 Amal
g Piku
9 Indranil
Test Query
SELECT statement:
SELECT [EmployeelD], [EmployeeName] FROM [Employee] -
< Previous] l MNext »] l Finish l l Cancel l

[187]

Displaying Views of Data (Part 11)

The next step is to drag and drop a DropDownList control from the tool box and
associate the control with the SqlDataSource control that we just configured. The
following screenshot illustrates how you can associate this control to the data source

control and specify its display and the value fields.

Data Source Configuration Wizard

T[S

N Choose a Data Source
|

=)

Select a data source:

’ SglDataSource?

-

Select a data field to display in the DropDownlList: [k

Select a data field for the value of the DropDownList:

-

Refresh Schema

oK

||

Cancel

[188]

Chapter 7

Now, click on the OK button to complete the process. Next, drag and drop another
SqlDataSource control from the tool box and configure the Select statement for the

control as shown in the following screenshot:

Configure Data Source - SglDataSourcel

P |l

Configure the Select Statement
]

e

How would you like to retrieve data from your database?

() Specify a custom SQL statement or stored procedure
@ Specify columns from a table or view

Marne:

’Employee hd

Columns:

D *

[[] EmployeelD
EmployeeMame
EmployeeAddress
JoiningDate
Salary
DepartmentlD

SELECT statement:

SELECT [EmployeeMame], [JeiningDate], [Salary], [DepartmentID], [Employeefddress] FROM [Employee] E

< Previous l [

[T] Return only unique rows

l WHERE... l

’ ORDER BY...]

’ Advanced... l

[189]

Displaying Views of Data (Part 11)

Note that we have specified the fields we want to display using the DetailsView
control. Now, we have to display the details of the employee selected by the user.
Hence, we need to specify the where clause in this query to restrict the output. When
you click on the WHERE button, a window pops up where you can specify the same.
This is shown as follows:

Add WHERE Clause (T

Add one or more conditions to the WHERE clause for the staterment. For each condition you can specify either a literal value or
a parameterized value, Parameterized values get their values at runtime based on their properties,

Column: Parameter properties

IEmployeeID _‘ Control ID:

Operator: DropDownListl hd

I: ,‘ Default value:

Source: [:\3

IControI 7‘

SQL Expression: Value:

[Ermployeell] = @EmployeelD DropDownListl.SelectedValue Add

WHERE clause:

5QL Expression Value

Lok || cance |

Note how the Column, Source and Control ID properties have been specified.
Now, click on the Add button to finish off this process. What we are left with now
is the DetailsView control that we would use to display the details for the
selected employee.

[190]

Chapter 7

Drag-and-drop a DetailsView control onto the web form in its design view mode
and associate its data source with the data source control that we just configured.

Refer to the following screenshot:

Details_View.aspx | DetailsView.aspx.cs | GridView.aspx. ' DetailsView.aspx

12

Select Employee: fbatabound [~]

The details of the selected employee are:--

S —
:E%ployeeN ame abc r""" dasks

JomingDate 01-09-2007 00:00:00 uty ot

' Salary 0 Choose Dats Source: | SalDataSourcel =]
Depﬁﬂﬂlmtm 0 Conf{yre Data Source...
EmployeeAddress abc

Refresh Schema
Edit Fields...

"SqlDataSource - SqiDataSourcel

IESqlDat,aSmlrce - SqlDataSource2

Add New Field...
Move Field Down
Remove Field

Enable Paging

Edit Templates

You are done! When you execute the application, the output is similar to what is

shown in the following screenshot:

2 Untitled Page - Windows Internet Explorer

el SN - | it/ lacalhost 480 GridView/ DietailsView.aspe

9 4R | 8 Untitled Page

Google |G- x| Go re & = | % Bookmarks+ & 70 blacked | 5F Check = % Sutolink = % Susofil

Select Employes: Joydip -
The details of the selected emploves ares--

EmploveeMame Joydip

JoindngDate
Salary
Diepartrnent]d

(E-09-2007 00:00:00
20000000
1

EmployesAddress 20112 Northem Avermae, 15t Floor, Palkpara, P.O. Belzachia, Kolkata. PinCode: 700 037. INDIA

The output shown above is not well formatted. Similar to the GridView control,
you can use the style properties of the DetailsView control and its templates to
customize the display. I will not discuss much on how these styles and templates

work as we have had a detailed discussion on this in the Chapter 6 on the
GridView control.

[191]

Displaying Views of Data (Part 11)

Displaying a DropDownlList inside the DetailsView control
You can display a DropDownList control inside a DetailsView and bind
data to it at design time using the <asp: TemplateField> tag in the
markup as shown in the code snippet below.
<asp:TemplateField HeaderText = "Department Name">
<ItemTemplates>
<asp:DropDownList
ID="DeptDropDown" runat="server"
.Q DataSourceID="SglDataSourcel"
DataTextField="DepartmentName"
DataValueField="DepartmentID"

SelectedValue=
'<%# Eval ("DepartmentID") %>' />
</ItemTemplate>

</asp:TemplateFields>
The above markup code will display a DropDownList control named
DeptDropDown containing all the department names.

Changing the DetailsView mode
Suppose you want to change the DetailsView mode to Insert if
there are no records in the control. You can do this in the code
behind by using the ChangeMode () method of the control. Here is
. the code snippet that illustrates how you can achieve this:
Q if (DetailsViewl.Rows.Count == 0)
DetailsViewl.ChangeMode (DetailsViewMode. Insert) ;
else
DetailsViewl.ChangeMode (DetailsViewMode.ReadOnly) ;
Note that we have changed the mode to Insert if there are no records in
= the control and to ReadOnly if there are records within it. -

The following code snippet illustrates that the source code for the control looks like
after formatting, using the style properties and the templates of the control:

<asp:DetailsView ID="DetailsViewl" runat="server" Height="50px"

Width="727px" BorderStyle="None" BorderColor="Black"
BorderWidth="1px" AutoGenerateRows="False"
DataSourceID="SglDataSourcel" AllowPaging="True">

<FooterStyle ForeColor="Blue" BackColor="White"></FooterStyle>

<RowStyle ForeColor="Teal"></RowStyle>

<PagerStyle ForeColor="Blue" HorizontalAlign="Left"

BackColor="White"></PagerStyle>
<Fields>

[192]

Chapter 7
<asp:BoundField DataField="EmployeeName"

HeaderText="EmployeeName" SortExpression="EmployeeName" />

<asp:BoundField DataField="JoiningDate"
HeaderText="JoiningDate"
SortExpression="JoiningDate" HtmlEncode="False"
DataFormatString="{0:d}"/>

<asp:BoundField DataField="Salary" HeaderText="Salary"
SortExpression="Salary" HtmlEncode="False"
DataFormatString="{0:C}"/>

<asp:BoundField DataField="DepartmentID"
HeaderText="DepartmentID"
SortExpression="DepartmentID" />

<asp:BoundField DataField="EmployeeAddress"
HeaderText="EmployeeAddress"
SortExpression="EmployeeAddress" />

</Fields>

<HeaderStyle ForeColor="White" Font-Bold="True"

BackColor="#336699"></HeaderStyle>
</asp:DetailsViews>

When you execute the application now, the output is similar to the one shown in the
following screenshot:

,l",'_:‘ Untitled Page - Windows Internet Explorer

L Bl 2 http://localnost:49210/GridView/Detsils\View.aspx

Google Gl» |z| Go\io&:ﬂ B~ | ¥ Bookmarks &) 70 blocked

"% Check » ' Autolink = "= AutaFil
oy o | (& Untitled Page | |

Select Employee: Jini

The details of the selected employee are:--

EmployeeName Jini
JoiningDate 08-09-2007
Salary Rs. 15.500.00
Department[D 2

EmployeeAddress

13/G, Northern Avenue, Paikpara, P.O. Belgachia, Kolkata. PinCode: 700 037, INDIA

[193]

Displaying Views of Data (Part 11)

As you can see from the figure, the output looks much better. The following is
the complete source code in the .aspx file for the simple application that we
have designed.

<form id="forml" runat="server"s>
<div>
Select Employee:é
<asp:DropDownList ID="DropDownListl" runat="server"
AutoPostBack="True" DataSourceID="SglDataSource2"
DataTextField="EmployeeName" DataValueField="EmployeeID"
Width="140px">
</asp:DropDownList>

The details of the selected employee are:--

<asp:DetailsView ID="DetailsViewl" runat="server"
Height="50px" Width="727px" BorderStyle="None"
BorderColor="Black" BorderWidth="1px
AutoGenerateRows="False" DataSourceID="SqglDataSourcel"
AllowPaging="True" >
<FooterStyle ForeColor="Blue"
BackColor="White"></FooterStyle>
<RowStyle ForeColor="Teal"></RowStyle>
<PagerStyle ForeColor="Blue" HorizontalAlign="Left"
BackColor="White"></PagerStyle>
<Fieldss>
<asp:BoundField DataField="EmployeeName"
HeaderText="EmployeeName" SortExpression="EmployeeName" />
<asp:BoundField DataField="JoiningDate"
HeaderText="JoiningDate" SortExpression="JoiningDate"
HtmlEncode="False" DataFormatString="{0:d}"/>
<asp:BoundField DataField="Salary" HeaderText="Salary"
SortExpression="Salary" HtmlEncode="False"
DataFormatString="{0:C}"/>
<asp:BoundField DataField="DepartmentID"
HeaderText="DepartmentID" SortExpression="DepartmentID" />
<asp:BoundField DataField="EmployeeAddress"
HeaderText="EmployeeAddress"
SortExpression="EmployeeAddress" />
</Fields>
<HeaderStyle ForeColor="White" Font-Bold="True"
BackColor="#336699"></HeaderStyle>
</asp:DetailsView>
</divs>
<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="Data Sources=.;
Initial Catalog=Test;User ID=sa;Password=sa"

[194]

Chapter 7

ProviderName="System.Data.SglClient"

SelectCommand="SELECT [EmployeeName], [JoiningDatel],
[Salary]l, [DepartmentID], [EmployeeAddress] FROM
[Employee] WHERE ([EmployeeID] = @EmployeelD) ">

<SelectParameters>
<asp:ControlParameter ControlID="DropDownListl"
Name="EmployeeID" PropertyName="SelectedValue"
Type="Int32" />
</SelectParameters>
</asp:SglDataSource>
<asp:SglDataSource ID="SglDataSource2" runat="server"
ConnectionString="<%$
ConnectionStrings:TestConnectionString %>"
SelectCommand="SELECT [EmployeeID], [EmployeeName] FROM
[Employee] ">
</asp:SglDataSource>

</form>

The best part as we have seen so far is that we didn't write even a single line of code.
Awesome, isn't it?

