
www.allitebooks.com

http://www.allitebooks.org

ABSOLUTE
JAVA™

 6th Edition
Global Edition

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ABSOLUTE
JAVA™

 6th Edition

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Global Edition

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska Anchorage

www.allitebooks.com

http://www.allitebooks.org

Vice President and Editorial Director, ECS: Marcia J.
Horton

Acquisitions Editor: Matt Goldstein
Assistant Acquisitions Editor, Global Edition:

Aditee Agarwal
Editorial Assistant: Kelsey Loanes
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Project Manager: Rose Kernan
Project Editor, Global Edition: Radhika Raheja
Program Manager: Carole Snyder
Global HE Director of Vendor Sourcing and Procurement:

Diane Hynes

Director of Operations: Nick Sklitsis
Operations Specialist: Maura Zaldivar-Garcia
Cover Designer: Lumina Datamatics
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:

Timothy Nicholls
Senior Manufacturing Controller, Production, Global

Edition: Trudy Kimber
Media Production Manager, Global Edition:

Vikram Kumar
Full-Service Project Management: Niraj Bhatt,

iEnergizer Aptara®, Ltd.
Composition: iEnergizer Aptara®, Ltd.
Cover Image: © LeicherOliver/Shutterstock

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The right of Walter Savitch and Kenrick Mock to be identified as the author of this work has been asserted
by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Absolute JAVA, 6th Edition, 9781292109220
9780134041674 by Walter Savitch and Kenrick Mock published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency
Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the
author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 129210922X

ISBN 13: 9781292109220

Typeset in Adobe Garamond 10.5/12 by iEnergizer Aptara®, Ltd.

Printed and bound by Courier Westford in Malaysia

www.allitebooks.com

http://www.pearsonglobaleditions.com
http://www.allitebooks.org

This book is designed to serve as a textbook and reference for programming in the
Java language. Although it does include programming techniques, it is organized
around the features of the Java language rather than any particular curriculum of
programming techniques. The main audience I had in mind when writing this book
was undergraduate students who have not had extensive programming experience with
the Java language. As such, it would be a suitable Java text or reference for either a first
programming course or a later computer science course that uses Java. This book is
designed to accommodate a wide range of users. The introductory chapters are written
at a level that is accessible to beginners, while the boxed sections of those chapters
serve to quickly introduce more experienced programmers to basic Java syntax. Later
chapters are still designed to be accessible, but are written at a level suitable for students
who have progressed to these more advanced topics.

CHANGES IN THIS EDITION

This sixth edition presents the same programming philosophy as the fifth edition. For
instructors, you can teach the same course, presenting the same topics in the same
order with no changes in the material covered or the chapters assigned. The changes to
this edition consist almost exclusively of supplementary material added to the chapters
of the previous edition, namely:

■ An introduction to functional programming with Java 8’s lambda expressions.
■ Additional content and examples on looping, networking, and exception handling.
■ Introduction to building GUIs using JavaFX.
■ Fifteen new programming projects.
■ Five new video notes for a total of 51 video notes. These videos cover specific topics

and offer solutions to selected programming projects. The videos walk students
through the process of problem solving and coding to reinforce key programming
concepts. An icon appears in the margin of the book when a video is available about
the corresponding topic in the text.

NO NONSTANDARD SOFTWARE

Only classes in the standard Java libraries are used. No nonstandard software is used
anywhere in the book.

JAVA COVERAGE

All programs have been tested with Java 8. Oracle is not proposing any changes to
future versions of Java that would affect the approach in this book.

Preface

 5

www.allitebooks.com

http://www.allitebooks.org

6 Preface

OBJECT-ORIENTED PROGRAMMING

This book gives extensive coverage of encapsulation, inheritance, and polymorphism
as realized in the Java language. The chapters on Swing GUIs provide coverage of and
extensive practice with event driven programming.

FLEXIBILITY IN TOPIC ORDERING

This book allows instructors wide latitude in reordering the material. This is important
if a book is to serve as a reference. It is also in keeping with my philosophy of writing
books that accommodate themselves to an instructor’s style rather than tying the
instructor to an author’s personal preference of topic ordering. With this in mind, each
chapter has a prerequisite section at the beginning; this section explains what material
must be covered before doing each section of the chapter. Starred sections, which are
explained next, further add to flexibility.

STARRED SECTIONS

Each chapter has a number of starred (★) sections, which can be considered optional.
These sections contain material that beginners might find difficult and that can be
omitted or delayed without hurting the continuity of the text. It is hoped that eventually
the reader would return and cover this material. For more advanced students, the
starred sections should not be viewed as optional.

ACCESSIBLE TO STUDENTS

It is not enough for a book to present the right topics in the right order. It is not even
enough for it to be clear and correct when read by an instructor or other expert. The
material needs to be presented in a way that is accessible to the person who does not yet
know the content. Like my other textbooks that have proven to be very popular, this
book was written to be friendly and accessible to the student.

SUMMARY BOXES

Each major point is summarized in a short boxed section. These boxed sections are
spread throughout each chapter. They serve as summaries of the material, as a quick
reference source, and as a way to quickly learn the Java syntax for features the reader
knows about in general but for which he or she needs to know the Java particulars.

SELF-TEST EXERCISES

Each chapter contains numerous Self-Test Exercises at strategic points in the
chapter. Complete answers for all the Self-Test Exercises are given at the end of
each chapter.

www.allitebooks.com

http://www.allitebooks.org

Preface 7

VIDEO NOTES

VideoNotes are step-by-step videos that guide readers through the solution to an end-of-
chapter problem or further illuminate a concept presented in the text. Icons in the text
indicate where a VideoNote enhances a topic. Fully navigable problems allow for self-
paced instruction. VideoNotes are located at www.pearsonglobaleditions.com/savitch.

OTHER FEATURES

Pitfall sections, programming tip sections, and examples of complete programs with
sample I/O are given throughout each chapter. Each chapter ends with a summary
section and a collection of programming projects suitable to assign to students.

HOW TO ACCESS INSTRUCTOR AND STUDENT RESOURCE
MATERIALS

Online Practice and Assessment with . MyProgrammingLab
helps students fully grasp the logic, semantics, and syntax of programming. Through
practice exercises and immediate, personalized feedback, MyProgrammingLab improves
the programming competence of beginning students who often struggle with the basic
concepts and paradigms of popular high-level pro- gramming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hun-
dreds of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable students to figure out what went
wrong—and why. For instructors, a comprehensive gradebook tracks correct and
incorrect answers and stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to get
started using MyProgrammingLab in your course, visit www.myprogramminglab.com.

SUPPORT MATERIAL

The following support materials are available to all users of this Global Editions book
at www.pearsonglobaleditions.com/savitch:

■ Source code from the book

The following resources are available to qualified instructors only at www.
pearsonglobaleditions.com/savitch. Please contact your local sales representative for
access information:

■ Instructor’s Manual with Solutions
■ PowerPoint® slides

ACKNOWLEDGMENTS
Numerous individuals have contributed invaluable help and support in making this
book happen: My former editor, Susan Hartman at Addison-Wesley, first conceived of
the idea for this book and worked with me on the first editions; My current editor, Matt

VideoNote

www.allitebooks.com

http://www.pearsonglobaleditions.com/savitch
http://www.myprogramminglab.com
http://www.pearsonglobaleditions.com/savitch
http://www.pearsonglobaleditions.com/savitch
http://www.pearsonglobaleditions.com/savitch
http://www.allitebooks.org

8 Preface

Goldstein, provided support and inspiration for getting subsequent editions reviewed,
revised, and out the door; Kelsey Loanes, Rose Kernan, Demetrius Hall, and the other
fine people at Pearson also provided valuable assistance and encouragement.

The following reviewers provided corrections and suggestions for this book. Their
contributions were a great help. I thank them all. In alphabetical order they are:

Jim Adams Chandler-Gilbert Community College

Gerald W. Adkins Georgia College & State University

Dr. Bay Arinze Drexel University

Tamara Babaian Bentley University

James Baldo George Mason University

Prof. Richard G. Baldwin Austin Community College

Kevin Bierre Rochester Institute of Technology

Jon Bjornstad Gavilan College

Janet Brown-Sederberg Massasoit Community College

Tom Brown Texas A&M University, Commerce

Charlotte Busch Texas A&M University, Corpus Christi

Stephen Chandler NW Shoals Community College

Hong Cheng Southern Arkansas University

KY Daisy Fan Cornell University

Adrienne Decker University of Buffalo

Brian Downs Century College

Jeffrey Edgington University of Denver

Keith Frikken Miami University

Ahmad Ghafarian North Georgia College & State University

Arthur Geis College of DuPage

Massoud Ghyam University of Southern California

Susan G. Glenn Gordon College

Nigel Gwee Louisiana State University

Judy Hankins Middle Tennessee State University

May Hou Norfolk State University

Sterling Hough NHTI

Chris Howard DeVry University

Eliot Jacobson University of California, Santa Barbara

Balaji Janamanchi Texas Tech University

Suresh Kalathur Boston University

Edwin Kay Lehigh University

Dr. Clifford R. Kettemborough IT Consultant and Professor

www.allitebooks.com

http://www.allitebooks.org

Preface 9

Frank Levey Manatee Community College
Xia Lin Drexel University
Mark M. Meysenburg Doane College
Sridhar P. Nerur The University of Texas at Arlington
Hoang M. Nguyen Deanza College
Rick Ord University of California, San Diego
Prof. Bryson R. Payne North Georgia College & State University
David Primeaux Virginia Commonwealth University
Neil Rhodes University of California, San Diego
W. Brent Seales University of Kentucky
Lili Shashaani Duquesne University
Riyaz Sikora The University of Texas at Arlington
Christopher Simpkins Georgia Tech
Jeff Six University of Delaware
Donald J Smith Community College of Allegheny County
Tom Smith Skidmore College
William Smith Tulsa Community College
Xueqing (Clare) Tang Governors State University
Ronald F. Taylor Wright State University
Thomas VanDrunen Wheaton College
Shon Vick University of Maryland, Baltimore County
Natalie S. Wear University of South Florida
Dale Welch University of West Florida
David A. Wheeler
Wook-Sung Yoo Gannon University

Special thanks goes to Kenrick Mock (University of Alaska Anchorage) who
executed the updating of this edition. He once again had the difficult job of satisfying
me, the editor, and himself. I thank him for a truly excellent job.
 Walter Savitch

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributors
Vikas Deep Dhiman Amity University
Madhurima Hooda Amity University

Reviewers
Manasa Rengarer NMAM Institute of Technology
S.H. Chung Wawasan Open University
Issam A. El-Moughrabi Gulf University of Science and Technology

www.allitebooks.com

http://www.allitebooks.org

LOCATION OF VIDEONOTES IN THE TEXT
www.pearsonglobaleditions.com/savitch

Chapter 1 Compiling a Java Program, page 42
Solution to Programming Project 1.7, page 88

Chapter 2 Using printf, page 94
Pitfalls Involving nextLine(), page 115
Solution to Programming Project 2.11, page 129
Solution to Programming Project 2.12, page 130

Chapter 3 Nested Loop Example, page 177
Debugging Walkthrough, page 184
Generating Random Numbers, page 191
Solution to Programming Project 3.9, page 202
Solution to Programming Project 3.13, page 203

Chapter 4 Information Hiding Example, page 239
Example Using the StringTokenizer Class on a CSV File, page 279
Solution to Programming Project 4.9, page 287

Chapter 5 Deep Copy vs. Shallow Copy Example, page 353
Solution to Programming Project 5.9, page 376

Chapter 6 Arrays of Objects, page 390
Solution to Programming Project 6.8, page 454
Solution to Programming Project 6.15, page 456

Chapter 7 Inheritance Walkthrough, page 464
Solution to Programming Project 7.3, page 509
Solution to Programming Project 7.5, page 511

Chapter 8 Late Binding Example, page 518
Solution to Programming Project 8.1, page 550
Solution to Programming Project 8.9, page 553

Chapter 9 Solution to Programming Project 9.1, page 609
Solution to Programming Project 9.7, page 611

Chapter 10 Reading a Text File, page 625
Solution to Programming Project 10.1, page 679
Solution to Programming Project 10.9, page 681

Chapter 11 Recursion and the Stack, page 696
Solution to Programming Project 11.3, page 720

Chapter 12 Solution to Programming Project 12.9, page 746

Chapter 13 Solution to Programming Project 13.1, page 790
Solution to Programming Project 13.11, page 793

Chapter 14 Solution to Programming Project 14.7, page 836

Chapter 15 Walkthrough of the Hash Table Class, page 906
Solution to Programming Project 15.1, page 931

VideoNote

http://www.pearsonglobaleditions.com/savitch

Chapter 16 Using HashMap with a Custom Class, page 948
Solution to Programming Project 16.3, page 975
Solution to Programming Project 16.5, page 976

Chapter 17 GUI Layout Using an IDE, page 1009
Solution to Programming Project 17.1, page 1053

Chapter 18 Walkthrough of a Simple Drawing Program, page 1082
Solution to Programming Project 18.7, page 1117

Chapter 19 Walkthrough of a Program with Race Conditions, page 1134
Networking with Streams, page 1138
Functional Programming Example, page 1172
Solution to Programming Project 19.3, page 1196
Solution to Programming Project 19.11, page 1197

Chapter 20 No video notes (Chapter on website)

This page intentionally left blank

 Chapter 1 GETTING STARTED 33

 Chapter 2 CONSOlE INpuT AND OuTpuT 89

 Chapter 3 FlOW OF CONTROl 131

 Chapter 4 DEFINING ClASSES I 205

 Chapter 5 DEFINING ClASSES II 291

 Chapter 6 ARRAyS 377

 Chapter 7 INHERITANCE 459

 Chapter 8 pOlymORpHISm AND AbSTRACT ClASSES 515

 Chapter 9 ExCEpTION HANDlING 555

 Chapter 10 FIlE I/O 613

 Chapter 11 RECuRSION 683

 Chapter 12 uml AND pATTERNS 725

 Chapter 13 INTERFACES AND INNER ClASSES 747

 Chapter 14 GENERICS AND THE ArrayList ClASS 795

 Chapter 15 lINkED DATA STRuCTuRES 839

 Chapter 16 COllECTIONS, mApS AND ITERATORS 935

 Chapter 17 SWING I 981

 Chapter 18 SWING II 1057

 Chapter 19 JAVA NEVER ENDS 1119

 Chapter 20 ApplETS AND HTml (online at

www.pearsonglobaleditions.com/savitch)

 Appendix 1 kEyWORDS 1199

 Appendix 2 pRECEDENCE AND ASSOCIATIVITy RulES 1201

 Appendix 3 ASCII CHARACTER SET 1203

 Appendix 4 FORmAT SpECIFICATIONS FOR printf 1205

 Appendix 5 SummARy OF ClASSES AND INTERFACES 1207

 INDEx 1275

Brief Contents

 13

http://www.pearsonglobaleditions.com/savitch

This page intentionally left blank

 Chapter 1 Getting Started 33

 1.1 INTRODuCTION TO JAVA 34
Origins of the Java Language ★ 34
Objects and Methods 35
Applets ★ 36
A Sample Java Application Program 37
Byte-Code and the Java Virtual Machine 40
Class Loader ★ 42
Compiling a Java Program or Class 42
Running a Java Program 43
TIP: Error Messages 44

 1.2 ExpRESSIONS AND ASSIGNmENT STATEmENTS 45
Identifiers 45
Variables 47
Assignment Statements 48
TIP: Initialize Variables 50
More Assignment Statements ★ 51
Assignment Compatibility 52
Constants 53
Arithmetic Operators and Expressions 55
Parentheses and Precedence Rules ★ 56
Integer and Floating-Point Division 58
PITFALL: Round-Off Errors in Floating-Point Numbers 59
PITFALL: Division with Whole Numbers 60
Type Casting 61
Increment and Decrement Operators 62

 1.3 THE ClASS String 65
String Constants and Variables 65
Concatenation of Strings 66
Classes 67
String Methods 69
Escape Sequences 74
String Processing 75
The Unicode Character Set ★ 75

Contents

 15

16 Contents

 1.4 Program Style 78
Naming Constants 78
Java Spelling Conventions 80
Comments 81
Indenting 82

Chapter Summary 83
Answers to Self-Test Exercises 84
Programming Projects 86

 Chapter 2 Console Input and output 89

 2.1 SCreen outPut 90
System.out.println 90
TIP: Different Approaches to Formatting Output 93
Formatting Output with printf 93
TIP: Formatting Monetary Amounts with printf 97
TIP: Legacy Code 98
Money Formats Using NumberFormat ★ 99
Importing Packages and Classes 102
The DecimalFormat Class ★ 104

 2.2 ConSole InPut uSIng the Scanner ClaSS 108
The Scanner Class 108
PITFALL: Dealing with the Line Terminator, '\n' 115
The Empty String 116
TIP: Prompt for Input 116
TIP: Echo Input 116
ExAMPLE: Self-Service Checkout 118
Other Input Delimiters 119

 2.3 IntroduCtIon to FIle InPut 121
The Scanner Class for Text File Input 121

Chapter Summary 124
Answers to Self-Test Exercises 124
Programming Projects 127

 Chapter 3 Flow of Control 131

 3.1 BranChIng meChanISm 132
if-else Statements 132
Omitting the else 133
Compound Statements 134
TIP: Placing of Braces 135
Nested Statements 136

Contents 17

Multiway if-else Statement 136
ExaMplE: State Income Tax 137
The switch Statement 139
pITFall: Forgetting a break in a switch Statement 143
The Conditional Operator ★ 144

 3.2 Boolean expressions 145
Simple Boolean Expressions 145
pITFall: Using = in place of == 146
pITFall: Using == with Strings 147
lexicographic and alphabetic Order 148
Building Boolean Expressions 151
pITFall: Strings of Inequalities 152
Evaluating Boolean Expressions 152
TIp: Naming Boolean Variables 155
Short-Circuit and Complete Evaluation 156
precedence and associativity Rules 157

 3.3 loops 164
while Statement and do-while Statement 164
algorithms and pseudocode 166
ExaMplE: averaging a list of Scores 169
The for Statement 170
The Comma in for Statements 173
TIp: Repeat N Times loops 175
pITFall: Extra Semicolon in a for Statement 175
pITFall: Infinite loops 176
Nested loops 177
The break and continue Statements ★ 180
The exit Statement 181

 3.4 DeBugging 182
loop Bugs 182
Tracing Variables 182
General Debugging Techniques 183
ExaMplE: Debugging an Input Validation loop 184
preventive Coding 188
assertion Checks ★ 189

 3.5 ranDom numBer generation ★ 191
The Random Object 191
The Math.random() Method 193

Chapter Summary 194
answers to Self-Test Exercises 194
programming projects 200

18 Contents

 Chapter 4 Defining Classes I 205

 4.1 CLASS DEFINITIONS 206
Instance Variables and Methods 209
More about Methods 212
TIP: Any Method Can Be Used as a void Method 216
Local Variables 218
Blocks 219
TIP: Declaring Variables in a for Statement 220
Parameters of a Primitive Type 220
PITFALL: Use of the Terms “Parameter” and “Argument” 227
Simple Cases with Class Parameters 229
The this Parameter 229
Methods That Return a Boolean Value 231
The Methods equals and toString 234
Recursive Methods 237
TIP: Testing Methods 237

 4.2 INFORMATION HIDING AND ENCAPSULATION 239
public and private Modifiers 240
ExAMPLE: Yet Another Date Class 241
Accessor and Mutator Methods 242
TIP: A Class Has Access to Private Members of All Objects of the Class 247
TIP: Mutator Methods Can Return a Boolean Value ★ 248
Preconditions and Postconditions 249

 4.3 OVERLOADING 250
Rules for Overloading 250
PITFALL: Overloading and Automatic Type Conversion 254
PITFALL: You Cannot Overload Based on the Type Returned 256

 4.4 CONSTRUCTORS 258
Constructor Definitions 258
TIP: You Can Invoke Another Method in a Constructor 266
TIP: A Constructor Has a this Parameter 266
TIP: Include a No-Argument Constructor 267
ExAMPLE: The Final Date Class 268
Default Variable Initializations 269
An Alternative Way to Initialize Instance Variables 269
ExAMPLE: A Pet Record Class 270
The StringTokenizer Class ★ 274

Chapter Summary 279
Answers to Self-Test Exercises 280
Programming Projects 285

Contents 19

 Chapter 5 Defining Classes II 291

 5.1 STATIC METHODS AND STATIC VARIABLES 293
Static Methods 293
PITFALL: Invoking a Nonstatic Method Within a Static Method 295
TIP: You Can Put a main in Any Class 296
Static Variables 300
The Math Class 305
Wrapper Classes 309
Automatic Boxing and Unboxing 310
Static Methods in Wrapper Classes 312
PITFALL: A Wrapper Class Does Not Have a No-Argument Constructor 315

 5.2 REFERENCES AND CLASS PARAMETERS 316
Variables and Memory 317
References 318
Class Parameters 323
PITFALL: Use of = and == with Variables of a Class Type 327
The Constant null 329
PITFALL: Null Pointer Exception 330
The new Operator and Anonymous Objects 330
ExAMPLE: Another Approach to Keyboard Input ★ 331
TIP: Use Static Imports ★ 333

 5.3 USING AND MISUSING REFERENCES 335
ExAMPLE: A Person Class 336
PITFALL: null Can Be an Argument to a Method 341
Copy Constructors 345
PITFALL: Privacy Leaks 347
Mutable and Immutable Classes 351
TIP: Deep Copy versus Shallow Copy 353
TIP: Assume Your Coworkers Are Malicious 354

 5.4 PACKAGES AND javadoc 354
Packages and import Statements 355
The Package java.lang 356
Package Names and Directories 356
PITFALL: Subdirectories Are Not Automatically Imported 359
The Default Package 359
PITFALL: Not Including the Current Directory in Your Class Path 360
Specifying a Class Path When You Compile ★ 360
Name Clashes ★ 361
Introduction to javadoc ★ 362
Commenting Classes for javadoc ★ 362
Running javadoc ★ 364

20 Contents

Chapter Summary 366
Answers to Self-Test Exercises 367
Programming Projects 371

 Chapter 6 Arrays 377

 6.1 INTRODUCTION TO ARRAYS 378
Creating and Accessing Arrays 379
The length Instance Variable 382
TIP: Use for Loops with Arrays 384
PITFALL: Array Indices Always Start with Zero 384
PITFALL: Array Index Out of Bounds 384
Initializing Arrays 385
PITFALL: An Array of Characters Is Not a String 387

 6.2 ARRAYS AND REFERENCES 388
Arrays Are Objects 388
PITFALL: Arrays with a Class Base Type 390
Array Parameters 390
PITFALL: Use of = and == with Arrays 392
Arguments for the Method main ★ 397
Methods that Return an Array 399

 6.3 PROGRAMMING WITH ARRAYS 400
Partially Filled Arrays 401
ExAMPLE: A Class for Partially Filled Arrays 404
TIP: Accessor Methods Need Not Simply Return Instance Variables 408
The “for-each” Loop ★ 408
Methods with a Variable Number of Parameters ★ 412
ExAMPLE: A String Processing Example ★ 415
Privacy Leaks with Array Instance Variables 416
ExAMPLE: Sorting an Array 420
Enumerated Types ★ 424
TIP: Enumerated Types in switch Statements ★ 429

 6.4 MULTIDIMENSIONAL ARRAYS 431
Multidimensional Array Basics 431
Using the length Instance Variable 434
Ragged Arrays ★ 435
Multidimensional Array Parameters and Returned Values 435
ExAMPLE: A Grade Book Class 436

Chapter Summary 442
Answers to Self-Test Exercises 443
Programming Projects 450

Contents 21

 Chapter 7 Inheritance 459

 7.1 INHERITANCE BASICS 460
Derived Classes 461
Overriding a Method Definition 471
Changing the Return Type of an Overridden Method 471
Changing the Access Permission of an Overridden Method 472
PITFALL: Overriding versus Overloading 473
The super Constructor 474
The this Constructor 476
TIP: An Object of a Derived Class Has More than One Type 477
PITFALL: The Terms Subclass and Superclass 480
ExAMPLE: An Enhanced StringTokenizer Class ★ 481

 7.2 ENCAPSULATION AND INHERITANCE 484
PITFALL: Use of Private Instance Variables from the Base Class 485
PITFALL: Private Methods Are Effectively Not Inherited 486
Protected and Package Access 487
PITFALL: Forgetting about the Default Package 490
PITFALL: A Restriction on Protected Access ★ 490

 7.3 PROGRAMMING WITH INHERITANCE 493
TIP: Static Variables Are Inherited 493
TIP: “is a” versus “has a” 493
Access to a Redefined Base Method 493
PITFALL: You Cannot Use Multiple supers 495
The Class Object 496
The Right Way to Define equals 497
TIP: getClass versus instanceof ★ 499

Chapter Summary 504
Answers to Self-Test Exercises 505
Programming Projects 508

 Chapter 8 Polymorphism and Abstract Classes 515

 8.1 POLYMORPHISM 516
Late Binding 517
The final Modifier 519
ExAMPLE: Sales Records 520
Late Binding with toString 527
PITFALL: No Late Binding for Static Methods 528
Downcasting and Upcasting 529
PITFALL: Downcasting 533

22 Contents

TIP: Checking to See Whether Downcasting Is Legitimate ★ 533
A First Look at the clone Method 536
PITFALL: Sometimes the clone Method Return Type Is Object 537
PITFALL: Limitations of Copy Constructors ★ 538

 8.2 ABSTRACT CLASSES 541
Abstract Classes 542
PITFALL: You Cannot Create Instances of an Abstract Class 546
TIP: An Abstract Class Is a Type 547

Chapter Summary 548
Answers to Self-Test Exercises 548
Programming Projects 550

 Chapter 9 Exception Handling 555

 9.1 EXCEPTION HANDLING BASICS 557
try-catch Mechanism 557
Exception Handling with the Scanner Class 559
TIP: Exception Controlled Loops 560
Throwing Exceptions 562
ExAMPLE: A Toy Example of Exception Handling 564
Exception Classes 569
Exception Classes from Standard Packages 570
Defining Exception Classes 572
TIP: Preserve getMessage 576
TIP: An Exception Class Can Carry a Message of Any Type 578
Multiple catch Blocks 583
PITFALL: Catch the More Specific Exception First 585

 9.2 THROWING EXCEPTIONS IN METHODS 588
Throwing an Exception in a Method 588
Declaring Exceptions in a throws Clause 590
Exceptions to the Catch or Declare Rule 593
throws Clause in Derived Classes 594
When to Use Exceptions 595
Example: Retrieving a High Score 596
Event-Driven Programming ★ 599

 9.3 MORE PROGRAMMING TECHNIqUES FOR EXCEPTION
 HANDLING 601
PITFALL: Nested try-catch Blocks 601
The finally Block ★ 601
Rethrowing an Exception ★ 603
The AssertionError Class ★ 603

Contents 23

ArrayIndexOutOfBoundsException 604

Chapter Summary 604
Answers to Self-Test Exercises 605
Programming Projects 609

 Chapter 10 File I/O 613

 10.1 IntrOduCtIOn tO FIle I/O 614
Streams 614
Text Files and Binary Files 615

 10.2 text FIles 616
Writing to a Text File 616
PITFALL: A try Block Is a Block 622
PITFALL: Overwriting an Output File 622
Appending to a Text File 623
TIP: toString Helps with Text File Output 624
Reading from a Text File 625
Reading a Text File Using Scanner 625
Testing for the End of a Text File with Scanner 628
Reading a Text File Using BufferedReader 635
TIP: Reading Numbers with BufferedReader 639
Testing for the End of a Text File with BufferedReader 639
Path Names 641
Nested Constructor Invocations 642
System.in, System.out, and System.err 643

 10.3 the File Class 645
Programming with the File Class 645

 10.4 BInary FIles ★ 649
Writing Simple Data to a Binary File 650
UTF and writeUTF 654
Reading Simple Data from a Binary File 655
Checking for the End of a Binary File 660
PITFALL: Checking for the End of a File in the Wrong Way 661
Binary I/O of Objects 662
The Serializable Interface 663
PITFALL: Mixing Class Types in the Same File 666
Array Objects in Binary Files 666

 10.5 randOm aCCess tO BInary FIles ★ 668
Reading and Writing to the Same File 668
PITFALL: RandomAccessFile Need Not Start Empty 674

24 Contents

Chapter Summary 674
Answers to Self-Test Exercises 675
Programming Projects 679

 Chapter 11 Recursion 683

 11.1 RECURSIVE void METHODS 685
ExAMPLE: Vertical Numbers 685
Tracing a Recursive Call 688
A Closer Look at Recursion 691
PITFALL: Infinite Recursion 693
Stacks for Recursion ★ 694
PITFALL: Stack Overflow ★ 696
Recursion versus Iteration 696

 11.2 RECURSIVE METHODS THAT RETURN A VALUE 697
General Form for a Recursive Method That Returns a Value 698
ExAMPLE: Another Powers Method 698

 11.3 THINKING RECURSIVELY 703
Recursive Design Techniques 703
Binary Search ★ 704
Efficiency of Binary Search ★ 710
ExAMPLE: Finding a File 712

Chapter Summary 715
Answers to Self-Test Exercises 715
Programming Projects 720

 Chapter 12 UML and Patterns 725

 12.1 UML 726
History of UML 727
UML Class Diagrams 727
Class Interactions 728
Inheritance Diagrams 728
More UML 730

 12.2 PATTERNS ★ 731
Adaptor Pattern ★ 731
The Model-View-Controller Pattern ★ 732
ExAMPLE: A Sorting Pattern 733
Restrictions on the Sorting Pattern 739
Efficiency of the Sorting Pattern ★ 739

Contents 25

TIP: Pragmatics and Patterns 740
Pattern Formalism 740

Chapter Summary 741
Answers to Self-Test Exercises 741
Programming Projects 743

 Chapter 13 Interfaces and Inner Classes 747

 13.1 INTERFACES 749
Interfaces 749
Abstract Classes Implementing Interfaces 751
Derived Interfaces 751
PITFALL: Interface Semantics Are Not Enforced 753
The Comparable Interface 755
ExAMPLE: Using the Comparable Interface 756
Defined Constants in Interfaces 761
PITFALL: Inconsistent Interfaces 762
The Serializable Interface ★ 765
The Cloneable Interface 765

 13.2 SIMPLE USES OF INNER CLASSES 770
Helping Classes 770
TIP: Inner and Outer Classes Have Access to Each Other’s Private Members 771
ExAMPLE: A Bank Account Class 771
The .class File for an Inner Class 775
PITFALL: Other Uses of Inner Classes 776

 13.3 MORE ABOUT INNER CLASSES 776
Static Inner Classes 776
Public Inner Classes 777
TIP: Referring to a Method of the Outer Class 779
Nesting Inner Classes 781
Inner Classes and Inheritance 781
Anonymous Classes 782
TIP: Why Use Inner Classes? 784

Chapter Summary 785
Answers to Self-Test Exercises 785
Programming Projects 790

 Chapter 14 Generics and the ArrayList Class 795

 14.1 THE ArrayList CLASS 797
Using the ArrayList Class 798
TIP: Summary of Adding to an ArrayList 802

26 Contents

Methods in the Class ArrayList 803
The “for-each” Loop 806
ExAMPLE: Golf Scores 809
TIP: Use trimToSize to Save Memory 812
PITFALL: The clone Method Makes a Shallow Copy ★ 812
The Vector Class 813
Parameterized Classes and Generics 814
PITFALL: Nonparameterized ArrayList and Vector Classes 814

 14.2 GENERICS 814
Generic Basics 815
TIP: Compile with the -Xlint Option 817
ExAMPLE: A Generic Class for Ordered Pairs 817
PITFALL: A Generic Constructor Name Has No Type Parameter 820
PITFALL: You Cannot Plug in a Primitive Type for a Type Parameter 821
PITFALL: A Type Parameter Cannot Be Used Everywhere a Type Name

Can Be Used 821
PITFALL: An Instantiation of a Generic Class Cannot be an

Array Base Type 822
TIP: A Class Definition Can Have More Than One Type Parameter 823
PITFALL: A Generic Class Cannot Be an Exception Class 824
Bounds for Type Parameters 825
TIP: Generic Interfaces 828
Generic Methods ★ 828
Inheritance with Generic Classes ★ 830

Chapter Summary 832
Answers to Self-Test Exercises 832
Programming Projects 835

 Chapter 15 Linked Data Structures 839

 15.1 JAVA LINKED LISTS 842
ExAMPLE: A Simple Linked List Class 842
Working with Linked Lists 846
PITFALL: Privacy Leaks 851
Node Inner Classes 852
ExAMPLE: A Generic Linked List 855
PITFALL: Using Node Instead of Node<T> 860
The equals Method for Linked Lists 860

 15.2 COPY CONSTRUCTORS AND THE clone METHOD ★ 862
Simple Copy Constructors and clone Methods ★ 862
Exceptions ★ 863

Contents 27

PITFALL: The clone Method Is Protected in object ★ 865
TIP: Use a Type Parameter Bound for a Better clone ★ 866
ExAMPLE: A Linked List with a Deep Copy clone Method ★ 870
TIP: Cloning Is an “All or Nothing” Affair 873

 15.3 Iterators 873
Defining an Iterator Class 874
Adding and Deleting Nodes 879

 15.4 VarIatIons on a LInked LIst 884
Doubly Linked List 884
The Stack Data Structure 893
The Queue Data Structure 895
Running Times and Big-O Notation 898
Efficiency of Linked Lists 903

 15.5 HasH tabLes wItH CHaInIng 904
A Hash Function for Strings 905
Efficiency of Hash Tables 908

 15.6 sets 909
Fundamental Set Operations 910
Efficiency of Sets Using Linked Lists 915

 15.7 trees 916
Tree Properties 916
ExAMPLE: A Binary Search Tree Class ★ 919
Efficiency of Binary Search Trees ★ 924

Chapter Summary 925
Answers to Self-Test Exercises 926
Programming Projects 931

 Chapter 16 Collections, Maps and Iterators 935

 16.1 CoLLeCtIons 936
Wildcards 938
The Collection Framework 938
PITFALL: Optional Operations 944
TIP: Dealing with All Those Exceptions 945
Concrete Collection Classes 946
Differences between ArrayList<T> and Vector<T> 956
Nonparameterized Version of the Collection Framework ★ 956
PITFALL: Omitting the <T> 957

28 Contents

 16.2 MAPS 957
Concrete Map Classes 960

 16.3 ITERATORS 964
The Iterator Concept 964
The Iterator<T> Interface 964
TIP: For-Each Loops as Iterators 967
List Iterators 968
PITFALL: next Can Return a Reference 970
TIP: Defining Your Own Iterator Classes 972

Chapter Summary 973
Answers to Self-Test Exercises 973
Programming Projects 974

 Chapter 17 Swing I 981

 17.1 EVENT-DRIVEN PROGRAMMING 983
Events and Listeners 983

 17.2 BUTTONS, EVENTS, AND OTHER SWING BASICS 984
ExAMPLE: A Simple Window 985
PITFALL: Forgetting to Program the Close-Window Button 990
Buttons 991
Action Listeners and Action Events 992
PITFALL: Changing the Heading for actionPerformed 994
TIP: Ending a Swing Program 994
ExAMPLE: A Better Version of Our First Swing GUI 995
Labels 998
Color 999
ExAMPLE: A GUI with a Label and Color 1000

 17.3 CONTAINERS AND LAYOUT MANAGERS 1002
Border Layout Managers 1003
Flow Layout Managers 1006
Grid Layout Managers 1007
Panels 1011
ExAMPLE: A Tricolor Built with Panels 1012
The Container Class 1016
TIP: Code a GUI’s Look and Actions Separately 1019
The Model-View-Controller Pattern ★ 1020

Contents 29

 17.4 MENUS AND BUTTONS 1021
ExAMPLE: A GUI with a Menu 1021
Menus, Menu Items, and Menu Bars 1021
Nested Menus ★ 1026
The AbstractButton Class 1026
The setActionCommand Method 1029
Listeners as Inner Classes ★ 1030

 17.5 TEXT FIELDS AND TEXT AREAS 1033
Text Areas and Text Fields 1034
TIP: Labeling a Text Field 1040
TIP: Inputting and Outputting Numbers 1040
A Swing Calculator 1041

Chapter Summary 1046
Answers to Self-Test Exercises 1047
Programming Projects 1053

 Chapter 18 Swing II 1057

 18.1 WINDOW LISTENERS 1058
ExAMPLE: A Window Listener Inner Class 1060
The dispose Method 1063
PITFALL: Forgetting to Invoke setDefaultCloseOperation 1064
The WindowAdapter Class 1064

 18.2 ICONS AND SCROLL BARS 1066
Icons 1066
Scroll Bars 1072
ExAMPLE: Components with Changing Visibility 1077

 18.3 THE Graphics CLASS 1081
Coordinate System for Graphics Objects 1081
The Method paint and the Class Graphics 1082
Drawing Ovals 1087
Drawing Arcs 1087
Rounded Rectangles ★ 1091
paintComponent for Panels 1092
Action Drawings and repaint 1092
Some More Details on Updating a GUI ★ 1098

www.allitebooks.com

http://www.allitebooks.org

30 Contents

 18.4 COLORS 1098
Specifying a Drawing Color 1099
Defining Colors 1100
PITFALL: Using doubles to Define a Color 1101
The JColorChooser Dialog Window 1102

 18.5 FONTS AND THE drawString METHOD 1105
The drawString Method 1105
Fonts 1108

Chapter Summary 1111
Answers to Self-Test Exercises 1111
Programming Projects 1115

 Chapter 19 Java Never Ends 1119

 19.1 MULTITHREADING 1120
ExAMPLE: A Nonresponsive GUI 1121
Thread.sleep 1121
The getGraphics Method 1125
Fixing a Nonresponsive Program Using Threads 1126
ExAMPLE: A Multithreaded Program 1126
The Class Thread 1127
The Runnable Interface ★ 1130
Race Conditions and Thread Synchronization ★ 1133

 19.2 NETWORKING WITH STREAM SOCKETS 1138
Sockets 1138
Sockets and Threading 1142
The URL Class 1143

 19.3 JAVABEANS 1143
The Component Model 1144
The JavaBeans Model 1144

 19.4 JAVA AND DATABASE CONNECTIONS 1145
Relational Databases 1145
Java DB and JDBC 1146
SQL 1147

 19.5 WEB PROGRAMMING WITH JAVA SERVER PAGES 1158
Applets, Servlets, and Java Server Pages 1158
Oracle GlassFish Enterprise Server 1160

Contents 31

HTML Forms—the Common Gateway Interface 1161
JSP Declarations, Expressions, Scriptlets, and Directives 1163

 19.6 INTRODUCTION TO FUNCTIONAL PROGRAMMING IN JAVA 8 1172

 19.7 INTRODUCTION TO JAVAFX 1180

Chapter Summary 1193
Answers to Self-Test Exercises 1194
Programming Projects 1196

 Chapter 20 Applets and HTML www.pearsonglobaleditions.com/savitch)

 Appendix 1 Keywords 1199

 Appendix 2 Precedence and Associativity Rules 1201

 Appendix 3 ASCII Character Set 1203

 Appendix 4 Format Specifications for printf 1205

 Appendix 5 Summary of Classes and Interfaces 1207

 Index 1275

http://www.pearsonglobaleditions.com/savitch

This page intentionally left blank

1.3 The Class String 65
String Constants and Variables 65
Concatenation of Strings 66
Classes 67
String Methods 69
Escape Sequences 74
String Processing 75
The Unicode Character Set ★ 75

1.4 Program sTyle 78
Naming Constants 78
Java Spelling Conventions 80
Comments 81
Indenting 82

1.1 InTroduCTIon To Java 34
Origins of the Java Language ★ 34
Objects and Methods 35
Applets ★ 36
A Sample Java Application Program 37
Byte-Code and the Java Virtual Machine 40
Class Loader ★ 42
Compiling a Java Program or Class 42
Running a Java Program 43

1.2 exPressIons and assIgnmenT
sTaTemenTs 45

Identifiers 45
Variables 47
Assignment Statements 48
More Assignment Statements ★ 51
Assignment Compatibility 52
Constants 53
Arithmetic Operators and Expressions 55
Parentheses and Precedence Rules ★ 56
Integer and Floating-Point Division 58
Type Casting 61
Increment and Decrement Operators 62

1
Getting Started

Chapter summary 83 answers to self-Test exercises 84 Programming Projects 86

She starts—she moves—she seems to feel

The thrill of life along her keel.

HENRY WADSWORTH LONGFELLOW, The Building of the Ship, 1850.

Introduction
This chapter introduces you to the Java language and gives you enough details to allow
you to write simple programs involving expressions, assignments, and console output.
The details about assignments and expressions are similar to that of most other high-
level languages. Every language has its own way of handling strings and console output,
so even the experienced programmer should look at that material. Even if you are
already an experienced programmer in some language other than Java, you should read
at least the subsection entitled “A Sample Java Application Program” in Section 1.1 and
preferably all of Section 1.2. You should also read all of Section 1.3 (on strings) and at
least skim Section 1.4 to find out about Java defined constants and comments.

Prerequisites
This book is self-contained and requires no preparation other than some simple high
school algebra.

1.1 Introduction to Java

Eliminating the middle man is not necessarily a good idea.

Found in my old economics class notes.

In this section, we give you an overview of the Java programming language.

Origins of the Java Language ★

Java is well-known as a programming language for Internet applications. However,
this book, and many other books and programmers, considers Java a general-purpose
programming language that is suitable for most any application, whether it involves
the Internet or not. The first version of Java was neither of these things, but it evolved
into both.

In 1991, James Gosling led a team at Sun Microsystems that developed the first
version of Java (which was not yet called Java). This first version of the language was

1 Getting Started

Introduction to Java 35

designed for programming home appliances, such as washing machines and television
sets. Although that may not be a very glamorous application area, it is no easy task to
design such a language. Home appliances are controlled by a wide variety of computer
processors (chips). The language that Gosling was designing needed to work on all
these different processors. Moreover, a home appliance is typically an inexpensive
item, so the manufacturer would be unwilling to invest large amounts of money into
developing complicated compilers. (A compiler translates a program into a language
the processor can understand.) To simplify the tasks of writing compilers (translation
programs) for each class of appliances, the team used a two-step translation process.
The programs are first translated into an intermediate language that is the same
for all appliances (or all computers), and then a small, easy-to-write—and hence,
inexpensive—program translates this intermediate language into the machine language
for a particular appliance or computer. This intermediate language is called Java byte-
code, or simply, byte-code. Since there is only one intermediate language, the hardest
step of the two-step translation from program to intermediate language to machine
language is the same for all appliances (or all computers); hence, most of the cost of
translating to multiple machine languages was saved. The language for programming
appliances never caught on with appliance manufacturers, but the Java language into
which it evolved has become a widely used programming language. Today, Java is
owned by Oracle Corporation, which purchased Sun Microsystems in 2010.

Why call it byte-code? The word code is commonly used to mean a program or part
of a program. A byte is a small unit of storage (eight bits to be precise). Computer-
readable information is typically organized into bytes. So the term byte-code suggests a
program that is readable by a computer as opposed to a person.

In 1994, Patrick Naughton and Jonathan Payne at Sun Microsystems developed
a Web browser that could run (Java) programs over the Internet, which has evolved
into the browser known as HotJava. This was the start of Java’s connection to the
Internet. In the fall of 1995, Netscape Incorporated made its Web browser capable of
running Java programs. Other companies followed suit and have developed software
that accommodates Java programs.

Objects and Methods

Java is an object-oriented programming (OOP) language. What is OOP? The world
around us is made up of objects, such as people, automobiles, buildings, streets,
adding machines, papers, and so forth. Each of these objects has the ability to perform
certain actions, and each of these actions has some effect on some of the other objects
in the world. OOP is a programming methodology that views a program as similarly
consisting of objects that interact with each other by means of actions.

Object-oriented programming has its own specialized terminology. The objects are
called, appropriately enough, objects. The actions that an object can take are called
methods. Objects of the same kind are said to have the same type or, more often, are
said to be in the same class. For example, in an airport simulation program, all the

intermediate
 language

byte-code

code

OOP

object

method

class

36 CHAPTER 1 Getting Started

Why Is the Language Named “Java”?

The current custom is to name programming languages according to the whims of their
designers. Java is no exception. There are conflicting explanations of the origin of the name
“Java.” Despite these differing stories, one thing is clear: The word “Java” does not refer
to any property or serious history of the Java language. One believable story about where
the name came from is that it was thought of when, after a fruitless meeting trying to come
up with a new name for the language, the development team went out for coffee. Hence,
the inspiration for the name “Java.”

simulated airplanes might belong to the same class, probably called the Airplane
class. All objects within a class have the same methods. Thus, in a simulation program,
all airplanes have the same methods (or possible actions), such as taking off, flying
to a specific location, landing, and so forth. However, all simulated airplanes are not
identical. They can have different characteristics, which are indicated in the program
by associating different data (that is, some different information) with each particular
airplane object. For example, the data associated with an airplane object might be two
numbers for its speed and altitude.

If you have used some other programming language, it might help to explain
Java terminology in terms of the vocabulary used in other languages. Things that are
called procedures, methods, functions, or subprograms in other languages are all called
methods in Java. In Java, all methods (and for that matter, any programming constructs
whatsoever) are part of a class. As we will see, a Java application program is a class
with a method named main; when you run the Java program, the run-time system
automatically invokes the method named main (that is, it automatically initiates the
main action). An application program is a “regular” Java program, and, as we are
about to see, there is another kind of Java program known as an applet. Other Java
terminology is pretty much the same as the terminology in most other programming
languages and, in any case, will be explained when each concept is introduced.

Applets ★

Java applets and applications are two kinds of common Java programs. An application,
or application program, is just a regular program. Although the name applet may sound
like it has something to do with apples, it really means a little Java application, not
a little apple. Applets and applications are almost identical. The difference is that
applications are meant to be run on your computer like any other program, whereas an
applet is meant to be run from a Web browser, and so can be sent to another location
on the Internet and run there. Applets always use a windowing interface, but not all
programs with a windowing interface are applets, as you will see in Chapters 16–18.

Although applets were designed to be run from a Web browser, they can also be
run with a program known as an applet viewer. The applet viewer is really meant

application
program

applet

application

applet viewer

Introduction to Java 37

as a debugging aid and not as the final environment to allow users to run applets.
Nonetheless, applets are now often run as stand-alone programs using an applet viewer.1
We find this to be a somewhat unfortunate accident of history. Java has multiple
libraries of software for designing windowing interfaces that run without a connection
to a browser. We prefer to use these libraries, rather than applets, to write windowing
programs that will not be run from a Web browser. In this book, we show you how
to do windowing interfaces as applets and as programs with no connection to a Web
browser. In fact, the two approaches have a large overlap of both techniques and the
Java libraries that they use. Once you know how to design and write either applets or
applications, it is easy to learn to write the other of these two kinds of programs.

An applet always has a windowing interface. An application program may have a
windowing interface or use simple console I/O. So as not to detract from the code
being studied, most of our example programs, particularly early in this book, use
simple console I/O (that is, simple text I/O).

A Sample Java Application Program

Display 1.1 contains a simple Java program and the screen displays produced when it is
run. A Java program is really a class definition (whatever that is) with a method named
main. When the program is run, the method named main is invoked; that is, the action
specified by main is carried out. The body of the method main is enclosed in braces,
{}, so that when the program is run, the statements in the braces are executed. (If you
are not even vaguely familiar with the words class and method, they will be explained.
Read on.)

The following line says that this program is a class called FirstProgram:

public class FirstProgram
{

The next two lines, shown below, begin the definition of the main method:

public static void main(String[] args)
{

The details of exactly what a Java class is and what words such as public, static,
void, and so forth mean will be explained in the next few chapters. Until then, think
of these opening lines, repeated below, as being a rather wordy way of saying “Begin
the program named FirstProgram.”

public class FirstProgram
{
 public static void main(String[] args)
 {

1An applet viewer does indeed use a browser to run an applet, but the look and feel is that of a stand-
alone program with no interaction with a browser.

38 CHAPTER 1 Getting Started

The next two lines, shown in what follows, are the first actions the program
performs:

System.out.println("Hello reader.");
System.out.println("Welcome to Java.");

Each of these lines begins with System.out.println. Each one causes the quoted
string given within the parentheses to be output to the screen. For example, consider

System.out.println("Hello reader.");

This causes the line

Hello reader.

to be written to the screen. The output produced by the next line that begins with
System.out.println will go on the following line. Thus, these two lines cause the
following output:

Hello reader.
Welcome to Java.

These lines that begin with System.out.println are a way of saying “output what
is shown in parentheses,” and the details of why the instruction is written this way need
not concern us yet. However, we can tell you a little about what is going on here.

println

System.out.
println

Display 1.1 A Sample Java Program

 1 public class FirstProgram
 2 {
 3 public static void main(String[] args)
 4 {
 5 System.out.println("Hello reader.");
 6 System.out.println("Welcome to Java.");

 7 System.out.println("Let's demonstrate a simple calculation.");
 8 int answer;
 9 answer = 2 + 2;
10 System.out.println("2 plus 2 is " + answer);
11 }
12 }

Sample Dialogue

Hello reader.

Welcome to Java.

Let's demonstrate a simple calculation.

2 plus 2 is 4

Name of class
(program) The main method

Introduction to Java 39

As stated earlier, Java programs work by having things called objects perform actions.
The actions performed by an object are called methods. System.out is an object used
for sending output to the screen; println is the method (that is, the action) that this
object performs. The action is to send what is in parentheses to the screen. When an
object performs an action using a method, it is called invoking (or calling) the method.
In a Java program, you write such a method invocation by writing the object followed
by a dot (period), followed by the method name, and some parentheses that may or
may not have something inside them. The thing (or things) inside the parentheses is
called an argument(s), which provides information needed by the method to carry out
its action. In each of these two lines and the similar line that follows them, the method
is println. The method println writes something to the screen, and the argument
(a string in quotes) tells it what it should write.

Invoking a method is also sometimes called sending a message to the object. With
this view, a message is sent to the object (by invoking a method) and in response, the
object performs some action (namely, the action taken by the method invoked). We
seldom use the terminology sending a message, but it is standard terminology used by
some programmers and authors.

Variable declarations in Java are similar to what they are in other programming
languages. The following line from Display 1.1 declares the variable answer:

int answer;

The type int is one of the Java types for integers (whole numbers). So, this line says
that answer is a variable that can hold a single integer (whole number).

The following line is the only real computing done by this first program:

answer = 2 + 2;

In Java, the equal sign is used as the assignment operator, which is an instruction
to set the value of the variable on the left-hand side of the equal sign. In the preceding
program line, the equal sign does not mean that answer is equal to 2 + 2. Instead, the
equal sign is an instruction to the computer to make answer equal to 2 + 2.

The last program action is

System.out.println("2 plus 2 is " + answer);

This is an output statement of the same kind as we discussed earlier, but there is
something new in it. Note that the string "2 plus 2 is " is followed by a plus sign and
the variable answer. In this case, the plus sign is an operator to concatenate (connect)
two strings. However, the variable answer is not a string. If one of the two operands
to + is a string, Java will convert the other operand, such as the value of answer, to a
string. In this program, answer has the value 4, so answer is converted to the string
"4" and then concatenated to the string "2 plus 2 is ", so the output statement
under discussion is equivalent to

System.out.println("2 plus 2 is 4");

invoking

dot

argument

sending a
message

variable int

equal sign

assignment
operator

40 CHAPTER 1 Getting Started

The remainder of this first program consists of two closing braces. The first closing
brace ends the definition of the method main. The last closing brace ends the definition
of the class named FirstProgram.

Byte-Code and the Java Virtual Machine

Most modern programming languages are designed to be (relatively) easy for people
to write and to understand. These languages are called high-level languages. The
language that the computer can directly understand is called machine language.
Machine language or any language similar to machine language is called a low-level
language. A program written in a high-level language, such as Java, must be translated
into a program in machine language before the program can be run. The program that
does the translating (or at least most of the translating) is called a compiler, and the
translation process is called compiling.

high-level,
low-level, and

machine
languages

compiler

Compiler

A compiler is a program that translates a high-level-language program, such as a Java
program, into an equivalent low-level-language program.

One disadvantage of most programming languages is that the compiler translates
the high-level-language program directly into the machine language for your computer.
Since different computers have different machine languages, this means you need a
different compiler for each type of computer. Java, however, uses a slightly different
and much more versatile approach to compiling.

Self-Test Exercises

1. If the following statement were used in a Java program, it would cause something
to be written to the screen. What would it cause to be written to the screen?

System.out.println("Java is not a drink.");

2. Give a statement or statements that can be used in a Java program to write the
following to the screen:

I like Java.
You like tea.

3. Write a complete Java program that uses System.out.println to output the
following to the screen when run:

Hello World!

Note that you do not need to fully understand all the details of the program in order
to write the program. You can simply follow the model of the program in Display 1.1.

Introduction to Java 41

While some versions of Java do translate your program into machine language for
your particular computer, the original Java compiler and most compilers today do
not. Instead, the Java compiler translates your Java program into a language called
byte-code. Byte-code is not the machine language for any particular computer; it is the
machine language for a fictitious computer called the Java Virtual Machine (JVM).
The Java Virtual Machine is very similar to all typical computers. Thus, it is easy to
translate a program written in byte-code into a program in the machine language
for any particular computer. The term JVM is also used to refer to the software
that implements the fictitious computer. There are two ways the JVM can do this
translation: through an interpreter and through a Just-In-Time (JIT) compiler.

An interpreter combines the translation of the byte-code and the execution of the
corresponding machine language instructions. The interpreter works by translating an
instruction of byte-code into instructions expressed in your computer’s machine language
and then executing those instructions on your computer. It does this one byte-code
instruction at a time. Thus, an interpreter translates and executes the instructions in the
byte-code one after the other, rather than translating the entire byte-code program at once.

Modern implementations of the JVM use a JIT compiler, which uses a combination
of interpretation and compilation. The JIT compiler reads the byte-code in chunks
and compiles entire chunks to native machine language instructions as needed. The
compiled machine language instructions are remembered—that is, cached—for future
use, so the chunk needs to be compiled only once. This model generally runs programs
faster than the interpreted model, which always has to translate the next byte-code
instruction to machine code instructions.

To run a Java program, first use the compiler to translate the Java program into
byte-code. Then, use the JVM for your computer to translate byte-code instructions to
machine language and to run the machine language instructions.

It sounds as though Java byte-code just adds an extra step in the process. Why not write
compilers that translate directly from Java to the machine language for your particular
computer? This is what is done for most other programming languages. However, Java
byte-code makes your Java program very portable. After you compile your Java program
into byte-code, you can use that byte-code on any computer. When you run your program
on another type of computer, you do not need to recompile it. This means that you can
send your byte-code over the Internet to another computer and have it easily run on that
computer. This is one of the reasons Java is good for Internet applications. This model is
also more secure. If a Java program behaves badly, it only does so within the context of the
JVM instead of behaving badly directly on your native machine. Of course, every kind of
computer must have its own program to implement the Java Virtual Machine.

byte-code

Java Virtual
Machine

(JVM)

interpreter

Just-In-Time
(JIT)

Byte-Code

The Java compiler translates your Java program into a language called byte-code, which is
the machine language for a fictitious computer. It is easy to translate this byte-code into the
machine language of any particular computer. Each type of computer will have its own software
to implement the Java Virtual Machine that translates and executes byte-code instructions.

42 CHAPTER 1 Getting Started

When compiling and running a Java program, you are usually not even aware of
the fact that your program is translated into byte-code and not directly translated
into machine language code. You normally give two commands: one to compile your
program (into byte-code) and one to run your program. The run command executes
the Java Virtual Machine on the byte-code.

When you use a compiler, the terminology can get a bit confusing, because both
the input to the compiler program and the output from the compiler program are
also programs. Everything in sight is some kind of program. To make sure it is clear
which program we mean, we call the input program (which in our case will be a Java
program) the source program, or source code, and call the translated low-level-
language program that the compiler produces the object program, or object code.
The word code just means a program or a part of a program.

Class Loader ★

A Java program is divided into smaller parts called classes, and normally each class
definition is in a separate file and is compiled separately. In order to run your program,
the byte-code for these various classes needs to be connected together. The connecting
is done by a program known as the class loader. It is typically done automatically, so
you normally need not be concerned with it. (In other programming languages, the
program corresponding to the Java class loader is called a linker.)

Compiling a Java Program or Class

As we noted in the previous subsection, a Java program is divided into classes. Before
you can run a Java program, you must compile these classes.

Before you can compile a Java program, each class definition used in the program
(and written by you, the programmer) should be in a separate file. Moreover, the name
of the file should be the same as the name of the class, except that the file name has
.java added to the end. The program in Display 1.1 is a class called FirstProgram,
so it should be in a file named FirstProgram.java. This program has only one class,
but a more typical Java program would consist of several classes.

If you are using an IDE (Integrated Development Environment), there will be a
simple command to compile your Java program from the editor. You will have to
check your local documentation to see exactly what this command is, but it is bound
to be very simple.

If you want or need to compile your Java program or class with a one-line command
given to the operating system, it is easy to do. We will describe the commands for
the Java system distributed by Oracle (usually called “the SDK” or “the JDK”) in the
following paragraphs.

Suppose you want to compile a class named FirstProgram. It will be in a file
named FirstProgram.java. To compile it, simply give the following command:

javac FirstProgram.java

run
command

source code

object code

code

Compiling a
Java Program

VideoNote

.java files

javac

Introduction to Java 43

You should be in the same directory (folder) as the file FirstProgram.java when you
give this javac command. To compile any Java class, whether it is a full program or
not, the command is javac followed by the name of the file containing the class.

When you compile a Java class, the resulting byte-code for that class is placed in a
file of the same name, except that the ending is changed from .java to .class. So,
when you compile a class named FirstProgram in the file FirstProgram.java, the
resulting byte-code is stored in a file named FirstProgram.class.

Running a Java Program

A Java program can consist of a number of different classes, each in a different file.
When you run a Java application program, only run the class that you think of as the
program; that is, the class that contains a main method. Look for the following line,
which starts the main method:

public static void main(String[] args)

The critical words to look for are public static void main. The remaining portion
of the line might be spelled slightly different in some cases.

If you are using an IDE, you will have a menu command that can be used to run a
Java program. You will have to check your local documentation to see exactly what this
command is.

If you want or need to run your Java program with a one-line command given
to the operating system, then (in most cases) you can run a Java program by giving
the command java followed by the name of the class containing the main method.
For example, for the program in Display 1.1, you would give the following one-line
command:

java FirstProgram

Note that when you run a program, you use the class name, such as FirstProgram,
without any .java or .class ending.

When you run a Java program, you are actually running the Java byte-code
interpreter on the compiled version of your program. When you run your program,
the system will automatically load in any classes you need and run the byte-code
interpreter on those classes as well.

We have been assuming that the Java compiler and related software are already set
up for you. We are also assuming that all the files are in one directory. (Directories are
also called folders.) If you need to set up the Java compiler and system software, consult
the manuals that came with the software. If you wish to spread your class definitions
across multiple directories, that is not difficult, but we will not concern ourselves with
that detail until later.

.class
files

44 CHAPTER 1 Getting Started

Syntax and Semantics

The description of a programming language, or any other kind of language, can be thought
of as having two parts, called the syntax and semantics of the language.

The syntax tells what arrangement of words and punctuation is legal in the language. The
syntax is often called the language’s grammar rules. For Java, the syntax describes what
arrangements of words and punctuation are allowed in a class or program definition.

The semantics of a language describes the meaning of things written while following the
syntax rules of the language. For a Java program, the syntax describes how you write a
program and the semantics describes what happens when you run the program.

When writing a program in Java, you are always using both the syntax and the semantics of
the Java language.

debugging

TIP: Error Messages

A mistake in a program is called a bug. For this reason, the process of eliminating
mistakes in your program is called debugging. There are three commonly recognized
types of bugs or errors, which are known as syntax errors, run-time errors, and logic
errors. Let’s consider them in order.

A syntax error is a grammatical mistake in your program; that is, a mistake in the
allowed arrangement of words and punctuations. If you violate one of these rules—for
example, by omitting a required punctuation—it is a syntax error. The compiler will
catch syntax errors and output an error message telling you that it has found the error,
where it thinks the error is, and what it thinks the error is. If the compiler says you have
a syntax error, you undoubtedly do. However, the compiler could be incorrect about
where and what the error is.

An error that is not detected until your program is run is called a run-time error.
If the computer detects a run-time error when your program is run, then it will output
an error message. The error message may not be easy to understand, but at least it lets
you know that something is wrong.

A mistake in the underlying algorithm for your program is called a logic error. If
your program has only logic errors, it will compile and run without any error message.
You have written a valid Java program, but you have not written a program that does
what you want. The program runs and gives output, but the output is incorrect. For
example, if you were to mistakenly use the multiplication sign in place of the addition
sign, it would be a logic error. Logic errors are the hardest kind of error to locate,
because the computer does not give you any error messages. ■

bug

syntax error

run-time
error

logic error

Expressions and Assignment Statements 45

1.2 Expressions and Assignment Statements

Once a person has understood the way variables are used in programming, he
has understood the quintessence of programming.

E. W. DIJKSTRA, University of Texas, 1969.

Variables, expressions, and assignments in Java are similar to their counterparts in most
other general purpose languages. In this section, we describe the details.

Identifiers

The name of a variable (or other item you might define in a program) is called an
identifier. A Java identifier must not start with a digit, and all the characters must
be letters, digits, or the underscore (_) symbol. (The symbol $ is also allowed, but it
is reserved for special purposes only, so you should not typically use $ in your Java
identifiers.) For example, the following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 bigBonus

All of the preceding names are legal and would be accepted by the compiler, but the
first five are poor choices for identifiers, since they are not descriptive of the identifier’s
use. None of the following are legal identifiers, and all would be rejected by the
compiler:

12 3X %change data-1 myfirst.java PROG.CLASS

The first two are not allowed because they start with a digit. The remaining four
are not identifiers because they contain symbols other than letters, digits, and the
underscore symbol.

identifier

Self-Test Exercises

4. What is a compiler?

5. What is a source program?

6. What is an object program?

7. What do you call a program that runs Java byte-code instructions?

8. Suppose you define a class named NiceClass in a file. What name should the
file have?

9. Suppose you compile the class NiceClass. What will be the name of the file
with the resulting byte-code?

46 CHAPTER 1 Getting Started

Java is a case-sensitive language; that is, it distinguishes between upper- and
lowercase letters in the spelling of identifiers. Hence, the following are three distinct
identifiers and could be used to name three distinct variables:

rate RATE Rate

However, it is usually not a good idea to use two such variants in the same program,
because that might be confusing. Although it is not required by Java, variables are
usually spelled with their first letter in lowercase. The convention that has become
universal in Java programming is to spell variable names with a mix of upper- and
lowercase letters (and digits), to always start a variable name with a lowercase letter, and
to indicate “word” boundaries with an uppercase letter, as illustrated by the following
variable names:

topSpeed bankRate1 bankRate2 timeOfArrival

A Java identifier can theoretically be of any length, and the compiler will accept
even unreasonably long identifiers.

case-sensitive

Names (Identifiers)

The name of something in a Java program, such as a variable, class, method, or object
name, must not start with a digit and may only contain letters, digits (0 through 9), and
the underscore character (_). Upper- and lowercase letters are considered to be different
characters. (The symbol $ is also allowed, but it is reserved for special purposes only, so
you should not typically use $ in a Java name.)

Names in a program are called identifiers.

Although it is not required by the Java language, the common practice, and the one followed
in this book, is to start the names of classes with uppercase letters and to start the names
of variables, objects, and methods with lowercase letters. These names are usually spelled
using only letters and digits.

There is a special class of identifiers, called keywords or reserved words, that have a
predefined meaning in Java and that you cannot use as names for variables or anything
else. In the code displays of this book, keywords are shown in a different color, as
illustrated by the keyword public. A complete list of keywords is given in Appendix 1.

Some predefined words, such as System and println, are not keywords. These
predefined words are not part of the core Java language and you are allowed to redefine
them. Although these words are not keywords, they are defined in libraries required by the
Java language standard. Needless to say, using a predefined identifier for anything other
than its standard meaning can be confusing and dangerous, and thus should be avoided.
The safest and easiest practice is to treat all predefined identifiers as if they are keywords.

keyword

Expressions and Assignment Statements 47

Variables

Every variable in a Java program must be declared before it is used. When you declare
a variable, you are telling the compiler—and, ultimately, the computer—what kind of
data you will be storing in the variable. For example, the following are two declarations
that might occur in a Java program:

int numberOfBeans;
double oneWeight, totalWeight;

The first declares the variable numberOfBeans so that it can hold a value of type int;
that is, a whole number. The name int is an abbreviation for “integer.” The type int
is the default type for whole numbers. The second definition declares oneWeight and
totalWeight to be variables of type double, which is the default type for numbers
with a decimal point (known as floating-point numbers). As illustrated here, when
there is more than one variable in a declaration, the variables are separated by commas.
Also, note that each declaration ends with a semicolon.

Every variable must be declared before it is used. A variable may be declared anyplace,
so long as it is declared before it is used. Of course, variables should always be declared in
a location that makes the program easier to read. Typically, variables are declared either
just before they are used or at the start of a block (indicated by an opening brace {). Any
legal identifier, other than a keyword, may be used for a variable name.

declare

floating-point
number

Variable Declarations

In Java, a variable must be declared before it is used. Variables are declared as described here.

SYNTAX

Type Variable_1, Variable_2,. . .;

EXAMPLES

int count, numberOfDragons, numberOfTrolls;
char answer;
double speed, distance;

Syntactic Variables

Remember that when you see something such as Type, Variable_1, or Variable_2, these
words do not literally appear in your Java code. They are syntactic variables, which means
they are replaced by something of the category that they describe. For example, Type can
be replaced by int, double, char, or any other type name. Variable_1 and Variable_2 can
each be replaced by any variable name.

48 CHAPTER 1 Getting Started

Java has basic types for characters, different kinds of integers, and different kinds of
floating-point numbers (numbers with a decimal point), as well as a type for the values
true and false. These basic types are known as primitive types. Display 1.2 shows
all of Java’s primitive types. The preferred type for integers is int. The type char is
the type for single characters and can store common Unicode characters. The preferred
type for floating-point numbers is double. The type boolean has the two values true
and false. (Unlike some other programming languages, the Java values true and
false are not integers and will not be automatically converted to integers.) Objects of
the predefined class String represent strings of characters. String is not a primitive
type, but is often considered a basic type along with the primitive types. The class
String is discussed later in this chapter.

Assignment Statements

The most direct way to change the value of a variable is to use an assignment
statement. In Java, the equal sign is used as the assignment operator. An assignment
statement always consists of a variable on the left-hand side of the assignment operator
(the equal sign) and an expression on the right-hand side. An assignment statement
ends with a semicolon. The expression on the right-hand side of the equal sign may be
a variable, a number, or a more complicated expression made up of variables, numbers,

primitive
types

assignment
statement

assignment
operator

Display 1.2 Primitive Types

TYPE NAME KIND OF VALUE
MEMORY
USED SIZE RANGE

boolean true or false 1 byte Not applicable

char Single character
(Unicode)

2 bytes Common Unicode characters

byte Integer 1 byte -128 to 127

short Integer 2 bytes -32768 to 32767

int Integer 4 bytes -2147483648 to 2147483647

long Integer 8 bytes -9223372036854775808 to
9223372036854775807

float Floating-point
number

4 bytes ;3.40282347 * 10+38 to
;1.40239846 * 10-45

double Floating-point
number

8 bytes ;1.76769313486231570 * 10+308 to
;4.94065645841246544 * 10-324

Expressions and Assignment Statements 49

operators, and method invocations. An assignment statement instructs the computer to
evaluate (that is, to compute the value of) the expression on the right-hand side of the
equal sign and to set the value of the variable on the left-hand side equal to the value of
that expression. The following are examples of Java assignment statements:

totalWeight = oneWeight * numberOfBeans;
temperature = 98.6;
count = count + 2;

The first assignment statement sets the value of totalWeight equal to the number in
the variable oneWeight multiplied by the number in numberOfBeans. (Multiplication
is expressed using the asterisk * in Java.) The second assignment statement sets the
value of temperature to 98.6. The third assignment statement increases the value of
the variable count by 2.

Note that a variable may occur on both sides of the assignment operator (both sides
of the equal sign). The assignment statement

count = count + 2;

sets the new value of count equal to the old value of count plus 2.
When used with variables of a class type, the assignment operator requires a bit

more explanation, which we will give in Chapter 4.

Assignment Statements with Primitive Types

An assignment statement with a variable of a primitive type on the left-hand side of
the equal sign causes the following actions: First, the expression on the right-hand side of
the equal sign is evaluated, and then the variable on the left-hand side of the equal sign is
set equal to this value.

SYNTAX

Variable = Expression;

EXAMPLE

distance = rate * time;
count = count + 2;

An assigned statement may be used as an expression that evaluates to a value. When
used this way, the variable on the left-hand side of the equal sign is changed as we
have described, and the new value of the variable is also the value of the assignment
expression. For example,

number = 3;

www.allitebooks.com

http://www.allitebooks.org

50 CHAPTER 1 Getting Started

both changes the value of number to 3 and evaluates to the value 3. This allows you to
chain assignment statements. The following changes the values of both the variables,
number1 and number2, to 3:

number2 = (number1 = 3);

The assignment operator automatically is executed right to left if there are no
parentheses, so this is normally written in the following equivalent way:

number2 = number1 = 3;

TIP: Initialize Variables

A variable that has been declared but that has not yet been given a value by some
means, such as an assignment statement, is said to be uninitialized. In some instances,
an uninitialized variable may be given some default value, but this is not true in all
cases. Moreover, it makes your program clearer to explicitly give the variable a value,
even if you are simply reassigning it the default value. (The exact details on default
values have been known to change and should not be counted on.)2

One easy way to ensure that you do not have an uninitialized variable is to initialize
it within the declaration. Simply combine the declaration and an assignment state-
ment, as in the following examples:

int count = 0;
double speed = 65.5;
char grade = 'A';
int initialCount = 50, finalCount;

Note that you can initialize some variables and not initialize others in a declaration.
Sometimes the compiler may say that you have failed to initialize a variable. In most

cases, this will indeed have occurred. Occasionally, the compiler is mistaken. However,
the compiler will not compile your program until you convince it that the variable in
question is initialized. To make the compiler happy, initialize the variable when it is
declared, even if the variable will be given a different value before the variable is used
for anything. In such cases, you cannot argue with the compiler. ■

2The official rules are that the variables we are now using, which we will later call local variables, are
not automatically initialized. Later in this book, we will introduce variables called static variables and
instance variables, which are automatically initialized. However, we urge you to never rely on automatic
initialization.

uninitialized
variable

Expressions and Assignment Statements 51

More Assignment Statements ★

There is a shorthand notation that combines the assignment operator (=) and an
arithmetic operator so that a given variable can have its value changed by adding,
subtracting, multiplying, or dividing by a specified value. The general form is

Variable Op = Expression

which is equivalent to

Variable = Variable Op (Expression)

The Expression can be another variable, a constant, or a more complicated arithmetic
expression. The Op can be any of +, −, *, /, or %, as well as some operators we have not
yet discussed—the operator % has also not yet been discussed but is explained later in
this chapter. (A full list of values for Op can be seen at the bottom of the precedence
table in Appendix 2.) Below are examples:

Initializing a Variable in a Declaration

You can combine the declaration of a variable with an assignment statement that gives the
variable a value.

SYNTAX

Type Variable_1 =, Variable_2 = Expression__2, ...;

Some of the variables may have no equal sign and no expression, as in the first example.

EXAMPLE

int numberReceived = 0, lastNumber, numberOfStations = 5;
double speed = 98.9, distance = speed * 10;
char initial = 'J';

EXAMPLE: EQUIVALENT TO:

count += 2; count = count + 2;

total -= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time / rushFactor;

change %= 100; change = change % 100;

amount *= count1 + count2; amount = amount * (count1 + count2);

52 CHAPTER 1 Getting Started

Assignment Compatibility

As a general rule, you cannot store a value of one type in a variable of another type. For
example, the compiler will object to the following:

int intVariable;
intVariable = 2.99;

The problem is a type mismatch. The constant 2.99 is of type double, and the variable
intVariable is of type int.

There are some special cases where it is permitted to assign a value of one type to
a variable of another type. It is acceptable to assign a value of an integer type, such as
int, to a variable of a floating-point type, such as the type double. For example, the
following is both legal and acceptable style:

double doubleVariable;
doubleVariable = 2;

The preceding will set the value of the variable named doubleVariable equal to 2.0.

assigning
int values
to double
variables

Self-Test Exercises

 10. Which of the following may be used as variable names in Java?

rate1, 1stPlayer, myprogram.java, long,
TimeLimit, numberOfWindows

11. Can a Java program have two different variables named number and Number?

12. Give the declaration for two variables called feet and inches. Both variables
are of type int and both are to be initialized to zero in the declaration.

13. Give the declaration for two variables called count and distance. count is of type
int and is initialized to zero. distance is of type double and is initialized to 1.5.

14. Write a Java assignment statement that will set the value of the variable distance
to the value of the variable time multiplied by 80. All variables are of type int.

15. Write a Java assignment statement that will set the value of the variable
interest to the value of the variable balance multiplied by the value of the
variable rate. The variables are of type double.

16. What is the output produced by the following lines of program code?

char a, b;
a = 'b';
System.out.println(a);
b = 'c';
System.out.println(b);
a = b;
System.out.println(a);

Expressions and Assignment Statements 53

Similarly, assignments of integer type variables to floating-point type variables are
also allowed. For example, the following is permitted:

int intVariable;
intVariable = 42;
double doubleVariable;
doubleVariable = intVariable;

More generally, you can assign a value of any type in the following list to a variable
of any type that appears further down in the list:

byte —> short —> int —> long —> float —> double

For example, you can assign a value of type int to a variable of type long, float, or
double (or of course to a variable of type int), but you cannot assign a value of type
int to a variable of type byte or short. Note that this is not an arbitrary ordering of
the types. As you move down the list from left to right, the range of allowed values for
the types becomes larger.

You can assign a value of type char to a variable of type int or to any of the
numeric types that follow int in our list of types (but not to those that precede int).
However, in most cases it is not wise to assign a character to an int variable, because
the result could be confusing.3

If you want to assign a value of type double to a variable of type int, then you must
change the type of the value by using a type cast, as explained in the subsection later in
this chapter entitled “Type Casting.”

In many languages other than Java, you can assign integers to variables of type
boolean and assign boolean values to integer variables. You cannot do that in Java. In
Java, the boolean values true and false are not integers nor will they be automatically
converted to integers. (In fact, it is not even legal to do an explicit type cast from the
type boolean to the type int or vice versa. Explicit type casts are discussed later in this
chapter in the subsection “Type Casting.”)