Finding Controls inside a DetailsView control

You can find a control nested within a DetailsView control using the
FindControl () method in the DataBound event of the control as
shown in the following code snippet:

protected void DetailsViewl DataBound (object sender,
EventArgs e)

{
if (((DetailsView) sender) .
Y:l CurrentMode == DetailsViewMode.Edit)

TextBox txtBox = (TextBox) ((DetailsView)
sender) .FindControl ("txtEmployeeName") ;
if (myTextBox != null)

{
}

//Write your custom code here

[195]

Displaying Views of Data (Part 11)

Accessing bound fields of a DetailsView control in the code behind
To access the bound fields of a DetailsView control from the code behind,
you can write the following code in the DataBound event of the control.

protected void DetailsViewl DataBound(object sender,
EventArgs e)

Y] {
Q foreach (DetailsViewRow dvr in
DetailsViewl.Rows)

Response.Write ("
 " +
dvr.Cells[1] .Text) ;

Using a CheckBox inside a DetailsView control
You can use a CheckBox control inside the DetailsView control
using the <asp:TemplateFields> tag and then creating the control
inside the <ItemTemplate> and binding data using the Bind ()
method. Here is the markup code for the control:
%il <asp:TemplateField HeaderText = "Employee Name">
<ItemTemplate>
<asp:Checkbox ID="ChkSelect" Runat="Server"
Text="'<%# Bind("EmployeeName") %>'
Checked ="false"/>
</ItemTemplate>
</asp:TemplateFields>

Working with the ASP.NET FormView
Control

The ASP.NET FormView control is a data-bound control that renders a single record
at a time from its associated data source. It is quite similar to the DetailsView control
except that while the DetailsView renders itself into a tabular format, the FormView
control requires user-defined templates for rendering. According to the MSDN,
"When using the FormView control, you specify templates to display and edit bound
values. The templates contain formatting, controls, and binding expressions to create
the form. The FormView control is often used in combination with a GridView
control for master or detail scenarios."

[196]

Chapter 7

To use the FormView control, simply drag and drop it from the tool box and

then associate the control with a data source. In our example we will take the
SqlDataSource control to bind data to the FormView control. You can use an existing
data source or create a fresh new one using the smart tag of the control.

As we have seen in Chapter 1, the SqlDataSource is a data source control with simple
configuration needs and can be used to bind data to a databound control without

the need to write even a single line of code. It merely involves the steps of creating
the connection string, generating or writing SQL query or Stored Procedure, and
generating an optional insert, update and delete statements. Once this configuration
is done, it can be bound to a data bound control seamlessly. The following screenshot
illustrates the FormView control and the SqlDataSource control that it is bound to in
design view mode:

File Edit View Website Build Debug Data Format Layout Tools

D-aE-SHd 2B b Debug
- M B I u [LI li)l

Toolbox - 4 x Employeelnfo.aspx

% Dialogs 1l .

+ DataSet EmploveelD: Databound

* Class Designer EmployeeName: Databound

Standard JoinDate: Databound

= Datf' | Salary: Databound 2

K Pointer DepartmentID: Databound

._# AccessDataSource

1| Datalist 12

= DetailsView 7

J lLgqII.'.\‘.ataS-::u.lrva:e - 5glDataSourcel

| _J FormView [~ |

 GridView

T] FormView
L# ObjectD
4 Objec a‘u’ersiun 2.0.0.0 from Microsoft Corporation

- Repeater NET Component
| ReportViewer———————
'-.r!': SiteMapDataSource
-_J SglDataSource E

LJ, XmlDataSource

[197]

Displaying Views of Data (Part 11)

You can also apply templates and styles just as you did with the other data bound
controls in the previous chapters. We will also enable paging for this control so that
it can display multiple records with one record per page. Here is the display once
you execute the application.

ﬁ A Simple FormView Example - Windows Internet Explorer

ARl © = http://localnost:49210/GridView/Employed

Gﬂ.lgh Gl Izl Go {;q_f__.l E - |
P & A Simple FormView Example

EmploveelD: 3
EmploveeMName: Jovdip
JoinDate: 08-09-2007 00:00:00
Salary: 2000.0000
DepartmentID: 1

lzﬁiélﬁ

Specifying the PrimaryKey of the DataSource using the
DataKeyNames property
. The purpose of the DataKeyNames property for the data controls we
% have used so far is to specify the PrimaryKey(in this case EmployeeID)
I field from the DataSource that is used to bind data to these controls. You
can use this property in the markup code in the . aspx file as shown
as follows:

DataKeyNames="EmployeeID"

Finding controls within a FormView control

Similar to the DetailsView control, you can use the FindControl ()
method to find nested controls within a FormView control. The following

* code snippet illustrates how this can be achieved.
if (FormViewl.CurrentMode == FormViewMode.Edit ||
FormViewl.CurrentMode == FormViewMode.Insert)

{

//Write your custom code here

- } -

[198]

Chapter 7

Note that the FormView control shown in the screenshot above has paging enabled
and it displays the details of the employees, one in each page. The following code
snippet shows the source code that gets generated in your . aspx file.

<asp:FormView ID="FormViewl" runat="server" AllowPaging="True"
BackColor="White" BorderColor="Red" BorderStyle="None"
BorderWidth="1px" CellPadding="3" CellSpacing="2"
DataKeyNames="EmployeeID" DataSourceID="SglDataSourcel"
GridLines="Both">
<FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
<EditRowStyle BackColor="#738A9C" Font-Bold="True"
ForeColor="White" />
<RowStyle BackColor="White" ForeColor="Black" />
<PagerStyle ForeColor="Blue" HorizontalAlign="Center" />
<ItemTemplate>
EmployeeID:<asp:Label ID="EmployeeIDLabel" runat="server"
Text="'<%# Eval ("EmployeeID") %>'>
</asp:Label>

EmployeeName: <asp:Label ID="EmployeeNameLabel"
runat="server" Text='<%# Bind ("EmployeeName") %>'>
</asp:Label>

JoinDate:<asp:Label ID="JoiningDateLabel" runat="server"
Text="'<%# Bind("JoiningDate") %>'></asp:Label>

Salary:<asp:Label ID="SalaryLabel" runat="server" Text='<%#
Bind ("Salary") %>'></asp:Label>

DepartmentID:<asp:Label ID="DepartmentIDLabel"
runat="server" Text='<%# Bind("DepartmentID") %>'>
</asp:Label>

</ItemTemplate>
<HeaderStyle BackColor="Black" Font-Bold="True" ForeColor="White" />
</asp:FormvViews>

And here is the markup code for the SqlDataSource control that we have used to
bind data to the FormView control.

<asp:SglDataSource ID="SglDataSourcel" runat="server"

ConnectionString="Data Source=.;

Initial Catalog=Test;UserID=sa;Password=sa"
SelectCommand="SELECT [EmployeeID], [EmployeeName],
[JoiningDate], [Salary], [DepartmentID] FROM [Employee] ">

</asp:SglDataSources>

[199]

Displaying Views of Data (Part 11)

Formatting Data Using the FormView Control

As you can see from the figure given earlier, the employee data displayed in the
FormView control is not properly formatted. In this section we will learn how we
can use custom formatting to display data in the FormView control in a properly
formatted manner.

To ensure that the FormView control displays a custom text when there are no records
in the control, we will use the property called EmptyDataText shown as follows:

EmptyDataText="No Records"

Now, to test whether the above message is displayed, let us bind an empty data
source to the FormView control. We will make the data source empty by changing its
Select statement shown as follows:

<asp:S8qglDataSource ID="SglDataSourcel" runat="server"

ConnectionString="Data Source=.;
Initial Catalog=Test;UserID=sa;Password=sa"

SelectCommand="SELECT [EmployeeID], [EmployeeName],
[JoiningDate], [Salaryl], [DepartmentID] FROM [Employee] where
1=0">

</asp:SglDataSource>

The above data source is empty as the condition specified 1=0 is always false. When
you bind such a data source to the FormView control with its EmptyDataText
property set, the text gets displayed in place of the records which would otherwise
have been displayed if the data source contained data. Here is the output on execution:

ﬂ‘ Working with the FormView Control - Windows Internet Explorer

€ http:/flocalh 295/PacktPub/Chapter®a20VILFormV|

i 4| & Working with the FormView Control

No Records

The JoiningDate and the salary fields displayed in the FormView control shown
in the earlier section were not properly formatted. Here is how you can use the
Bind () method in the markup code in the . aspx file to format the display of these
fields in the control.

</asp:Label>

Joining Date:<asp:Label ID="1lblJoiningDate" runat="gerver"
Text='<%# Bind("JoiningDate","{0:d}") %>'></asp:Label>

Salary:<asp:Label ID="1lblSalary" runat="server" Text='<%#
Bind ("Salary","{0:c}") %>'>

</asp:Label>

[200]

Chapter 7

Note how we have used the data format string in the second parameter to the
Bind () method.

We can also use a DropDownlList control within the FormView control to display the
department names with the department to which the specific employee belongs as
the selected department in the DropDownList. The markup code follows:

<asp:DropDownList ID="DeptDropDownList" runat="server"
DataSourceID="SglDataSource2" DataTextField="DepartmentName"
DataValueField="DepartmentID" SelectedValue='<%#
Eval ("DepartmentID") %>'/>

To customize paging, we can use the PagerTemplate of the FormView control with
LinkButtons and appropriate texts on them. Here is the markup code in the .aspx
file that illustrates how you can use the pagerTemplate of the FormView control to
display a customized pager. Note that the AllowPaging property should be set to
true to enable paging for the control.