Constants

Constants or literals are names for one specific value. For example, 2 and 3.1459
are two constants. We prefer the name constants because it contrasts nicely with the
word variables. Constants do not change value; variables can change their values.

3Readers who have used certain other languages, such as C or C++, may be surprised to learn that you
cannot assign a value of type char to a variable of type byte. This is because Java uses the Unicode
character set rather than the ASCII character set, and so Java reserves two bytes of memory for each
value of type char, but naturally only reserves one byte of memory for values of type byte. This is
one of the few cases where you might notice that Java uses the Unicode character set. Indeed, if you
convert from an int to a char or vice versa, you can expect to get the usual correspondence of ASCII
numbers and characters. It is also true that you cannot assign a value of type char to a variable of type
short, even though they both use two bytes of memory.

integers and
booleans

literals

constants

54 CHAPTER 1 Getting Started

Integer constants are written in the way you are used to writing numbers. Constants of type
int (or any other integer type) must not contain a decimal point. Constants of floating-
point types (float and double) may be written in either of two forms. The simple form
for floating-point constants is like the everyday way of writing decimal fractions. When
written in this form, a floating-point constant must contain a decimal point. No number
constant (neither integer nor floating point) in Java may contain a comma.

A more complicated notation for floating-point constants, such as constants of type
double, is called scientific notation or floating-point notation and is particularly
handy for writing very large numbers and very small fractions. For instance,

3.67 * 105, which is the same as 367000.0,

is best expressed in Java by the constant 3.67e5. The number

5.89 * 10-4, which is the same as 0.000589,

is best expressed in Java by the constant 5.89e−4. The e stands for exponent and means
“multiply by 10 to the power that follows.” The e may be either upper- or lowercase.

Think of the number after the e as telling you the direction and number of digits
to move the decimal point. For example, to change 3.49e4 to a numeral without an e,
move the decimal point 4 places to the right to obtain 34900.0, which is another way
of writing the same number. If the number after the e is negative, move the decimal
point the indicated number of spaces to the left, inserting extra zeros if need be. So,
3.49e−2 is the same as 0.0349.

The number before the e may contain a decimal point, although that is not required.
However, the exponent after the e definitely must not contain a decimal point.

Constants of type char are expressed by placing the character in single quotes, as
illustrated in what follows:

char symbol = 'Z';

Note that the left and right single quote symbols are the same symbol.

Assignment Compatibilities

You can assign a value of any type on the following list to a variable of any type that appears
further down on the list:

byte —> short —> int —> long —> float —> double

In particular, note that you can assign a value of any integer type to a variable of any floating-
point type. You can also assign a value of type char to a variable of type int or of any type
that followers int in the above list.

e notation

Expressions and Assignment Statements 55

Constants for strings of characters are given in double quotes, as illustrated by the
following line taken from Display 1.1:

System.out.println("Welcome to Java.");

Be sure to notice that string constants are placed inside of double quotes, while
constants of type char are placed inside of single quotes. The two kinds of quotes
mean different things. In particular, 'A' and "A" mean different things. 'A' is a value
of type char and can be stored in a variable of type char. "A" is a string of characters.
The fact that the string happens to contain only one character does not make the string
"A" a value of type char. Also notice that, for both strings and characters, the left and
right quotes are the same. We will have more to say about strings later in this chapter.

The type boolean has two constants, true and false. These two constants may
be assigned to a variable of type boolean or used anyplace else an expression of type
boolean is allowed. They must be spelled with all lowercase letters.

Arithmetic Operators and Expressions

As in most other languages, Java allows you to form expressions using variables,
constants, and the arithmetic operators: + (addition), − (subtraction), * (multiplication),
/ (division), and % (modulo, remainder). These expressions can be used anyplace it is
legal to use a value of the type produced by the expression.

All of the arithmetic operators can be used with numbers of type int, numbers of
type double, and even with one number of each type. However, the type of the value
produced and the exact value of the result depend on the types of the numbers being

What Is Doubled?

How did the floating-point type double get its name? Is there another type for floating-
point numbers called “single” that is half as big? Something like that is true. There is a type
that uses half as much storage—namely, the type float. Many programming languages
traditionally used two types for floating-point numbers. One type used less storage and was
very imprecise (that is, it did not allow very many significant digits). The second type used
double the amount of storage and so could be much more precise; it also allowed numbers
that were larger (although programmers tend to care more about precision than about
size). The kind of numbers that used twice as much storage were called double precision
numbers; those that used less storage were called single precision. Following this tradition,
the type that (more or less) corresponds to this double precision type in Java was named
double in Java. The type that corresponds to single precision in Java was called float.

(Actually, the type name double was inherited from C++, but this explanation applies to
why the type was named double in C++, and so ultimately it is the explanation of why the
type is called double in Java.)

quotes

mixing types

56 CHAPTER 1 Getting Started

combined. If both operands (that is, both numbers) are of type int, then the result
of combining them with an arithmetic operator is of type int. If one, or both, of
the operands is of type double, then the result is of type double. For example, if the
variables baseAmount and increase are both of type int, then the number produced
by the following expression is of type int:

baseAmount + increase

However, if one, or both, of the two variables is of type double, then the result is of
type double. This is also true if you replace the operator + with any of the operators −,
*, /, or %.

More generally, you can combine any of the arithmetic types in expressions. If
all the types are integer types, the result will be the integer type. If at least one of the
subexpressions is of a floating-point type, the result will be a floating-point type.

Knowing whether the value produced is of an integer type or a floating-point type
is typically all that you need to know. However, if you need to know the exact type of
the value produced by an arithmetic expression, it can be determined as follows: The
type of the value produced is one of the types used in the expression. Of all the types
used in the expression, it is, with rare exceptions, the last type (reading left to right) on
the following list:

byte —> short —> int —> long —> float —> double

Here are the rare exceptions: Of all the types used in the expression, if the last type
(reading left to right) is byte or short, then the type of the value produced is int.
In other words, an expression never evaluates to either of the types byte or short.
These exceptions have to do with an implementation detail that need not concern us,
especially since we almost never use the types byte and short in this book.

Note that this sequence of types is the same sequence of types we saw when
discussing assignment compatibility. As you go from left to right, the types increase in
the range of values they allow.4

Parentheses and Precedence Rules ★

If you want to specify exactly what subexpressions are combined with each operator,
you can fully parenthesize an expression. For example,

((base + (rate * hours))/(2 + rate))

If you omit some parentheses in an arithmetic expression, Java will, in effect, put in
parentheses for you. When adding parentheses, Java follows rules called precedence rules

4Although we discourage the practice, you can use values and variables of type char in arithmetic
expressions using operators such as +. If you do so, the char values and variables will contribute to
the expression as if they were of type int.

Expressions and Assignment Statements 57

that determine how the operators, such as + and *, are enclosed in parentheses. These
precedence rules are similar to rules used in algebra. For example,

base + rate * hours

is evaluated by Java as if it were parenthesized as follows:

base + (rate * hours)

So, the multiplication will be done before the addition.
Except in some standard cases, such as a string of additions or a simple multiplication

embedded inside an addition, it is usually best to include the parentheses, even if the
intended groupings are the ones dictated by the precedence rules. The parentheses
make the expression easier to read and less prone to programmer error.

A partial list of precedence rules is given in Display 1.3. A complete set of Java
precedence rules is given in Appendix 2. Operators that are listed higher on the list are
said to have higher precedence. When the computer is deciding which of two adjacent
operations to group with parentheses, it groups the operation of higher precedence and
its apparent arguments before the operation of lower precedence. Some operators have
equal precedence, in which case the order of operations is determined by associativity
rules. A brief summary of associativity rules is that binary operators of equal precedence
are grouped in left-to-right order.5 Unary operators of equal precedence are grouped in
right-to-left order. So, for example,

base + rate + hours

is interpreted by Java to be the same as

(base + rate) + hours

And, for example,

+–+rate

is interpreted by Java to be the same as

+(–(+rate))

For now you can think of the explicit parentheses put in by the programmer and the
implicit parentheses determined by precedence and associativity rules as determining
the order in which operations are performed. For example, in

base + (rate * hours)

the multiplication is performed first and the addition is performed second.

5There is one exception to this rule. A string of assignment operators, such as n1 = n2 = n3;, is
performed right to left, as we noted earlier in this chapter.

58 CHAPTER 1 Getting Started

The actual situation is a bit more complicated than what we have described for
evaluating expressions, but we will not encounter any of these complications in
this chapter. A complete discussion of evaluating expressions using precedence and
associativity rules will be given in Chapter 3.

Integer and Floating-Point Division

When used with one or both operands of type double, the division operator, /,
behaves as you might expect. However, when used with two operands of type int, the
division operator yields the integer part resulting from division. In other words, integer
division discards the part after the decimal point. So, 10/3 is 3 (not 3.3333…), 5/2 is
2 (not 2.5), and 11/3 is 3 (not 3.6666…). Notice that the number is not rounded; the
part after the decimal point is discarded no matter how large it is.

The operator % can be used with operands of type int to recover the information
lost when you use / to do division with numbers of type int. When used with values
of type int, the two operators / and % yield the two numbers produced when you
perform the long division algorithm you learned in grade school. For example, 14
divided by 3 is 4 with a remainder of 2. The / operation yields the number of times
one number “goes into” another (often called the quotient). The % operation gives the
remainder. For example, the statements

System.out.println("14 divided by 3 is " + (14 / 3));
System.out.println("with a remainder of " + (14 % 3));

yield the following output:

14 divided by 3 is 4
with a remainder of 2

The % operator can be used to count by 2s, 3s, or any other number. For example,
if you want to do something to every other integer, you need to know if the integer
is even or odd. Then, you can do it to every even integer (or alternatively every odd
integer). An integer n is even if n % 2 is equal to 0 and the integer is odd if n % 2 is
equal to 1. Similarly, to do something to every third integer, your program might step
through all integers n but only do the action when n % 3 is equal to 0.

Display 1.3 Precedence Rules

Highest Precedence

First: the unary operators: +, −, ++, −−, and !

Second: the binary arithmetic operators: *, /, and %

Third: the binary arithmetic operators: + and −

Lowest Precedence

integer
division

the % operator

Expressions and Assignment Statements 59

PITFALL: Round-Off Errors in Floating-Point Numbers

For all practical purposes, floating-point numbers are only approximate quantities.
For example, in formal mathematics, the floating-point number 1.0/3.0 is equal to

0.3333333...

where the three dots indicate that the 3s go on forever. The computer stores numbers
in a format somewhat like this decimal representation, but it has room for only a
limited number of digits. If it can store only 10 digits after the decimal, then 1.0/3.0
is stored as

0.3333333333

with only 10 threes. Thus, 1.0/3.0 is stored as a number that is slightly smaller than
one-third. In other words, the value stored as 1.0/3.0 is only approximately equal to
one-third.

In reality, the computer stores numbers in binary notation, rather than in base 10
notation, but the principles and the consequences are the same. Some floating-point
numbers lose accuracy when they are stored in the computer.

Floating-point numbers (such as numbers of type double) and integers (such as
numbers of type int) are stored differently. Floating-point numbers are, in effect,
stored as approximate quantities. Integers are stored as exact quantities. This difference
sometimes can be subtle. For example, the numbers 42 and 42.0 are different in Java.
The whole number 42 is of type int and is an exact quantity. The number 42.0 is of
type double because it contains a fractional part (even though the fraction is 0), and
so 42.0 is stored with only limited accuracy.

As a result of this limited accuracy, arithmetic done on floating-point numbers
only gives approximate results. Moreover, one can easily get results on floating-point
 numbers that are very far from the true result you would obtain if the numbers could
have unlimited accuracy (unlimited number of digits after the decimal point). For
example, if a banking program used numbers of type double to represent amounts
of money and did not do sophisticated manipulations to preserve accuracy, it would
quickly bring the bank to ruin since the computed amounts of money would fre-
quently be very incorrect. Dealing with these inaccuracies in floating-point numbers
is part of the field of Numerical Analysis, a topic we will not discuss in this book. But,
there is an easy way to obtain accuracy when dealing with amounts of money: Use
 integers instead of floating-point numbers (perhaps one integer for the dollar amount
and another integer for the cents amount). ■

Although the % operator is primarily used with integers, it can also be used with
two floating-point numbers, such as two values of type double. However, we will not
discuss or use % with floating-point numbers.

60 CHAPTER 1 Getting Started

PITFALL: Division with Whole Numbers

When you use the division operator / on two integers, the result is an integer. This
can be a problem if you expect a fraction. Moreover, the problem can easily go
unnoticed, resulting in a program that looks fine but is producing incorrect output
without you even being aware of the problem. For example, suppose you are a
landscape architect who charges $5,000 per mile to landscape a highway, and suppose
you know the length in feet of the highway you are working on. The price you charge
can easily be calculated by the following Java statement:

totalPrice = 5000 * (feet / 5280.0);

This works because there are 5,280 feet in a mile. If the stretch of highway you are
landscaping is 15,000 feet long, this formula will tell you that the total price is

5000 * (15000 / 5280.0)

Your Java program obtains the final value as follows: 15000/5280.0 is computed as
2.84. Then, the program multiplies 5000 by 2.84 to produce the value 14200.00. With
the aid of your Java program, you know that you should charge $14,200 for the project.

Now suppose the variable feet is of type int, and you forget to put in the decimal
point and the zero, so that the assignment statement in your program reads as follows:

totalPrice = 5000 * (feet / 5280);

It still looks fine, but will cause serious problems. If you use this second form of
the assignment statement, you are dividing two values of type int, so the result of the
 division feet/5280 is 15000/5280, which is the int value 2 (instead of the value 2.84,
which you think you are getting). So the value assigned to totalPrice is 5000*2, or
10000.00. If you forget the decimal point, you will charge $10,000. However, as we
have already seen, the correct value is $14,200. A missing decimal point has cost you
$4,200. Note that this will be true whether the type of totalPrice is int or double;
the damage is done before the value is assigned to totalPrice. ■

Self-Test Exercises

17. Convert each of the following mathematical formulas to a Java expression:

3x 3x + y
x + y

7

3x + y

z + 2

18. What is the output of the following program lines?

double number = (1/3) * 3;
System.out.println("(1/3) * 3 is equal to " + number);

Expressions and Assignment Statements 61

Type Casting

A type cast takes a value of one type and produces a value of another type that is Java’s
best guess of an equivalent value. We will motivate type casts with a simple division
example.

Consider the expression 9/2. In Java, this expression evaluates to 4, because when
both operands are of an integer type, Java performs integer division. In some situations,
you might want the answer to be the double value 4.5. You can get a result of 4.5 by
using the “equivalent” floating-point value 2.0 in place of the integer value 2, as in the
expression 9/2.0, which evaluates to 4.5. But, what if the 9 and the 2 are the values
of variables of type int named n and m. Then, n/m yields 4. If you want floating-point
division in this case, you must do a type cast from int to double (or another floating-
point type), such as in the following:

double ans = n/(double)m;

The expression

(double)m

Self-Test Exercises (continued)

19. What is the output produced by the following lines of program code?

int quotient, remainder;
quotient = 7 / 3;
remainder = 7 % 3;
System.out.println("quotient = " + quotient);
System.out.println("remainder = " + remainder);

20. What is the output produced by the following code?

int result = 11;
result /= 2;
System.out.println("result is " + result);

21. Given the following fragment that purports to convert from degrees Celsius to
degrees Fahrenheit, answer the following questions:

double celsius = 20;
double fahrenheit;

fahrenheit = (9 / 5) * celsius + 32.0;

a. What value is assigned to fahrenheit?

b. Explain what is actually happening, and what the programmer likely wanted.

c. Rewrite the code as the programmer intended.

62 CHAPTER 1 Getting Started

is a type cast. The expression takes an int (in this example, the value of m) and
evaluates to an “equivalent” value of type double. So, if the value of m is 2, the
expression (double)m evaluates to the double value 2.0.

Note that (double)m does not change the value of the variable m. If m has the value 2
before this expression is evaluated, then m still has the value 2 after the expression is
evaluated.

You may use other type names in place of double to obtain a type cast to another
type. We said this produces an “equivalent” value of the target type. The word
“equivalent” is in quotes because there is no clear notion of equivalent that applies
between any two types. In the case of a type cast from an integer type to a floating-point
type, the effect is to add a decimal point and a zero. A type cast in the other direction,
from a floating-point type to an integer type, simply deletes the decimal point and all
digits after the decimal point. Note that when type casting from a floating-point type
to an integer type, the number is truncated, not rounded: (int)2.9 is 2; it is not 3.

As we noted earlier, you can always assign a value of an integer type to a variable of
a floating-point type, as in the following:

double d = 5;

In such cases Java performs an automatic type cast, converting the 5 to 5.0 and placing
5.0 in the variable d. You cannot store the 5 as the value of d without a type cast, but
sometimes Java does the type cast for you. Such an automatic type cast is sometimes
called a type coercion.

By contrast, you cannot place a double value in an int variable without an explicit
type cast. The following is illegal:

int i = 5.5; //Illegal

Instead, you must add an explicit type cast, like so:

int i = (int)5.5;

Increment and Decrement Operators

The increment operator ++ adds one to the value of a variable. The decrement
operator −− subtracts one from the value of a variable. They are usually used with
variables of type int, but they can be used with any numeric type. If n is a variable of
a numeric type, then n++ increases the value of n by one and n−− decreases the value of
n by one. So, n++ and n−− (when followed by a semicolon) are executable statements.
For example, the statements

int n = 1, m = 7;
n++;
System.out.println("The value of n is changed to " + n);
m−−;
System.out.println("The value of m is changed to " + m);

type coercion

Expressions and Assignment Statements 63

yield the following output:

The value of n is changed to 2
The value of m is changed to 6

An expression such as n++ also evaluates to a number as well as changing the value
of the variable n, so n++ can be used in an arithmetic expression such as the following:

2*(n++)

The expression n++ changes the value of n by adding one to it, but it evaluates to the
value n had before it was increased. For example, consider the following code:

int n = 2;
int valueProduced = 2*(n++);
System.out.println(valueProduced);
System.out.println(n);

This code produces the following output:

4
3

Notice the expression 2*(n++). When Java evaluates this expression, it uses the value
that number has before it is incremented, not the value that it has after it is incremented.
Thus, the value produced by the expression n++ is 2, even though the increment
operator changes the value of n to 3. This may seem strange, but sometimes it is just
what you want. And, as you are about to see, if you want an expression that behaves
differently, you can have it.

The expression ++n also increments the value of the variable n by one, but it
evaluates to the value n has after it is increased. For example, consider the following code:

int n = 2;
int valueProduced = 2*(++n);
System.out.println(valueProduced);
System.out.println(n);

This code is the same as the previous piece of code except that the ++ is before the
variable, so this code will produce the following output:

6
3

Notice that the two increment operators n++ and ++n have the exact same effect on
a variable n: They both increase the value of n by one. But the two expressions evaluate
to different values. Remember, if the ++ is before the variable, then the incrementing is
done before the value is returned; if the ++ is after the variable, then the incrementing is
done after the value is returned.

v++ versus
++v

64 CHAPTER 1 Getting Started

Everything we said about the increment operator applies to the decrement operator
as well, except that the value of the variable is decreased by one rather than increased by
one. For example, consider the following code:

int n = 8;
int valueProduced = n−−;
System.out.println(valueProduced);
System.out.println(n);

This produces the following output:

8
7

On the other hand, the code

int n = 8;
int valueProduced = −−n;
System.out.println(valueProduced);
System.out.println(n);

produces the following output:

7
7

Both n−− and −−n change the value of n by subtracting one, but they evaluate to
different values. n−− evaluates to the value n had before it was decremented; on the
other hand, −−n evaluates to the value n has after it is decremented.

You cannot apply the increment and decrement operators to anything other than a
single variable. Expressions such as (x + y)++,−−(x + y), 5++, and so forth are all
illegal in Java.

The use of the increment and decrement operators can be confusing when used
inside of more complicated expressions, and so, we prefer to not use increment or
decrement operators inside of expressions, but to only use them as simple statements,
such as the following:

n++;

decrement
operator

Self-Test Exercises

22. What is the output produced by the following lines of program code?

int n = (int)3.9;

 System.out.println("n == " + n);

The Class String 65

1.3 The Class String

Words, words, mere words, no matter from the heart.

WILLIAM SHAKESPEARE, Troilus and Cressida, 1602.

There is no primitive type for strings in Java. However, there is a class called String
that can be used to store and process strings of characters. This section introduces the
class String.

String Constants and Variables

You have already seen constants of type String. The quoted string

"Hello reader."

which appears in the following statement from Display 1.1, is a string constant:

System.out.println("Hello reader.");

A quoted string is a value of type String, although it is normally called an object
of type String rather than a value of type String. An object of type String is a
sequence of characters treated as a single item. A variable of type String can name one
of these string objects.

For example, the following declares blessing to be the name for a String variable:

String blessing;

The following assignment statement sets the value of blessing so that blessing
serves as another name for the String object "Live long and prosper.":

blessing = "Live long and prosper.";

The declaration and assignment can be combined into a single statement, as follows:

String blessing = "Live long and prosper.";

String

Self-Test Exercises (continued)

23. What is the output produced by the following lines of program code?

int n = 3;
n++;
System.out.println("n == " + n);
n−−;
System.out.println("n == " + n);

66 CHAPTER 1 Getting Started

You can write the object named by the String variable blessing to the screen as
follows:

System.out.println(blessing);

which produces the screen output

Live long and prosper.

The String Class

The class String is a predefined class that is automatically made available to you when you
are programming in Java. Objects of type String are strings of characters that are written
within double quotes. For example, the following declares the variable motto to be of type
String and makes motto a name for the String object "We aim to please.".

String motto = "We aim to please.";

Concatenation of Strings

When you use the + operator on two strings, the result is the string obtained by
connecting the two strings to get a longer string. This is called concatenation. So,
when it is used with strings, the + is sometimes called the concatenation operator. For
example, consider the following:

String noun = "Strings";
String sentence;
sentence = noun + "are cool.";
System.out.println(sentence);

This will set the variable sentence to "Stringsare cool." and will output the
following to the screen:

Stringsare cool.

Note that no spaces are added when you concatenate two strings. If you want
sentence set to "Strings are cool.", then you should change the assignment
statement to add the extra space. For example, the following will add the desired space:

sentence = noun + " are cool.";

We added a space before the word "are".
You can concatenate any number of Strings using the + operator. Moreover, you

can use the + operator to concatenate a String to almost any other type of item. The
result is always a String. In most situations, Java will convert an item of any type to

+ operator

concatenation

The Class String 67

a string when you connect it to a string with the + operator. For numbers, it does the
obvious thing. For example,

String solution = "The answer is " + 42;

will set the String variable solution to "The answer is 42". Java converts the
integer constant 42 to the string "42" and then concatenates the two strings "The
answer is " and "42" to obtain the longer string "The answer is 42".

Notice that a number or other value is converted to a string object only when it is
connected to a string with a plus sign. If it is connected to another number with a plus
sign, it is not converted to a string. For example,

System.out.println("100" + 42);

outputs

10042

but

System.out.println(100 + 42);

outputs

142

Classes

Classes are central to Java, and you will soon be defining and using your own classes.
The class String gives us an opportunity to introduce some of the notation and

Using the + Sign with Strings
If you connect two strings with the + operator, the result is the concatenation (pasting) of
the two strings.

EXAMPLE

String name = "Chiana";
String farewell = "Good bye " + name;
System.out.println(farewell);

This sets farewell to the string "Good bye Chiana". So, it outputs the following to the
screen:

Good bye Chiana

Note that we added a space at the end of "Good bye ".

68 CHAPTER 1 Getting Started

terminology used for classes. A class is the name for a type whose values are objects.
Objects are entities that store data and can take actions. For example, objects of the
class String store data consisting of strings of characters, such as "Hello". The actions
that an object can take are called methods. Most of the methods for the class String
return some value—that is, produce some value. For example, the method length()
returns the number of characters in a String object. So, "Hello".length() returns
the integer 5, which can be stored in an int variable as follows:

int n = "Hello".length();

As indicated by the example "Hello".length(), a method is called into action by
writing a name for the object followed by a dot followed by the method name with
parentheses. When you call a method into action, you are (or your code is) said to
invoke the method or call the method, and the object before the dot is known as the
calling object.

Although you can call a method with a constant object, as in "Hello".length(), it
is more common to use a variable as the calling object, as illustrated by the following:

String greeting = "Hello";
int n = greeting.length();

Information needed for the method invocation is given in the parentheses. In
some cases, such as the method length, no information is needed (other than the
data in the calling object) and the parentheses are empty. In other cases, which we see
soon, there is some information that must be provided inside the parentheses. The
information in parentheses is known as an argument (or arguments).

Invoking a method is also sometimes called sending a message to the object. With
this view, a message is sent to the object (by invoking a method) and in response the
object performs some action. For example, in response to the message

greeting.length()

the object greeting answers with the value 5.
All objects within a class have the same methods, but each object can have different

data. For example, the two String objects "Hello" and "Good-Bye" have different
data—that is, different strings of characters. However, they have the same methods.
Thus, because we know that the String object "Hello" has the method length(), we
know that the String object "Good-Bye" must also have the method length().

You now have seen two kinds of types in Java: primitive types and class types. The
main difference you have seen between these two kinds of types is that classes have
methods and primitive types do not. We will later see more differences between classes
and primitive types. A smaller difference between primitive types and class types is that
all the primitive types are spelled using only lowercase letters, but, by convention, class
types are spelled with their first letter in uppercase, as in String.

class

object

method

method call
or method
invocation

calling object

argument

sending a
message

The Class String 69

String Methods

The class String has a number of useful methods that can be used for string-processing
applications. A sample of these String methods is presented in Display 1.4. Some of
the notation and terminology used in Display 1.4 is described in the box entitled
“Returned Value.” A more complete list of String methods is given in Appendix 5.

Classes, Objects, and Methods

A Java program works by having things called objects perform actions. The actions are
known as methods and typically involve data contained in the object. All objects of the
same kind are said to be of the same class. So, a class is a category of objects. When the
object performs the action of a given method, it is called invoking the method (or calling
the method). Information provided to the method in parentheses is called the argument (or
arguments).

For example, in Display 1.1, System.out is an object, println is a method, and the following
is an invocation of the method by this object using the argument "Hello reader.":

System.out.println("Hello reader.");

Returned Value

An expression such as numberOfGirls + numberOfBoys produces a value. If
numberOfGirls has the value 2 and numberOfBoys has the value 10, then the number
produced is 12. The number 12 is the result of evaluating the expression.

Some method invocations are simple kinds of expression, and any such method invocation
evaluates to some value. If a method invocation produces a value, we say that the method
returns the value. For example, suppose your program executes

String greeting = "Hello!";

After that, if you evaluate greeting.length(), the value returned will be 6. So the
following code outputs the integer 6:

String greeting = "Hello!";
System.out.println(greeting.length());

A method can return different values depending on what happens in your program. However,
each method can return values of only one type. For example, the method length of the
class String always returns an int value. In Display 1.4, the type given before the method
name is the type of the values returned by that method. Since length always returns an
int value, the entry for length begins

int length()

70 CHAPTER 1 Getting Started

As with any method, a String method is called (invoked) by writing a String
object, a dot, the name of the method, and finally a pair of parentheses that enclose any
arguments to the method. Let’s look at some examples.

As we’ve already noted, the method length can be used to find out the number
of characters in a string. You can use a call to the method length anywhere that
you can use a value of type int. For example, all of the following are legal Java
statements:

String greeting = "Hello";
int count = greeting.length();
System.out.println("Length is " + greeting.length());

length

int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE
After program executes String greeting = "Hello!";
greeting.length() returns 6.

boolean equals(Other_String)

Returns true if the calling object string and the Other_String are equal. Otherwise, returns false.

EXAMPLE
After program executes String greeting = "Hello";
greeting.equals("Hello") returns true
greeting.equals("Good-Bye") returns false
greeting.equals("hello") returns false

Note that case matters. "Hello" and "hello" are not equal because one starts with an
uppercase letter and the other starts with a lowercase letter.

boolean equalsIgnoreCase(Other_String)

Returns true if the calling object string and the Other_String are equal, considering upper- and
lowercase versions of a letter to be the same. Otherwise, returns false.

EXAMPLE
After program executes String name = "mary!";
greeting.equalsIgnoreCase("Mary!") returns true

Display 1.4 Some Methods in the Class String (part 1 of 4)

The Class String 71

String toLowerCase()

Returns a string with the same characters as the calling object string, but with all letter characters
converted to lowercase.

EXAMPLE
After program executes String greeting = "Hi Mary!";
greeting.toLowerCase() returns "hi mary!".

String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter characters
converted to uppercase.

EXAMPLE
After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() returns "HI MARY!".

String trim()

Returns a string with the same characters as the calling object string, but with leading and trailing
white space removed. White space characters are the characters that print as white space on
paper, such as the blank (space) character, the tab character, and the new-line character '\n'.

EXAMPLE
After program executes String pause = " Hmm ";
pause.trim() returns "Hmm".

char charAt(Position)

Returns the character in the calling object string at the Position. Positions are counted 0, 1, 2, etc.

EXAMPLE
After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1) returns 'e'.

String substring(Start)

Returns the substring of the calling object string starting from Start through to the end of the
calling object. Positions are counted 0, 1, 2, etc. Be sure to notice that the character at position
Start is included in the value returned.

EXAMPLE
After program executes String sample = "AbcdefG";
sample.substring(2) returns "cdefG".

Display 1.4 Some Methods in the Class String (part 2 of 4)

(continued)

72 CHAPTER 1 Getting Started

String substring(Start, End)

Returns the substring of the calling object string starting from position Start through, but not
including, position End of the calling object. Positions are counted 0, 1, 2, etc. Be sure to notice
that the character at position Start is included in the value returned, but the character at position
End is not included.

EXAMPLE
After program executes String sample = "AbcdefG";
sample.substring(2, 5) returns "cde".

int indexOf(A_String)

Returns the index (position) of the first occurrence of the string A_String in the calling object string.
Positions are counted 0, 1, 2, etc. Returns −1 if A_String is not found.

EXAMPLE
After program executes String greeting = "Hi Mary!";
greeting.indexOf("Mary") returns 3, and
greeting.indexOf("Sally") returns −1.

int indexOf(A_String, Start)

Returns the index (position) of the first occurrence of the string A_String in the calling object string
that occurs at or after position Start. Positions are counted 0, 1, 2, etc. Returns −1 if A_String is
not found.

EXAMPLE
After program executes String name = "Mary, Mary quite contrary";
name.indexOf("Mary", 1) returns 6.
The same value is returned if 1 is replaced by any number up to and including 6.
name.indexOf("Mary", 0) returns 0.
name.indexOf("Mary", 8) returns –1.

int lastIndexOf(A_String)

Returns the index (position) of the last occurrence of the string A_String in the calling object string.
Positions are counted 0, 1, 2, etc. Returns −1, if A_String is not found.

EXAMPLE
After program executes String name = "Mary, Mary, Mary quite so";
greeting.indexOf("Mary") returns 0, and
name.lastIndexOf("Mary") returns 12.

Display 1.4 Some Methods in the Class String (part 3 of 4)

The Class String 73

Display 1.4 Some Methods in the Class String (part 4 of 4)

int compareTo(A_String)

Compares the calling object string and the string argument to see which comes first in the
lexicographic ordering. Lexicographic order is the same as alphabetical order but with the characters
ordered as in Appendix 3. Note that in Appendix 3, all the uppercase letters are in regular alphabetical
order and all the lowercase letters are in alphabetical order, but all the uppercase letters precede all
the lowercase letters. So, lexicographic ordering is the same as alphabetical ordering provided both
strings are either all uppercase letters or both strings are all lowercase letters. If the calling string is
first, it returns a negative value. If the two strings are equal, it returns zero. If the argument is first,
it returns a positive number.

EXAMPLE
After program executes String entry = "adventure";
entry.compareTo("zoo") returns a negative number,
entry.compareTo("adventure") returns 0, and
entry.compareTo("above") returns a positive number.

int compareToIgnoreCase(A_String)

Compares the calling object string and the string argument to see which comes first in the
lexicographic ordering, treating upper- and lowercase letters as being the same. (To be precise, all
uppercase letters are treated as if they were their lowercase versions in doing the comparison.)
Thus, if both strings consist entirely of letters, the comparison is for ordinary alphabetical order.
If the calling string is first, it returns a negative value. If the two strings are equal ignoring case, it
returns zero. If the argument is first, it returns a positive number.

EXAMPLE
After program executes String entry = "adventure";
entry.compareToIgnoreCase("Zoo") returns a negative number,
entry.compareToIgnoreCase("Adventure") returns 0, and
"Zoo".compareToIgnoreCase(entry) returns a positive number.

Some methods for the class String depend on counting positions in the string.
Positions are counted starting with 0, not with 1. So, in the string "Surf time", 'S'
is in position 0, 'u' is in position 1, and so forth. A position is usually referred to as
an index. So, it would be preferable to say: 'S' is at index 0, 'u' is at index 1, and so on.

The method indexOf can be used to find the index of a substring of the calling
objects. For example, consider

String phrase = "Java is fun.";

After this declaration, the invocation phrase.indexOf("is") will return 5 because
the 'i' of "is" is at index 5. (Remember, the first index is 0, not 1.) This is illustrated
in Display 1.5.

position

index

74 CHAPTER 1 Getting Started

Escape Sequences

A backslash, \, preceding a character tells the compiler that the character following
the \ does not have its usual meaning. Such a sequence is called an escape sequence or
an escape character. The sequence is typed in as two characters with no space between
the symbols. Several escape sequences are defined in Java.

If you want to put a backslash, \, or a quote symbol, ", into a string constant, you
must escape the ability of the " to terminate a string constant by using \", or the ability
of the \ to escape by using \\. The \\ tells the compiler you mean a real backslash,
\, not an escape sequence, and \" means a quote character, not the end of a string
constant. A list of escape sequences is given in Display 1.6.

It is important to note that each escape sequence is a single character, even though it
is spelled with two symbols. So, the string "Say \"Hi\"!" contains 9 characters ('S',
'a', 'y', the blank character, '\"', 'H', 'i', '\"', and '!'), not 11 characters.

Including a backslash in a quoted string is a little tricky. For example, the string
"abc\def" is likely to produce the error message “Invalid escape character.” To
include a backslash in a string, you need to use two backslashes. The string "abc\\
def", if output to the screen, would produce

abc\def

backslash \

escape
sequence

Display 1.6 Escape Sequences

\" Double quote.
\' Single quote.
\\ Backslash.
\n New line. Go to the beginning of the next line.
\r Carriage return. Go to the beginning of the current line.
\t Tab. White space up to the next tab stop.

The 12 characters in the string "Java is fun." have indexes 0 through 11.

0 1 2 3 4 5 6 7 8 9 10 11

J a v a i s f u n .

Notice that the blanks and the period
count as characters in the string.

Display 1.5 String Indexes

The Class String 75

The escape sequence \n indicates the start of a new line. For example, the statement

System.out.println("To be or\nNot to be.");

will write the following to the screen:

To be or
Not to be.

You do not need to use the escape sequence \' to include a single quote inside a
quoted string. For example, "Time's up!" is a valid quoted string. However, you do
need \' if you want to indicate the constant for the single-quote character, as in

char singleQuote = '\'';

String Processing

In Java, an object of type String is an immutable object, meaning that the characters
in the String object cannot be changed. This will eventually prove to be important
to us, but at this stage of our exploration of Java, it is a misleading statement. To see
that an object of type String cannot be changed, note that none of the methods in
Display 1.4 changes the value of the String calling object. There are more String
methods than those shown in Display 1.4, but none of them lets you write statements
that say things such as “Change the fifth character in the calling object string to 'x'.”
This was done intentionally to make the implementation of the String class more
efficient and for other reasons that we will discuss later in this book. There is another
string class, called StringBuffer, that has methods for altering its string object. We
will not discuss the class StringBuffer in this text, but a table explaining many of the
methods of the class StringBuffer is included in Appendix 5.

Although there is no method that allows you to change the value of a String
object, such as "Hello", you can still write programs that change the value of a String
variable, which is probably all you want anyway. To perform the change, simply use an
assignment statement, as in the following example:

String name = "Soprano";
name = "Anthony " + name;

The assignment statement in the second line changes the value of the name variable so
that the string it names changes from "Soprano" to "Anthony Soprano". Display 1.7
contains a demonstration of some simple string processing.

The Unicode Character Set ★

Until recently, most programming languages used the ASCII character set, which
is given in Appendix 3. The ASCII character set is simply a list of all the characters
normally used on an English-language keyboard plus a few special characters. In
this list, each character has been assigned a number so that characters can be stored
by storing the corresponding number. Java (and now many other programming
languages) uses the Unicode character set. The Unicode character set includes the

immutable
object

ASCII

Unicode

76 CHAPTER 1 Getting Started

ASCII character set plus many of the characters used in languages with a different
alphabet from English. This is not likely to be a big issue if you are using an English-
language keyboard. Normally, you can just program as if Java were using the ASCII
character set. The ASCII character set is a subset of the Unicode character set, and
the subset you are likely to use. Thus, Appendix 3, which lists the ASCII character
set, in fact lists the subset of the Unicode character set that we will use in this book.
The advantage of the Unicode character set is that it makes it possible to easily handle
languages other than English. For example, it is legal to spell a Java identifier using the
letters of the Greek alphabet (although you may want a Greek-language keyboard and
monitor to do this). The disadvantage of the Unicode character set is that it sometimes
requires more computer memory to store each character than it would if Java used only
the ASCII character set.

Display 1.7 Using the String Class

 1 public class StringProcessingDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 String sentence = "I hate text processing!";
 6 int position = sentence.indexOf("hate");
 7 String ending =
 8 sentence.substring(position + "hate".length());
 9
10 System.out.println("01234567890123456789012");
11 System.out.println(sentence);
12 System.out.println("The word \"hate\" starts at index "
13 + position);
14 sentence = sentence.substring(0, position) + "adore"
15 + ending;
16 System.out.println("The changed string is:");
17 System.out.println(sentence);
18 }
19 }

Sample Dialogue

01234567890123456789012

I hate text processing!

The word "hate" starts at index 2

The changed string is:

I adore text processing!

You could just use 4 here, but if you
had a String variable instead of
"hate", you would have to use length
as shown.

The Class String 77

Self-Test Exercises

24. What is the output produced by the following?

String verbPhrase = "is money";
System.out.println("Time" + verbPhrase);

25. What is the output produced by the following?

String test = "abcdefg";
System.out.println(test.length());
System.out.println(test.charAt(1));

26. What is the output produced by the following?

String test = "abcdefg";
System.out.println(test.substring(3));

27. What is the output produced by the following?

System.out.println("abc\ndef");

28. What is the output produced by the following?

System.out.println("abc\\ndef");

29. What is the output produced by the following?

String test = "Hello Tony";
test = test.toUpperCase();
System.out.println(test);

30. What is the output of the following two lines of Java code?

System.out.println("2 + 2 = " + (2 + 2));
System.out.println("2 + 2 = " + 2 + 2);

31. Suppose sam is an object of a class named Person and suppose increaseAge
is a method for the class Person that takes one argument that is an integer.
How do you write an invocation of the method increaseAge using sam as
the calling object and using the argument 10? The method increaseAge will
change the data in sam so that it simulates sam aging by 10 years.

32. The following code is supposed to output the string in lowercase letters but it
has an error. What is wrong?

String test = "WHY ARE YOU SHOUTING?";
test.toLowerCase();
System.out.println(test);

78 CHAPTER 1 Getting Started

1.4 Program Style

In matters of grave importance,
style, not sincerity, is the vital thing.

OSCAR WILDE, The Importance of Being Earnest, 1895.

Java programming style is similar to that used in other languages. The goal is to make
your code easy to read and easy to modify. This section gives some basic points on
good programming style in general and some information on the conventions normally
followed by Java programmers.

Naming Constants

There are two problems with numbers in a computer program. The first is that they
carry no mnemonic value. For example, when the number 10 is encountered in a
program, it gives no hint of its significance. If the program is a banking program,
it might be the number of branch offices or the number of teller windows at the
main office. To understand the program, you need to know the significance of each
constant. The second problem is that when a program needs to have some numbers
changed, the changing tends to introduce errors. Suppose that 10 occurs 12 times
in a banking program. Four of the times it represents the number of branch offices,
and eight of the times it represents the number of teller windows at the main office.
When the bank opens a new branch and the program needs to be updated, there is a
good chance that some of the 10s that should be changed to 11 will not be, or some
that should not be changed will be. The way to avoid these problems is to name each
number and use the name instead of the number within your program. For example,
a banking program might have two constants with the names BRANCH_COUNT and
WINDOW_COUNT. Both of these numbers might have a value of 10, but when the
bank opens a new branch, all you need to do to update the program is to change the
definition of BRANCH_COUNT.

One way to name a number is to initialize a variable to that number value, as in the
following example:

int BRANCH_COUNT = 10;
int WINDOW_COUNT = 10;

There is, however, one problem with this method of naming number constants: You
might inadvertently change the value of one of these variables. Java provides a way of
marking an initialized variable so that it cannot be changed. The syntax is

public static final Type Variable = Constant;

Program Style 79

For example, the names BRANCH_COUNT and WINDOW_COUNT can be given values that
cannot be changed by your code as follows:

public static final int BRANCH_COUNT = 10;
public static final int WINDOW_COUNT = 10;

Constants defined this way must be placed outside of the main method and, when we
start having more methods, outside of any other methods. This is illustrated in Display 1.8.
When we start writing programs and classes with multiple methods, you will see that
the defined constants can be used in all the methods of a class. However, if a constant is
only going to be used inside a single method, then it can be defined inside the method
without the keyword public.

Display 1.8 Comments and a Named Constant

 1 /**

 2 Program to show interest on a sample account balance.
 3 Author: Jane Q. Programmer.
 4 E-mail Address: janeq@somemachine.etc.etc.
 5 Last Changed: December 17, 2014.
 6 */
 7 public class ShowInterest
 8 {
 9 public static final double INTEREST_RATE = 2.5;
10
11 public static void main(String[] args)
12 {
13 double balance = 100;
14 double interest; //as a percent
15
16 interest = balance * (INTEREST_RATE / 100.0);
17 System.out.println("On a balance of $" + balance);
18 System.out.println("you will earn interest of $"
19 + interest);
20 System.out.println("All in just one short year.");
21 }
22
23 }

Sample Dialogue

On a balance of $100.0

you will earn interest of $2.5

All in just one short year.

Although it would not be as clear,
it is legal to place the definition of
INTEREST_RATE here instead.

mailto:janeq@somemachine.etc.etc

80 CHAPTER 1 Getting Started

We will fully explain the modifiers public static final later in this book, but
we can now explain most of what they mean. The part

int BRANCH_COUNT = 10;

simply declares BRANCH_COUNT as a variable and initializes it to 10. The words that precede
this modify the variable BRANCH_COUNT in various ways. The word public says there
are no restrictions on where you can use the name BRANCH_COUNT. The word static will
have to wait until Chapter 5 for an explanation, but be sure to include it. The word final
means that the value 10 is the final value assignment to BRANCH_COUNT, or, to phrase it
another way, that the program is not allowed to change the value of BRANCH_COUNT.

Naming Constants

The syntax for defining a name for a constant outside of a method, such as a name for a
number, is as follows:

SYNTAX

public static final Type Variable = Constant;

EXAMPLE

public static final int MAX_SPEED = 65;
public static final double MIN_SIZE = 0.5;
public static final String GREETING = "Hello friend!";
public static final char GOAL = 'A';

Although it is not required, it is the normal practice of programmers to spell named constants
using all uppercase letters with the underscore symbol used to separate “words.”

Java Spelling Conventions

In Java, as in all programming languages, identifiers for variables, methods, and
other items should always be meaningful names that are suggestive of the identifiers’
meanings. Although it is not required by the Java language, the common practice of
Java programmers is to start the names of classes with uppercase letters and to start the
names of variables, objects, and methods with lowercase letters. Defined constants are
normally spelled with all uppercase letters and underscore symbols for “punctuation,”
as we did in the previous subsection, “Naming Constants.”

For example, String, FirstProgram, and JOptionPane are classes, although we
have not yet discussed the last one. The identifiers println, balance, and readLine
should each be either a variable, an object, or a method.

Since blanks are not allowed in Java identifiers, “word” boundaries are indicated by
an uppercase letter, as in numberOfPods. Since defined constants are spelled with all
uppercase letters, the underscore symbol is used for “word” boundaries, as in MAX_SPEED.

The identifier System.out seems to violate this convention, since it names an
object but yet begins with an uppercase letter. It does not violate the convention, but
the explanation hinges on a topic we have not yet covered. System is the name of a

Program Style 81

class. Within the class named System, there is a definition of an object named out. So,
the identifier System.out is used to indicate the object out (starting with a lowercase
letter for an object) that is defined in the class System (starting with an uppercase letter
for a class). This sort of dot notation will be explained later in the book.

There is one Java convention that people new to Java often find strange. Java
programmers normally do not use abbreviations in identifiers, but rather spell things
out in full. A Java programmer would not use numStars. He or she would use
numberOfStars. A Java programmer would not use FirstProg. He or she would use
FirstProgram. This can produce long identifiers and sometimes exceedingly long
identifiers. For example, the names of two standard Java classes are BufferedReader
and ArrayIndexOutOfBoundsException. The first will be used in the next chapter
and the second will be used later in this book. These long names cause you to do
more typing, and program lines quickly become too long. However, there is a very
good reason for using these long names: There is seldom any confusion on how
the identifiers are spelled. With abbreviations, you often cannot recall how the
identifier was abbreviated. Was it BufReader or BuffReader or BufferedR or
BR or something else? Because all the words are spelled out, you know it must be
BufferedReader. Once they get used to using these long names, most programmers
learn to prefer them.

Comments

There are two ways to insert comments in a Java program. In Java, the symbols // are
used to indicate the start of a comment. All of the text between the // and the end of
the line is a comment. The compiler simply ignores anything that follows // on a line.
If you want a comment that covers more than one line, place a // on each line of the
comment. The symbols // are two slashes (without a space between them). Comments
indicated with // are often called line comments or inline comments.

There is another way to insert comments in a Java program. Anything between the
symbol pair /* and the symbol pair */ is considered a comment and is ignored by the
compiler. Unlike the // comments, which require an additional // on each line, the /*
to */ comments can span several lines like so:

/*This is a multi-line comment.
Note that there is no comment symbol
of any kind on the second line.*/

Comments of the /* */ type are often called block comments. These block
comments may be inserted anywhere in a program that a space or line break is allowed.
However, they should not be inserted anywhere except where they do not distract from
the layout of the program. Usually comments are only placed at the ends of lines or on
separate lines by themselves.

Java comes with a program called javadoc that will automatically extract
documentation from the classes you define. The workings of the javadoc program
dictate when you normally use each kind of comment.

The javadoc program will extract a /* */ comment in certain situations, but it
will not extract a // comment. We will say more about javadoc and comments after

//comments

line
comments

/*comments*/

block
comments

82 CHAPTER 1 Getting Started

we discuss defining classes. In the meantime, you may notice the following conventions
in our code:

We use line comments (that is, the // kind) for comments meant only for the code
writer or for a programmer who modifies the code and not for any other programmer
who merely uses the code.

For comments that would become part of the documentation for users of our code,
we use block comments (that is, the /* */ kind). The javadoc program allows you to
indicate whether or not a block comment is eligible to be extracted for documentation.
If the opening /* has an extra asterisk, as in /**, then the comment is eligible to be
extracted. If there is only one asterisk, javadoc will not extract the comment. For this
reason, our block comments invariably open with /**.

It is difficult to say just how many comments a program should contain. The
only correct answer is “just enough,” which of course conveys little to the novice
programmer. It will take some experience to get a feel for when it is best to include a
comment. Whenever something is important and not obvious, it merits a comment.
However, providing too many comments is as bad as providing too few. A program
that has a comment on each line is so buried in comments that the structure of the
program is hidden in a sea of obvious observations. Comments such as the following
contribute nothing to understanding and should not appear in a program:

interest = balance * rate; //Computes the interest.

A well-written program is called self-documenting, which means that the structure
of the program is clear from the choice of identifier names and the indenting pattern.
A completely self-documenting program would need none of these // comments that
are only for the programmer who reads or modifies the code. That may be an ideal that
is not always realizable, but if your code is full of // comments and you follow our
convention on when to use them, then either you simply have too many comments or
your code is poorly designed.

A very simple example of the two kinds of comments is given in Display 1.8.

Indenting

We will say more about indenting as we introduce more Java. However, the general rule
is easy to understand and follow. When one structure is nested inside another structure,
the inside structure is indented one more level. For example, in our programs, the main
method is indented one level, and the statements inside the main method are indented
two levels. We prefer to use four spaces for each level of indenting because more than
four spaces eats up too much line length. It is possible to get by with indenting only
two or three spaces for each level so long as you are consistent. One space for a level of
indenting is not enough to be clearly visible.

when to
comment

self-
documenting

Chapter Summary 83

Chapter Summary

• Compiling a Java class or program produces byte-code, which is the machine language for a
fictitious computer. When you run the byte-code, a program called an interpreter translates
and executes the byte-code instructions on your computer one instruction at a time.

• A variable can be used to hold values, such as numbers. The type of the variable must
match the type of the value stored in the variable. All variables must be declared
 before they are used.

• The equal sign, =, is used as the assignment operator in Java. An assignment statement
is an instruction to change the value of a variable.

• Each variable should be initialized before the program uses its value.

• Parentheses in arithmetic expressions indicate which arguments are given to an operator.
When parentheses are omitted, Java adds implicit parentheses using precedence rules
and associativity rules.

• You can have variables and constants of type String. String is a class type, not a
primitive type.

• You can use the plus sign to concatenate two strings.

• There are methods in the class String that can be used for string processing.

• Variables (and all other items in a program) should be given names that indicate how
they are used.

• You should define names for number constants in a program and use these names
rather than writing out the numbers within your program.

• Programs should be self-documenting to the extent possible. However, you should
also insert comments to explain any unclear points.

Self-Test Exercises

33. What are the two kinds of comments in Java?

34. What is the output produced by the following Java code?

/**
 Code for Exercise.
*/
System.out.println("Hello");
//System.out.print("Mr. or Ms. ");
System.out.println("Student");

35. What is the normal spelling convention for named constants?

36. Write a line of Java code that will give the name ANSWER to the int value 42.
In other words, make ANSWER a named constant for 42.

Answers to Self-Test Exercises

 1. Java is not a drink.

 2. System.out.println("I like Java.");
System.out.println("You like tea.");

 3. public class HelloWorld

 {

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 }

 }

 4. A compiler translates a program written in a programming language such as Java
into a program in a low-level language. When you compile a Java program, the
compiler translates your Java program into a program expressed in Java byte-code.

 5. The program that is input to a compiler is called the source program.

 6. The translated program that is produced by a compiler is called the object program
or object code.

 7. A program that runs Java byte-code instructions is called an interpreter. It is also
often called the Java Virtual Machine (JVM).

 8. NiceClass.java

 9. NiceClass.class

10. 1stPlayer may not be used because it starts with a digit; myprogram.java may
not be used because it contains an illegal symbol, the dot; long may not be used
because it is a keyword. All the others may be used as variable names. However,
TimeLimit, while legal, violates the style rule that all variable names begin with a
lowercase letter.

11. Yes, a Java program can have two different variables named number and Number.
However, it would not be good style to do so.

12. int feet = 0, inches = 0;

13. int count = 0;
 double distance = 1.5;

14. distance = time * 80;

15. interest = balance * rate;

16. b
 c

 c

84 CHAPTER 1 Getting Started

17. 3*x
 3*x + y

 (x + y)/7 Note that x + y/7 is not correct.
 (3*x + y)/(z + 2)

18. (1/3) * 3 is equal to 0.0

 Since 1 and 3 are of type int, the / operator performs integer division, which
discards the remainder, so the value of 1/3 is 0, not 0.3333 This makes the
value of the entire expression 0 * 3, which of course is 0.

19. quotient = 2
 remainder = 1

20. result is 5

21. a. 52.0

 b. 9/5 has int value 1; because the numerator and denominator are both of type
int, integer division is done; the fractional part is discarded. The programmer
probably wanted floating-point division, which does not discard the part after
the decimal point.

 c. fahrenheit = (9.0/5) * celsius + 32.0;
 or
 fahrenheit = 1.8 * celsius + 32.0;

22. n = = 3

23. n = = 4
 n = = 3

24. Time is money

25. 7
 b

26. defg

27. abc
 def

28. abc\ndef

29. HELLO TONY

30. The output is

 2 + 2 = 4

 2 + 2 = 22

 In the expression "2 + 2 = " + (2 + 2), the integers 2 and 2 in (2 + 2) are added
to obtain the integer 4. When 4 is connected to the string "2 + 2" with a plus sign, the
integer 4 is converted to the string "4" and the result is the string "2 + 2 = 4". However
"2 + 2 = " + 2 + 2 is interpreted by Java to mean

 ("2 + 2 = " + 2) + 2

Answers to Self-Test Exercises 85

 The first integer 2 is changed to the string "2" because it is being combined with
the string "2 + 2". The result is the string "2 + 2 = 2". The last integer 2 is
combined with the string "2 + 2 = 2". So, the last 2 is converted to the string
"2". So the final result is

 "2 + 2 = 2" + "2"

 which is "2 + 2 = 22".

31. sam.increaseAge(10);

32. The method toLowerCase doesn’t change the string test. To change it, we must
set test equal to the string returned by toLowerCase:

 test = test.toLowerCase();

33. The two kinds of comments are // comments and /* */ comments. Everything
following a // on the same line is a comment. Everything between a /* and a
matching */ is a comment.

34. Hello
 Student

35. The normal spelling convention is to spell named constants using all uppercase
letters with the underscore symbol used to separate words.

36. public static final int ANSWER = 42;

Programming Projects

 1. Body Mass Index (BMI) helps in specifying the weight category a person
belongs to, depending on their body weight. BMI is estimated using the fol-
lowing formula:

 BMI =
Weight in kilograms

(Height in meters)2

 Write a program that calculates and outputs the BMI. Assume various input values
wherever required.

 2. The video game machines at your local arcade output coupons according to
how well you play the game. You can redeem 10 coupons for a candy bar or 3
coupons for a gumball. You prefer candy bars to gumballs. Write a program that
defines a variable initially assigned to the number of coupons you win. Next,

86 CHAPTER 1 Getting Started

the program should output how many candy bars and gumballs you can get if
you spend all of your coupons on candy bars first, and any remaining coupons
on gumballs.

 3. Write a program that starts with the string variable first set to your first name
and the string variable last set to your last name. Both names should be all lower-
case. Your program should then create a new string that contains your full name in
pig latin with the first letter capitalized for the first and last name. Use only the pig
latin rule of moving the first letter to the end of the word and adding “ay.” Output
the pig latin name to the screen. Use the substring and toUpperCase methods
to construct the new name.

 For example, given

 first = "walt";

 last = "savitch";

 the program should create a new string with the text “Altway Avitchsay” and print it.

 4. A government research lab has concluded that an artificial sweetener commonly
used in diet soda pop will cause death in laboratory mice. A friend of yours is
desperate to lose weight but cannot give up soda pop. Your friend wants to know
how much diet soda pop it is possible to drink without dying as a result. Write a
program to supply the answer. The program has no input but does have defined
constants for the following items: the amount of artificial sweetener needed to kill
a mouse, the weight of the mouse, the starting weight of the dieter, and the desired
weight of the dieter. To ensure the safety of your friend, be sure the program uses
the weight at which the dieter will stop dieting, rather than the dieter’s current
weight, to calculate how much soda pop the dieter can safely drink. You may use
any reasonable values for these defined constants. Assume that diet soda contains
1/10th of 1% artificial sweetener. Use another named constant for this fraction.
You may want to express the percent as the double value 0.001. (If your program
turns out not to use a defined constant, you may remove that defined constant
from your program.)

 5. Write a program that starts with a line of text and then outputs that line of text
with the first occurrence of "hate" changed to "love". For example, a possible
sample output might be

 The line of text to be changed is:

 I hate you.

 I have rephrased that line to read:

 I love you.

 You can assume that the word "hate" occurs in the input. If the word "hate"
 occurs more than once in the line, your program will replace only the first occur-
rence of "hate". Since we will not discuss input until Chapter 2, use a defined
constant for the string to be changed. To make your program work for another
string, you should only need to change the definition of this defined constant.

Programming Projects 87

 6. Write a program for calculating the simple interest on a loan when the initial prin-
cipal amount (princi_amnt) is $1000, the initial interest rate (int_rate) is 5.0%,
and the number of years (no_of_yrs) is 5. Use suitable data types to declare these
variables. Simple interest is calculated using the following equation:

 Simple interest =
(Principal amount * Interest rate * Number of years)

100

 7. Write a program that outputs the number of hours, minutes, and seconds that
 corresponds to 50,391 total seconds. The output should be 13 hours, 59 minutes,
and 51 seconds. Test your program with a different number of total seconds to
ensure that it works for other cases.

 8. The following program will compile and run, but it uses poor programming style.
Modify the program so that it uses the spelling conventions, constant naming
conventions, and formatting style recommended in this book.

 public class vehicleAvgSpeed {

 public static void main(String[] args)

 {

 double TIME;

 System.out.println("This program calculates vehicle average speed

given a time and distance traveled.");

 TIME = 20.5;

 AVERAGE_SPEED = distance / TIME;

 System.out.println("Car average speed is " + AVERAGE_SPEED

+ " miles per hour.");

 }

 public static final double distance = 180;

 }

 9. A simple rule to estimate your ideal body weight is to allow 110 pounds for the first 5
feet of height and 5 pounds for each additional inch. Write a program with a variable
for the height of a person in feet and another variable for the additional inches. Assume
the person is at least 5 feet tall. For example, a person that is 6 feet and 3 inches tall
would be represented with a variable that stores the number 6 and another variable that
stores the number 3. Based on these values, calculate and output the ideal body weight.

 10. Scientists estimate that roughly 10 grams of caffeine consumed at one time is a
lethal overdose. Write a program with a variable that holds the number of milli-
grams of caffeine in a drink and outputs how many drinks it takes to kill a person.
A 12-ounce can of cola has approximately 34 mg of caffeine, while a 16-ounce cup
of coffee has approximately 160 mg of caffeine.

Solution to

Programming

Project 1.7

VideoNote

88 CHAPTER 1 Getting Started

2.2 Console Input usIng
the Scanner Class 108

The Scanner Class 108
The Empty String 116
Example: Self-Service Checkout 118
Other Input Delimiters 119

2.3 IntroduCtIon to FIle Input 121

The Scanner Class for Text File Input 121

2.1 sCreen output 90
System.out.println 90
Formatting Output with printf 93
Money Formats Using NumberFormat ★ 99
Importing Packages and Classes 102
The DecimalFormat Class ★ 104

2Console Input
and Output

Chapter summary 124 answers to self-test exercises 124 programming projects 127

Don’t imagine you know what a computer terminal is. A computer termi-

nal is not some clunky old television with a typewriter in front of it. It is

an interface where the mind and the body can connect with the universe

and move bits of it about.

DOUGLAS ADAMS, Mostly Harmless

(the fifth volume in The Hitchhiker’s Trilogy), Random House, 2009.

Introduction
This chapter covers simple output to the screen and input from the keyboard, often
called console I/O. We have already used console output, but this chapter covers it
in more detail. In particular, this chapter shows you how to format numeric output so
that you control such detail as the number of digits shown after the decimal point. This
chapter also covers the Scanner class, which was introduced in version 5.0 of Java and
can be used for console input.

Prerequisites
This chapter uses material from Chapter 1.

2.1 Screen Output
Let me tell the world.

WILLIAM SHAKESPEARE, Henry IV, 1598.

In this section, we review System.out.println and present some material on formatting
numeric output. As part of that material, we give a brief introduction to packages and
import statements. Packages are Java libraries of classes. Import statements make classes
from a package available to your program.

System.out.println

We have already been using System.out.println for screen output. In Display 1.7,
we used statements such as the following to send output to the display screen:

System.out.println("The changed string is:");
System.out.println(sentence);

System.out is an object that is part of the Java language, and println is a method
invoked by that object. It may seem strange to spell an object name with a dot in it, but
that need not concern us for now.

console I/O

System.out
println

2 Console Input and Output

Screen Output 91

When you use System.out.println for output, the data to be output is given
as an argument in parentheses, and the statement ends with a semicolon. Things you
can output are strings of text in double quotes, such as "The changed string is:";
String variables such as sentence; variables of other types such as variables of type
int; numbers such as 5 or 7.3; and almost any other object or value. If you want to
output more than one thing, simply place an addition sign between the things you
want to output. For example,

System.out.println("Answer is = " + 42
 + " Accuracy is = " + precision);

If the value of precision is 0.01, the output will be

Answer is = 42 Accuracy is = 0.01

Notice the space at the start of " Accuracy is = ". No space is added automatically.
The + operator used here is the concatenation operator that we discussed earlier. So

the above output statement converts the number 42 to the string "42" and then forms
the following string using concatenation:

"Answer is = 42 Accuracy is = 0.01"

System.out.println then outputs this longer string.
Every invocation of println ends a line of output. For example, consider the

following statements:

System.out.println("A wet bird");
System.out.println("never flies at night.");

These two statements cause the following output to appear on the screen:

A wet bird
never flies at night.

If you want the output from two or more output statements to place all their
output on a single line, then use print instead of println. For example, consider the
following statements:

System.out.print("A ");
System.out.print("wet ");
System.out.println("bird");
System.out.println("never flies at night.");

print
versus

println

92 CHAPTER 2 Console Input and Output

They produce the same output as our previous example:

A wet bird
never flies at night.

Notice that a new line is not started until you use println, rather than print. Also
notice that the new line starts after outputting the items specified in the println. This
is the only difference between print and println.

println versus print

The only difference between System.out.println and System.out.print is that
with println, the next output goes on a new line, whereas with print, the next output is
placed on the same line.

EXAMPLE

System.out.print("Tom ");
System.out.print("Dick ");
System.out.println("and ");
System.out.print("Harry ");

This produces the following output:

Tom Dick and
Harry

(The output would look the same whether the last line reads print or println.)

println Output
You can output one line to the screen using System.out.println. The items that are
output can be quoted strings, variables, numbers, or almost any object you can define in
Java. To output more than one item, place a plus sign between the items.

SYNTAX

System.out.println(Item_1 + Item_2 + ... + Last_Item);

EXAMPLE

System.out.println("Welcome to Java.");
System.out.println("Elapsed time = " + time + " seconds");

Another way to describe the difference between print and println is to note that

System.out.println(SomeThing);

is equivalent to

System.out.print(SomeThing + "\n");

Screen Output 93

Formatting Output with printf

Starting with version 5.0, Java includes a method named printf that can be used to
give output in a specific format. This method is used the same way as the method

System.out.
printf

TIP: Different Approaches to Formatting Output

If you have a variable of type double that stores some amount of money, you would
like your programs to output the amount in a nice format. However, if you just use
System.out.println, you are likely to get output that looks like the following:

Your cost, including tax, is $19.98327634144

You would like the output to look like this:

Your cost, including tax, is $19.98

To obtain this nicer form of output, you need some formatting tools.
In this chapter, we will present three approaches to formatting numeric (and

other) output. We will discuss the method printf and the two formatting classes
NumberFormat and DecimalFormat. The printf method is often the simplest way to
format output. However, printf uses an older methodology and so some authorities
prefer to use NumberFormat, DecimalFormat, or similar formatting classes because
these classes use a programming methodology that is perhaps more in the spirit of
modern (object-oriented) programming. We will let you (or your instructor if you are
in a class) decide which methodology to use. After this chapter, this book seldom uses
any of these formatting details. ■

Self-Test Exercises

1. What output is produced by the following lines?

String s = "Hello" + "Joe";
System.out.println(s);

2. Write Java statements that will cause the following to be written to the screen:

One two buckle your shoe.
Three four shut the door.

3. What is the difference between System.out.println and System.out.print?

4. What is the output produced by the following lines?

System.out.println(2 + " " + 2);
System.out.println(2 + 2);

94 CHAPTER 2 Console Input and Output

print but allows you to add formatting instructions that specify such things as the
number of digits to include after a decimal point. For example, consider the following:

double price = 19.8;
System.out.print("$");
System.out.printf("%6.2f", price);
System.out.println(" each");

This code outputs the following line:

$ 19.80 each

The line

System.out.printf("%6.2f", price);

outputs the string " 19.80" (one blank followed by 19.80), which is the value of the
variable price written in the format %6.2f. In these simple examples, the first argument
to printf is a string known as the format specifier, and the second argument is
the number or other value to be output in that format. Let’s explain this first sample
format specifier.

The format specifier %6.2f says to output a floating-point number in a field
(number of spaces) of width 6 (room for six characters) and to show exactly two
digits after the decimal point. So, 19.8 is expressed as “19.80” in a field of width 6.
Because "19.80" has only five characters, a blank character is added to obtain the six-
character string " 19.80". Any extra blank space is added to the front (left-hand end)
of the value output. That explains the 6.2 in the format specifier %6.2f. The f means
the output is a floating-point number, that is, a number with a decimal point. We will
have more to say about the character % shortly, but among other things, it indicates
that a format specification (in this case, 6.2f) follows.

Before we go on, let’s note a few details about the method printf. Note that the
first argument is a string that gives a format specifier. Also, note that printf, like
print, does not advance the output to the next line. The method printf is like
print, not like println, in this regard.

The first argument to printf can include text as well as a format specifier. For
example, consider the following variant on our example:

double price = 19.8;
System.out.printf("$%6.2f each", price);
System.out.println();

This code also outputs the following line:

$ 19.80 each

The text before and after the format specifier %6.2f is output along with the format ted
number. The character % signals the end of text to output and the start of the

format
specifier

field width

Using printf
VideoNote

Screen Output 95

conversion
character

e and g

format specifier. The end of a format specifier is indicated by a conversion character
(f in our example).

Other possible format specifiers are described in Display 2.1. (A more complete
list of specifiers is given in Appendix 4.) The conversion character specifies the type of
value that is output in the specified format. Note that the first number specifies the total
number of spaces used to output the value. If that number is larger than the number of
spaces needed for the output, extra blanks are added to the beginning of the value output.
If that number is smaller than the number of spaces needed for the output, enough extra
space is added to allow the value to be output; no matter what field width is specified,
printf uses enough space to fit in the entire value output. Both of the numbers in a
format specifier such as %6.2f are optional. You may omit either or both numbers, in
which case Java chooses an appropriate default value or values (for example, %6f and
%.2f). Note that the dot goes with the second number. You can use a format specifier
that is just a % followed by a conversion character, such as %f or %g, in which case Java
decides on the format details for you. For example, the format specifier %f is equivalent to
%.6f, meaning six spaces after the decimal point and no extra space around the output.

The e and g format specifiers are partially explained in Display 2.1. We still need to
explain the meaning of the number after the decimal point in e and g format specifiers,
such as %8.3e and %8.3g. The first number, 8 in the examples, is the total field
width for the value output. The second number (the number after the decimal point)
specifies the number of digits after the decimal point of the output. So the numbers,
such as 8.3, have the same meaning in the f, e, and g formats.

Display 2.1 Format Specifiers for System.out.printf

CONVERSION
CHARACTER TYPE OF OUTPUT EXAMPLES

d Decimal (ordinary) integer %5d
%d

f Fixed-point (everyday notation) floating point %6.2f
%f

e E-notation floating point %8.3e
%e

g General floating point (Java decides whether to use E-notation
or not)

%8.3g
%g

s String %12s
%s

c Character %2c
%c

96 CHAPTER 2 Console Input and Output

The s and c formats, for strings and characters, may include one number that specifies
the field width for outputting the value, such as %15s and %2c. If no number is given,
the value is output with no leading or trailing blank space.

When the value output does not fill the field width specified, blanks are added in
front of the value output. The output is then said to be right justified. If you add
a hyphen after the %, any extra blank space is placed after the value output, and the
output is said to be left justified. For example, the lines

double value = 12.123;
System.out.printf("Start%8.2fEnd", value);
System.out.println();
System.out.printf("Start%-8.2fEnd", value);
System.out.println();

produce the following output. The first line has three spaces before the 12.12, and the
second has three spaces after the 12.12.

Start 12.12End
Start12.12 End

So far we have used printf to output only one value. However, printf can
output any number of values. The first argument always is a string known as the
format string, which can be followed with any number of additional arguments, each
of which is a value to output. The format string should include one format specifier,
such as %6.2f or %s, for each value output, and they should be in the same order as
the values to be output. For example,

double price = 19.8;
String name = "magic apple";
System.out.printf("$%6.2f for each %s.", price, name);
System.out.println();
System.out.println("Wow");

This code outputs the following:

$ 19.80 for each magic apple.
Wow

Note that the format string may contain text as well as format specifiers, and this text is
output along with the values of the other arguments to printf.

You can include line breaks in a format string. For example, the following two lines

System.out.printf("$%6.2f for each %s.", price, name);
System.out.println();

can be replaced by the single line below, which uses the escape sequence \n:

System.out.printf("$%6.2f for each %s.\n", price, name);

s and c

right justified

left justified

more
arguments

format string

new lines

Screen Output 97

Although it is legal to use the escape sequence \n to indicate a line break in a format
string, it is preferable to use %n. Exactly what happens when a \n is output can be
system dependent, whereas %n should always mean a simple new line on any system. So
our last line of code would be a little more robust if rewritten using %n as follows:

System.out.printf("$%6.2f for each %s.%n", price, name);

Many of the details we have discussed about printf are illustrated in the program
given in Display 2.2.

%n

(continued)

Display 2.2 The printf Method (part 1 of 2)

 1 public class PrintfDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 String aString = "abc";

 6 System.out.println("String output:");
 7 System.out.println("START1234567890");
 8 System.out.printf("START%sEND %n", aString);
 9 System.out.printf("START%4sEND %n", aString);
10 System.out.printf("START%2sEND %n", aString);
11 System.out.println();

12 char oneCharacter = 'Z';

13 System.out.println("Character output:");
14 System.out.println("START1234567890");
15 System.out.printf("START%cEND %n", oneCharacter);
16 System.out.printf("START%4cEND %n", oneCharacter);
17 System.out.println();

TIP: Formatting Monetary Amounts with printf

A good format specifier for outputting an amount of money stored as a value of type
double (or other floating-point value) is %.2f. It says to include exactly two digits
after the decimal point and to use the smallest field width that the value will fit into.
For example,

double price = 19.99;
System.out.printf("The price is $%.2f each.", price);

produces the following output:

The price is $19.99 each. ■

98 CHAPTER 2 Console Input and Output

1 Methods are called functions in the C and C++ languages.

18 double d = 12345.123456789;

19 System.out.println("Floating-point output:");
20 System.out.println("START1234567890");
21 System.out.printf("START%fEND %n", d);
22 System.out.printf("START%.4fEND %n", d);
23 System.out.printf("START%.2fEND %n", d);
24 System.out.printf("START%12.4fEND %n", d);
25 System.out.printf("START%eEND %n", d);
26 System.out.printf("START%12.5eEND %n", d);
27 }
28 }

Sample Dialogue

String output:

START1234567890

STARTabcEND

START abcEND

STARTabcEND

Character output:

START1234567890

STARTZEND

START ZEND

Floating-point output:

START1234567890

START12345.123457END

START12345.1235END

START12345.12END

START 12345.1235END

START1.234512e+04END

START 1.23451e+04END

legacy code

Display 2.2 The printf Method (part 2 of 2)

The value is always output. If the specified field width
is too small, extra space is taken.

Note that the output is rounded, not
truncated, when digits are discarded.

TIP: Legacy Code

Some code is so expensive to replace, it is used even if it is “old fashioned” or otherwise
less than ideal. This sort of code is called legacy code. One approach to legacy code
is to translate it into a more modern language. The Java method printf is essentially
the same as a function1 in the C language that is also named printf. This was done
intentionally so that it would be easier to translate C code into Java code. ■

Screen Output 99

System.out.printf

System.out.printf is used for formatted screen output. System.out.printf can have
any number of arguments. The first argument is always a format string for the remaining
arguments. All the arguments except the first are values to be output to the screen, and
these values are output in the formats specified by the format string. The format string can
contain text as well as format specifiers, and this text is output along with the values.

NumberFormat

Money Formats Using NumberFormat ★

Using the class NumberFormat, you can tell Java to use the appropriate format when
outputting amounts of money. The technique is illustrated in Display 2.3. Let’s look
at the code in the main method that does the formatting. First consider the following:

NumberFormat moneyFormatter =
 NumberFormat.getCurrencyInstance();

The method invocation NumberFormat.getCurrencyInstance() produces an object
of the class NumberFormat and names the object moneyFormatter. You can use any

Self-Test Exercises

5. What output is produced by the following code?

String aString = "Jelly beans";

System.out.println("START1234567890");
System.out.printf("START%sEND %n", aString);
System.out.printf("START%4sEND %n", aString);
System.out.printf("START%13sEND %n", aString);
System.out.println();

6. What output is produced by the following code? For each output line, describe
whether the line begins or ends with a blank or blanks.

String aString = "Jelly beans";
double d = 123.1234567890;

System.out.println("START1234567890");
System.out.printf("START%sEND %n %9.4f %n", aString, d);

7. Write a Java statement to output the value in variable d of type double to the
screen. The output should be in e-notation with three digits after the decimal
point. The output should be in a field of width 15.

www.allitebooks.com

http://www.allitebooks.org

100 CHAPTER 2 Console Input and Output

valid identifier (other than a keyword) in place of moneyFormatter. This object
moneyFormatter has a method named format that takes a floating-point number as
an argument and returns a String value representing that number in the local currency
(the default currency). For example, the following invocation

moneyFormatter.format(19.8)

Display 2.3 Currency Format (part 1 of 2)

 1 import java.text.NumberFormat;
 2 import java.util.Locale;

 3 public class CurrencyFormatDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 System.out.println("Without formatting:");

 8 System.out.println(19.8);
 9 System.out.println(19.81111);
10 System.out.println(19.89999);
11 System.out.println(19);
12 System.out.println();

13 System.out.println("Default location:");
14 NumberFormat moneyFormatter =
15 NumberFormat.getCurrencyInstance();

16 System.out.println(moneyFormatter.format(19.8));
17 System.out.println(moneyFormatter.format(19.81111));
18 System.out.println(moneyFormatter.format(19.89999));
19 System.out.println(moneyFormatter.format(19));
20 System.out.println();

21 System.out.println("US as location:");
22 NumberFormat moneyFormatter2 =
23 NumberFormat.getCurrencyInstance(Locale.US);

24 System.out.println(moneyFormatter2.format(19.8));
25 System.out.println(moneyFormatter2.format(19.81111));
26 System.out.println(moneyFormatter2.format(19.89999));
27 System.out.println(moneyFormatter2.format(19));
28 }

29 }

If you use only the default location, you do not
need to import Locale.

Notice that this
number is rounded
to 19.90.

Screen Output 101

returns the String value "$19.80", assuming the default currency is the U.S. dollar. In
Display 2.3, this method invocation occurs inside a System.out.println statement,
but it is legal anyplace a String value is legal. For example, the following would
be legal:

String moneyString = moneyFormatter.format(19.8);

In order to make the class NumberFormat available to your code, you must include
the following near the start of the file with your program:

import java.text.NumberFormat;

This is illustrated in Display 2.3.
The method invocation NumberFormat.getCurrencyInstance() produces an

object that formats numbers according to the default location. In Display 2.3, we are
assuming the default location is the United States, and so the numbers are output as
U.S. dollars. On other systems, the default should be set to the local currency. If you
wish, you can specify the location, and hence the local currency, by giving an argument
to NumberFormat.getCurrencyInstance. For example, in Display 2.3, we used the
constant Locale.US to specify that the location is the United States. The relevant line
from Display 2.3 is repeated in what follows:

NumberFormat moneyFormatter2 =
 NumberFormat.getCurrencyInstance(Locale.US);

Display 2.3 Currency Format (part 2 of 2)

Sample Dialogue

Without formatting:

19.8

19.81111

19.89999

19

Default location:

$19.80

$19.81

$19.90

$19.00

US as location:

$19.80

$19.81

$19.90

$19.00

This assumes that the system is set to
use U.S. as the default location. If you are
not in the U.S., you will probably get the
format for your local currency.

This should give you the format for U.S.
currency no matter what country has been
set as the default location.

102 CHAPTER 2 Console Input and Output

Some constants for other countries (and hence other currencies) are given in Display 2.4.
However, unless your screen is capable of displaying the currency symbol for the
country whose constant you use, the output might not be as desired.

These location constants are objects of the class Locale. In order to make the class
Locale and these constants available to your code, you must include the following
near the start of the file with your program:

import java.util.Locale;

If you do not use any of these location constants and use only the default location, you
do not need this import statement.

The notation Locale.US may seem a bit strange, but it follows a convention that
is frequently used in Java code. The constant is named US, but we want specifically
that constant named US that is defined in the class Locale. So we use Locale.US. The
notation Locale.US means the constant US as defined in the class Locale.

Importing Packages and Classes

Libraries in Java are called packages. A package is simply a collection of classes that
has been given a name and stored in such a way as to make it easily accessible to your
Java programs. Java has a large number of standard packages that automatically come
with Java. Two such packages are named java.text and java.util. In Display 2.3,
we used the class NumberFormat, which is a member of the package java.text. In
order to use NumberFormat, you must import the class, which we did as follows:

import java.text.NumberFormat;

Display 2.4 Locale Constants for Currencies of Different Countries

Locale.CANADA Canada (for currency, the format is the same as U.S.)

Locale.CHINA China

Locale.FRANCE France

Locale.GERMANY Germany

Locale.ITALY Italy

Locale.JAPAN Japan

Locale.KOREA Korea

Locale.TAIWAN Taiwan

Locale.UK United Kingdom (English pound)

Locale.US United States

package

java.text

Screen Output 103

This kind of statement is called an import statement. In this example, the import
statement tells Java to look in the package java.text to find the definition of the class
NumberFormat.

If you want to import all the classes in the java.text package, use the following:

import java.text.*;

Then you can use any class in the java.text package.
You don’t lose any efficiency in importing the entire package instead of importing only

the classes you use. However, many programmers find that it is an aid to documentation
if they import only the classes they use, which is what we will do in this book.

In Display 2.3, we also used the class Locale, which is in the java.util package.
So we also included the following import statement:

import java.util.Locale;

Outputting Amounts of Money

Using the class NumberFormat, you can output an amount of money correctly formatted.
The procedure to do so is described here.

Place the following near the start of the file containing your program:

import java.text.NumberFormat;

In your program code, create an object of the class NumberFormat as follows:

NumberFormat formatterObject =
 NumberFormat.getCurrencyInstance();

When outputting numbers for amounts of money, change the number to a value of type
String using the method FormatterObject.format, as illustrated in the following:

double moneyAmount = 9.99;
System.out.println(formatterObject.format(moneyAmount));

The string produced by invocations such as formatterObject.format(moneyAmount)
adds the dollar sign and ensures that there are exactly two digits after the decimal point.
(This is assuming the U.S. dollar is the default currency.)

The numbers formatted in this way may be of type double, int, or long. You may use
any (nonkeyword) identifier in place of formatterObject. A complete example is given in
Display 2.3.

The above always outputs the money amount in the default currency, which is typically the
local currency. You can specify the country whose currency you want. See the text for details.

import
statement

java.util

104 CHAPTER 2 Console Input and Output

One package requires no import statement. The package java.lang contains classes
that are fundamental to Java programming. These classes are so basic that the package
is always imported automatically. Any class in java.lang does not need an import
statement to make it available to your code. So, when we say that a class is in the
package java.lang, you can simply use that class in your program without needing
any import statement. For example, the class String is in the java.lang package, so
you can use it without any import statement.

More material on packages is covered in Chapter 5.

java.lang

import

The DecimalFormat Class ★

System.out.println will let you output numbers but has no facilities to format the
numbers. If you want to output a number in a specific format, such as having a specified
number of digits after the decimal point, then you must convert the number to a string
that shows the number in the desired format and then use System.out.println
to output the string. Earlier in this chapter, we saw one way to accomplish this for
amounts of money. The class DecimalFormat provides a versatile facility to format
numbers in a variety of ways.

The class DecimalFormat is in the Java package named java.text. So you must
add the following (or something similar) to the beginning of the file with your program
or other class that uses the class DecimalFormat:

import java.text.DecimalFormat;

An object of the class DecimalFormat has a number of different methods that can
be used to produce numeral strings in various formats. In this subsection, we discuss
one of these methods, which is named format. The general approach to using the
format method is discussed in the following pages.

Create an object of the class DecimalFormat, using a String Pattern as follows:

DecimalFormat Variable_Name = new DecimalFormat(Pattern);

patterns

Self-Test Exercises

8. What output is produced by the following code? (Assume a proper import
statement has been given.)

NumberFormat exerciseFormatter =
 NumberFormat.getCurrencyInstance(Locale.US);
double d1 = 1.2345, d2 = 15.67890;
System.out.println(exerciseFormatter.format(d1));
System.out.println(exerciseFormatter.format(d2));

9. Suppose the class Robot is a part of the standard Java libraries and is in the
package named java.awt. What import statement do you need to make the
class Robot available to your program or other class?

Screen Output 105

For example,

DecimalFormat formattingObject = new DecimalFormat("000.000");

The method format of the class DecimalFormat can then be used to convert
a floating-point number, such as one of type double, to a corresponding numeral
String following the Pattern used to create the DecimalFormat object. Specifically, an
invocation of format takes the form

Decimal_Format_Object.format(Double_Expression)

which returns a String value for a string representation of the value of Double_
Expression. Double_Expression can be any expression, such as a variable or sum of
variables, that evaluates to a value of type double.

For example, consider the following code:

DecimalFormat formattingObject = new DecimalFormat("000.0000");
String numeral = formattingObject.format(12.3456789);
System.out.println(numeral);

This produces the following output:

012.3457

Of course, you can use an invocation of format, such as formattingObject.format
(12.3456789), directly in System.out.println. So, the following code produces the
same output:

System.out.println(formattingObject.format(12.3456789));

The format of the string produced is determined by the Pattern string that was used
as the argument to the constructor that created the object of the class DecimalFormat.
For example, the pattern "000.0000" means that there will be three digits before the
decimal point and four digits after the decimal point. Note that the result is rounded
when the number of digits is less than the number of digits available in the number
being formatted. If the format pattern is not consistent with the value of the number,
such as a pattern that asks for two digits before the decimal point for a number such as
123.456, then the format rules are violated so that no digits are lost.

A pattern can specify the exact number of digits before and after the decimal, or
it can specify minimum numbers of digits. The character '0' is used to represent a
required digit, and the character '#' is used to indicate an optional digit. For example,
the pattern "#0.0##" indicates one or two digits before the decimal point and one,
two, or three digits after the decimal point. The optional digit '#' is shown if it is a
nonzero digit and is not shown if it is a zero digit. The '#' optional digits should go
where zero placeholders would appear in a numeral string; in other words, any '#'
optional digits precede the zero digits '0' before the decimal point in the pattern, and

106 CHAPTER 2 Console Input and Output

any '#' optional digits follow the zero digits '0' after the decimal point in the pattern.
Use "#0.0##"; do not use "0#.0##" or "#0.##0".

For example, consider the following code:

DecimalFormat formattingObject = new DecimalFormat("#0.0##");
System.out.println(formattingObject.format(12.3456789));
System.out.println(formattingObject.format(1.23456789));

This produces the following output:

12.346
1.235

The character '%' placed at the end of a pattern indicates that the number is to be
expressed as a percentage. The '%' causes the number to be multiplied by 100 and
appends a percent sign, '%'. Examples of this and other formatting patterns are given
in Display 2.5.

E-notation is specified by including an 'E' in the pattern string. For example, the
pattern '00.###E0" approximates specifying two digits before the decimal point,
three or fewer digits after the decimal point, and at least one digit after the 'E', as
in 12.346E1. As you can see by the examples of E-notation in Display 2.5, the exact
details of which E-notation string is produced can be a bit more involved than our
explanation so far. Here are a couple more details:

The number of digits indicated after the 'E' is the minimum number of digits used
for the exponent. As many more digits as are needed will be used.

The mantissa is the decimal number before the 'E'. The minimum number of
significant digits in the mantissa (that is, the sum of the number of digits before and
after the decimal point) is the minimum of the number of digits indicated before the
decimal point plus the maximum of the number of digits indicated after the decimal
point. For example, 12345 formatted with "##0.##E0" is "12.3E3".

To get a feel for how E-notation patterns work, it would pay to play with a few
cases. In any event, do not count on a very precisely specified number of significant
digits.

percentages

E-notation

mantissa

DecimalFormat Class

Objects of the class DecimalFormat are used to produce strings of a specified format
from numbers. As such, these objects can be used to format numeric output. The object is
associated with a pattern when it is created using new. The object can then be used with the
method format to create strings that satisfy the format. See Display 2.5 for examples of
the DecimalFormat class in use.

Screen Output 107

Display 2.5 The DecimalFormat Class (part 1 of 2)

 1 import java.text.DecimalFormat;

 2 public class DecimalFormatDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 DecimalFormat pattern00dot000 = new DecimalFormat("00.000");
 7 DecimalFormat pattern0dot00 = new DecimalFormat("0.00");

 8 double d = 12.3456789;
 9 System.out.println("Pattern 00.000");
10 System.out.println(pattern00dot000.format(d));
11 System.out.println("Pattern 0.00");
12 System.out.println(pattern0dot00.format(d));

13 double money = 19.8;
14 System.out.println("Pattern 0.00");
15 System.out.println("$" + pattern0dot00.format(money));
16
17 DecimalFormat percent = new DecimalFormat("0.00%");

18 System.out.println("Pattern 0.00%");
19 System.out.println(percent.format(0.308));

20 DecimalFormat eNotation1 =
21 new DecimalFormat("#0.###E0"); //1 or 2 digits before point
22 DecimalFormat eNotation2 =
23 new DecimalFormat("00.###E0"); //2 digits before point

24 System.out.println("Pattern #0.###E0");
25 System.out.println(eNotation1.format(123.456));
26 System.out.println("Pattern 00.###E0");
27 System.out.println(eNotation2.format(123.456));

28 double smallNumber = 0.0000123456;
29 System.out.println("Pattern #0.###E0");
30 System.out.println(eNotation1.format(smallNumber));
31 System.out.println("Pattern 00.###E0");
32 System.out.println(eNotation2.format(smallNumber));
33 }
34 }

(continued)

108 CHAPTER 2 Console Input and Output

Sample Dialogue

Pattern 00.000

12.346

Pattern 0.00

12.35

Pattern 0.00

$19.80

Pattern 0.00%

30.80%

Pattern #0.###E0

1.2346E2

Pattern 00.###E0

12.346E1

Pattern #0.###E0

12.346E–6

Pattern 00.###E0

12.346E–6

The number is always given, even if
this requires violating the
format pattern.

Display 2.5 The DecimalFormat Class (part 2 of 2)

2.2 Console Input Using the Scanner Class

Let the world tell me.

FRANK SHAKESPEARE, Franky I

Starting with version 5.0, Java includes a class for doing simple keyboard input. In this
section, we show you how to do keyboard input using this class, which is named Scanner.

The Scanner Class

Display 2.6 contains a simple program that uses the Scanner class to read two int
values typed in on the keyboard. The numbers entered on the keyboard are shown in
bold. Let’s go over the Scanner-related details line by line. The following line, which
should be placed near the start of the file, tells Java where to find the definition of the
Scanner class:

import java.util.Scanner;

This line says the Scanner class is in the java.util package; util is short for utility,
but in Java code, you always use the abbreviated spelling util. A package is simply a library
of classes. This import statement makes the Scanner class available to your program.

import

Console Input Using the Scanner Class 109

Display 2.6 Keyboard Input Demonstration

 1 import java.util.Scanner;

 2 public class ScannerDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);

 7 System.out.println("Enter the number of pods followed by");
 8 System.out.println("the number of peas in a pod:");
 9 int numberOfPods = keyboard.nextInt();
10 int peasPerPod = keyboard.nextInt();

11 int totalNumberOfPeas = numberOfPods * peasPerPod;

12 System.out.print(numberOfPods + " pods and ");
13 System.out.println(peasPerPod + " peas per pod.");
14 System.out.println("The total number of peas = "
15 + totalNumberOfPeas);
16 }
17 }

Sample Dialogue 1

Enter the number of pods followed by

the number of peas in a pod:

22 10

22 pods and 10 peas per pod.

The total number of peas = 220

Sample Dialogue 2

Enter the number of pods followed by

the number of peas in a pod:

22

10

22 pods and 10 peas per pod.

The total number of peas = 220

Makes the Scannerclass available
to your program

Each reads one int
from the keyboard.

Creates an object of the class
Scanner and names the
object keyboard

The numbers that
are input must be
separated by
whitespace, such as
one or more blanks.

A line break is also
considered whitespace and
can be used to separate the
numbers typed in at the
keyboard.

110 CHAPTER 2 Console Input and Output

The following line creates an object of the class Scanner and names the object
keyboard:

Scanner keyboard = new Scanner(System.in);

After this line appears, you can use methods of the Scanner class with the object
keyboard to read data that the user types on the keyboard. For example, the method
nextInt reads one int value typed on the keyboard. So, the following line from
Display 2.6 reads one value of type int and makes that the value of the variable
numberOfPods:

int numberOfPods = keyboard.nextInt();

In Display 2.6, two such statements each read one int value that the user types in
at the keyboard:

int numberOfPods = keyboard.nextInt();
int peasPerPod = keyboard.nextInt();

The numbers typed in must be separated by whitespace, such as one or more spaces,
a line break, or other whitespace. Whitespace is any string of characters, such as blank
spaces, tabs, and line breaks, that prints as whitespace when written on (white) paper.

We often use the identifier keyboard for our Scanner object because the object
is being used for keyboard input. However, you may use other names. If you instead
want your object of the class Scanner to be named scannerObject, you would use the
following:

Scanner scannerObject = new Scanner(System.in);

To read a single int value from the keyboard and save it in the int variable n1, you
would then use the following:

n1 = scannerObject.nextInt();

This is illustrated in the program in Display 2.7.
The program in Display 2.7 also illustrates some of the other Scanner methods for

reading values from the keyboard. The method nextDouble works in exactly the same
way as nextInt, except that it reads a value of type double. The following example is
from Display 2.7:

double d1, d2;
d1 = scannerObject.nextDouble();
d2 = scannerObject.nextDouble();
System.out.println("You entered " + d1 + " and " + d2);

nextInt

whitespace

nextDouble

Console Input Using the Scanner Class 111

Display 2.7 Another Keyboard Input Demonstration (part 1 of 2)

 1 import java.util.Scanner;

 2 public class ScannerDemo2
 3 {
 4 public static void main(String[] args)
 5 {
 6 int n1, n2;
 7 Scanner scannerObject = new Scanner(System.in);

 8 System.out.println("Enter two whole numbers");
 9 System.out.println("separated by one or more spaces:");

10 n1 = scannerObject.nextInt();
11 n2 = scannerObject.nextInt();
12 System.out.println("You entered " + n1 + " and " + n2);

13 System.out.println("Next enter two numbers.");
14 System.out.println("Decimal points are allowed.");

15 double d1, d2;
16 d1 = scannerObject.nextDouble();
17 d2 = scannerObject.nextDouble();
18 System.out.println("You entered " + d1 + " and " + d2);

19 System.out.println("Next enter two words:");

20 String word1 = scannerObject.next();
21 String word2 = scannerObject.next();
22 System.out.println("You entered \"" +
23 word1 + "\" and \"" + word2 + "\"");

24 String junk = scannerObject.nextLine(); //To get rid of '\n'

25 System.out.println("Next enter a line of text:");
26 String line = scannerObject.nextLine();
27 System.out.println("You entered: \"" + line + "\"");
28 }
29 }

Reads one int from
the keyboard

Reads one double
from the keyboard

Reads one word from
the keyboard

Creates an object of
the class Scanner
and names the object
scannerObject

(continued)

112 CHAPTER 2 Console Input and Output

Sample Dialogue

Enter two whole numbers

separated by one or more spaces:

 42 43

You entered 42 and 43

Next enter two numbers.

A decimal point is OK.

 9.99 57

You entered 9.99 and 57.0

Next enter two words:

jelly beans

You entered "jelly" and "beans"

Next enter a line of text:

Java flavored jelly beans are my favorite.

You entered "Java flavored jelly beans are my favorite."

Display 2.7 Another Keyboard Input Demonstration (part 2 of 2)

The method next reads in a word, as illustrated by the following lines from Display 2.7:

String word1 = scannerObject.next();
String word2 = scannerObject.next();

If the input line is

jelly beans

then this will assign w1 the string "jelly" and w2 the string "beans".
For the method next, a word is any string of nonwhitespace characters delimited by

whitespace characters such as blanks or the beginning or ending of a line.
If you want to read in an entire line, you would use the method nextLine. For

example,

String line = scannerObject.nextLine();

reads in one line of input and places the string that is read into the variable line.
The end of an input line is indicated by the escape sequence '\n'. This '\n'

character is what you input when you press the Enter (Return) key on the keyboard.
On the screen, it is indicated by the ending of one line and the beginning of the next
line. When nextLine reads a line of text, it reads this '\n' character, so the next
reading of input begins on the next line. However, the '\n' does not become part of
the string value returned. So, in the previous code, the string named by the variable
line does not end with the '\n' character.

These and other methods for reading in values from the keyboard are given in Display 2.8.

word

Console Input Using the Scanner Class 113

Display 2.8 Methods of the Scanner Class (part 1 of 2)

The Scanner class can be used to obtain input from files as well as from the keyboard. However,
here we are assuming it is being used only for input from the keyboard.

To set things up for keyboard input, you need the following at the beginning of the file with the
keyboard input code:

import java.util.Scanner;

You also need the following before the first keyboard input statement:

Scanner Scanner_Object_Name = new Scanner(System.in);

The Scanner_Object_Name can then be used with the following methods to read and return
various types of data typed on the keyboard.

Values to be read should be separated by whitespace characters, such as blanks and/or new lines.
When reading values, these whitespace characters are skipped. (It is possible to change the separators
from whitespace to something else, but whitespace is the default and is what we will use.)

Scanner_Object_Name.nextInt()

Returns the next value of type int that is typed on the keyboard.

Scanner_Object_Name.nextLong()

Returns the next value of type long that is typed on the keyboard.

Scanner_Object_Name.nextByte()

Returns the next value of type byte that is typed on the keyboard.

Scanner_Object_Name.nextShort()

Returns the next value of type short that is typed on the keyboard.

Scanner_Object_Name .nextDouble()

Returns the next value of type double that is typed on the keyboard.

Scanner_Object_Name .nextFloat()

Returns the next value of type float that is typed on the keyboard.

Scanner_Object_Name .next()

Returns the String value consisting of the next keyboard characters up to, but not including, the
first delimiter character. The default delimiters are whitespace characters.

(continued)

114 CHAPTER 2 Console Input and Output

Keyboard Input Using the Scanner Class

You can use an object of the class Scanner to read input from the keyboard. To make the
Scanner class available for use in your code, you should include the following at the start of
the file that contains your program (or other code that does keyboard input):

import java.util.Scanner;

Before you do any keyboard input, you must create an object of the class Scanner as
follows:

Scanner Object_Name = new Scanner(System.in);

where Object_Name is any (nonkeyword) Java identifier. For example,

Scanner keyboard = new Scanner(System.in);

The methods nextInt, nextDouble, and next read a value of type int, a value of type
double, and a word, respectively. The method nextLine reads the remainder of the
current input line including the terminating '\n'. However, the '\n' is not included in the
string value returned. Other input methods are given in Display 2.8.

SYNTAX

Int_Variable = Object_Name.nextInt()
Double_Variable = Object_Name.nextDouble();
String_Variable = Object_Name.next();
String_Variable = Object_Name.nextLine();

Scanner_Object_Name .nextBoolean()

Returns the next value of type boolean that is typed on the keyboard. The values of true
and false are entered as the strings "true" and "false". Any combination of upper- and/or
lowercase letters is allowed in spelling "true" and "false".

Scanner_Object_Name .nextLine()

Reads the rest of the current keyboard input line and returns the characters read as a value of
type String. Note that the line terminator ‘\n’ is read and discarded; it is not included in the string
returned.

Scanner_Object_Name .useDelimiter(New_Delimiter);

Changes the delimiter for keyboard input with Scanner_Object_Name. The New_Delimiter is a
value of type String. After this statement is executed, New_Delimiter is the only delimiter that
separates words or numbers. See the subsection “Other Input Delimiters,” later in this chapter,
for details.

Display 2.8 Methods of the Scanner Class (part 2 of 2)

Console Input Using the Scanner Class 115

EXAMPLE

int number;
number = keyboard.nextInt();
double cost;
cost = keyboard.nextDouble();
String word;
word = keyboard.next();
String line;
line = keyboard.nextLine();

(continued)

PITFALL: Dealing with the Line Terminator, '\n'

The method nextLine of the class Scanner reads the remainder of a line of
text starting wherever the last keyboard reading left off. For example, suppose you create
an object of the class Scanner as follows:

Scanner keyboard = new Scanner(System.in);

Suppose you continue with the following code:

int n = keyboard.nextInt();
String s1 = keyboard.nextLine();
String s2 = keyboard.nextLine();

Now, assume that the input typed on the keyboard is the following:

2 heads are
better than
1 head.

This sets the value of the variable n to 2, that of the variable s1 to "heads are", and
that of the variable s2 to "better than".

So far there are no problems, but suppose the input were instead as follows:

2
heads are better than
1 head.

You might expect the value of n to be set to 2, the value of the variable s1 to "heads
are better than", and that of the variable s2 to "1 head". But that is not what
happens.

What actually happens is that the value of the variable n is set to 2, that of the vari-
able s1 is set to the empty string, and that of the variable s2 to "heads are better
than". The method nextInt reads the 2 but does not read the end-of-line character
'\n'. So the first nextLine invocation reads the rest of the line that contains the 2.

Pitfalls
Involving
nextLine()

VideoNote

116 CHAPTER 2 Console Input and Output

empty string

echo input

The Empty String

A string can have any number of characters. For example, "Hello" has five characters.
There is a string with zero characters, which is called the empty string. The empty
string is written with a pair of double quotes, with nothing in between the quotes, like
so: "". The empty string is encountered more often than you might think. If your code
is executing the nextLine method to read a line of text, and the user types nothing on
the line other than pressing the Enter (Return) key, then the nextLine method reads
the empty string.

PITFALL: (continued)

There is nothing more on that line (except for '\n'), so nextLine returns the empty
string. The second invocation of nextLine begins on the next line and reads "heads
are better than".

When combining different methods for reading from the keyboard, you sometimes
have to include an extra invocation of nextLine to get rid of the end of a line (to get
rid of a '\n'). This is illustrated in Display 2.7. ■

TIP: Prompt for Input

Always prompt the user when your program needs the user to input some data, as in
the following example:

System.out.println("Enter the number of pods followed by");

System.out.println("the number of peas in a pod:"); ■

TIP: Echo Input

You should normally echo input. That is, you should write to the screen all input
that your program receives from the keyboard. This way, the user can check that the
input has been entered correctly. For example, the following two statements from
the program in Display 2.9 echo the values that were read for the number of pods
and the number of peas per pod:

System.out.print(numberOfPods + " pods and ");
System.out.println(peasPerPod + " peas per pod.");

It might seem that there is no need to echo input, because the user’s input is auto-
matically displayed on the screen as the user enters it. Why bother to write it to the
screen a second time? The input might be incorrect even though it looks correct. For
example, the user might type a comma instead of a decimal point or the letter O in
place of a zero. Echoing the input can expose such problems. ■

Console Input Using the Scanner Class 117

Display 2.9 Self-Service Checkout Line

 1 import java.util.Scanner;

 2 public class SelfService
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);

 7 System.out.println("Enter number of items purchased");
 8 System.out.println("followed by the cost of one item.");
 9 System.out.println("Do not use a dollar sign.");

10 int count = keyboard.nextInt();
11 double price = keyboard.nextDouble();
12 double total = count * price;

13 System.out.printf("%d items at $%.2f each.%n", count, price);
14 System.out.printf("Total amount due $%.2f.%n", total);

15 System.out.println("Please take your merchandise.");
16 System.out.printf("Place $%.2f in an envelope %n", total);
17 System.out.println("and slide it under the office door.");
18 System.out.println("Thank you for using the self-service line.");
19 }
20 }

Sample Dialogue

Enter number of items purchased

followed by the cost of one item.

Do not use a dollar sign.

 10 19.99

10 items at $19.99 each.

Total amount due $199.90.

Please take your merchandise.

Place $199.90 in an envelope

and slide it under the office door.

Thank you for using the self-service line.

The dot after %.2f is a period in the
text, not part of the format
specifier.

118 CHAPTER 2 Console Input and Output

EXAMPLE: Self-Service Checkout

Display 2.9 contains a first draft of a program to use in the self-service line of a
hardware store. It still needs some more details and even some more hardware for
accepting payment. However, it does illustrate the use of the Scanner class for
keyboard input and the printf method for formatted output.

Note that in printf, we used the format specifier %.2f for amounts of money.
This specifies a floating-point number with exactly two digits after the decimal point
but gives no field width. Because no field width is given, the number output is placed
in the fewest number of spaces that still allows the full value to be shown.

Self-Test Exercises

10. Write an import statement that makes the Scanner class available to your
program or other class.

11. Write a line of code that creates a Scanner object named frank to be used for
obtaining keyboard input.

12. Write a line of code that uses the object frank from the previous exercise to
read in a word from the keyboard and store the word in the String variable
named w.

13. Write a complete Java program that reads in a line of keyboard input
containing two values of type int (separated by one or more spaces) and
outputs the two numbers as well as the sum of the two numbers.

14. Write a complete Java program that reads in a line of text containing exactly
three words (separated by any kind or amount of whitespace) and outputs the
line with spacing corrected; that is, the output has no space before the first
word and exactly one space between each pair of adjacent words.

15. Something could go wrong with the following code. Identify and fix the
problem.

Scanner keyboard = new Scanner(System.in);
System.out.println("Enter your age.");
int age = keyboard.nextInt();
System.out.println("Enter your name.");
String name = keyboard.nextLine();
System.out.println(name + ",you are " + age + " years old.");

Console Input Using the Scanner Class 119

Other Input Delimiters

When using the Scanner class for keyboard input, you can change the delimiters that
separate keyboard input to almost any combination of characters, but the details are a bit
involved. In this book,we will describe only one simple kind of delimiter change. We will
tell you how to change the delimiters from whitespace to one specific delimiter string.

For example, suppose you create a Scanner object as follows:

Scanner keyboard2 = new Scanner(System.in);

You can change the delimiter for the object keyboard2 to "##" as follows:

keyboard2.useDelimiter("##");

After this invocation of the useDelimiter method, "##" will be the only input
delimiter for the input object keyboard2. Note that whitespace will no longer be a
delimiter for keyboard input done with keyboard2. For example, suppose the user
enters the following keyboard input:

one two##three##

The following code would read the two strings "one two" and "three" and make
them the values of the variables word1 and word2:

String word1, word2;
word1 = keyboard2.next();
word2 = keyboard2.next();

This is illustrated in Display 2.10. Note that you can have two different objects of the
class Scanner with different delimiters in the same program.

Note that no whitespace characters, not even line breaks, serve as an input delimiter
for keyboard2 once this change is made to keyboard2.

Self-Test Exercises

16. Suppose your code creates an object of the class Scanner named keyboard (as
described in this chapter). Write code to change the delimiter for keyboard to
a comma followed by a blank.

17. Continue with the object keyboard from Self-Test Exercise 16. Consider the
following input:

one,two three, four, five

What values will the following code assign to the variables word1 and word2?

String word1 = keyboard.next();
String word2 = keyboard.next();

120 CHAPTER 2 Console Input and Output

Display 2.10 Changing the Input Delimiter

 1 import java.util.Scanner;

 2 public class DelimiterDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard1 = new Scanner(System.in);
 7 Scanner keyboard2 = new Scanner(System.in);
 8 keyboard2.useDelimiter("##");
 9 //Delimiter for keyboard1 is whitespace.
10 //Delimiter for keyboard2 is ##.

11 String word1, word2;
12 System.out.println("Enter a line of text:");
13 word1 = keyboard1.next();
14 word2 = keyboard1.next();
15 System.out.println("For keyboard1 the two words read are:");
16 System.out.println(word1);
17 System.out.println(word2);
18 String junk = keyboard1.nextLine(); //To get rid of rest of line.
19
20 System.out.println("Reenter the same line of text:");
21 word1 = keyboard2.next();
22 word2 = keyboard2.next();
23 System.out.println("For keyboard2 the two words read are:");
24 System.out.println(word1);
25 System.out.println(word2);
26 }
27 }

Sample Dialogue

Enter a line of text:

one two##three##

For keyboard1 the two words read are:

one

two##three##

Reenter the same line of text:

one two##three##

For keyboard2 the two words read are:

one two

three

Introduction to File Input 121

2.3 Introduction to File Input

You shall see them on a beautiful quarto page, where a neat rivulet of text shall
meander through a meadow of margin.

RICHARD BRINSLEY SHERIDAN, The School for Scandal, 1777.

The Scanner class can also be used to read data from a text file. To do this, we must
create a Scanner object and link it to the file on the disk. Once this is done, the
program can read from the Scanner object in the same exact way that we read from the
console, except the input will come from the file instead of typed from the keyboard.
Details about reading and writing from files are not discussed until Chapter 10 and
require an understanding of programming concepts we have not yet covered. However,
we can provide just enough here so that your programs can read from text files. This
will allow you to work on problems with real-world data that would otherwise be too
much work to type into your program every time it is run.

The Scanner Class for Text File Input

To read from a text file, we need to import the classes FileInputStream and
FileNotFoundException in addition to the Scanner class:

import java.io.FileInputStream;
import java.io.FileNotFoundException;

The FileInputStream class handles the connection between a Java program and a
file on the disk. The FileNotFoundException class is used if a program attempts to
open a file that doesn’t exist.

To open the file, we create an object of type Scanner and then connect it with
a FileInputStream object associated with the file. We have to handle the scenario
where we try to open a file that doesn’t exist. One way to do this is with a try/catch
block. This is discussed more thoroughly in Chapter 9, but the basic format to open a
file looks like this:

Scanner fileIn = null; // Initializes fileIn to empty
try
{
 // Attempt to open the file
 fileIn = new Scanner(new FileInputStream("PathToFile"));
}
catch (FileNotFoundException e)
{
 // If the file could not be found, this code is executed
 // and then the program exits

122 CHAPTER 2 Console Input and Output

 System.out.println("File not found.");
 System.exit(0);
}
... Code continues here

This code will create a Scanner variable named fileIn and initialize it to an empty
(null) object. Next, Java will run the code inside the try block. If the file is not found,
then control jumps directly to the catch block. In our example, we print out an error
message and make the program exit immediately with the statement System.exit(0).

If the file is found, then the catch block is skipped entirely, and the program
continues to execute whatever code comes after the catch. At this point, we can use
fileIn exactly the same way we used a Scanner object connected to the console,
except input will be provided from the file, not the keyboard.

For example, we can use fileIn.nextInt() to read an integer from the file, fileIn.
nextDouble() to read a double from the file, fileIn.next() to read a string token
from the file, or fileIn.nextLine() to read an entire line from the text file. Java begins
reading from the beginning of the file and proceeds toward the end as data is read.

Unlike reading from the console, we might want to know if we have reached the end
of the file. We can use fileIn.hasNextLine() to determine if there is data to read.
When we are done with the file, we can close it with fileIn.close(), which will
release any resources that have been allocated by Java in association with the file.

A complete example is shown in Displays 2.11 and 2.12. Display 2.11 shows the
contents of a text file named player.txt. This file can be created by any program
that saves in the plain text format. As an example, let’s say that the file contains
information about the last player to play a game. The first line of the file contains the
high score of the player, 100510, and the second line contains the name of the player,
Gordon Freeman. The program in Display 2.12 reads in this information and displays
it. It reads in the high score using nextInt() and then reads in the name using
nextLine(). Note that we have to use an additional nextLine() after the nextInt()
to deal with the newline character for the exact same reason discussed earlier in this
chapter in the Pitfall in Section 2.2 titled “Dealing with the Line Terminator, ‘\n’.”

Display 2.11 Sample Text File, player.txt, that Stores a Player’s High Score and Name

100510

Gordon Freeman

Introduction to File Input 123

Display 2.12 Program to Read the Text File in Display 2.11

 1 import java.util.Scanner;
 2 import java.io.FileInputStream;
 3 import java.io.FileNotFoundException;
 4
 5 public class TextFileDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 Scanner fileIn = null; // Initializes fileIn to empty
 10 try
 11 {
 12 // Attempt to open the file
 13 fileIn = new Scanner(
 14 new FileInputStream("player.txt"));
 15 }
 16 catch (FileNotFoundException e)
 17 {
 18 // This block executed if the file is not found
 19 // and then the program exits
 20 System.out.println("File not found.");
 21 System.exit(0);
 22 }
 23
 24 // If the program gets here then
 25 // the file was opened successfully
 26 int highscore;
 27 String name;
 28
 29 System.out.println("Text left to read? " +
 30 fileIn.hasNextLine());
 31 highscore = fileIn.nextInt();
 32 fileIn.nextLine(); // Read newline left from nextInt()
 33 name = fileIn.nextLine();
 34
 35 System.out.println("Name: " + name);
 36 System.out.println("High score: " + highscore);
 37 System.out.println("Text left to read? " +
 38 fileIn.hasNextLine());
 39 fileIn.close();
 40 }
 41 }

Sample Dialogue

Text left to read? true

Name: Gordon Freeman

High score: 100510

Text left to read? False

try and catch is
explained in more
detail in Chapter 9.

The file player
.txt should be in the
same directory as
the Java program.
You can also supply
a full pathname
to the file.

This line is explained earlier
in this chapter in the
Pitfall section “Dealing with
the Line Terminator, '\n'.”

124 CHAPTER 2 Console Input and Output

Chapter Summary

• You can use System.out.println for simple console output.

• You can use System.out.printf for formatted console output.

• You can use NumberFormat.getCurrencyInstance() to produce an object that can
convert numbers to strings that show the number as a correctly formatted currency
amount, for example, by adding a dollar sign and having exactly two digits after the
decimal point.

• You can use the class DecimalFormat to output numbers using almost any format
you desire.

• You can use an object of the class Scanner for reading keyboard input.

• You can use an object of the class Scanner for reading input from a text file.

Answers to Self-Test Exercises

 1. HelloJoe

 2. System.out.println("One two buckle your shoe.");
 System.out.println("Three four shut the door.");

 3. System.out.println ends a line of input, so the next output goes on the next
line. With System.out.print, the next output goes on the same line.

Self-Test Exercises

18. What would the program in Display 2.12 output if there is no file named
player.txt in the same directory as the Java program?

19. What is missing from the following code, which attempts to open a file and
read an integer?

import java.util.Scanner;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class ReadInteger
{
 public static void main(String[] args)
 {
 Scanner fileIn = new Scanner(
 new FileInputStream("datafile.txt"));
 int num = fileIn.nextInt();
 System.out.println(num);
 }
}

Answers to Self-Test Exercises 125

 4. 2 2
 4

 Note that

 2 + " " + 2

 contains a string, namely " ". So, Java knows it is supposed to produce a string.
On the other hand, 2 + 2 contains only integers. So Java thinks + denotes addition
in this second case and produces the value 4 to be output.

 5. START1234567890
 STARTJelly beansEND

 STARTJelly beansEND

 START Jelly beansEND

 6. The last two of the following lines end with a blank. The last line begins with two
blanks, one that follows %n in the format string and one because the field width is
9 but the number to be output fills only eight spaces.

 START1234567890

 STARTJelly beansEND

 123.1235

 7. System.out.printf("%15.3e", d);

 8. $1.23
 $15.68

 9. Either

 import java.awt.Robot;

 or

 import java.awt.*;

 10. import java.util.Scanner;

 11. Scanner frank = new Scanner(System.in);

 12. w = frank.next();

 13. import java.util.Scanner;

 public class Exercise

 {

 public static void main(String[] args)

 {

 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter two numbers.");

 int n1 = keyboard.nextInt();

 int n2 = keyboard.nextInt();

 int sum = n1 + n2;

 System.out.println(n1 + " plus " + n2 + " is " + sum);

 }

 }

126 CHAPTER 2 Console Input and Output

 14. import java.util.Scanner;

 public class Exercise2

 {

 public static void main(String[] args)

 {

 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter a line with three words:");

 String w1 = keyboard.next();

 String w2 = keyboard.next();

 String w3 = keyboard.next();

 System.out.println(w1 + " " + w2 + " " + w3);

 }

 }

15. The newline character is left in the input buffer after the nextInt() call and
should be removed prior to calling nextLine(). This can be fixed by adding
another nextLine() call:

 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter your age.");

 int age = keyboard.nextInt();

 keyboard.nextLine();

 System.out.println("Enter your name.");

 String name = keyboard.nextLine();

 System.out.println(name+", you are "+age+" years old.");

16. keyboard.useDelimiter(", ");

 17. w1 is assigned "one,two three"; w2 is assigned "four".

 18. The program will output "File not found." and exit.

 19. The statement that attempts to open the file must be inside a try/catch block, as follows:

 try

 {

 Scanner fileIn = new Scanner(

 new FileInputStream("datafile.txt"));

 int num = fileIn.nextInt();

 System.out.println(num);

 }

 catch (FileNotFoundException e)

 {

 System.out.println("File not found.");

 }

 Alternately, the line throws FileNotFoundException could be added to the end
of the definition of the main method, but this approach is not recommended
because the exception will simply be handed off to the JVM and it will halt the
program.

Programming Projects 127

Programming Projects

 1. The Babylonian algorithm to compute the square root of a positive number n is as
follows:

 1. Make a guess at the answer (you can pick n/2 as your initial guess).
 2. Compute r = n / guess
 3. Set guess = (guess +r)/ 2
 4. Go back to step 2 for as many iterations as necessary. The more you repeat steps

2 and 3, the closer guess will become to the square root of n.
 Write a program that inputs a double for n, iterates through the Babylonian algo-

rithm five times, and outputs the answer as a double to two decimal places. Your
answer will be most accurate for small values of n.

 2. (This is a version with input of an exercise from Chapter 1.) Write a program that
inputs two string variables, first and last, which the user should enter with his or
her name. First, convert both strings to all lowercase. Your program should then cre-
ate a new string that contains the full name in pig latin with the first letter capitalized
for the first and last name. Use only the pig latin rule of moving the first letter to the
end of the word and adding “ay.” Output the pig latin name to the screen. Use the
substring and toUpperCase methods to construct the new name.

 For example, if the user inputs “Walt” for the first name and “Savitch” for the
last name, then the program should create a new string with the text “Altway
Avitchsay” and print it.

 3. Write a program that reads in two numbers typed on the keyboard and divides
the first number by the second number. The program should output the dividend,
divisor, quotient, and remainder on the screen.

 4. John travels a distance of 55 miles at an average speed of 15 miles per hour. Write
a program to calculate the total number of hours John takes to cover this distance.
The program should print the total time taken in hours and minutes. Use the fol-
lowing formula for calculations.

Time =
Distance

Speed

 5. Grade point average (GPA) in a 4-point scale is calculated by using the following formula:

GPA = QPercentage
100 R 3 4

 Write a program that takes as input the percentage from a user. The program
should then output the user’s GPA on the screen. The format of the output should
be as follows, assuming the user’s percentage is 85:

(85/100) * 4 = 3

 6. (This is a better version of an exercise from Chapter 1.) A government research lab
has concluded that an artificial sweetener commonly used in diet soda pop causes
death in laboratory mice. A friend of yours is desperate to lose weight but cannot
give up soda pop. Your friend wants to know how much diet soda pop it is pos-
sible to drink without dying as a result. Write a program to supply the answer. The
input to the program is the amount of artificial sweetener needed to kill a mouse,
the weight of the mouse, and the desired weight of the dieter. Assume that diet

128 CHAPTER 2 Console Input and Output

soda contains 1/10th of 1% artificial sweetener. Use a named constant for this
fraction. You may want to express the percent as the double value 0.001.

 7. Write a program that determines the change to be dispensed from a vending
machine. An item in the machine can cost between 25 cents and 1 dollar, in 5-cent
increments (25, 30, 35, . . . , 90, 95, or 100), and the machine accepts only a single
dollar bill to pay for the item. For example, a possible sample dialogue might be
the following:

 Enter price of item

 (from 25 cents to a dollar, in 5-cent increments):

 45

 You bought an item for 45 cents and gave me a dollar,

 so your change is

 2 quarters,

 0 dimes, and

 1 nickels.

 8. Write a program that reads in a string containing three words separated by commas
and then outputs that string with each word in a different line.

 9. (This is a better version of an exercise from Chapter 1.) Write a program that
reads in a line of text and then outputs that line of text with the first occurrence of
"hate" changed to "love". For example, a possible sample dialogue might be the
following:

 Enter a line of text.

 I hate you.

 I have rephrased that line to read:

 I love you.

 You can assume that the word "hate" occurs in the input. If the word "hate"
occurs more than once in the line, your program should replace only the first
occurrence of "hate".

10. Write a program that inputs the name, quantity, and price of three items. The
name may contain spaces. Output a bill with a tax rate of 6.25%. All prices should
be output to two decimal places. The bill should be formatted in columns with
30 characters for the name, 10 characters for the quantity, 10 characters for the
price, and 10 characters for the total. Sample input and output are shown as follows:

 Input name of item 1:

 lollipops

 Input quantity of item 1:

 10

 Input price of item 1:

 0.50

 Input name of item 2:

 diet soda

Programming Projects 129

 Input quantity of item 2:

 3

 Input price of item 2:

 1.25

 Input name of item 3:

 chocolate bar

 Input quantity of item 3:

 20

 Input price of item 3:

 0.75

 Your bill:

 Item Quantity Price Total

 lollipops 10 0.50 5.00

 diet soda 3 1.25 3.75

 chocolate bar 20 0.75 15.00

 Subtotal 23.75

 6.25% sales tax 1.48

 Total 25.23

 11. Write a program that calculates the total grade for three classroom exercises as a
percentage. Use the DecimalFormat class to output the value as a percent. The
scores should be summarized in a table. Input the assignment information in this
order: name of assignment (may include spaces), points earned (integer), and total
points possible (integer). The percentage is the sum of the total points earned di-
vided by the total points possible. Sample input and output are shown as follows:

 Name of exercise 1:

 Group Project

 Score received for exercise 1:

 10

 Total points possible for exercise 1:

 10

 Name of exercise 2:

 Homework

 Score received for exercise 2:

 7

 Total points possible for exercise 2:

 12

 Name of exercise 3:

 Presentation

 Score received for exercise 3:

 5

Solution to
Programming
Project 2.11

VideoNote

130 CHAPTER 2 Console Input and Output

 Total points possible for exercise 3:

 8

 Exercise Score Total Possible

 Group Project 10 10

 Homework 7 12

 Presentation 5 8

 Total 22 30

 Your total is 22 out of 30, or 73.33%.

12. (This is a variant of an exercise from Chapter 1.) Create a text file that contains the
text "I hate programming!" Write a program that reads in this line of text from
the file and then the text with the first occurrence of "hate" changed to "love". In
this case, the program would output "I love programming!" Your program should
work with any line of text that contains the word "hate", not just the example given
in this problem. If the word "hate" occurs more than once in the line, your program
should replace only the first occurrence of "hate".

 13. (This is an extension of an exercise from Chapter 1.) A simple rule to estimate your
ideal body weight is to allow 110 pounds for the first 5 feet of height and 5 pounds
for each additional inch. Create the following text in a text file. It contains the names
and heights in feet and inches of Tom Atto (6’3”), Eaton Wright (5’5”), and Cary
Oki (5’11”):

 Tom Atto

 6

 3

 Eaton Wright

 5

 5

 Cary Oki

 5

 11

 Write a program that reads the data in the file and outputs the full name and ideal
body weight for each person. In the next chapter, you will learn about loops, which
allow for a more efficient way to solve this problem.

14. From Programming Project 10 in Chapter 1, scientists estimate that roughly 10
grams of caffeine consumed at one time is a lethal overdose. Write two programs
to compute how many drinks it takes to kill a person.

The first program should input the name of the drink and the number of
milligrams of caffeine in the drink. It should then output the drink name and the
number of drinks it takes to kill a person. For example, if the user enters “coffee”
and “160”, then the program should output “It will take approximately 62.5
drinks of coffee to kill a person from caffeine.”

The second program should perform the same calculation as the first program,
but read the name of the drink and the number of milligrams of caffeine in the
drink from a file named drink.txt and output the answer to the console.

Solution to
Programming
Project 2.12

VideoNote

3.4 Debugging 182
Loop Bugs 182
Tracing Variables 182
General Debugging Techniques 183
Example: Debugging an Input Validation Loop 184
Preventive Coding 188
Assertion Checks ★ 189

3.5 RanDom numbeR geneRation ★ 191
The Random Object 191
The Math.random() Method 193

3.1 bRanching mechanism 132
if-else Statements 132
Omitting the else 133
Compound Statements 134
Nested Statements 136
Multiway if-else Statement 136
Example: State Income Tax 137
The switch Statement 139
The Conditional Operator ★ 144

3.2 boolean expRessions 145
Simple Boolean Expressions 145
Lexicographic and Alphabetic Order 148
Building Boolean Expressions 151
Evaluating Boolean Expressions 152
Short-Circuit and Complete Evaluation 156
Precedence and Associativity Rules 157

3.3 loops 164
while Statement and do-while Statement 164
Algorithms and Pseudocode 166
Example: Averaging a List of Scores 169
The for Statement 170
The Comma in for Statements 173
Nested Loops 177
The break and continue Statements ★ 180
The exit Statement 181

3 Flow of Control

chapter summary 194 answers to self-test exercises 194 programming projects 200

If you think we’re wax-works,” he said, “you ought to pay, you know.

Wax-works weren’t made to be looked at for nothing. Nohow!”

 “Contrariwise,” added the one marked “DEE,” “if you think we’re alive,

you ought to speak.”

LEWIS CARROLL, Through the Looking-Glass, 1871.

Introduction
As in most programming languages, Java handles flow of control with branching and
looping statements. Java branching and looping statements are the same as in the C
and C++ languages and are very similar to those in other programming languages.
(However, the Boolean expressions that control Java branches and loops are a bit
different in Java from what they are in C and C++.)

Most branching and looping statements are controlled by Boolean expressions.
A Boolean expression is any expression that is either true or false. In Java, the primitive
type boolean has only the two values, true and false, and Boolean expressions
evaluate to one of these two values. Before we discuss Boolean expressions and the
type boolean, we will introduce the Java branching statements using only Boolean
expressions whose meaning is intuitively obvious. This will serve to motivate our
discussion of Boolean expressions.

Prerequisites
This chapter uses material from Chapters 1 and 2.

3.1 Branching Mechanism

When you come to a fork in the road, take it.

I Really Didn’t Say Everything I Said! Yogi Berra, NY: Workman, 1998.

if-else Statements

An if-else statement chooses between two alternative statements based on the value
of a Boolean expression. For example, suppose you want to design a program to
compute a week’s salary for an hourly employee. Assume the firm pays an overtime rate

3 Flow of Control

 Branching Mechanism 133

of one-and-one-half times the regular rate for all hours after the first 40 hours worked.
When the employee works 40 or more hours, the pay is then equal to

rate*40 + 1.5*rate*(hours - 40)

However, if the employee works less than 40 hours, the correct pay formula is simply

rate*hours

The following if-else statement computes the correct pay for an employee whether
the employee works less than 40 hours or works 40 or more hours:

if (hours > 40)
 grossPay = rate*40 + 1.5*rate*(hours - 40);
else
 grossPay = rate*hours;

The syntax for an if-else statement is given in the box entitled “if-else Statement.”
If the Boolean expression in parentheses (after the if) evaluates to true, then the
statement before the else is executed. If the Boolean expression evaluates to false,
then the statement after the else is executed.

Remember that when you use a Boolean expression in an if-else statement, the
Boolean expression must be enclosed in parentheses.

Notice that an if-else statement has smaller statements embedded in it. Most of
the statement forms in Java allow you to make larger statements out of smaller ones by
combining the smaller statements in certain ways.

Omitting the else

Sometimes you want one of the two alternatives in an if-else statement to do
nothing at all. In Java, this can be accomplished by omitting the else part. These
sorts of statements are referred to as if statements to distinguish them from if-else
statements. For example, the first of the following two statements is an if statement:

if (sales > minimum)
 salary = salary + bonus;
System.out.println("salary = $" + salary);

If the value of sales is greater than the value of minimum, the assignment statement is
executed, and then the following System.out.println statement is executed. On the
other hand, if the value of sales is less than or equal to minimum, then the embedded
assignment statement is not executed, so the if statement causes no change (that is, no
bonus is added to the base salary), and the program proceeds directly to the System.
out.println statement.

parentheses

if statement

134 CHAPTER 3 Flow of Control

Compound Statements

You will often want the branches of an if-else statement to execute more than one
statement each. To accomplish this, enclose the statements for each branch between
a pair of braces, { and }. A list of statements enclosed in a pair of braces is called a
compound statement. A compound statement is treated as a single statement by Java
and may be used anywhere that a single statement may be used. Thus, the “Multiple
Statement Alternatives” version described in the box entitled “if-else Statement” is
really just a special case of the “simple” case with one statement in each branch.

if-else
with multiple

statements

compound
statement

if-else Statement

The if-else statement chooses between two alternative actions based on the value of
a Boolean_Expression; that is, an expression that is either true or false, such as
balance < 0.

Syntax

if (Boolean_Expression)
 Yes_Statement
else
 No_Statement

If Boolean_Expression is true, then Yes_Statement is executed. If Boolean_Expression is
false, then No_Statement is executed.

ExaMPlE

if (time < limit)
 System.out.println("You made it.");
else
 System.out.println("You missed the deadline.");

Omitting the else Part

You may omit the else part to obtain what is often called an if statement.

Syntax

if (Boolean_Expression)
 Action_Statement

If Boolean_Expression is true, then Action_Statement is executed; otherwise, nothing
happens and the program goes on to the next statement.

ExaMPlE

if (weight > ideal)
 calorieAllotment = calorieAllotment - 500;

Be sure to note that the
Boolean_Expression must be
enclosed in parentheses.

 Branching Mechanism 135

Multiple Statement alternatives

In an if-else statement, you can have one or both alternatives contain several statements.
To accomplish this, group the statements using braces, as in the following example:

if (myScore > yourScore)
{
 System.out.println("I win!");
 wager = wager + 100;
}
else
{
 System.out.println("I wish these were golf scores.");
 wager = 0;
}

tIP: Placing of Braces

There are two commonly used ways of indenting and placing braces in if-else
statements. They are illustrated as follows:

if (myScore > yourScore)
{

System.out.println("I win!");
wager = wager + 100;

}
else
{

System.out.println("I wish these were golf scores.");
wager = 0;

}

and

if (myScore > yourScore) {
System.out.println("I win!");
wager = wager + 100;

} else {
System.out.println("I wish these were golf scores.");
wager = 0;

}

The only difference is the placement of braces. The first form is called the Allman
style, named after programmer Eric Allman. We find the Allman style easier to read,
and so we prefer it in this book. The second form is called the Kernighan & Ritchie
or K&R style, named after Dennis Ritchie (the designer of C) and Brian Kernighan
(author of the first C tutorial). The K&R style saves lines, so some programmers
prefer it or some minor variant of it.

Be sure to note the indenting pattern in these examples. ■

136 CHAPTER 3 Flow of Control

nested Statements

As you have seen, if-else statements and if statements contain smaller statements
within them. Thus far, we have used compound statements and simple statements,
such as assignment statements, as these smaller substatements, but there are other
possibilities. In fact, any statement at all can be used as a subpart of an if-else
statement or other statement that has one or more statements within it.

When nesting statements, you normally indent each level of nested substatements,
although there are some special situations (such as a multiway if-else statement)
where this rule is not followed.

indenting

Multiway if-else Statement

The multiway if-else statement is not really a different kind of Java statement.
It is simply an ordinary if-else statement nested inside if-else statements, but it
is thought of as a different kind of statement and is indented differently from other
nested statements so as to reflect this thinking.

The syntax for a multiway if-else statement and a simple example are given in
the box entitled “Multiway if-else Statement.” Note that the Boolean expressions
are aligned with one another, and their corresponding actions are also aligned with one
another. This makes it easy to see the correspondence between Boolean expressions
and actions. The Boolean expressions are evaluated in order until a true Boolean
expression is found. At that point, the evaluation of Boolean expressions stops, and the

multiway
if-else

statement

Self-test Exercises

1. Write an if-else statement that outputs the word "High" if the value of the
variable score is greater than 100 and outputs "Low" if the value of score is at
most 100. The variable score is of type int.

2. Suppose savings and expenses are variables of type double that have been
given values. Write an if-else statement that outputs the word "Solvent",
decreases the value of savings by the value of expenses, and sets the value of
expenses to zero, provided that savings is larger than expenses. If, however,
savings is less than or equal to expenses, the if-else statement should simply
output the word "Bankrupt" without changing the value of any variables.

3. Suppose number is a variable of type int. Write an if-else statement that
outputs the word "Positive" if the value of the variable number is greater than
0 and outputs the words "Not positive" if the value of number is less than or
equal to 0.

4. Suppose salary and deductions are variables of type double that have been
given values. Write an if-else statement that outputs the word "Crazy" if
salary is less than deductions; otherwise, it should output "OK" and set the
variable net equal to salary minus deductions.

 Branching Mechanism 137

action corresponding to the first true Boolean expression is executed. The final else
is optional. If there is a final else and all the Boolean expressions are false, the final
action is executed. If there is no final else and all the Boolean expressions are false,
then no action is taken. An example of a multiway if-else statement is given in the
following Programming Example.

Multiway if-else Statement

Syntax

if (Boolean_Expression_1)
 Statement_1
else if (Boolean_Expression_2)
 Statement_2
 .
 .
 .
else if (Boolean_Expression_n)
 Statement_n
else
 Statement_For_All_Other_Possibilities

ExaMPlE

if (numberOfPeople < 50)
 System.out.println("Less than 50 people");
else if (numberOfPeople < 100)
 System.out.println("At least 50 and less than 100 people");
else if (numberOfPeople < 200)
 System.out.println("At least 100 and less than 200 people");
else
 System.out.println("At least 200 people");

The Boolean expressions are checked in order until the first true Boolean expression is
encountered, and then the corresponding statement is executed. If none of the Boolean
expressions is true, then the Statement_For_All_Other_Possibilities is executed.

ExaMPlE: State Income Tax

Display 3.1 contains a program that uses a multiway if-else statement to compute
state income tax. This state computes tax according to the following rate schedule:

 1. No tax is paid on the first $15,000 of net income.

 2. A tax of 5% is assessed on each dollar of net income from $15,001 to $30,000.

 3. A tax of 10% is assessed on each dollar of net income over $30,000.
(continued)

138 CHAPTER 3 Flow of Control

The program uses a multiway if-else statement with one action for each of the
above three cases. The condition for the second case is actually more complicated
than it needs to be. The computer will not get to the second condition unless it
has already tried the first condition and found it to be false. Thus, you know that
whenever the computer tries the second condition, it knows that netIncome is
greater than 15000. Hence, you can replace the line

else if ((netIncome > 15000) && (netIncome <= 30000))

with the following, and the program will perform exactly the same:

else if (netIncome <= 30000)

ExaMPlE: (continued)

Self-test Exercises

5. What output will be produced by the following code?

int extra = 2;
if (extra < 0)
 System.out.println("small");
else if (extra == 0)
 System.out.println("medium");
else
 System.out.println("large");

6. What would be the output in Self-Test Exercise 5 if the assignment were changed
to the following?

int extra = -37;

7. What would be the output in Self-Test Exercise 5 if the assignment were changed
to the following?

int extra = 0;

8. Write a multiway if-else statement that classifies the value of an int variable n
into one of the following categories and writes out an appropriate message:

n < 0 or 0 ≤ n < 100 or n ≥ 100

Hint: Remember that the Boolean expressions are checked in order.

 Branching Mechanism 139

Display 3.1 Tax Program

 1 import java.util.Scanner;

 2 public class IncomeTax
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);
 7 double netIncome, tax, fivePercentTax, tenPercentTax;

 8 System.out.println("Enter net income.\n"
 9 + "Do not include a dollar sign or any commas.");
10 netIncome = keyboard.nextDouble();

11 if (netIncome <= 15000)
12 tax = 0;
13 else if ((netIncome > 15000) && (netIncome <= 30000))
14 //tax = 5% of amount over $15,000
15 tax = (0.05*(netIncome - 15000));
16 else //netIncome > $30,000
17 {
18 //fivePercentTax = 5% of income from $15,000 to $30,000.
19 fivePercentTax = 0.05*15000;
20 //tenPercentTax = 10% of income over $30,000.
21 tenPercentTax = 0.10*(netIncome - 30000);
22 tax = (fivePercentTax + tenPercentTax);
23 }

24 System.out.printf("Tax due = $%.2f", tax);
25 }
26 }
27

Sample Dialogue

Enter net income.

Do not include a dollar sign or any commas.

40000

Tax due = $1750.00

the switch Statement

The switch statement is the only other kind of Java statement that implements
multiway branches. The syntax for a switch statement and a simple example are
shown in the box entitled “The switch Statement.”

switch
statement

140 CHAPTER 3 Flow of Control

When a switch statement is executed, one of a number of different branches is executed.
The choice of which branch to execute is determined by a controlling expression given in
parentheses after the keyword switch. Following this are a number of occurrences of
the reserved word case followed by a constant and a colon. These constants are called
case labels. The controlling expression for a switch statement must be one of the types
char, int, short, byte, or String.1 The String data type is allowed only in Java 7
or higher. The case labels must all be of the same type as the controlling expression. No
case label can occur more than once, because that would be an ambiguous instruction.
There may also be a section labeled default:, which is usually last.

When the switch statement is executed, the controlling expression is evaluated, and
the computer looks at the case labels. If it finds a case label that equals the value of the
controlling expression, it executes the code for that case label.

The switch statement ends when either a break statement is executed or the end
of the switch statement is reached. A break statement consists of the keyword break
followed by a semicolon. When the computer executes the statements after a case
label, it continues until it reaches a break statement. When the computer encounters
a break statement, the switch statement ends. If you omit the break statements, then
after executing the code for one case, the computer will go on to execute the code for
the next case.

Note that you can have two case labels for the same section of code, as in the
following portion of a switch statement:

case 'A':
case 'a':
 System.out.println("Excellent. You need not take the final.");
 break;

Because the first case has no break statement (in fact, no statements at all), the effect
is the same as having two labels for one case, but Java syntax requires one keyword case
for each label, such as 'A' and 'a'.

If no case label has a constant that matches the value of the controlling expression,
then the statements following the default label are executed. You need not have a
default section. If there is no default section and no match is found for the value
of the controlling expression, then nothing happens when the switch statement is
executed. However, it is safest to always have a default section. If you think your case
labels list all possible outcomes, you can put an error message in the default section.

The default case need not be the last case in a switch statement, but making it the
last case, as we have always done, makes the code clearer.

A sample switch statement is shown in Display 3.2. Notice that the case labels do
not need to be listed in order and do not need to span a complete interval.

1As we will learn in Chapter 6, the type may also be an enumerated type.

controlling
expression

case labels

break
statement

default

 Branching Mechanism 141

the switch Statement
Syntax

switch (Controlling_Expression)
 {
 case Case_Label_1:
 Statement_Sequence_1
 break;
 case Case_Label_2:
 Statement_Sequence_2
 break;
 .
 .
 .
 case Case_Label_n:
 Statement_Sequence_n
 break;
 default:
 Default_Statement_Sequence
 break;

}

ExaMPlE

 int vehicleClass;
 double toll;
 .
 .
 .
 switch (vehicleClass)
 {
 case 1:
 System.out.println("Passenger car.");
 toll = 0.50;
 break;
 case 2:
 System.out.println("Bus.");
 toll = 1.50;
 break;
 case 3:
 System.out.println("Truck.");
 toll = 2.00;
 break;
 default:
 System.out.println("Unknown vehicle class!");
 break;
 }

Each Case_Label is a constant of the same
type as the Controlling_Expression. The
Controlling_Expression must be of type
char, int, short, byte, or String.

A break may be omitted. If there is no
break, execution just continues to the
next case.

The default case
is optional.

142 CHAPTER 3 Flow of Control

Display 3.2 A switch Statement (part 1 of 2)

 1 import java.util.Scanner;
 2
 3 public class SwitchDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 Scanner keyboard = new Scanner(System.in);

 8 System.out.println("Enter number of ice cream flavors:");
 9 int numberOfFlavors = keyboard.nextInt();

10 switch (numberOfFlavors)
11 {
12 case 32:

13 System.out.println("Nice selection.");
14 break;
15 case 1:
16 System.out.println("I bet it's vanilla.");
17 break;
18 case 2:
19 case 3:
20 case 4:
21 System.out.println(numberOfFlavors + "flavors");
22 System.out.println("is acceptable.");
23 break;
24 default:
25 System.out.println("I didn't plan for");
26 System.out.println(numberOfFlavors + " flavors.");
27 break;
28 }
29 }
30 }

Sample Dialogue 1

Enter number of ice cream flavors:

1

I bet it's vanilla.

Sample Dialogue 2

Enter number of ice cream flavors:

32

Nice selection.

Controlling expression

break statement

Case labels

 Branching Mechanism 143

Display 3.2 A switch Statement (part 2 of 2)

Sample Dialogue 3

Enter number of ice cream flavors:

3

3 flavors

is acceptable.

Sample Dialogue 4

Enter number of ice cream flavors:

9

I didn't plan for

9 flavors.

PItFall: Forgetting a break in a switch Statement

If you forget a break in a switch statement, the compiler does not issue an error
message. You will have written a syntactically correct switch statement, but it will
not do what you intended it to do. Notice the annotation in the example in the box
entitled “The switch Statement.”

The last case in a switch statement does not need a break, but it is a good idea to
include it nonetheless. That way, if a new case is added after the last case, you will not
forget to add a break (because it is already there). This advice about break statements
also applies to the default case when it is last. It is best to place the default case last, but
that is not required by the Java language, so there is always a possibility of somebody
adding a case after the default case. ■

(continued)

Self-test Exercises

9. What is the output produced by the following code?

char letter = 'B';
switch (letter)
{
 case 'A':
 case 'a':
 System.out.println("Some kind of A.");
 case 'B':
 case 'b':
 System.out.println("Some kind of B.");
 break;
 default:
 System.out.println("Something else.");
 break;
}

144 CHAPTER 3 Flow of Control

the Conditional Operator ★

You can embed a branch inside of an expression by using a ternary operator known
as the conditional operator (also called the ternary operator or arithmetic if).
Its use is reminiscent of an older programming style, and we do not advise using it.
It is included here for the sake of completeness (and in case you disagree with our
programming style).

The conditional operator is a notational variant on certain forms of the if-else
statement. The following example illustrates the conditional operator. Consider the
following if-else statement:

if (n1 > n2)
 max = n1;
else
 max = n2;

conditional
operator

ternary
operator

arithmetic if

Self-test Exercises (continued)

10. What is the output produced by the following code?

int key = 1;
switch (key + 1)
{
 case 1:
 System.out.println("Apples");
 break;
 case 2:
 System.out.println("Oranges");
 break;
 case 3:
 System.out.println("Peaches");
 case 4:
 System.out.println("Plums");
 break;
 default:
 System.out.println("Fruitless");
}

11. What would be the output in Self-Test Exercise 10 if the first line were changed
to the following?

int key = 3;

12. What would be the output in Self-Test Exercise 10 if the first line were changed
to the following?

int key = 5;

 Boolean Expressions 145

This can be expressed using the conditional operator as follows:

max = (n1 > n2) ? n1 : n2;

The expression on the right-hand side of the assignment statement is the conditional
operator expression:

(n1 > n2) ? n1 : n2

The ? and : together form a ternary operator known as the conditional operator. A
conditional operator expression starts with a Boolean expression followed by a ? and
then followed by two expressions separated with a colon. If the Boolean expression is
true, then the value of the first of the two expressions is returned as the value of the
entire expression; otherwise, the value of the second of the two expressions is returned
as the value of the entire expression.

3.2 Boolean Expressions

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were
so, it would be; but as it isn’t, it ain’t. That’s logic.”

LEWIS CARROLL, Through the Looking-Glass, 1871.

Now that we have motivated Boolean expressions by using them in if-else statements,
we will discuss them and the type boolean in more detail. A Boolean expression is
simply an expression that is either true or false. The name Boolean is derived from
George Boole, a 19th-century English logician and mathematician whose work was
related to these kinds of expressions.

Simple Boolean Expressions

We have already been using simple Boolean expressions in if-else statements. The
simplest Boolean expressions are comparisons of two expressions, such as

time < limit

and

balance <= 0

A Boolean expression does not need to be enclosed in parentheses to qualify as a
Boolean expression, although it does need to be enclosed in parentheses when it is used
in an if-else statement.

Display 3.3 shows the various Java comparison operators you can use to compare
two expressions.

Boolean
expression

146 CHAPTER 3 Flow of Control

PItFall: Using = in Place of ==

Because the equal sign, =, is used for assignment in Java, something else is needed to
indicate equality. In Java, equality is indicated with two equal signs with no space
between them, as in

if (yourScore == myScore)
 System.out.println("A tie.");

Fortunately, if you do use = in place of ==, Java will probably give you a compiler
error message. (The only case that does not give an error message is when the expression
in parentheses happens to form a correct assignment to a boolean variable.) ■

the Methods equals and equalsIgnoreCase
When testing strings for equality, do not use ==. Instead, use either equals or
equalsIgnoreCase.

Syntax

String.equals(Other_String)
String.equalsIgnoreCase(Other_String)

ExaMPlE

String s1;
 .
 .
 .

Display 3.3 Java Comparison Operators

MatH nOtatIOn naME JaVa nOtatIOn JaVa ExaMPlES

= Equal to == x + 7 == 2*y
answer == 'y'

≠ Not equal to != score != 0
answer != 'y'

> Greater than > time > limit

≥ Greater than or equal to >= age >= 21

< Less than < pressure < max

≤ Less than or equal to <= time <=limit

 Boolean Expressions 147

PItFall: Using == with Strings

Although == correctly tests two values of a primitive type, such as two numbers, to
see whether they are equal, it has a different meaning when applied to objects, such as
objects of the class String.2 Recall that an object is something whose type is a class,
such as a string. All strings are in the class String (that is, are of type String), so
== applied to two strings does not test to see whether the strings are equal. Instead,
it tests whether two strings refer to the same object. We will discuss references in
Chapter 15. To test two strings (or any two objects) to see if they have equal values,
you should use the method equals rather than ==. For example, suppose s1 and s2
are String variables that have been given values, and consider the statement

if (s1.equals(s2))
 System.out.println("They are equal strings.");
else
 System.out.println("They are not equal strings.");

If s1 and s2 name strings that contain the same characters in the same order, then
the output will be

They are equal strings.

The notation may seem a bit awkward at first, because it is not symmetric between
the two things being tested for equality. The two expressions

s1.equals(s2)
s2.equals(s1)

are equivalent.
The method equalsIgnoreCase behaves similarly to equals, except that with

equalsIgnoreCase, the upper- and lowercase versions of the same letter are consid-
ered the same. For example, "Hello" and "hello" are not equal because their first
characters, 'H' and 'h', are different characters. But they would be considered equal
by the method equalsIgnoreCase. For example, the following will output Equal
ignoring case.:

if ("Hello".equalsIgnoreCase("hello"))
 System.out.println("Equal ignoring case.");

2When applied to two strings (or any two objects), == tests to see if they are stored in the same memory
location, but we will not discuss that until Chapter 4. For now, we need only note that == does some-
thing other than test for the equality of two strings.

(continued)

if (s1.equals("Hello"))
 System.out.println("The string is Hello.");
else
 System.out.println("The string is not Hello.");

148 CHAPTER 3 Flow of Control

Notice that it is perfectly legal to use a quoted string with a String method, as in
the preceding use of equalsIgnoreCase. A quoted string is an object of type String
and has all the methods that any other object of type String has.

For the kinds of applications we are looking at in this chapter, you could also use ==
to test for equality of objects of type String, and it would deliver the correct answer.
However, there are situations in which == does not correctly test strings for equality, so
you should get in the habit of using equals rather than == to test strings. ■

lexicographic and alphabetic Order

The method compareTo tests two strings to determine their lexicographic order.
Lexicographic ordering is similar to alphabetic ordering and is sometimes, but not
always, the same as alphabetic ordering. The easiest way to think about lexicographic
ordering is to think of it as being the same as alphabetic ordering but with the
alphabet ordered differently. Specifically, in lexicographic ordering, the letters and other
characters are ordered as in the ASCII ordering, which is shown in Appendix 3.

If s1 and s2 are two variables of type String that have been given String values, then

s1.compareTo(s2)

returns a negative number if s1 comes before s2 in lexicographic ordering, returns zero if
the two strings are equal, and returns a positive number if s2 comes before s1. Thus,

s1.compareTo(s2) < 0

returns true if s1 comes before s2 in lexicographic order and returns false otherwise.
For example, the following will produce correct output:

if (s1.compareTo(s2) < 0)
 System.out.println(
 s1 + " precedes " + s2 + " in lexicographic ordering");
else if (s1.compareTo(s2) < 0)
 System.out.println(
 s1 + " follows " + s2 + " in lexicographic ordering");
else //s1.compareTo(s2) == 0
 System.out.println(s1 + " equals " + s2);

If you look at the ordering of characters in Appendix 3, you will see that all
uppercase letters come before all lowercase letters. For example, 'Z' comes before 'a'
in lexicographic order. So when comparing two strings consisting of a mix of lower- and
uppercase letters, lexicographic and alphabetic ordering are not the same. However, as

lexicographic
ordering

compareTo

PItFall: (continued)

 Boolean Expressions 149

shown in Appendix 3, all the lowercase letters are in alphabetic order. So for any two
strings of all lowercase letters, lexicographic order is the same as ordinary alphabetic order.
Similarly, in the ordering of Appendix 3, all the uppercase letters are in alphabetic order.
So for any two strings of all uppercase letters, lexicographic order is the same as ordinary
alphabetic order. Thus, if you treat all uppercase letters as if they were lowercase, then
lexicographic ordering becomes the same as alphabetic ordering. This is exactly what the
method compareToIgnoreCase does. Thus, the following produces correct output:

if (s1.compareToIgnoreCase(s2) < 0)
 System.out.println(
 s1 + " precedes " + s2 + " in ALPHABETIC ordering");
else if (s1.compareToIgnoreCase(s2) > 0)
 System.out.println(
 s1 + " follows " + s2 + " in ALPHABETIC ordering");
else //s1.compareToIgnoreCase(s2) == 0
 System.out.println(s1 + " equals " + s2 + " IGNORING CASE");

The above code will compile and produce results no matter what characters are in the
strings s1 and s2. However, alphabetic order and the output make sense only if the
two strings consist entirely of letters.

The program in Display 3.4 illustrates some of the string comparisons we have just
discussed.

compareTo
IgnoreCase

Self-test Exercises

13. Suppose n1 and n2 are two int variables that have been given values. Write a
Boolean expression that returns true if the value of n1 is greater than or equal
to the value of n2; otherwise, it should return false.

14. Suppose n1 and n2 are two int variables that have been given values. Write an
if-else statement that outputs "n1" if n1 is greater than or equal to n2, and
that outputs "n2" otherwise.

15. Suppose variable1 and variable2 are two variables that have been given values.
How do you test whether they are equal when the variables are of type int? How
do you test whether they are equal when the variables are of type String?

16. Assume that nextWord is a String variable that has been given a String value
consisting entirely of letters. Write some Java code that outputs the message
"First half of the alphabet", provided nextWord precedes "N" in
alphabetic ordering. If nextWord does not precede "N" in alphabetic ordering,
the code should output "Second half of the alphabet". (Note that "N"
uses double quotes to produce a String value, as opposed to using single
quotes to produce a char value.)

150 CHAPTER 3 Flow of Control

Display 3.4 Comparing Strings

 1 public class StringComparisonDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 String s1 = "Java isn't just for breakfast.";
 6 String s2 = "JAVA isn't just for breakfast.";

 7 if (s1.equals(s2))
 8 System.out.println("The two lines are equal.");
 9 else
10 System.out.println("The two lines are not equal.");
11 if (s2.equals(s1))
12 System.out.println("The two lines are equal.");
13 else
14 System.out.println("The two lines are not equal.");
15 if (s1.equalsIgnoreCase(s2))
16 System.out.println(

"But the lines are equal, ignoring case.");
17 else
18 System.out.println(

"Lines are not equal, even ignoring case.");

19 String s3 = "A cup of java is a joy forever.";
20 if (s3.compareToIgnoreCase(s1) < 0)
21 {
22 System.out.println("\"" + s3 + "\"");
23 System.out.println("precedes");
24 System.out.println("\"" + s1 + "\"");
25 System.out.println("in alphabetic ordering");
26 }
27 else
28 System.out.println("s3 does not precede s1.");
29 }
30 }

Sample Dialogue

The two lines are not equal.
The two lines are not equal.
But the lines are equal, ignoring case.
"A cup of java is a joy forever."
precedes
"Java isn't just for breakfast."
in alphabetic ordering

 Boolean Expressions 151

Building Boolean Expressions

You can combine two Boolean expressions using the “and” operator, which is spelled
&& in Java. For example, the following Boolean expression is true provided number is
greater than 2 and number is less than 7:

(number > 2) && (number < 7)

When two Boolean expressions are connected using &&, the entire expression is true,
provided both of the smaller Boolean expressions are true; otherwise, the entire
expression is false.