<PagerTemplate>
<tables>
<tr>
<td>
<asp:LinkButton ID="FirstButton" CommandName="Page"
CommandArgument="First" Text="First" RunAt="server"/>
</td>
<td>
<asp:LinkButton ID="PrevButton" CommandName="Page"
CommandArgument="Prev" Text="Prev" RunAt="server"/>
</td>
<td>
<asp:LinkButton ID="NextButton" CommandName="Page"
CommandArgument="Next" Text="Next" RunAt="server"/>
</td>
<td>
<asp:LinkButton ID="LastButton" CommandName="Page"
CommandArgument="Last" Text="Last" RunAt="server"/>
</td>
</tr>
</table>
</PagerTemplates>

[201]

Displaying Views of Data (Part 11)

Here is the complete source code for the Formview control with the customized
formatting we have just discussed.

<asp:FormView ID="FormViewl" runat="server" AllowPaging="True"
BackColor="White" DefaultMode="ReadOnly"
BorderColor="Red" BorderStyle="Solid" EmptyDataText="No Records"
BorderWidth="1px" CellPadding="3" CellSpacing="2"
DataKeyNames="EmployeeID" DataSourcelID="SglDataSourcel"
GridLines="Both">
<FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
<EditRowStyle BackColor="#738A9C" Font-Bold="True"
ForeColor="White" />
<RowStyle BackColor="White" ForeColor="Black" />
<PagerStyle ForeColor="Blue" HorizontalAlign="Center" />
<ItemTemplates>
Employee ID:<asp:Label ID="1lblEmpID" runat="server"
Text="'<%# Eval ("EmployeeID") %>'>
</asp:Label>

Employee Name:<asp:Label ID="lblEmpName" runat="server"
Text="'<%# Bind("EmployeeName") %>'>
</asp:Label>

Joining Date:
<asp:Label ID="1lblJoiningDate" runat="server" Text='<%#
Bind ("JoiningDate","{0:d}") %>'></asp:Label>

Salary:<asp:Label ID="lblSalary" runat="server"
Text='<%# Bind("Salary","{0:c}") %>'>
</asp:Label>

Department Name:
<asp:DropDownList ID="DeptDropDownList"
runat="server" DataSourceID="SglDataSource2"
DataTextField="DepartmentName"DataValueField=
"DepartmentI D"
SelectedValue='<%# Eval ("DepartmentID") %>' />

</ItemTemplate>
<PagerTemplate>
<tables>
<tr>
<td><asp:LinkButton ID=»FirstButton» CommandName=»Page»
CommandArgument=»First» Text=»First»
RunAt=»server»/></td>
<td><asp:LinkButton ID=»PrevButtons» CommandName=»Page»
CommandArgument=»Prev» Text=»Prevs»

RunAt=»server»/></td>

[202]

Chapter 7

<td><asp:LinkButton ID=»NextButton» CommandName=»Page»
CommandArgument=»Next» Text=»Nexts»
RunAt=»server»/></td>
<td><asp:LinkButton ID=»LastButton» CommandName=»Page»
CommandArgument=»Last» Text=»Lasts»
RunAt=»server»/></td>
</tr>
</table>
</PagerTemplates>
<HeaderStyle BackColor=»Black» Font-Bold=»True»
ForeColor=»White» />
</asp:FormvView>

The markup code for the data source controls used for binding data to the FormView
control and the DropDownList control contained within it is shown as follows:

<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="Data Source=.;
Initial Catalog=Test;UserID=sa;Password=sa"
SelectCommand="SELECT [EmployeeID], [EmployeeName],
[JoiningDate], [Salary]l, [DepartmentID] FROM [Employee]">

</asp:SglDataSource>

<asp:SglDataSource ID="SglDataSource2" runat="server"
ConnectionString="<%$ ConnectionStrings:TestConnectionString %>"
SelectCommand="SELECT [DepartmentID], [DepartmentName] FROM
[Department] ">

</asp:SglDataSource>

When you execute the application, the output is similar to what is shown in the
following screenshot:

,l':; Working with the FormView Control - Windows Internet Explorer

/Rl = http://localnost:49295/PacktPub/Chapter%:20VIl/Form

¢ 4 | @& Working with the FormView Control

Emplovee ID: 4
Emplovee Name: Douglas
Joining Date: 08-09-2007
Salary: Rs. 75.000.00

Department Name: T -

First Prev Next Last

[203]

Displaying Views of Data (Part 11)

% to bind data to the DataSource controls such as the SqlDataSource or

Data binding using the DataSource and DataSourceID properties

The ASP.NET data controls facilitate binding data to it using either of
the two properties. DataSource and DataSourceID. While you can
use the DataSource property to bind the control to DataSet and
DataReader instances, the DatasourceID property is typically used

ObjectDataSource controls. The latter is the recommended approach
since you can exploit the built-in capabilities of the control to perform the
CRUD (Create, Update, Read and Delete) operations without having to
write much code in

your applications.

I will now quickly run you through some of the most important properties of the
FormView control. You can find similar properties for the other ASP.NET data
controls as well. You can refer to MSDN for more information in this regard.

DefaultMode: You can set the default behavior of the control using this
property. It can accept one of the three possible values. ReadOnly, Edit
and Insert.

EmptyDataText: You can use this property to display text in the control if
there are no records, that is, the data source is empty.

AllowPaging: This is a boolean property that, if set to true, will enable
paging and if set to false, paging will be disabled for the control. The page
numbers will also be displayed at the bottom; you can, however, change
those using custom styles.

DataKeyNames: This is the PrimaryKey of the data source.

DataSourcelD: This typically will be the ID of the data source control that is
used to bind data to the FormView control.

In the section that follows, we will explore the ASP.NET TreeView control and learn
how we can work with it to display hierarchical data.

Working with the ASP.NET TreeView
Control

The ASP.NET 2.0 TreeView control can be used to display hierarchical data from a
data source. You can create a TreeView control programmatically in the .aspx file as
shown in the following code snippet:

<asp:TreeView ID="TreeViewl" runat="server"></asp:TreeViews>

[204]

Chapter 7

When you switch over to the design view of the web form, the control looks as
shown in the following screenshot:

File Edit VWiew Website Build Debug Format L

ERSCHRGT= ™ = e
Mone + Times Mew Rom: - 12pt -~ B 1

=

TreeView.aspx

M Root
= Parent 1
Leaf1
Leaf 2
= Parent 2
Leaf1
Leaf 2

You can easily add nodes to the TreeView control programmatically. You need
to remember how to associate one node with another. Refer to the following code

snippet that shows how we can create a simple Treeview control with two
child nodes:

TreeNode root = new TreeNode () ;
root.Text = "Root Node";
this.TreeViewl .Nodes.Add (root) ;
TreeNode childl = new TreeNode () ;
childl.Text = "Child 1";

root .ChildNodes.Add (childl) ;
TreeNode child2 = new TreeNode () ;
child2.Text = "Child 2";

root .ChildNodes.Add (child2) ;
this.TreeViewl.ExpandAll () ;

[205]

Displaying Views of Data (Part 11)

Notice how we have created new nodes using the TreeNode class and associated
the child nodes to the parent node using the childNodes property of the
TreeNode instance. When you execute the sample application, the output is
similar to the following.

= TreeView Control EBxample - Windows Intemet Explorer

e ol]

£ http://localhost:49210/ GridView, TreeView.aspx

Google |G+ EG&.{.@ 8- | ¥ Bookm
T | & TreeView Control Example | |

= Root Node
Child 1
Child 2

Fine, let us now examine how we can bind data to the TreeView data control
without writing even a single line of code. We haven't used the XMLDataSource
control so far, right? Let us now discuss how we can use the XMLDataSource control
to bind data to the TreeView Control.

First, drag and drop an XMLDataSource control onto your web form in design
view mode. Then associate this control to the Employee_Addresses.xml file that
contains the addresses of all the employees in the Employee table as shown in the
following screenshot:

File Edit View Website Build Debug Data Format Layout Tools Window Community Help

A-E-EE a6 BB b Debug ~ Mixed Platforms - |
Ll Ll Lo r a1 | & | LWLIThAL 1.0 T, i L | Ry
S Configure Data Source - XmlDataSourcel l@ [S [
v

Specify the XML data file to use as the source for this control. You can optionally specify additional files that will be used
to medify the XML before it is used by the control.

Data file:

~/Employes_Addressesjxml Browse...
Transform file:

Atransform file describes how the structure of the XML file should be converted to a different structure.

XPath expression:

An ¥Path expression allows you to filter the data in the XML file and return only a subset of the file.

QK] l Cancel

[206]

Chapter 7

Here is what the Employee_Addresses.xml file looks like.

<?xml version="1.0" encoding="utf-8" ?>
<Employee Addresses>
<Employee Name="Joydip">
<Address Value="20/12 Northern Avenue, Paikpara,
Kolkata. PinCode: 700 037. INDIA.">
</Address>
</Employee>
<Employee Name="Douglas">
<Address Value="Packt Pub, United Kingdom">
</Address>
</Employee>
<Employee Name="Jini"s>

P.0O. Belgachia,

<Address Value="25/1 Anath Nath Deb Lane, Paikpara, Kolkata.

PinCode:700 037.INDIA.">
</Address>
</Employee>
<Employee Name="Rama">
<Address Value="13/G Northern Avenue, Paikpara,
PinCode:700 037.INDIA.">
</Address>
</Employee>
<Employee Name="Amal">
<Address Value="25/1 Rani Branch Road, Paikpara,
PinCode: 700 002. INDIA.">
</Address>
</Employee>
</Employee Addresses>

Kolkata.

Kolkata.

[207]

Displaying Views of Data (Part 11)

Next use the DataBindings Editor as shown below to specify the bindings for the
nodes of the TreeView control.

File Edit View Website Build Debug Data Format Layout Tools Window Community Help

A-E-EH | % G b Debug » Mixed Platforms - |
TreeView DataBindings Editor [I.;
Ei
e Available data bindings: Data binding properties:
= (Empty)
& Employee_Addresses =
= Egr'ﬂ;;i:)‘;ee DataMember Address
ress
Depth
B Databindings
FormatString
ImageToolTipField 2
ImagelriField
Add NavigateUrlField
o TargetField
Selected data bindings: TextField B
Ermol it ToolTipField
]%(_'i mpleyes E ValueField Value
B Default Properties
ImageToolTi
s
Irnagelrl -
TextField
The table column or XML attribute name to use for a node's
Auto-generate data bindings Text property when data binding.