&& means
“and”

the “and” Operator &&
You can form a more elaborate Boolean expression by combining two simpler Boolean
expressions using the “and” operator &&.

Syntax (FOR a BOOlEan ExPRESSIOn USInG &&)

(Boolean_Exp_1) && (Boolean_Exp_2)

ExaMPlE (WItHIn an if-else StatEMEnt)

if ((score > 0) && (score < 10))
 System.out.println("score is between 0 and 10.");
else
 System.out.println("score is not between 0 and 10.");

If the value of score is greater than 0 and the value of score is also less than 10, then the first
System.out.println statement is executed; otherwise, the second System.out.println
statement is executed.

You can also combine two Boolean expressions using the “or” operator, which is
spelled || in Java. For example, the following is true provided count is less than 3 or
count is greater than 12:

(count < 3) || (count > 12)

When two Boolean expressions are connected using ||, the entire expression is true,
provided that one or both of the smaller Boolean expressions are true; otherwise, the
entire expression is false.

You can negate any Boolean expression using the ! operator. If you want to negate
a Boolean expression, place the expression in parentheses and place the ! operator in
front of it. For example, ! (savings < debt) means “savings is not less than debt.”
The ! operator can usually be avoided. For example,

!(savings < debt)

is equivalent to savings >= debt. In some cases, you can safely omit the parentheses,
but the parentheses never do any harm. The exact details on omitting parentheses are
given later in this chapter in the subsection entitled “Precedence and Associativity Rules.”

|| means
“or”

152 CHAPTER 3 Flow of Control

the “or” Operator ||
You can form a more elaborate Boolean expression by combining two simpler Boolean

expressions using the “or” operator ||.

Syntax (FOR a BOOlEan ExPRESSIOn USInG ||)

(Boolean_Exp_1) || (Boolean_Exp_2)

ExaMPlE (WItHIn an if-else StatEMEnt)

if ((salary > expenses) || (savings > expenses))
 System.out.println("Solvent");
else
 System.out.println("Bankrupt");

If salary is greater than expenses or savings is greater than expenses (or both), then
the first System.out.println statement is executed; otherwise, the second System.
out.println statement is executed.

PItFall: Strings of Inequalities

Do not use a string of inequalities such as min < result < max. If you do, your
program will produce a compiler error message. Instead, you must use two inequalities
connected with an &&, as follows:

(min < result) && (result < max) ■

Evaluating Boolean Expressions

Boolean expressions are used to control branch and loop statements. However, a
Boolean expression has an independent identity apart from any branch statement or
loop statement you might use it in. A Boolean expression returns either true or false.

Self-test Exercises

17. Write an if-else statement that outputs the word “Passed” provided the
value of the variable exam is greater than or equal to 60 and also the value
of the variable programsDone is greater than or equal to 10. Otherwise, the
if-else statement should output the word “Failed”. The variables exam and
programsDone are both of type int.

18. Write an if-else statement that outputs the word “Emergency” provided the value
of the variable pressure is greater than 100 or the value of the variable temperature
is greater than or equal to 212. Otherwise, the if-else statement should output
the word “OK”. The variables pressure and temperature are both of type int.

 Boolean Expressions 153

A variable of type boolean can store the values true and false. Thus, you can set a
variable of type boolean equal to a Boolean expression. For example,

boolean madeIt = (time < limit) && (limit < max);

A Boolean expression can be evaluated in the same way that an arithmetic expression
is evaluated. The only difference is that an arithmetic expression uses operations such
as +, *, and / and produces a number as the final result, whereas a Boolean expression
uses relational operations such as == and < and Boolean operations such as &&, ||, and !,
and produces one of the two values true and false as the final result.

First, let’s review evaluating an arithmetic expression. The same technique will work in
the same way to evaluate Boolean expressions. Consider the following arithmetic expression:

(number + 1) * (number + 3)

Assume that the variable number has the value 2. To evaluate this arithmetic
expression, you evaluate the two sums to obtain the numbers 3 and 5, and then you
combine these two numbers 3 and 5 using the * operator to obtain 15 as the final value.
Notice that in performing this evaluation, you do not multiply the expressions (number
+ 1) and (number + 3). Instead, you multiply the values of these expressions. You use
3; you do not use (number + 1). You use 5; you do not use (number + 3).

The computer evaluates Boolean expressions the same way. Subexpressions are evaluated
to obtain values, each of which is either true or false. In particular, ==, !=, <, <=, and so
forth operate on pairs of any primitive type to produce a Boolean value of true or false.
These individual values of true or false are then combined according to the rules in
the truth tables shown in Display 3.5. For example, consider the Boolean expression

!((count < 3) || (count > 7))

which might be the controlling expression for an if-else statement. Suppose the
value of count is 8. In this case, (count < 3) evaluates to false and (count > 7)
evaluates to true, so the preceding Boolean expression is equivalent to

!(false || true)

Consulting the tables for || (which is labeled “OR”), the computer sees that the
expression inside the parentheses evaluates to true. Thus, the computer sees that the
entire expression is equivalent to

!(true)

Consulting the tables again, the computer sees that ! (true) evaluates to false, and
so it concludes that false is the value of the original Boolean expression.

truth tables

the boolean Values are true and false
true and false are predefined constants of type boolean. (They must be written in
lowercase.) In Java, a Boolean expression evaluates to the boolean value true when it is
satisfied, and it evaluates to the boolean value false when it is not satisfied.

154 CHAPTER 3 Flow of Control

Display 3.5 Truth Tables

anD

Exp_1 Exp_2 Exp_1 && Exp_2

true true true

true false false

false true false nOt

false false false Exp !(Exp)

OR true false

Exp_1 Exp_2 Exp_1 || Exp_2 false true

true true true

true false true

false true true

false false false

A boolean variable—that is, one of type boolean—can be given the value of a Boolean
expression by using an assignment statement, in the same way that you use an assignment
statement to set the value of an int variable or any other type of variable. For example,
the following sets the value of the boolean variable isPositive to false:

int number = -5;
boolean isPositive;
isPositive = (number > 0);

If you prefer, you can combine the last two lines as follows:

boolean isPositive = (number > 0);

The parentheses are not needed, but they do make it a bit easier to read.
Once a boolean variable has a value, you can use the boolean variable just as you

would use any other Boolean expression. For example, the following code

boolean isPositive = (number > 0);
if (isPositive)
 System.out.println("The number is positive.");
else
 System.out.println("The number is negative or zero.");

boolean
variables in
assignments

 Boolean Expressions 155

is equivalent to

if (number > 0)
 System.out.println("The number is positive.");
else
 System.out.println("The number is negative or zero.");

Of course, this is just a toy example. It is unlikely that anybody would use the first
of the preceding two examples, but you might use something like it if the value of
number, and therefore the value of the Boolean expression, might change. For example,
the following code could (by some stretch of the imagination) be part of a program to
evaluate lottery tickets:

boolean isPositive = (number > 0);
while (number > 0);
{
 System.out.println("Wow!");
 number = number - 1000;
}
if (isPositive)
 System.out.println("Your number is positive.");
else
 System.out.println("Sorry, number is not positive.");
System.out.println("Only positive numbers can win.");

true and false are not numbers
Many programming languages traditionally use 1 and 0 for true and false. The latest
versions of most languages have changed things so that now most languages have a
type such as boolean with values for true and false. However, even in these newer
language versions, values of type boolean are automatically converted to integers and vice
versa when context requires it. In particular, C++ automatically makes such conversions.

In Java, the values true and false are not numbers, nor can they be type cast to any
numeric type. Similarly, values of type int cannot be type cast to boolean values.

tIP: naming Boolean Variables

Name a boolean variable with a statement that will be true when the value of the
boolean variable is true, such as isPositive, pressureOK, and so forth. That
way you can easily understand the meaning of the boolean variable when it is
used in an if-else statement or other control statement. Avoid names that do not
unambiguously describe the meaning of the variable’s value. Do not use names such
as numberSign, pressureStatus, and so forth. ■

156 CHAPTER 3 Flow of Control

Short-Circuit and Complete Evaluation

Java takes an occasional shortcut when evaluating a Boolean expression. Notice that
in many cases, you need to evaluate only the first of two or more subexpressions in a
Boolean expression. For example, consider the following:

(savings >= 0) && (dependents > 1)

If savings is negative, then (savings >= 0) is false, and, as you can see in the
tables in Display 3.5, when one subexpression in an && expression is false, then the
whole expression is false, no matter whether the other expression is true or false.
Thus, if we know that the first expression is false, there is no need to evaluate the
second expression. A similar thing happens with || expressions. If the first of two
expressions joined with the || operator is true, then you know the entire expression
is true, whether the second expression is true or false. In some situations, the Java
language can and does use these facts to save itself the trouble of evaluating the second
subexpression in a logical expression connected with an && or an ||. Java first evaluates
the leftmost of the two expressions joined by an && or an ||. If that gives it enough
information to determine the final value of the expression (independent of the value
of the second expression), then Java does not bother to evaluate the second expression.
This method of evaluation is called short-circuit evaluation or lazy evaluation.

Now let’s look at an example using && that illustrates the advantage of short-circuit
evaluation, and let’s give the Boolean expression some context by placing it in an if
statement:

if ((kids != 0) && ((pieces/kids) >= 2))
 System.out.println("Each child may have two pieces!");

If the value of kids is not zero, this statement involves no subtleties. However,
suppose the value of kids is zero and consider how short-circuit evaluation handles
this case. The expression (kids != 0) evaluates to false, so there would be no
need to evaluate the second expression. Using short-circuit evaluation, Java says that
the entire expression is false, without bothering to evaluate the second expression.
This prevents a run-time error, since evaluating the second expression would involve
dividing by zero.

Java also allows you to ask for complete evaluation. In complete evaluation, when
two expressions are joined by an “and” or an “or,” both subexpressions are always
evaluated, and then the truth tables are used to obtain the value of the final expression.
To obtain complete evaluation in Java, you use & rather than && for “and” and use | in
place of || for “or.”

In most situations, short-circuit evaluation and complete evaluation give the same
result, but, as you have just seen, there are times when short-circuit evaluation can
avoid a run-time error. There are also some situations in which complete evaluation is
preferred, but we will not use those techniques in this book. We will always use && and
|| to obtain short-circuit evaluation.

short-circuit
evaluation

lazy
evaluation

complete
evaluation

 Boolean Expressions 157

Precedence and associativity Rules

Boolean expressions (and arithmetic expressions) need not be fully parenthesized. If you
omit parentheses, Java follows precedence rules and associativity rules in place of the
missing parentheses. One easy way to think of the process is to think of the computer
adding parentheses according to these precedence and associativity rules. Some of
the Java precedence and associativity rules are given in Display 3.6. (A complete set
of precedence and associativity rules is given in Appendix 2.) The computer uses
precedence rules to decide where to insert parentheses, but the precedence rules do
not differentiate between two operators at the same precedence level, in which case the
computer uses the associativity rules to “break the tie.”

If one operator occurs higher on the list than another in the precedence table
(Display 3.6), the higher one is said to have higher precedence. If one operator has
higher precedence than another, the operator of higher precedence is grouped with its
operands (its arguments) before the operator of lower precedence. For example, if the
computer is faced with the expression

balance * rate + bonus

it notices that * has a higher precedence than +, so it first groups * and its operands,
as follows:

(balance * rate) + bonus

Next, it groups + with its operands to obtain the fully parenthesized expression

((balance * rate) + bonus)

Sometimes two operators have the same precedence, in which case the parentheses
are added using the associativity rules. To illustrate this, let’s consider another example:

bonus + balance * rate / correctionFactor - penalty

The operators * and / have higher precedence than either + or -, so * and / are grouped
first. But * and / have equal precedence, so the computer consults the associativity rule
for * and /, which says they associate from left to right. This means that the *, which
is the leftmost of * and /, is grouped first. So the computer interprets the expression as

bonus + (balance * rate) / correctionFactor - penalty

which in turn is interpreted as

bonus + ((balance * rate) / correctionFactor) - penalty

because / has higher precedence than either + or -.
This expression is still not fully parenthesized, however. The computer still must

choose to group + first or - first. According to Display 3.6, + and - have equal precedence.
So the computer must use the associativity rules, which say that + and - are associated
left to right. So, it interprets the expression as

(bonus + ((balance * rate) / correctionFactor)) - penalty

precedence
rules

associativity
rules

higher
precedence

158 CHAPTER 3 Flow of Control

Display 3.6 Precedence and Associativity Rules

PRECEDEnCE aSSOCIatIVIty

From highest at top to lowest at bottom. Operators in
the same group have equal precedence.

Dot operator, array indexing, and
method invocation ., [], ()

Left to right

++ (postfix, as in x++), −− (postfix) Right to left

The unary operators: +, −, ++ (prefix, as in ++x),
−− (prefix), and !

Right to left

Type casts (Type) Right to left

The binary operators *, /, % Left to right

The binary operators +, − Left to right

The binary operators <, >, <=, >= Left to right

The binary operators ==, ! = Left to right

The binary operator & Left to right

The binary operator | Left to right

The binary operator && Left to right

The binary operator || Left to right

The ternary operator (conditional operator) ?: Right to left

The assignment operators =, *=, /=, %=, +=, −=, & =, |= Right to left

Highest
Precedence

Lowest
Precedence

which in turn is interpreted as the following fully parenthesized expression:

((bonus + ((balance * rate) / correctionFactor)) - penalty)

As you can see from studying the table in Display 3.6, most binary operators
associate from left to right. But the assignment operators associate from right to left.
So the expression

numberl = number2 = number3

means

numberl = (number2 = number3)

which in turn is interpreted as the following fully parenthesized expression:

(number1 = (number2 = number3))

 Boolean Expressions 159

However, this fully parenthesized expression may not look like it means anything until
we explain a bit more about the assignment operator.

Although we do not advocate using the assignment operator = as part of a complex
expression, it is an operator that returns a value, just as + and * do. When an
assignment operator = is used in an expression, it changes the value of the variable on
the left-hand side of the assignment operator and also returns a value—namely, the new
value of the variable on the left-hand side of the expression. So (number2 = number3)
sets number2 equal to the value of number3 and returns the value of number3. Thus,

numberl = number2 = number3

which is equivalent to

(numberl = (number2 = number3))

sets both number2 and number1 equal to the value of number3. It is best to not use
assignment statements inside of expressions, although simple chains of assignment
operators such as the following are clear and acceptable:

numberl = number2 = number3;

Although we discourage using expressions that combine the assignment operator
and other operators in complicated ways, let’s try to parenthesize one just for practice.
Consider the following:

numberl = number2 = number3 + 7 * factor

The operator of highest precedence is *, and the operator of next-highest precedence is
+, so this expression is equivalent to

numberl = number2 = (number3 + (7 * factor))

which leaves only the assignment operators to group. They associate right to left, so the
fully parenthesized equivalent version of our expression is

(numberl = (number2 = (number3 + (7 * factor))))

(Note that there is no case where two operators have equal precedence, but one
associates from left to right while the other associates from right to left. That must be
true, or else there would be cases with conflicting instructions for inserting parentheses.)

The association of operands with operators is called binding. For example, when
parentheses determine which two expressions (two operands) are being added by
a particular + sign, that is called binding the two operands to the + sign. A fully
parenthesized expression accomplishes binding for all the operators in an expression.

These examples should make it clear that it can be risky to depend too heavily on
the precedence and associativity rules. It is best to include most parentheses and to omit
parentheses only in situations where the intended meaning is very obvious, such as a
simple combination of * and +, or a simple chain of &&’s or a simple chain of ||’s. The
following examples have some omitted parentheses, but their meaning should be clear:

rate * time + lead
(time < limit) && (yourScore > theirScore) && (yourScore > 0)
(expenses < income) || (expenses < savings) || (creditRating > 0)

binding

160 CHAPTER 3 Flow of Control

Notice that the precedence rules include both arithmetic operators such as + and *
as well as Boolean operators such as && and ||. This is because many expressions
combine arithmetic and Boolean operations, as in the following simple example:

(number + 1) > 2 || (number + 5) < -3

If you check the precedence rules given in Display 3.6, you will see that this expression
is equivalent to

(((number + 1) > 2) || ((number + 5) < (-3)))

because > and < have higher precedence than ||. In fact, you could omit all the
parentheses in the above expression and it would have the same meaning (but would
be less clear).

It might seem that once an expression is fully parenthesized, the meaning of the
expression is then determined. It would seem that to evaluate the expression, you (or
the computer) simply evaluate the inner expressions before the outer ones. So, in

((number + 1) > 2) || ((number + 5) < (-3))

first the expressions (number + 1), (number + 5), and (-3) are evaluated (in any
order), then the > and < are evaluated, and then the || is applied. That happens to
work in this simple case. In this case, it does not matter which of (number + 1),
(number + 5), and (-3) is evaluated first, but in certain other expressions it will be
necessary to specify which subexpression is evaluated first. The rules for evaluating a
fully parenthesized expression are (and indeed must be) more complicated than just
evaluating inner expressions before outer expressions.

For an expression with no side effects, the rule of performing inner parenthesized
expressions before outer ones is all you need. That rule will get you through most
simple expressions, but for expressions with side effects, you need to learn the rest of
the story, which is what we will do next.

The complications come from the fact that some expressions have side effects.
When we say an expression has side effects, we mean that in addition to returning
a value, the expression also changes something, such as the value of a variable.
Expressions with the assignment operator have side effects; pay = bonus, for example,
changes the value of pay. Increment and decrement operators have side effects; ++n
changes the value of n. In expressions that include operators with side effects, you
need more rules.

For example, consider

((result = (++n)) + (other = (2*(++n))))

The parentheses seem to say that you or the computer should first evaluate the two
increment operators, ++n and ++n, but the parentheses do not say which of the two
++n's to do first. If n has the value 2 and we evaluate the leftmost ++n first, then

side effects

 Boolean Expressions 161

the variable result is set to 3 and the variable other is set to 8 (and the entire
expression evaluates to 11). But if we evaluate the rightmost ++n first, then other is
set to 6 and result is set to 4 (and the entire expression evaluates to 10). We need a
rule to determine the order of evaluation when we have a tie such as this. However,
rather than simply adding a rule to break such ties, Java instead takes a completely
different approach.

To evaluate an expression, Java uses the following three rules:

1. Java first does binding; that is, it first fully parenthesizes the expression using
 precedence and associativity rules, just as we have outlined.

2. Then it simply evaluates expressions left to right.
3. If an operator is waiting for its two (or one or three) operands to be evaluated,

then that operator is evaluated as soon as its operands have been evaluated.

We will first do an example with no side effects and then an example of an expression
with side effects. First, the simple example; consider the expression

6 + 7 * n - 12

and assume the value of n is 2. Using the precedence and associativity rules, we add
parentheses one pair at a time as follows:

6 + (7 * n) - 12

then

(6 + (7 * n)) - 12

and finally the fully parenthesized version

((6 + (7 * n)) - 12)

Next, we evaluate subexpressions left to right. (6 evaluates to 6 and 7 evaluates
to 7, but that is so obvious we will not make a big deal of it.) The variable n
evaluates to 2. (Remember, we assumed the value of n was 2.) So, we can rewrite the
expression as

((6 + (7 * 2)) - l2)

The * is the only operator that has both of its operands evaluated, so it evaluates to 14
to produce

((6 + l4) - l2)

Now + has both of its operands evaluated, so (6 + 14) evaluates to 20 to yield

(20 - l2)

which in turn evaluates to 8. So 8 is the value for the entire expression.
This may seem like more work than it should be, but remember, the computer is

following an algorithm and proceeds step by step; it does not get inspired to make
simplifying assumptions.

162 CHAPTER 3 Flow of Control

Next, let’s consider an expression with side effects. In fact, let’s consider the one we
fully parenthesized earlier. Consider the following fully parenthesized expression and
assume the value of n is 2:

((result = (++n)) + (other = (2*(++n))))

Subexpressions are evaluated left to right. So, result is evaluated first. When used with
the assignment operator =, a variable simply evaluates to itself. So, result is evaluated
and waiting. Next, ++n is evaluated, and it returns the value 3. The expression is now
known to be equivalent to

((result = 3) + (other = (2*(++n))))

Now the assignment operator = has its two operands evaluated, so (result = 3) is
evaluated. Evaluating (result = 3) sets the value of result equal to 3 and returns
the value 3. Thus, the expression is now known to be equivalent to

(3 + (other = (2*(++n))))

(and the side effect of setting result equal to 3 has happened). Proceeding left to right,
the next thing to evaluate is the variable other, which simply evaluates to itself, so you
need not rewrite anything.

Proceeding left to right, the next subexpression that can be evaluated is n, which
evaluates to 3. (Remember, n has already been incremented once, so n now has the
value 3.) Then ++ has its only argument evaluated, so it is ready to be evaluated. The
evaluation of (++n) has the side effect of setting n equal to 4 and evaluates to 4. So,
the entire expression is equivalent to

(3 + (other = (2*4)))

The only subexpression that has its operands evaluated is (2*4), so it is evaluated to 8
to produce

(3 + (other = 8))

Now the assignment operator = has both of its operands evaluated, so it evaluates to 8
and has the side effect of setting other equal to 8. Thus, we know the value of the
expression is

(3 + 8)

which evaluates to 11. So, the entire expression evaluates to 11 (and has the side effects
of setting result equal to 3, setting n equal to 4, and setting other equal to 8). These
rules also allow for method invocations in expressions. For example, in

(++n > 0) && (s.length() > n)

the variable n is incremented before n is compared to s. length(). When we start
defining and using more methods, you will see less-contrived examples of expressions
that include method invocations.

All of these rules for evaluating expressions are summarized in the box entitled
“Rules for Evaluating Expressions.”

 Boolean Expressions 163

Rules for Evaluating Expressions

Expressions are evaluated as follows:

1. Binding: Determine the equivalent fully parenthesized expression using the precedence
and associativity rules.

2. Proceeding left to right, evaluate whatever subexpressions you can evaluate. (These
subexpressions will be operands or method arguments. For example, in simple cases
they may be numeric constants or variables.)

3. Evaluate each outer operation (and method invocation) as soon as all of its operands (all
its arguments) have been evaluated.

Self-test Exercises

19. Determine the value, true or false, of each of the following Boolean expressions,
assuming that the value of the variable count is 0 and the value of the variable
limit is 10. (Give your answer as one of the values true or false.)

a. (count == 0) && (limit < 20)

b. count == 0 && limit < 20

c. (limit > 20) || (count < 5)

d. !(count == 12)

e. (count == 1) && (x < y)

f. (count < 10) || (x < y)

g. !(((count < 10) || (x < y)) && (count >= 0))

h. ((limit/count) > 7) || (limit < 20)

i. (limit < 20) || ((limit/count) > 7)

j. ((limit/count) > 7) && (limit < 0)

k. (limit < 0) && ((limit/count) > 7)

20. Does the following sequence produce a division by zero?

 int j = -1;

 if ((j > 0) && (1/(j+1) > 10))

 System.out.println(i);

21. Convert the following expression to an equivalent fully parenthesized expression:

 bonus + day * rate / correctionFactor * newGuy – penalty

164 CHAPTER 3 Flow of Control

3.3 loops

Few tasks are more like the torture of Sisyphus than housework, with its
 endless repetition: the clean becomes soiled, the soiled is made clean, over
and over, day after day.

SIMONE DE BEAuvOIR

Looping mechanisms in Java are similar to those in other high-level languages. The
three Java loop statements are the while statement, the do-while statement, and
the for statement. The same terminology is used with Java as with other languages.
The code that is repeated in a loop is called the body of the loop. Each repetition of
the loop body is called an iteration of the loop.

while Statement and do-while Statement

The syntax for the while statement and its variant, the do-while statement, is given
later in this chapter in the box entitled “Syntax for while and do-while Statements.”
In both cases, the multistatement body is a special case of the loop with a single-
statement body. The multistatement body is a single compound statement. Examples
of while and do-while statements are given in Display 3.7.

body of
the loop

iteration

while and
do-while
compared

Display 3.7 Demonstration of while Loops and do-while Loops (part 1 of 2)

 1 public class WhileDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 int countDown;

 6 System.out.println("First while loop:");
 7 countDown = 3;
 8 while (countDown > 0)
 9 {
10 System.out.println("Hello");
11 countDown = countDown - 1;
12 }

13 System.out.println("Second while loop:");
14 countDown = 0;
15 while (countDown > 0)
16 {

17 System.out.println("Hello");
18 countDown = countDown - 1;
19 }

20 System.out.println("First do-while loop:");
21 countDown = 3;
22 do
23 {

 Loops 165

The important difference between the while and do-while loops is when the
controlling Boolean expression is checked. With a while statement, the Boolean expression
is checked before the loop body is executed. If the Boolean expression evaluates to false,
then the body is not executed at all. With a do-while statement, the body of the loop is
executed first, and the Boolean expression is checked after the loop body is executed. Thus,
the do-while statement always executes the loop body at least once. After this start-up,
the while loop and the do-while loop behave the same way. After each iteration of the
loop body, the Boolean expression is again checked, and if it is true, the loop is iterated
again. If it has changed from true to false, then the loop statement ends.

The first thing that happens when a while loop is executed is that the controlling
Boolean expression is evaluated. If the Boolean expression evaluates to false at that
point, the body of the loop is never executed. It might seem pointless to execute the body
of a loop zero times, but that is sometimes the desired action. For example, a while loop
is often used to sum a list of numbers, but the list could be empty. To be more specific, a
checkbook-balancing program might use a while loop to sum the values of all the checks
you have written in a month, but you might take a month’s vacation and write no checks
at all. In that case, there are zero numbers to sum, so the loop is iterated zero times.

24 System.out.println("Hello");
25 countDown = countDown - 1;
26 } while (countDown > 0);

27 System.out.println("Second do-while loop:");
28 countDown = 0;
29 do
30 {
31 System.out.println("Hello");
32 countDown = countDown - 1;
33 } while (countDown > 0);
34 }
35 }

Sample Dialogue

First while loop:

Hello

Hello

Hello

Second while loop:

First do-while loop:

Hello

Hello

Hello

Second do-while loop:

Hello

A while loop can iterate its
body zero times.

A do-while loop always
iterates its body at least one time.

Display 3.7 Demonstration of while Loops and do-while Loops (part 2 of 2)

executing
the body

zero times

166 CHAPTER 3 Flow of Control

Anything that you can write with a while loop can be written with a do-while
loop and vice versa. Given the following structure for a while loop:

while (Boolean condition)
{
 Statements;
}

the equivalent do-while loop is

if (Boolean condition)
{
 do
 {
 Statements;
 } while (Boolean condition);
}

The if statement is needed in case the Boolean condition is initially false and the loop
is never entered. In the other direction, given the following structure for a do-while
loop:

do
{
 Statements;
} while (Boolean condition);

the equivalent while loop is

Statements;
while (Boolean condition)
{
 Statements;
}

The statements in the body must be replicated before the loop, since the do-while
loop will always execute the body at least once.

algorithms and Pseudocode

Dealing with the syntax rules of a programming language is not the hard part of solving
a problem with a computer program. The hard part is coming up with the underlying
method of solution. This method of solution is called an algorithm. An algorithm is
a set of precise instructions that leads to a solution. Some approximately equivalent
words to algorithm are recipe, method, directions, procedure, and routine.

An algorithm is normally written in a mixture of a programming language (in our
case, Java) and English (or other human language). This mixture of programming
language and human language is known as pseudocode. Using pseudocode frees you
from worrying about fine details of Java syntax so that you can concentrate on the
method of solution. Underlying the program in Display 3.8 is an algorithm that can be
expressed as the following pseudocode:

algorithm

pseudocode

 Loops 167

Syntax for while and do-while Statements
a while StatEMEnt WItH a SInGlE-StatEMEnt BODy

while (Boolean_Expression)

 Statement

a while StatEMEnt WItH a MUltIStatEMEnt BODy

while (Boolean_Expression)
{
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
}

a do-while StatEMEnt WItH a SInGlE-StatEMEnt BODy

do
 Statement
while (Boolean Expression);

a do-while StatEMEnt WItH a MUltIStatEMEnt BODy

do
{
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
} while (Boolean_Expression);

Do not forget the
final semicolon.

Give the user instructions.
count = 0;
sum = 0;
Read a number and store it in a variable named next.
while (next >= 0)
{
 sum = sum + next;
 count++;
 Read a number and store it in next.
}
The average is sum/count provided count is not zero.
Output the results.

168 CHAPTER 3 Flow of Control

Display 3.8 Averaging a List of Scores

 1 import java.util.Scanner;
 2 public class Averager
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);
 7 System.out.println("Enter a list of nonnegative scores.");
 8 System.out.println("Mark the end with a negative number.");
 9 System.out.println("I will compute their average.");

10 double next, sum = 0;
11 int count = 0;

12 next = keyboard.nextDouble();
13 while (next >= 0)
14 {
15 sum = sum + next;
16 count++;
17 next = keyboard.nextDouble();
18 }

19 if (count == 0)
20 System.out.println("No scores entered.");
21 else
22 {
23 double average = sum/count;
24 System.out.println(count + " scores read.");
25 System.out.println("The average is " + average);
26 }
27 }
28 }

Sample Dialogue

Enter a list of nonnegative scores.

Mark the end with a negative number.

I will compute their average.

87.5 0 89 99.9 -1

4 scores read.

The average is 69.1.

 Loops 169

Note that when using pseudocode, we do not necessarily declare variables or worry
about the fine syntax details of Java. The only rule is that the pseudocode must
be precise and clear enough for a good programmer to convert the pseudocode to
syntactically correct Java code.

As you will see, significant programs are written not as a single algorithm, but as a
set of interacting algorithms; however, each of these algorithms is normally designed in
pseudocode unless the algorithm is exceedingly simple.

sentinel
value

(continued)

ExaMPlE: Averaging a List of Scores

Display 3.8 shows a program that reads in a list of scores and computes their average.
It illustrates a number of techniques that are commonly used with loops.

The scores are all nonnegative. This allows the program to use a negative number
as an end marker. Note that the negative number is not one of the numbers being
averaged in. This sort of end marker is known as a sentinel value. A sentinel value
need not be a negative number, but it must be some value that cannot occur as a
“real” input value. For example, if the input list were a list of even integers, then you
could use an odd integer as a sentinel value.

To get the loop to end properly, we want the Boolean expression

next >= 0

checked before adding in the number read. This way we avoid adding in the sentinel
value. So, we want the loop body to end with

next = keyboard.nextDouble();

To make things work out, this in turn requires that we also place this line before the
loop. A loop often needs some preliminary statements to set things up before the loop
is executed.

Self-test Exercises

22. What is the output produced by the following?

 int n = 10;
 while (n > 0)
 {
 System.out.println(n);
 n = n - 3;
 }

23. What output would be produced in Self-Test Exercise 22 if the > sign were
replaced with < ?

170 CHAPTER 3 Flow of Control

the for Statement

The third and final loop statement in Java is the for statement. The for statement
is most commonly used to step through some integer variable in equal increments.
The for statement is, however, a completely general looping mechanism that can do
anything that a while loop can do.

For example, the following for statement sums the integers 1 through 10:

sum = 0;
for (n = 1; n <= 10; n++)
 sum = sum + n;

A for statement begins with the keyword for followed by three expressions in
parentheses that tell the computer what to do with the controlling variable(s). The
beginning of a for statement looks like the following:

for (Initialization; Boolean_Expression; Update)

The first expression tells how the variable, variables, or other things are initialized, the
second expression gives a Boolean expression that is used to check for when the loop
should end, and the last expression tells how the loop control variable or variables are
updated after each iteration of the loop body. The loop body is a single statement
(typically a compound statement) that follows the heading we just described.

for
statement

Self-test Exercises (continued)

24. What is the output produced by the following?

int n = 10;
do
{
 System.out.println(n);
 n = n - 3;
} while (n > 0);

25. What output would be produced in Self-Test Exercise 24 if the > sign were
replaced with < ?

26. What is the output produced by the following?

int n = -42;
do
{
 System.out.println(n);
 n = n - 3;
} while (n > 0);

27. What is the most important difference between a while statement and a
do-while statement?

 Loops 171

The three expressions at the start of a for statement are separated by two, and only
two, semicolons. Do not succumb to the temptation to place a semicolon after the
third expression. (The technical explanation is that these three things are expressions,
not statements, and so do not require a semicolon at the end.)

A for statement often uses a single int variable to control loop iteration and loop
ending. However, the three expressions at the start of a for statement may be any Java
expressions and therefore may involve more (or even fewer) than one variable, and the
variables can be of any type.

The semantics of the for statement are given in Display 3.9. The syntax for a for
statement is given in Display 3.10. Display 3.10 also explains how the for statement
can be viewed as a notational variant of the while loop.

the for Statement
Syntax

for (Initialization; Boolean_Expression; Update)
 Body

The Body may be any Java statement—either a simple statement or, more likely, a
compound statement consisting of a list of statements enclosed in braces, {}. Notice that
the three things in parentheses are separated by two, not three, semicolons.

You are allowed to use any Java expression for the Initializing and the Update expressions.
Therefore, you may use more, or fewer, than one variable in the expressions; moreover, the
variables may be of any type.

ExaMPlE

int next, sum = 0;
for (next = 0; next <= 10; next++)
{
 sum = sum + next;
 System.out.println("sum up to " + next + " is " + sum);
}

A variable can be declared in the heading of a for statement at the same time that it
is initialized. For example,

for (int n = 1; n < 10; n++)
 System.out.println(n);

There are some subtleties to worry about when you declare a variable in the heading of
a for statement. These subtleties are discussed in Chapter 4 in the Programming Tip
subsection entitled “Declaring Variables in a for Statement.” It might be wise to avoid
such subtle declarations within a for statement until you reach Chapter 4, but we
mention it here for reference value.

172 CHAPTER 3 Flow of Control

Display 3.9 Semantics of the for Statement

for (Initialization; Boolean_Expression; Update)
 Body

Initialization

Boolean_Expression
true false

Start

Body

Update

End

Display 3.10 for Statement Syntax and Alternate Semantics (part 1 of 2)

for Statement Syntax

for (Initialization; Boolean_Expression; Update)
 Body

ExaMPlE

for (number = 100; number >= 0; number--)
 System.out.println(number + " bottles of beer on the shelf.");

 Loops 173

Display 3.10 for Statement Syntax and Alternate Semantics (part 2 of 2)

Equivalent while loop Syntax

Initialization;

while (Boolean_Expression)
{
 Body ;
 Update;
}

EQUIValEnt ExaMPlE

number = 100;
while (number >= 0)
{
 System.out.println(number + " bottles of beer on the shelf.");
 number--;
}

Sample Dialogue

100 bottles of beer on the shelf.

99 bottles of beer on the shelf.

.

.

.

0 bottles of beer on the shelf.

the Comma in for Statements

A for loop can contain multiple initialization actions. Simply separate the actions with
commas, as in the following:

for (term = 1, sum = 0; term <= 10; term++)
 sum = sum + term;

This for loop has two initializing actions. The variable term is initialized to 1, and the
variable sum is also initialized to 0. Note that you use a comma, not a semicolon, to
separate the initialization actions.

You can also use commas to place multiple update actions in a for loop. This can lead
to a situation in which the for loop has an empty body but still does something useful.
For example, the previous for loop can be rewritten to the following equivalent version:

for (term = 1, sum = 0; term <= 10; sum = sum + term, term++)
 //Empty body;

174 CHAPTER 3 Flow of Control

This, in effect, makes the loop body part of the update action. We find that it makes
for a more readable style if you use the update action only for variables that control
the loop, as in the previous version of this for loop. We do not advocate using for
loops with no body, but if you do so, annotate it with a comment such as we did in the
preceding for loop. As indicated in the upcoming Pitfall, “Extra Semicolon in a for
Statement,” a for loop with no body can also occur as the result of a programmer error.

The comma used in a for statement, as we just illustrated, is quite limited in how
it can be used. You can use it with assignment statements and with incremented and
decremented variables (such as term++ or term--), but not with just any arbitrary
statements. In particular, both declaring variables and using the comma in for
statements can be troublesome. For example, the following is illegal:

for (int term = 1, double sum = 0; term <= 10; term++)
 sum = sum + term;

Even the following is illegal:

double sum;
for (int term = 1, sum = 0; term <= 10; term++)
 sum = sum + term;

Java will interpret

int term = 1, sum = 0;

as declaring both term and sum to be int variables and complain that sum is already
declared.

If you do not declare sum anyplace else (and it is acceptable to make sum an int variable
instead of a double variable), then the following, although we discourage it, is legal:

for (int term = 1, sum = 0; term <= 10; term++)
 sum = sum + term;

The first part in parentheses (up to the semicolon) declares both term and sum to be
int variables and initializes both of them.

It is best to simply avoid these possibly confusing examples. When using the comma
in a for statement, it is safest to simply declare all variables outside the for statement.
If you declare all variables outside the for loop, the rules are no longer complicated.

A for loop can have only one Boolean expression to test for ending the for loop.
However, you can perform multiple tests by connecting the tests using && or ||
operators to form one larger Boolean expression.

(C, C++, and some other programming languages have a general-purpose comma
operator. Readers who have programmed in one of these languages need to be warned
that, in Java, there is no comma operator. In Java, the comma is a separator, not an
operator, and its use is very restricted compared with the comma operator in C and C++.)

 Loops 175

tIP: Repeat N times loops

The simplest way to produce a loop that repeats the loop body a predetermined
number of times is with a for statement. For example, the following is a loop that
repeats its loop body three times:

for (int count = 1; count <= 3; count++)
 System.out.println("Hip, Hip, Hurray");

The body of a for statement need not make any reference to a loop control variable,
such as the variable count. ■

PItFall: Extra Semicolon in a for Statement

You normally do not place a semicolon after the closing parenthesis at the beginning
of a for loop. To see what can happen, consider the following for loop:

for (int count = 1; count <= 10; count++);
 System.out.println("Hello");

If you did not notice the extra semicolon, you might expect this for loop to write
Hello to the screen 10 times. If you did notice the semicolon, you might expect the
compiler to issue an error message. Neither of those things happens. If you embed
this for loop in a complete program, the compiler will not complain. If you run the
program, only one Hello will be output instead of 10 Hellos. What is happening? To
answer that question, we need a little background.

One way to create a statement in Java is to put a semicolon after something. If you
put a semicolon after number++, you change the expression

number++

into the statement

number++;

If you place a semicolon after nothing, you still create a statement. Thus, the semicolon
by itself is a statement, which is called the empty statement or the null statement. The
empty statement performs no action, but still is a statement. Therefore, the following
is a complete and legitimate for loop, whose body is the empty statement:

for (int count = 1; count <= 10; count++);

Problem
semicolon

empty
statement

null
statement

(continued)

176 CHAPTER 3 Flow of Control

PItFall: (continued)

This for loop is indeed iterated 10 times, but since the body is the empty statement,
nothing happens when the body is iterated. This loop does nothing, and it does
nothing 10 times! After completing this for loop, the computer goes on to execute
the following, which writes Hello to the screen one time:

System.out.println("Hello");

This same sort of problem can arise with a while loop. Be careful to not place a
semicolon after the closing parenthesis that encloses the Boolean expression at the start
of a while loop. A do-while loop has just the opposite problem. You must remember
to always end a do-while loop with a semicolon. ■

PItFall: Infinite loops

A while loop, do-while loop, or for loop does not terminate as long as the
controlling Boolean expression evaluates to true. This Boolean expression normally
contains a variable that will be changed by the loop body, and usually the value of
this variable eventually is changed in a way that makes the Boolean expression false
and therefore terminates the loop. However, if you make a mistake and write your
program so that the Boolean expression is always true, then the loop will run forever.
A loop that runs forever is called an infinite loop.

Unfortunately, examples of infinite loops are not hard to come by. First, let’s
 describe a loop that does terminate. The following Java code writes out the positive
even numbers less than 12. That is, it outputs the numbers 2, 4, 6, 8, and 10, one per
line, and then the loop ends.

number = 2;
while (number != 12)
{
 System.out.println(number);
 number = number + 2;
}

The value of number is increased by 2 on each loop iteration until it reaches 12. At that
point, the Boolean expression after the word while is no longer true, so the loop ends.

Now suppose you want to write out the odd numbers less than 12, rather than the
even numbers. You might mistakenly think that all you need to do is change the initial-
izing statement to

number = 1;

But this mistake will create an infinite loop. Because the value of number goes from
11 to 13, the value of number is never equal to 12, so the loop never terminates.

infinite loop

 Loops 177

PItFall: (continued)

This sort of problem is common when loops are terminated by checking a numeric
quantity using == or !=. When dealing with numbers, it is always safer to test for pass-
ing a value. For example, the following will work fine as the first line of our while loop:

while (number < 12)

With this change, number can be initialized to any number, and the loop will still
terminate.

There is one subtlety about infinite loops that you need to keep in mind. A loop
might terminate for some input values but be an infinite loop for other values. Just
because you tested your loop for some program input values and found that the loop
ended does not mean that it will not be an infinite loop for some other input values.

A program that is in an infinite loop might run forever unless some external force
stops it, so it is a good idea to learn how to force a program to terminate. The method
for forcing a program to stop varies from operating system to operating system. The
keystrokes Control-C will terminate a program on many operating systems. (To type
Control-C, hold down the Control key while pressing the C key.)

In simple programs, an infinite loop is almost always an error. However, some pro-
grams are intentionally written to run forever, such as the main outer loop in an airline
reservation program that just keeps asking for more reservations until you shut down
the computer (or otherwise terminate the program in an atypical way). ■

nested loops

It is perfectly legal to nest one loop statement inside another loop statement. For
example, the following nests one for loop inside another for loop:

int rowNum, columnNum;
for (rowNum = 1; rowNum <= 3; rowNum++)
{
 for (columnNum = 1; columnNum <= 2; columnNum++)
 System.out.print(" row " + rowNum + " column " + columnNum);
 System.out.println();
}

This produces the following output:

row 1 column 1 row 1 column 2
row 2 column 1 row 2 column 2
row 3 column 1 row 3 column 2

For each iteration of the outer loop, the inner loop is iterated from beginning to end
and then one println statement is executed to end the line.

(It is best to avoid nested loops by placing the inner loop inside a method definition
and placing a method invocation inside the outer loop. Method definitions are covered
in Chapters 4 and 5.)

nested loops

Nested Loop
Example

VideoNote

178 CHAPTER 3 Flow of Control

Self-test Exercises

28. What is the output of the following?

for (int count = 1; count < 5; count++)
 System.out.print((2 * count) + " ");

29. What is the output of the following?

for (int n = 10; n > 0; n = n - 2)
 System.out.println("Hello " + n);

30. What is the output of the following?

for (double sample = 2; sample > 0; sample = sample - 0.5)
 System.out.print(sample + " ");

31. Rewrite the following for statement as a while loop (and possibly some
additional statements):

int n;
for (n = 10; n > 0; n = n - 2)
 System.out.println("Hello " + n);

32. What is the output of the following loop? Identify the connection between the
value of n and the value of the variable log.

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2)
 log++;
System.out.println(n + " " + log);

33. What is the output of the following loop? Comment on the code. (This is not
the same as the previous exercise.)

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2);
 log++;
System.out.println(n + " " + log);

34. Predict the output of the following nested loops:

int n, m;
for (n = 1; n <= 10; n++)
 for (m = 10; m >= 1; m--)
 System.out.println(n + " times " + m
 + " = " + n*m);

 Loops 179

Self-test Exercises (continued)

35. For each of the following situations, tell which type of loop (while, do-while,
or for) would work best:

a. Summing a series, such as 1/2 + 1/3 + 1/4 + 1/5 + . . . + 1/10.

b. Reading in the list of exam scores for one student.

c. Reading in the number of days of sick leave taken by employees in a
department.

36. What is the output of the following?

int number = 10;
while (number > 0)
{
 System.out.println(number);
 number = number + 3;
}

37. What is the output of the following?

int n, limit = 10;
for (n = 1; n < limit; n++)
{
 System.out.println("n == " + n);
 System.out.println("limit == " + limit);
 limit = n + 2;
}

38. What is the output produced by the following?

int number = 10;
while (number > 0)
{
 number = number - 2;
 if (number == 4)
 break;
 System.out.println(number);
}
System.out.println("The end.");

39. What is the output produced by the following?

int number = 10;
while (number > 0)
{
 number = number - 2;
 if (number == 4)
 continue;
 System.out.println(number);
}
System.out.println("The end.");

180 CHAPTER 3 Flow of Control

the break and continue Statements ★

In previous subsections, we described the basic flow of control for the while,
do-while, and for loops. This is how the loops should normally be used, and they are
usually are. However, you can alter the flow of control in two additional ways: You can
either insert a break statement or insert a continue statement. The break statement
ends the loop. The continue statement ends the current iteration of the loop body.
The break and continue statements can be used with any of the Java loop statements.

We described the break statement earlier in this chapter when we discussed the
switch statement. The break statement consists of the keyword break followed by a
semicolon. When executed, the break statement ends the nearest enclosing switch or
loop statement.

The continue statement consists of the keyword continue followed by a
semicolon. When executed, the continue statement ends the current loop body
iteration of the nearest enclosing loop statement.

One point that you should note when using the continue statement in a for
loop is that the continue statement transfers control to the update expression. Thus,
any loop control variable will be updated immediately after the continue statement
is executed.

Note that a break statement completely ends the loop. In contrast, a continue
statement merely ends one loop iteration, and the next iteration (if any) continues
the loop.

You never absolutely need a break or continue statement. Any code that uses
a break or continue statement can be rewritten to do the same thing without a
break or continue statement. The continue statement can be particularly tricky
and can make your code hard to read. It may be best to avoid the continue statement
completely or at least use it only on very rare occasions. The use of the break and
continue statements in loops is controversial, with many experts saying they should
never be used. You will need to make your own decision on whether you will use either
or both of these statements.

You can nest one loop statement inside another loop statement. When doing
so, remember that any break or continue statement applies to the innermost loop
statement containing the break or continue statement. If there is a switch statement
inside a loop, any break statement applies to the innermost loop or switch statement.

There is a type of break statement that, when used in nested loops, can end any
containing loop, not just the innermost loop. If you label an enclosing loop statement
with an Identifier, then the following version of the break statement will exit the
labeled loop, even if it is not the innermost enclosing loop:

break Identifier;

To label a loop statement, simply precede it with an Identifier and a colon. The
following is an outline of some sample code that uses a labeled break statement:

outerLoop:
do

break
statement

continue
statement

label

 Loops 181

{
 ...
 while (next >= 0)
 {
 next = keyboard.nextInt();
 if (next < -100)
 break outerLoop;
 ...
 }
 ...
 answer = ...
} while (answer.equalsIgnoreCase("yes"));

The identifier outerLoop labels the outer loop, which is a do loop. If the number read
into the variable next is negative but not less than –100, then the inner while loop
ends normally. If, however, the number read is less than –100, then the labeled break
statement is executed, and that ends the enclosing do loop.

You can actually label any statement, not just loop statements and switch statements.
A labeled break will always end the enclosing statement with the matching label, no
matter what kind of statement is labeled.

The labeled break can be handy when you have a switch statement in the body of
a loop and you want a break statement that ends the loop rather than just ending the
switch statement.

the exit Statement

The break statement ends a loop (or switch statement) but does not end the program.
The following statement immediately ends the program:

System.exit(0);

System is a predefined Java class that is automatically provided by Java, and exit
is a method in the class System. The method exit ends the program as soon as it is
invoked. In the programs that we will write, the integer argument 0 can be any integer,
but by tradition we use 0, because 0 is used to indicate a normal ending of the program.

The following is a bit of code that uses the exit statement:

System.out.println("Enter a negative number:");
int negNumber = keyboard.nextInt();
if (negNumber >= 0)
{
 System.out.println(negNumber + " is not a negative number.");
 System.out.println("Program aborting.");
 System.exit(0);
}

There are more examples of the use of System.exit in Chapter 4.

182 CHAPTER 3 Flow of Control

3.4 Debugging

A man who has committed a mistake and doesn’t correct it is committing
another mistake.

ConfuCius

loop Bugs

There is a pattern to the kinds of mistakes you are most likely to make when programming
with loops. Moreover, there are some standard techniques you can use to locate and fix
bugs in your loops.

The two most common kinds of loop errors are unintended infinite loops and off-
by-one errors. We have already discussed infinite loops, but we still need to consider
off-by-one errors.

If your loop has an off-by-one error, that means the loop repeats the loop body
one too many or one too few times. These sorts of errors can result from carelessness
in designing a controlling Boolean expression. For example, if you use less-than when
you should use less-than-or-equal, this can easily make your loop iterate the body the
wrong number of times.

Use of == to test for equality in the controlling Boolean expression of a loop can often
lead to an off-by-one error or an infinite loop. This sort of equality testing can work
satisfactorily for integers and characters, but is not reliable for floating-point numbers.
This is because the floating-point numbers are approximate quantities, and == tests for
exact equality. The result of such a test is unpredictable. When comparing floating-point
numbers, always use something involving less-than or greater-than, such as <=; do not
use == or !=. Using == or != to test floating-point numbers can produce an off-by-
one error or an unintended infinite loop or even some other type of error. Even when
using integer variables, it is best to avoid using == and != and to instead use something
involving less-than or greater-than.

Off-by-one errors can easily go unnoticed. If a loop is iterated one too many times
or one too few times, the results might still look reasonable but be off by enough to
cause trouble later on. Always make a specific check for off-by-one errors by comparing
your loop results to results you know to be true by some other means, such as a pencil-
and-paper calculation.

tracing Variables

One good way to discover errors in a loop or any kind of code is to trace some key
variables. Tracing variables means watching the variables change value while the
program is running. Most programs do not output each variable’s value every time
the variable changes, but being able to see all of these variable changes can help you to
debug your program.

Many IDEs (Integrated Development Environments) have a built-in utility that
lets you easily trace variables without making any changes to your program. These
debugging systems vary from one IDE to another. If you have such a debugging
facility, it is worth learning how to use it.

off-by-one
error

tracing
variables

 Debugging 183

If you do not want to use such a debugging facility, you can trace variables by
inserting some temporary output statements in your program. For example, the
following code compiles but still contains an error:

int n = 10;
int sum = 10;
while (n > 1)
{
 sum = sum + n;
 n--;
}
System.out.println("The sum of the integers 1 to 10 is " + sum);

To find out what is wrong, you can trace the variables n and sum by inserting output
statements as follows:

int n = 10;
int sum = 10;
while (n > 1)
{
 //trace

System.out.println("At the beginning of the loop: n = " + n);
 //trace

System.out.println("At the beginning of the loop: sum = " + sum);
 sum = sum + n;
 n--;
 //trace

System.out.println("At the end of the loop: n = " + n);
 //trace

System.out.println("At the end of the loop: sum = " + sum);
}
System.out.println("The sum of the integers 1 to 10 is " + sum);

The first four lines of the execution are as follows:

At the beginning of the loop: n = 10
At the beginning of the loop: sum = 10
At the end of the loop: n = 9
At the end of the loop: sum = 20

We can immediately see that something is wrong. The variable sum has been set to 20.
Since it was initialized to 10, it is set to 10 + 10, which is incorrect if we want to sum
the numbers from 1 to 10. There are several ways to correct the problem. One solution
is given as the answer to Self-Test Exercise 40.

General Debugging techniques

Tracing errors can sometimes be a difficult and time-consuming task. It is not
uncommon to spend more time debugging a piece of code than it took to write the code
in the first place. If you are having difficulties finding the source of your errors, then
there are some general debugging techniques to consider.

Examine the system as a whole and do not assume that the bug occurs in one
particular place. If the program is giving incorrect output values, then you should

184 CHAPTER 3 Flow of Control

examine the source code, different test cases using a range of input and output values,
and the logic behind the algorithm itself. For example, consider the tax program in
Display 3.1. If the wrong tax is displayed, you might spend a lot of time trying to find
an error in the code that calculates the tax. However, the error might simply be that
the input values were different from those you were expecting, leading to an apparently
incorrect program output. For example, in German the decimal point and comma are
reversed from the English usage. Thus, an income of 25,000.50 becomes 25.000,50.
A German programmer might make this type of error if the code was written assuming
input in the English format. Although this scenario might seem like a stretch, consider
the $125 million Mars Climate Orbiter launched by NASA in 1998. In 1999, it was
lost approaching the planet because one team used metric units while another used
English units to control the spacecraft’s thrusters.

Determining the precise cause and location of a bug is one of the first steps in
fixing the error. Examine the input and output behavior for different test cases to try
to localize the error. A related technique is to trace variables to show what code the
program is executing and what values are contained in key variables. You might also
focus on code that has recently changed or code that has had errors before. Finally,
you can also try removing code. If you comment out blocks of code and the error still
remains, then the culprit is in the uncommented code. The process can be repeated
until the location of the error can be pinpointed. The /* and */ notation is particularly
useful to comment out large blocks of code. After the error has been fixed, it is easy to
remove the comments and reactivate the code.

The first mistakes you should look for are common errors that are easy to make. These
are described throughout this textbook in the Pitfall sections. Examples of common
errors include off-by-one errors, comparing floating-point types with ==, adding extra
semicolons that terminate a loop early, or using == to compare strings for equality.

Some novice programmers may become frustrated if they cannot find the bug and
may resort to guessing. This technique involves changing the code without really
understanding the effect of the change but hoping that it will fix the error. Avoid such
slipshod hackery at all costs! Sometimes this method will work for the first few simple
programs that you write. However, it will almost certainly fail for larger programs and
will most likely introduce new errors to the program. Make sure that you understand
the logical impact a change to the code will make before committing the modification.

Finally, if allowed by your instructor, you could show the program to someone else.
A fresh set of eyes can sometimes quickly pinpoint an error that you have been missing.
Taking a break and returning to the problem a few hours later or the next day can also
sometimes help in discovering an error.

ExaMPlE: Debugging an Input Validation Loop

Let’s illustrate both good and bad debugging techniques with an example. Suppose our
program is presenting a menu where the user can select 'A' or 'B'. The purpose of the
following code is to validate user input from the keyboard and to make the user type a
choice again if something other than 'A' or 'B' is entered. To be more user-friendly, the
program should allow users to make their selections in either upper- or lowercase.

Debugging
Walkthrough

VideoNote

 Debugging 185

(continued)

String s = "";
char c = ' ';
Scanner keyboard = new Scanner(System.in);

do
{
 System.out.println("Enter 'A' for option A " +
 "or 'B' for option B.");
 s = keyboard.next();
 s.toLowerCase();
 c = s.substring(0,1);
}
while ((c != 'a') || (c != 'b'));

This program generates a syntax error when compiled:

c = s.substring(0,1); : incompatible types
found : java.lang.String
required: char

The intent was to extract the first character from the string entered by the user and check
to see whether it is 'a' or 'b'. The substring(0,1) call returns a String containing
the first character of s, but c is of type char and the types need to match on both sides
of the assignment. If we employ the “guessing” debugging technique, then we might make
the types match by changing the data type of c to String. Such a change will “fix” this
error, but it will cause new errors because the rest of the code treats c like a char. As a result,
we have added even more errors! Before making any change, consider the larger context and
what the effect of the change will be. In this case, the simplest and best fix is to use

c = s.charAt(0)

to retrieve the first character from s instead of retrieving a substring.
At this point, we have corrected the syntax error and our program will compile,

but it will still not run correctly. A sample execution is shown as follows:

Enter 'A' for option A or 'B' for option B.
C
Enter 'A' for option A or 'B' for option B.
B
Enter 'A' for option A or 'B' for option B.
A
Enter 'A' for option A or 'B' for option B.
(Control-C)

The program is stuck in an infinite loop even when we type in a valid choice. The
only way to stop it is to break out of the program (in the sample output this is done
by hitting Control-C, but you may have to use a different method depending on your
computing environment).

ExaMPlE: (continued)

186 CHAPTER 3 Flow of Control

At this point, we could employ tracing to try to locate the source of the error. Here is
the code with output statements inserted:

do
{
 System.out.println("Enter 'A' for option A " +

 "or 'B' for option B.");
 s = keyboard.next();
 System.out.println("String s = " + s);
 s.toLowerCase();
 System.out.println("Lowercase s = " + s);
 c = s.charAt(0);
 System.out.println("c = " + c);
}
while ((c != 'a') || (c != 'b'));

Sample output is as follows:

Enter 'A' for option A or 'B' for option B.
A
String s = A
Lowercase s = A
c = A
Enter 'A' for option A or 'B' for option B.

The println statements make it clear what is wrong—the string s does not change
to lowercase. A review of the toLowerCase() documentation reveals that this
method does not change the calling string, but instead returns a new string converted
to lowercase. The calling string remains unchanged. To fix the error, we can assign
the lowercase string back to the original string with

s = s.toLowerCase();

However, we are not done yet. Even after fixing the lowercase error, the program is
still stuck in an infinite loop, even when we enter 'A' or 'B'. A novice programmer
might “patch” the program like so to exit the loop:

do
{
 System.out.println("Enter 'A' for option A " +

 "or 'B' for option B.");
 s = keyboard.next();
 s = s.toLowerCase();
 c = s.charAt(0);
 if (c == 'a')
 break;
 if (c == 'b')
 break;
}

ExaMPlE: (continued)

 Debugging 187

(continued)

while ((c != 'a') || (c != 'b'));

This forces the loop to exit if 'a' or 'b' is entered, and it will make the program work.
Unfortunately, the result is a coding atrocity that should be avoided at all costs. This
“quick fix” does not address the root cause of the error—only the symptoms. Moreover,
such patches usually will not work for new cases. This particular fix also results in
inconsistent code because the expression((c! = 'a') || (c! = 'b')) becomes
meaningless when we already handle the 'a' and 'b' with the if and break statements.

To really find the bug, we can turn again to tracing, this time focusing on the
Boolean values that control the do-while loop:

do
{
 System.out.println("Enter 'A' for option A " +

 "or 'B' for option B.");
 s = keyboard.next();
 s = s.toLowerCase();
 c = s.charAt(0);
 System.out.println("c != 'a' is " + (c!= 'a'));
 System.out.println("c != 'b' is " + (c!= 'b'));
 System.out.println("(c != 'a') || (c != 'b')) is "
 + ((c != 'a') || (c != 'b')));
}
while ((c != 'a') || (c != 'b'));

The sample output is now as follows:

Enter 'A' for option A or 'B' for option B.
A
c != 'a' is false
c != 'b' is true
(c != 'a') || (c != 'b')) is true

Since c equals 'a', the statement (c != 'a') evaluates to false and the statement
(c !='b') evaluates to true. When combined, (false || true) is true, which
makes the loop repeat. In spoken English, it sounds like “c not equal to 'a'” or “c
not equal to 'b'” is a correct condition to repeat the loop. After all, if the character
typed in is not 'a' or the character typed in is not 'b', then the user should
be prompted to try again. Logically however, if (c != 'a') is false (i.e., the
character is 'a'), then (c != 'b') must be true. A character cannot make both
expressions false, so the final Boolean condition will always be true. The solution
is to replace the “or” with an “and” so that the loop repeats only if (c != 'a') &&
(c != 'b')). This makes the loop repeat as long as the input character is not 'a'
and it is not 'b'.

ExaMPlE: (continued)

188 CHAPTER 3 Flow of Control

Preventive Coding

The best way to make debugging easier is to make no mistakes in the first place.
Although this is unrealistic for programs of any complexity, there are some techniques
we can use to eliminate or reduce the number of bugs in a program.

Incremental development is the technique of writing a small amount of code
and testing it before moving on and writing more code. The test may require some
new code, or a “test harness,” that will not be part of your final program but exercises
your code in some way to see if it is working. This technique makes debugging easier
because if the test fails, then the error is likely in the small section of the new code that
was just written.

When an error is made, be sure to learn from your mistake so you do not make it
again in the future. Did the mistake occur because of sloppy programming? Was there
some aspect of the program’s design that you did not understand or left off before
writing the code? Was there something you could have done to find the error more
quickly or prevent it from happening at all? Are there other errors in your program
similar to the one you just fixed? A critical review of your coding and debugging
techniques should become a learning experience so you do not repeat your mistakes.

Finally, show your code to other programmers. Another developer might be able
to immediately spot an error in your code and eliminate a lengthy debugging process.
Many software development organizations have a formal process called code review
that involves the inspection of code by other programmers. Such reviews have the

An even better solution is to declare a boolean variable to control the do-while
loop. Inside the body of the loop, we can set this variable to false when the loop
should exit. This technique has the benefit of making the code logic easier to follow,
especially if we pick a meaningful name for the variable. In the following example, it
is easy to see that the loop repeats if invalidKey is true:

boolean invalidKey;
do
{
 System.out.println("Enter 'A' for option A " +

 "or 'B' for option B.");
 s = keyboard.next();
 s = s.toLowerCase();
 c = s.charAt(0);
 if (c == 'a')
 invalidKey = false;
 else if (c == 'b')
 invalidKey = false;
 else
 invalidKey = true;
}
while (invalidKey);

ExaMPlE: (continued)

incremental
development

code review

 Debugging 189

additional benefit that programmers end up sharing coding techniques and learning
best practices in the process of reviewing each other’s code. A related technique is called
pair programming, in which two programmers work together at the same computer.
The programmers take turns, one typing while the other watches and looks for errors
and thinks about the task at hand.

assertion Checks ★

An assertion is a sentence that says (asserts) something about the state of your program.
An assertion must be a sentence that is either true or false and should be true if there
are no mistakes in your program. You can place assertions in your code by making
them comments. For example, all the comments in the following code are assertions:

int n = 0;
int sum = 0;
//n == 0 and sum == 0
while (n < 100)
{
 n++;
 sum = sum + n;
 //sum == 1 + 2 + 3 + ... + n
}
//sum == 1 + 2 + 3 + ... + 100

Note that each of these assertions can be either true or false, depending on the
values of n and sum, and they all should be true if the program is performing correctly.

Java has a special statement to check whether an assertion is true. An assertion check
statement has the following form:

assert Boolean_Expression;

If you run your program in the proper way, the assertion check behaves as follows:
If the Boolean_Expression evaluates to true, nothing happens, but if the Boolean_
Expression evaluates to false, the program ends and outputs an error message saying
that an assertion failed.

For example, the previously displayed code can be written as follows, with the first
comment replaced by an assertion check:

int n = 0;
int sum = 0;
assert (n == 0) && (sum == 0);
while (n < 100)
{
 n++;
 sum = sum + n;
 //sum == 1 + 2 + 3 + ... + n
}
//sum == 1 + 2 + 3 + ... + 100

pair
programming

assertion

assert

190 CHAPTER 3 Flow of Control

Note that we translated only one of the three comments into an assertion check. Not
all assertion comments lend themselves to becoming assertion checks. For example,
there is no simple way to convert the other two comments into Boolean expressions.
Doing so would not be impossible, but you would need to use code that would itself be
more complicated than what you would be checking.

assertion Checking
An assertion check is a Java statement consisting of the keyword assert followed by a
Boolean expression and a semicolon. If assertion checking is turned on and the Boolean
expression in the assertion check evaluates to false when the assertion check is executed,
the program will end and output a suitable error message. If assertion checking is not turned
on, the assertion check is treated as a comment.

Syntax

assert Boolean_Expression;

ExaMPlE

assert (n == 0) && (sum == 0);

assertion
check

You can turn assertion checking on and off. When debugging code, you can turn
assertion checking on so that a failed assertion will produce an error message. Once
your code is debugged, you can turn assertion checking off, and your code will run
more efficiently.

A program or other class containing assertions is compiled in the usual way. After
all classes used in a program are compiled, you can run the program with assertion
checking either turned on or turned off.

If you compile your classes from the command line, you would compile a class with
assertion in the usual way:

javac YourProgram.java

You can then run your program with assertion checking turned on or off. The normal
way of running a program has assertion checking turned off. To run your program
with assertion checking turned on, use the following command:

java -enableassertions YourProgram

If you are using an IDE, check the documentation for your IDE to see how to handle
assertion checking. If you do not find an entry for “assertion checking,” which is likely,
check to see how you set run options.

 Random Number Generation 191

3.5 Random number Generation ★

The generation of random numbers is too important to be left to chance.

Coveyou, Robert. “Random Number Generation Is Too Important to Be Left to Chance,”
Studies in Applied Mathematics, III (1970), pp. 70–111, 1970.

Games and simulation programs often require the computer to generate random
numbers. For example, a card game might need a way to randomly shuffle the cards in
the deck or to roll a pair of dice. In this section, we briefly discuss two ways to generate
random numbers in Java. Although we generally use the term random, Java really
generates pseudorandom numbers. That is, Java can generate a sequence of numbers
that looks random but this sequence of numbers is initialized by a “seed” value. If the
same seed value is used to initialize the random number generator, then the exact same
sequence of numbers will be generated.

the Random Object

Java includes an object called Random that can be used to generate many different
types of random numbers. In this section, we discuss only how to generate random
integers and doubles from a uniform distribution (this is when every number that
could possibly be generated has an equally likely chance to appear) but the Random class
supports other distributions.

random
numbers

pseudorandom

Self-test Exercises

40. Fix the bug in the code in the earlier subsection “Tracing Variables.”

41. Add some suitable output statements to the following code so that all variables
are traced:

int n, sum = 0;
for (n = 1; n < 10; n++)
 sum = sum + n;
System.out.println("1 + 2 + ...+ 9 + 10 == " + sum);

42. What is the bug in the following code? What do you call this kind of loop bug?

int n, sum = 0;
for (n = 1; n < 10; n++)
 sum = sum + n;
System.out.println("1 + 2 + ...+ 9 + 10 == " + sum);

43. Write an assertion check that checks to see that the value of the variable time is
less than or equal to the value of the variable limit. Both variables are of type int.

Generating
Random
Numbers

VideoNote

192 CHAPTER 3 Flow of Control

To use the Random class, we first have to import it just like we imported the
Scanner class:

import java.util.Random;

Next, we have to create an object of type Random that can generate the random
numbers for us. This follows the same pattern as creating a Scanner object to read
from the keyboard.

Random randomGenerator = new Random();

Similarly, just as you created only one Scanner object to read in all of your
keyboard inputs, in general you should create only one Random object to generate all
of your random numbers. In particular, older versions of Java used the computer’s
clock to seed the random number generator. This meant that two Random objects
created within the same millisecond would generate the same sequence of numbers.
Newer versions of Java do not have this limitation, but normally only one instance of a
Random object is needed.

To generate a random integer in the range of all possible integers, use

int r = randomGenerator.nextInt();

To generate a random integer in the range from 0 to n-1, use

int r = randomGenerator.nextInt(n);

If you want a random number in a different range, then you can scale the number
by adding an offset. For example, to generate a random number that is 4, 5, or 6, use

int r = randomGenerator.nextInt(3) + 4;

This generates a number that is 0, 1, or 2 and then adds 4 to get a number that is 4,
5, or 6.

To generate a random double, use

double r = randomGenerator.nextDouble();

This returns a number that is greater than or equal to 0.0 but less than 1.0. Display 3.11
demonstrates flipping a virtual coin five times by generating five random numbers that
are either 0 or 1, where 0 corresponds to tails and 1 corresponds to heads.

 Random Number Generation 193

the Math.random() Method

Java also includes a method to generate random doubles without requiring the user to
create an instance of the Random class. The method Math.random() returns a random
double that is greater than or equal to 0.0 but less than 1.0. In fact, when this method
is called for the first time, Java internally creates an instance of the Random class and
invokes the nextDouble() method. This can be convenient if you do not want to
create your own Random object.

Often the range between 0.0 and 1.0 is not what is desired, so it becomes necessary
to scale the range by multiplying and translating the value by addition. Commonly, an
int is desired, which requires a typecast. For example, if you need an int in the range
from 1 to 6, the following code could be used:

int num = (int)(Math.random() * 6) + 1;

Display 3.11 Comparing Strings

 1 import java.util.Random;
 2 public class CoinFlipDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Random randomGenerator = new Random();
 7 int counter = 1;
 8
 9 while (counter <= 5)
10 {
11 System.out.print("Flip number " + counter + ": ");
12 int coinFlip = randomGenerator.nextInt(2);
13 if (coinFlip == 1)
14 System.out.println("Heads");
15 else
16 System.out.println("Tails");
17 counter++;
18 }
19 }
20 }

Sample Dialogue (output will vary)

Flip number 1: Heads
Flip number 2: Tails
Flip number 3: Heads
Flip number 4: Heads
Flip number 5: Tails

194 CHAPTER 3 Flow of Control

Chapter Summary

• The Java branching statements are the if-else statement and the switch statement.

• A switch statement is a multiway branching statement. You can also form multiway
branching statements by nesting if-else statements to form a multiway if-else
statement.

• Boolean expressions are evaluated similar to the way arithmetic expressions are evalu-
ated. The value of a Boolean expression can be saved in a variable of type boolean.

• The Java loop statements are the while, do-while, and for statements.

• A do-while statement always iterates its loop body at least one time. Both a while
statement and a for statement might iterate its loop body zero times.

• A for loop can be used to obtain the equivalent of the instruction “repeat the loop
body n times.”

• Tracing variables is a good method for debugging loops.

• An assertion check can be added to your Java code so that if the assertion is false, your
program halts with an error message.

• The object Random can be used to generate pseudorandom integers or doubles.

answers to Self-test Exercises

 1. if (score > 100)
 System.out.println("High")

 else

 System.out.println("Low");

Self-test Exercises

44. What numbers could be generated by randomGenerator.nextInt(5) + 10;
where randomGenerator is an object of type Random?

45. What numbers could be generated by randomGenerator.nextDouble() * 3
+ 1; where randomGenerator is an object of type Random?

46. Use the method Math.random() to generate a random double that is greater
than or equal to 10.0 but less than 20.0.

 Answers to Self-Test Exercises 195

 2. if (savings > expenses)
 {

 System.out.println("Solvent");

 savings = savings - expenses;

 expenses = 0;}

 else

 {

 System.out.println("Bankrupt");

 }

 3. if (number > 0)
 System.out.println("Positive");

 else

 System.out.println("Not positive");

 4. if (salary < deductions)
 {

 System.out.println("Crazy");

 }

 else

 {

 System.out.println("OK");

 net = salary - deductions;

 }

 5. large

 6. small

 7. medium

 8. if (n < 0)
 System.out.println(n + " is less than zero.");

 else if(n < 100)

 System.out.println(

 n + " is between 0 and 99 (inclusive).");

 else

 System.out.println(n + " is 100 or larger.");

 9. Some kind of B.

 10. Oranges

11. Plums

12. Fruitless

13. n1 >= n2

14. if (n1 >= n2)
 System.out.println("n1");

 else

 System.out.println("n2");

196 CHAPTER 3 Flow of Control

15. When the variables are of type int, you test for equality using ==, as follows:

 variable1 == variable2

 When the variables are of type String, you test for equality using the method
equals, as follows:

 variable1.equals(variable2)

 In some cases, you might want to use equalsIgnoreCase instead of equals.

16. if (nextWord.compareToIgnoreCase("N") < 0)
 System.out.println("First half of the alphabet");

 else

 System.out.println("Second half of the alphabet");

17. if ((exam >= 60) && (programsDone >= 10))
 System.out.println("Passed");
 else

 System.out.println("Failed");

18. if ((pressure > 100) || (temperature >= 212))
 System.out.println("Emergency");
 else

 System.out.println("OK");

19. a. true.

 b. true. Note that expressions a and b mean exactly the same thing. Because
the operators == and < have higher precedence than &&, you do not need to
include the parentheses. The parentheses do, however, make it easier to read.
Most people find the expression in option a easier to read than the expression
in option b, even though they mean the same thing.

 c. true.

 d. true.

 e. false. Because the value of the first subexpression, (count == 1), is false,
you know that the entire expression is false without bothering to evaluate
the second subexpression. Thus, it does not matter what the values of x and y
are. This is called short-circuit evaluation, which is what Java does.

 f. true. Since the value of the first subexpression, (count < 10), is true, you
know that the entire expression is true without bothering to evaluate the sec-
ond subexpression. Thus, it does not matter what the values of x and y are.
This is called short-circuit evaluation, which is what Java does.

 g. false. Notice that the expression in g includes the expression in option f as
a subexpression. This subexpression is evaluated using short-circuit evaluation
as we described for option f. The entire expression in g is equivalent to

 !((true || (x < y)) && true)

 which in turn is equivalent to !(true && true), and that is equivalent to
!(true), which is equivalent to the final value of false.

 Answers to Self-Test Exercises 197

 h. This expression produces an error when it is evaluated because the first
 subexpression, ((limit/count) > 7), involves a division by zero.

 i. true. Since the value of the first subexpression, (limit < 20), is true,
you know that the entire expression is true without bothering to evaluate the
 second subexpression. Thus, the second subexpression, ((limit/count) > 7),
is never evaluated, so the fact that it involves a division by zero is never noticed
by the computer. This is short-circuit evaluation, which is what Java does.

 j. This expression produces an error when it is evaluated because the first subex-
pression, ((limit/count) > 7), involves a division by zero.

 k. false. Since the value of the first subexpression, (limit < 0), is false, you
know that the entire expression is false without bothering to evaluate the sec-
ond subexpression. Thus, the second subexpression, ((limit/count) > 7),
is never evaluated, so the fact that it involves a division by zero is never noticed
by the computer. This is short-circuit evaluation, which is what Java does.

20. No. Since (j > 0) is false and Java uses short-circuit evaluation for &&, the
expression (1/(j+1) > 10) is never evaluated.

21. ((bonus + (((day * rate) / correctionFactor) * newGuy)) - penalty)

22. 10
 7

 4

 1

23. There will be no output. Because n > 0 is false, the loop body is executed
zero times.

24. 10
 7

 4

 1

25. 10

 A do-while loop always executes its body at least one time.

 26. –42

 A do-while loop always executes its body at least one time.

27. With a do-while statement, the loop body is always executed at least once. With
a while statement, there can be conditions under which the loop body is not
 executed at all.

28. 2 4 6 8

29. Hello 10
 Hello 8

 Hello 6

 Hello 4

 Hello 2

198 CHAPTER 3 Flow of Control

30. 2.0 1.5 1.0 0.5

31. n = 10;
 while (n > 0)
 {

 System.out.println("Hello " + n);

 n = n - 2;

 }

32. The output is 1024 10. The second number is the log to the base 2 of the first
number. (If the first number is not a power of 2, then only an approximation to
the log base 2 is produced.)

33. The output is 1024 1. The semicolon after the first line of the for loop is probably
a pitfall error.

34. The output is too long to reproduce here. The pattern is as follows:
 1 times 10 = 10

 1 times 9 = 9

 .

 .

 .

 1 times 1 = 1

 2 times 10 = 20

 2 times 9 = 18

 .

 .

 .

 2 times 1 = 2

 3 times 10 = 30

 .

 .

 .

35. a. A for loop

 b. and c. Both require a while loop because the input list might be empty. (A for
loop also might work, but a do-while loop definitely would not work.)

36. This is an infinite loop. The first few lines of output are
 10

 12

 16

 19

 21

37. This is an infinite loop. The first few lines of output are
 n == 1

 limit == 10;

 n == 2

 limit == 3

 n == 3

 Answers to Self-Test Exercises 199

 limit == 4

 n == 4

 limit == 5

38. 8
 6

 The end.

39. 8
 6

 2

 0

 The end.

40. If you look at the trace, you will see that after one iteration, the value of sum
is 20. But the value should be 10 + 9, or 19. This should lead you to think that
the variable n is not decremented at the correct time. Indeed, the bug is that the
two statements

 sum = sum + n;

 n-- ;

 should be reversed to

 n-- ;

 sum = sum + n;

41. int n, sum = 0;
 for (n = 1; n < 10; n++)
 {

 System.out.println("n == " + n + " sum == " + sum);

 //Above line is a trace.
 sum = sum + n;

 }

 System.out.println("After loop");//trace

 System.out.println("n == " + n + " sum == " + sum);//trace

 System.out.println("1 + 2 + ...+ 9 + 10 == " + sum);

 If you study the output of this trace, you will see that 10 is never added in. This
is a bug in the loop.

42. This is the code you traced in the previous exercise. If you study the output of this
trace, you will see that 10 is never added in. This is an off-by-one error.

43. assert (time <= limit);

44. 10, 11, 12, 13 or 14

45. A double that is greater than or equal to 1 but less than 4.

46. double d = Math.random() * 10 + 10;

200 CHAPTER 3 Flow of Control

Programming Projects

 1. (This is a version of Programming Project 2.1 from Chapter 2.) The Babylonian
algorithm to compute the square root of a positive number n is as follows:

 1. Make a guess at the answer (you can pick n/2 as your initial guess).

 2. Compute r = n / guess.

 3. Set guess = (guess +r) / 2.

 4. Go back to step 2 until the last two guess values are within 1% of each other.

 Write a program that inputs a double for n, iterates through the Babylonian algo-
rithm until the guess is within 1% of the previous guess and outputs the answer
as a double to two decimal places. Your answer should be accurate even for large
values of n.

 2. A designer is trying to create a new pattern of five stripes using three colors. These
colors and their codes are mentioned in the table below.

Color Character Code

Red R

Green G

Blue B

 The designer has to keep in mind that no two adjacent stripes are of the same color.
For example, RRGBR is an invalid pattern, but RGBRB is valid.

 Write a program that accepts a sequence of five colors as input from the designer to
form the pattern. At each selection the designer makes, the program should check if
the input is from among the available set of colors. Also, the program should check
that adjacent colors are not the same. At the end, the program should display the
final stripe pattern created.

 3. Weight is defined as the gravitational force acting on the mass of a body. The
weight of a body with a mass of 1kg on Earth can be calculated with the formula
given below. The weight is expressed in Newtons (N).

Weight on earth = (1 kg) * (9.81 m/s2) = 9.81 N

 The weight of the same body in N can be calculated with another formula:

Weight on moon = ((1 kg) * (9.81 m/s2)) / 6 = 1.64 N

 Write a program that takes as input the mass of a car in kilograms and then prompts
the user to choose to calculate the car’s weight in Newtons either on Earth or on
the Moon. The program should allow the user to enter new values and output the
car’s weight on Earth or on the Moon till the user decides to exit. Use the double
data type to store the mass.

 Programming Projects 201

 4. It is difficult to make a budget that spans several years, because prices are not stable.
If your company needs 200 pencils per year, you cannot simply use this year’s price
as the cost of pencils two years from now. Because of inflation, the cost is likely to
be higher than it is today. Write a program to gauge the expected cost of an item in
a specified number of years. The program asks for the cost of the item, the number
of years from now that the item will be purchased, and the rate of inflation. The
program then outputs the estimated cost of the item after the specified period.
Have the user enter the inflation rate as a percentage, such as 5.6 (percent). Your
program should then convert the percent to a fraction, such as 0.056 and should
use a loop to estimate the price adjusted for inflation.

 5. You have just purchased a stereo system that cost $1,000 on the following credit
plan: no down payment, an interest rate of 18% per year (and hence 1.5% per
month), and monthly payments of $50. The monthly payment of $50 is used to
pay the interest, and whatever is left is used to pay part of the remaining debt.
Hence, the first month you pay 1.5% of $1,000 in interest. That is $15 in interest.
So, the remaining $35 is deducted from your debt, which leaves you with a debt of
$965.00. The next month, you pay interest of 1.5% of $965.00, which is $14.48.
Hence, you can deduct $35.52 (which is $50 – $14.48) from the amount you owe.
Write a program that tells you how many months it will take you to pay off the
loan, as well as the total amount of interest paid over the life of the loan. Use a loop
to calculate the amount of interest and the size of the debt after each month. (Your
final program need not output the monthly amount of interest paid and remaining
debt, but you may want to write a preliminary version of the program that does out-
put these values.) Use a variable to count the number of loop iterations and hence,
the number of months until the debt is zero. You may want to use other variables as
well. The last payment may be less than $50 if the debt is small, but do not forget
the interest. If you owe $50, your monthly payment of $50 will not pay off your
debt, although it will come close. One month’s interest on $50 is only 75 cents.

 6. The Fibonacci numbers Fn are defined as follows: F0 is 1, F1 is 1, and

 Fi+2 = Fi + Fi+1

 i = 0, 1, 2, In other words, each number is the sum of the previous two num-
bers. The first few Fibonacci numbers are 1, 1, 2, 3, 5, and 8. One place where these
numbers occur is as certain population growth rates. If a population has no deaths,
then the series shows the size of the population after each time period. It takes an
organism two time periods to mature to reproducing age, and then the organism
reproduces once every time period. The formula applies most straightforwardly to
asexual reproduction at a rate of one offspring per time period. In any event, the
green crud population grows at this rate and has a time period of five days. Hence, if
a green crud population starts out as 10 pounds of crud, then in 5 days, there is still
10 pounds of crud; in 10 days, there is 20 pounds of crud; in 15 days, 30 pounds;
in 20 days, 50 pounds; and so forth. Write a program that takes both the initial size
of a green crud population (in pounds) and a number of days as input and outputs
the number of pounds of green crud after that many days. Assume that the popula-
tion size is the same for four days and then increases every fifth day. Your program
should allow the user to repeat this calculation as often as desired.

202 CHAPTER 3 Flow of Control

 7. An Armstrong number is an n-digit number that equals the sum of the nth power
of its digits. For example 153 is a three-digit number where the sum of the cubes
of the individual digits (13 + 53 + 33) equals the number itself (153).

 Write a program that takes as input the start and end numbers of an Armstrong
number range to be printed. Your program should prompt for new start and end
numbers until the user decides that she or he is through. Use variables of the type
integer to store the start and end numbers of the range.

 8. In a certain code language, numerals are each represented by a symbol or a letter.
They are as follows

Numeral 0 1 2 3 4 5 6 7 8 9

Symbol code * B E A @ F K % R M

 Numerals are to be coded as per the codes in the table and the following conditions:

 a. If the first and the last digits are odd, both are to be coded as ‘X’.
 b. If the first and the last digits are even, both are to be coded as ‘$’.
 c. If the last digit is ‘0’, it is to be coded as ‘#’.

 For example, 487692 is coded as $R%KM$

 Write a program that takes as input a sequence of numbers and displays the cor-
responding code to represent it.

 9. Write a program that calculates the total grade for N classroom exercises as a per-
centage. Use the DecimalFormat class to output the value as a percent. The user
should input the value for N followed by each of the N scores and totals. Calculate
the overall percentage (sum of the total points earned divided by the total points
possible) and output it using the DecimalFormat class. Sample input and output
are shown below.

 How many exercises to input?

 3

 Score received for exercise 1:

 10
 Total points possible for exercise 1:

 10

 Score received for exercise 2:

 7
 Total points possible for exercise 2:

 12
 Score received for exercise 3:

 5

Solution to
Programming
Project 3.9

VideoNote

 Programming Projects 203

 Total points possible for exercise 3:

 8
 Your total is 22 out of 30, or 73.33%.

 10. The game of Pig is a simple two-player dice game in which the first player to
reach 100 or more points wins. Players take turns. On each turn, a player rolls a
six-sided die:

 •  If the player rolls a 1, then the player gets no new points and it becomes the other
player’s turn.

 •  If the player rolls 2 through 6, then he or she can either

 • ROLL AGAIN or

 • HOLD. At this point, the sum of all rolls is added to the player’s score, and it
becomes the other player’s turn.

 Write a program that plays the game of Pig, where one player is a human and the
other is the computer. When it is the human’s turn, the program should show the
score of both players and the previous roll. Allow the human to input “r” to roll
again or “h” to hold.

 The computer program should play according to the following rule:

 • Keep rolling when it is the computer’s turn until it has accumulated 20 or
more points, then hold. If the computer wins or rolls a 1, then the turn ends
immediately.

 Allow the human to roll first.

 11. You have three identical prizes to give away and a pool of 30 finalists. The finalists
are assigned numbers from 1 to 30. Write a program to randomly select the num-
bers of three finalists to receive a prize. Make sure not to pick the same number
twice. For example, picking finalists 3, 15, 29 would be valid but picking 3, 3, 31
would be invalid because finalist number 3 is listed twice and 31 is not a valid
finalist number.

 12. Redo or do for the first time Programming Project 2.13 from Chapter 2, but this
time use a loop to read the names from the file. Your program should also handle
an arbitrary number of entries in the file instead of handling only three entries.
To do this, your program must check to see if there is still data left to read (i.e., it
has reached the end of the file). The appropriate methods to read from a file are
described in Section 2.3.

 13. The file words.txt on the book’s website contains 87,314 words from the English
language. Write a program that reads through this file and finds the longest word
that is a palindrome.

 14. The file words.txt on the book’s website contains 87,314 words from the English
 language. Write a program that reads through this file and finds the word that
has the most consecutive vowels. For example, the word "bedouin" has three
 consecutive vowels.

Solution to
Programming
Project 3.13

VideoNote

204 CHAPTER 3 Flow of Control

 15. This problem is based on a “Nifty Assignment” by Steve Wolfman (http://nifty.
stanford.edu/2006/wolfman-pretid). Consider lists of numbers from real-life data
sources—for example, a list containing the number of students enrolled in different
course sections, the number of comments posted for different Facebook status up-
dates, the number of books in different library holdings, the number of votes per
precinct, etc. It might seem like the leading digit of each number in the list could
be 1–9 with an equally likely probability. However, Benford’s Law states that the
leading digit is 1 about 30% of the time and drops with larger digits. The leading
digit is 9 only about 5% of the time.

 Write a program that tests Benford’s Law. Collect a list of at least 100 numbers
from some real-life data source and enter them into a text file. Your program
should loop through the list of numbers and count how many times 1 is the first
digit, 2 is the first digit, etc. For each digit, output the percentage it appears as
the first digit.

 16. Suppose a text file contains the following verse from the Bible:

 Let us fix our eyes on Jesus, the author and perfecter of our faith, who for the joy set
before him endured the cross, scorning its shame, and sat down at the right hand of the
throne of God.

 Write a program that takes one of the five vowels (a, e, i, o, and u) as input from
the user and checks each word of the text file to determine whether or not it starts
with that vowel. Then, it should also display those words on the screen, one word
per line.

http://nifty.stanford.edu/2006/wolfman-pretid
http://nifty.stanford.edu/2006/wolfman-pretid

4.3 OverlOading 250
Rules for Overloading 250

4.4 COnstruCtOrs 258
Constructor Definitions 258
Example: The Final Date Class 268
Default Variable Initializations 269
An Alternative Way to Initialize

Instance Variables 269
Example: A Pet Record Class 270
The StringTokenizer Class ★ 274

4.1 Class definitiOns 206
Instance Variables and Methods 209
More about Methods 212
Local Variables 218
Blocks 219
Parameters of a Primitive Type 220
Simple Cases with Class Parameters 229
The this Parameter 229
Methods That Return a Boolean Value 231
The Methods equals and toString 234
Recursive Methods 237

4.2 infOrmatiOn Hiding and
enCapsulatiOn 239

public and private Modifiers 240
Example: Yet Another Date Class 241
Accessor and Mutator Methods 242
Preconditions and Postconditions 249

4 Defining Classes I

Chapter summary 279 answers to self-test exercises 280 programming projects 285

Defining Classes I

The loftier the building,

the deeper must the

foundation be laid.

THOMAS KEMPIS, 1400s.

Introduction
Classes are the single most important language feature that facilitates object-oriented
programming (OOP), the dominant programming methodology in use today. You
have already been using predefined classes. String and Scanner are two of the classes
we have used. An object is a value of a class type and is referred to as an instance of the
class. An object differs from a value of a primitive type in that it has methods (actions)
as well as data. For example, "Hello" is an object of the class String. It has the
characters in the string as its data and also has a number of methods, such as length.
You already know how to use classes, objects, and methods. This chapter tells you how
to define classes and their methods.

Prerequisites
This chapter uses material from Chapters 1, 2, and 3. This chapter requires a basic
understanding of the Java programming language, including the ability to write simple
programs using expressions, assignments, and console I/O. You should be able to output
numbers, as well as have an understanding of how the Scanner class can be used in
console I/O. You should also know how to manage the flow of control using branching
and looping statements, as well as understand how to use Boolean expressions.

4.1 Class Definitions

“The Time has come,” the Walrus said,
“to talk of many things:
of shoes and ships and sealing wax
of cabbages and kings.”

LEWIS CARROLL, Through the Looking-Glass, 1871.

A Java program consists of objects from various classes interacting with one another.
Before we go into the details of how you define classes, let’s review some of the
terminology used with classes. Among other things, a class is a type, and you can declare
variables of a class type. A value of a class type is called an object. An object has both
data and actions. The actions are called methods. Each object can have different data,

4

object

method

Class Definitions 207

but all objects of a class have the same types of data and all objects in a class have
the same methods. An object is usually referred to as an object of the class or as an
instance of the class rather than as a value of the class, but it is a value of the class type.
To make this abstract discussion come alive, we need a sample definition.

instance

A Class Is a Type
If A is a class, then the phrases “bla is of type A,” “bla is an instance of the class A,” and
“bla is an object of the class A” all mean the same thing.

Display 4.1 contains a definition for a class named DateFirstTry and a program
that demonstrates using the class. Objects of this class represent dates such as
December 31, 2012 and July 4, 1776. This class is unrealistically simple, but it will
serve to introduce you to the syntax for a class definition. Each object of this class
has three pieces of data: a string for the month name, an integer for the day of the
month, and another integer for the year. The objects have only one method, which
is named writeOutput. Both the data items and the methods are sometimes called
members of the object, because they belong to the object. The data items are also
sometimes called fields. We will call the data items instance variables and use the
term method instead of member.

The following three lines from the start of the class definition define three instance
variables (three data members):

public String month;
public int day;
public int year; //a four digit number.

The word public simply means that there are no restrictions on how these instance
variables are used. Each of these lines declares one instance variable name. You can
think of an object of the class as a complex item with instance variables inside of it.
So, an instance variable can be thought of as a smaller variable inside each object of the
class. In this case, the instance variables are called month, day, and year.

An object of a class is typically named by a variable of the class type. For example,
the program DateFirstTryDemo in Display 4.1 declares the two variables date1 and
date2 to be of type DateFirstTry, as follows:

DateFirstTry date1, date2;

This gives us variables of the class DateFirstTry, but so far there are no objects of the
class. Objects are class values that are named by the variables. To obtain an object, you
must use the new operator to create a “new” object. For example, the following creates
an object of the class DateFirstTry and names it with the variable date1:

date1 = new DateFirstTry();

member

 field

instance
variable

new

208 CHAPTER 4 Defining Classes I

We will discuss this kind of statement in more detail later in this chapter when we
discuss something called a constructor. For now simply note that

Class_Variable = new Class_Name();

 1 public class DateFirstTry
 2 {
 3 public String month;
 4 public int day;
 5 public int year; //a four digit number.

 6 public void writeOutput()
 7 {
 8 System.out.println(month + " " + day + ", " + year);
 9 }
10 }

 1 public class DateFirstTryDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 DateFirstTry date1, date2;
 6 date1 = new DateFirstTry();
 7 date2 = new DateFirstTry();
 8 date1.month = "December";
 9 date1.day = 31;
10 date1.year = 2012;
11 System.out.println("date1:");
12 date1.writeOutput();

13 date2.month = "July";
14 date2.day = 4;
15 date2.year = 1776;
16 System.out.println("date2:");
17 date2.writeOutput();
18 }
19 }

Sample Dialogue

date1:
December 31, 2012
date2:
July 4, 1776

Display 4.1 A Simple Class

This class definition (program) goes in a file named
DateFirstTryDemo.java.

Later in this chapter, we will
see that these three public
modifiers should be replaced
with private.

This class definition goes in a file named
DateFirstTry.java.

Class Definitions 209

creates a new object of the specified class and associates it with the class variable.1
Because the class variable now names an object of the class, we will often refer to the
class variable as an object of the class. (This is really the same usage as when we refer to
an int variable n as “the integer n,” even though the integer is, strictly speaking, not n
but the value of n.)

Unlike what we did in Display 4.1, the declaration of a class variable and the
creation of the object are more typically combined into one statement, as follows:

DateFirstTry date1 = new DateFirstTry();

1 For many, the word “new” suggests a memory allocation. As we will see, the new operator does
indeed produce a memory allocation.

The new Operator
The new operator is used to create an object of a class and associate the object with a
variable that names it.

SYNTAX

Class_Variable = new Class_Name();

EXAMPLE

DateFirstTry date;
date = new DateFirstTry();

which is usually written in the following equivalent form:

DateFirstTry date = new DateFirstTry();

Instance Variables and Methods

We will illustrate the details about instance variables using the class and program
in Display 4.1. Each object of the class DateFirstTry has three instance variables,
which can be named by giving the object name followed by a dot and the name of the
instance variable. For example, the object date1 in the program DateFirstTryDemo
has the following three instance variables:

date1.month
date1.day
date1.year

Similarly, if you replace date1 with date2, you obtain the three instance variables
for the object date2. Note that date1 and date2 together have a total of six instance
variables. The instance variables date1.month and date2.month, for example, are two
different (instance) variables.

210 CHAPTER 4 Defining Classes I

The instance variables in Display 4.1 can be used just like any other variables. For
example, date1.month can be used just like any other variable of type String. The
instance variables date1.day and date1.year can be used just like any other variables
of type int. Thus, although the following is not in the spirit of the class definition, it is
legal and would compile:

date1.month = "Hello friend.";

More likely assignments to instance variables are given in the program
 DateFirstTry Demo.

The class DateFirstTry has only one method, which is named writeOutput. We
reproduce the definition of the method here:

public void writeOutput()
{
 System.out.println(month + " " + day + ", " + year);
}

All method definitions belong to some class, and all method definitions are given
inside the definition of the class to which they belong. A method definition is divided
into two parts, a heading and a method body, as illustrated by the annotation on
the method definition. The word void means this is a method for performing an
action as opposed to producing a value. We will say more about method definitions
later in this chapter (including some indication of why the word void was chosen to
indicate an action). You have already been using methods from predefined classes.
The way you invoke a method from a class definition you write is the same as the
way you do it for a predefined class. For example, the following from the program
DateFirstTryDemo is an invocation of the method writeOutput with date1 as the
calling object:

date1.writeOutput();

This invocation is equivalent to execution of the method body. So, this invocation is
equivalent to

System.out.println(month + " " + day + ", " + year);

However, we need to say more about exactly how this is equivalent. If you simply
replace the method invocation with this System.out.println statement, you
will get a compiler error message. Note that within the definition for the method
writeOutput, the names of the instance variables are used without any calling
object. This is because the method will be invoked with different calling objects
at different times. When an instance variable is used in a method definition, it
is understood to be the instance variable of the calling object. So in the program
DateFirstTryDemo,

date1.writeOutput();

 Heading Body

heading

method body

Class Definitions 211

is equivalent to

System.out.println(date1.month + " " + date1.day
 + ", " + date1.year);

Similarly,

date2.writeOutput();

is equivalent to

System.out.println(date2.month + " " + date2.day
 + ", " + date2.year);

Class Definition
The following shows the form of a class definition that is most commonly used; however,
it is legal to intermix the method definitions and the instance variable declarations.

SYNTAX

public class Class_Name
{
 Instance_Variable_Declaration_1
 Instance_Variable_Declaration_2
 . . .
 Instance_Variable_Declaration_Last

 Method_Definition_1
 Method_Definition_2
 . . .
 Method_Definition_Last
}

EXAMPLES
See Displays 4.1 and 4.2.

File Names and Locations
Remember that a file must be named the same as the class it contains with an added .java
at the end. For example, a class named MyClass must be in a file named MyClass.java.

We will eventually see other ways to arrange files, but at this point, your program and all the
classes it uses should be in the same directory (same folder).

212 CHAPTER 4 Defining Classes I

More about Methods

As we noted for predefined methods, methods of the classes you define are of two kinds:
methods that return (compute) some value and methods that perform an action other
than returning a value. For example, the method println of the object System.out is
an example of a method that performs an action other than returning a value; in this
case, the action is to write something to the screen. The method nextInt of the class
Scanner, introduced in Chapter 2, is a method that returns a value; in this case, the
value returned is a number typed in by the user. A method that performs some action
other than returning a value is called a void method. This same distinction between
void methods and methods that return a value applies to methods in the classes you
define. The two kinds of methods require slight differences in how they are defined.

Both kinds of methods have a method heading and a method body, which are
similar but not identical for the two kinds of methods. The method heading for a void
method is of the form

public void Method_Name(Parameter_List)

The method heading for a method that returns a value is

public Type_Returned Method_Name (Parameter_List)

Later in the chapter, we will see that public may sometimes be replaced by a
more restricted modifier and that it is possible to add additional modifiers, but these
templates will do right now. For now, our examples will have an empty Parameter_List.

If a method returns a value, then it can return different values in different situations,
but all values returned must be of the same type, which is specified as the type returned.
For example, if a method has the heading

public double myMethod()

Self-Test Exercises

1. Write a method called makeItNewYears that could be added to the class
DateFirstTry in Display 4.1. The method makeItNewYears has no parameters
and sets the month instance variable to "January" and the day instance variable
to 1. It does not change the year instance variable.

2. Write a method called yellIfNewYear that could be added to the class
DateFirstTry in Display 4.1. The method yellIfNewYear has no parameters
and outputs the string "Hurrah!" provided the month instance variable has the
value "January" and the day instance variable has the value 1. Otherwise, it
outputs the string "Not New Year's Day."

Class Definitions 213

then the method always returns a value of type double, and the heading

public String yourMethod()

indicates a method that always returns a value of type String.
The following is a void method heading:

public void ourMethod()

Notice that when the method returns no value at all, we use the keyword void in place
of a type. If you think of void as meaning “no returned type,” the word void begins
to make sense.

An invocation of a method that returns a value can be used as an expression anyplace
that a value of the Type_Returned can be used. For example, suppose anObject is an
object of a class with methods having our sample heading; in this case, the following
are legal:

double d = anObject.myMethod();
String aStringVariable = anObject.yourMethod();

A void method does not return a value, but simply performs an action, so an
invocation of a void method is a statement. A void method is invoked as in the
following example:

anObject.ourMethod();

Note the ending semicolon.
So far, we have avoided the topic of parameter lists by only giving examples with

empty parameter lists, but note that parentheses are required even for an empty
parameter list. Parameter lists are discussed later in this chapter.

The body of a void method definition is simply a list of declarations and state-
ments enclosed in a pair of braces, {}. For example, the following is a complete void
method definition:

public void ourMethod()
{
 System.out.println("Hello");
 System.out.println("from our method.");
}

The body of a method that returns a value is the same as the body of a void method
but with one additional requirement. The body of a method that returns a value must
contain at least one return statement. A return statement is of the form

return Expression;

invocation

body

return
statement

214 CHAPTER 4 Defining Classes I

where Expression can be any expression that evaluates to something of the Type_Returned
that is listed in the method heading. For example, the following is a complete definition
of a method that returns a value:

public String yourMethod()
{
 Scanner keyboard = new Scanner(System.in);
 System.out.println("Enter a line of text");
 String result = keyboard.nextLine();
 return result + " was entered.";
}

Notice that a method that returns a value can do other things besides returning
a value, but style rules dictate that whatever else it does should be related to the
value returned.

A return statement always ends a method invocation. Once the return statement
is executed, the method ends, and any remaining statements in the method definition
are not executed.

If you want to end a void method before it runs out of statements, you can use a
return statement without any expression, as follows:

return;

A void method need not have any return statements, but you can place a return
statement in a void method if there are situations that require the method to end
before all the code is executed.

return in a
void method

Method Definitions
There are two kinds of methods: methods that return a value and methods, known as void
methods, that perform some action other than returning a value.

Definition of a Method That Returns a Value

SYNTAX

public Type_Returned Method_Name(Parameter_List)
{
 <List of statements, at least one of which
 must contain a return statement.>
}

If there are no Parameters, then the parentheses are empty.

Class Definitions 215

EXAMPLE

public int getDay()
{
 return day;
}

void Method Definition

SYNTAX

public void Method_Name(Parameter_List)
{
 <List of statements>
}

If there are no Parameters, then the parentheses are empty.

EXAMPLE

public void writeOutput()
{
 System.out.println(month + " " + day + ", " + year);
}

All method definitions are inside of some class definition. See Display 4.2 to see these
example method definitions in the context of a class.

When an instance variable name is used in a method definition, it refers to an instance
variable of the calling object.

return Statements

The definition of a method that returns a value must have one or more return statements.
A return statement specifies the value returned by the method and ends the method
invocation.

SYNTAX

return Expression;

EXAMPLE

public int getYear()
{
 return year;
}

A void method definition need not have a return statement. However, a return statement
can be used in a void method to cause the method to immediately end. The form for a
return statement in a void method is

return;

216 CHAPTER 4 Defining Classes I

Although it may seem that we have lost sight of the fact, all these method definitions
must be inside of some class definition. Java does not have any stand-alone methods
that are not in any class. Display 4.2 rewrites the class given in Display 4.1, but this
time we have added a more diverse set of methods. Display 4.3 contains a sample
program that illustrates how the methods of the class in Display 4.2 are used.

TIP: Any Method Can Be Used as a void Method

A method that returns a value can also perform some action besides returning a value.
If you want that action, but do not need the returned value, you can invoke the
method as if it were a void method and the returned value will simply be discarded.
For example, the following contains two invocations of the method nextLine(),
which returns a value of type String. Both are legal.

Scanner keyboard = new Scanner(System.in);
 . . .
String inputString = keyboard.nextLine();
 . . .
System.out.println("Press Enter to continue with program.");
keyboard.nextLine(); //Reads a line and discards it. ■

Display 4.2 A Class with More Methods (part 1 of 2)

 1 import java.util.Scanner;

 2 public class DateSecondTry
 3 {
 4 private String month;
 5 private int day;
 6 private int year; //a four digit number.

 7 public void writeOutput()
 8 {
 9 System.out.println(month + " " + day + ", " + year);
10 }

11 public void readInput()
12 {
13 Scanner keyboard = new Scanner(System.in);
14 System.out.println("Enter month, day, and year.");
15 System.out.println("Do not use a comma.");
16 month = keyboard.next();
17 day = keyboard.nextInt();
18 year = keyboard.nextInt();
19 }

The significance of the modifier private
is discussed in the subsection “public
and private Modifiers” in Section 4.2
a bit later in this chapter.

Class Definitions 217

20 public int getDay()
21 {
22 return day;
23 }
24 public int getYear()
25 {
26 return year;
27 }

28 public int getMonth()
29 {
30 if (month.equalsIgnoreCase("January"))
31 return 1;
32 else if (month.equalsIgnoreCase("February"))
33 return 2;
34 else if (month.equalsIgnoreCase("March"))
35 return 3;
36 else if (month.equalsIgnoreCase("April"))
37 return 4;
38 else if (month.equalsIgnoreCase("May"))
39 return 5;
40 else if (month.equalsIgnoreCase("June"))
41 return 6;
42 else if (month.equalsIgnoreCase("July"))
43 return 7;
44 else if (month.equalsIgnoreCase("August"))
45 return 8;
46 else if (month.equalsIgnoreCase("September"))
47 return 9;
48 else if (month.equalsIgnoreCase("October"))
49 return 10;
50 else if (month.equalsIgnoreCase("November"))
51 return 11;
52 else if (month.equalsIgnoreCase("December"))
53 return 12;
54 else
55 {
56 System.out.println("Fatal Error");
57 System.exit(0);
58 return 0; //Needed to keep the compiler happy
59 }
60 }
61 }

Display 4.2 A Class with More Methods (part 2 of 2)

218 CHAPTER 4 Defining Classes I

Local Variables

Look at the definition of the method readInput() given in Display 4.2. That method
definition includes the declaration of a variable called keyboard. A variable declared
within a method is called a local variable. It is called local because its meaning is
local to—that is, confined to—the method definition. If you have two methods and
each of them declares a variable of the same name—for example, if both were named
keyboard—they would be two different variables that just happen to have the same
name. Any change that is made to the variable named keyboard within one method
would have no effect upon the variable named keyboard in the other method.

As we noted in Chapter 1, the main part of a program is itself a method. All variables
declared in main are variables local to the method main. If a variable declared in main

Self-Test Exercises

3. Write a method called getNextYear that could be added to the class
DateSecondTry in Display 4.2. The method getNextYear returns an int value
equal to the value of the year instance variable plus one.

local variable

Display 4.3 Using the Class in Display 4.2

An invocation of a void method is a
statement.

An invocation of a method that returns a value is an expression that can be
used anyplace that a value of the type returned by the method can be used.

 1 public class DemoOfDateSecondTry
 2 {
 3 public static void main(String[] args)
 4 {
 5 DateSecondTry date = new DateSecondTry();
 6 date.readInput();

 7 int dayNumber = date.getDay();
 8 System.out.println("That is the " + dayNumber
 9 + "th day of the month.");
10 }
11 }

Sample Dialogue

Enter month, day, and year.
Do not use a comma.
July 4 1776
That is the 4th day of the month.

Class Definitions 219

happens to have the same name as a variable declared in some other method, they are
two different variables that just happen to have the same name. Thus, all the variables
we have seen so far are either local variables or instance variables. There is only one
more kind of variable in Java, which is known as a static variable. Static variables will be
discussed in Chapter 5.

Local Variable
A variable declared within a method definition is called a local variable. If two methods
each have a local variable of the same name, they are two different variables that just
happen to have the same name.

Global Variables
Thus far, we have discussed two kinds of variables: instance variables, whose meaning
is confined to an object of a class, and local variables, whose meaning is confined to a
method definition. Some other programming languages have another kind of variable called
a global variable, whose meaning is confined only to the program. Java does not have
these global variables.

Blocks

The terms block and compound statement mean the same thing—namely, a set of
Java statements enclosed in braces, {}. However, programmers tend to use the two
terms in different contexts. When you declare a variable within a compound statement,
the compound statement is usually called a block.

block

Blocks
A block is another name for a compound statement—that is, a list of statements enclosed
in braces. However, programmers tend to use the two terms in different contexts. When
you declare a variable within a compound statement, the compound statement is usually
called a block. The variables declared in a block are local to the block, so these variables
disappear when the execution of the block is completed. However, even though the
variables are local to the block, their names cannot be used for anything else within the
same method definition.

If you declare a variable within a block, that variable is local to the block. This
means that when the block ends, all variables declared within the block disappear. In
many programming languages, you can even use that variable’s name to name some
other variable outside the block. However, in Java, you cannot have two variables
with the same name inside a single method definition. Local variables within blocks

compound
statement

220 CHAPTER 4 Defining Classes I

can sometimes create problems in Java. It is sometimes easier to declare the variables
outside the block. If you declare a variable outside a block, you can use it both inside
and outside the block, and it will have the same meaning in both locations.

TIP: Declaring Variables in a for Statement

You can declare a variable (or variables) within the initialization portion of a for
statement, as in the following:

int sum = 0;
for (int n = 1; n < 10; n++)
 sum = sum + n;

If you declare n in this way, the variable n will be local to the for loop. This means
that n cannot be used outside the for loop. For example, the following use of n in the
System.out.println statement is illegal:

for (int n = 1; n < 10; n++)
 sum = sum + n;
System.out.println(n); //Illegal

Declaring variables inside a for loop can sometimes be more of a nuisance than a
helpful feature. We tend to avoid declaring variables inside a for loop except for very
simple cases that have no potential for confusion. ■

Self-Test Exercises

4. Write a method called happyGreeting that could be added to the class
DateSecondTry in Display 4.2. The method happyGreeting writes the string
"Happy Days!" to the screen a number of times equal to the value of the
instance variable day. For example, if the value of day is 3, then it should write
the following to the screen:

Happy Days!
Happy Days!
Happy Days!

Use a local variable.

Parameters of a Primitive Type

All the method definitions we have seen thus far had no parameters, which was
indicated by an empty set of parentheses in the method heading. A parameter is like
a blank that is filled in with a particular value when the method is invoked. (What we
are calling parameters are also called formal parameters.) The value that is plugged in for

parameter

Class Definitions 221

the parameter is called an argument.2 We have already used arguments with predefined
methods. For example, the string "Hello" is the argument to the method println in
the following method invocation:

System.out.println("Hello");

Display 4.4 contains the definition of a method named setDate that has the three
parameters newMonth, newDay, and newYear. It also contains the definition of a
method named monthString that has one parameter of type int.

Arguments are given in parentheses at the end of the method invocation. For
example, in the following call from Display 4.4, the integers 6 and 17 and the variable
year are the arguments plugged in for newMonth, newDay, and newYear, respectively:

date.setDate(6, 17, year);

When you have a method invocation such as the preceding, the argument (such as 6) is
plugged in for the corresponding formal parameter (such as newMonth) everywhere that
the parameter occurs in the method definition. After all the arguments have been plugged
in for their corresponding parameters, the code in the body of the method definition
is executed.

The following invocation of the method monthString occurs within the definition
of the method setDate in Display 4.4:

month = monthString(newMonth);

The argument is newMonth, which is plugged in for the parameter monthNumber in the
definition of the method monthString.

Note that each of the formal parameters must be preceded by a type name, even if
there is more than one parameter of the same type. Corresponding arguments must
match the type of their corresponding formal parameter, although in some simple
cases, an automatic type cast might be performed by Java. For example, if you plug in
an argument of type int for a parameter of type double, Java automatically type casts
the int value to a value of type double. The following list shows the type casts that
Java automatically performs for you. An argument in a method invocation that is of
any of these types is automatically type cast to any of the types that appear to its right,
if that is needed to match a formal parameter.3

byte -> short -> int -> long -> float -> double

argument

2 Some programmers use the term actual parameters for what we are calling arguments.
3 An argument of type char is also converted to a matching number type, if the formal parameter is
of type int or any type to the right of int in our list of types.

222 CHAPTER 4 Defining Classes I

Display 4.4 Methods with Parameters (part 1 of 2)

1 import java.util.Scanner;

2 public class DateThirdTry
3 {
4 private String month;
5 private int day;
6 private int year; //a four digit number.

7 public void setDate(int newMonth, int newDay, int newYear)
8 {
9 month = monthString(newMonth);
10 day = newDay;
11 year = newYear;
12 }

13 public String monthString(int monthNumber)
14 {
15 switch (monthNumber)
16 {
17 case 1:
18 return "January";
19 case 2:
20 return "February";
21 case 3:
22 return "March";
23 case 4:
24 return "April";
25 case 5:
26 return "May";
27 case 6:
28 return "June";
29 case 7:
30 return "July";
31 case 8:
32 return "August";
33 case 9:
34 return "September";
35 case 10:
36 return "October";
37 case 11:
38 return "November";
39 case 12:
40 return "December";

The significance of the modifier private is
discussed later in the subsection “ public
and private Modifiers” in Section 4.2.

The method setDate has an int parameter for the month,
even though the month instance variable is of type String.
The method setDate converts the month int value to a
string with a call to the method monthString.

This is the file DateThirdTry.java.

Class Definitions 223

Note that this is exactly the same as the automatic type casting we discussed in
Chapter 1 for storing values of one type in a variable of another type. The more general
rule is that you can use a value of any of the listed types anywhere that Java expects a
value of a type further down on the list.

Note that the correspondence of the parameters and arguments is determined by
their order in the lists in parentheses. In a method invocation, there must be exactly
the same number of arguments in parentheses as there are formal parameters in the
method definition heading. The first argument in the method invocation is plugged
in for the first parameter in the method definition heading, the second argument in
the method invocation is plugged in for the second parameter in the heading of the
method definition, and so forth. This is diagrammed in Display 4.5.

Display 4.4 Methods with Parameters (part 2 of 2)

41 default:
42 System.out.println("Fatal Error");
43 System.exit(0);
44 return "Error"; //to keep the compiler happy
45 }
46 }

<The rest of the method definitions are identical to the ones given in Display 4.2.>
47 }

1 public class DateThirdTryDemo
2 {
3 public static void main(String[]args)
4 {
5 DateThirdTry date = new DateThirdTry();
6 int year = 1882;
7 date.setDate(6, 17, year);
8 date.writeOutput();
9 }
10 }

Sample Dialogue

June 17, 1882

This is the file DateThirdTry.java.

This is the file
DateThirdTryDemo.java.

The variable year is NOT plugged in for the
parameter newYear in the definition of the
method setDate. Only the value of year,
namely 1882, is plugged in for the parameter
newYear.

224 CHAPTER 4 Defining Classes I

Display 4.5 Correspondence between Formal Parameters and Arguments

Public class DateThirdTry
{
 private String month;
 private int day;
 private int year; //a four digit number.
 public void setDate(int newMonth, int newDay, int newYear)
 {
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 }
 . . .

public class DateThirdTryDemo
{
 public static void main(String[] args)
 {
 DateThirdTry date = new DateThirdTry();
 int year = 1882;
 date.setDate(6, 17, year);
 date.writeOutput();
 }
}

This is in the file
DateThirdTry.java.

Only the value of year,
namely 1882, is plugged
in for the parameter
newYear.

This is in the file
DateThirdTryDemo.java.
This is the file for a program that
uses the class DateThirdTry.

The arrows show which argument is
plugged in for which formal
parameter.

Parameters of a Primitive Type
Parameters are given in parentheses after the method name in the heading of a method
definition. A parameter of a primitive type, such as int, double, or char, is a local variable.
When the method is invoked, the parameter is initialized to the value of the corresponding
argument in the method invocation. This mechanism is known as the call-by-value
parameter mechanism. The argument in a method invocation can be a literal constant, such
as 2 or 'A'; a variable; or any expression that yields a value of the appropriate type. This is
the only kind of parameter that Java has for parameters of a primitive type. (Parameters of a
class type are discussed in Chapter 5.)

Class Definitions 225

It is important to note that only the value of the argument is used in this substitu-
tion process. If an argument in a method invocation is a variable (such as year in
Display 4.4), it is the value of the variable that is plugged in for its corresponding
parameter; it is not the variable name that is plugged in. For example, in Display 4.4,
the value of the variable year (that is, 1882) is plugged in for the parameter newYear.
The variable year is not plugged into the body of the method setDate. Because only
the value of the argument is used, this method of plugging in arguments for formal
parameters is known as the call-by-value mechanism. In Java, this is the only method
of substitution that is used with parameters of a primitive type, such as int, double,
and char. As you will eventually see, this is, strictly speaking, also the only method
of substitution that is used with parameters of a class type. However, there are other
differences that make parameters of a class type appear to use a different substitution
mechanism. For now, we are concerned only with parameters and arguments of
primitive types, such as int, double, and char. (Although the type String is a class
type, you will not go wrong if you consider it to behave like a primitive type when an
argument of type String is plugged in for its corresponding parameter. However, for
most class types, you need to think a bit differently about how arguments are plugged
in for parameters. We discuss parameters of a class type in Chapter 5.)

In most cases, you can think of a parameter as a kind of blank, or placeholder, that is
filled in by the value of its corresponding argument in the method invocation. However,
parameters are more than just blanks; a parameter is actually a local variable. When the
method is invoked, the value of an argument is computed, and the corresponding
parameter, which is a local variable, is initialized to this value. Occasionally, it is useful
to use a parameter as a local variable. An example of a parameter used as a local variable
is given in Display 4.6. In that display, notice the parameter minutesWorked in the
method computeFee. The value of minutesWorked is changed within the body of the
method definition. This is allowed because a parameter is a local variable.

main Is a void Method
The main part of a program is a void method, as indicated by its heading:

public static void main(String[] args)

The word static wiill be explained in Chapter 5. The identifier args is a parameter of type
String[], which is the type for an array of strings. Arrays are discussed in Chapter 6, and
you need not be concerned about them until then. In the examples in this book, we never
use the parameter args. Because args is a parameter, you may replace it with any other
nonkeyword identifier and your program will have the same meaning. Aside from possibly
changing the name of the parameter args, the heading of the main method must be
exactly as shown above. Although we will not be using the parameter args, we will tell you
how to use it in Chapter 6.

A program in Java is just a class that has a main method. When you give a command to run
a Java program, the run-time system invokes the method main.

call-by-value

parameters
as local

variables

226 CHAPTER 4 Defining Classes I

Display 4.6 A Formal Parameter Used as a Local Variable (part 1 of 2)

1 import java.util.Scanner;

2 public class Bill
3 {
4 public static final double RATE = 150.00; //Dollars per quarter hour

5 private int hours;
6 private int minutes;
7 private double fee;

8 public void inputTimeWorked()
9 {
10 System.out.println("Enter number of full hours worked");
11 System.out.println("followed by number of minutes:");
12 Scanner keyboard = new Scanner(System.in);
13 hours = keyboard.nextInt();
14 minutes = keyboard.nextInt();
15 }

16 private double computeFee(int hoursWorked, int minutesWorked)
17 {
18 minutesWorked = hoursWorked * 60 + minutesWorked;
19 int quarterHours = minutesWorked/15;
20 //Any remaining fraction of a quarter hour is not

//charged for.
21 return quarterHours * RATE;
22 }

23 public void updateFee()
24 {
25 fee = computeFee(hours, minutes);
26 }

27 public void outputBill()
28 {
29 System.out.println("Time worked: ");
30 System.out.println(hours + " hours and " + minutes +
31 " minutes");
32 System.out.println("Rate: $" + RATE + " per quarter hour.");
33 System.out.println("Amount due: $" + fee);
34 }
35 }

This is the file Bill.java.

computeFee uses the
parameter minutesWorked
as a local variable.

Although minutes is plugged in
for minutesWorked and
minutesWorked is changed, the
value of minutes is not changed.

Class Definitions 227

PITFALL: Use of the Terms “Parameter” and “Argument”

The use of the terms parameter and argument that we follow in this book is consistent
with common usage, but people also often use the terms parameter and argument
interchangeably. When you see these terms, you must determine their exact meaning
from context. Many people use the term parameter for both what we call parameters
and what we call arguments. Other people use the term argument for both what we
call parameters and what we call arguments. Do not expect consistency in how people
use these two terms.

The term formal parameter is often used for what we describe as a parameter. We
will sometimes use this term for emphasis. The term actual parameter is often used for
what we call an argument. We do not use this term in this book, but you will encounter
it in other books. ■

Display 4.6 A Formal Parameter Used as a Local Variable (part 2 of 2)

1 public class BillingDialog
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("Welcome to the law offices of");
6 System.out.println("Dewey, Cheatham, and Howe.");
7 Bill yourBill = new Bill();
8 yourBill.inputTimeWorked();
9 yourBill.updateFee();
10 yourBill.outputBill();
11 System.out.println("We have placed a lien on your house.");
12 System.out.println("It has been our pleasure to serve you.");
13 }
14 }

Sample Dialogue

Welcome to the law offices of

Dewey, Cheatham, and Howe.

Enter number of full hours worked

followed by number of minutes:

3 48

Time worked:

2 hours and 48 minutes

Rate: $150.0 per quarter hour.

Amount due: $2250.0

We have placed a lien on your house.

It has been our pleasure to serve you.

This is the file
BillingDialog.java.

actual
parameter

formal
parameters

228 CHAPTER 4 Defining Classes I

Self-Test Exercises

5. Write a method called fractionDone that could be added to the class
DateThirdTry in Display 4.4. The method fractionDone has a parameter
targetDay of type int (for a day of the month) and returns a value of type
double. The value returned is the value of the day instance variable divided by
the int parameter targetDay. (So it returns the fraction of the time passed so
far this month where the goal is reaching the targetDay.) Use floating-point
division, not integer division. To get floating-point division, copy the value of
the day instance variable into a local variable of type double and use this local
variable in place of the day instance variable in the division. (You may assume
the parameter targetDay is a valid day of the month that is greater than the
value of the day instance variable.)

6. Write a method called advanceYear that could be added to the class
DateThirdTry in Display 4.4. The method advanceYear has one parameter
of type int. The method advanceYear increases the value of the year instance
variable by the amount of this one parameter.

7. Suppose we redefine the method setDate in Display 4.4 to the following:

public void setDate(int newMonth, int newDay,int newYear)
{
 month = monthString(newMonth);
 day = newDay;
 year = newYear;
 System.out.println("Date changed to "
 + newMonth + " " + newDay + ", " + newYear);
}

Indicate all instances of newMonth that have their value changed to 6 in the
following invocation (also from Display 4.4):

date.setDate(6, 17, year);

8. Is the following a legal method definition that could be added to the class
DateThirdTry in Display 4.4?

public void multiWriteOutput(int count)
{
 while (count > 0)
 {
 writeOutput();
 count--;
 }
}

9. Consider the definition of the method monthString in Display 4.4. Why are
there no break statements in the switch statement?

Class Definitions 229

Simple Cases with Class Parameters

Methods can have parameters of a class type. Parameters of a class type are more subtle
and more powerful than parameters of a primitive type. We will discuss parameters
of class types in detail in Chapter 5. In the meantime, we will occasionally use a class
type parameter in very simple situations. For these cases, you do not need to know
any details about class type parameters except that, in some sense or other, the class
argument is plugged in for the class parameter.

The this Parameter

As we noted earlier, if today is of type DateSecondTry (see Display 4.2), then

today.writeOutput();

is equivalent to

System.out.println(today.month + " " + today.day
+ ", " + today.year);

This is because, although the definition of writeOutput reads

public void writeOutput()
{
 System.out.println(month + " " + day + ", " + year);
}

it really means

public void writeOutput()
{

 System.out.println(<the calling object>.month + " "
 + <the calling object>.day + ", " + <the calling object>.year);
}

The instance variables are understood to have <the calling object>. in front of them.
Sometimes it is handy, and on rare occasions even necessary, to have an explicit name
for the calling object. Inside a Java method definition, you can use the keyword this as
a name for the calling object. So, the following is a valid Java method definition that is
equivalent to the one we are discussing:

public void writeOutput()
{
 System.out.println(this.month + " " + this.day

+ ", " + this.year);
}

The definition of writeOutput in Display 4.2 could be replaced by this completely
equivalent version. Moreover, this version is in some sense the true version. The version

230 CHAPTER 4 Defining Classes I

without the this and a dot in front of each instance variable is just an abbreviation for
this version. However, the abbreviation of omitting the this is used frequently.

The keyword this is known as the this parameter. The this parameter is a kind
of hidden parameter. It does not appear on the parameter list of a method, but is still
a parameter. When a method is invoked, the calling object is automatically plugged in
for this.

this
parameter

The this Parameter
Within a method definition, you can use the keyword this as a name for the calling object.
If an instance variable or another method in the class is used without any calling object, then
this is understood to be the calling object.

There is one common situation that requires the use of the this parameter. You
often want to have the parameters in a method such as setDate be the same as
the instance variables. A first, although incorrect, try at doing this is the following
rewriting of the method setDate from Display 4.4:

public void setDate(int month, int day, int year) //Not correct
{
 month = monthString(month);
 day = day;
 year = year;
}

This rewritten version does not do what we want. When you declare a local variable
in a method definition, then within the method definition, that name always refers
to the local variable. A parameter is a local variable, so this rule applies to parameters.
Consider the following assignment statement in our rewritten method definition:

day = day;

Both the identifiers day refer to the parameter day. The identifier day does not refer
to the instance variable day. All occurrences of the identifier day refer to the parameter
day. This is often described by saying the parameter day masks or hides the instance
variable day. Similar remarks apply to the parameters month and year.

This rewritten method definition of the method setDate will produce a compiler
error message because the following attempts to assign a String value to the int
variable (the parameter) month:

month = monthString(month);

However, in many situations, this sort of rewriting will produce a method definition
that will compile but that will not do what it is supposed to do.

mask a
variable

Class Definitions 231

To correctly rewrite the method setDate, we need some way to say “the instance
variable month” as opposed to the parameter month. The way to say “the instance
variable month” is this.month. Similar remarks apply to the other two parameters. So,
the correct rewriting of the method setDate is as follows:

public void setDate(int month, int day, int year)
{
 this.month = monthString(month);
 this.day = day;
 this.year = year;
}

This version is completely equivalent to the version in Display 4.4.

Self-Test Exercises

10. The method writeOutput in Display 4.2 uses the instance variables month,
day, and year, but gives no object name for these instance variables. Every
instance variable must belong to some object. To what object or objects do
these instance variables in the definition of writeOutput belong?

11. Rewrite the definitions of the methods getDay and getYear in Display 4.2
using the this parameter.

12. Rewrite the method getMonth in Display 4.2 using the this parameter.

Methods That Return a Boolean Value

There is nothing special about methods that return a value of type boolean. The type
boolean is a primitive type, just like the types int and double. A method that returns
a value of type boolean must have a return statement of the form

return Boolean_Expression;

So, an invocation of a method that returns a value of type boolean returns either true
or false. It thus makes sense to use an invocation of such a method to control an if-
else statement, to control a while loop, or to control anyplace else that a Boolean
expression is allowed. Although there is nothing new here, people who have not used
boolean valued methods before sometimes find them to be uncomfortable. So we will
go through one small example.

The following is a method definition that could be added to the class DateThirdTry
in Display 4.4:

public boolean isBetween(int lowYear, int highYear)
{
 return ((year > lowYear) && (year < highYear));
}

232 CHAPTER 4 Defining Classes I

Consider the following lines of code:

DateThirdTry date = new DateThirdTry();
date.setDate(1, 2, 3001);
if (date.isBetween(2000, 4000))
 System.out.println(
 "The date is between the years 2000 and 4000");
else
 System.out.println(
 "The date is not between the years 2000 and 4000");

The expression date.isBetween(2000, 4000) is an invocation of a method that
returns a boolean value—that is, returns one of the two values true and false.
So, it makes perfectly good sense to use it as the controlling Boolean expression in an
 if-else statement. The expression year in the definition of isBetween really means
this.year, and this stands for the calling object. In date.isBetween(2000, 4000)
the calling object is date. So, this returns the value

(date.year > lowYear) && (date.year < highYear)

But, 2000 and 4000 are plugged in for the parameters lowYear and highYear,
respectively. So, this expression is equivalent to

(date.year > 2000) && (date.year < 4000)

Thus, the if-else statement is equivalent to4

if ((date.year > 2000) && (date.year < 4000))
 System.out.println(

 "The date is between the years 2000 and 4000.");
else
 System.out.println(

 "The date is not between the years 2000 and 4000.");

Thus, the output produced is

The date is between the years 2000 and 4000.

Another example of a boolean valued method, which we will, in fact, add to our
date class, follows:

public boolean precedes(DateFourthTry otherDate)
{
 return ((year < otherDate.year) ||

4 Later in this chapter, we will see that because year is marked private, it is not legal to write
date.year in a program, but the meaning of such an expression is clear even if you cannot include
it in a program.

Class Definitions 233

 (year == otherDate.year && getMonth() < otherDate.getMonth())
||

 (year == otherDate.year && month.equals(otherDate.month)
 && day < otherDate.day));
}

The version of our date class with this method is given in Display 4.7. The other new
methods in that class will be discussed shortly in the subsection entitled “The Methods
equals and toString.” Right now, let’s discuss this new method named precedes.

An invocation of the method precedes has the following form, where date1 and
date2 are two objects of our date class:

date1.precedes(date2)

This is a Boolean expression that returns true if date1 comes before date2. Because it
is a Boolean expression, it can be used anyplace a Boolean expression is allowed, such as
to control an if-else or while statement. For example,

if (date1.precedes(date2))
 System.out.println("date1 comes before date2.");

else
 System.out.println("date2 comes before or is equal to date1.");

Display 4.7 A Class with Methods equals and toString (part 1 of 2)

1 import java.util.Scanner;

2 public class DateFourthTry
3 {
4 private String month;
5 private int day;
6 private int year; //a four digit number.

7 public String toString()
8 {
9 return (month + " " + day + ", " + year);
10 }

11 public void writeOutput()
12 {
13 System.out.println(month + " " + day + ", " + year);
14 }

15 public boolean equals(DateFourthTry otherDate)
16 {
17 return ((month.equals(otherDate.month))
18 && (day == otherDate.day) && (year == otherDate.year));
19 }

This is the method equals in the
class DateFourthTry.

This is the method
equals in the class
String.

(continued)

234 CHAPTER 4 Defining Classes I

Display 4.7 A Class with Methods equals and toString (part 2 of 2)

20 public boolean precedes(DateFourthTry otherDate)
21 {
22 return ((year < otherDate.year) ||
 (year == otherDate.year && getMonth() <

 otherDate.getMonth()) ||
24 (year == otherDate.year && month.equals(otherDate.month)
25 && day < otherDate.day));
26 }

 <The rest of the method definitions are identical to the ones in DateThirdTry in Display 4.4.>

27 }

The return statement in the definition of the method precedes may look
intimidating, but it is really straightforward. It says that date1.precedes(date2)
returns true, provided one of the following three conditions is satisfied:

date1.year < date2.year
date1.year equals date2.year and date1.month comes before
date2. month date1 and date2 have the same year and month and
 date1.day < date2.day.

If you give it a bit of thought, you will realize that date1 precedes date2 in time
precisely when one of these three conditions is satisfied.

The Methods equals and toString

Java expects certain methods to be in all, or almost all, classes. This is because some
of the standard Java libraries have software that assumes such methods are defined.
Two of these methods are equals and toString. Therefore, you should include such
methods and be certain to spell their names exactly as we have done. Use equals, not
same or areEqual. Do not even use equal without the s. Similar remarks apply to
the toString method. After we have developed more material, we will explain this in
more detail. In particular, we will then explain how to give a better method definition
for equals. For now, just get in the habit of including these methods.

The method equals is a boolean valued method to compare two objects of the class
to see if they satisfy the intuitive notion of “being equal.” So, the heading should be

public boolean equals(Class_Name Parameter_Name)

Display 4.7 contains definitions of the methods equals and toString that we might
add to our date class, which is now named DateFourthTry. The heading of that
equals method is

public boolean equals(DateFourthTry otherDate)

equals

Class Definitions 235

When you use the method equals to compare two objects of the class DateFourthTry,
one object is the calling object and the other object is the argument, like so:

date1.equals(date2)

or equivalently,

date2.equals(date1)

Because the method equals returns a value of type boolean, you can use an
invocation of equals as the Boolean expression in an if-else statement, as shown
in Display 4.8. Similarly, you can also use it anyplace else that a Boolean expression is
allowed.

There is no absolute notion of “equality” that you must follow in your definition
of equals. You can define the method equals any way you wish, but to be useful,
it should reflect some notion of “equality” that is useful for the software you are

These are equivalent to
date2.toString().

These are equivalent to
date1.toString().

Display 4.8 Using the Methods equals and toString

1 public class EqualsAndToStringDemo
2 {
3 public static void main(String[] args)
4 {
5 DateFourthTry date1 = new DateFourthTry(),
6 date2 = new DateFourthTry();
7 date1.setDate(6, 17, 1882);
8 date2.setDate(6, 17, 1882);

9 if (date1.equals(date2))
10 System.out.println(date1 + " equals " + date2);
11 else
12 System.out.println(date1 + " does not equal " + date2);

13 date1.setDate(7, 28, 1750);

14 if (date1.precedes(date2))
15 System.out.println(date1 + " comes before " + date2);
16 else
17 System.out.println(date2 + " comes before or is equal to "
18 + date1);
19 }
20 }

Sample Dialogue

June 17, 1882 equals June 17, 1882

July 28, 1750 comes before June 17, 1882

236 CHAPTER 4 Defining Classes I

designing. A common way to define equals for simple classes of the kind we are
looking at now is to say equals returns true if each instance variable of one object
equals the corresponding instance variable of the other object. This is how we defined
equals in Display 4.7.

If the definition of equals in Display 4.7 seems less than clear, it may help to
rewrite it as follows using the this parameter:

public boolean equals(DateFourthTry otherDate)
{
 return (((this.month).equals(otherDate.month))
 && (this.day == otherDate.day) && (this.year ==

otherDate.year));
}

So, if date1 and date2 are objects of the class DateFourthTry, then date1.equals
(date2) returns true provided the three instance variables in date1 have values that
are equal to the three instance variables in date2.

Also, note that the method in the definition of equals that is used to compare
months is not the equals for the class DateFourthTry but the equals for the class
String. You know this because the calling object, which is this.month, is of type
String.

Remember that we use the equals method of the class String because == does not
work correctly for comparing String values. (This was discussed in the Pitfall section
of Chapter 3 entitled “Using == with Strings.”)

In Chapter 7, you will see that there are reasons to make the definition of the
equals method a bit more involved. But the spirit of what an equals method should
be is very much like what we are now doing, and it is the best we can do with what we
know so far.

The method toString should be defined so that it returns a String value that
represents the data in the object. One nice thing about the method toString is that it
makes it easy to output an object to the screen. If date is of type DateFourthTry, then
you can output the date to the screen as follows:

System.out.println(date.toString());

In fact, System.out.println was written so that it automatically invokes toString()
if you do not include it. So, the object date can also be output by the following simpler
and equivalent statement:

System.out.println(date);

This means that the method writeOutput in Display 4.7 is superfluous and could
safely be omitted from the class definition.

If you look at Display 4.8, you will see that toString is also called automatically
when the object is connected to some other string with a +, as in

System.out.println(date1 + " equals " + date2);

toString

println used
with objects

Class Definitions 237

In this case, it is really the plus operator that causes the automatic invocation of
toString(). So, the following is also legal:

String s = date1 + " equals " + date2;

The preceding is equivalent to

String s = date1.toString() + " equals " + date2.toString();

Recursive Methods

Java does allow recursive method definitions. Recursive methods are covered in
Chapter 11. If you do not know what recursive methods are, do not be concerned until
you reach that chapter . If you want to read about these methods early, you can read
Sections 11.1 and 11.2 of Chapter 11 after you complete Chapter 5.

+ used
with objects

recursive
method

The Methods equals and toString

Usually, your class definitions should contain an equals method and a toString method.
An equals method compares the calling object to another object and should return true
when the two objects are intuitively equal. When comparing objects of a class type, you
normally use the method equals, not ==.

The toString method should return a string representation of the data in the calling object.
If a class has a toString method, you can use an object of the class as an argument to the
methods System.out.println and System.out.print.

See Display 4.7 for an example of a class with equals and toString methods.

TIP: Testing Methods

Each method should be tested in a program in which it is the only untested program.
If you test methods this way, then when you find an error, you will know which
method contains the error. A program that does nothing but test a method is called a
driver program.

If one method contains an invocation of another method in the same class, this
can complicate the testing task. One way to test a method is to first test all the
methods invoked by that method and then test the method itself. This is called
bottom-up testing.

driver
program

bottom-up
testing

(continued)

238 CHAPTER 4 Defining Classes I

TIP: (continued)

It is sometimes impossible or inconvenient to test a method without using some
other method that has not yet been written or has not yet been tested. In this case,
you can use a simplified version of the missing or untested method. These simpli-
fied methods are called stubs. These stubs will not necessarily perform the correct
calculation, but they will deliver values that suffice for testing, and they are simple
enough that you can have confidence in their performance. For example, the follow-
ing is a possible stub:

/**
 Computes the probability of rain based on temperature, barometric
pressure, and relative humidity. Returns the probability as a
fraction between 0 and 1.
*/
public double rainChance(double temperature,
 double pressure,double humidity)
{
 return 0.5; //Not correct but good enough for a stub.

} ■

stub

The Fundamental Rule for Testing Methods
Every method should be tested in a program in which every other method in the testing
program has already been fully tested and debugged.

Self-Test Exercises

13. In the definition of precedes in Display 4.7, we used

month.equals(otherDate.month)

 to test whether two months are equal; but we used

getMonth() < otherDate.getMonth()

 to test whether one month comes before another. Why did we use month in
one case and getMonth in another case?

14. What is the fundamental rule for testing methods?

information
hiding

Information Hiding and Encapsulation 239

4.2 Information Hiding and Encapsulation

We all know—the Times knows—but we pretend we don’t.

VIRGINIA WOOLF, Monday or Tuesday, London: Hogarth Press, 1921.

Information hiding means that you separate the description of how to use a
class from the implementation details, such as how the class methods are defined.
You do this so that a programmer who uses the class does not need to know the
implementation details of the class definition. The programmer who uses the class can
consider the implementation details as hidden, since he or she does not need to look
at them. Information hiding is a way of avoiding information overloading. It keeps
the information needed by a programmer using the class within reasonable bounds.
Another term for information hiding is abstraction. The use of the term abstraction
for information hiding makes sense if you think about it a bit. When you abstract
something, you are discarding some of the details.

Encapsulation means grouping software into a unit in such a way that it is easy to
use because there is a well-defined simple interface. So, encapsulation and information
hiding are two sides of the same coin.

Java has a way of officially hiding details of a class definition. To hide details, mark
them as private, a concept we discuss next.

information
hiding

abstraction

encapsulation

API
The term API stands for application programming interface. The API for a class is a
description of how to use the class. If your class is well designed, using the encapsulation
techniques we discuss in this book, then a programmer who uses your class need only read
the API and need not look at the details of your code for the class definition.

ADT
The term ADT is short for abstract data type. An ADT is a data type that is written using
good information hiding techniques.

Encapsulation
Encapsulation means that the data and the actions are combined into a single item (in
our case, a class object) and that the details of the implementation are hidden. The terms
information hiding and encapsulation deal with the same general principle: If a class is
well designed, a programmer who uses a class need not know all the details of the
implementation of the class but need only know a much simpler description of how to use
the class.

Information
Hiding
Example

VideoNote

240 CHAPTER 4 Defining Classes I

public and private Modifiers

Compare the instance variables in Displays 4.1 and 4.2. In Display 4.1, each instance
variable is prefaced with the modifier public. In Display 4.2, each instance variable
is prefaced with the modifier private. The modifier public means that there are no
restrictions on where the instance variable can be used. The modifier private means
that the instance variable cannot be accessed by name outside of the class definition.

For example, the following would produce a compiler error message if used in a
program:

DateSecondTry date = new DateSecondTry();
date.month = "January";
date.day = 1;
date.year = 2006;

In fact, any one of the three assignments would be enough to trigger a compiler error.
This is because, as shown in Display 4.2, each of the instance variables month, day, and
year is labeled private.

If, on the other hand, we had used the class DateFirstTry from Display 4.1
instead of the class DateSecondTry in the preceding code, the code would be legal and
would compile and run with no error messages. This is because, in the definition of
DateFirstTry (Display 4.1), each of the instance variables month, day, and year is
labeled public.

It is considered good programming practice to make all instance variables private.
As we will explain a little later in this chapter, this is intended to simplify the task of
any programmer using the class. But before we say anything about how, on balance,
this simplifies the job of a programmer who uses the class, let’s see how it complicates
the job of a programmer who uses the class.

Once you label an instance variable as private, there is then no way to change its
value (nor to reference the instance variable in any other way) except by using one of
the methods belonging to the class. Note that even when an instance variable is private,
you can still access it through methods of the class. For the class DateSecondTry, you
can change the values of the instance variables with the method readInput, and you
can obtain the values of the instance variables with the methods whose names start
with get. So, the qualifier private does not make it impossible to access the instance
variables. It just makes it illegal to use their names, which can be a minor nuisance.

The modifiers public and private before a method definition have a similar
meaning. If the method is labeled public, there are no restrictions on its usage. If
the method is labeled private, the method can only be used in the definition of
another method of the same class.

Any instance variable can be labeled either public or private. Any method can
be public or private. However, normal good programming practices require that all
instance variables be private and that typically, most methods be public. Normally, a
method is private only if it is being used solely as a helping method in the definition of
other methods.

public

private

Information Hiding and Encapsulation 241

EXAMPLE: Yet Another Date Class

Display 4.9 contains another, much improved, definition of a class for a date. Note
that all instance variables are private and that two methods are private. We made the
methods dateOK and monthString private because they are just helping methods
used in the definitions of other methods. A user of the class DateFifthTry would
not (in fact, cannot) use either of the methods dateOK or monthString. This is
all hidden information that need not concern a programmer using the class. The
method monthString was public in previous versions of our date classes because we
had not yet discussed the private modifier. It is now marked private because it is
just a helping method.

Note that the class DateFifthTry uses the method dateOK to make sure that
any changes to instance variables make sense. Because the methods of the class
DateFifthTry use the method dateOK to check for impossible dates, you cannot
use any methods, such as readInput or setDate, to set the instance variables so that
they represent an impossible date such as January 63, 2005. If you try to do so, your
program would end with an error message. (To make our definition of the method
dateOK simple, we did not check for certain impossible dates, such as February 31,
but it would be easy to exclude these dates as well.)

The methods dateOK and equals each return a value of type boolean. That
means they return a value that is either true or false and so can be used as
the Boolean expression in an if-else statement, while statement, or other loop
statement. This is illustrated by the following, which is taken from the definition of
the method setDate in Display 4.9:

if (dateOK(month, day, year))
{
 this.month = monthString(month);
 this.day = day;
 this.year = year;
}
else
{
 System.out.println("Fatal Error");
 System.exit(0);
}

Note that, although all the instance variables are private, a programmer using the
class can still change or access the value of an instance variable using the methods that
start with set or get. This is discussed more fully in the next subsection, “Accessor
and Mutator Methods.”

(continued)

242 CHAPTER 4 Defining Classes I

Accessor and Mutator Methods

You should always make all instance variables in a class private. However, you may
sometimes need to do something with the data in a class object. The special-purpose
methods, such as toString, equals, and any input methods, will allow you to
do many things with the data in an object. But sooner or later you will want to do
something with the data for which there are no special-purpose methods. How can you
do anything new with the data in an object? The answer is that you can do anything
that you might reasonably want (and that the class design specifications consider to
be legitimate), provided you equip your classes with suitable accessor and mutator
methods. These are methods that allow you to access and change the data in an object,
usually in a very general way. Accessor methods allow you to obtain the data. In
Display 4.9, the methods getMonth, getDay, and getYear are accessor methods. The

EXAMPLE: (continued)

Note that there is a difference between what we might call the inside view and the
outside view of the class DateFifthTry. A date such as July 4, 1776, is represented
inside the class object as the string value “July” and the two int values 4 and 1776.
But if a programmer using the same class object asks for the date using getMonth,
getDay, and getYear, he or she will get the three int values 7, 4, and 1776. From
inside the class, a month is a string value, but from outside the class, a month is
an integer. The description of the data in a class object need not be a simple direct
description of the instance variables. (To further emphasize the fact that the month
has an inside view as a string but an outside view as a number, we have written the
method readInput for the class DateFifthTry so that the user enters the month as
an integer rather than a string.)

Note that the method definitions in a class need not be given in any particular
order. In particular, it is perfectly acceptable to give the definition the method
dateOK after the definitions of methods that use dateOK. Indeed, any ordering of the
method definitions is acceptable. Use whatever order seems to make the class easiest
to read. (Those who come to Java from certain other programming languages should
note that there is no kind of forward reference needed when a method is used before
it is defined.)

Self-Test Exercises

15. Following the style guidelines given in this book, when should an instance
variable be marked private?

16. Following the style guidelines given in this book, when should a method be
marked private?

accessor
methods

Information Hiding and Encapsulation 243

accessor methods need not literally return the values of each instance variable, but they
must return something equivalent to those values. For example, the method getMonth
returns the number of the month, even though the month is stored in a String
instance variable. Although it is not required by the Java language, it is a generally
accepted good programming practice to spell the names of accessor methods starting
with get.

Mutator methods allow you to change the data in a class object. In Display 4.9, the
methods whose names begin with the word set are mutator methods. It is a generally
accepted good programming practice to use names that begin with the word set for
mutator methods. Your class definitions will typically provide a complete set of public
accessor methods and at least some public mutator methods. There are, however,
important classes, such as the class String, that have no public mutator methods.

At first glance, it may seem as if accessor and mutator methods defeat the purpose
of making instance variables private, but if you look carefully at the mutator methods
in Display 4.9, you will see that the mutator and accessor methods are not equivalent
to making the instance variables public. Notice the mutator methods, that is, the ones
that begin with set. They all test for an illegal date and end the program with an error
message if there is an attempt to set the instance variables to any illegal values. If the
variables were public, you could set the data to values that do not make sense for a date,
such as January 42, 1930. With mutator methods, you can control and filter changes to
the data. (As it is, you can still set the data to values that do not represent a real date, such
as February 31, but as we already noted, it would be easy to exclude these dates as well.
We did not exclude these dates to keep the example simple. See Self-Test Exercise 19 for
a more complete date check method.)

mutator
methods

Display 4.9 Yet Another Date Class (part 1 of 4)

 1 import java.util.Scanner;

 2 public class DateFifthTry
 3 {
 4 private String month;
 5 private int day;
 6 private int year; //a four digit number.

 7 public void writeOutput()
 8 {
 9 System.out.println(month + " " + day + ", " + year);
10 }

11 public void readInput()
12 {

(continued)

Note that this version of readInput has the user
enter the month as an integer rather than as a
string. In this class, a month is an integer to the
user, but is a string inside the class.

244 CHAPTER 4 Defining Classes I

13 boolean tryAgain = true;
14 Scanner keyboard = new Scanner(System.in);
15 while (tryAgain)
16 {
17 System.out.println("Enter month, day, and year");
18 System.out.println("as three integers:");
19 System.out.println("do not use commas or other punctuations.");
20 int monthInput = keyboard.nextInt();
21 int dayInput = keyboard.nextInt();
22 int yearInput = keyboard.nextInt();
23 if (dateOK(monthInput, dayInput, yearInput))
24 {
25 setDate(monthInput, dayInput, yearInput);
26 tryAgain = false;
27 }
28 else
29 System.out.println("Illegal date. Reenter input.");
30 }
31 }

32 public void setDate(int month, int day, int year)
33 {
34 if (dateOK(month, day, year))
35 {
36 this.month = monthString(month);
37 this.day = day;
38 this.year = year;
39 }
40 else
41 {
42 System.out.println("Fatal Error");
43 System.exit(0);
44 }
45 }

46 public void setMonth(int monthNumber)
47 {
48 if ((monthNumber <= 0) || (monthNumber > 12))
49 {
50 System.out.println("Fatal Error");
51 System.exit(0);
52 }
53 else
54 month = monthString(monthNumber);
55 }

Display 4.9 Yet Another Date Class (part 2 of 4)

Note that this
version of
readInput checks
to see that the
input is reasonable.

Information Hiding and Encapsulation 245

Display 4.9 Yet Another Date Class (part 3 of 4)

56 public void setDay(int day)
57 {
58 if ((day <= 0) || (day > 31))
59 {
60 System.out.println("Fatal Error");
61 System.exit(0);
62 }
63 else
64 this.day = day;
65 }

66 public void setYear(int year)
67 {
68 if ((year < 1000) || (year > 9999))
69 {
70 System.out.println("Fatal Error");
71 System.exit(0);
72 }
73 else
74 this.year = year;
75 }

76 public boolean equals(DateFifthTry otherDate)
77 {
78 return ((month.equalsIgnoreCase(otherDate.month))
79 && (day == otherDate.day) && (year ==

otherDate.year));
80 }

81 public boolean precedes(DateFifthTry otherDate)
82 {
83 return ((year < otherDate.year) ||
84 (year == otherDate.year && getMonth() <

 otherDate.getMonth()) ||
85 (year == otherDate.year && month.equals(otherDate.month)
86 && day < otherDate.day));
87 }

 <The definitions of the following methods are the same as in Displays 4.2 and 4.7:
 getMonth, getDay, getYear, and toString.>

88 private boolean dateOK(int monthInt, int dayInt, int yearInt)
89 {

(continued)

Within the definition of DateFifthTry, you can directly access private instance
variables of any object of type DateFifthTry.

Within the definition of DateFifthTry, you can directly access private instance
variables of any object of type DateFifthTry.

246 CHAPTER 4 Defining Classes I

Display 4.9 Yet Another Date Class (part 4 of 4)

 90 return ((monthInt >= 1) && (monthInt <= 12) &&
 91 (dayInt >= 1) && (dayInt <= 31) &&
 92 (yearInt >= 1000) && (yearInt <= 9999));
 93 }

 94 private String monthString(int monthNumber)
 95 {
 96 switch (monthNumber)
 97 {
 98 case 1:
 99 return "January";
100 case 2:
101 return "February";
102 case 3:
103 return "March";
104 case 4:
105 return "April";
106 case 5:
107 return "May";
108 case 6:
109 return "June";
110 case 7:
111 return "July";
112 case 8:
113 return "August";
114 case 9:
115 return "September";
116 case 10:
117 return "October";
118 case 11:
119 return "November";
120 case 12:
121 return "December";
122 default:
123 System.out.println("Fatal Error");
124 System.exit(0);
125 return "Error"; //to keep the compiler happy
126 }
127 }
128 }

The way that a well-designed class definition uses private instance variables and
public accessor and mutator methods to implement the principle of encapsulation is
diagrammed in Display 4.10.

Information Hiding and Encapsulation 247

Implementation details
hidden in the capsule:
Private instance variables
Private constants
Private methods
Bodies of public and
private method definitions

Programmer who
uses the class

An encapsulated class

A class definition should have
 no public instance variables.

Interface available to a
programmer using the class:
Comments
Headings of public accessor,
mutator, and other methods
Public defined constants

Display 4.10 Encapsulation

TIP: A Class Has Access to Private Members of
All Objects of the Class

Consider the definition of the method equals for the class DateFifthTry, given in
Display 4.9 and repeated as follows:

public boolean equals(DateFifthTry otherDate)
{
 return ((month.equalsIgnoreCase(otherDate.month))
 && (day == otherDate.day) &&
 (year == otherDate.year));
}

You might object that otherDate.month, otherDate.day, and otherDate.year
are illegal because month, day, and year are private instance variables of some object
other than the calling object. Normally, that objection would be correct. However, the
object otherDate is of the same type as the class being defined, so this is legal. In the
definition of a class, you can access private members of any object of the class, not just
private members of the calling object.

(continued)

248 CHAPTER 4 Defining Classes I

TIP: (continued)

Similar remarks apply to the method precedes in the same class. In one place in
the definition of precedes, we used otherDate.getMonth() rather than otherDate.
month only because we wanted the month as an integer instead of a string. We did, in
fact, use otherDate.month elsewhere in the definition of precedes. ■

TIP: Mutator Methods Can Return a Boolean Value ★

In the definition of the class DateFifthTry (Display 4.9), the mutator methods
tested to see if the new values for instance variables were sensible values. If they
were not, the mutator method ended the program and issued an error message. An
alternative approach is to have the mutator do the test but to never have it end the
program. Instead, it returns a boolean value. It makes the changes to the instance
variables and returns true if the changes are sensible. If the attempted changes
are not sensible, the mutator method returns false. That way a programmer can
program in an alternative action to be taken if the attempted changes to instance
variables do not make sense.