[oK H e] Apply

You can customize the display by specifying the color, font and node styles of
your choice using the parentNodeStyle, SelectedNodeStyle and the NodeStyle
properties of the Treeview control. The source code for the Treeview control now
looks like:

<asp:TreeView ID="TreeViewl" runat="server"
DataSourceID="XmlDataSourcel" BackColor="White" Font
Bold="True" Font-Italic="True" ForeColor="Black">
<ParentNodeStyle Font-Bold="True" ForeColor="Black"
BackColor="SkyBlue" />
<SelectedNodeStyle Font-Underline="True" HorizontalPadding="Opx"
VerticalPadding="0px" BackColor="#C04000" />
<NodeStyle Font-Names="Verdana" Font-Size="8pt" ForeColor="Black"
HorizontalPadding="5px" NodeSpacing="0px"

[208]

Chapter 7

VerticalPadding="0px" BackColor="#00C0CO0" />
<DataBindings>

<asp:TreeNodeBinding DataMember="Address" ValueField="Value"/>

<asp:TreeNodeBinding DataMember="Employee" ValueField="Name"/>
</DataBindings>

<LeafNodeStyle BackColor="#FFE0OCO0" />
</asp:TreeViews>

You are done! When you execute the application, the output is similar to
the following:

2 TreeView Control Example - Windows Intemet Explorer
e i

& | http://localhost:49210/GridView/ TreeView.aspx

Google |G+ |E| Go {rﬂf) 8~ ‘ % Bookmarksv 5 70 blocked

o & TreeView Control Example

"'.:a? Check + % Auto

- Employee_Addresses
@ Joydip

20/12 Northern Avenue, Paikpara, P.0. Belgachia, Kolkata. PinCode: 700 037. INDIA.
+ Douglas

+ Jini

+ Rama

+ Amal

Note how the node with the caption as Joydip expands once you click on it. The
corresponding address for the employee Joydip is then displayed as text.

SelectedNodeChanged event of the TreeView control

. The SselectedNodeChanged event of the TreeView control is used
% to detect whether a selection has changed. This event gets fired when
/=" the user selects a particular node of the TreeView control. However,

this event will not be fired if the SelectedNodeChanged property is
L changed programmatically.

[209]

Displaying Views of Data (Part 11)

Creating the nodes of TreeView control programmatically
You can create the nodes of a TreeView control programmatically. The
following code snippet illustrates how this can be achieved.
private void CreateTreeView ()
{
for (int 1 = 0; 1 < 10; i++)
{
TreeNode treeNode = new TreeNode () ;
R treeNode.Text = "Node Item: " + i.ToString() ;
(& treeNode.Value = "Node Item: " + 1i.ToString() ;
treeNode.ShowCheckBox = true;

treeNode.ToolTip =
"This is Node Item: " + i.ToString() ;

TreeViewl .Nodes.Add (treeNode) ;
!
this.Panell.Controls.Add (TreeViewl) ;
!
In this code snippet, the TreeView control is placed inside a
Panel control.

Implementing a Directory Structure as a
TreeView

In this section I will demonstrate how we can make use of the TreeView control

to display the list of directories and files in your system. The directories will be
displayed as parent nodes with the child nodes displaying the files under those
directories. When you execute the sample application, the output is similar to what is
shown in the following screenshot:

[210]

Chapter 7

ﬂ; Directory Tree View - Windows Internet Explorer

s Bll & htip://localnost49295/PacktPub/Chapter%20VIL Direct

'i’:? ke | @& Directory Tree View |

= Projects
BPEETest
CustomWebBrowser
DataControl - Application
DataGrid
GridView
= PacktPub
= App_Code
[[] CustomGridView cs
[[1DataManager cs
[[1Emplovee.cs
[[]App Data
Chapter 1T
Chapter 11T
Chapter IV
Chapter V
Chapter VI
= Chapter VII
[DetailsView.aspx
[DetailsView aspx.cs
[| DirectoryTreeView aspx
[[1DirectoryTreeView.aspx.cs
[[IEmployes_Addresses xml
[FormView aspx
[[1 FormView aspx.cs
[TreeView aspx
[TreeView.aspx.cs
CustomControls

Note that the directories are displayed as parent nodes with the files under those
directories displayed as child nodes and are marked with check boxes. Let us now
see how we can implement such an application.

Simply create a TreeView control with the following markup code in your
.aspx file:

<asp:TreeView ID="TreeViewl" runat="server" SelectedNodeStyle
ForeColor="Green" SelectedNodeStyle-VerticalPadding="0
ShowCheckBoxes="Leaf" BackColor="White" Font-Size="Medium"
ForeColor="Blue">
</asp:TreeViews>

[211]

Displaying Views of Data (Part 11)

From the code behind, we will invoke a method called createDirectoryTreevView ()
in the Page_Load event of the web page as shown as follows:

if (!IsPostBack)
{
String directoryPath = "C:\\Projects";
DirectoryInfo directoryInfo = new
System.IO.DirectoryInfo(directoryPath) ;
if (directoryInfo != null)
{
TreeNode rootDirectoryNode =
CreateDirectoryTreeView (directoryInfo, null);
if (rootDirectoryNode != null)
TreeViewl .Nodes.Add (rootDirectoryNode) ;

}

Note that we have set the base directory path as "c:\\Projects". You can change
this path depending on your requirements. The CreateDirectoryTreeView ()
method is a recursive method that accepts two arguments, one is an instance of
DirectoryInfo that points to the base directory and the other is the parent node. We
will pass the second parameter as null.

Inside the CreateDirectoryTreeView () method the base node is created using

the TreeNode instance. The sub-directories and the files contained under a specific
directory are retrieved using the DirectoryInfo and the FileInfo classes as shown
in the following code snippet:

TreeNode baseNode = new TreeNode (directoryInfo.Name) ;
DirectoryInfo[] subDirectories = directoryInfo.GetDirectories() ;
FileInfo[] filesInDirectory = directoryInfo.GetFiles() ;

Now, the sub-directories inside the base directory are iteratively retrieved inside a
loop and the createDirectoryTreeView () method is recursively called. Then the
child nodes under a particular parent node are added. Refer to the following

code snippet:

for (int i = 0, n = subDirectories.Length; 1 < n; i++)
CreateDirectoryTreeView (subDirectories[i], baseNode) ;

[212]

Chapter 7

Note how the CreateDirectoryTreevView () method is recursively called with
the sub-directory and the base node as parameters. The sub-directories collection
contains a collection of all directories under a particular directory.

for (int ctr = 0, cnt = filesInDirectory.Length; ctr < cnt; ctr++)

{
TreeNode childNode = new TreeNode (filesInDirectory[ctr] .Name) ;
baseNode.ChildNodes.Add (childNode) ;

}

Refer to the code snippet above. The £ilesInDirectory collection contains a
collection of the list of files under a particular directory. Next, the base node (if the
parent node is null) or the parent node itself is returned. Here is the complete source
code for the CreateDirectoryTreevView () method:

TreeNode CreateDirectoryTreeView (DirectoryInfo directoryInfo,
TreeNode parentNode)
{
TreeNode baseNode = new TreeNode (directoryInfo.Name) ;
DirectoryInfo[] subDirectories =
directoryInfo.GetDirectories() ;
FileInfo[] filesInDirectory = directoryInfo.GetFiles() ;
for (int i = 0, n = subDirectories.Length; 1 < n; i++)
CreateDirectoryTreeView (subDirectories[i], baseNode) ;
for (int ctr = 0, cnt = filesInDirectory.Length; ctr < cnt;
ctr++)

TreeNode childNode = new
TreeNode (filesInDirectory [ctr] .Name) ;
baseNode.ChildNodes.Add (childNode) ;

}

if (parentNode == null)
return baseNode;
parentNode.ChildNodes.Add (baseNode) ;
return parentNode;

[213]

Displaying Views of Data (Part 11)

Using the TreeView SelectedNodeChanged event handler

You can use the SelectedNodeChanged event handler of the
TreeView control to perform any custom operations such as,
collasping the nodes. You can also check the depth of the selected
nodes using the Depth property. Here is the code snippet that
illustrates this:

protected void TreeViewl SelectedNodeChanged
(object sender, EventArgs e)

Ky {
3
{
}

else if (TreeViewl.SelectedNode.Depth == 1)

{
}

(TreeViewl.SelectedNode.Depth == 0)

TreeViewl.CollapseAll () ;

Response.Write (TreeViewl.SelectedNode.Text) ;

Summary

In this chapter, we saw some of the data view controls like the DetailsView,
FormView and the TreeView controls and how we can use them in our ASP.NET
applications. In the following and the concluding chapter of this book we will have a
look at LINQ and how we can use it to bind data to the new data controls available
in Orcas.

[214]

Working with LINQ

This is the last chapter in our journey. I will show you how to work with the new
data source controls using LINQ and how we can use LINQ to bind data to these
controls and perform various other operations. LINQ is a part of the new versions of
the C# and VB.NET compilers and it comes with a powerful set of operators to ease
the task of querying different data sources, like, SQL Server, XML and so on.

In this chapter, we will learn about the following:

e Introducing LINQ; its benefits and features
e The architecture of LINQ

¢ Querying data using LINQ

e Using the ListView Control

e Using the DataPager Control

e Data binding using LINQ

Introducing LINQ

In this section we will explore how we can use LINQ with the new data source
controls that have been shipped as part of Orcas. Fine, but, what is LINQ anyway?
LINQ or Language Integrated Query is a query translation pipeline that has been
introduced as part of the C# 3.0 library. Microsoft states, "The LINQ Project is

a codename for a set of extensions to the NET Framework that encompasses
language-integrated query, set, and transform operations. It extends C# and Visual
Basic with native language syntax for queries and provides class libraries to take
advantage of these capabilities." It is Microsoft's offering for an Object Relational
Mapping between your business objects and the underlying data sources. These data
sources can be databases or even XML document files. As of now, C# 3.0, F# and VB
9 have support for LINQ. You can get more information from the LINQ FAQ at the
MSDN forums.

Working with LINQ

LINQ comprises of a standard set of operators to facilitate query operations. We will
learn more on LINQ query operators later in this chapter.

Why LINQ?

LINQ is an awesome, new feature available as part of C# 3.0 and allows you to
integrate queries right into your programs. It is an extension to the C# language and
provides a simplified framework for accessing relational data in an Object Oriented
manner. Here is how you can search for an employee from our employee table
using LINQ:

var result =
from emp in Employee

where emp.EmpName == "Jini"

select c.EmpCode;

So, how do you benefit? Well, in using LINQ, the complexities are much reduced and
you can easily debug your queries.