For example, an alternative definition of the method setMonth of the class
 DateFifthTry (Display 4.9) is the following:

public boolean setMonth(int monthNumber)
{
 if ((monthNumber <= 0) || (monthNumber > 12))
 return false;
 else
 {
 month = monthString(monthNumber);
 return true;
 }
}

A sample use of this boolean valued version of setMonth could be the following:

DateFifthTry date = new DateFifthTry();
...
System.out.println("Enter month as a number:");
int number = keyboard.nextInt();
while (!date.setMonth(number))
{
 System.out.println("Not a legal month number. Try again.");
 System.out.println("Enter month as a number:");
 number = keyboard.nextInt();

} ■

Information Hiding and Encapsulation 249

Preconditions and Postconditions

One good way to write a method comment is to break it down into two kinds of
information, called the precondition and the postcondition. The precondition states
what is assumed to be true when the method is called. The method should not be
used and cannot be expected to perform correctly unless the precondition holds. The
postcondition describes the effect of the method call; that is, the postcondition tells
what will be true after the method is executed in a situation in which the precondition
holds. For a method that returns a value, the postcondition describes the value returned
by the method.

The following is an example of a method heading from Display 4.9 with a
precondition and postcondition added:

/**
Precondition: All instance variables of the calling object have
 values.
Postcondition: The data in the calling object has been written to
the screen.
*/
public void writeOutput()

You do not need to know the definition of the method writeOutput to use this
method. All that you need to know to use this method is given by the precondition and
postcondition. (The importance of this is more dramatic when the definition of the
method is longer than that of writeOutput.)

When the only postcondition is a description of the value returned, programmers
usually omit the word Postcondition, as in the following example:

/**
Precondition: All instance variables of the calling object have
 values.
Returns a string describing the data in the calling object.
*/
public String toString()

Some programmers choose not to use the words precondition and postcondition in
their method comments. However, whether you use the words or not, you should
always think in terms of precondition and postcondition when designing a method and
when deciding what to include in the method comment.

precondition

postcondition

Self-Test Exercises

17. List all the accessor methods in the class DateFifthTry in Display 4.9.

18. List all the mutator methods in the class DateFifthTry in Display 4.9.

(continued)

250 CHAPTER 4 Defining Classes I

4.3 Overloading

A good name is better than precious ointment.

Ecclesiastes 7:1

Two (or more) different classes can have methods with the same name. For example,
many classes have a method named toString. It is easy to see why this is acceptable. The
type of the calling object allows Java to decide which definition of the method toString
to use. It uses the definition of toString given in the definition of the class for the calling
object. You may be more surprised to learn that two or more methods in the same class can
have the same method name. This is called overloading and is the topic of this section.

Rules for Overloading

In Display 4.11, we have added two methods named setDate to our date class so that
there is a total of three methods named setDate. This is an example of overloading the
method name setDate. On the following three lines, we display the headings of these
three methods:

public void setDate(int month, int day,int year)
public void setDate(String month, int day,int year)
public void setDate(int year)

Notice that each method has a different parameter list. The first two differ in the type
of their first parameter. The last one differs from the other two by having a different
number of parameters.

The name of a method and the list of parameter types in the heading of the method
definition is called the method signature. The signatures for these three method
definitions are

setDate(int, int, int)
setDate(String, int, int)
setDate(int)

overloading

Method
signature

Self-Test Exercises (continued)

19. Write a better version of the method dateOK with three int parameters
(Display 4.9). This version should check for the correct number of days in each
month and should not just allow 31 days in any month. It will help to define
another helping method named leapYear, which takes an int argument for
a year and returns true if the year is a leap year. February has 29 days in leap
years and only 28 days in other years. Use the following rule for determining
if the year is a leap year: A year is a leap year if it is divisible by 4 but is not
divisible by 100, or if it is divisible by 400.

Overloading 251

Display 4.11 Overloading Method Names (part 1 of 2)

 1 import java.util.Scanner;

 2 public class DateSixthTry
 3 {
 4 private String month;
 5 private int day;
 6 private int year; //a four digit number.

 7 public void setDate(int monthInt, int day, int year)
 8 {
 9 if (dateOK(monthInt, day, year))
10 {
11 this.month = monthString(monthInt);
12 this.day = day;
13 this.year = year;
14 }
15 else
16 {
17 System.out.println("Fatal Error");
18 System.exit(0);
19 }
20 }

21 public void setDate(String monthString, int day, int year)
22 {
23 if (dateOK(monthString, day, year))
24 {
25 this.month = monthString;
26 this.day = day;
27 this.year = year;
28 }
29 else
30 {
31 System.out.println("Fatal Error");
32 System.exit(0);
33 }
34 }

35 public void setDate(int year)
36 {
37 setDate(1, 1, year);
38 }

(continued)

There are three different
methods named setDate.

Two different methods
named setDate

252 CHAPTER 4 Defining Classes I

Display 4.11 Overloading Method Names (part 2 of 2)

39 private boolean dateOK(int monthInt, int dayInt, int yearInt)
40 {
41 return ((monthInt >= 1) && (monthInt <= 12) &&
42 (dayInt >= 1) && (dayInt <= 31) &&
43 (yearInt >= 1000) && (yearInt <= 9999));
44 }

45 private boolean dateOK(String monthString, int dayInt, int yearInt)
46 {
47 return (monthOK(monthString) &&
48 (dayInt >= 1) && (dayInt <= 31) &&
49 (yearInt >= 1000) && (yearInt <= 9999));
50 }

51 private boolean monthOK(String month)
52 {
53 return (month.equals("January") || month.equals("February") ||
54 month.equals("March") || month.equals("April") ||
55 month.equals("May") || month.equals("June") ||
56 month.equals("July") || month.equals("August") ||
57 month.equals("September") || month.equals("October") ||
58 month.equals("November") || month.equals("December"));
59 }

60 public void readInput()
61 {
62 boolean tryAgain = true;
63 Scanner keyboard = new Scanner(System.in);
64 while (tryAgain)
65 {
66 System.out.println("Enter month, day, and year.");
67 System.out.println("Do not use a comma.");
68 String monthInput = keyboard.next();
69 int dayInput = keyboard.nextInt();
70 int yearInput = keyboard.nextInt();
71 if (dateOK(monthInput, dayInput, yearInput))
72 {
73 setDate(monthInput, dayInput, yearInput);
74 tryAgain = false;
75 }
76 else
77 System.out.println("Illegal date. Reenter input.");
78 }
79 }
 <The rest of the methods are the same as in Display 4.9, except that
 the parameter to equals and precedes is, of course, of type DateSixthTry.>
80 }

Two different
methods named
dateOK

Overloading 253

When you overload a method name, each of the method definitions in the class must
have a different signature.

Signature
The signature of a method consists of the method name and the list of types for parameters
that are listed in the heading of the method name.

EXAMPLE

If a method has the heading

public int computeSomething(int n1,double x1,
 double x2, String name);

then the signature is

computeSomething(int, double, double,String)

Note that the return type is not part of the method signature.

Overloading
Within one class, you can have two (or more) definitions of a single method name. This
is called overloading the method name. When you overload a method name, any two
definitions of the method name must have different signatures; that is, any two definitions
of the method name either must have different numbers of parameters or some parameter
position must be of differing types in the two definitions.

In Display 4.11, we also overloaded the method name dateOK so that there are two
different methods named dateOK. The two signatures for the two methods named
dateOK are

dateOK(int, int, int)
dateOK(String, int, int)

Display 4.12 gives a simple example of a program using the overloaded method
name setDate. Note that for each invocation of a method named setDate, only
one of the definitions of setDate has a signature that matches the types of the
arguments.

254 CHAPTER 4 Defining Classes I

PITFALL: Overloading and Automatic Type Conversion

Automatic type conversion of arguments (such as converting an int to a double
when the parameter is of type double) and overloading can sometimes interact in
unfortunate ways. So, you need to know how these two things interact.

For example, consider the following method that might be added to the class
 DateSixthTry in Display 4.11:

public void increase(double factor)
{
 year = (int)(year + factor*year);
}

If you add this method to the class DateSixthTry, then the following presents no
problems, where date is an object of type DateSixthTry that has been set to some date:

date.increase(2);

The int value of 2 is type cast to the double value 2.0, and the value of date.year
is changed as follows:

date.year = (int)(date.year + 2.0*date.year);

(Because year is private in the class DateSixthTry, you cannot write this in a
program that uses the class DateSixthTry, but the meaning of this expression is
clear.)

So far, so good. But now suppose we also add the following method definition to
the class DateSixthTry:

public void increase(int term)
{
 year = year + term;
}

This is a valid overloading because the two methods named increase take parameters
of different types. With both of these methods named increase added to the class,
the following now behaves differently:

date.increase(2);

If Java can find an exact match of types, it uses the method definition with an exact
match before it tries to do any automatic type casts. So now the displayed invocation
of date.increase is equivalent to

date.year = date.year + 2;

However, if you meant to use an argument of 2.0 for date.increase and instead
used 2, counting on an automatic type cast, then this is not what you want. It is
best to avoid overloading where there is a potential for interacting dangerously with
automatic type casting, as in the examples discussed in this Pitfall section.

Overloading 255

Display 4.12 Using an Overloaded Method Name (part 1 of 2)

 1 public class OverloadingDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 DateSixthTry date1 = new DateSixthTry(),
 6 date2 = new DateSixthTry(),
 7 date3 = new DateSixthTry();

PITFALL: (continued)

In some cases of overloading, a single method invocation can be resolved in two
different ways, depending on how overloading and type conversion interact. Such
ambiguous method invocations are not allowed in Java and will produce an error
message. For example, you can overload a method named doSomething by giving
two definitions that have the following two method headings in a SampleClass:

public class SampleClass
{
 public void doSomething(double n1, int n2)
 .
 .
 .
 public void doSomething(int n1, double n2)
 .
 .
 .

Such overloading is legal, but there is a problem. Suppose aSampleObject is an object
of type SampleClass. An invocation such as the following will produce an error
message, because Java cannot decide which overloaded definition of doSomething
to use:

aSampleObject.doSomething(5, 10);

Java cannot decide whether it should convert the int value 5 to a double value
and use the first definition of doSomething, or whether it should convert the int
value 10 to a double value and use the second definition. In this situation, the Java
compiler issues an error message indicating that the method invocation is ambiguous.

The following two method invocations are allowed:

aSampleObject.doSomething(5.0, 10);
aSampleObject.doSomething(5, 10.0);

However, such situations, while legal, are confusing and should be avoided. ■

(continued)

256 CHAPTER 4 Defining Classes I

Display 4.12 Using an Overloaded Method Name (part 2 of 2)

 8 date1.setDate(1, 2, 2008);
 9 date2.setDate("February", 2, 2008);
10 date3.setDate(2008);

11 System.out.println(date1);
12 System.out.println(date2);
13 System.out.println(date3);
14 }
15 }

Sample Dialogue

January 2, 2008

February 2, 2008

January 1, 2008

Overloading and Automatic Type Conversion

Java always looks for a method signature that exactly matches the method invocation
before it tries to use automatic type conversion. If Java can find a definition of a method that
exactly matches the types of the arguments, it uses that definition. Only after it fails to find
an exact match does Java try automatic type conversions to find a method definition that
matches the (type cast) types of the method invocation.

PITFALL: You Cannot Overload Based on the Type Returned

Note that the signature of a method lists only the method name and the types of the
parameters and does not include the type returned. When you overload a method
name, any two methods must have different signatures. The type returned has
nothing to do with the signature of a method. For example, a class could not have
two method definitions with the following headings:

public class SampleClass2
{
 public int computeSomething(int n)
 .
 .
 .
 public double computeSomething(int n)
 .
 .
 .

Overloading 257

PITFALL: (continued)

If you think about it, there is no way that Java could allow this sort of overloading.
Suppose anObject is an object of the class SampleClass2. Then in the following
assignment, Java could not decide which of the above two method definitions to use:

double answer = anObject.computeSomething(10);

Either a value of type int or a value of type double can legally be assigned to the vari-
able answer. So, either method definition could be used. Because of such problems,
Java says it is illegal to have both of these method headings in the same class. ■

You Cannot Overload Operators in Java
Many programming languages, such as C++, allow you to overload an operator, such as +,
so that the operator can be used with objects of some class you define as well as be used
for such things as numbers. You cannot do this in Java. If you want to have an “addition”
in your class, you must use a method name, such as add, and ordinary method syntax; you
cannot define operators, such as the + operator, to work with objects of a class you define.

Self-Test Exercises

20. What is the signature of each of the following method headings?

public void doSomething(int p1, char p2, int p3)
public void setMonth(int newMonth)
public void setMonth(String newMonth)
public int amount(int balance, double duration)
public double amount(int balance, double duration)

21. Consider the class DateSixthTry in Display 4.11. Would it be legal to add
two method definitions with the following two method headings to the class
DateSixthTry?

public void setMonth(int newMonth)
public void setMonth(String newMonth)

22. Consider the class DateSixthTry in Display 4.11. Would it be legal to add
two method definitions with the following two method headings to the class
DateSixthTry?

public void setMonth(int newMonth)

private void setMonth(int newMonth)

(continued)

258 CHAPTER 4 Defining Classes I

4.4 Constructors

Well begun is half done.

Anonymous.

You often want to initialize the instance variables for an object when you create
the object. As you will see later in this book, there are other initializing actions you
might also want to take, but initializing instance variables is the most common sort of
initialization. A constructor is a special variety of method that is designed to perform
such initialization. In this section, we tell you how to define and use constructors.

Constructor Definitions

Although you may not have realized it, you have already been using constructors every
time you used the new operator to create an object, as in the following example:

DateSixthTry date1 = new DateSixthTry();

The expression new DateSixthTry() is an invocation of a constructor. A constructor
is a special variety of method that, among other things, must have the same name as
the class. So, the first occurrence of DateSixthTry in the previous code is a class name,
and the second occurrence of DateSixthTry is the name of a constructor. If you add
no constructor definitions to your class, then Java automatically creates a constructor
that takes no arguments. We have been using this automatically provided constructor
up until now. The automatically provided constructor creates the object but does little
else. It is preferable to define your own constructors so that you can have the constructor
initialize instance variables, or do whatever other initialization actions you want.

In Display 4.13, we have rewritten our date class one last time by adding five con-
structors. Since this is our final date class, we have included all method definitions in
the display so you can see the entire class definition. (We have omitted writeOutput
because it would be superfluous, as noted in the earlier subsection entitled “The
Methods equals and toString.”)

constructor

Self-Test Exercises (continued)

23. Consider the class DateSixthTry in Display 4.11. Would it be legal to add
two method definitions with the following two method headings to the class
DateSixthTry?

public int getMonth()

public String getMonth()

Constructors 259

Display 4.13 A Class with Constructors (part 1 of 5)

 1 import java.util.Scanner;

 2 public class Date
 3 {
 4 private String month;
 5 private int day;
 6 private int year; //a four digit number.

 7 public Date()
 8 {
 9 month = "January";
10 day = 1;
11 year = 1000;
12 }

13 public Date(int monthInt, int day, int year)
14 {
15 setDate(monthInt, day, year);
16 }

17 public Date(String monthString, int day, int year)
18 {
19 setDate(monthString, day, year);
20 }

21 public Date(int year)
22 {
23 setDate(1, 1, year);
24 }

25 public Date(Date aDate)
26 {
27 if (aDate == null) //Not a real date.
28 {
29 System.out.println("Fatal Error.");
30 System.exit(0);
31 }

32 month = aDate.month;
33 day = aDate.day;
34 year = aDate.year;
35 }

This is our final definition of a class
whose objects are dates.

You can invoke another
method inside a
constructor definition.

A constructor usually initializes all
instance variables, even if there is not a
corresponding parameter.

We will have more to
say about this
constructor in
Chapter 5. Although you
have had enough
material to use this
constructor, you need
not worry about it
until Section 5.3 of
Chapter 5.

No-argument constructor

(continued)

260 CHAPTER 4 Defining Classes I

Display 4.13 A Class with Constructors (part 2 of 5)

36 public void setDate(int monthInt, int day, int year)
37 {
38 if (dateOK(monthInt, day, year))
39 {
40 this.month = monthString(monthInt);
41 this.day = day;
42 this.year = year;
43 }
44 else
45 {
46 System.out.println("Fatal Error");
47 System.exit(0);
48 }
49 }

50 public void setDate(String monthString, int day, int year)
51 {
52 if (dateOK(monthString, day, year))
53 {
54 this.month = monthString;
55 this.day = day;
56 this.year = year;
57 }
58 else
59 {
60 System.out.println("Fatal Error");
61 System.exit(0);
62 }
63 }

64 public void setDate(int year)
65 {
66 setDate(1, 1, year);
67 }

68 public void setYear(int year)
69 {
70 if ((year < 1000) || (year > 9999))
71 {
72 System.out.println("Fatal Error");
73 System.exit(0);
74 }
75 else
76 this.year = year;
77 }

The mutator methods, whose names begin with
set, are used to reset the data in an object after
the object has been created using new and a
constructor.

Display 4.13 A Class with Constructors (part 3 of 5)

78 public void setMonth(int monthNumber)
79 {
80 if ((monthNumber <= 0) || (monthNumber > 12))
81 {
82 System.out.println("Fatal Error");
83 System.exit(0);
84 }
85 else
86 month = monthString(monthNumber);
87 }

88 public void setDay(int day)
89 {
90 if ((day <= 0) || (day > 31))
91 {
92 System.out.println("Fatal Error");
93 System.exit(0);
94 }
95 else
96 this.day = day;
97 }

98 public int getMonth()
99 {
100 if (month.equals("January"))
101 return 1;
102 else if (month.equals("February"))
103 return 2;
104 else if (month.equals("March"))
105 return 3;
 . . .

 <The omitted cases are obvious, but if need be, you can see all the cases in Display 4.2.>
 . . .
106 else if (month.equals("November"))
107 return 11;
108 else if (month.equals("December"))
109 return 12;
110 else
111 {
112 System.out.println("Fatal Error");
113 System.exit(0);
114 return 0; //Needed to keep the compiler happy
115 }
116 }

(continued)

Constructors 261

262 CHAPTER 4 Defining Classes I

Display 4.13 A Class with Constructors (part 4 of 5)

117 public int getDay()
118 {
119 return day;
120 }

121 public int getYear()
122 {
123 return year;
124 }

125 public String toString()
126 {
127 return (month + " " + day + ", " + year);
128 }

129 public boolean equals(Date otherDate)
130 {
131 return ((month.equals(otherDate.month))
132 && (day == otherDate.day)

&& (year == otherDate.year));
133 }

134 public Boolean precedes(Date otherDate)
135 {
136 return ((year < otherDate.year) ||
137 (year == otherDate.year && getMonth() <

otherDate.getMonth()) ||
138 (year == otherDate.year && month.equals(otherDate.month)
139 && day < otherDate.day));
140 }

141 public void readInput()
142 {

143 boolean tryAgain = true;
144 Scanner keyboard = new Scanner(System.in);
145 while (tryAgain)
146 {
147 System.out.println("Enter month, day, and year.");
148 System.out.println("Do not use a comma.");
149 String monthInput = keyboard.next();
150 int dayInput = keyboard.nextInt();
151 int yearInput = keyboard.nextInt();
152 if (dateOK(monthInput, dayInput, yearInput))
153 {

154 setDate(monthInput, dayInput, yearInput);
155 tryAgain = false;
156 }

We have omitted the method writeOutput because
it would be superfluous, as noted in the subsection
entitled “The Methods equals and toString.”

The method equals of the class
String

Display 4.13 A Class with Constructors (part 5 of 5)

157 else
158 System.out.println("Illegal date. Reenter input.");
159 }
160 }

161 private boolean dateOK(int monthInt, int dayInt, int yearInt)
162 {
163 return ((monthInt >= 1) && (monthInt <= 12) &&
164 (dayInt >= 1) && (dayInt <= 31) &&
165 (yearInt >= 1000) && (yearInt <= 9999));
166 }

167 private boolean dateOK(String monthString, int dayInt, int
 yearInt)

168 {
169 return (monthOK(monthString) &&
170 (dayInt >= 1) && (dayInt <= 31) &&
171 (yearInt >= 1000) && (yearInt <= 9999));
172 }

173 private boolean monthOK(String month)
174 {
175 return (month.equals("January") || month.equals("February") ||
176 month.equals("March") || month.equals("April") ||
177 month.equals("May") || month.equals("June") ||
178 month.equals("July") || month.equals("August") ||
179 month.equals("September") || month.equals("October") ||
180 month.equals("November") || month.equals("December"));
181 }

182 private String monthString(int monthNumber)
183 {
184 switch (monthNumber)
185 {
186 case 1:
187 return "January";
 . . .

<The omitted cases are obvious, but if need be, you can see all the cases in Display 4.9.>
 . . .
188 default:
189 System.out.println("Fatal Error");
190 System.exit(0);
191 return "Error"; //to keep the compiler happy
192 }
193 }
194 }

The private methods need not be
last, but that’s as good a place
as any.

Constructors 263

264 CHAPTER 4 Defining Classes I

In Display 4.13, we have used overloading to create five constructors for the class
Date. It is normal to have more than one constructor. Because every constructor must
have the same name as the class, all the constructors in a class must have the same
name. So, when you define multiple constructors, you must use overloading.

Note that when you define a constructor, you do not give any return type for
the constructor; you do not even use void in place of a return type. Also notice that
constructors are normally public.

All the constructor definitions in Display 4.13 initialize all the instance variables,
even if there is no parameter corresponding to that instance variable. This is normal.

In a constructor definition, you can do pretty much anything that you can do in any
ordinary method definition, but normally you perform only initialization tasks such as
initialization of instance variables.

When you create a new object with the operator new, you must always include the
name of a constructor after the operator new. This is the way you invoke a constructor.
As with any method invocation, you list any arguments in parentheses after the
constructor name (which is the same as the class name). For example, suppose you
want to use new to create a new object of the class Date defined in Display 4.13. You
might do so as follows:

Date birthday = new Date("December", 16, 1770);

This is a call to the constructor for the class Date that takes three arguments: one
of type String and two of type int. This creates a new object to represent the date
December 16, 1770, and sets the variable birthday so that it names this new object.
Another example is the following:

Date newYearsDay = new Date(3000);

This creates a new object to represent the date January 1, 3000, and sets the variable
newYearsDay so that it names this new object.

constructor
arguments

Constructor
A constructor is a variety of method that is called when an object of the class is created
using new. Constructors are used to initialize objects. A constructor must have the same
name as the class to which it belongs. Arguments for a constructor are given in parentheses
after the class name, as in the following examples.

EXAMPLES

Date birthday = new Date("December", 16, 1770),
 theDate = new Date(2008);

A constructor is defined very much like any ordinary method except that it does not have a
type returned and does not even include a void in the constructor heading. See Display 4.13
for examples of constructor definitions.

resetting
object
values

A constructor is called when you create a new object, such as with the operator new.
An attempt to call a constructor in any other way, such as the following, is illegal:

birthday.Date("January", 27, 1756); //Illegal!

Because you cannot call a constructor for an object after it is created, you need some
other way to change the values of the instance variables of an object. That is the purpose
of the setDate methods and other methods that begin with set in Display 4.13. If
birthday already names an object that was created with new, you can change the values
of the instance variables as follows:

birthday.setDate("January", 27, 1756);

Although it is not required, such methods that reset instance variables normally are
given names that start with set.

Although you cannot use a constructor to reset the instance variables of an already
created object, you can do something that looks very similar. The following is legal:

Date birthday = new Date("December", 16, 1770);
 .
 .
 .
 birthday = new Date("January", 27, 1756);

However, the second invocation of the constructor does not simply change the values
of instance variables for the object. Instead, it discards the old object and allocates
storage for a new object before setting the instance variables. So, for efficiency (and
occasionally for other reasons we have not yet discussed), it is preferable to use a
method such as setDate to change the data in the instance variables of an already
created object.

Display 4.14 contains a demonstration program for the constructors defined in
Display 4.13.

Display 4.14 Use of Constructors (part 1 of 2)

 1 public class ConstructorsDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 Date date1 = new Date("December", 16, 1770),
 6 date2 = new Date(1, 27, 1756),
 7 date3 = new Date(1882),
 8 date4 = new Date();
 9 System.out.println("Whose birthday is " + date1 + "?");
10 System.out.println("Whose birthday is " + date2 + "?");
11 System.out.println("Whose birthday is " + date3 + "?");
12 System.out.println("The default date is " + date4 + ".");
13 }
14 }

(continued)

Constructors 265

266 CHAPTER 4 Defining Classes I

Is a Constructor Really a Method?
There are differing opinions on whether or not a constructor should be called a method.
Most authorities call a constructor a method but emphasize that it is a special kind of
method with many properties not shared with other kinds of methods. Some authorities
say a constructor is a method-like entity but not, strictly speaking, a method. All authorities
agree about what a constructor is; the only disagreement is over whether or not it should
be referred to as a method. Thus, this is not a major issue. However, whenever you hear
a phrase such as “all methods,” you should make sure you know whether it does or does
not include constructors. To avoid confusion, we try to use the phrase “constructors and
methods” when we want to include constructors.

TIP: You Can Invoke Another Method in a Constructor

It is perfectly legal to invoke another method within the definition of a constructor.
For example, several of the constructors in Display 4.13 invoke a mutator method to
set the values of the instance variables. This is legal because the first action taken by
a constructor is to automatically create an object with instance variables. You do not
write any code to create this object. Java creates it automatically when the constructor
is invoked. Any method invocation in the body of the constructor definition has this
object as its calling object.

You can even include an invocation of one constructor within the definition of
another constructor. However, we will not discuss the syntax for doing that in this
chapter. It will be covered in Chapter 7. ■

TIP: A Constructor Has a this Parameter

Just like the ordinary methods we discussed before we introduced constructors, every
constructor has a this parameter. The this parameter can be used explicitly, but it is
more often understood to be present although not written down. Whenever an instance
variable of the class is used in a constructor (without an object name and a dot before
it), it is understood to have an implicit this and dot before it. Similarly, whenever

Sample Dialogue

Whose birthday is December 16, 1770?

Whose birthday is January 27, 1756?

Whose birthday is January 1, 1882?

The default date is January 1, 1000.

Display 4.14 Use of Constructors (part 2 of 2)

TIP: (continued)

a method is used in a constructor and the method has no explicit calling object, the
method is understood to have this and a dot before it; that is, it is understood to
have this as its calling object.

As noted in the previous Programming Tip, the first action taken by a constructor
is to automatically create an object with instance variables. This object is automati-
cally plugged in for the this parameter. So, within the definition of a constructor,
the this parameter refers to the object created by the constructor. ■

no-argument
constructor

TIP: Include a No-Argument Constructor

A constructor that takes no arguments is called a no-argument constructor or
no-arg constructor. If you define a class and include absolutely no constructors
of any kind, then a no-argument constructor is automatically created. This
no-argument constructor does not do much, but it does give you an object of
the class type. So, if the definition of the class MyClass contains absolutely no
constructor definitions, then the following is legal:

MyClass myObject = new MyClass();

If your class definition includes one or more constructors of any kind, then no
constructor is generated automatically. So, for example, suppose you define a class
called YourClass. If you include one or more constructors that each take one or
more arguments, but you do not include a no-argument constructor in your class
definition, then there is not a no-argument constructor, and the following is illegal:

YourClass yourObject = new YourClass();

The problem with the above declaration is that it asks the compiler to invoke the
no-argument constructor, but there is not a no-argument constructor present.

To avoid problems, you should normally include a no-argument constructor in
any class you define. If you do not want the no-argument constructor to initialize
any instance variables, you can simply give it an empty body when you implement
it. The following constructor definition is perfectly legal. It does nothing but create
an object (and, as we will see later in this chapter, set the instance variables equal to
default values):

public MyClass()
{/*Do nothing.*/}

Constructors 267

(continued)

268 CHAPTER 4 Defining Classes I

default
constructor

TIP: (continued)

A no-argument constructor is also known as a default constructor. However, the
term default constructor is misleading because, as we have explained, a no-argument
constructor is not always provided by default. There is now a movement to replace
default constructor with the term no-argument constructor, but you will frequently
encounter the former term. ■

No-Argument Constructor
A constructor with no parameters is called a no-argument constructor. If your class
definition contains absolutely no constructor definitions, then Java will automatically
create a no-argument constructor. If your class definition contains one or more constructor
definitions, then Java does not automatically generate any constructor; in this case, what
you define is what you get. Most of the classes you define should include a definition of a
no-argument constructor.

EXAMPLE: The Final Date Class

The final version of our class for a date is given in Display 4.13.We will be using this
class Date again in Chapter 5.

Self-Test Exercises

24. If a class is named CoolClass, what names are allowed as names for
constructors in the class CoolClass?

25. Suppose you have defined a class such as the following for use in a program:

public class YourClass
{
 private int information;
 private char moreInformation;
 public YourClass(int newInfo, char moreNewInfo)
 {
 <Details not shown.>
 }
 public YourClass()
 {

Default Variable Initializations

Local variables are not automatically initialized in Java, so you must explicitly initialize
a local variable before using it. Instance variables, on the other hand, are automatically
initialized. Instance variables of type boolean are automatically initialized to false.
Instance variables of other primitive types are automatically initialized to the zero of
their type. Instance variables of a class type are automatically initialized to null, which
is a kind of placeholder for an object that will be filled in later. We will discuss null in
Chapter 5. Although instance variables are automatically initialized, we prefer to always
explicitly initialize them in a constructor, even if the initializing value is the same as the
default initialization. That makes the code clearer.

An Alternative Way to Initialize Instance Variables

Instance variables are normally initialized in constructors, which is where we prefer to
initialize them. However, there is an alternative. You can initialize instance variables
when you declare them in a class definition, as illustrated by the following:

public class Date
{
 private String month = "January";
 private int day = 1;
 private int year = 1000;

Constructors 269

Self-Test Exercises (continued)

 <Details not shown.>
 }
 public void doStuff()
 {
 <Details not shown.>
 }
}

Which of the following are legal in a program that uses this class?

YourClass anObject = new YourClass(42, 'A');
YourClass anotherObject = new YourClass(41.99, 'A');
YourClass yetAnotherObject = new YourClass();
yetAnotherObject.doStuff();
YourClass oneMoreObject;
oneMoreObject.doStuff();
oneMoreObject.YourClass(99, 'B');

26. What is a no-argument constructor? Does every class have a no-argument
constructor? What is a default constructor?

270 CHAPTER 4 Defining Classes I

If you initialize instance variables in this way, you may or may not want to define
constructors. But if you do define any constructors, it is usually best to define a
no-argument constructor even if the body of the no-argument constructor is empty.

EXAMPLE: A Pet Record Class

Display 4.15 contains another example of a class definition. In this case, the objects
of the class represent pet records consisting of the pet’s name, age, and weight. Notice
the similarities and differences between the constructors and the mutator methods
(the ones whose names begin with set). They both set instance variables, but they are
used differently. The constructors are used to create and initialize new objects of the
class. However, after the object is created using a constructor and new, any changes
to the object are performed by the mutator methods such as set or setAge. This is
illustrated by the program in Display 4.16.

It would be possible to use constructors in place of the mutators, such as the
method set. For example, the program in Display 4.16 would produce the same
dialogue if you replace the line

usersPet.set(name, age, weight);

with

usersPet = new Pet(name, age, weight);

Even so, this use of constructors is a bad idea.
The following mutator method invocation simply changes the values of the

instance variables of the object named by usersPet:

usersPet.set(name, age, weight);

However, the following use of a constructor creates a completely new object, which is
a much less efficient process than just changing the values of some instance variables:

usersPet = new Pet(name, age, weight);

Display 4.15 A Class for Pet Records (part 1 of 4)

 1 /**
 2 Class for basic pet records: name, age, and weight.
 3 */
 4 public class Pet
 5 {
 6 private String name;
 7 private int age; //in years
 8 private double weight; //in pounds
 9

Display 4.15 A Class for Pet Records (part 2 of 4)

10 public String toString()
11 {
12 return ("Name: " + name + " Age: " + age + " years"
13 + "\nWeight: " + weight + " pounds");
14 }
15
16 public Pet(String initialName,int initialAge,
17 double initialWeight)
18 {
19 name = initialName;
20 if ((initialAge < 0) || (initialWeight < 0))
21 {
22 System.out.println("Error: Negative age or weight.");
23 System.exit(0);
24 }
25 else
26 {
27 age = initialAge;
28 weight = initialWeight;
29 }
30 }
31
32 public void set(String newName,int newAge,double newWeight)
33 {
34 name = newName;
35 if ((newAge < 0) || (newWeight < 0))
36 {
37 System.out.println("Error: Negative age or weight.");
38 System.exit(0);
39 }
40 else
41 {
42 age = newAge;
43 weight = newWeight;
44 }
45 }
46 public Pet(String initialName)
47 {
48 name = initialName;
49 age = 0;
50 weight = 0;
51 }
52
53 public void setName(String newName)
54 {
55 name = newName;
56 }
57

(continued)

Constructors are only called when you create an
object, such as with new. To change an
already existing object, you use one or more
methods such as these set methods.

Constructors normally set all instance
variables, even if there is not a full set of
parameters.

Age and weight are unchanged.

Constructors 271

272 CHAPTER 4 Defining Classes I

Display 4.15 A Class for Pet Records (part 3 of 4)

58 public Pet(int initialAge)
59 {
60 name = "No name yet.";
61 weight = 0;
62 if (initialAge < 0)
63 {
64 System.out.println("Error: Negative age.");
65 System.exit(0);
66 }
67 else
68 age = initialAge;
69 }
70
71 public void setAge(int newAge)
72 {
73 if (newAge < 0)
74 {
75 System.out.println("Error: Negative age.");
76 System.exit(0);
77 }
78 else
79 age = newAge;
80 }
81
82
83
84
85
86 public Pet(double initialWeight)
87 {
88 name = "No name yet";
89 age = 0;
90 if (initialWeight < 0)
91 {
92 System.out.println("Error: Negative weight.");
93 System.exit(0);
94 }
95 else
96 weight = initialWeight;
97 }
98 public void setWeight(double newWeight)
99 {

Name and weight are unchanged.

Display 4.15 A Class for Pet Records (part 4 of 4)

100 if (newWeight < 0)
101 {
102 System.out.println("Error: Negative weight.");
103 System.exit(0);
104 }
105 else
106 weight = newWeight;
107 }
108 public Pet()
109 {
110 name = "No name yet.";
111 age = 0;
112 weight = 0;
113 }

114 public String getName()
115 {
116 return name;
117 }

118 public int getAge()
119 {
120 return age;
121 }

122 public double getWeight()
123 {
124 return weight;
125 }
126 }

Name and age are unchanged.

Display 4.16 Using Constructors and Set Methods (part 1 of 2)

 1 import java.util.Scanner;
 2 public class PetDemo
 3 {
 4 public static void main(String[] args)
 5 {

(continued)

Constructors 273

274 CHAPTER 4 Defining Classes I

The StringTokenizer Class ✶

The StringTokenizer class is used to recover the words in a multiword string. It is
often used when reading input. However, when we covered input in Chapter 2, we
could not cover the StringTokenizer class because use of the StringTokenizer class
normally involves knowledge of loops and constructors, two topics that we had not yet
covered. We now have covered enough material to explain the StringTokenizer class.

 6 Pet usersPet = new Pet("Jane Doe");
 7 System.out.println("My records on your pet are incomplete.");
 8 System.out.println("Here is what they currently say:");
 9 System.out.println(usersPet);

10 Scanner keyboard = new Scanner(System.in);
11 System.out.println("Please enter the pet's name:");
12 String name = keyboard.nextLine();
13 System.out.println("Please enter the pet's age:");
14 int age = keyboard.nextInt();
15 System.out.println("Please enter the pet's weight:");
16 double weight = keyboard.nextDouble();
17 usersPet.set(name, age, weight);
18 System.out.println("My records now say:");
19 System.out.println(usersPet);
20 }
21 }

Sample Dialogue

My records on your pet are incomplete.

Here is what they currently say:

Name: Jane Doe Age: 0 years

Weight: 0.0 pounds

Please enter the pet's name:

Fang Junior

Please enter the pet's age:

5

Please enter the pet's weight:

87.5

My records now say:

Name: Fang Junior Age: 5 years

Weight: 87.5 pounds

This is equivalent to
System.out.println(usersPet.toString());

Display 4.16 Using Constructors and Set Methods (part 2 of 2)

One approach to reading keyboard input is to read an entire line of input into a
variable of type String—for example, with the method nextLine of the Scanner
class—and then to use the StringTokenizer class to decompose the string in the
variable into words.

The class StringTokenizer is in the standard Java package (library) java.util.
To tell Java where to find the class StringTokenizer, any class or program that uses
the class StringTokenizer must contain the following (or something similar) at the
start of the file:

import java.util.StringTokenizer;

Perhaps the most common use of the StringTokenizer class is to decompose a
line of input. However, the StringTokenizer class can be used to decompose any
string. The following example illustrates a typical way that the class StringTokenizer
is used:

StringTokenizer wordFactory =
 new StringTokenizer("A single word can be critical.");
while(wordFactory.hasMoreTokens())
{
 System.out.println(wordFactory.nextToken());
}

This will produce the following output:

A
single
word
can
be
critical.

The constructor invocation

new StringTokenizer("A single word can be critical.")

produces a new object of the class StringTokenizer. The assignment statement

StringTokenizer wordFactory =
 new StringTokenizer("A single word can be critical.");

gives this StringTokenizer object the name wordFactory. You may use any string
in place of "A single word can be critical." and any variable name in
place of wordFactory. The StringTokenizer object created in this way can be
used to produce the individual words in the string used as the argument to the
StringTokenizer constructor. These individual words are called tokens.

import

tokens

Constructors 275

276 CHAPTER 4 Defining Classes I

The method nextToken returns the first token (word) when it is invoked for the
first time, returns the second token when it is invoked the second time, and so forth. If
your code invokes nextToken after it has returned all the tokens in its string, then your
program will halt and issue an error message.

The method hasMoreTokens is a method that returns a value of type boolean; that
is, it returns either true or false. Thus, an invocation of hasMoreTokens, such as the
following

wordFactory.hasMoreTokens()

is a Boolean expression, and so it can be used to control a while loop. The method
hasMoreTokens returns true as long as nextToken has not yet returned all the tokens
in the string, and it returns false after the method nextToken has returned all the
tokens in the string.

When the constructor for StringTokenizer is used with a single argument, as in
the preceding example, the tokens are substrings of nonwhitespace characters, and the
whitespace characters are used as the separators for the tokens. Any string of one or
more whitespace characters is considered a separator. Thus, in the preceding example,
the last token produced by the method nextToken is "critical." including the
period. This is because the period is not a whitespace character and so is not a separator.

You can specify your own set of separator characters. When you create your
own set of separator characters, you give a second argument to the constructor for
StringTokenizer. The second argument is a string consisting of all the separator
characters. Thus, if you want your separators to consist of the blank, the new-line
character, the period, and the comma, you could proceed as in the following example:

StringTokenizer wordfactory2 =
 new StringTokenizer("Give me the word, my friend.", " \n.,");
while(wordfactory2.hasMoreTokens())
{
 System.out.println(wordfactory2.nextToken());
}

This will produce the output

Give
me
the
word
my
friend

nextToken

hasMore
Tokens

choosing
delimeters

Notice that the period and comma are not part of the tokens produced, because they
are now token separators. Also note that the string of token separators is the second
argument to the constructor.

Some of the methods for the class StringTokenizer are summarized in Display 4.17.
A sample use of StringTokenizer is given in Display 4.18.

5Exceptions are covered in Chapter 9. You can ignore any reference to NoSuchElementException
until you reach Chapter 9. We include it here for reference value only.

Constructors 277

Display 4.17 Some Methods in the Class StringTokenizer

The class StringTokenizer is in the java.util package.

public StringTokenizer(String theString)

Constructor for a tokenizer that will use whitespace characters as separators when finding tokens
in theString.

public StringTokenizer(String theString, String delimiters)

Constructor for a tokenizer that will use the characters in the string delimiters as separators
when finding tokens in theString.

public boolean hasMoreTokens()

Tests whether there are more tokens available from this tokenizer’s string. When used in conjunction
with nextToken, it returns true as long as nextToken has not yet returned all the tokens in the
string; returns false otherwise.

public String nextToken()

Returns the next token from this tokenizer’s string. (Throws NoSuchElementException if there
are no more tokens to return.)5

public String nextToken(String delimiters)

First changes the delimiter characters to those in the string delimiters. Then returns the next
token from this tokenizer’s string. After the invocation is completed, the delimiter characters are
those in the string delimiters. (Throws NoSuchElementException if there are no more tokens
to return. Throws NullPointer-Exception if delimiters is null.)5

public int countTokens()

Returns the number of tokens remaining to be returned by nextToken.

278 CHAPTER 4 Defining Classes I

Display 4.18 Use of the StringTokenizer Class

 1 import java.util.Scanner;
 2 import java.util.StringTokenizer;

 1 public class StringTokenizerDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 Scanner keyboard = new Scanner(System.in);

 6 System.out.println("Enter your last name");
 7 System.out.println("followed by your first and middle names.");
 8 System.out.println("If you have no middle name,");
 9 System.out.println("enter \"None\".");
10 String inputLine = keyboard.nextLine();

11 String delimiters = ", "; //Comma and blank space
12 StringTokenizer nameFactory =
13 new StringTokenizer(inputLine, delimiters);

14 String lastName = nameFactory.nextToken();
15 String firstName = nameFactory.nextToken();
16 String middleName = nameFactory.nextToken();
17 if (middleName.equalsIgnoreCase("None"))
18 middleName = ""; //Empty string
19 System.out.println("Hello " + firstName
20 + " " + middleName + " " + lastName);
21 }
22 }

Sample Dialogue

Enter your last name

followed by your first and middle names.

If you have no middle name,

enter None.

Savitch, Walter None

Hello Walter Savitch

Note that the comma is
not read because it is a
delimiter.

Chapter Summary

• Objects have both instance variables and methods. A class is a type whose values are
objects. All objects in a class have the same methods and the same types of instance
variables.

• There are two main kinds of methods: methods that return a value and void meth-
ods. (Some specialized methods, such as constructors, are neither void methods nor
methods that return a value.)

• When defining a method, the this parameter is a name used for the calling object.

• Normally, your classes should have both an equals method and a toString method.

• If an instance variable or method is marked private, then it cannot be directly
 referenced anyplace except in the definition of a method of the same class.

• Outside of the class in which it is defined, a private instance variable can be accessed
via accessor methods and changed via mutator methods.

• A variable declared in a method is said to be a local variable. The meaning of a local
variable is confined to the method in which it is declared. The local variable goes
away when a method invocation ends. The name of a local variable can be reused for
something else outside of the method in which it is declared.

• A parameter is like a blank in a method definition that is filled in with an argu-
ment when the method is invoked. A parameter is actually a local variable that is
 initialized to the value of the corresponding argument. This is known as the call-by-
value parameter-passing mechanism.

• If a variable is used as an argument to a method, then only the value of the variable,
not the variable itself, is plugged in to the corresponding parameter.

Self-Test Exercises

27. What would be the last line in the dialogue in Display 4.18 if the user entered
the following input line instead of the one shown in Display 4.18? (The
comma is omitted.)

Savitch Walter None

28. What would be the last line in the dialogue in Display 4.18 if the user entered
the following input line instead of the one shown in Display 4.18?

Tom, Dick, and Harry

Chapter Summary 279

Example Using
the String
Tokenizer Class
on a CSV File

VideoNote

• Encapsulation means that the data and the actions are combined into a single item (in
our case, a class object) and that the details of the implementation are hidden. Making
all instance variables private is part of the encapsulation process.

• A class can have two (or more) different definitions for the same method name, pro-
vided the two definitions have different numbers of parameters or some parameters
of differing types. This is called overloading the method name.

• A constructor is a variety of method that is called when you create an object of the
class using new. A constructor is intended to be used to perform initialization tasks
such as initializing instance variables. A constructor must have the same name as the
class to which it belongs.

• A constructor with no parameters is called a no-argument constructor. If your class
definition includes no constructor definitions at all, then Java automatically provides
a no-argument constructor. If your class definition contains any constructor defini-
tions at all, then no additional constructors are provided by Java. Your class defini-
tions should usually include a no-argument constructor.

Answers to Self-Test Exercises

 1. public void makeItNewYears()

{

 month = "January";

 day = 1;

}

 2. public void yellIfNewYear()

{

 if ((month.equalsIgnorewCase("January")) && (day == 1))

 System.out.println("Hurrah!");

 else

 System.out.println("Not New Year's Day.");

}

 3. public int getNextYear()

{

 int nextYear = year + 1;

 return nextYear;

}

 4. public void happyGreeting()

{

 int count;

 for (count = 1; count <= day; count++)

 System.out.println("Happy Days!");

}

280 CHAPTER 4 Defining Classes I

 5. public double fractionDone (int targetDay)

{

 double doubleDay = day;

 return doubleDay/targetDay;

}

 6. public void advanceYear(int increase)

{

 year = year + increase;

}

 7. The instances of newMonth that have their values changed to 6 are indicated in
color as follows:

public void setDate(int newMonth, int newDay, int newYear)

{

 month = monthString(newMonth);

 day = newDay;

 year = newYear;

 System.out.println("Date changed to "

 + newMonth + " " + newDay + ", " + newYear);

}

The point being emphasized here is that all instances of newMonth have their values
changed to 6. Technically speaking, the parameter newMonth is a local variable.
So, there is only one local variable named newMonth whose value is changed to 6,
but the net effect, in this case, is the same as replacing all occurrences of newMonth
with 6.

 8. Yes, it is legal. The point being emphasized here is that the parameter count is
a local variable and so can have its value changed, in this case by the decrement
operator.

 9. Each case has a return statement. A return statement always ends the method
invocation, and hence ends the execution of the switch statement. So, a break
statement would be redundant.

10. They are assumed to be instance variables of the calling object.

11. public int getDay()

{

 return this.day;

}

public int getYear()

{

 return this.year;

}

Answers to Self-Test Exercises 281

 12. public int getMonth()
{

 if (this.month.equals("January"))

 return 1;

 else if (this.month.equals("February"))

 return 2;

 else if (this.month.equals("March"))

 return 3;

 else if (this.month.equals("April"))

 return 4;

 else if (this.month.equals("May"))

 return 5;

 else if (this.month.equals("June"))

 return 6;

 else if (this.month.equals("July"))

 return 7;

 else if (this.month.equals("August"))

 return 8;

 else if (this.month.equals("September"))

 return 9;

 else if (this.month.equals("October"))

 return 10;

 else if (this.month.equals("November"))

 return 11;

 else if (this.month.equals("December"))

 return 12;

 else

 {

 System.out.println("Fatal Error");

 System.exit(0);

 return 0; //Needed to keep the compiler happy

 }

}

13. The instance variable month contains a string, so we used month with equals. It
would have been just as good to use

getMonth() == otherDate.getMonth()

 We used getMonth() with the less-than sign because it is of type int and so works
with the less-than sign. The instance variable month is of type String and does not
work with the less-than sign.

14. Every method should be tested in a program in which every other method in the
testing program has already been fully tested and debugged.

15. All instance variables should be marked private.

282 CHAPTER 4 Defining Classes I

16. Normally, a method is private only if it is being used solely as a helping method in
the definition of other methods.

17. getMonth, getDay, and getYear.

18. setDate, setMonth, setDay, and setYear.

19. private boolean dateOK(int monthInt, int dayInt, int yearInt)
{

 if ((yearInt < 1000) || (yearInt > 999))

 return false;

 switch (monthInt)

 {

 case 1:

 return (dayInt >= 1) && (dayInt <= 31);

 case 2:

 if (leapYear(yearInt))

 return (dayInt >= 1) && (dayInt <= 29);

 else

 return (dayInt >= 1) && (dayInt <= 28);

 case 3:

 return (dayInt >= 1) && (dayInt <= 31);

 case 4:

 return (dayInt >= 1) && (dayInt <= 30);

 case 5:

 return (dayInt >= 1) && (dayInt <= 31);

 case 6:

 return (dayInt >= 1) && (dayInt <= 30);

 case 7:

 return (dayInt >= 1) && (dayInt <= 31);

 case 8:

 return (dayInt >= 1) && (dayInt <= 31);

 case 9:

 return (dayInt >= 1) && (dayInt <= 30);

 case 10:

 return (dayInt >= 1) && (dayInt <= 31);

 case 11:

 return (dayInt >= 1) && (dayInt <= 30);

 case 12:

 return (dayInt >= 1) && (dayInt <= 31);

 default:

 return false;

 }

}

Answers to Self-Test Exercises 283

/**

Returns true if yearInt is a leap year.

*/

private boolean leapYear(int yearInt)

{

 return ((yearInt % 4 == 0) && (yearInt % 100 != 0))

 || (yearInt % 400 == 0);

}

20. doSomething(int, char, int)
setMonth(int)

setMonth(String)

amount(int, double)

amount(int, double)

21. Yes, it is legal because they have different signatures. This is a valid example of
overloading.

22. No, it would be illegal because they have the same signature.

23. No, it would be illegal. You cannot overload on the basis of the type of the
returned value.

24. If a class is named CoolClass, then all constructors must be named CoolClass.

25. YourClass anObject = new YourClass(42, 'A'); //Legal
YourClass anotherObject = new YourClass(41.99, 'A'); //Not legal

YourClass yetAnotherObject = new YourClass(); //Legal

yetAnotherObject.doStuff(); //Legal

YourClass oneMoreObject; //Legal

oneMoreObject.doStuff(); //Not legal

oneMoreObject.YourClass(99, 'B'); //Not legal

26. A no-argument constructor is a constructor with no parameters. If you define a
class and define some constructors but do not define a no-argument constructor,
then the class will have no no-argument constructor. Default constructor is another
name for a no-argument constructor.

27. The last line would be the same. Because the blank space is a delimiter, a blank
space is enough to separate the tokens.

28. Hello Dick and Tom

The other token in the input line is just not used.

284 CHAPTER 4 Defining Classes I

Programming Projects

 1. Write a program that outputs a certain coded language. The program should print
26 code words, each comprising one letter and one digit, for example, A0, B1, C2,
D3, and so on.

 Your program should not use 26 output statements!

 Design your program with a class named PrintCodeword whose constructor takes an
initial value for the starting value of the letter, for example D, and also an integer pa-
rameter that is the starting value of the number, for example 5. In this case, the series of
codewords will be D5, E6, F7, and so on. There will always be a total of 26 codewords.
If the value of letter reaches Z, it will then automatically move to A. Similarly, if the
value of digit reaches 9, then it should also move automatically to 0 as shown below.

 D5
 E6
 F7
 G8
 .
 .
 .
 .
 X5
 Y6
 Z7
 A8
 B9
 C0

 Design your program with a public method called print_Code that outputs all the
code words. Provide initial values of letters and digits from the main method class
during object creation.

 2. Define a class called CalAge. This class is used to calculate age of a person from her or
his date of birth and the current date. Include a mutator method that allows the user to
enter her or his date of birth and set the value for current date. Also include a method to
return the age in years and months (for example, 25.5 years) as a double value. Include
an additional method to check if the date of birth entered by the user is a valid one. For
example, 30 February 2008 is an invalid date. Embed your class in a test program.

 3. Define a class called Vehicle that will be used to check the amount of fuel left in a
vehicle after traveling a certain distance. The class should have the instance variable
tankSize to store the initial size of the tank and efficiency to store initial efficiency
of the vehicle. Set to zero the variable fuelInTank that is used to store the initial
amount of fuel in a tank. Include a mutator method that returns iniTankSize,
initEfficiency and fuelInTank. Include an accessor method addPetrol that
calculates how much fuel can be filled depending on the fuel existing in the tank
and the tank’s capacity. Also, include a method driveTo that returns what distance
can be traveled with the available fuel and provided efficiency. Use your class with
a test program. You should decide which variables should be public, if any. Also,
define if any other method(s) are needed.

Programming Projects 285

 4. Define a class called Journal that could be used to store an entry for a research
paper that will be published. The class should have instance variables to store the
author’s name, title of the paper, and the date of submission using the Date class
from this chapter. Add a constructor to the class that allows the user of the class
to set all instance variables. Also add a method, displayDetails, that outputs all
the instance variables, and another method called getSubmissionDetails that
returns the title of the paper, with the first letter of each word capitalized. Test your
class from the main method.

 5. Define a class called WordCount whose objects count the number of words in a
sentence. An object of this class maintains a variable count that is a nonnegative
integer. Include methods to set the counter to 0, to increase the count by 1, and to
decrease the count by 1 if any word encountered starts with ‘A’ or ‘a’. Be sure that
no method allows the value of the counter to become negative. Include an accessor
method that returns the current count value and a method that outputs the count
to the screen. There should be no input method or other mutator methods. The
only method that can set the counter is the one that sets it to 0. Write a program
(or programs) to test all the methods in your class definition.

 6. Write a grading program for a class with the following grading policies:

 a. There are three quizzes, each graded on the basis of 10 points.

 b. There is one midterm exam, graded on the basis of 100 points.

 c. There is one final exam, graded on the basis of 100 points.

 The final exam counts for 40% of the grade. The midterm counts for 35% of the
grade. The three quizzes together count for a total of 25% of the grade. (Do not
forget to convert the quiz scores to percentages before they are averaged in.)

 Any grade of 90 or more is an A, any grade of 80 or more (but less than 90) is a
B, any grade of 70 or more (but less than 80) is a C, any grade of 60 or more (but
less than 70) is a D, and any grade below 60 is an F. The program should read in
the student’s scores and output the student’s record, which consists of three quiz
scores and two exam scores, as well as the student’s overall numeric score for the
entire course and final letter grade.

 Define and use a class for the student record. The class should have instance vari-
ables for the quizzes, midterm, final, overall numeric score for the course, and
final letter grade. The overall numeric score is a number in the range 0 to 100,
which represents the weighted average of the student’s work. The class should have
methods to compute the overall numeric grade and the final letter grade. These last
methods should be void methods that set the appropriate instance variables. Your
class should have a reasonable set of accessor and mutator methods, an equals
method, and a toString method, whether or not your program uses them. You
may add other methods if you wish.

 7. Write a Temperature class that has two instance variables: a temperature value
(a floating-point number) and a character for the scale, either C for Celsius or F for
Fahrenheit. The class should have four constructor methods: one for each instance

286 CHAPTER 4 Defining Classes I

variable (assume zero degrees if no value is specified and Celsius if no scale is speci-
fied), one with two parameters for the two instance variables, and a no-argument
constructor (set to zero degrees Celsius). Include the following: (1) two accessor
methods to return the temperature—one to return the degrees Celsius, the other
to return the degrees Fahrenheit—use the following formulas to write the two
methods, and round to the nearest tenth of a degree:

DegreesC = 51degreesF - 322/9
DegreesF = (91degreesC)/5) + 32;

 (2) three mutator methods: one to set the value, one to set the scale (F or C), and
one to set both; (3) three comparison methods: an equals method to test whether
two temperatures are equal, one method to test whether one temperature is greater
than another, and one method to test whether one temperature is less than
another (note that a Celsius temperature can be equal to a Fahrenheit temperature
as indicated by the above formulas); and (4) a suitable toString method. Then
write a driver program (or programs) that tests all the methods. Be sure to use
each of the constructors, to include at least one true and one false case for each of
the comparison methods, and to test at least the following temperature equalities:
0.0 degrees C = 32.0 degrees F, –40.0 degrees C = –40.0 degrees F, and 100.0
degrees C = 212.0 degrees F.

 8. Redefine the class Date in Display 4.13 so that the instance variable for the month
is of type int instead of type String. None of the method headings should change
in any way. In particular, no String type parameters should change to int type
parameters. You must redefine the methods to make things work out. Any program
that uses the Date class from Display 4.13 should be able to use your Date class
without any changes in the program. In particular, the program in Display 4.14
should work the same whether the Date class is defined as in Display 4.13 or is
defined as you do it for this project. Write a test program (or programs) that tests
each method in your class definition.

 9. Define a class whose objects are records on animal species. The class should have
instance variables for the species name, population, and growth rate. The growth
rate is a percentage that can be positive or negative and can exceed 100%. Include
a suitable collection of constructors, mutator methods, and accessor methods.
 Include a toString method and an equals method. Include a boolean valued
method named endangered that returns true when the growth rate is negative
and returns false otherwise. Write a test program (or programs) that tests each
method in your class definition.

10. Your vet’s office is using the Pet class defined in Display 4.15 and would like to
include a way to calculate the dosage amount for drugs that are commonly admin-
istered for dogs and cats. Make the following modifications to the class:

• Add an instance variable that indicates if the type of the pet is a dog or a cat.

• Modify the constructor and the set method to include the type of pet (i.e.,
dog or cat).

Programming Projects 287

Solution to
Programming
Project 4.9

VideoNote

• Add a method named acepromazine() that returns as a double the dosage
in ml for the sedative acepromazine.

• Add a method named carprofen() that returns as a double the dosage in
ml for the pain killer carprofen.

 The dosage calculation is

Dosage1ml2 =
Weight

2.2
*

mg per kg

mg per ml

 Weight is in pounds.

• For acepromazine, use mg per ml = 10, and mg per kg = 0.03 for dogs and
0.002 for cats.

• For carprofen, use mg per ml = 12, and mg per kg = 0.5 for dogs and 0.25 for cats.

 Modify the main method in Display 4.16 to include tests of the new methods.

 11. Create a class named Pizza that stores information about a single pizza. It should
contain the following:

• Private instance variables to store the size of the pizza (either small, medium,
or large), the number of cheese toppings, the number of pepperoni toppings,
and the number of ham toppings.

• Constructor(s) that set all of the instance variables.

• Public methods to get and set the instance variables.

• A public method named calcCost() that returns a double that is the cost
of the pizza.

 Pizza cost is determined by:

 Small: $10 + $2 per topping
 Medium: $12 + $2 per topping
 Large: $14 + $2 per topping

• A public method named getDescription() that returns a String contain-
ing the pizza size, quantity of each topping, and the pizza cost as calculated
by calcCost().

 Write test code to create several pizzas and output their descriptions. For
example, a large pizza with one cheese, one pepperoni and two ham toppings
should cost a total of $22.

12. This programming project extends Programming Project 4.11. Create a PizzaOrder
class that allows up to three pizzas to be saved in an order. Each pizza saved should be
a Pizza object as described in Programming Project 4.11. In addition to appropriate
instance variables and constructors, add the following methods:

• public void setNumPizzas(int numPizzas)—sets the number of pizzas
in the order. numPizzas must be between 1 and 3.

288 CHAPTER 4 Defining Classes I

• public void setPizza1(Pizza pizza1)—sets the first pizza in the order.

• public void setPizza2(Pizza pizza2)—sets the second pizza in the order.

• public void setPizza3(Pizza pizza3)—sets the third pizza in the order.

• public double calcTotal()—returns the total cost of the order.

 Write a main method to test the class. The setPizza2 and setPizza3 methods
will be used only if there are two or three pizzas in the order, respectively. Sample
code illustrating the methods is shown below. Note that first three lines are incom-
plete. You must complete them as part of the Programming Project.

Pizza pizza1 = // Code to create a large pizza, 1 cheese, 1 ham

Pizza pizza2 = // Code to create a medium pizza, 2 cheese, 2 pepperoni

PizzaOrder order = // Code to create an order

order.setNumPizzas(2); // 2 pizzas in the order

order.setPizza1(pizza1); // Set first pizza

order.setPizza2(pizza2); // Set second pizza

double total = order.calcTotal(); // Should be 18+20 = 38

13. Your Community Supported Agriculture (CSA) farm delivers a box of fresh fruits
and vegetables to your house once a week. For this Programming Project, define the
class BoxOfProduce that contains exactly three bundles of fruits or vegetables. You
can represent the fruits or vegetables as three instance variables of type String. Add
appropriate constructor, accessor, and mutator methods. Also write a toString()
method that returns as a String the complete contents of the box.

 Next, write a main method that creates a BoxOfProduce with three items randomly
selected from this list:

Broccoli

Tomato

Kiwi

Kale

Tomatillo

 This list should be stored in a text file that is read in by your program. For now
you can assume that the list contains exactly five types of fruits or vegetables.

 Do not worry if your program randomly selects duplicate produce for the three
items. Next, the main method should display the contents of the box and allow
the user to substitute any one of the five possible fruits or vegetables for any of the
fruits or vegetables selected for the box. After the user is done with substitutions,
output the final contents of the box to be delivered. If you create additional meth-
ods to select the random items and to select valid substitutions, then your main
method will be simpler to write.

Programming Projects 289

290 CHAPTER 4 Defining Classes I

14. A comma-separated values (CSV) file is a simple text format used to store a list of
records. A comma is used as a delimiter to separate the fields for each record. This
format is commonly used to transfer data between a spreadsheet or database. In
this Programming Project, consider a store that sells five products abbreviated as
A, B, C, D, and E. Customers can rate each product from 1–5, where 1 is poor
and 5 is excellent. The ratings are stored in a CSV file where each row contains
the customer’s rating for each product. Here is a sample file with three customer
ratings:

A,B,C,D,E

3,0,5,1,2

1,1,4,2,1

0,0,5,1,3

 In this file format, the first line gives the products. The digit 0 indicates that a
customer did not rate a product. In this case, the first customer rated A as 3, C as
5, D as 1, and E as 2. Product B was not rated. The third customer rated C as 5,
D as 1, and E as 3. The third customer did not rate A or B.

 Create a text file in this format with sample ratings. Then, write a program that
reads in this text file and extracts each rating using the StringTokenizer class.
Finally, the program should output the average rating for each product. Customers
that did not rate a product should not be considered when computing the average
rating for that product. Your program can assume there will always be exactly five
products but it should work with an arbitrary number of customer ratings.

15. The goal of this Programming Project is to extend Programming Project 14 to find
the customer from the CSV file who made ratings that are most similar to ratings
input from the keyboard. First, do Programming Project 14. Then modify your
solution so that it asks the user to input ratings for the first four products before
the program reads from the file. The program should then predict whether or
not the user will like the final product by outputting the rating made by the most
similar customer. Use the formula | Au – Ac| + | Bu – Bc| + | Cu – Cc| + | Du – Dc|
to compute the similarity, where Au is the rating for product A made by the user
at the keyboard and Ac is the rating for product A made by a customer from the
file. A lower total indicates greater similarity. For example, if the user inputs 1 for
product A, 1 for product B, 3 for product C, and 2 for product D, then with the
values from Programming Project 14, the similarity to the customer in the first row
is |1 – 3| + |1 – 0| + |3 – 5| + |2 – 1| = 6, while the similarity to the customer in the
second row is |1 – 1| + |1 – 1| + |3 – 4| + |2 – 2| = 1. The customer in the second
row has the greatest similarity, so the program would output that the prediction
for product E is 1, which is the second customer’s rating for product E.

5.3 Using and MisUsing RefeRences 335
Example: A Person Class 336
Copy Constructors 345
Mutable and Immutable Classes 351

5.4 Packages and javadoc 354
Packages and import Statements 355
The Package java.lang 356
Package Names and Directories 356
The Default Package 359
Specifying a Class Path When You Compile ★ 360
Name Clashes ★ 361
Introduction to javadoc ★ 362
Commenting Classes for javadoc ★ 362
Running javadoc ★ 364

5.1 static Methods and static
VaRiables 293

Static Methods 293
Static Variables 300
The Math Class 305
Wrapper Classes 309
Automatic Boxing and Unboxing 310
Static Methods in Wrapper Classes 312

5.2 RefeRences and class
PaRaMeteRs 316

Variables and Memory 317
References 318
Class Parameters 323
The Constant null 329
The new Operator and Anonymous Objects 330
Example: Another Approach to

Keyboard Input ★ 331

5Defining Classes II

answers to self-test exercises 367 Programming Projects 371chapter summary 366

After a certain high level of technical skill is achieved, science and art

tend to coalesce in esthetics, plasticity, and form. The greatest scientists

are always artists as well.

ALBERT EINSTEIN, Quoted in Alice Calaprice, The Quotable Einstein

Archive, Princeton University Press, 1996, 33–257, 1923.

Introduction
This chapter is a continuation of Chapter 4. It covers the rest of the core material on
defining classes. We start by discussing static methods and static variables, which are
methods and variables that belong to the class as a whole and not to particular objects.
We then go on to discuss how class type variables name objects of their class and how
class type parameters are handled in Java.

This chapter also discusses packages, which are Java’s way of grouping classes
into libraries. We end this chapter with a discussion of javadoc, a program that
automatically extracts documentation from classes and packages.

Prerequisites
This chapter uses material from Chapters 1 through 4.

Sections 5.3 and 5.4 are independent of each other and may be covered in any
order. Section 5.3 covers some subtle points about references, and Section 5.4 covers
packages and javadoc. The material on javadoc is not used in the rest of this book.
The other material in Sections 5.3 and 5.4 is not heavily used in the next few chapters
and can be digested as needed if the material seems difficult on first reading.

The material on packages in Section 5.4 assumes that you know about directories
(which are called folders in some operating systems), that you know about path names
for directories (folders), and that you know about PATH (environment) variables.
These are not Java topics. They are part of your operating system, and the details
depend on your particular operating system. If you can find out how to set the PATH
variable on your operating system, then you will know enough about these topics to
understand the material on packages in Section 5.4.

5 Defining Classes II

Static Methods and Static Variables 293

5.1 Static Methods and Static Variables
All for one, one for all, that is our device.

ALEXANDRE DUMAS, The Three Musketeers, 1844.

Static Methods

Some methods do not require a calling object. Methods to perform simple numeric
calculations are good examples. For example, a method to compute the maximum of two
integers has no obvious candidate for a calling object. In Java, you can define a method
so that it requires no calling object. Such methods are known as static methods. You
define a static method in the same way as any other method, but you add the keyword
static to the method definition heading, as in the following example:

public static int maximum(int n1, int n2)
{
 if (n1 > n2)
 return n1;
 else
 return n2;
}

Although a static method requires no calling object, it still belongs to some class,
and its definition is given inside the class definition. When you invoke a static method,
you normally use the class name in place of a calling object. So if the above definition
of the method maximum were in a class named SomeClass, then the following is a
sample invocation of maximum:

int budget = SomeClass.maximum(yourMoney, myMoney);

where yourMoney and myMoney are variables of type int that contain some values.
A sample of some static method definitions, as well as a program that uses the

methods, are given in Display 5.1.
We have already been using one static method. The method exit in the class

System is a static method. To end a program immediately, we have used the following
invocation of the static method exit:

System.exit(0);

Note that with a static method, the class name serves the same purpose as a calling
object. (It would be legal to create an object of the class System and use it to invoke the
method exit, but that is confusing style; we usually use the class name when invoking
a static method.)

static
methods

294 CHAPTER 5 Defining Classes II

Display 5.1 Static Methods (part 1 of 2)

 1 /**
 2 Class with static methods for circles and spheres.
 3 */
 4 public class RoundStuff
 5 {
 6 public static final double PI = 3.14159;
 7
 8 /**
 9 Return the area of a circle of the given radius.
10 */
11 public static double area(double radius)
12 {
13 return(PI*radius*radius);
14 }
15
16 /**
17 Return the volume of a sphere of the given radius.
18 */
19 public static double volume(double radius)
20 {
21 return((4.0/3.0)*PI*radius*radius*radius);
22 }
23 }

 1 import java.util.Scanner;

 2 public class RoundStuffDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);
 7 System.out.println("Enter radius:");
 8 double radius = keyboard.nextDouble();

 9 System.out.println("A circle of radius"
10 + radius + "inches");
11 System.out.println("has an area of " +
12 RoundStuff.area(radius) + " square inches.");
13 System.out.println("A sphere of radius"
14 + radius + "inches");
15 System.out.println("has an volume of " +
16 RoundStuff.volume(radius) + "cubic inches.");
17 }
18 }

This is the file
RoundStuff.java.

This is the file
RoundStuffDemo.java.

Static Methods and Static Variables 295

Sample Dialogue

Enter radius:

2

A circle of radius 2.0 inches

has an area of 12.56636 square inches.

A sphere of radius 2.0 inches

has a volume of 33.51029333333333 cubic inches.

Display 5.1 Static Methods (part 2 of 2)

Within the definition of a static method, you cannot do anything that refers to a calling
object, such as accessing an instance variable. This makes perfectly good sense, because a
static method can be invoked without using any calling object and so can be invoked when
there are no instance variables. (Remember instance variables belong to the calling object.)
The best way to think about this restriction is in terms of the this parameter. In a static
method, you cannot use the this parameter, either explicitly or implicitly. For example,
the name of an instance variable by itself has an implicit this and a dot before it. So you
cannot use an instance variable in the definition of a static method.

Static Methods

A static method is one that can be used without a calling object. With a static method, you
normally use the class name in place of a calling object.

When you define a static method, you place the keyword static in the heading of
the definition.

Since it does not need a calling object, a static method cannot refer to an instance variable
of the class, nor can it invoke a nonstatic method of the class (unless it creates a new object
of the class and uses that object as the calling object). Another way to phrase it is that, in
the definition of a static method, you cannot use an instance variable or method that has an
implicit or explicit this for a calling object.

PITFALL: Invoking a Nonstatic Method Within a Static Method

If myMethod() is a nonstatic (that is, ordinary) method in a class, then within the
definition of any method of this class, an invocation of the form

myMethod();

means

this.myMethod();

(continued)

296 CHAPTER 5 Defining Classes II

PITFALL: (continued)

and so it is illegal within the definition of a static method. (A static method has
no this.)

However, it is legal to invoke a static method within the definition of another static
method.

There is one way that you can invoke a nonstatic method within a static method:
if you create an object of the class and use that object (rather than this) as the calling
object. For example, suppose myMethod() is a nonstatic method in the class MyClass.
Then, as we already discussed, the following is illegal within the definition of a static
method in the class MyClass:

myMethod();

However, the following is perfectly legal in a static method or any method definition:

MyClass anObject = new MyClass();
anObject.myMethod();

The method main is a static method, and you will often see code similar to this in the
main method of a class. This point is discussed in the Tip “You Can Put a main in
Any Class.” ■

TIP: You Can Put a main in Any Class

So far, whenever we have used a class in the main part of a program, that main
method was by itself in a different class definition within another file. However,
sometimes it makes sense to have a main method within a regular class definition.
The class can then be used for two purposes: It can be used to create objects in
other classes, or it can be run as a program. For example, you can combine the class
definition RoundStuff and the program RoundStuffDemo (both in Display 5.1) by
placing the main method inside the definition of the class RoundStuff, to obtain the
class definition shown in Display 5.2.

Another example of a class with a main added is given in Display 5.3. Note that
in addition to the static method main, the class has another static method named
 toCelsius. The class has both static and nonstatic methods. Note that the static
method toCelsius can be invoked without the class name or a calling object because
it is in another static method (namely main) in the same class. However, the non-
static method toString requires an explicit calling object (temperatureObject).
Java requires that a program’s main method be static. Thus, within a main method,
you cannot invoke a nonstatic method of the same class (such as toString) unless
you create an object of the class and use it as a calling object for the nonstatic method.

You do not want to place just any main method in a class definition that is to be
used as a regular class to create objects. One handy trick is to place a small diagnostic
program in a main method that is inside of your class definition. ■

Static Methods and Static Variables 297

Display 5.2 Class Definition with a main Added

 1 import java.util.Scanner;

 2 /**
 3 Class with static methods for circles and spheres.
 4 */
 5 public class RoundStuff2
 6 {
 7 public static final double PI = 3.14159;

 8 /**
 9 Return the area of a circle of the given radius.
10 */
11 public static double area(double radius)
12 {
13 return (PI*radius*radius);
14 }
15
16 /**
17 Return the volume of a sphere of the given radius.
18 */
19 public static double volume(double radius)
20 {
21 return ((4.0/3.0)*PI*radius*radius*radius);
22 }

23 public static void main(String[] args)
24 {
25 Scanner keyboard = new Scanner(System.in);
26 System.out.println("Enter radius:");
27 double radius = keyboard.nextDouble();
28
29 System.out.println("A circle of radius "
30 + radius + "inches");
31 System.out.println("has an area of " +
32 RoundStuff2.area(radius) + " square inches.");
33 System.out.println("A sphere of radius "
34 + radius + "inches");
35 System.out.println("has an volume of " +
36 RoundStuff2.volume(radius) + " cubic inches.");
37 }
38 }

The dialogue is the same as in
Display 5.1.

298 CHAPTER 5 Defining Classes II

Display 5.3 Another Class with a main Added (part 1 of 2)

 1 import java.util.Scanner;

 2 /**
 3 Class for a temperature (expressed in degrees Celsius).
 4 */
 5 public class Temperature
 6 {
 7 private double degrees; //Celsius

 8 public Temperature()
 9 {
10 degrees = 0;
11 }

12 public Temperature (double initialDegrees)
13 {
14 degrees = initialDegrees;
15 }

16 public void setDegrees (double newDegrees)
17 {
18 degrees = newDegrees;
19 }

20 public double getDegrees()
21 {
22 return degrees;
23 }

24 public String toString()
25 {
26 return (degrees + "C");
27 }
28
29 public boolean equals(Temperature otherTemperature)
30 {
31 return (degrees == otherTemperature.degrees);
32 }
33 /**
34 Returns number of Celsius degrees equal to
35 degreesF Fahrenheit degrees.
36 */

Note that this class has a main method
and both static and nonstatic methods.

Static Methods and Static Variables 299

Self-Test Exercises

1. Is the following legal? The class RoundStuff is defined in Display 5.1.

RoundStuff roundObject = new RoundStuff();
System.out.println("A circle of radius 5.5 has area"
 + roundObject.area(5.5);

2. In Display 5.1, we did not define any constructors for the class RoundStuff. Is
this poor programming style?

3. Can a class contain both static and nonstatic (that is, regular) methods?

4. Can you invoke a nonstatic method within a static method?

5. Can you invoke a static method within a nonstatic method?

6. Can you reference an instance variable within a static method? Why or why not?

37 public static double toCelsius(double degreesF)
38 {
39
40 return 5*(degreesF - 32)/9;
41 }
42 public static void main(String[] args)
43 {
44 double degreesF, degreesC;
45
46 Scanner keyboard = new Scanner(System.in);
47 System.out.println("Enter degrees Fahrenheit:");
48 degreesF = keyboard.nextDouble();
49
50 degreesC = toCelsius(degreesF);
51
52 Temperature temperatureObject = new Temperature(degreesC);
53 System.out.println("Equivalent Celsius temperature is"
54 + temperatureObject.toString());
55 }
56 }

Sample Dialogue

Enter degrees Fahrenheit:

212

Equivalent Celsius temperature is 100.0 C

Display 5.3 Another Class with a main Added (part 2 of 2)

Because main is a static method, toString must have a
specified calling object such as temperatureObject.