Understanding the LINQ Architecture

In this section we will discuss the basic components of the architecture of LINQ. I
will now familiarize you with what LINQ is all about, the components involved in its
architecture, and so on. The following figure illustrates the LINQ architecture:

| c# | |vBNET|| F# |

Languages Supporting LINQ

Language Integrated Query (LINQ)

1 1 1 1

LINQ to LINQ to LINQ to
LIN XML
Qto SQL Entities DataSets
{ f ! !
) SQL Server Business
XML files Database Entities DataSets

Data Sources that Support Language Integrated Query (LINQ)

[216]

Chapter 8

LINQ to XML maps your LINQ queries or LINQ statements to the corresponding
XML data sources. It helps you to use the LINQ standard query operators to retrieve
XML data. LINQ to XML is commonly known as XLINQ. You can also use LINQ

to query your in-memory collections and business entities (objects that contain data
related to a particular entity) seamlessly.

Similar to XLINQ (for querying your XML documents), you also have DLINQ
which is an implementation of LINQ that allow you to query your databases. LINQ
to SQL is or DLINQ as it is called is actually an ORM (Object relational Mapping)
tool. When using LINQ to SQL, the DataContext class in the System.Data.Ling
namespace is used to create your data contexts. All your data context classes will
derive from the base DataContext class. DataContexts are responsible for generating
the corresponding SQL statements when using LINQ to SQL. In other words, the
DataContext accepts the LINQ statements as input, processes them, and produces
the corresponding T-SQL statements as output. We will learn more on DataContexts
later in this chapter.

Creating Business Entities that are mapped to database tables

You can use either the Designer included in VS.NET or the SqlMetal.exe
tool for creating business entities that are mapped to database tables.

Before we start using LINQ to bind data to the data controls, let us have a look at the
new data controls introduced in Orcas. We will then use LINQ to bind data to those
controls. We will discuss these new data controls later in this chapter.

Operators in LINQ

Powered by a rich set of query operators and expressions, you can use LINQ with
absolutely any data source! You can use LINQ with any supported data sources like
relational databases, XML files. Moreover, LINQ is type safe and extensible.

LINQ offers you a collection of some powerful operators that make your task of
querying data much easier.

The following is the list of some commonly used operators in LINQ:

o Select

o SelectAll
o Where

e OrderBy
e Skip

e SkipWhile

[217]

Working with LINQ

I recommend taking a look at the LINQ specification documents to have a more
detailed reference to these operators and how they are used.

Required namespaces

. You should include the System.Data.DLing namespace if you want to
% use LINQ for SQL. For LINQ to XML or XLINQ, include the System.
" Xml.Ling namespace. If you want LINQ to Business entities, include the
System.Ling in your applications. For using Lamda expressions, you
- should include the System.Ling.Expressions namespace. -

Querying Data Using LINQ

Let us take a look at how we can use LINQ to query data in our applications. The
following code snippet illustrates how you can use LINQ to display the contents of
an array:

String[] employees = {"Joydip", "Douglas", "Jini", "Piku", "Amal",
"Rama", "Indronil"};
var employeeNames = from employee in employees select employee;

foreach (var empName in employeeNames)
Response.Write (empName) ;

Let us now understand how we can use LINQ to query a generic list. Consider the
Generic Employee List given as follows:

private static List<String> GenericEmployeeList = new List<Strings ()

"Joydip", "Douglas", "Jini", "Piku",
"Rama", "Amal", "Indronil"

}i
Now you can use LINQ to query this list as shown in the following code snippet:

IEnumerable<String> employees = from emp in GenericEmployeeList
select emp;
foreach (string employee in employees)

{

Response.Write (employee) ;

}

You can use conditions with your LINQ query too. The following example
shows how.

IEnumerable<String> employees = from emp in GenericEmployeeList where
emp.Length > 4 select emp;
foreach (string employee in employees)

[218]

Chapter 8

Response.Write (employee) ;

}

In this code snippet, we used LINQ to display the employee names that are more
than 4 characters in length. The above query displays the following output:

Joydip
Douglas
Indronil

Here is another example of how you can use conditional queries with LINQ. To
display the names of the employees whose names start with the letter "J", you can
use the following;:

IEnumerable<String> employees = from emp in GenericEmployeeList where
emp.StartsWith("J")
select emp;

foreach (String employee in employees)

{
}

This code snippet will result in the following employee names being displayed.

Response.Write (employee) ;

Joydip
Jini

As you can see from the above output, only those employees whose names start with
the letter "J" are displayed.

Alternatively, you can use LINQ with any other collections too. As an example,
the following code illustrates how you can use LINQ to retrieve the details of
selective employees from a DataTable instance that contains a collection

of employees:

DataTable empDataTable = new DataTable() ;
empDataTable.Columns.Add ("EmpCode", typeof (String)

() ;
empDataTable.Columns.Add ("EmpName", typeof (String)) ;

())
empDataTable.Columns.Add ("Salary", typeof (Decimal)) ;

empDataTable.Columns.Add ("DeptCode", typeof (String

empDataTable.Rows.Add ("E0O001", "Joydip", "D0O0O1",23000);
empDataTable.Rows.Add ("E0002", "Douglas", "D0002", 45000) ;
empDataTable.Rows.Add ("E0O003", "Jini", "DO0O0OO1l", 12000) ;
empDataTable.Rows.Add ("E0004", "Piku", "DO0003", 13000) ;
empDataTable.Rows.Add ("E0O005", "Rama", "DO0003", 27500) ;
empDataTable.Rows.Add ("E0006", "Amal", "DO0002", 19500) ;

[219]

Working with LINQ

var empRecords = from row in empDataTable.AsEnumerable ()
where row.Field<decimals ("Salary") > 15000
select row;

foreach (var emp in empRecords)

Response.Write ("
"+emp ["EmpCode"] .ToString () + "\t" +
emp ["EmpName"] .ToString () + "\t" + emp["Salary"].ToString());

I will now show you how you can use LINQ to query data from a generic list. Here is
the code that illustrates this.

List<Employee> empList = new List<Employee> ()

{

new Employee

{

EmpCode = "E0001", EmpName = "Joydip", DeptCode
"DO00O1", Salary = 23000
}l
new Employee
{
EmpCode = "E0002", EmpName = "Douglas", DeptCode =
"DO003", Salary = 45000
1
new Employee
EmpCode = "E0003", EmpName = "Jini", DeptCode = "D0002",
Salary = 15000

i
var empRecords = from row in empList.AsEnumerable ()
where row.Salary > 15000
select row;
foreach (var emp in empRecords)
Response.Write ("
" + emp.EmpCode.ToString() + "\t" +
emp . EmpName . ToString () + "\t" + emp.Salary.ToString()) ;

Here is the code for our Employee class.

public class Employee

{
public string EmpCode { get; set;}
public string EmpName { get; set;}
public string DeptCode { get; set;}
public DateTime JoiningDate { get; set;}
public decimal Salary { get; set;}

[220]

Chapter 8

The New Data Controls in VS.NET 2008
(Orcas)

Orcas, as it is called, is the next release of Microsoft's Visual Studio .NET (VS.NET

2008) and is compliant with the Microsoft's Vista Operating System. The new data

controls added with Orcas include the DataPager control and the ListView control.
In this section we will discuss how we can use LINQ to bind data to these controls

seamlessly. We will use the DataManager class as we did in the earlier chapters to
retrieve data from the database and bind the data retrieved to the data controls.

Using the ListView Control

Using the ListView control you have complete control over the generated HTML
code. Moreover, you can use the ListView control for CRUD (Create, Update, Read
and Delete) operations and data paging too. To use the ListView control, switch to
the design view mode of your web page and then simply drag and drop the control
from the toolbox as shown in the following screenshot:

&9 WebSitel - Microsoft Visual Studio

Eile Edit View Website Build Debug Format Table Tools Test Window Hel

R RCERAN ™ - L - & p Debug » MET
e S S| = 2 | XHTMLLO Transition: ~ | & - Style Application: Manual -
Toolbox ~ 3 X ListView.aspx

Rk Pointer ~[|| [div

_p AccessDataSource

4| Datalist ListView - ListViewl

=l DetailsView Choose a data source to provide data for the ListView.

| FarmView The temTemplate and LaycutTemplate are required.

A Gridview

3 ObjectDataSource

~— Repeater
| = LISt\JTV?\i

ﬂ} SiteMapDataSource
__j SglDataScurce

'_mii, XmlDataSource

m

wew DataPager
[LingDataSource
+ Validation

The corresponding code that gets generated in the . aspx file is as follows.

<asp:ListView ID="ListViewl" runat="server"></ asp:ListViews>

[221]

Working with LINQ

The ListView control in ASP.NET supports the following templates for customization.

e ItemTemplate

e LayoutTemplate

¢ EmptyltemTemplate

e EmptyDataTemplate

e SelectedltemTemplate

o EditltemTemplate

e AlternatingltemTemplate
e InsertltemTemplate

e ItemSeparatorTemplate

e GroupTemplate

e GroupSeparatorTemplate

I will now show you how to use the ListView control to display data without writing
even a single line of code. Configure the DataSource property of the ListView
control to a valid DataSource. Refer to the following screenshot:

30 WebSitel - Microsoft Visual Studio

File Edit View Website Build Debug Format Table Tools Test Window Help

-G @ %GB0 - -5 b Debug - NET)

& = 5| = 2 | XHTML1.0 Transition: ~ @ - : Style Application: Manual ~ Target Rule: (New Inline Style) v;
Toolbox -1 x Start Page | Default.aspxcs | ListView.aspr.cs ListView.aspx®

E ;;;th 0 asp:listviewFListviewl

53] PlaceHolder ListView - ListViewl Common ListView Tasks

01 View Choose a data source to provide data for the ListView. T | Choose Data Source: | (Mone) B

ContentPlaceHalder The ItemTemplate and LayoutTemplate are required. [_

75| Substitution New dats sqtj\\?rce..)

4GF Localize

-l Data

I Pointer

_@ AccessDataSource

1| DatalList

=l DetailsView

-_J FormView

A GridView 1

_\g ObjectDataSource r

“ Repeater
MESDU!CE

[222]

Chapter 8

We will skip this section on configuring the DataSource as we have already
discussed it with other controls in Chapter 1 of this book. Once you have
configured the DataSource, you can configure the ListView control using the
ConfigureListView option of the ListView control in the design view mode of the
web page. When you select the above option, the window shown in the following
screenshot pops up:

Configure ListView lk Ll_J@ X
Select a Layout: Preview:
g:ﬁite d List EmployeelD EmployeeName JoiningDate Salary Departmentl
Flow Databound Databound Databound Databound Databound
Single Row Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
Select a Style: Databound Databound Databound Databound Databound |
. Databound Databound Databound Databound Databound |~
Colorful Databound Databound Databound Databound Databound
g[,f :SSIDH ’ Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
_ Databound Databound Databound Databound Databound
Options: Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound
[] Enable Paging Databound Databound Databound Databound Databound
Databound Databound Databound Databound Databound = ™
4 L1} [
OK l l Cancel

[223]

Working with LINQ

Select Professional in the Select a Style option and then click on the OK button.
When you execute the application, the output is similar to what is shown in the
following screenshot:

& ListView - Windows Internet Explorer

| € | http://localhost:49366,/ WebSitel /ListView.aspx

Google (G~ [*] 6o {g—.j 8- | ¥% Bookmarksv 74 blocked | "% Check v % Autolink
o R | @& ListView

EmployeelID EmployeeName JoiningDate Salary DepartmentID

3 Joydip 08-09-2007 00:00:00 2000.0000 1

4 Douglas 08-09-2007 00:00:00 75000.00001

5 Jini 08-09-2007 00:00:00 15500.0000 2

6 Rama 01-09-2007 00:00:00 18500.0000 3

7 Amal 10-12-2006 00:00:00 22000.0000 4

8 Piku 01-09-2007 00:00:009000.0000 5

9 Indronil 08-09-2007 00:00:00 19000.0000 2

27 Bapila 02-01-2005 00:00:00 32500.00004

Using the DataPager Control

The DataPager control in Orcas can be used for custom paging using the ListView
control. Here is the code that you can write in your . aspx file to use a DataPager
control.

<asp:DataPager ID="dataPager" runat="server"
PagedControlID="GridViewl" PageSize="4">
<Fields>
<asp:NumericPagerField NextPageText="Next Page"
PreviousPageText="Previous Page"/>
</Fields>
</asp:DataPagers>

Note that you can specify the list control with which you want to enable paging
using the PagedControlID and you can set the page size of your choice using the
pageSize property. I will now illustrate how easily you can achieve customized
paging with the Listview control using a DatapPager. Here is the code that you need
to write in your . aspx file.

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="SglDataSourcel"
DataKeyNames="EmployeeID" ItemContainerID="SqglDataSourcel">
<layouttemplate>

[224]

Chapter 8

<table id="employeeTable" runat="server" border="1">
<tr>
<th>EmployeeID</th>
<th>EmployeeName</th>
<th>JoiningDate</th>
<th>Salary</th>
<th>DepartmentID</th>
</tr>
<tbody id="SglDataSourcel"
runat="server">
</tbody>
</table>
<asp:Panel ID="itemContainer" runat="server"s
<asp:DataPager ID="dataPager" runat="server"
PageSize="4" PagedControlID="ListViewl">
<Fieldss>
<asp:NumericPagerField/>
</Fields>
</asp:DataPager>
</asp:Panel>
</layouttemplates
<ItemTemplates>
<tr>
<td>
<asp:Label ID="EmployeeIDLabel" runat="server"
Text="'<%# Eval ("EmployeeID") %>'/>

</td>
<td>
<asp:Label ID="EmployeeNameLabel" runat="server"
Text="'<%# Eval ("EmployeeName") %>'/>
</td>
<td>
<asp:Label ID="JoiningDatelLabel" runat="server"
Text="'<%# Eval ("JoiningDate") %>'/>
</td>
<td>

<asp:Label ID="SalaryLabel" runat="server" Text='<%#
Eval ("Salary") %>'/>

</td>

<td>
<asp:Label ID="DepartmentIDLabel" runat="server"

Text="'<%# Eval ("DepartmentID") %>'/>
</td>
</tr>

[225]

Working with LINQ

</ItemTemplates>

</asp:ListView>

<asp:SglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="<%$
ConnectionStrings:joydipConnectionString %>"
SelectCommand="SELECT [EmployeeID], [EmployeeName],
[JoiningDate], [Salaryl, [DepartmentID] FROM [Employee]">

</asp:SglDataSource>

And, here is the output when you execute the sample application.

f"f Paging with ListView Control - Windows Internet Explorer

ol Rl ¢ hitp://localnost:19366/WebSitel /PagedListView.aspx

GG.Jgk Gl E Go {pf\f) E - ‘ 'i:;’ Bookmarksw @]?4 blocked A:f/ Check
Ui 4k | @ Paging with ListView Control

EmploveelD EmploveeName JoiningDate Salary | DepartmentID

3 Jovdip 08-09-2007 00:00:00 2000.0000 |1

4 Douglas 08-09-2007 00:00:00 75000.0000 |1

5 Jini 08-09-2007 00:00:00 155000000 2

6 Rama 01-09-2007 00:00:00 18500.0000 3

12

The next section discusses how you can use LINQ to bind data to ASP.NET data
controls. We will learn how we can use LINQ to bind data to GridView and the
newly introduced ListView control of Orcas.

Data Binding Using LINQ

In this section we will explore how we can use LINQ to bind data to the new data
controls introduced in Orcas, ListView and use the DataPager control for paging
through the records of the ListView control. The DataPager control is used for
providing paging features to the ListView control as the latter does not support this
feature by default. I will first show you how you can use LINQ to bind data to the
GridView control.

Drag and drop a GridView control onto your web form from the toolbox. Now, we
will create an Employee Collection class and name it as Employees. This class will
hold a collection of Employee instances.

[226]

Chapter 8

We will add the following method to our existing DataManager class:

public Employees GetAllEmployees ()
{
SglConnection conn = null;
Employees employeelList = null;
try
{
conn = new SglConnection(connectionString) ;
conn.Open () ;
string sql = "select EmployeeID as EmpCode, EmployeeName
as EmpName, Salary as Salary, e.DepartmentID as
DeptCode, d.DepartmentName as DeptName from employee e,
Department d where e.DepartmentID = d.DepartmentID";
SglCommand cmd = new SglCommand(sqgl, conn) ;
SglDataReader dr = cmd.ExecuteReader () ;
employeelList = new Employees() ;
while (dr.Read())

{

Employee emp = new Employee() ;

if (dr["EmpCode"] != DBNull.Value)
emp.EmpCode = dr ["EmpCode"] .ToString() ;
if (dr["EmpName"] != DBNull.Value)
emp.EmpName = dr ["EmpName"] .ToString() ;
if (dr["Salary"] != DBNull.Value)

emp.Basic =
Convert.ToDouble (dr ["Salary"] .ToString()) ;

if (dr["DeptCode"] != DBNull.Value)
emp.DeptCode = dr["DeptCode"] .ToString() ;
if (dr[«DeptName»] != DBNull.Value)

emp.DeptName = dr [«DeptName»] .ToString() ;
employeelist.Add (emp) ;
emp = null;

}

catch

{
}

finally

{
}

return employeelist;

throw;

conn.Close() ;

[227]

Working with LINQ

Note that the Getal1Employees () method returns an instance of Employees class.
The Employees class is actually List type and comprises of a collection of Employee
instances. In the Page_Load event of the web form, write the following code:

DataManager dataManager = new DataManager () ;
Gridviewl.DataSource = from emp in dataManager.GetAllEmployees ()
where emp.Basic > 10000
select new

{
emp . EmpCode,
emp . EmpName,
emp.Basic

}i

GridvViewl.DataBind() ;

Note that we have used the where clause to restrict the display. Only those
employees whose Basic is greater then 10000 will be retrieved by the LINQ statement
and the result set bound to the GridView control.

Let us now take a look at how we can use LINQ with the ListView control. We will
use the same ListView control that we used earlier. We will however need to change
the DataSourcelD and the ItemContainerID of the ListView control to point to the
LINQ DataSource that we will create. Here is the source code for the LINQ data
source control that we will use.

<asp:LingDataSource ID="linkDataSource" runat="server"
ContextTypeName="DataClassesDataContext"
TableName="Employee" Select="new (EmployeeID as EmployeelD,
EmployeeName as EmployeeName, JoiningDate as JoiningDate, Salary
as Salary, DepartmentID as DepartmentID)"
OrderBy="EmployeeName" />

Note that we have used the orderBy clause to sort the result set in ascending order
of employee names.

[228]

Chapter 8

As you can see in this code snippet, we have used a DataContext. You use a
DataContext to convert your requests in LINQ for objects into corresponding
queries in Sql. Data contexts are supported using the System.Data.Ling.
DataContext class. Note that we specified our DataContext using the
ContextTypeName clause in the above code snippet. Let us now understand how
we can create our own DataContext.

Create a new data class and name it DataClasses.dbml as shown in the
following screenshot:

Add New Item - C:\Users\joydip\Documents\Visual Studio 2008\WebSites\WebSitel\ [[
Templates: =
Visual Studic installed templates
] AJAX-enabled WCF Service] Class % Class Diagram
| 2] DataSet (21 LING to SQL Classes 5] Report
2 Report Wizard =] Text File

My Templates

.{Search Online Templates...

LING to 5QL classes mapped to relational objects.

Marne: DataCIasses.ﬁbml

Language: Visual C# - Place code in separate file

Select master page

Add || Cancel

[229]

Working with LINQ

Switch to the designer view of the newly created file and create a DataContext by
dragging and dropping the employee table from the ServerExplorer as shown in the
following screenshot:

30 WebSitel - Microsoft Visual Studio
File Edit View Website Build Debug Data Tools Test Window Help

§-E-sdHa s LSS Db Dby o N
Server Explorer - I X ListView.aspx " App_Code/DataClasses.dbml™
EIRENRS.
=~ |44 Data Connections
o J joydip-pc.Test.dbo
+ [Database Diagrams
_ [J Tables
+] Department
: = 6 = =)
- [Views Employee B
+ [Stored Procedures
+ [[3 Functions = Properties
- [Synenyms 7 EmployeelD
+ [Types . L f,:‘ EmployesName
; +- [Assemblies % EmployeeAddress
= Senfers _ % JoiningDate
= é joydip-PC ey Salary
+ i+ Crystal Reports Services % DepartmentlD
- M Event Logs

- iyl Management Classes
- [#¥ Management Events

- _‘g Message Queues

4+ | Performance Counters
- g Services

o[-

... [

Save and you are done! Your DataContext class is created.