Because this is in the definition of the
class Temperature, this is equivalent to
Temperature.toCelsius(degreesF).

300 CHAPTER 5 Defining Classes II

Static Variables

A class can have static variables as well as static methods. A static variable is a variable
that belongs to the class as a whole and not just to one object. Each object has its own
copies of the instance variables. However, with a static variable, there is only one copy
of the variable, and all the objects can use this one variable. Thus, a static variable can
be used by objects to communicate between the objects. One object can change the
static variable, and another object can read that change. To make a variable static, you
declare it like an instance variable but add the modifier static as follows:

private static int turn;

Or if you wish to initialize the static variable, which is typical, you might declare it as
follows instead:

private static int turn = 0;

If you do not initialize a static variable, it is automatically initialized to a default
value: Static variables of type boolean are automatically initialized to false. Static
variables of other primitive types are automatically initialized to the zero of their type.
Static variables of a class type are automatically initialized to null, which is a kind of
placeholder for an object that we will discuss later in this chapter. However, we prefer
to explicitly initialize static variables, either as just shown or in a constructor.

Display 5.4 shows an example of a class with a static variable along with a
demonstration program. Notice that the two objects, lover1 and lover2, access the
same static variable turn.

As we already noted, you cannot directly access an instance variable within the
definition of a static method. However, it is perfectly legal to access a static variable
within a static method, because a static variable belongs to the class as a whole.
This is illustrated by the method getTurn in Display 5.4. When we write turn
in the definition of the static method getTurn, it does not mean this.turn; it
means TurnTaker.turn. If the static variable turn were marked public instead of
private, it would even be legal to use TurnTaker.turn outside of the definition of
the class TurnTaker.

Defined constants that we have already been using, such as the following, are a
special kind of static variable:

public static final double PI = 3.14159;

The modifier final in this example means that the static variable PI cannot be
changed. Such defined constants are normally public and can be used outside the
class. This defined constant appears in the class RoundStuff in Display 5.1. To use
this constant outside of the class RoundStuff, you write the constant in the form
RoundStuff.PI.

Good programming style dictates that static variables should normally be marked
private unless they are marked final, that is, unless they are defined constants. The
reason is the same as the reason for making instance variables private.

static variable

default
initialization

Display 5.4 A Static Variable (part 1 of 2)

 1 public class TurnTaker
 2 {
 3 private static int turn = 0;

 4 private int myTurn;
 5 private String name;

 6 public TurnTaker(String theName, int theTurn)
 7 {
 8 name = theName;
 9 if (theTurn >= 0)
10 myTurn = theTurn;
11 else
12 {
13 System.out.println("Fatal Error.");
14 System.exit(0);
15 }
16 }

17 public TurnTaker()
18 {
19 name = "No name yet";
20 myTurn = 0; //Indicating no turn.
21 }

22 public String getName()
23 {
24 return name;
25 }

26 public static int getTurn()
27 {
28 turn++;
29 return turn;
30 }

31 public boolean isMyTurn()
32 {
33 return (turn == myTurn);
34 }
35 }

This is the file
TurnTaker.java.

You cannot access an instance
variable in a static method, but you
can access a static variable in a
static method.

(continued)

Static Methods and Static Variables 301

302 CHAPTER 5 Defining Classes II

Another example of a static variable is given in Display 5.5. The static variable
numberOfInvocations is used to keep track of how many invocations have been
made by all objects of the class StaticDemo. The program counts all invocations of the
methods defined in Display 5.4, except for the method main.

36 public class StaticDemo
37 {
38 public static void main(String[] args)
39 {
40 TurnTaker lover1 = new TurnTaker("Romeo", 1);
41 TurnTaker lover2 = new TurnTaker("Juliet", 3);
42 for (int i = 1; i < 5; i++)
43 {
44 System.out.println("Turn = " + TurnTaker.getTurn());
45 if (lover1.isMyTurn())
46 System.out.println("Love from" + lover1.getName());
47 if (lover2.isMyTurn())
48 System.out.println("Love from" + lover2.getName());
49 }
50 }
51 }

Sample Dialogue

Turn = 1

Love from Romeo

Turn = 2

Turn = 3

Love from Juliet

Turn = 4

This is the file
StaticDemo.java.

Display 5.4 A Static Variable (part 2 of 2)

Display 5.5 A Static Variable (part 1 of 2)

 1 public class InvocationCounter
 2 {
 3 private static int numberOfInvocations = 0;

 4 public void demoMethod()
 5 {
 6 numberOfInvocations++;
 7 //In a real example, more code would go here.
 8 }

object1 and object2 use
the same static variable
numberOfInvocations.

 9 public void outPutCount()
10 {
11 numberOfInvocations++;
12 System.out.println("Number of invocations so far = "
13 + numberOfInvocations);
14 }

15 public static int numberSoFar()
16 {
17 numberOfInvocations++;
18 return numberOfInvocations;
19 }

20 public static void main(String[] args)
21 {
22 int i;
23 InvocationCounter object1 = new InvocationCounter();
24 for (i= 1; i <= 5 ; i++)
25 object1.demoMethod();
26 object1.outPutCount();
27
28 InvocationCounter object2 = new InvocationCounter();
29 for (i= 1; i <= 5 ; i++)
30 {
31 object2.demoMethod();
32 object2.outPutCount();
33 }

34 System.out.println("Totalnumber of invocations = "
35 + numberSoFar());
36 }
37 }

Sample Dialogue

Number of invocations so far = 6

Number of invocations so far = 8

Number of invocations so far = 10

Number of invocations so far = 12

Number of invocations so far = 14

Number of invocations so far = 16

Total number of invocations = 17

Outputs 6 for five invocations of
demoMethod and one invocation of
outputCount .

Display 5.5 A Static Variable (part 2 of 2)

Static Methods and Static Variables 303

304 CHAPTER 5 Defining Classes II

Static Variables

A static variable belongs to the class as a whole. All objects of the class can read and
change the static variable. Static variables should normally be private, unless they happen to
be defined constants.

SYNTAX

private static Type Variable_Name;
private static Type Variable_Name = Initial_Value;
public static final Type Variable_Name = Constant_Value;

EXAMPLES

private static String lastUser;
private static int turn = 0;
public static final double PI = 3.14159;

Self-Test Exercises

 7. What is the difference between a static variable and an instance variable?

 8. Can you use an instance variable (without an object name and dot) in the
definition of a static method of the same class? Can you use an instance variable
(without an object name and dot) in the definition of a nonstatic (ordinary)
method of the same class?

 9. Can you use a static variable in the definition of a static method of the same
class? Can you use a static variable in the definition of a nonstatic (ordinary)
method of the same class?

10. Can you use the this parameter in the definition of a static method?

11. When we defined the class Date in Display 4.11 in Chapter 4, we had not
yet discussed static methods, so we did not mark any of the methods static.
However, some of the methods could have been marked static (and should
have been marked static, if only we had known what that meant). Which of
the methods can be marked static? (If you omit the modifier static when it
is appropriate, then the method cannot be invoked with the class name; it must
be invoked with a calling object.)

12. Following the style guidelines given in this book, when should a static variable
be marked private?

13. What do static methods and static variables have in common? After all, they are
both called static, so it sounds like they have something in common.

The Math Class

The class Math provides a number of standard mathematical methods. The class Math
is provided automatically and requires no import statement. Some of the methods in
the class Math are described in Display 5.6. A more complete list of methods is given
in Appendix 5. All of these methods are static, which means that you normally use the
class name Math in place of a calling object.

Math methods

Display 5.6 Some Methods in the Class Math (part 1 of 2)

The Math class is in the java.lang package, so it requires no import statement.

public static double pow(double base, double exponent)

Returns base to the power exponent.

EXAMPLE

Math.pow(2.0,3.0) returns 8.0.

public static double abs(double argument)
public static float abs(float argument)
public static long abs(long argument)
public static int abs(int argument)

Returns the absolute value of the argument. (The method name abs is overloaded to
 produce four similar methods.)

EXAMPLE

Math.abs(-6) and Math.abs(6) both return 6. Math.abs(-5.5) and Math.abs(5.5)
both return 5.5.

public static double min(double n1, double n2)
public static float min(float n1, float n2)
public static long min(long n1, long n2)
public static int min(int n1, int n2)

Returns the minimum of the arguments n1 and n2. (The method name min is overloaded to
produce four similar methods.)

EXAMPLE

Math.min(3, 2) returns 2.

public static double max(double n1, double n2)
public static float max(float n1, float n2)
public static long max(long n1, long n2)
public static int max(int n1, int n2)

Returns the maximum of the arguments n1 and n2. (The method name max is overloaded to
produce four similar methods.)

EXAMPLE

Math.max(3, 2) returns 3.

(continued)

Static Methods and Static Variables 305

306 CHAPTER 5 Defining Classes II

The class Math has three similar methods named round, floor, and ceil. Some
of these return a value of type double, but they all return a value that is intuitively a
whole number that is close to the value of their arguments. The method round rounds
a number to the nearest whole number, and (if the argument is a double) it returns
that whole number as a value of type long. If you want that whole number as a value of
type int, you must use a type cast as in the following:

double exact = 7.56;
int roundedValue = (int)Math.round(exact);

You cannot assign a long value to a variable of type int, even if it is a value such as 8,
which could just as well have been an int. A value such as 8 can be of type either int
or long (or even of type short or byte) depending on how it was created.

public static long round(double argument)
public static int round(float argument)

Rounds its argument.

EXAMPLE

Math.round(3.2) returns 3; Math.round(3.6) returns 4.

public static double ceil(double argument)

Returns the smallest whole number greater than or equal to the argument.

EXAMPLE

Math.ceil(3.2) and Math.ceil(3.9) both return 4.0.

public static double floor(double argument)

Returns the largest whole number less than or equal to the argument.

EXAMPLE

Math.floor(3.2) and Math.floor(3.9) both return 3.0.

public static double sqrt(double argument)

Returns the square root of its argument.

EXAMPLE

Math.sqrt(4) returns 2.0.

public static double random()

Returns a random number greater than or equal to 0.0 and less than 1.0.

EXAMPLE

Math.random() returns 0.5505562535943004 (sample number; returns a pseudorandom number
that is less than 1 and greater than or equal to 0).

Display 5.6 Some Methods in the Class Math (part 2 of 2)

The methods floor and ceil are similar to, but not identical to, round. Neither
one rounds, although they both yield a whole number that is close to their argument.
They both return a whole number as a value of type double (not of type int or long).
The method floor returns the nearest whole number that is less than or equal to
its argument. So Math.floor(5.9) returns 5.0, not 6.0. Math.floor(5.2) also
returns 5.0.

The method ceil returns the nearest whole number that is greater than or equal to
its argument. The word ceil is short for “ceiling.” Math.ceil(5.1) returns 6.0, not
5.0. Math.ceil(5.9) also returns 6.0.

If you want to store the value returned by either floor or ceil in a variable of type
int, you must use a type cast as in the following example:

double exact = 7.56;
int lowEstimate = (int)Math.floor(exact);
int highEstimate = (int)Math.ceil(exact);

Math.floor(exact) returns the double value 7.0, and the variable lowEstimate
receives the int value 7. Math.ceil(exact) returns the double value 8.0, and the
variable highEstimate receives the int value 8.

Because values of type double are effectively approximate values, a safer way to
compute the floor or ceiling as an int value is the following:

double exact = 7.56;
int lowEstimate = (int)Math.round(Math.floor(exact));
int highEstimate = (int)Math.round(Math.ceil(exact));

This way, if Math.floor(exact) returns slightly less than 7.0, the final result will still
be 7 and not 6, and if Math.ceil(exact) returns slightly less than 8.0, the final result
will still be 8 and not 7.

The class Math also has the two predefined constants E and PI. The constant PI
(often written p in mathematical formulas) is used in calculations involving circles,
spheres, and other geometric figures based on circles. PI is approximately 3.14159. The
constant E is the base of the natural logarithm system (often written e in mathematical
formulas) and is approximately 2.72. (We do not use the predefined constant E in this
text.) The constants PI and E are defined constants, as described in Chapter 1. For
example, the following computes the area of a circle, given its radius:

area = Math.PI * radius * radius;

Notice that because the constants PI and E are defined in the class Math, they must
have the class name Math and a dot before them. For example, in Display 5.7, we have
redone the program in Display 5.2, but this time we used the constant Math.PI instead
of including our own definition of PI.

floor and
ceil

Math
constants

Static Methods and Static Variables 307

308 CHAPTER 5 Defining Classes II

Display 5.7 Using Math.PI

 1 import java.util.Scanner;

 2 /**
 3 Class with static methods for circles and spheres.
 4 */
 5 public class RoundStuff3
 6 {

 7 /**
 8 Return the area of a circle of the given radius.
 9 */
10 public static double area(double radius)

11 {
12 return (Math.PI*radius*radius);
13 }
14
15 /**
16 Return the volume of a sphere of the given radius.
17 */
18 public static double volume(double radius)
19 {
20 return ((4.0/3.0)*Math.PI*radius*radius*radius);
21 }

22 public static void main(String[] args)

23 {
24 Scanner keyboard = new Scanner(System.in);
25 System.out.println("Enter radius:");
26 double radius = keyboard.nextDouble();
27
28 System.out.println("A circle of radius"
29 + radius + "inches");
30 System.out.println("has an area of" +

31 RoundStuff3.area(radius) + "square inches.");
32 System.out.println("A sphere of radius"
33 + radius + "inches");
34 System.out.println("has a volume of " +
35 RoundStuff3.volume(radius) + "cubic inches.");
36 }
37 }
38
39

The dialogue is the same as in
Display 5.1.

Finally, the class Math also includes a method to generate random numbers. The
method random returns a pseudorandom number that is greater than or equal to 0.0
and less than 1.0. A pseudorandom number is a number that appears random, but is
really generated by a deterministic function. See Chapter 3 for additional discussion
about random number generation.

Wrapper Classes

Java treats the primitive types, such as int and double, differently from the class types,
such as the class String and the programmer-defined classes. For example, later in this
chapter you will see that an argument to a method is treated differently depending on
whether the argument is of a primitive or class type. At times, you may find yourself
in a situation where you want to use a value of a primitive type but you want or
need the value to be an object of a class type. Wrapper classes provide a class type
corresponding to each of the primitive types so that you can have an object of a class
type that behaves somewhat like its corresponding value of a primitive type.

To convert a value of a primitive type to an “equivalent” value of a class type, you
create an object of the corresponding wrapper class using the primitive type value as
an argument to the wrapper class constructor. The wrapper class for the primitive type
int is the predefined class Integer. If you want to convert an int value, such as 42, to
an object of type Integer, you can do so as follows:

Integer integerObject = new Integer(42);

The variable integerObject now names an object of the class Integer that
corresponds to the int value 42. (The object integerObject does, in fact, have the
int value 42 stored in an instance variable of the object integerObject.) This process
of going from a value of a primitive type to an object of its wrapper class is sometimes
called boxing, and as you will see in the next subsection, you can let Java automatically
do all the work of boxing for you.

To go in the reverse direction, from an object of type Integer to the corresponding
int value, you can do the following:

int i = integerObject.intValue();

wrapper class

integer class

boxing

Self-Test Exercises

14. What values are returned by each of the following?

Math.round(3.2), Math.round(3.6),
Math.floor(3.2), Math.floor(3.6),
Math.ceil(3.2), and Math.ceil(3.6).

15. Suppose answer is a variable of type double. Write an assignment statement to
assign Math.round(answer) to the int variable roundedAnswer.

16. Suppose n is of type int and m is of type long. What is the type of the value
returned by Math.min(n, m)? Is it int or long?

Static Methods and Static Variables 309

310 CHAPTER 5 Defining Classes II

The method intValue() recovers the corresponding int value from an object
of type Integer. This process of going from an object of a wrapper class to the
corresponding value of a primitive type is sometimes called unboxing, and as you
will see in the next subsection, you can let Java automatically do all the work of
unboxing for you.

The wrapper classes for the primitive types byte, short, long, float, double,
and char are Byte, Short, Long, Float, Double, and Character, respectively. The
methods for converting from the wrapper class object to the corresponding primitive
type are intValue for the class Integer, as we have already seen, byteValue for
the class Byte, shortValue for the class Short, longValue for the class Long,
floatValue for the class Float, doubleValue for the class Double, and charValue
for the class Character.

unboxing

other
wrapper

classes

Wrapper Classes

Every primitive type has a corresponding wrapper class. A wrapper class allows you to
have a class object that corresponds to a value of a primitive type. Wrapper classes also
contain a number of useful predefined constants and static methods.

Automatic Boxing and Unboxing

Converting from a value of a primitive type, such as int, to a corresponding object of
its associated wrapper class, such as Integer, is called boxing. You can think of the
object as a “box” that contains the value of the primitive type. In fact, the wrapper
object does contain the value of the primitive type as the value of a private instance
variable. The following are examples of boxing:

Integer numberOfSamuri = new Integer(47);
Double price = new Double(499.99);
Character grade = new Character('A');

Starting with version 5.0, Java will automatically do this boxing, so the previous
three assignments can be written in the following equivalent, but simpler, forms:

Integer numberOfSamuri = 47;
Double price = 499.99;
Character grade = 'A';

This is an automatic type cast. What is actually done by Java is what we showed in the
forms using the new, but it is handy to be able to write the assignments in the simpler form.

automatic
boxing

The reverse conversion from an object of a wrapper class to a value of its associated
primitive type is called unboxing. Unboxing is also done automatically in Java (starting
in version 5.0). The following are examples of automatic unboxing:

Integer numberOfSamuri = new Integer(47);
int n = numberOfSamuri;
Double price = new Double(499.99);
double d = price;
Character grade = new Character('A');
char c = grade;

Java automatically applies the appropriate accessor method (intValue, doubleValue,
or charValue in these cases) to obtain the value of the primitive type that is assigned
to the variable. So the previous examples of automatic unboxing are equivalent to the
following code, which is what you had to write in older versions of Java that did not do
automatic unboxing:

Integer numberOfSamuri = new Integer(47);
int n = numberOfSamuri.intValue();
Double price = new Double(499.99);
double d = price.doubleValue();
Character grade = new Character('A');
char c = grade.charValue();

Our previous examples involved either only automatic boxing or only automatic
unboxing. That was done to simplify the discussion by allowing you to see each of
automatic boxing and automatic unboxing in isolation. However, code can often
involve a combination of automatic boxing and unboxing. For example, consider the
following code, which uses both automatic boxing and automatic unboxing:

Double price = 19.90;
price = price + 5.12;

This code is equivalent to the following, which is what you had to write in older
versions of Java that did not do automatic boxing and unboxing:

Double price = new Double(19.90);
price = new Double(price.doubleValue() + 5.12);

Automatic boxing and unboxing applies to parameters as well as to the simple
assignment statements we just discussed. You can plug in a value of a primitive type,
such as a value of type int, for a parameter of the associated wrapper class, such as
Integer. Similarly, you can plug in a wrapper class argument, such as an argument of
type Integer, for a parameter of the associated primitive type, such as int.

automatic
unboxing

Static Methods and Static Variables 311

312 CHAPTER 5 Defining Classes II

Static Methods in Wrapper Classes

The material on wrapper classes that we have seen thus far explains why they are called
wrapper classes. However, possibly more importantly, the wrapper classes contain a
number of useful constants and static methods. So, wrapper classes have two distinct
personalities: One is their ability to produce class objects corresponding to values of
primitive types, and the other is as a repository of useful constants and methods. It was
not necessary to combine these two personalities into one kind of class. Java could have
had two sets of classes, one for each personality, but the designers of the Java libraries
chose to have only one set of classes for both personalities.

You can use the associated wrapper class to find the value of the largest and smallest
values of any of the primitive number types. For example, the largest and smallest values
of type int are

Integer.MAX_VALUE and Integer.MIN_VALUE

The largest and smallest values of type double are

Double.MAX_VALUE and Double.MIN_VALUE

Wrapper classes have static methods that can be used to convert back and forth
between string representations of numbers and the corresponding number of type int,
double, long, or float. For example, the static method parseDouble of the wrapper
class Double converts a string to a value of type double. So, the code

Double.parseDouble("199.98")

largest and
smallest

values

parseDouble

Self-Test Exercises

17. Which of the following are legal?

Integer n = new Integer(42);
int m = 42;
n = m;
m = n;

 If any are illegal, explain how to write a valid Java statement that does what the
illegal statement is trying to do.

18. In the following, is the value of the variable price after the assignment
statement an object of the class Double or a value of the primitive type double?

Double price = 1.99;

19. In the following, is the value of the variable count after the assignment
statement an object of the class Integer or a value of the primitive type int?

int count = new Integer(12);

returns the double value 199.98. If there is any possibility that the string named by
theString has extra leading or trailing blanks, you should instead use

Double.parseDouble(theString.trim())

The method trim is a method in the class String that trims off leading and trailing
whitespace, such as blanks.

If the string is not a correctly formed numeral, then the invocation of Double.
parseDouble will cause your program to end. The use of trim helps somewhat in avoiding
this problem.

Similarly, the static methods Integer.parseInt, Long.parseLong, and
Float.parseFloat convert from string representations to numbers of the
corresponding primitive types int, long, and float, respectively.

Each of the numeric wrapper classes also has a static method called toString that
converts in the other direction, from a numeric value to a string representation of the
numeric value. For example,

Double.toString(123.99)

returns the string value "123.99".
Character, the wrapper class for the primitive type char, contains a number of static

methods that are useful for string processing. Some of these methods are shown in Display
5.8. A simple example of using the static method toUpperCase of the class Character is
given in Display 5.9. As is typical, this program combines the string-processing methods of
the class String with the character-processing methods in the class Character.

There is also a wrapper class Boolean corresponding to the primitive type boolean.
It has names for two constants of type Boolean: Boolean.TRUE and Boolean.FALSE,
which are the Boolean objects corresponding to the values true and false of the
primitive type boolean.

parseInt

Character

Boolean

Display 5.8 Some Methods in the Class Character (part 1 of 2)

The class Character is in the java.lang package, so it requires no import statement.

public static char toUpperCase(char argument)

Returns the uppercase version of its argument. If the argument is not a letter, it is returned unchanged.

EXAMPLE

Character.toUpperCase('a') and Character.toUpperCase('A') both return 'A'.

public static char toLowerCase(char argument)

Returns the lowercase version of its argument. If the argument is not a letter, it is returned unchanged.

EXAMPLE

Character.toLowerCase('a') and Character.toLowerCase('A') both return 'a'.

(continued)

Static Methods and Static Variables 313

314 CHAPTER 5 Defining Classes II

public static boolean isUpperCase(char argument)

Returns true if its argument is an uppercase letter; otherwise returns false.

EXAMPLE

Character.isUpperCase('a')returns true. Character.isUpperCase('a')and
Character.isUpperCase('%') both return false.

public static boolean isLowerCase(char argument)

Returns true if its argument is a lowercase letter; otherwise returns false.

EXAMPLE

Character.isLowerCase('a') returns true. Character.isLowerCase('A') and
Character.isLowerCase('%') both return false.

public static boolean isWhitespace(char argument)

Returns true if its argument is a whitespace character; otherwise returns false. Whitespace
characters are those that print as white space, such as the space character (blank character), the tab
character ('\t'), and the line break character('\n').

EXAMPLE

Character.isWhitespace(' ') returns true.
Character.isWhitespace('A') returns false.

public static boolean isLetter(char argument)

Returns true if its argument is a letter; otherwise returns false.

EXAMPLE

Character.isLetter('A') returns true. Character.isLetter('%') and
Character.isLetter ('5') both return false.

public static boolean isDigit(char argument)

Returns true if its argument is a digit; otherwise returns false.

EXAMPLE

Character.isDigit('5') returns true. Character.isDigit('A') and
Character.isDigit('%') both return false.

public static boolean isLetterOrDigit(char argument)

Returns true if its argument is a letter or a digit; otherwise returns false.

EXAMPLE

Character.isLetterOrDigit('A') and Character.isLetterOrDigit('5') both return
true. Character.isLetterOrDigit('&') returns false.

Display 5.8 Some Methods in the Class Character (part 2 of 2)

Display 5.9 String Processing with a Method from the Class Character (part 1 of 2)

 1 import java.util.Scanner;

 2 /**
 3 Illustrate the use of a static method from the class Character.
 4 */
 5
 6 public class StringProcessor
 7 {
 8 public static void main (String[] args)
 9 {
10 System.out.println("Enter a one line sentence:");
11 Scanner keyboard = new Scanner(System.in);
12 String sentence = keyboard.nextLine();
13
14 sentence = sentence.toLowerCase();
15 char firstCharacter = sentence.charAt(0);
16 sentence = Character.toUpperCase(firstCharacter)
17 + sentence.substring(1);
18
19 System.out.println("The revised sentence is:");
20 System.out.println(sentence);
21 }
22 }

PITFALL: A Wrapper Class Does Not Have a
No-Argument Constructor

Normally, it is good programming practice to define a no-argument constructor for
any class you define. However, on rare occasions, a no-argument constructor simply
does not make sense. The wrapper classes discussed in the previous subsection do not
have a no-argument constructor, which is reasonable if you think about it. To use
the static methods in a wrapper class, you need no calling object and hence need no
constructor at all. The other function of a wrapper class is to provide a class object
corresponding to a value of a primitive type. For example,

new Integer(42)

creates an object of the class Integer that corresponds to the int value 42. There is
no no-argument constructor for the class Integer, because it makes no sense to have
an object of the class Integer unless it corresponds to an int value, and if it does cor-
respond to an int value, that int value is naturally an argument to the constructor. ■

(continued)

Static Methods and Static Variables 315

316 CHAPTER 5 Defining Classes II

Sample Dialogue

Enter a one line sentence:

is you is OR is you ain't my BABY?

The revised sentence is:

Is you is or is you ain't my baby?

Display 5.9 String Processing with a Method from the Class Character (part 2 of 2)

5.2 References and Class Parameters

Do not mistake the pointing finger for the moon.

ZEN SAyINg

Variables of a class type and variables of a primitive type behave quite differently in
Java. Variables of a primitive type name their values in a straightforward way. For

Self-Test Exercises

20. What is the output produced by the following code?

Character characterObject1 = new Character('a');
Character characterObject2 = new Character('A');
if (characterObject1.equals(characterObject2))
 System.out.println("Objects are equal.");
else
 System.out.println("Objects are Not equal.");

21. Suppose result is a variable of type double that has a value. Write a Java expression
that returns a string that is the normal way of writing the value in result.

22. Suppose stringForm is a variable of type String that names a String that
is the normal way of writing some double, such as "41.99". Write a Java
expression that returns the double value named by stringForm.

23. How would you do Self-Test Exercise 22 if the string might contain leading
and/or trailing blanks, such as " 41.99 "?

24. Write Java code to output the largest and smallest values of type long allowed
in Java.

25. How do you create an object of the class Character that corresponds to the
letter 'Z'?

26. Does the class Character have a no-argument constructor?

References and Class Parameters 317

example, if n is an int variable, then n can contain a value of type int, such as 42. If v
is a variable of a class type, then v does not directly contain an object of its class. Instead,
v names an object by containing the memory address of where the object is located in
memory. In this section, we discuss how a variable of a class type names objects, and we
also discuss the related topic of how method parameters of a class type behave in Java.

Variables and Memory

A computer has two forms of memory called secondary memory and main memory. The
secondary memory is used to hold files for more or less permanent storage. The main
memory is used by the computer when it is running a program. Values stored in a
program’s variables are kept in this main memory. It will help our understanding of class
type variables to learn a few details about how program variables are represented in main
memory. For now, assume that each variable in a program is of some primitive type,
such as int, double, or char. Once you understand how variables of a primitive type
are stored in memory, it will be easier to describe how variables of a class type behave.

Main memory consists of a long list of numbered locations called bytes, each
containing eight bits; that is, eight 0/1 digits. The number that identifies a byte is
called its address. A data item, such as a number or a letter, can be stored in one
of these bytes, and the address of the byte is then used to find the data item when
it is needed.

Most data types have values that require more than one byte of storage. When a
data type requires more than one byte of storage, several adjacent bytes are used to
hold the data item. In this case, the entire chunk of memory that holds the data item
is still called a memory location. The address of the first of the bytes that make up
this memory location is used as the address for this larger memory location. Thus,
as a practical matter, you can think of the computer’s main memory as a long list of
memory locations of varying sizes. The size of each of these locations is expressed in
bytes, and the address of the first byte is used as the address (name) of that memory
location. Display 5.10 shows a picture of a hypothetical computer’s main memory.
Each primitive type variable in a program is assigned one of these memory locations,
and the value of the variable is stored in this memory location.

secondary
and main
memory

byte

address

memory
location

variables of
a primitive

type

Bytes and Addresses

Main memory is divided into numbered locations called bytes. The number associated with
a byte is called its address. A group of consecutive bytes is used as the location for the
value of a variable. The address of the first byte in the group is used as the address of this
larger memory location.

318 CHAPTER 5 Defining Classes II

References

In order to have a simple example to help explain references, we will use the class
ToyClass defined in Display 5.11.

Variables of a class type name objects of their class differently than how variables
of primitive types, such as int or char, store their values. Every variable, whether of a
primitive type or a class type, is implemented as a location in the computer memory.
For a variable of a primitive type, the value of the variable is stored in the memory
location assigned to the variable. However, a variable of a class type stores only the
memory address of where an object is located. The object named by the variable is
stored in some other location in memory, and the variable contains only the memory

Why Eight Bits?

A byte is a memory location that can hold 8 bits. What is so special about 8? Why not
10 bits? There are two reasons why 8 is special. First, 8 is a power of 2 (8 is 23). Since
computers use bits, which have only two possible values, powers of 2 are more convenient
than powers of 10. Second, it turns out that 7 bits are required to code a single character of
the ASCII character set. So 8 bits (1 byte) is the smallest power of 2 that will hold a single
ASCII character.

variable1 (3-byte location with address 0)

variable2 (2-byte location with address 3)

variable3 (1-byte location with address 5)

variable4 (3-byte location with address 6)

byte 0
byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8

Main Memory

Display 5.10 Variables in Memory

Display 5.11 A Simple Class

 1 public class ToyClass
 2 {
 3 private String name;
 4 private int number;

 5 public ToyClass(String initialName, int initialNumber)
 6 {
 7 name = initialName;
 8 number = initialNumber;
 9 }

10 public ToyClass()
11 {
12 name = "No name yet.";
13 number = 0;
14 }

15 public void set(String newName, int newNumber)
16 {
17 name = newName;
18 number = newNumber;
19 }

20 public String toString()
21 {
22 return (name + " " + number);
23 }

24 public static void changer(ToyClass aParameter)
25 {
26 aParameter.name = "Hot Shot";
27 aParameter.number = 42;
28 }

29 public boolean equals(ToyClass otherObject)
30 {
31 return ((name.equals(otherObject.name))
32 && (number = otherObject.number));
33 }
34 }

References and Class Parameters 319

320 CHAPTER 5 Defining Classes II

address of where the object is stored. This memory address is called a reference (to the
object).1 This is diagrammed in Display 5.12.

Variables of a primitive type and variables of a class type are different for a reason.
A value of a primitive type, such as the type int, always requires the same amount of
memory to store one value. There is a maximum value of type int, so values of type
int have a limit on their size. However, an object of a class type, such as an object
of the class String, might be of any size. The memory location for a variable of type
String is of a fixed size, so it cannot store an arbitrarily long string. It can, however,
store the address of any string because there is a limit to the size of an address.

Because variables of a class type contain a reference (memory address), two variables
may contain the same reference, and in such a situation, both variables name the same
object. Any change to the object named by one of these variables will produce a change
to the object named by the other variable, because they are the same object. For example,
consider the following code. (The class ToyClass is defined in Display 5.11, but the
meaning of the code should be obvious and you should not need to look up the definition.)

ToyClass variable1 = new ToyClass("Joe", 42);
ToyClass variable2;
variable2 = variable1; //Now both variables name the same object.
variable2.set("Josephine", 1);
System.out.println(variable1); //Invokes variable1's toString

//method

The output is

Josephine 1

The object named by variable1 has been changed without ever using the name
variable1. This is diagrammed in Display 5.13.

1 Readers familiar with languages that use pointers will recognize a reference as another name for a pointer.
However, Java does not use the term pointer but instead uses the term reference. Moreover, these references are
handled automatically. There are no programmer-accessible pointer (reference) operations for dereferencing or
other pointer operations. The details are all handled automatically in Java.

references

Variables of a Class Type Hold References

A variable of a primitive type stores a value of that type. However, a variable of a class
type does not store an object of that class. A variable of a class type stores the reference
(memory address) of where the object is located in the computer’s memory. This causes
some operations, such as = and ==, to behave quite differently for variables of a class type
than they do for variables of a primitive type.

Reference Types

A type whose variables contain references are called reference types. In Java, class types
are reference types, but primitive types are not reference types.

sampleVariable ?

public class ToyClass
{
 private String name;
 private int number;

The complete definition of the class
ToyClass is given in Display 5.11.

ToyClass sampleVariable;
Creates the variable sampleVariable in
memory but assigns it no value

sampleVariable =
new ToyClass("Josephine Student", 42);

Creates an object, places the object someplace in memory, and then
places the address of the object in the variable sampleVariable. We
do not know what the address of the object is, but let’s assume it is
2056. The exact number does not matter.

For emphasis, we made the
arrow point to the memory
location referenced.

sampleVariable 2056

2056 Josephine Student
42

Display 5.12 Class Type Variables Store a Reference

References and Class Parameters 321

322 CHAPTER 5 Defining Classes II

variable2

variable1

..
.

..
.

 .
..

Joe
42

4068

..
.

variable2 = variable1;

Someplace else in memory:

4068

4068

?variable2

4068variable1

..
.

..
.

..
.

Joe
42

4068

..
.

ToyClass variable1 = new ToyClass("Joe", 42);
ToyClass variable2;

We do not know what memory address
(reference) is stored in the variable
variable1. Let’s say it is 4068. The
exact number does not matter.

Note that you can think of

new ToyClass("Joe", 42)

as returning a reference.

Someplace else in memory:

Display 5.13 Assignment Operator with Class Type Variables (part 1 of 2)

Note that when you use the assignment operator with variables of a class type, you
are assigning a reference (memory address), so the result of the following is to make
variable1 and variable2 two names for the same object:

variable2 = variable1;

A variable of a class type stores a memory address, and a memory address is a
number. However, a variable of a class type cannot be used like a variable of a number
type, such as int or double. This is intentional. The important property of a memory
address is that it identifies a memory location. The fact that the implementors used
numbers, rather than letters or strings or something else, to name memory locations
is an accidental property. Java prevents you from using this accidental property to
stop you from doing things such as obtaining access to restricted memory or otherwise
screwing up the computer.

Class Parameters

Strictly speaking, all parameters in Java are call-by-value parameters. This means
that when an argument is plugged in for a parameter (of any type), the argument is
evaluated and the value obtained is used to initialize the value of the parameter. (Recall
that a parameter is really a local variable.) However, in the case of a parameter of a

4068 Josephine
1

4068

4068

variable2

variable1

..
.

..
.

 .
..

..
.

variable2.set("Josephine", 1);

Someplace else in memory:

Display 5.13 Assignment Operator with Class Type Variables (part 2 of 2)

assignment
with variables
of a class type

References and Class Parameters 323

324 CHAPTER 5 Defining Classes II

class type, the value plugged in is a reference (memory address), which makes class
parameters behave quite differently from parameters of a primitive type.

Recall that the following makes variable1 and variable2 two names for the same
object:

ToyClass variable1 = new ToyClass("Joe", 42);
ToyClass variable2;
variable2 = variable1;

So, any change made to variable2 is, in fact, made to variable1. The same thing
happens with parameters of a class type. The parameter is a local variable that is set
equal to the value of its argument. But if its argument is a variable of a class type, this
copies a reference into the parameter. So, the parameter becomes another name for
the argument, and any change made to the object named by the parameter is made to
the object named by the argument, because they are the same object. Thus, a method
can change the instance variables of an object given as an argument. A simple program
to illustrate this is given in Display 5.14. Display 5.15 contains a diagram of the
computer’s memory as the program in Display 5.14 is executed.

Many programming languages have a parameter passing mechanism known as call-
by-reference. If you are familiar with call-by-reference parameters, we should note that
the Java parameter passing mechanism is similar to, but is not exactly the same as,
call-by-reference.

Display 5.14 Parameters of a Class Type

 1 public class ClassParameterDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 ToyClass anObject = new ToyClass("Mr. Cellophane", 0);
 6 System.out.println(anObject);
 7 System.out.println(
 8 "Now we call changer with anObject as argument.");
 9 ToyClass.changer(anObject);
10 System.out.println(anObject);
11 }
12 }

Sample Dialogue

Mr. Cellophane 0

Now we call changer with anObject as argument.

Hot Shot 42

ToyClass is defined in Display 5.11.

Notice that the method changer
changed the instance variables in the
object anObject.

Differences Between Primitive and Class-Type Parameters

A method cannot change the value of a variable of a primitive type that is an argument to
the method. On the other hand, a method can change the values of the instance variables of
an argument of a class type. This is illustrated in Display 5.16.

3078anObject

?aParameter

..
.

..
.

..
.

Mr. Cellophane
0

3078

..
.

Before anything:
We do not know what memory address
(reference) is stored in the variable
anObject. Let’s say it is 3078. The exact
number does not matter.

 Someplace else in memory:

Mr. Cellophane

0

3078

3078

anObject

aParameter

..
.

..
.

..
.

3078

..
.

anObject is plugged in for aParamter.
anObject and aParameter become two names for the same object.

 Someplace else in memory:

Display 5.15 Memory Picture for Display 5.14 (part 1 of 2)

References and Class Parameters 325

(continued)

326 CHAPTER 5 Defining Classes II

Display 5.15 Memory Picture for Display 5.14 (part 2 of 2)

Hot Shot
42

3078

3078

anObject

aParameter

..
.

..
.

..
.

3078

..
.

ToyClass.changer(anObject); is executed
and so the following are executed:
aParameter.name = "Hot Shot";
aParameter.number = 42;

As a result, anObject is changed.

Someplace else in memory:

Display 5.16 Comparing Parameters of a Class Type and a Primitive Type (part 1 of 2)

 1 public class ParametersDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 ToyClass2 object1 = new ToyClass2(),
 6 object2 = new ToyClass2();
 7 object1.set("Scorpius",1);
 8 object2.set("John Crichton", 2);
 9 System.out.println("Value of object2 before call to method:");
10 System.out.println(object2);
11 object1.makeEqual(object2);
12 System.out.println("Value of object2 after call to method:");
13 System.out.println(object2);
14

ToyClass2 is defined in
Display 5.17.

== with
variables of
a class type

PITFALL: Use of = and == with Variables of a Class Type

You have already seen that the assignment operator used with variables of a class type
produces two variables that name the same object, which is very different from how
assignment behaves with variables of a primitive type.

The test for equality using == with variables of a class type also behaves in what
may seem like a peculiar way. The operator == does not check that the objects have
the same values for their instance variables. It merely checks for equality of memory
addresses, so two objects in two different locations in memory would test as being
“not equal” when compared using ==, even if their instance variables contain equiva-
lent data. For example, consider the following code. (The class ToyClass2 is defined
in Display 5.17.)

ToyClass2 variable1 = new ToyClass2("Chiana", 3),
 variable2 = new ToyClass2("Chiana", 3);
if (variable1 == variable2)
 System.out.println("Equal using ==");
else
 System.out.println("Not equal using ==");

This code will produce the output

Not equal using ==

(continued)

15 int aNumber = 42;
16 System.out.println("Value of aNumber before call to method:"
17 + aNumber);
18 object1.tryToMakeEqual(aNumber);
19 System.out.println("Value of aNumber after call to method:"
20 + aNumber);
21 }
22 }

Sample Dialogue

Value of object2 before call to method:

John Crichton 2

Value of object2 after call to method:

Scorpius 1

Value of aNumber before call to method: 42

Value of aNumber after call to method: 42

Display 5.16 Comparing Parameters of a Class Type and a Primitive Type (part 2 of 2)

An argument of a class type
can change.

An argument of a primitive
type cannot change.

References and Class Parameters 327

328 CHAPTER 5 Defining Classes II

PITFALL: (continued)

Even though these two variables name objects that are intuitively equal, they are
stored in two different locations in the computer’s memory. This is why you usually
use an equals method to compare objects of a class type. The variables variable1
and variable2 would be considered “equal” if compared using the equals method
as defined for the class ToyClass2 (Display 5.17). ■

 1 public class ToyClass2
 2 {
 3 private String name;
 4 private int number;

 5 public void set(String newName, int newNumber)
 6 {
 7 name = newName;
 8 number = newNumber;
 9 }

10 public String toString()
11 {
12 return (name + " " + number);
13 }

14 public void makeEqual(ToyClass2 anObject)
15 {
16 anObject.name = this.name;
17 anObject.number = this.number;
18 }

19 public void tryToMakeEqual(int aNumber)
20 {
21 aNumber = this.number;
22 }

23 public boolean equals(ToyClass2 otherObject)
24 {
25 return ((name.equals(otherObject.name))
26 && (number == otherObject.number));
27 }

<Other methods can be the same as in Display 5.11, although no
 other methods are needed or used in the current discussion.>
28 }

Read the text for a discussion of
the problem with this method.

Display 5.17 A Toy Class to Use in Display 5.16

The Constant null

The constant null is a special constant that may be assigned to a variable of any class
type. It is used to indicate that the variable has no “real value.” If the compiler insists
that you initialize a variable of a class type and there is no suitable object with which to
initialize it, you can use the value null, as in the following example:

YourClass yourObject = null;

It is also common to use null in constructors to initialize instance variables of a class
type when there is no obvious object to use. We will eventually see other uses for the
constant null.

Note that null is not an object. It is like a reference (memory address) that does
not refer to any object (does not name any memory location). So if you want to test
whether a class variable contains null, you use == or !=; you do not use an equals
method. For example, the following correctly tests for null:

if (yourObject == null)
 System.out.println("No real object here.");

null

null

null is a special constant that can be used to give a value to any variable of any class type.
The constant null is not an object but a sort of placeholder for a reference to an object.
Because it is like a reference (memory address), use == and != rather than the method
equals when you test to see whether a variable contains null.

Self-Test Exercises

27. What is a reference type? Are class types reference types? Are primitive types
(such as int) reference types?

28. When comparing two objects of a class type to see if they are “equal” or not,
should you use == or the method equals?

29. When comparing two objects of a primitive type (such as int) to see if they are
“equal” or not, should you use == or the method equals?

30. Can a method with an argument of a class type change the values of the
instance variables in the object named by the argument? For example, if the
argument is of type ToyClass defined in Display 5.11, can the method change
the name of its argument?

31. Suppose a method has a parameter of type int and the method is given an int
variable as an argument. Could the method have been defined so that it changes
the value of the variable given as an argument?

References and Class Parameters 329

330 CHAPTER 5 Defining Classes II

PITFALL: Null Pointer Exception

If the compiler asks you to initialize a class variable, you can always initialize the
variable to null. However, null is not an object, so you cannot invoke a method
using a variable that is initialized to null. If you try, you will get an error message
that says “Null Pointer Exception.” For example, the following code would produce a
“Null Pointer Exception” if it were included in a program:

ToyClass2 aVariable = null;
String representation = aVariable.toString();

The problem is that you are trying to invoke the method toString() using null
as a calling object. But null is not an object; it is just a placeholder. So null has
no methods. Because you are using null incorrectly, the error message reads “Null
Pointer Exception.” You get this error message any time a class variable has not been
assigned a (reference to an) object, even if you have not assigned null to the variable.
Any time you get a “Null Pointer Exception,” look for an uninitialized class variable.

The way to correct the problem is to use new to create a class object, as follows:

ToyClass2 aVariable = new ToyClass2("Chiana", 3);

String representation = aVariable.toString(); ■

The new Operator and Anonymous Objects

Consider an expression such as the following, where ToyClass is defined in Display 5.11:

ToyClass variable1 = new ToyClass("Joe", 42);

As illustrated in Display 5.13, the portion new ToyClass("Joe", 42) is an invocation
of a constructor. You can think of the constructor as returning a reference to the
location in memory of the object created by the constructor. If you take this view, the
equal sign in this line of code is just an ordinary assignment operator.

There are times when you create an object using new and use the object as an argument
to a method, but then never again use the object. In such cases, you need not give the
object a variable name. You can instead use the expression with the new operator and the
constructor directly as the argument. For example, suppose you want to test to see whether
the object in variable1 (in the earlier line of code) is equal to an object with the same
number and with the name spelled in all uppercase letters. You can do so as follows:

if (variable1.equals(new ToyClass("JOE", 42)))
 System.out.println("Equal");
else
 System.out.println("Not equal");

This is equivalent to the following:

ToyClass temp = new ToyClass("JOE", 42);
if (variable1.equals(temp))
 System.out.println("Equal");
else
 System.out.println("Not equal");

In the second version, the object is created, and its reference is placed in the variable
temp. Then temp is plugged in for the parameter in the equals method. But all the
parameter passing mechanism does is to take the reference stored in temp and plug it
into the parameter for equals. The first version simplifies the process. It creates the
reference to the object and directly plugs it into the parameter in equals. It bypasses the
variable temp but ends up plugging in the same reference as the argument to equals.

When not assigned to a variable, an expression such as

new ToyClass("JOE", 42)

is known as an anonymous object. It evaluates a reference to an object of the class. It is
called anonymous because the object is not assigned a variable to serve as its name. We will
eventually encounter situations where the use of such anonymous objects is common.

anonymous
object

Anonymous Objects

An expression with a new operator and a constructor creates a new object and returns
a reference to the object. If this reference is not assigned to a variable, but instead the
expression with new and the constructor is used as an argument to some method, then the
object produced is called an anonymous object.

EXAMPLE

if (variable1.equals(new ToyClass("JOE", 42)))
 System.out.println("Equal");
else
 System.out.println("Not equal");

The expression new ToyClass("JOE", 42) (or more exactly, the object it creates) is an
example of an anonymous object.

EXAMPLE: Another Approach to Keyboard Input ★

This example uses the class StringTokenizer, which was covered in a starred section
of Chapter 4. If you have not yet studied the StringTokenizer class, you may omit
this example until you have done so.

The program in Display 5.18 is an example of the use of both the StringTokenizer
class and the method Double.parseDouble to read multiple values of type double
entered on a single line and separated with something other than whitespace. The entire

(continued)

References and Class Parameters 331

332 CHAPTER 5 Defining Classes II

Display 5.18 Use of the Method Double.parseDouble (part 1 of 2)

 1 import java.util.Scanner;
 2 import java.util.StringTokenizer;

 3 public class InputExample
 4 {
 5 public static void main(String[] args)
 6 {
 7 Scanner keyboard = new Scanner(System.in);

 8 System.out.println("Enter two numbers on a line.");
 9 System.out.println("Place a comma between the numbers.");
10 System.out.println("Extra blank space is OK.");
11 String inputLine = keyboard.nextLine();

12 String delimiters = ", "; //Comma and blank space
13 StringTokenizer numberFactory =
14 new StringTokenizer(inputLine, delimiters);

15 String string1 = null;
16 String string2 = null;
17 if (numberFactory.countTokens() >= 2)
18 {
19 string1 = numberFactory.nextToken();
20 string2 = numberFactory.nextToken();
21 }
22 else
23 {
24 System.out.println("Fatal Error.");
25 System.exit(0);
26 }

line is read as a single long string using the method nextLine of the Scanner class. The
long string is decomposed into tokens using the class StingTokenizer. The tokens are
the numbers that were input, but they are in the form of string values, not values of type
double. Finally, the tokens are converted to values of type double using the method
Double.parseDouble.

Note that the String variables are initialized to null. If you omit the nulls,
the compiler will complain that the variables string1 and string2 might not be
initialized before they are used. The compiler is incorrect but it does no good to argue
with it. Including null as initial values for the variables string1 and string2 will
keep the compiler happy and allow you to run the program.

EXAMPLE: (continued)

Display 5.18 Use of the Method Double.parseDouble (part 2 of 2)

27 double number1 = Double.parseDouble(string1);
28 double number2 = Double.parseDouble(string2);

29 System.out.print("You input ");
30 System.out.println(number1 + " and " + number2);
31 }
32 }

Sample Dialogue

Enter two numbers on a line.

Place a comma between the numbers.

Extra blank space is OK.

 41.98, 42

You input is 41.98 and 42.0

TIP: Use Static Imports ★

You have already seen import statements, such as the following from Display 5.9:

import java.util.Scanner;

There is another form of import statement which, while not essential, can be a
convenience. These are called static import statements and are best explained with
an example.

static import
statement

(continued)

Self-Test Exercises

32. What is wrong with a program that starts as follows? The class ToyClass is
defined in Display 5.11.

ToyClass anObject = null ;
anObject.set("Josephine", 42);

33. What is the type of the constant null?

34. Suppose aVariable is a variable of a class type. Which of the following
correctly tests to see whether aVariable contains null?

aVariable.equals(null)
aVariable == null

35. Is the following legal in Java? The class ToyClass is defined in Display 5.11.

System.out.println(new ToyClass("Mr. Cellophane", 0));

References and Class Parameters 333

334 CHAPTER 5 Defining Classes II

TIP: (continued)

It would be convenient to be able to write static method invocations in the following
simple form:

toUpperCase(firstCharacter)

instead of having to write the following longer version (taken from Display 5.9):

Character.toUpperCase(firstCharacter)

If you add the following static import statement to the start of your program, you
can then write the invocation of toUpperCase in the desired shorter way:

import static java.lang.Character.toUpperCase;

The class Character is in the Java package java.lang. Note that you need to give
the package name as well as the class name, just as you did with ordinary import
statements, such as the above import statement for the class Scanner in the java.
util package.

The package java.lang is imported automatically. So you can, for example, use
the method Character.toUpperCase without any import statement of any kind.
But note that there is nothing special about the package java.lang when it comes to
static import statements. If you want to use the abbreviated form toUpperCase, you
must give a static import statement.

If you use the following form of the static import statement, then your code can
use the name of any static method in the class Character without the preface of
Character and a dot.

import static java.lang.Character.*;

For example, consider the program in Display 5.9. If you replace

import java.util.Scanner;

with either

import java.util.Scanner;
import static java.lang.Character.toUpperCase;

or

import java.util.Scanner;
import static java.lang.Character.*;

then you can change the statement

sentence = Character.toUpperCase(firstCharacter)
 + sentence.substring(1);

to

Using and Misusing References 335

TIP: (continued)

sentence = toUpperCase(firstCharacter)

 + sentence.substring(1);

One word of warning: This works for static methods only. This does not in any way
apply to ordinary nonstatic methods.

The program StaticImportDemo.java on the accompanying website redoes the
program in Display 5.9 using a static import statement in this way.

You can, of course, do this with Character replaced by any other class, and then
you can use static methods in that class without the need to preface the method name
with the class name and a dot.

You can use static import statements for constants as well as methods. If you want
to use PI instead of Math.PI in the program in Display 5.7, just include one of the
following import statements at the beginning of the program file:

import static java.lang.Math.PI;

or

import static java.lang.Math.*;

The program StaticImportDemo2.java on the accompanying website redoes the
program in Display 5.7 using a static import statement in this way. ■

extra code
on website

static import
of constants

extra code
on website

5.3 Using and Misusing References

Loose lips sink ships.

MILITARy SLogAN

Just as a military campaign requires constant vigilance to ensure that its plans are kept
secret, so your programming requires constant vigilance to ensure that private instance
variables remain truly private. As we will see, adding the private modifier before
instance variable declarations is not always all that you need to do. There can be privacy
leaks in a poorly designed class just as there can be privacy leaks in a military campaign.

The material in this section is important but more subtle and harder to digest than
the material we have seen before now. If you want, you may postpone reading this
section until you have had more practice defining and using classes. You do not need
the material in this section to understand Section 5.4.

336 CHAPTER 5 Defining Classes II

EXAMPLE: A Person Class

It is common to have instance variables of a class type. The class Person defined
in Display 5.19 has two instance variables of type Date. So, the class Person has
instance variables of a class type. (The class Date was defined in Chapter 4, Display
4.11. We have reproduced the relevant portions of the date class definition in Display
5.20.) In fact, all the instance variables for the class Person are of class types. An
object of the class Person has the basic data about people that is found in such places
as on tombstones and in author listings in library catalogues. It describes a person by
giving the person’s name, date of birth, and date of death. If the person is still alive,
then the value null is used as the date of death. (So null is good.) A simple program
illustrating the class Person is given in Display 5.21. We will discuss a few details
about the class Person here, but most of the various methods in the class Person will
be discussed as we cover the corresponding topic in the following subsections.

Normally, a class definition should include a no-argument constructor. However,
there are cases where a no-argument constructor makes little sense. For example, the
wrapper classes such as Integer and Double do not have no-argument constructors, as
we explained in the Pitfall subsection “A Wrapper Class Does Not Have a No-Argument
Constructor,” which appeared earlier in this chapter. The class Person also does not
have a no-argument constructor for a reason. A person may have no date of death,
but a person always has a date of birth. A no-argument constructor should initialize all
instance variables, but there is no suitable value to initialize the instance variable born
unless it is provided as an argument to the constructor. In particular, it makes no sense
to initialize the instance variable born to null; that would indicate that the person
was never born. It makes little sense to have a person who was never born, so it makes
little sense to have a no-argument constructor for the class Person. Note that because
we defined some constructors for the class Person but did not define a no-argument
constructor, it follows that the class Person does not have a no-argument constructor.

Since we are assuming that an object of the class Person always has a birth date
(which is not null), the following should always be true of an object of the class Person:

An object of the class Person has a date of birth (which is not null), and if the object
has a date of death, then the date of death is equal to or later than the date of birth.

If you check the definition of the class Person, you will see that this statement
is always true. It is true of every object created by a constructor, and all the other
methods preserve the truth of this statement. In fact, the private method consistent
was designed to provide a check for this property. A statement, such as the above,
that is always true for every object of the class is called a class invariant.

Note that the definition of equals for the class Person includes an invocation
of equals for the class String and an invocation of the method equals for the
class Date. Java determines which equals method is being invoked from the type
of its calling object. Because the instance variable name is of type String, the
invocation name.equals(...) is an invocation of the method equals for the class
String. Because the instance variable born is of type Date, the invocation born.
equals(...) is an invocation of the method equals for the class Date.

Similarly, the definition of the method toString for the class Person includes
invocations of the method toString for the class Date.

Using and Misusing References 337

Display 5.19 A Person Class (part 1 of 5)

 1 /**
 2 Class for a person with a name and dates for birth and death.
 3 Class invariant: A Person always has a date of birth, and if the Person
 4 has a date of death, then the date of death is equal to or later than the
 5 date of birth.
 6 */
 7 public class Person
 8 {
 9 private String name;
10 private Date born;
11 private Date died; //null indicates still alive.

12 public Person(String initialName, Date birthDate, Date deathDate)
13 {
14 if (consistent(birthDate, deathDate))
15 {
16 name = initialName;
17 born = new Date(birthDate);
18 if (deathDate == null)
19 died = null;
20 else
21 died = new Date(deathDate);
22 }
23 else
24 {
25 System.out.println("Inconsistent dates.Aborting.");
26 System.exit(0);
27 }
28 }

29 public Person(Person original)
30 {
31 if (original == null)
32 {
33 System.out.println("Fatal error.");
34 System.exit(0);
35 }

36 name = original.name;
37 born = new Date(original.born);

38 if (original.died == null)
39 died = null;
40 else
41 died = new Date(original.died);
42 }

(continued)

We will discuss Date and
the significance of these
constructor invocations
later in this chapter in the
subsection entitled “Copy
Constructors.”

Copy constructor

The class Date was defined in Display 4.11
and many of the details are repeated in
Display 5.20.

338 CHAPTER 5 Defining Classes II

43 public void set(String newName, Date birthDate, Date deathDate)
 <Definition of this method is Self-Test Exercise 4.1.>

44 public String toString()
45 {
46 String diedString;
47 if (died == null)
48 diedString = ""; //Empty string
49 else
50 diedString = died.toString();

51 return (name + ", " + born + "-" + diedString);
52 }

53 public boolean equals(Person otherPerson)
54 {
55 if (otherPerson == null)
56 return false;
57 else
58 return (name.equals(otherPerson.name)
59 && born.equals(otherPerson.born)
60 && datesMatch(died, otherPerson.died));
61 }

62 /**
63 To match, date1 and date2 either must be the same date or must both be null.
64 */
65 private static boolean datesMatch(Date date1, Date date2)
66 {
67 if (date1 == null)
68 return (date2 == null);
69 else if (date2 == null) //&& date1 != null
70 return false ;
71 else //Both dates are not null.
72 return (date1.equals(date2));
73 }

74 /**
75 Precondition: newDate is a consistent date of birth.
76 Postcondition: Date of birth of the calling object is newDate.
77 */
78 public void setBirthDate(Date newDate)
79 {
80 if (consistent(newDate, died))
81 born = new Date(newDate);
82 else

Display 5.19 A Person Class (part 2 of 5)

This is the equals method for
the class String.

This is the equals method for the
class Date.

This is the toString
method of the class
Date.

This is equivalent to
born.toString().

Display 5.19 A Person Class (part 3 of 5)

83 {
84 System.out.println("Inconsistent dates. Aborting.");
85 System.exit(0);
86 }
87 }

88 /**
89 Precondition: newDate is a consistent date of death.
90 Postcondition: Date of death of the calling object is newDate.
91 */
92 public void setDeathDate(Date newDate)
93 {
94
95 if (!consistent(born, newDate))
96 {
97 System.out.println("Inconsistent dates. Aborting.");
98 System.exit(0);
99 }
100
101 if (newDate == null)
102 died = null ;
103 else
104 died = new Date(newDate);
105 }

106 public void setName(String newName)
107 {
108 name = newName;
109 }

110 /**
111 Precondition: The date of birth has been set, and changing the year
112 part of the date of birth will give a consistent date of birth.
113 Postcondition: The year of birth is (changed to) newYear.
114 */
115 public void setBirthYear(int newYear)
116 {
117 if (born == null) //Precondition is violated.
118 {
119 System.out.println("Fatal Error. Aborting.");
120 System.exit(0);
121 }
122 born.setYear(newYear);
123 if (!consistent(born, died))
124 {
125 System.out.println("Inconsistent dates. Aborting.");
126 System.exit(0);
127 }
128 }

(continued)

The date of death can be null. However,
there is no corresponding code in
setBirthDate because the method
consistent ensures that the date of
birth is never null.

Using and Misusing References 339

340 CHAPTER 5 Defining Classes II

Display 5.19 A Person Class (part 4 of 5)

129 /**
130 Precondition: The date of death has been set, and changing the year
131 part of the date of death will give a consistent date of death.
132 Postcondition: The year of death is (changed to) newYear.
133 */
134 public void setDeathYear(int newYear)
135 {
136 if (died == null) //Precondition is violated.
137 {
138 System.out.println("Fatal Error. Aborting.");
139 System.exit(0);
140 }
141 died.setYear(newYear);
142 if (!consistent(born, died))
143 {
144 System.out.println("Inconsistent dates. Aborting.");
145 System.exit(0);
146 }
147 }

148 public String getName()
149 {
150 return name;
151 }

152 public Date getBirthDate()
153 {
154 return new Date(born);
155 }

156 public Date getDeathDate()
157 {
158 if (died == null)
159 return null;
160 else
161 return new Date(died);
162 }

163 /**
164 To be consistent, birthDate must not be null. If there is no date of
165 death (deathDate == null), that is consistent with any birthDate.
166 Otherwise, the birthDate must come before or be equal to the

deathDate.
167 */

Display 5.19 A Person Class (part 5 of 5)

168 private static boolean consistent(Date birthDate, Date deathDate)
169 {
170 if (birthDate == null)
171 return false;
172 else if (deathDate == null)
173 return true;
174 else
175 return (birthDate.precedes(deathDate)
176 || birthDate.equals(deathDate));
177 }
178 }

Class Invariant

A statement that is always true for every object of the class is called a class invariant.
A class invariant can help to define a class in a consistent and organized way.

PITFALL: null Can Be an Argument to a Method

If a method has a parameter of a class type, then null can be used as the corresponding
argument when the method is invoked. Sometimes using null as an argument can be
the result of an error, but it can sometimes be an intentional argument. For example,
the class Person (Display 5.19) uses null for a date of death to indicate that the person
is still alive. So null is sometimes a perfectly normal argument for methods such as
consistent. Method definitions should account for null as a possible argument and
not assume the method always receives a true object to plug in for a class parameter.

Notice the definition of the method equals for the class Person. A test for equality
has the form

object1.equals(object2)

The calling object object1 must be a true object of the class Person; a calling object
cannot be null. However, the argument object2 can be either a true object or null.
If the argument is null, then equals should return false, because a true object cannot
reasonably be considered to be equal to null. In fact, the Java documentation specifies
that when the argument to an equals method is null, the equals method should return
false. Notice that our definition does return false when the argument is null. ■

Using and Misusing References 341

342 CHAPTER 5 Defining Classes II

Display 5.20 The Class Date (Partial Definition) (part 1 of 2)

 1 public class Date
 2 {
 3 private String month;
 4 private int day;
 5 private int year; //A four digit number.

 6 public Date(String monthString, int day, int year)
 7 {
 8 setDate (monthString, day, year);
 9 }

10 public Date(Date aDate)
11 {
12 if (aDate == null) //Not a real date.
13 {
14 System.out.println("Fatal Error.");
15 System.exit(0);
16 }

17 month = aDate.month;
18 day = aDate.day;
19 year = aDate.year;
20 }

21 public void setDate(String monthString, int day, int year)
22 {
23 if (dateOK(monthString, day, year))
24 {
25 this.month = monthString;
26 this.day = day;
27 this.year = year;
28 }
29 else
30 {
31 System.out.println("Fatal Error");
32 System.exit(0);
33 }
34 }
35 public void setYear(int year)
36 {
37 if ((year < 1000) || (year > 9999))
38 {

This is not a complete definition of the class Date.
The complete definition of the class Date is in Display 4.11,
but this has the details that are important to what we are
discussing in this chapter .

Copy constructor

The method dateOK checks that the
date is a legitimate date, such as
not having more than 31 days.

Display 5.20 The Class Date (Partial Definition) (part 2 of 2)

39 System.out.println("Fatal Error");
40 System.exit(0);
41 }
42 else
43 this.year = year;
44 }
45 public String toString()
46 ...
47 public boolean equals(Date otherDate)
48
49 /**
50 Returns true if the calling object date is before otherDate (in time).
51 */
52 public boolean precedes(Date otherDate)
53 ...
54 private boolean dateOK(String monthString, int dayInt, int yearInt)
55 ...

56 }

The complete definition of equals is
given later in this chapter in the
answer to Self-Test
Exercise 37, and is a
better version than the
one given in Chapter 4.

These methods have the obvious meanings. If you need to see a full definition,
see Display 4.11 in Chapter 4 and Self-Test Exercise 37 later in this chapter.

Self-Test Exercises

36. What is the difference between the following two pieces of code? The first piece
appears in Display 5.21.

Person adams =
 new Person("John Adams",
 new Date("February", 15, 1947), null);
//Second piece is below:

Date theDate = new Date("February", 15, 1947);
Person adams = new Person("John Adams", theDate, null);

37. When we defined the class Date in Chapter 4 (Display 4.11), we had not yet
discussed null. So, the definition of equals given there did not account for the
possibility that the argument could be null. Rewrite the definition of equals for
the class Date to account for the possibility that the argument might be null.

Using and Misusing References 343

344 CHAPTER 5 Defining Classes II

Display 5.21 Demonstrating the Class Person

 1 public class PersonDemo
 2 {
 3 public static void main(String[]args)
 4 {
 5 Person bach =
 6 new Person("Johann Sebastian Bach",
 7 new Date("March", 21, 1685), new Date("July", 28, 1750));
 8 Person stravinsky =
 9 new Person("Igor Stravinsky",
10 new Date("June", 17, 1882), new Date("April", 6, 1971));
11 Person adams =
12 new Person("John Adams",
13 new Date("February", 15, 1947), null);

14 System.out.println("A Short List of Composers:");
15 System.out.println(bach);
16 System.out.println(stravinsky);
17 System.out.println(adams);

18 Person bachTwin = new Person(bach);
19 System.out.println("Comparing bach and bachTwin:");
20 if (bachTwin == bach)
21 System.out.println("Same reference for both.");
22 else
23 System.out.println("Distinct copies.");

24 if (bachTwin.equals(bach))
25 System.out.println("Same data.");
26 else
27 System.out.println("Not same data.");
28 }
29 }

Sample Dialogue

A Short List of Composers:

Johann Sebastian Bach, March 21, 1685–July 28, 1750

Igor Stravinsky, June 17, 1882-April 6, 1971

John Adams, February 15, 1947-

Comparing bach and bachTwin:

Distinct copies.

Same data.

Copy Constructors

A copy constructor is a constructor with a single argument of the same type as the class.
The copy constructor should create an object that is a separate, independent object but
with the instance variables set so that it is an exact copy of the argument object.

For example, Display 5.20 reproduces the copy constructor for the class Date
defined in Display 4.11. The copy constructor, or any other constructor, creates a
new object of the class Date. This happens automatically and is not shown in the code
for the copy constructor. The code for the copy constructor then goes on to set the
instance variables to the values equal to those of its one parameter, aDate. But the new
date created is a separate object even though it represents the same date. Consider the
following code:

Date date1 = new Date("January", 1, 2015);
Date date2 = new Date(date1);

After this code is executed, both date1 and date2 represent the date January 1, 2015,
but they are two different objects. So, if we change one of these objects, it will not
change the other. For example, consider

date2.setDate("July", 4, 1776);
System.out.println(date1);

The output produced is

January 1, 2015

When we changed date2, we did not change date1. This may not be a difficult
or even subtle point, but it is critically important to much of what we discuss in
this section of the chapter. (See Self-Test Exercise 39 in this chapter to see the copy
constructor contrasted with the assignment operator.)

Now let’s consider the copy constructor for the class Person (Display 5.19), which
is a bit more complicated. It is reproduced in what follows:

public Person(Person original)
{
 if (original == null)
 {
 System.out.println("Fatal error.");
 System.exit(0);
 }
 name = original.name;
 born = new Date(original.born);
 if (original.died == null)
 died = null;
 else
 died = new Date(original.died);
}

copy
constructor

Using and Misusing References 345

346 CHAPTER 5 Defining Classes II

We want the object created to be an independent copy of original. That would
not happen if we had used the following instead:

public Person(Person original) //Unsafe
{
 if (original == null)
 {
 System.out.println("Fatal error.");
 System.exit(0);
 }
 name = original.name;
 born = original.born; //Not good.
 died = original.died; //Not good.
}

Although this alternate definition looks innocent enough and may work fine in many
situations, it does have serious problems.

Assume we had used the unsafe version of the copy constructor instead of the one
in Display 5.19. The “Not good.” code simply copies references from original.born
and original.died to the corresponding arguments of the object being created by the
constructor. So, the object created is not an independent copy of the original object.
For example, consider the code

Person original =
 new Person("Natalie Dressed",
 new Date("April", 1, 1984), null);
Person copy = new Person(original);
copy.setBirthYear(1800);
System.out.println(original);

The output would be

Natalie Dressed, April 1, 1800-

When we changed the birth year in the object copy, we also changed the birth year
in the object original. This is because we are using our unsafe version of the copy
constructor. Both original.born and copy.born contain the same reference to the
same Date object.

This all happens because we used the unsafe version of the copy constructor.
Fortunately, here we use a safer version of the copy constructor that sets the born
instance variables as follows:

born = new Date(original.born);

which is equivalent to

this.born = new Date(original.born);

This version, which we did use, makes the instance variable this.born an independent
Date object that represents the same date as original.born. So if you change a date
in the Person object created by the copy constructor, you will not change that date in
the original Person object.

Note that if a class, such as Person, has instance variables of a class type, such as the
instance variables born and died, then to define a correct copy constructor for the class
Person, you must already have copy constructors for the class Date of the instance
variables. The easiest way to ensure this for all your classes is to always include a copy
constructor in every class you define.

Copy Constructor

A copy constructor is a constructor with one parameter of the same type as the class.
A copy constructor should be designed so the object it creates is intuitively an exact copy of
its parameter, but a completely independent copy. See Displays 5.19 and 5.20 for examples
of copy constructors.

The Java documentation says to use a method named clone instead of a copy
constructor, and, as you will see later in this book, there are situations where the copy
constructor will not work as desired and you need the clone method. However, we
do not yet have enough background to delve into this method.(It is discussed later
in this book in Chapters 8 and 13.) Despite the Java documentation, many excellent
programmers prefer to sometimes use copy constructors. In this book, we will use both
copy constructors and the clone method.

clone

PITFALL: Privacy Leaks

Consider the accessor method getBirthDate for the class Person (Display 5.19),
which we reproduce in what follows:

public Date getBirthDate()
{
 return new Date(born);
}

Do not make the mistake of defining the accessor method as follows:

public Date getBirthDate() //Unsafe
{
 return born; //Not good
}

leaking
accessor
methods

(continued)

Using and Misusing References 347

348 CHAPTER 5 Defining Classes II

PITFALL: (continued)

Assume we had used the unsafe version of getBirthDate instead of the one in
Display 5.19. It would then be possible for a program that uses the class Person to
change the private instance variable born to any date whatsoever and bypass the checks
in constructor and mutator methods of the class Person. For example, consider the
following code, which might appear in some program that uses the class Person:

Person citizen = new Person(
"Joe Citizen", new Date("January", 1, 1900), new Date("January", 1,
 1990));
Date dateName = citizen.getBirthDate();
dateName.setDate("April", 1, 3000);

This code changes the date of birth so it is after the date of death (an impossibility
in the universe as we know it). This citizen was not born until after he or she died!
This sort of situation is known as a privacy leak, because it allows a programmer to
circumvent the private modifier before an instance variable such as born, and to
change the private instance variable to anything whatsoever.

The following code would be illegal in our program:

citizen.born.setDate("April", 1, 3000); //Illegal

This is illegal because born is a private instance variable. However, with the unsafe
version of getBirthDate (and we are now assuming that we did use the unsafe
version), the variable dateName contains the same reference as citizen.born and so
the following is legal and equivalent to the illegal statement:

dateName.setDate("April", 1, 3000); //Legal and equivalent to
 //illegal statement.

It is as if you have a friend named Robert who is also known as Bob. Some bully
wants to beat up Robert, so you say “You cannot beat up Robert.” The bully says
“OK, I will not beat up Robert, but I will beat up Bob.” Bob and Robert are two
names for the same person. So, if you protect Robert but do not protect Bob, you
have really accomplished nothing.

This is all if we used the unsafe version of getBirthDate, which simply returns the
reference in the private instance variable born. Fortunately, here we use a safer version
of getBirthDate, which has the following return statement:

return new Date(born);

privacy leak

PITFALL: (continued)

This return statement does not return the reference in the private instance variable born.
Instead, it uses the copy constructor to return a reference to a new object that is an exact
copy of the object named by born. If the copy is changed, that has no effect on the date
whose reference is in the instance variable born. Thus, a privacy leak is avoided.

Note that returning a reference is not the only possible source of privacy leaks.
A privacy leak can also arise from an incorrectly defined constructor or mutator
method. Notice the definition for the method setBirthDate in Display 5.19 and
reproduced as follows:

public void setBirthDate(Date newDate)
{
 if (consistent(newDate, died))
 born = new Date(newDate);
 else
 {
 System.out.println("Inconsistent dates. Aborting.");
 System.exit(0);
 }
}

Note that the instance variable born is set to a copy of the parameter newDate.
Suppose that instead of

born = new Date(newDate);

we simply use

born = newDate;

And suppose we use the following code in some program:

Person personObject = new Person(
 "Josephine", new Date("January", 1, 2000), null);
Date dateName = new Date("February", 2, 2002);
personObject.setBirthDate(dateName);

where personObject names an object of the class Person. The following will change
the year part of the Date object named by the born instance variable of the object
personObject and will do so without going through the checks in the mutator
methods for Person:

dateName.setYear(1000);

leaking
mutator
methods

(continued)

Using and Misusing References 349

350 CHAPTER 5 Defining Classes II

PITFALL: (continued)

Because dateName contains the same reference as the private instance variable born
of the object personObject, changing the year part of dateName changes the year
part of the private instance variable born of personObject. Not only does this bypass
the consistency checks in the mutator method setBirthDate, but it also is a likely
source of an inadvertent change to the born instance variable.

If we define setBirthDate as we did in Display 5.19 and as shown in the follow-
ing, this problem does not happen. (If you do not see this, go through the code step
by step and trace what happens.)

public void setBirthDate(Date newDate)
{
 if (consistent(newDate, died))
 born = new Date(newDate);
 . . .

One final word of warning: Using copy constructors in this manner is not the
officially sanctioned way to make copies of an object in Java. The authorized way to is
to define a method named clone. We will discuss clone methods in Chapters 8 and 13.
In Chapter 8, we show you that, in some situations, there are advantages to using a
clone method instead of a copy constructor. In Chapter 13, we describe the official way
to define the clone method. For what we will be doing until then, a copy constructor
will be a very adequate way of creating copies of an object.

clone

Self Test Exercises

38. What is a copy constructor?

39. What output is produced by the following code?

Date date1 = new Date("January", 1, 2006);
Date date2;
date2 = date1;
date2.setDate("July", 4, 1776);
System.out.println(date1);

 What output is produced by the following code? Only the third line is different
from the previous case.

Date date1 = new Date("January", 1, 2006);
Date date2;
date2 = new Date(date1);
date2.setDate("July", 4, 1776);
System.out.println(date1);

Mutable and Immutable Classes

Contrast the accessor methods getName and getBirthDate of the class Person
(Display 5.19). We reproduce the two methods in what follows:

public String getName()
{
 return name;
}

public Date getBirthDate()
{
 return new Date(born);
}

Notice that the method getBirthDate does not simply return the reference in the
instance variable born, but instead uses the copy constructor to return a reference to
a copy of the birth date object. We already explained why we do this. If we return the
reference in the instance variable born, then we can place this reference in a variable
of type Date, and that variable could serve as another name for the private instance
variable born, which would allow us to violate the privacy of the instance variable
born by changing it using a mutator method of the class Date. This is exactly what
we discussed in the previous subsection. So why not do something similar in the
method getName?

The method getName simply returns the reference in the private instance variable
name. So, if we do the following in a program, then the variable nameAlias will be
another name for the String object of the private instance variable name:

Person citizen = new Person(
"Joe Citizen", new Date("January", 1, 1900), new Date("January",
 1, 1990));
String nameAlias = citizen.getName();

Self Test Exercises

40. What output is produced by the following code?

Person original =
 new Person("Natalie Dressed",
 new Date("April", 1, 1984), null);
Person copy = new Person(original);
copy.setBirthDate(new Date("April", 1, 1800));
System.out.println(original)

Using and Misusing References 351

352 CHAPTER 5 Defining Classes II

It looks as though we could use a mutator method from the class String to change
the name referenced by nameAlias and so violate the privacy of the instance variable
name. Is something wrong? Do we have to rewrite the method getName to use the copy
constructor for the class String? No, everything is fine. We cannot use a mutator
method with nameAlias because the class String has no mutator methods! The class
String contains no methods that change any of the data in a String object.