To put it simply, the DataContext accepts LINQ statements, processes them and
generates corresponding T-SQL code. You can generate a DataContext either using
the Designer as we have seen or even using a tool called SqlMetal. Note that all
DataContext classes actually derive from the DataContext class that belongs to the
System.Data.Ling namespace.

Here is the compiler generated code for the DataContext we just created.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Data.Ling;

using System.Data.Ling.Mapping;
using System.Ling;

[230]

Chapter 8

using System.Ling.Expressions;

using System.Reflection;

[System.Data.Ling.Mapping.DatabaseAttribute (Name="Test")]

public partial class DataClassesDataContext:

System.

Data.Ling.DataContext

private static System.Data.Ling.Mapping.MappingSource

mappingSource = new AttributeMappingSource() ;

#region
partial
partial
partial
partial

Extensibility Method Definitions

void OnCreated() ;

void InsertEmployee (Employee instance) ;
void UpdateEmployee (Employee instance) ;
void DeleteEmployee (Employee instance) ;

#endregion

static DataClassesDataContext ()

{
}

public DataClassesDataContext (string connection) :

base (connection, mappingSource)

}

OnCreated () ;

public DataClassesDataContext (System.Data.IDbConnection

connection) : base (connection, mappingSource)

{
}

OnCreated () ;

public DataClassesDataContext (string connection,

System.Data.Ling.Mapping.MappingSource mappingSource) :

base (connection, mappingSource)

{
}

OnCreated () ;

public DataClassesDataContext (System.Data.IDbConnection

connection, System.Data.Ling.Mapping.MappingSource

mappingSource) : base (connection, mappingSource)

OnCreated () ;

public DataClassesDataContext () :

base (global::System.Configuration.ConfigurationManager.Connection

Strings ["TestConnectionString"] .ConnectionString, mappingSource)

{

OnCreated () ;

[231]

Working with LINQ

}

public System.Data.Ling.Table<Employee> Employees
{
get

{

return this.GetTable<Employees> () ;

}

[Table (Name="dbo.Employee")]
public partial class Employee:INotifyPropertyChanging,
INotifyPropertyChanged

private static PropertyChangingEventArgs emptyChangingEventArgs =
new PropertyChangingEventArgs (String.Empty) ;

private int EmployeelID;

private string EmployeeName;

private string EmployeeAddress;

private System.Nullable<System.DateTime> JoiningDate;

private decimal _Salary;

private int DepartmentID;

#region Extensibility Method Definitions

partial void OnLoaded () ;

partial void OnValidate() ;

partial void OnCreated() ;

partial void OnEmployeeIDChanging(int value) ;

partial void OnEmployeeIDChanged() ;

partial void OnEmployeeNameChanging(string value) ;

partial void OnEmployeeNameChanged() ;

partial void OnEmployeeAddressChanging(string value) ;

partial void OnEmployeeAddressChanged () ;

partial void OnJoiningDateChanging (System.Nullable

<System.DateTime> value) ;

partial void OnJoiningDateChanged () ;

partial void OnSalaryChanging(decimal value) ;

partial void OnSalaryChanged() ;

partial void OnDepartmentIDChanging (int wvalue) ;

partial void OnDepartmentIDChanged() ;

#endregion

public Employee ()

{

OnCreated () ;

}

[Column (Storage="_ EmployeeID", AutoSync=AutoSync.OnInsert,

[232]

Chapter 8

DbType="Int NOT NULL IDENTITY", IsPrimaryKey=true,
IsDbGenerated=true)]
public int EmployeelID
{
get

{

return this. EmployeelD;
set

if ((this. EmployeeID != value))

{
this.OnEmployeeIDChanging (value) ;
this.SendPropertyChanging() ;
this. EmployeelD = value;
this.SendPropertyChanged ("EmployeeID") ;
this.OnEmployeeIDChanged () ;

}

[Column (Storage="_ EmployeeName", DbType="VarChar (50) NOT NULL",
CanBeNull=false)]
public string EmployeeName
{
get

{

return this. EmployeeName;
set

if ((this. EmployeeName != value))

{
this.OnEmployeeNameChanging (value) ;
this.SendPropertyChanging () ;
this. EmployeeName = value;
this.SendPropertyChanged ("EmployeeName") ;
this.OnEmployeeNameChanged () ;

}

[Column (Storage="_ EmployeeAddress", DbType="VarChar (MAX)")]
public string EmployeeAddress

{

get

[233]

Working with LINQ

return this. EmployeeAddress;

if ((this. EmployeeAddress != value))

{
this.OnEmployeeAddressChanging (value) ;
this.SendPropertyChanging() ;
this. EmployeeAddress = value;
this.SendPropertyChanged ("EmployeeAddress") ;
this.OnEmployeeAddressChanged () ;

}
[Column (Storage="_ JoiningDate", DbType="DateTime")]
public System.Nullable<System.DateTime> JoiningDate

get

{

return this. JoiningDate;

if ((this. JoiningDate != value))

this.OnJoiningDateChanging (value) ;
this.SendPropertyChanging () ;

this. JoiningDate = value;
this.SendPropertyChanged ("JoiningDate") ;
this.OnJoiningDateChanged () ;

}

[Column (Storage="_Salary", DbType="Money NOT NULL")]
public decimal Salary

{

get

{

return this. Salary;

if ((this._Salary != value))

{

[234]

Chapter 8

this.OnSalaryChanging (value) ;
this.SendPropertyChanging () ;

this. Salary = value;
this.SendPropertyChanged ("Salary") ;
this.OnSalaryChanged () ;

[Column (Storage=" DepartmentID", DbType="Int NOT NULL")]
public int DepartmentID

{

get

{
return this. DepartmentID;

}

set

{
if ((this. DepartmentID != value))
{

this.OnDepartmentIDChanging (value) ;
this.SendPropertyChanging() ;

this. DepartmentID = value;
this.SendPropertyChanged ("DepartmentID") ;
this.OnDepartmentIDChanged () ;

}
public event PropertyChangingEventHandler PropertyChanging;
public event PropertyChangedEventHandler PropertyChanged;
protected virtual void SendPropertyChanging ()
{

if ((this.PropertyChanging != null))

{

this.PropertyChanging(this, emptyChangingEventArgs) ;

}

protected virtual void SendPropertyChanged (String propertyName)

{
if ((this.PropertyChanged != null))
{
this.PropertyChanged (this, new
PropertyChangedEventArgs (propertyName)) ;

[235]

Working with LINQ

You can even use your DataContext in more ways than one. The following code
illustrates how you can play with the DatacContext to retrieve the EmployeeID of the
employee whose name is "Jini".

using (DataClassesDataContext context = new DataClassesDataContext ())
Employee emp = context.Employees.Single<Employee>
(e => e.EmployeeName.Equals ("Jini")) ;
Response.Write (emp.EmployeeID) ;

}

Next we need the ListView control in our web form which will be used to display the
employee records. This ListView control will make use of the LINQ data source that
we just created to retrieve data from the employee table.

The following is the source code for the ListView control in our . aspx file.

<asp:ListView ID="ListViewl" runat="server"
DataSourceID="linkDataSource"
DataKeyNames="EmployeeID" ItemContainerID="linkDataSource">

<layouttemplate>
<table id="employeeTable" runat="server" border="1">
<tr>
<th>EmployeeID</th>

<th>EmployeeName</th>
<th>JoiningDate</th>
<th>Salary</th>
<th>DepartmentID</th>
</tr>
<tbody id="linkDataSource"
runat="server">
</tbody>
</table>
<asp:Panel ID="itemContainer" runat="server"s
<asp:DataPager ID="dataPager" runat="server"
PageSize="4" PagedControlID="ListViewl">
<Fields>
<asp:NumericPagerField/>
</Fields>
</asp:DataPager>
</asp:Panel>
</layouttemplate>
<ItemTemplates>
<tr>
<td>

[236]

Chapter 8

<asp:Label ID="EmployeeIDLabel" runat="server"
Text="'<%# Eval ("EmployeeID") $%>' />

</td>
<td>
<asp:Label ID="EmployeeNameLabel" runat="server"
Text="'<%# Eval ("EmployeeName") $%>' />
</td>
<td>

<asp:Label ID="JoiningDateLabel" runat="server"
Text='<%# Bind("JoiningDate","{0:d}") %>' />
</td>
<td>
<asp:Label ID="SalaryLabel" runat="server" Text='<%#
Bind("Salary","{0:c}") %>' />
</td>
<td>
<asp:Label ID="DepartmentIDLabel" runat="server"
Text="'<%# Eval ("DepartmentID") $%>' />
</td>
</tr>
</ItemTemplates
</asp:ListView>

The following screenshot shows the output on execution of the application:

ff' Using LINQ with List View Control - Windows Internet Explorer

BBl < http://localnost:49366/WebSitel /PagedlistView.sspx

S7 4t | @ Using LINQ with List View Control

Employveell) EmploveeName JoiningDate Salary DepartmentID

7 Amal 10-12-2006 Rs. 22,000,004
27 Bapila 02-01-2005 Rs.32.,500.00 4
4 Douglas 08-09-2007 Rs. 75.000.001
9 Indronil 08-09-2007 Rs. 19.000.00 2
12

As you can see from the above output, the output is sorted based on the
employee names.

[237]

Working with LINQ

Summary

In this final chapter we have had a look at LINQ and how we can use it to bind data
to the ASP.NET data controls and the newly introduced ListView control of Orcas. I
admit that LINQ is too powerful and extensive to be covered in one single chapter.
However, I have thrown light on the most important areas and presented you with,
how you can use the awesome power of LINQ in our applications to query and bind
data to the data controls. That's the end of our journey! Happy reading!

[238]

A

ASP.NET
data binding 5
data binding model 6
DataGrid control 109, 110
DataList control 91
DetailsView control 183
FormView control 196
GridView control 139, 140
LINQ, working with 215
list controls 35
ListView control, templates 222
Repeater control 63, 64
TreeView control 204

B

BulletedList control, list controls types
about 54
BulletStyle property 55
bullet styles 55
data binding 57
data binding, ways 57
events, handling 58
list items 54
list items, appending 55, 56
list items, removing 57
list items, selecting 56

C

CheckBoxList control, list controls types
about 48
CustomCheckBoxList control,
design view mode 53

Index

CustomCheckBoxList control,
event handlers 54

CustomCheckBoxList control, implement-
ing 51,52

CustomCheckBoxList control, using 53

data binding 50

events, handling 51

list items, appending 48, 49

list items, removing 50

list items, selecting 49

classes, data binding expressions
Data Manager class 12,13
Employee class 8, 10

D

data, filtering
Object data source control used 33
data binding
about 5
data binding expressions 7
data binding model 6
data source controls 13
data binding expressions
about 7
advantages 7
classes 8
DataGrid control
about 110
creating 110
customizing, Cascading Style Sheets
used 123
data, appending 127-131
data, deleting 135-137
data, displaying 121, 122
data, editing 132-134

paging 137,138
simple application, implementing 111-121
styles, applying 123-127
DatalList control
about 91, 92
adding in web page, steps 93
application, implementing 100, 101
data, deleting 107, 108
data, displaying 93
data, editing 103-106
data, selecting 102, 103
data binding, ways 93
data editing, ImageButton control used 103
event bubbling 98
events 98
events, handling 98, 99
images, binding 100
layouts, used 96
RepeatDirection, property 91
styles, used 96
template arrangement 94
template categories 94
templates 93
data source controls
about 13
Access data source control 14, 22
Access data source control, using 23-25
Object data source control 14
Object data source control, using 15-17
Object data source control methods 14, 15
SQL data source control 14,18
SQL data source control, using 18-22
Xml data source control 14, 25
Xml data source control, using 25-27
Data Source Paging
implementing, Object data source
control used 28, 29
Data Source Sorting
implementing, Object data source
control used 32
DetailsView control
about 183,184
master-details relationship of data,
implementing 184-196
DropDownlList control, list controls types
about 41
data binding 44

events, handling 44

events handlers, associating 45, 46

list items, appending 41, 42

list items, removing 43

list items, selecting 43

simple application, implementing 46, 47

F

FormView control
about 196-199
data, formatting 200-203

G

GridView control
about 140-143
CheckBox, displaying 146-148
comparing, with DataGrid control 144
data, deleting 164-168
data, exporting 169-171
data, inserting 163-168
data, sorting 162, 163
data, updating 164-168
data binding, LINQ used 226-228
design view 141
DropDownlList, displaying 144, 145
formatting 172-181
GridViewRow, color changing 148-150
paging 151, 152
tool tip, displaying 151
uses 140

H

Hierarchical GridView control
implementing 153-161

L

LINQ
about 215, 216
architecture 216, 217
ASP.NET, working with 215
data, querying 218-220
operators 217

ListBox control, list controls types
about 36

[240]

data binding 40
events, handling 40
list items, appending 36, 37
list items, removing 39
list items, selecting 38, 39
SelectionMode property 38

list controls
about 35
BulletedList control, types 54
CheckBoxList control, types 48
DropDownlList control, types 41
ListBox control, types 36
RadioButttonList control, types 58
types 36

ListView control, VS.NET 2008
about 221
data binding, LINQ used 228-237

(0

Orcas. See also VS.NET 2008

R

RadioButttonList control, list controls types

about 58
data binding 60
list items, appending 58, 59
list items, removing 60
list items, selecting 59
SelectedItem property 58
Repeater control
about 63, 64
behavior, customizing 65
BindpageData() method, data paging 75

checkboxes, displaying 70-72

data, displaying 64-69

data, filtering 81-86

data, sorting 78

DataManager class, revisiting 79, 80
data paging, implementing 73, 75
events, handling 87, 89

pages, navigating 76, 77

templates 65

T

TreeView control
about 204-208
directory structure, implementing 210-213

U

User Interface Paging
implementing, Object data source
control used 27, 28
User Interface Sorting
implementing, Object data source
control used 30, 31

VS.NET 2008

about 221

data, displaying ListView control used
222-224

data controls 221

DataPager control, used for custom paging
224-226

ListView control 221

[241]

PUBLISHING
LINQ Quickly
ISBN: 978-1-847192-54-7 Paperback: 250 pages

A Practical Guide to Programming Language
Integrated Query with C#

1. LINQ to Objects
LINQ to XML
LINQ to SQL

LINQ Quickly

LINQ to DataSets

S

LINQ to XSD

Microsoft AJAX Library

Essentials
ISBN: 978-1-847190-98-7 Paperback: 300 pages

A practical tutorial to enhancing the user experience
of your ASP.NET web applications with the final
release of the Microsoft AJAX Library

1. Arapid and practical guide to including AJAX
Microsoft AJAX C# Essentials features in your .NET applications

Building Responsive T 2.0 Applications
2. Learn practical development strategies
and techniques

3. Go through a case study that demonstrates the
theory you learned throughout the book.

Please check www.PacktPub.com for information on our titles

PUBLISHING

Wmdows Workflow Foundation

Programming Windows Workflow

Foundation
ISBN: 978-1-904811-21-3 Paperback: 252 pages

A C# developer's guide to the features and
programming interfaces of Windows Workflow

Foundation
1. Add event-driven workflow capabilities to your
.NET applications.
2. Highlights the libraries, services and internals
programmers need to know
3. Builds a practical "bug reporting" workflow
solution example app

ODP.NET
Developer’s Guide

ODP.NET Developer’s Guide
ISBN: 978-1-847191-96-0 Paperback: 328 pages

A practical guide for developers working with the
Oracle Data Provider for .NET and the Oracle Developer
Tools for Visual Studio 2005

1. Application development with ODP.NET

2. Dealing with XML DB using ODP.NET

3. Oracle Developer Tools for Visual Studio .NET

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction to Data Binding in ASP.NET
	The ASP.NET Data Binding Model
	Using the Data Binding Expressions
	The Employee and the Data Manager Classes

	New Data Source Controls in ASP.NET 2.0
	The Object Data Source Control
	Object Data Source Control Methods

	The SQL Data Source Control
	Using the SQL Data Source Control

	The Access Data Source Control
	Using the Access Data Source Control

	The XML Data Source Control
	Using the XML Data Source Control

	User Interface and Data Source Paging
	User Interface and Data Source Sorting
	Filtering Data Using the Object Data Source Control
	Summary

	Chapter 2: Working with List Controls in ASP.NET
	The ASP.NET List Controls
	Working with the ListBox Control
	Appending List Items to the ListBox Control
	Selecting one or more List Items
	Removing List Items from the ListBox Control
	Binding Data to the ListBox Control
	Handling ListBox Control Events

	Working with the DropDown List Control
	Appending List Items to the DropDownList Control
	Selecting a List Item
	Removing List Items from the DropDownList Control
	Binding Data to the DropDownList Control
	Handling DropDownList Control Events
	Associating Event Handlers to a dynamically generated DropDownList Control
	Implementing a Simple Application

	Working with the CheckBoxList Control
	Appending List Items to the CheckBoxList Control
	Selecting one or more List Items
	Removing List Items from the CheckBoxList Control
	Binding Data to the CheckBoxList Control
	Handling CheckBoxList Control Events
	Implementing a CustomCheckBoxList Control

	Working with the BulletedList Control
	Appending List Items to the BulletedList Control
	Selecting a List Item
	Removing List Items from the BulletedList Control
	Binding Data to the BulletedList Control
	Handling BulletedList Control Events

	Working with the RadioButtonList Control
	Appending List Items to the RadioButtonList Control
	Selecting a List Item
	Removing List Items from the RadioButtonList Control
	Binding Data to the RadioButtonList Control
	Handling RadioButtonList Control Events

	Summary

	Chapter 3: Working with the Repeater Control
	The ASP.NET Repeater Control
	Using the Repeater Control
	Displaying Data Using the Repeater Control
	Displaying Checkboxes in a Repeater Control

	Implementing Data Paging Using the Repeater Control
	The BindPagedData() Method
	Navigating through the Pages

	Sorting Data Using the Repeater Control
	Revisiting the DataManager Class

	Filtering Data Using the Repeater Control
	Handling Repeater Control Events
	Summary

	Chapter 4: Working with the DataList Control
	The ASP.NET DataList Control
	Using the DataList Control
	Displaying Data
	Handling Events

	Binding Images Dynamically
	Selecting Data
	Editing data
	Deleting Data

	Summary

	Chapter 5: Working with the DataGrid Control in ASP.NET
	The ASP.NET DataGrid Control
	Creating a DataGrid Control

	Implementing a Sample Application Using DataGrid Control
	Displaying Data
	Styling the DataGrid Control
	Appending Data Using the DataGrid Control
	Editing Data Using the DataGrid Control
	Deleting Data Using the DataGrid Control
	Paging Using the DataGrid Control

	Summary

	Chapter 6: Displaying Views of Data (Part I)
	The ASP.NET GridView Control
	Comparing DataGrid and GridView Controls
	Displaying DropDownList in a GridView Control
	Displaying CheckBox in a GridView Control
	Change the Row Color of GridView Control Using JavaScript
	Displaying Tool Tip in a GridView Control
	Paging Using the GridView Control

	Implementing a Hierarchical GridView
	Sorting Data Using the GridView Control
	Inserting, Updating and Deleting Data Using the GridView Control
	Exporting the GridView Data
	Formatting the GridView Control

	Summary

	Chapter 7: Displaying Views of Data (Part II)
	Working with the ASP.NET DetailsView Control
	Using the DetailsView Control

	Working with the ASP.NET FormView Control
	Formatting Data Using the FormView Control

	Working with the ASP.NET TreeView Control
	Implementing a Directory Structure as a TreeView
	Summary

	Chapter 8: Working with LINQ
	Introducing LINQ
	Why LINQ?

	Understanding the LINQ Architecture
	Operators in LINQ

	Querying Data Using LINQ
	The New Data Controls in VS.NET 2008 (Orcas)
	Using the ListView Control
	Using the DataPager Control

	Data Binding Using LINQ
	Summary

	Index