At first, it may seem as though you can change the data in an object of the class
String. What about the string processing we have seen, such as the following?

String greeting = "Hello";
greeting = greeting + "friend.";

Have we not changed the data in the String object from "Hello" to "Hello
friend."? No, we have not. The expression greeting + "friend." does not change
the object "Hello"; it creates a new object, so the assignment statement

greeting = greeting + "friend.";

replaces the reference to "Hello" with a reference to the different String object
"Hello friend." The object "Hello" is unchanged. To see that this is true, consider
the following code:

String greeting = "Hello";
String helloVariable = greeting;
greeting = greeting + "friend.";
System.out.println(helloVariable);

This produces the output "Hello". If the object "Hello" had been changed, the
output would have been "Hello friend."

A class that contains no methods (other than constructors) that change any of the
data in an object of the class is called an immutable class, and objects of the class are
called immutable objects. The class String is an immutable class. It is perfectly safe
to return a reference to an immutable object, because the object cannot be changed in
any undesirable way; in fact, it cannot be changed in any way whatsoever.

A class that contains public mutator methods or other public methods, such as
input methods, that can change the data in an object of the class is called a mutable
class, and objects of the class are called mutable objects. The class Date is an example
of a mutable class; many, perhaps most, of the classes you define will be mutable
classes. As we noted in the Pitfall entitled “Privacy Leaks” (but using other words): You
should never write a method that returns a mutable object, but should instead use a
copy constructor (or other means) to return a reference to a completely independent
copy of the mutable object.

immutable

mutable

TIP: Deep Copy versus Shallow Copy

In the previous two subsections, we contrasted the following two ways of defining the
method getBirthDate (Display 5.19):

public Date getBirthDate()
{
 return new Date(born);
}
public Date getBirthDate() //Unsafe
{
 return born; //Not good
}

As we noted, the first definition is the better one (and the one used in Display 5.19).
The first definition returns what is known as a deep copy of the object born. The
second definition returns what is known as a shallow copy of the object born.

A deep copy of an object is a copy that, with one exception, has no references
in common with the original. The one exception is that references to immutable
objects are allowed to be shared (because immutable objects cannot change in any
way and so cannot be changed in any undesirable way). For example, the first defini-
tion of getBirthDate returns a deep copy of the date stored by the instance vari-
able born. So, if you change the object returned by getBirthDate, this does not
change the Date object named by the instance variable born. The reason is that we
defined the copy constructor for the class Date to create a deep copy (Display 5.20).
 Normally, copy constructors and accessor methods should return a deep copy.

Any copy that is not a deep copy is called a shallow copy. For example, the second
definition of getBirthDate returns a shallow copy of the date stored by the instance
variable born.

We will have more to say about deep and shallow copies in later chapters. ■

deep copy

shallow copy

Never Return a Reference to a Mutable Private Object

A class that contains mutator methods or other methods, such as input methods, that can
change the data in an object of the class is called a mutable class, and objects of the class
are called mutable objects. When defining accessor methods (or almost any methods),
your method should not return a reference to a mutable object. Instead, use a copy
constructor (or other means) to return a reference to a completely independent copy of the
mutable object.

Using and Misusing References 353

Deep Copy
vs. Shallow
Copy Example

VideoNote

354 CHAPTER 5 Defining Classes II

TIP: Assume Your Coworkers Are Malicious

Our discussion of privacy leaks in the previous subsections was concerned with the
effect of somebody trying to defeat the privacy of an instance variable. You might
object that your coworkers are nice people and would not knowingly sabotage your
software. That is probably true, and we do not mean to accuse your coworkers of
malicious intent. However, the same action that can be performed intentionally by a
malicious enemy can also be performed inadvertently by your friends or even by you
yourself. The best way to guard against such honest mistakes is to pretend that you
are defending against a malicious enemy. ■

5.4 Packages and javadoc

... he furnished me,

From mine own library with volumes that

I prize above my dukedom.

WILLIAM SHAKESPEARE, The Tempest, 1611.

In this section, we cover packages, which are Java libraries, and then cover the javadoc
program, which automatically extracts documentation from packages and classes.
Although these are important topics, they are not used in the rest of this book. You can
study this section at any time you wish; you need not cover this section before studying
any other topic in this book.

This section does not use any of the material in Section 5.3, and so can be covered
before Section 5.3.

This section assumes that you know about directories (which are called folders in
some operating systems), that you know about path names for directories (folders),
and that you know about PATH (environment) variables. These are not Java topics.
They are part of your operating system, and the details depend on your particular

Self-Test Exercises

41. Complete the definition of the method set for the class Person (Display 5.19).

42. Classify each of the following classes as either mutable or immutable: Date
(Display 4.11), Person (Display 5.19), and String.

43. Normally, it is dangerous to return a reference to a private instance variable of
class type, but it is OK if the class type is String. What is special about the
class String that makes this true?

Packages and javadoc 355

operating system. If you can find out how to set the PATH variable on your operating
system, you will know enough about these topics to understand this section.

Packages and import Statements

A package is Java’s way of forming a library of classes. You can make a package from a
group of classes and then use the package of classes in any other class or program you
write without the need to move the classes to the directory (folder) in which you are
working. All you need to do is include an import statement that names the package.
We have already used import statements with some predefined standard Java packages.
For example, the following, which we have used before, makes available the class
Scanner of the package java.util:

import java.util.Scanner;

You can make all the classes in the package available by using the following instead:

Import java.util.*;

There is no overhead cost for importing the entire package as opposed to just a few classes.
The import statements should be at the beginning of the file. Only blank lines,

comments, and package statements may precede the list of import statements. We
discuss package statements next.

package

import
statement

import Statement

You can use a class from a package in any program or class definition by placing an import
statement that names the package and the class from the package at the start of the file
containing the program (or class definition). The program (or class definition) need not be in
the same directory as the classes in the package.

SYNTAX

import Package_Name.Class;

EXAMPLE

import java.util.Scanner;

You can import all the classes in a package by using an asterisk in place of the class’s name.

SYNTAX

import Package_Name.*;

EXAMPLE

import java.util.*;

356 CHAPTER 5 Defining Classes II

To make a package, group all the classes together into a single directory (folder) and
add the following package statement to the beginning of each class file:

package Package_Name;

This package statement should be at the beginning of the file. Only blank lines and
comments may precede the package statement. If there are both import statements
and package statements, any package statements come before the import statements.
Aside from the addition of the package statement, class files are just as we have already
described them. (It is technically only the .class files that must be in the package
directory.)

The Package java.lang

The package java.lang contains classes that are fundamental to Java programming.
These classes are so basic that the package is always imported automatically. Any class
in java.lang does not need an import statement to make it available to your code.
For example, the classes Math and String and the wrapper classes introduced earlier in
this chapter are all in the package java.lang.

Package

A package is a collection of classes that have been grouped together into a directory and
given a package name. The classes in the package are each placed in a separate file, and the
file is given the same name as the class, just as we have been doing all along. Each file in
the package must have the following at the beginning of the file. Only comments and blank
lines may precede this package statement.

SYNTAX

package Package_Name;

EXAMPLES

package utilities.numericstuff;
package java.util;

Package Names and Directories

A package name is not an arbitrary identifier. It is a form of path name to the directory
containing the classes in the package.

In order to find the directory for a package, Java needs two things: the name of the
package and the value of your CLASSPATH variable.

You should already be familiar with the environment variable of your operating
system that is known as the PATH variable. The CLASSPATH variable is a similar
environment variable used to help locate Java packages. The value of your CLASSPATH

CLASSPATH
variable

variable tells Java where to begin its search for a package. It is not a Java variable. It is
an environment variable that is part of your operating system. The value of your
CLASSPATH variable is a list of directories. The exact syntax for this list varies from
one operating system to another, but it should be the same syntax as that used for the
(ordinary) PATH variable. When Java is looking for a package, it begins its search in the
directories listed in the CLASSPATH variable.

The name of a package specifies the relative path name for the directory that
contains the package classes. It is a relative path name because it assumes that you
start in one of the directories listed in the value of your CLASSPATH variable. For
example, suppose the following is a directory listed in your CLASSPATH variable
(your operating system might use / instead of \):

\libraries\newlibraries

And suppose your package classes are in the directory

\libraries\newlibraries\utilities\numericstuff

In this case, the package should be named

utilities.numericstuff

and all the classes in the file must start with the package statement

package utilities.numericstuff;

The dot in the package name means essentially the same thing as the \ or /, whichever
symbol your operating system uses for directory paths. The package name tells you
(and Java) what subdirectories to go through to find the package classes, starting from a
directory on the class path. This is depicted in Display 5.22. (If there happen to be two
directories in the CLASSPATH variable that can be used, then of all the ones that can
be used, Java always uses the first one listed in the CLASSPATH variable.)

Any class that uses the class in this utilities.numericstuff package must
contain either the import statement

import utilities.numericstuff.*;

or an import statement for each class in the package that is used.
The way you set the value of your CLASSPATH variable depends on your operating

system, but we can give you some suggestions that may work. The CLASSPATH
variable is usually spelled as one word with all uppercase letters, as in CLASSPATH. You
will probably have a plain old PATH variable that tells the operating system where to
find the code for commands such as javac and other commands that you can give as
single-line commands. If you can find out how to set the PATH variable, you should
be able to set the CLASSPATH variable in the same way.

Packages and javadoc 357

358 CHAPTER 5 Defining Classes II

Display 5.22 A Package Name

Classes in the package
utilities.numericstuff

programs

libraries

oldlibraries

numericstuff

stringstuff

otherlibraries

newlibraries

otherstuff

AClass.class

AnotherClass.class

utilities

inputoutput

miscellaneous

utilities.numericstuff
is the package name.

\libraries\newlibraries
is on the class path.

If you are on a UNIX system, you are likely to be able to set the CLASSPATH with
some command similar to the following:

set CLASSPATH=/libraries/newlibraries;/otherstuff/specialjava;.
export CLASSPATH

If this does not work, you might try omitting the word set or replacing set with
setenv. You might also try placing the list of directories in quotes. There are many
versions of UNIX, all with their own minor variations. You may need to consult a local
expert or check the documentation for your operating system.

If you are using a Windows machine, you can set the CLASSPATH variable by
setting or creating an environment variable named CLASSPATH using the Control Panel.

In this book, we are assuming that class path directories are separated by a semi-
colon. That is common, but some operating systems use some other separator, such as
a colon. Check your documentation if a semicolon does not work as a separator.

Package Names and the CLASSPATH Variable

A package name must be a path name for the directory that contains the classes in the
package, but the package name uses dots in place of \ or / (whichever your operating
system uses). When naming the package, use a relative path name that starts from any
directory listed in the value of the CLASSPATH (environment) variable.

EXAMPLES

utilities.numericstuff
java.util

PITFALL: Subdirectories Are Not Automatically Imported

Suppose you have two packages, utilities.numericstuff and utilities.
numericstuff.statistical. In this case, you know that utilities.

numericstuff.statistical is in a subdirectory (subfolder) of the directory (folder)
containing utilities.numericstuff. This leads some programmers to assume that
the following import statement imports both packages:

import utilities.numericstuff.*;

This is not true. When you import an entire package, you do not import subdirectory
packages.

To import all classes in both of these packages, you need

import utilities.numericstuff.*;

import utilities.numericstuff.statistical.*; ■

The Default Package

All the classes in your current directory (that do not belong to some other package)
belong to an unnamed package called the default package. As long as the current
directory is on your CLASSPATH, all the classes in the default package are
automatically available to your code. This is why we always assume that all the classes
we defined are in the same directory. That way, we need not clutter our discussion with
concern about import statements.

default
package

Packages and javadoc 359

360 CHAPTER 5 Defining Classes II

PITFALL: Not Including the Current Directory in Your Class Path

Your CLASSPATH variable allows you to list more than one directory. Most
operating systems use the dot to indicate the current directory. The current directory
is not any one specific directory; it is the directory in which you are currently
“located.” If you do not know what your current directory is, then it is probably the
directory that contains the class you are writing. For example, the following value for
a CLASSPATH variable lists two ordinary directories and the current directory:

\libraries\newlibraries;\otherstuff\specialjava;.

Whenever you set or change the CLASSPATH variable, be sure to include the
current directory as one of the alternatives. With the above displayed CLASSPATH
value, if the package is not found by starting in either of the previous two directories,
Java will look in the subdirectories of the current directory. If you want Java to check
the current directory before the other directories on the CLASSPATH variable, list
the current directory (the dot) first, as follows:

.;\libraries\newlibraries;\otherstuff\specialjava

When looking for a package, Java tries the directories in the class path in order and
uses the first one that works.

Omitting the current directory from the CLASSPATH variable can interfere with
running Java programs, regardless of whether or not the programs use packages. If the
current directory is omitted, then Java may not even be able to find the .class file
for the program itself, so you may not be able to run any programs at all. Thus, if you
do set the CLASSPATH variable, it is critical that you include the current directory in
the CLASSPATH. No such problems will occur if you have not set the CLASSPATH
variable at all; it arises only if you decide to set the CLASSPATH variable.

If you are having problems setting the CLASSPATH variable, one interim solution
is to delete the CLASSPATH variable completely and to keep all the class files for one
program in the same directory. This will allow you to still do some work while you
seek advice on setting the CLASSPATH variable. ■

current
directory

Specifying a Class Path When You Compile ★

You can specify a class path when you compile a class. To do so, add -classpath
followed by the class path as illustrated in the following:

javac -classpath .;C:\lib\numeric;C:\otherstuff YourClass.java

In a UNIX environment, replace the semicolons with colons. This will compile
YourClass.java, overriding any CLASSPATH setting, and use the class path given
after -classpath. Note that the directories are separated by semicolons. If you want

classes in the current directory to be available to your class, then be sure the class path
includes the current directory, which is indicated by a dot.

When you run the class compiled as just shown, you should again use the
-classpath option as follows:

java -classpath .;C:\libraries\numeric;C:\otherstuff YourClass

It is important to include the current directory on the class path when you run the
program. If your program is in the default package, it will not be found unless you
include the current directory. It is best to get in the habit of always including the
current directory in all class paths.

Because the class path specified in compiling and running your classes is input to a
program (javac or java) that is part of the Java environment and is not a command
to the operating system, you can use either / or \ in the class path, no matter which of
these two your operating system uses.

Name Clashes ★

In addition to being a way of organizing libraries, packages also provide a way to deal
with name clashes. A name clash is a situation in which two classes have the same
name. If different programmers writing different packages used the same name for a
class, the ambiguity can be resolved by using the package name.

Suppose a package named sallyspack contains a class called HighClass, and
another package named joespack also contains a class named HighClass. You can
use both classes named HighClass in the same program by using the more complete
names sallyspack.HighClass and joespack.HighClass. For example,

sallyspack.HighClass object1 = new sallyspack.HighClass();
joespack.HighClass object2 = new joespack.HighClass();

These names that include the package name, such as sallyspack.HighClass and
joespack.HighClass, are called fully qualified class names.

If you use fully qualified class names, you do not need to import the class, since this
longer class name includes the package name.

name clash

fully
qualified

class name

Self-Test Exercises

44. Suppose you want to use the class CoolClass in the package mypackages.
library1 in a program you write. What do you need to do to make this class
available to your program? What do you need to do to make all the classes in
the package available to your program?

45. What do you need to do to make a class a member of the package named
mypackages.library1?

46. Can a package have any name you want, or are there restrictions on what you
can use for a package name? Explain any restrictions.

Packages and javadoc 361

362 CHAPTER 5 Defining Classes II

Introduction to javadoc ★

The principles of encapsulation using information hiding say that you should separate
the interface of a class (the instructions on how to use the class) from the implementation
(the detailed code that tells the computer how the class does its work). In some other
programming languages, such as C++, you normally define a class in two files. One file
contains something like the interface or API that tells a programmer all that he or she
needs to know to use the class. The other file contains the implementation details that
are needed for the class code to run. This system is an obvious way to separate interface
from implementation, but it is not what Java does.

Java does not divide a class definition into two files. Instead, Java has the interface
and implementation of a class mixed together into a single file. If this were the end of
the story, Java would not do a good job of encapsulation using information hiding.
However, Java has a very good way of separating the interface from the implementation
of a class. Java comes with a program named javadoc that automatically extracts the
interface from a class definition. If your class definition is correctly commented, a
programmer using your class need only look at this API (documentation) produced
by javadoc. The documentation produced by javadoc is identical in format to the
documentation for the standard Java library classes.

The result of running javadoc on a class is to produce an HTML file with the
API (interface) documentation for the class. HTML is the basic language used to
produce documents to view with a Web browser, so the documentation produced
by javadoc is viewed on a Web browser. A brief introduction to HTML is given in
Chapter 20. However, you need not know any HTML to run javadoc or to read the
documentation it produces.

javadoc can be used to obtain documentation for a single class. However, it is
primarily intended to obtain documentation for an entire package.

We will first discuss how you should comment your classes so that you can get the
most value out of javadoc. We will then describe how you run the javadoc program.

Commenting Classes for javadoc ★

To get a more useful javadoc document, you must write your comments in a
particular way. All the classes in this book have been commented for use with javadoc.
However, to save space, the comments in this book are briefer than what would be
ideal for javadoc.

The javadoc program extracts the heading for your class (or classes) as well as
the headings for all public methods, public instance variables, public static variables,
and certain comments. No method bodies and no private items are extracted when
javadoc is run in the normal default mode.

For javadoc (in default mode) to extract a comment, the comment must satisfy
two conditions:

javadoc

1. The comment must immediately precede a public class definition, a public method
definition, or other public item.

2. The comment must be a block comment (that is, the /* and */ style of comment),
and the opening /* must contain an extra *. So the comment must be marked by
/** at the beginning and */ at the end.

Unless you explicitly set an extra option to javadoc, line comments (that is, // style
comments) are not extracted, and comments preceding any private items also are not
extracted.

The comment that precedes a public method definition can include any general
information that you would like. There is also special syntax for inserting descriptions
of parameters, any value returned, and any exceptions that might be thrown. We have
not yet discussed exceptions. That is done in Chapter 9, but we include mention of
them here, so this section will serve as a more complete reference on javadoc. You need
not worry about exceptions or the details about “throws” discussed here until you reach
Chapter 9.

The special information about parameters and so forth are preceded by the @
symbol and are called @ tags. The following is an example of a method comment for
use with javadoc:

/**
Tests for equality of two objects of type Person. To be equal,
the two objects must have the same name, same birth date, and
same death date.

 @param otherPerson The person being compared to the calling
object.

 @return Returns true if the calling object equals otherPerson.
*/
public boolean equals(Person otherPerson)

(The method equals is from the class Person defined in Display 5.19. If you need
more context, look at that display.)

Note that the @ tags all come after any general comment and that each @ tag is on a
line by itself. The following are some of the @ tags allowed:

@param Parameter_Name Parameter_Description
@return Description_Of_Value_Returned
@throws Exception_Type Explanation
@deprecated

@see Package_Name.Class_Name
@author Author
@version Version_Information

The @ tags should appear in the above order—first @param, then @return, then
@throws, and so forth. If there are multiple parameters, they should each have their

@ tag

Packages and javadoc 363

364 CHAPTER 5 Defining Classes II

own @param and appear on a separate line. The parameters and their @param
description should be listed in their left-to-right order in the parameter list. If there
are multiple authors, they should each have their own @author and appear on a
separate line. The author and version information are not extracted unless suitable
option flags have been set, as described in the next subsection.

If @deprecated is included in a method comment, then the documentation notes
that the method is deprecated. A deprecated method is one that is being phased out. To
allow for backward compatibility, the method still works, but it should not be used in
new code.

If an @ tag is included for an item, javadoc extracts the explanation for that item
and includes it in the documentation. You should always include a more or less
complete set of @ tags in the comment for each of your methods. In this book, we omit
the @ tags to save space, but we encourage you to always include them. The comments
that are not part of an @ tag appear as a general comment for the method, along with
the method heading.

You can also insert HTML commands in your comments so that you gain more
control over javadoc, but that is not necessary and may not even be desirable. HTML
commands can clutter the comments, making them harder to read when you look at
the source code.

Running javadoc ★

To run javadoc on a package, all you need to do is give the following command:

javadoc –d Documentation_Directory Package_Name

It would be normal to run this command from the directory containing the classes in
the package, but it can be run from any directory, provided you have correctly set the
CLASSPATH environment variable. The Documentation_Directory is the name of the
directory in which you want javadoc to place the HTML documents that it produces.
For example, the following might be used to obtain documentation on the package
mylibraries.numericstuff:

javadoc –d documentation/mypackages mylibraries.numericstuff

The HTML documents produced will be in the subdirectory documentation/
mypackages of where this command is run. If you prefer, you may use a complete path
name in place of the relative path name documentation/mypackages. If you omit the
-d and Documentation_Directory, javadoc will create suitable directories for the
documentation.

You can link to standard Java documents so that your HTML documents include
live links to standard classes and methods. The syntax is as follows:

javadoc –link Link_To_Standard_Docs –d Documentation_Directory
Package_Name

deprecated

Link_To_Standard_Docs is either a path to a local version of the Java documentation or
the URL of the Oracle Web site with standard Java documentation. As of this writing,
that URL is

http://download.oracle.com/javase/8/docs/api/

You need not run javadoc on an entire package. You can run javadoc on a single
class file. For example, the following should be run from the directory containing Date.java
and will produce documentation for the class Date :

javadoc Date.java

You can run javadoc on all classes in a directory with

javadoc *.java

You can add the -d and/or -link options to any of these commands. For example,

javadoc -link http://download.oracle.com/javase/8/docs/api/ -d
mydocs *.java

These and other options for javadoc are summarized in Display 5.23.
When running javadoc, you typically get more directories and many more HTML

files than you might expect. To get a better understanding of javadoc, you should try
running it in various settings and observe the files it produces.

Display 5.23 Options for java.doc

OPTIONS DESCRIPTION

-link Provides a link to another set of documentation. Normally,
this is used with either a path name to a local version of the
Java documentation or the URL of the Oracle Web site with
standard Java documentation.

-d Specifies a directory to hold the documentation generated.
Documentation_Directory may be a relative or absolute
path name.

-author Includes author information (from @author tags). This
information is omitted unless this option is set.

-version Includes version information (from @version tags). This
information is omitted unless this option is set.

-classpath Overrides the CLASSPATH environment variable and makes
the CLASSPATH for the execution of this invocation of
javadoc. It does not permanently change the CLASSPATH
variable.

-private Includes private members as well as public members in the
documentation.

Packages and javadoc 365

http://download.oracle.com/javase/8/docs/api
http://download.oracle.com/javase/8/docs/api

366 CHAPTER 5 Defining Classes II

Chapter Summary

• A static method is one that does not require a calling object but can use the class name
in place of the calling object.

• A static variable is similar to an instance variable except that there is only one copy of
the static variable that is used by all objects of the class.

• A wrapper class allows you to have a class object that corresponds to a value of a primi-
tive type. Wrapper classes also contain a number of useful predefined constants and
static methods.

• A variable of a class type stores the reference (memory address) of where the object
is located in the computer’s memory. This causes some operations, such as = and ==,
to behave quite differently for variables of a class type than they do for variables of a
primitive type.

• When you use the assignment operator with two variables of a class type, the two
variables become two names for the same object.

• A method cannot change the value of a variable of a primitive type that is an argu-
ment to the method. On the other hand, a method can change the values of the
 instance variables of an argument of a class type. This is because with class parameters,
it is a reference that is plugged in to the parameter.

• null is a special constant that can be used to give a value to any variable of any class type.

• An expression with a new operator and a constructor can be used as an argument to
a method. Such an argument is called an anonymous object.

• A copy constructor is a constructor with one parameter of the same type as the class.
A copy constructor should be designed so the object it creates is intuitively an exact
copy of its parameter, but is a completely independent copy—that is, a deep copy.

• A class that contains mutator methods or any methods that can change the data in an
object of the class is called a mutable class, and objects of the class are called mutable
objects. When defining accessor methods (or almost any methods), your method
should not return a reference to a mutable object. Instead, use a copy constructor (or
other means) to return a reference to a deep copy of the mutable object.

Self-Test Exercises

47. When run in default mode, does javadoc ever extract the body of a method
definition? When run in default mode, does javadoc ever extract anything
marked private in a class definition?

48. When run in default mode, what comments does javadoc extract and what
comments does it not extract?

• Packages are Java’s version of class libraries.

• Java comes with a program named javadoc that automatically extracts the interface
from all the classes in a package or from a single class definition.

Answers to Self-Test Exercises

 1. Yes, it is legal, although it would be preferable style to use the class name
RoundStuff in place of roundObject.

 2. No, all methods in the class are static, so there is no need to create objects. If we
follow our style rules, no constructors would ever be used, so there is no need for
constructors.

 3. Yes, a class can contain both static and nonstatic (that is, regular) methods.

 4. You cannot invoke a nonstatic method within a static method (unless you create
an object to serve as the calling object of the nonstatic method).

 5. You can invoke a static method within a nonstatic method.

 6. You cannot reference an instance variable within a static method, because a static
method can be used without a calling object and hence without any instance variables.

 7. Each object of a class has its own copy of each instance variable, but a single copy
of each static variable is shared by all objects.

 8. No, you cannot use an instance variable (without an object name and dot) in the
definition of a static method of the same class. Yes, you can use an instance variable
(without an object name and dot) in the definition of a nonstatic method of the
same class.

 9. Yes, you can use a static variable in the definition of a static method of the same
class. Yes, you can use a static variable in the definition of a nonstatic method of
the same class. So, you can use a static variable in any method.

10. No, you cannot use either an explicit or an implicit occurrence of the this parameter
in the definition of a static method.

11. All methods with the following names could and should be marked static: dateOK,
monthOK, and monthString.

12. All static variables should be marked private with the exception of one case: If
the static variable is used as a named constant (that is, if it is marked final), then
it can be marked either public or private depending on the particular situation.

13. They can both be named by using the class name and a dot, rather than an object
name and a dot.

Answers to Self-Test Exercises 367

368 CHAPTER 5 Defining Classes II

14. 3, 4,

 3.0, 3.0,

 4.0, and 4.0

15. roundedAnswer = (int)Math.round(answer);

16. long. Because one argument is of type long, the int argument is automatically type
cast to long.

17. They are all legal.

18. An object of the class Double; the assignment is equivalent to

 Double price = new Double(1.99);

19. A value of the primitive type int; the assignment is equivalent to

 int count = (new Integer(12)).intValue();

20. Objects are Not equal.

21. Double.toString(result)

22. Double.parseDouble(stringForm)

23. Double.parseDouble(stringForm.trim())

24. System.out.println("Largest long is" + Long.MAX_VALUE +
 "Smallest long is" + Long.MIN_VALUE);

25. Character zeeObject = new Character('Z');

26. No, none of the wrapper classes discussed in this chapter have no-argument
 constructors.

27. A reference type is a type whose variables contain references, that is, memory
 addresses. Class types are reference types. Primitive types are not reference types.

28. When comparing two objects of a class type, you should use the method equals.

29. When comparing two objects of a primitive type, you should you use ==.

30. Yes, a method with an argument of a class type can change the values of the instance
variables in the object named by the argument.

31. No, a method cannot change the value of an int variable given as an argument to
the method.

32. The variable anObject names no object, so the invocation of the set method is
an error. One way to fix things is as follows:

 ToyClass anObject = new ToyClass();

 anObject.set("Josephine", 42);

33. The constant null can be assigned to a variable of any class type. It does not really
have a type, but you can think of its type as being the type of a memory address.
You can also think of null as being of every class type.

Answers to Self-Test Exercises 369

34. aVariable == null

35. It is unlikely, but it is legal. This is an example of an anonymous object, as described
in the text.

36. The only difference is that the object of type Date is given the name theDate in
the second version. It makes no difference to the object adams.

37. The following definition of equals is used in the file Date.java in the Chapter 5
directory of the source code on the website:

 public boolean equals(Date otherDate)

 {

 if (otherDate == null)

 return false;

 else

 return ((month.equals(otherDate.month)) &&

 (day == otherDate.day) && (year == otherDate.year));

 }

38. A copy constructor is a constructor with one parameter of the same type as the
class. A copy constructor should be designed so that the object it creates is intui-
tively an exact copy of its parameter, but a completely independent copy, that is, a
deep copy.

39. The first piece of code produces the output

 July 4, 1776

 The second piece of code produces the output

 January 1, 2006

40. Natalie Dressed, April 1, 1984-

41. public void set(String newName, Date birthDate, Date deathDate)

 {

 if (consistent(birthDate, deathDate))

 {

 name = newName;

 born = new Date(birthDate);

 if (deathDate == null)

 died = null;

 else

 died = new Date(deathDate);

 }

 else

 {

 System.out.println("Inconsistent dates. Aborting.");

 System.exit(0);

 }

 }

extra code
on website

370 CHAPTER 5 Defining Classes II

 Note that the following is not a good definition because it could lead to a privacy leak:

 public void set(String newName, Date birthDate, Date deathDate)

 {//Not good

 name = newName;

 born = birthDate;

 died = deathDate;

 }

42. The class String is an immutable class. The classes Date and Person are mutable
classes.

43. The class String is an immutable class.

44. To make the class available to your program, you need to insert the following at
the start of the file containing your class:

 import mypackages.library1.CoolClass;

 To make all the classes in the package available to your program, insert the follow-
ing instead:

 import mypackages.library1.*;

45. To make a class a member of the package named mypackages.library1, you
must insert the following at the start of the file with the class definition and place
the file in the directory corresponding to the package (as described in the text):

 package mypackages.library1;

 (Only the .class file is required to be in the directory corresponding to the pack-
age, but it may be cleaner and easier to place both the .java file and the .class
file there.)

46. A package name must be a path name for the directory that contains the classes
in the package, but the package name uses dots in place of \ or / (whichever your
 operating system uses). When naming the package, you use a relative path name
that starts from any directory named in the value of the CLASSPATH (environ-
ment) variable.

47. javadoc never extracts the body of a method definition, nor (when run in default
mode) does javadoc ever extract anything marked private in a class definition.

48. When run in default mode, javadoc extracts only comments that satisfy the
 following two conditions:

 1. The comment must immediately precede a public class definition, a public
method definition, or other public item.

 2. The comment must use the /* and */ style, and the opening /* must contain
an extra *. So the comment must be marked by /** at the beginning and */ at
the end. In particular, javadoc does not extract any // style comments.

Programming Projects

 1. Define a class called BookStore to maintain the record of books sold. The store
contains three categories of books i.e. “Kids”, “Engineering”, and “Story”. The
following details should be maintained for each book.

 a. Book category

 b. Author

 c. Title

 d. Publisher

 e. Selling price of the book

 f. Quantity

 Create a constructor that initializes the Store ID and the rest of the details of the
book mentioned above. Include a method named trackSalesStatus that will
display the total number of books sold by the store (add a static variable that tracks
the total number of books sold). Also, include a method to display the quantity
available corresponding to each Book ID. Write a main method to test your class.

 2. Define a class called Fraction. This class is used to represent a ratio of two inte-
gers. Include mutator methods that allow the user to set the numerator and the
denominator. Also include a method that displays the fraction on the screen as a
ratio (e.g., 5>9). This method does not need to reduce the fraction to lowest terms.

 Include an additional method, equals, that takes as input another Fraction and
returns true if the two fractions are identical and false if they are not. This
method should treat the fractions reduced to lowest terms; that is, if one fraction
is 20>60 and the other is 1>3, then the method should return true.

 Embed your class in a test program that allows the user to create a fraction. Then
the program should loop repeatedly until the user decides to quit. Inside the body
of the loop, the program should allow the user to enter a target fraction into an
anonymous object and learn whether the fractions are identical.

 3. Create a class to represent a container. The class Container should have the fol-
lowing properties.

 a. Maximum capacity of the container in liters.

 b. Quantity of liquid at any given time in liters.

 The following operations can be performed on the containers:

 a. Completely fill a container.

 b. Completely empty a container.

 c. Transfer liquid from one container to another.

 Define the class named Container that implements the properties and operations
defined above. Create a constructor of the Container class that allows the user to
specify the maximum capacity of the container in liters. Initially, assume that all
the containers are empty.

Programming Projects 371

372 CHAPTER 5 Defining Classes II

 Also, implement the following methods in the Container class.

 a. Quantity to return the current quantity of liquid at any given time in liters.

 b. Leftover to return the quantity of liquid that can be filled in the current con-
tainer before it is full.

 c. Full to fill the current container fully.

 d. Empty to make the container completely empty.

 e. Transfer to transfer a certain amount of liquid from one container to another.

 f. displayQuantity to display the current quantity in liters/ milliliters/ kiloliters.

 Note: While transferring liquid from one container to another, check the maxi-
mum capacity of the container.

 Also, include other supporting variables or methods wherever necessary.

 4. You are interested in keeping track of the team members and competition infor-
mation for your school’s annual entries in computer science programming com-
petitions. Each team consists of exactly four team members. Every year your team
competes in two competitions. As an initial start for your database, create a class
named Team that has the following instance variables:

 // Name for the team

 String teamName;

 // Names for each team members.

 String name1, name2, name3, name4;

 // Info on each competition

 Competition competition1, competition2;

 Note that there is a much better way to represent the team members and competi-
tions using arrays; this is covered in a subsequent chapter. The class should also
have a method that outputs the names of all team members and the competition
information to the console.

 The Competition class contains variables to track the following:

 String: Name of the competition, Name of the winning team, Name of the runner-up

 Integer: Year of the competition

 Implement the Team and Competition classes with appropriate constructor, accessor,
and mutator methods. In entering data for past competitions, you note that an entry
is usually very similar to the previous year’s entry. To help with the data entry, create
a deep copy constructor for the Team class. Test your copy constructor by creating a
copy of an existing team object, changing the competition information for the copy,
and outputting the data for the original and the copy. The original object should be
unchanged if your deep copy constructor is working properly.

 5. Part One: Define a class named Money whose objects represent amounts of U.S.
money. The class should have two instance variables of type int for the dollars and
cents in the amount of money. Include a constructor with two parameters of type
int for the dollars and cents, one with one constructor of type int for an amount of
dollars with zero cents and a no-argument constructor. Include the methods add and
minus for addition and subtraction of amounts of money. These methods should be
static methods, should each have two parameters of type Money, and return a value
of type Money. Include a reasonable set of accessor and mutator methods as well as
the methods equals and toString. Write a test program for your class.

 Part Two: Add a second version of the methods for addition and subtraction.
These methods should have the same names as the static version but should use a
calling object and a single argument. For example, this version of the add method
(for addition) has a calling object and one argument. So m1.add(m2) returns the
result of adding the Money objects m1 and m2. Note that your class should have all
these methods; for example, there should be two methods named add.

 Alternate Part Two: Add a second version of the methods for addition and subtrac-
tion. These methods should have the same names as the static version but should
use a calling object and a single argument. The methods should be void methods.
The result should be given as the changed value of the calling object. For example,
this version of the add method (for addition) has a calling object and one argu-
ment. Therefore,

 m1.add(m2);

 changes the values of the instance variables of m1 so they represent the result of
adding m2 to the original version of m1. Note that your class should have all these
methods; for example, there should be two methods named add.

 (If you want to do both Part Two and Alternate Part Two, they must be two
classes. You cannot include the methods from both Part Two and Alternate Part
Two in a single class. Do you know why?)

 6. Part One: Define a class for rational numbers. A rational number is a number that
can be represented as the quotient of two integers. For example, 1>2, 3>4, 64>2,
and so forth are all rational numbers. (By 1>2 and so forth, we mean the everyday
meaning of the fraction, not the integer division this expression would produce in
a Java program.) Represent rational numbers as two values of type int, one for
the numerator and one for the denominator. Your class should have two instance
variables of type int. Call the class Rational. Include a constructor with two
arguments that can be used to set the instance variables of an object to any values.
Also include a constructor that has only a single parameter of type int; call this
single parameter wholeNumber and define the constructor so that the object will
be initialized to the rational number wholeNumber/1. Also include a no-argument
constructor that initializes an object to 0 (that is, to 0>1). Note that the numerator,

Programming Projects 373

374 CHAPTER 5 Defining Classes II

the denominator, or both may contain a minus sign. Define methods for addition,
subtraction, multiplication, and division of objects of your class Rational. These
methods should be static methods that each have two parameters of type Rational
and return a value of type Rational. For example, Rational.add(r1, r2) will
return the result of adding the two rational numbers (two objects of the class
 Rational, r1 and r2). Define accessor and mutator methods as well as the methods
equals and toString. You should include a method to normalize the sign of the
rational number so that the denominator is positive and the numerator is either
positive or negative. For example, after normalization, 4>-8 would be represented
the same as -4>8. Also write a test program to test your class.

 Hints: Two rational numbers a>b and c>d are equal if a*d equals c*b .

 Part Two: Add a second version of the methods for addition, subtraction, multi-
plication, and division. These methods should have the same names as the static
version but should use a calling object and a single argument. For example, this
version of the add method (for addition) has a calling object and one argument. So
r1.add(r2) returns the result of adding the rationals r1 and r2. Note that your
class should have all these methods; for example, there should be two methods
named add.

 Alternate Part Two: Add a second version of the methods for addition, subtraction,
multiplication, and division. These methods should have the same names as the
static version but should use a calling object and a single argument. The methods
should be void methods. The result is given as the changed value of the calling
object. For example, this version of the add method (for addition) has a calling
object and one argument. Therefore,

 r1.add(r2);

 changes the values of the instance variables of r1 so they represent the result of
adding r2 to the original version of r1. Note that your class should have all these
methods; for example, there should be two methods named add.

 (If you want to do both Part Two and Alternate Part Two, they must be two
classes. You cannot include the methods from both Part Two and Alternate Part
Two in a single class. Do you know why?)

 7. Create a class to represent the phone billing system. For this purpose, you need to
define two classes namely, NationalCall and InternationalCall.

 Define the NationalCall with the following attributes. You can include your own
attributes also, if required.

 a. Source phone number

 b. Destination phone number

 c. Total duration of current call in seconds

 d. Total duration of all call

 e. Current call price

 f. Total price of all calls

Programming Projects 375

 Include a constructor that constructs a NationalCall object from the parameters for:

 a. Source phone number

 b. Destination phone number

 c. Total duration of current call in seconds

 The InternationalCall class is defined with the following additional attributes
apart from the attributes of NationalCall class.

 a. Source phone number Country code

 b. Destination phone number Country code

 The following table shows call rates as per the call durations.

Call Duration

National Call
Rates

International
Call Rates

<= First minute 0.20 $ 0.60 $

> First Minute and <= second minute 0.15 $ 0.40 $

> Second minute 0.10 $ 0.20 $

 Also, define a method as DiscountCall that will calculate the discount provided
to the customer depending upon the duration of the call. The discount rates are
different for national and international calls. The table below shows some of the
sample values for the discount offer.

Total duration of all calls

National Call
Discounted on Call

Price

International Call
Discounted Number

of Call Units

> 10 and <= 20 minutes 5% 8%

> 20 minutes 7% 10%

 Write a suitable constructor that will initialize all data members and construct the
objects for the class.

 Write a suitable method to display the details of NationalCall and Interna-
tionalCall class. Define the main method class to test and implement the code.

 8. Programming Project 4.12 asked you to create a PizzaOrder class that stores an
order consisting of up to three pizzas. Extend this class with the following methods
and constructor:

 • public int getNumPizzas()—returns the number of pizzas in the order.

 • public Pizza getPizza1()—returns the first pizza in the order or null if
pizza1 is not set.

 •	 	public Pizza getPizza2()—returns the second pizza in the order or null
if pizza2 is not set.

 • public Pizza getPizza3()—returns the third pizza in the order or null if
pizza3 is not set.

376 CHAPTER 5 Defining Classes II

 • A copy constructor that takes another PizzaOrder object and makes an
 independent copy of its pizzas. This might be useful if using an old order as a
starting point for a new order.

 Write a main method to test the new methods. Changing the pizzas in the new
order should not change the pizzas in the original order. For example,

 Pizza pizza1 = // Code to create a large pizza, 1 cheese, 1 ham

 Pizza pizza2 = // Code to create a medium pizza, 2 cheese,

 // 2 pepperoni

 PizzaOrder order1 = // Code to create an order

 order1.setNumPizzas(2); // 2 pizzas in the order

 order1.setPizza1(pizza1); // Set first pizza

 order1.setPizza2(pizza2); // Set second pizza

 double total = order1.calcTotal(); // Should be 18+20 = 38

 PizzaOrder order2 = new PizzaOrder(order1); // Use copy

 // constructor

 order2.getPizza1().setNumCheeseToppings(3); // Change toppings

 double total = order2.calcTotal(); // Should be 22 + 20 = 42

 double origTotal = order1.calcTotal(); // Should still be 38

 Note that the first three lines of code are incomplete. You must complete them as
part of the Programming Project.

 9. Use javadoc to generate HTML documentation for the code in Display 5.19.
Use the @author and @version tag for the description of the entire class. Add a
comment for every public method or constructor using the @param and @return
tags when appropriate.

10. First, complete Programming Project 4.13 from Chapter 4.

 Modify the main method with a loop so that an arbitrary number of BoxOfProduce
objects are created and substitutions are allowed for each box. Add a menu so the
user can decide when to stop creating boxes.

 You would like to throw in a free recipe flyer for salsa verde if the box contains
tomatillos. However, there are only five recipe flyers. Add a static variable to the
BoxOfProduce class that counts the number of recipe flyers remaining and initialize
it to 5. Also add an instance variable that indicates whether or not the box contains
a recipe flyer and modify the toString() method to also output “salsa verde
recipe” if the box contains a recipe flyer. Finally, add logic inside the class so that
if the box contains at least one order of tomatillos then it automatically gets a recipe
flyer until all of the recipe flyers are gone. Note that a box should only get one recipe
flyer even if there are multiple orders of tomatillos.

 Test your class by creating boxes with tomatillos from your menu until all of the
flyers are gone.

11. Do Programming Project 5 Part One and Programming Project 6 Part One. For
this Programming Project, put your Money class into a package named Finance,
and put your Rational class into a package named MyMath. Your main method
should be in a separate package of your choice. Your test code for both classes
should be in the main method.

Solution to
Programming
Project 5.9

VideoNote

6.4 MultidiMensional arrays 431
Multidimensional Array Basics 431
Using the length Instance Variable 434
Ragged Arrays ★ 435
Multidimensional Array Parameters and Returned

Values 435
Example: A Grade Book Class 436

6.1 introduction to arrays 378
Creating and Accessing Arrays 379
The length Instance Variable 382
Initializing Arrays 385

6.2 arrays and references 388
Arrays Are Objects 388
Array Parameters 390
Arguments for the Method main ★ 397
Methods That Return an Array 399

6.3 PrograMMing with arrays 400
Partially Filled Arrays 401
Example: A Class for Partially Filled Arrays 404
The “for-each” Loop ★ 408
Methods with a Variable Number

of Parameters ★ 412
Example: A String Processing Example ★ 415
Privacy Leaks with Array Instance Variables 416
Example: Sorting an Array 420
Enumerated Types ★ 424

6 Arrays

chapter summary 442 answers to self-test exercises 443 Programming Projects 450

Memory is necessary for all the operations of reason.

BLAISE PASCAL, Pensées, 1688.

Introduction
An array is a data structure used to process a collection of data that is all of the same
type, such as a list of numbers of type double or a list of strings. In this chapter, we
introduce you to the basics of defining and using arrays in Java.

Prerequisites
Section 6.1 requires understanding of only Chapters 1 through 3 and Section 4.1 of
Chapter 4. Indeed, much less than all of Section 4.1 is needed. All you really need from
Section 4.1 is to have some idea of what an object is and what an instance variable is.

The remaining sections require Chapters 1 through 5 with the exception that an
understanding of Section 5.4 on packages and javadoc is not required.

6.1 Introduction to Arrays
It is a capital mistake to theorize before one has data.

SIR ARTHUR CONAN DOYLE, Scandal in Bohemia, 1891.

Suppose we wish to write a program that reads in five test scores and performs some
manipulations on these scores. For instance, the program might compute the highest
test score and then output the amount by which each score falls short of the highest.
The highest score is not known until all five scores are read in. Hence, all five scores
must be retained in storage so that after the highest score is computed, each score
can be compared to it. To retain the five scores, we will need something equivalent
to five variables of type int. We could use five individual variables of type int, but
keeping track of five variables is hard, and we may later want to change our program
to handle 100 scores; certainly, keeping track of 100 variables is impractical. An array
is the perfect solution. An array behaves like a list of variables with a uniform naming
mechanism that can be declared in a single line of simple code. For example, the names
for the five individual variables we need might be score[0], score[1], score[2],
score[3], and score[4]. The part that does not change—in this case, score—is the
name of the array. The part that can change is the integer in the square brackets [].

6 Arrays

array

Introduction to Arrays 379

Creating and Accessing Arrays

In Java, an array is a special kind of object, but it is often more useful to think of it as
a collection of variables all of the same type. For example, an array that behaves like a
collection of five variables of type double can be created as follows:

double[] score = new double[5];

This is like declaring the following to be five variables of type double:

score[0], score[1], score[2], score[3], score[4]

The individual variables that make up the array are referred to in a variety of different
ways. We will call them indexed variables, though they are also sometimes called
subscripted variables or elements of the array. The number in square brackets is
called an index or a subscript. In Java, indices are numbered starting with 0, not any
number. The number of indexed variables in an array is called the length or size of the
array. When an array is created, the length of the array is given in square brackets after
the array name. The indexed variables are then numbered (also using square brackets)
starting with 0 and ending with the integer that is one less than the length of the array.

The following example:

double[] score = new double[5];

is really shorthand for the following two statements:

double[] score;
score = new double[5];

The first statement declares the variable score to be of the array type double[]. The
second statement creates an array with five indexed variables of type double and makes
the variable score a name for the array. You may use any expression that evaluates to
a nonnegative int value in place of the 5 in square brackets. In particular, you can fill
a variable with a value read from the keyboard and use the variable in place of the 5. In
this way, the size of the array can be determined when the program is run.

An array can have indexed variables of any type, as long as they are all of the same
type. This type is called the base type of the array. In our example, the base type of
the array score is double. To declare an array with base type int, simply use the type
name int instead of double when the array is declared and created. The base type of
an array can be any type. In particular, it can be a class type.

Each of the five indexed variables of our example array score can be used just like
any other variable of type double. For example, all of the following are allowed in Java:

score[3] = 32;
score[0] = score[3] + 10;
System.out.println(score[0]);

The five indexed variables of our sample array score are more than just five plain
old variables of type double. That number in square brackets is part of the indexed
variable’s name. So, your program can compute the name of one of these variables.

indexed
variable

subscripted
variable

element

index,
subscript

length, size

base type

380 CHAPTER 6 Arrays

Instead of writing an integer constant in the square brackets, you can use any
expression that evaluates to an integer that is at least 0 and at most 4. So, the following
is allowed:

System.out.println(score[index] + " is at position " + index);

where index is a variable of type int that has been given one of the values 0, 1, 2, 3,
or 4.

When we refer to these indexed variables grouped together into one collective item,
we will call them an array. So, we can refer to the array named score (without using
any square brackets).

The program in Display 6.1 shows an example of using our sample array score as
five indexed variables, all of type double.

Note that the program can compute the name of an indexed variable by using a
variable as the index, as in the following for loop:

for (index = 0; index < 5; index++)
 System.out.println(score[index] + " differs from max by "
 + (max – score[index]));

Do not confuse the three ways to use the square brackets [] with an array name.
First, the square brackets can be used to create a type name, such as the double[] in
the following:

double[] score;

Second, the square brackets can be used with an integer value as part of the special
syntax Java uses to create a new array, as in

score = new double[5];

Declaring and Creating an Array
Declare an array name and create an array in almost the same way that you create and
name objects of classes. There is only a slight difference in the syntax.

SYNTAX

Base_Type[] Array_Name = new Base_Type[Length];

The Length may be given as any expression that evaluates to a nonnegative integer. In
particular, Length can be an int variable.

EXAMPLES

char[] line = new char[80];
double[] reading = new double[300];
Person[] specimen = new Person[100];

Person is a class.

square
brackets []

Due to imprecision in
floating-point arithmetic,
this value probably will only
be a close approximation to 0.1.

Introduction to Arrays 381

Display 6.1 An Array Used in a Program (part 1 of 2)

 1 import java.util.Scanner;

 2 public class ArrayOfScores
 3 {
 4 /**
 5 Reads in 5 scores and shows how much each
 6 score differs from the highest score.
 7 */
 8 public static void main(String[] args)
 9 {
10 Scanner keyboard = new Scanner(System.in);
11 double[] score = new double[5];
12 int index;
13 double max;

14 System.out.println("Enter 5 scores:");
15 score[0] = keyboard.nextDouble();
16 max = score[0];
17 for (index = 1; index < 5; index++)
18 {
19 score[index] = keyboard.nextDouble();
20 if (score[index] > max)
21 max = score[index];
22 //max is the largest of the values score[0],..., score[index].
23 }

24 System.out.println("The highest score is " + max);
25 System.out.println("The scores are:");
26 for (index = 0; index < 5; index++)
27 System.out.println(score[index] + " differs from max by "
28 + (max - score[index]));
29 }
30 }

Sample Dialogue

Enter 5 scores:
80 99.9 75 100 85.5
The highest score is 100
The scores are:
80.0 differs from max by 20
99.9 differs from max by 0.1
75.0 differs from max by 25
100.0 differs from max by 0.0
85.5 differs from max by 14.5

(continued)

382 CHAPTER 6 Arrays

The third use of square brackets is to name an indexed variable of the array, such as
score[0] or score[3], as illustrated by the following line:

max = score[0];

As we mentioned previously, the integer inside the square brackets can be any
expression that evaluates to a suitable integer, as illustrated by the following:

int next = 1;
score[next + 3] = 100;
System.out.println(
 "Score at position 4 is " + score[next + 3]);

Note that, in the preceding code, score[next + 3] and score[4] are the same
indexed variable, because next + 3 evaluates to 4.

The length Instance Variable

In Java, an array is considered to be an object, and, like other objects, it might have
instance variables. As it turns out, an array has only one public instance variable, which
is named length. This instance variable is automatically set to the size of the array
when the array is created. For example, if you create an array as follows:

double[] score = new double[5];

then score.length has a value of 5.
The length instance variable can be used to make your program clearer by

replacing an unnamed constant (such as 5), whose meaning may not be obvious, with
a meaningful name such as score.length. In Display 6.2, we rewrote the program in
Display 6.1 using the length instance variable.

A common way to visualize an array:

0 1 2 3 4

80 99.9 75 100 85.5

The array score score[3]

Indices

Display 6.1 An Array Used in a Program (part 2 of 2)

The length instance variable cannot be changed by your program (other than by
creating a new array with another use of new).1 For example, the following is illegal:

score.length = 10; //Illegal

Display 6.2 The length Instance Variable

 1 import java.util.Scanner;

 2 public class ArrayOfScores2

 3 {

 4 /**

 5 Reads in 5 scores and shows how much each

 6 Score differs from the highest score.

 7 */

 8 public static void main(String[] args)

 9 {

10 Scanner keyboard = new Scanner(System.in);

11 double[] score = new double[5];

12 int index;

13 double max;

14 System.out.println("Enter " + score.length + " scores:");

15 score[0] = keyboard.nextDouble();

16 max = score[0];

17 for (index = 1; index < score.length; index++)

18 {

19 score[index] = keyboard.nextDouble();

20 if (score[index] > max)

21 max = score[index];

22 //max is the largest of the values score[0],..., score[index].

23 }

24 System.out.println("The highest score is " + max);

25 System.out.println("The scores are:");

26 for (index = 0; index < score.length; index++)

27 System.out.println(score[index] + " differs from max by "

28 + (max - score[index]));

29 }

30 }

1The technical details are as follows: The instance variable length is created when the array is created
and is declared to be public final int.

The sample dialogue is the
same as in Display 6.1.

Introduction to Arrays 383

384 CHAPTER 6 Arrays

TIP: Use for Loops with Arrays

The second for loop in Display 6.2 illustrates a common way to step through an
entire array using a for loop:

for (index = 0; index < score.length; index++)
 System.out.println(score[index] + " differs from max by "
 + (max – score[index]));

The for loop is ideally suited for performing array manipulations. ■

PITFALL: Array Indices Always Start with Zero

The indices of an array always start with 0 and end with the integer that is one less
than the size of the array. ■

2Technically speaking, an ArrayIndexOutOfBounds exception is thrown. We will discuss
 exceptions in Chapter 9. Until you learn about handling exceptions, they will simply appear as error
conditions to you.

PITFALL: Array Index Out of Bounds

The most common programming error made when using arrays is attempting to use a
nonexistent array index. For example, consider the following:

int[] a = new int[6];

When using the array a, every index expression must evaluate to one of the integers 0
through 5. For example, if your program contains the indexed variable a[i], the i
must evaluate to one of the six integers 0, 1, 2, 3, 4, or 5. If i evaluates to anything
else, that is an error. When an index expression evaluates to some value other than
those allowed by the array declaration, the index is said to be out of bounds. If your
program attempts to use an array index that is out of bounds, then your program will
end with an error message.2 Note that this is a run-time error message, not a compiler
error message.

Array indices get out of bounds most commonly at the first or last iteration of a
loop that processes the array. So, it pays to carefully check all array processing loops to
be certain that they begin and end with legal array indices. ■

illegal
array index

out of bounds

Introduction to Arrays 385

Initializing Arrays

An array can be initialized when it is declared. When initializing the array, the values
for the various indexed variables are enclosed in braces and separated with commas.
The expression with the braces is placed on the right-hand side of an assignment
operator. For example,

int[] age = {2, 12, 1};

The array length (size) is automatically set to the number of values in the braces. So,
this initializing declaration is equivalent to the following statements:

int[] age = new int[3];
age[0] = 2;
age[1] = 12;
age[2] = 1;

You can also initialize array elements using a for loop. For example,

double[] reading = new double[100];
int index;
for (index = 0; index < reading.length; index++)
 reading[index] = 42.0;

If you do not initialize the elements of an array, they will automatically be initialized
to a default value for the base type. The default values are the usual ones. For numeric
types, the default value is the zero of the type. For base type char, the default value
is the nonprintable zeroth character (char)0, not the space character. For the type
boolean, the default value is false. For class types, the default value is null. For
example, if you do not initialize an array of doubles, each element of the array will be
initialized to 0.0.

automatic
initialization

Self-Test Exercises

1. In the array declaration

String[] word = new String[5];

 what is

a. the array name?

b. the base type?

c. the length of the array?

d. the range of values an index accessing this array can have?

e. one of the indexed variables (or elements) of this array?
(continued)

386 CHAPTER 6 Arrays

Self-Test Exercises (continued)

2. In the array

double[] score = new double[10];

 what is

a. the value of score.length?
b. the first index of score?
c. the last index of score?

3. What is the output of the following code?

char[] letter = {'a', 'b', 'c'};
for (int index = 0; index < letter.length; index++)
 System.out.print(letter[index] + ", ");

4. What is the output of the following code?

double[] a = {1.1, 2.2, 3.3};
System.out.println(a[0] + " " + a[1] + " " + a[2]);
a[1] = a[2];
System.out.println(a[0] + " " + a[1] + " " + a[2]);

5. What is wrong with the following piece of code?

int[] sampleArray = new int[10];
for (int index = 1; index <= sampleArray.length; index++)
 sampleArray[index] = 3*index;

6. Suppose we expect the elements of the array a to be ordered so that

a[0] ≤ a [1] ≤ a [2]≤ ...

 However, to be safe we want our program to test the array and issue a warning
in case it turns out that some elements are out of order. The following code is
supposed to output such a warning, but it contains a bug. What is the bug?

double[] a = new double[10];
 <Some code to fill the array a goes here.>
for (int index = 0; index < a.length; index++)
 if (a[index] > a[index + 1])
 System.out.println("Array elements " + index +
 " and " + (index + 1) + " are out of order.");

Introduction to Arrays 387

PITFALL: An Array of Characters Is Not a String

An array of characters, such as the array a created below, is conceptually a list of
characters; therefore, it is conceptually like a string:

char[] a = {'A', ' ', 'B', 'i', 'g', ' ', 'H', 'i', '!'};

However, an array of characters, such as a, is not an object of the class String. In
particular, the following is illegal in Java:

String s = a;

Similarly, you cannot normally use an array of characters, such as a, as an argument
for a parameter of type String.

It is, however, easy to convert an array of characters to an object of type String. The
class String has a constructor that has a single parameter of type char[]. So, you can
obtain a String value corresponding to an array of characters, such as a, as follows:

String s = new String(a);

The object s will have the same sequence of characters as the array a. The object s is
an independent copy; any changes made to a will have no effect on s. Note that this
always uses the entire array a.

There is also a String constructor that allows you to specify a subrange of an array
of characters a. For example,

String s2 = new String(a, 2, 3);

produces a String object with 3 characters from the array a starting at index 2. So, if
a is as above, then

System.out.println(s2);

outputs

Big

Although an array of characters is not an object of the class String, it does have some
things in common with String objects. For example, you can output an array of
characters using println, as follows:

System.out.println(a);

which produces the output

A Big Hi!

provided a is as given previously. ■

388 CHAPTER 6 Arrays

6.2 Arrays and References
A little more than kin, and less than kind.

WILLIAM SHAKESPEARE, Hamlet, 1603.

Just like a variable of one of the class types you have seen, a variable of an array type
holds a reference. In this section, we explore the consequences of this fact, including a
discussion of array parameters. We will see that arrays are objects and that array types
can be considered class types but somewhat different kinds of class types than what
you are used to. Arrays and the kinds of classes we have seen before this chapter are
a little more than kin, and less than kind.

Arrays Are Objects

There are two ways to view an array: as a collection of indexed variables and as a single
item whose value is a collection of values of the base type. In Section 6.1, we discussed
using arrays as a collection of indexed variables. We will now discuss arrays from the
second point of view.

An array can be viewed as a single item whose value is a collection of values of the
base type. An array variable (as opposed to an array indexed variable) names the array as
a single item. For example, the following declares a variable of an array type:

double[] a;

This variable a can and will contain a single value. The expression

new double[10]

creates an array object and stores the object in memory. The following assignment
statement places a reference to (the memory address of) this array object in the variable a:

a = new double[10];

Typically, we combine all this into a single statement as follows:

double[] a = new double[10];

Notice that this is almost exactly the same as the way that we view objects of a class
type. In Java, an array is considered an object. Whenever Java documentation says that
something applies to objects, it means that it applies to arrays as well as objects of the
class types we have seen up to now. You will eventually see examples of methods that
can take arguments that may be objects of any kind. These methods will accept array
objects as arguments as well as objects of an ordinary class type. Arrays are somewhat
peculiar in how they relate to classes. Some authorities say array types are not classes,

Arrays and References 389

and some say they are. But, all authorities agree that the arrays themselves are objects.
Given that arrays are objects, it seems that one should view array types as classes, and
we will do so. However, although an array type double[] is a class, the syntax for
creating an array object is a bit different. To create an array, use the following syntax:

double[] a = new double[10];

You can view the expression new double[10] as an invocation of a constructor that
uses a nonstandard syntax. (The nonstandard syntax was used to be consistent with the
syntax used for arrays in older programming languages.)

As we have already seen, every array has an instance variable named length, which
is a good example of viewing an array as an object. As with any other class type, array
variables contain memory addresses, or, as they are usually called in Java, references. So,
array types are reference types.3

Since an array is an object, you might be tempted to think of the indexed variables
of an array, such as a[0], a[1], and so forth, as being instance variables of the object.
This is actually a pretty good analogy, but it is not literally true. Indexed variables
are not instance variables of the array. Indexed variables are a special kind of variable
peculiar to arrays. The only instance variable in an array is the length instance variable.

An array object is a collection of items of the base type. Viewed as such, an array
is an object that can be assigned with the assignment operator and plugged in for a
parameter of an array type. Because an array type is a reference type, the behaviors of
arrays with respect to assignment =, ==, and parameter passing mechanisms are the
same as what we have already described for classes. In the next few subsections, we
discuss these details about arrays.

3In many programming languages, such as C++, arrays are also reference types just as they are in Java.
So, this detail about arrays is not peculiar to Java.

Arrays Are Objects
In Java, arrays are considered to be objects, and, although there is some disagreement on
this point, you can safely view an array type as a class type.

Array Types Reference Types
A variable of an array type holds the address of where the array object is stored in memory.
This memory address is called a reference to the array object.

390 CHAPTER 6 Arrays

PITFALL: Arrays with a Class Base Type

The base type of an array can be of any type, including a class type. For example,
suppose Date is a class and consider the following:

Date[] holidayList = new Date[20];

This creates the 20 indexed variables (holidayList[0], holidayList[1], …,
holidayList[19]). It is important to note that this creates 20 indexed variables
of type Date. This does not create 20 objects of type Date. (The index variables are
automatically initialized to null, not to an object of the class Date.) Like any other
variable of type Date, the indexed variables require an invocation of a constructor
using new to create an object. One way to complete the initialization of the array
holidayList is as follows:

Date[] holidayList = new Date[20];
for (int i = 0; i < holidayList.length; i++)
 holidayList[i] = new Date();

If you omit the for loop (and do not do something else more or less equivalent), then
when you run your code, you will undoubtedly get an error message indicating a “null
pointer exception.” If you do not use new to create an object, an indexed variable like
holidayList[i] is just a variable that names no object and hence cannot be used as
the calling object for any method. Whenever you are using an array with a class base
type and you get an error message referring to a “Null Pointer Exception,” it is likely
that your indexed variables do not name any objects and you need to add something
such as the above for loop. ■

Arrays of
Objects

Array Parameters

You can use both array indexed variables and entire arrays as arguments to methods,
although they are different types of parameters. We first discuss array indexed variables
as arguments to methods.

An indexed variable can be an argument to a method in exactly the same way
that any variable of the array base type can be an argument. For example, suppose a
program contains the following declarations:

double n = 0;
double[] a = new double[10];
int i;

If myMethod takes one argument of type double, then the following is legal:

myMethod(n);

indexed
variable

arguments

VideoNote

Arrays and References 391

Since an indexed variable of the array a is also a variable of type double, just like n, the
following is equally legal:

myMethod(a[3]);

There is one subtlety that does apply to indexed variables used as arguments. For
example, consider the following method call:

myMethod(a[i]);

If the value of i is 3, then the argument is a[3]. On the other hand, if the value of i is 0,
then this call is equivalent to the following:

myMethod(a[0]);

The indexed expression is evaluated to determine exactly which indexed variable is
given as the argument.

Array Indexed Variables as Arguments
An array indexed variable can be used as an argument anyplace that a variable of the array’s
base type can be used. For example, suppose you have the following:

double[] a = new double[10];

Indexed variables such as a[3] and a[index] can then be used as arguments to any
method that accepts a double as an argument.

You can also define a method that has a formal parameter for an entire array so that
when the method is called, the argument that is plugged in for this formal parameter
is an entire array. Whenever you need to specify an array type, the type name has the
form Base_Type[], so this is how you specify a parameter type for an entire array. For
example, the method doubleArrayElements, given in what follows, will accept any
array of double as its single argument:

public class SampleClass
{
 public static void doubleArrayElements(double[] a)
 {
 int i;
 for (i = 0; i < a.length; i++)
 a[i] = a[i]*2;
 }
 < The rest of the class definition goes here.>
}

entire array
parameters

392 CHAPTER 6 Arrays

To illustrate this, suppose you have the following in some method definition:

double[] a = new double[10];
double[] b = new double[30];

and suppose that the elements of the arrays a and b have been given values. Both of the
following are then legal method invocations:

SampleClass.doubleArrayElements(a);
SampleClass.doubleArrayElements(b);

Note that no square brackets are used when you give an entire array as an argument to
a method.

An array type is a reference type just as a class type is, so, as with a class type
argument, a method can change the data in an array argument. To phrase it more
precisely, a method can change the values stored in the indexed variables of an array
argument. This is illustrated by the preceding method doubleArrayElements.

An array type parameter does not specify the length of the array argument that may
be plugged in for the parameter. An array knows its length and stores it in the length
instance variable. The same array parameter can be replaced with array arguments of
different lengths. Note that the preceding method doubleArrayElements can take an
array of any length as an argument.

length of
array

arguments

PITFALL: Use of = and == with Arrays

Array types are reference types; that is, an array variable contains the memory address
of the array it names. The assignment operator copies this memory address. For
example, consider the following code:

double[] a = new double[10];
double[] b = new double[10];
int i;
for (i = 0; i < a.length; i++)
 a[i] = i;
b = a;
System.out.println("a[2] = " + a[2] + " b[2] = " + b[2]);
a[2] = 42;
System.out.println("a[2] = " + a[2] + " b[2] = " + b[2]);

This will produce the following output:

a[2] = 2.0 b[2] = 2.0
a[2] = 42.0 b[2] = 42.0

assignment
with arrays

Arrays and References 393

PITFALL: (continued)

The assignment statement b = a; copies the memory address from a to b so that the
array variable b contains the same memory address as the array variable a. After the
assignment statement, a and b are two different names for the same array. Thus, when
we change the value of a[2], we are also changing the value of b[2].

Unless you want two array variables to be two names for the same array (and on
rare occasions, you do want this), you should not use the assignment operator with
arrays. If you want the arrays a and b in the preceding code to be different arrays with
the same values in each index position, then instead of the assignment statement

b = a;

you need to use something such as the following:

int i;
for (i = 0; (i < a.length) && (i < b.length); i++)
 b[i] = a[i];

Note that the above code will not make b an exact copy of a, unless a and b have the
same length.

The equality operator == does not test two arrays to see if they contain the same
values. It tests two arrays to see if they are stored in the same location in the computer’s
memory. For example, consider the following code:

int[] c = new int[10];
int[] d = new int[10];
int i;
for (i = 0; i < c.length; i++)
 c[i] = i;
for (i = 0; i < d.length; i++)
 d[i] = i;

if (c == d)
 System.out.println("c and d are equal by ==.");
else
 System.out.println("c and d are not equal by ==.");

This produces the output

c and d are not equal by ==

==
with arrays

(continued)

394 CHAPTER 6 Arrays

PITFALL: (continued)

even though c and d contain the same integers in the same indexed variables.
A comparison using == will say they are not equal because == checks only the
contents of the array variables c and d, which are memory addresses, and c and d
contain different memory addresses.

If you want to test two arrays to see if they contain the same elements, then you
can define an equalArrays method for the arrays, just as you defined an equals
method for a class. Display 6.3 contains one possible definition of equalArrays for
arrays in a small demonstration class. ■

Self-Test Exercises

7. Consider the following class definition:

public class SomeClass
{
 public static void doSomething(int n)
 {
 <Some code goes in here.>
 }
<The rest of the definition is irrelevant to this question.>

 Which of the following are acceptable method calls?

int[] a = {4, 5, 6};
int number = 2;
SomeClass.doSomething(number);
SomeClass.doSomething(a[2]);
SomeClass.doSomething(a[3]);
SomeClass.doSomething(a[number]);
SomeClass.doSomething(a);

8. Write a method definition for a static void method called oneMore, which has
a formal parameter for an array of integers and increases the value of each array
element by one. (The definition will go in a class, but you need only give the
method definition.)

9. Write a method named outOfOrder that takes as a parameter an array of double
and returns a value of type int. This method will test the array for being out of
order, meaning that the array violates the condition:

a[0] <= a[1] <= a[2] <= ...

Arrays and References 395

Array Parameters and Array Arguments
An argument to a method may be an entire array. Array arguments are like objects of a
class, in that the method can change the data in an array argument; that is, a method can
change the values stored in the indexed variables of an array argument. A method with an
array parameter is defined and invoked as illustrated by the following examples. Note that
the array parameter specifies the base type of the array but not the length of the array.

EXAMPLE (OF ARRAY PARAMETERS)

public class AClass
{
 public static void listChars(char[] a)
 {
 int i;
 for (i = 0; i < a.length; i++)
 System.out.println(a[i] + " ");
 }
 public static void zeroAll(int[] anArray)
 {
 int i;
 for (i = 0; i < anArray.length; i++)
 anArray[i] = 0;
 }
 ...
}

Self-Test Exercises (continued)

 The method returns –1 if the elements are not out of order; otherwise, it
returns the index of the first element of the array that is out of order. For
example, consider the following declaration:

double[] a = {1.2, 2.1, 3.3, 2.5, 4.5,
 7.9, 5.4, 8.7, 9.9, 1.0};

 In the array above, a[2] and a[3] are the first pair out of order, and a[3] is
the first element out of order, so the method returns 3. If the array is sorted,
the method returns −1.

10. The following method definition will compile but does not work as you might
hope. What is wrong with it?

public static void doubleSize(int[] a)
{
 a = new int[a.length * 2];
}

396 CHAPTER 6 Arrays

EXAMPLE (OF ARRAY ARGUMENTS)

char[] c = new char[10];
int[] a = new int[10];
int[] b = new int[20];

 <Some code to fill the arrays goes here.>

AClass.listChars(c);
AClass.zeroAll(a);
AClass.zeroAll(b);

Note that arrays a and b have
different lengths. Also note that
no square brackets are used with
array arguments.

Display 6.3 Testing Arrays for Equality (part 1 of 2)

 1 public class DifferentEquals
 2 {
 3 /**
 4 A demonstration to see how == and an equalArrays method are different.
 5 */
 6 public static void main(String[] args)
 7 {
 8 int[] c = new int[10];
 9 int[] d = new int[10];

10 int i;
11 for (i = 0; i < c.length; i++)
12 c[i] = i;
13 for (i = 0; i < d.length; i++)
14 d[i] = i;
15 if (c == d)
16 System.out.println("c and d are equal by ==.");
17 else
18 System.out.println("c and d are not equal by ==.");

19 System.out.println("== only tests memory addresses.");

20 if (equalArrays(c, d))
21 System.out.println(
22 "c and d are equal by the equalArrays method.");
23 else
24 System.out.println(
25 "c and d are not equal by the equalArrays method.");

The arrays c and d contain
the same integers in each
index position.

Arrays and References 397

Display 6.3 Testing Arrays for Equality (part 2 of 2)

26 System.out.println(
27 "An equalArrays method is usually a more useful test.");
28 }

29 public static boolean equalArrays(int[] a, int[] b)
30 {
31 if (a.length != b.length)
32 return false;
33 else
34 {
35 int i = 0;
36 while (i < a.length)
37 {
38 if (a[i] != b[i])
39 return false;
40 i++;
41 }
42 }

43 return true;
44 }

45 }

Sample Dialogue

c and d are not equal by ==.

== only tests memory addresses.

c and d are equal by the equalArrays method.

An equalArrays method is usually a more useful test.

Arguments for the Method main ★

The heading for the main method of a program looks as if it has a parameter for an
array of base type of String:

public static void main(String[] args)

The identifier args is in fact a parameter of type String[]. Because args is a
parameter, it could be replaced by any other nonkeyword identifier. The identifier
args is traditional, but it is perfectly legal to use some other identifier.

We have never given main an array argument, or any other kind of argument,
when we ran any of our programs. So, what did Java use as an argument to plug in for

398 CHAPTER 6 Arrays

args? If no argument is given when you run your program, then a default empty array
of strings is automatically provided as a default argument to main when you run your
program.

It is possible to run a Java program in a way that provides an argument to plug in
for this array of String parameters. You do not provide it as an array. You provide any
number of string arguments when you run the program, and those string arguments
will automatically be made elements of the array argument that is plugged in for args
(or whatever name you use for the parameter to main). This is normally done by
running the program from the command line of the operating system, like so:

java YourProgram Do Be Do

This will set args[0] to "Do", args[1] to "Be", args[2] to "Do", and args.
length to 3. These three indexed variables can be used in the method main, as in the
following sample program:

public class YourProgram
{
 public static void main(String[] args)
 {
 System.out.println(args[1] + " " + args[0]
 + " " + args[1]);
 }
}

If the above program is run from the command line as follows:

java YourProgram Do Be Do

the output produced by the program will be

Be Do Be

Be sure to note that the argument to main is an array of strings. If you want
numbers, you must convert the string representations of the numbers to values of a
number type or types.

The Method main Has an Array Parameter
The heading for the main method of a program is as follows:

public static void main(String[] args)

The identifier args is a parameter for an array of base type String. The details are
explained in the text.

Arrays and References 399

Methods That Return an Array

In Java, a method may return an array. You specify the return type for a method that
returns an array in the same way that you specify a type for an array parameter. For
example, the following is an example of a method that returns an array:

public static char[] upperCaseVersion(char[] a)
{
 char[] temp = new char[a.length];
 int i;
 for (i = 0; i < a.length; i++)
 temp[i] = Character.toUpperCase(a[i]);
 return temp;
}

Returning an Array
A method can return an array. The details are basically the same as for a method that
returns an object of a class type.

SYNTAX (FOR A TYPICAL WAY OF RETURNING AN ARRAY)

public static Base_Type [] Method_Name(Parameter_List)
{
 Base_Type[] temp = new Base_Type[Array_Size]
 <Some code to fill temp goes here.>
 return temp;
}

The method need not be static and need not be public. You do not necessarily need to use
a local array variable such as temp.

EXAMPLE (ASSUMED TO BE IN A CLASS DEFINITION)

public static int [] incrementedArray(int[] a,int increment)
{
 int[] temp = new int[a.length];
 int i;
 for (i = 0; i < a.length; i++)
 temp[i] = a[i] + increment;
 return temp;
}

400 CHAPTER 6 Arrays

Array Type Names
Whenever you need an array type name, whether for the type of an array variable declaration,
the type of an array parameter, or the type for a method that returns an array, you specify
the type name in the same way.

SYNTAX

Base_Type[]

EXAMPLES

double[] a = new double[10];
int[] giveIntArray(char[] arrayParameter)
{ ... }

Self-Test Exercises

11. Give the definition of a method called halfArray that has a single parameter
for an array of base type double and that returns another array of base type
double that has the same length and in which each element has been divided
by 2.0. Make it a static method. To test it, you can add it to any class or, better
yet, write a class with a test program in the method main.

12. What is wrong with the following method definition? It is an alternate
definition of the method by the same name defined in the previous subsection.
It will compile.

public static char[] upperCaseVersion(char[] a)
{
 char i;
 for (i = 0; i < a.length; i++)
 a[i] = Character.toUpperCase(a[i]);
 return a;
}

6.3 Programming with Arrays
Never trust to general impressions, my boy,
but concentrate yourself upon details.

SIR ARTHUR CONAN DOYLE, A Case of Identity, 1891.

In this section, we discuss partially filled arrays as well as how to use arrays as class
instance variables.

Programming with Arrays 401

Partially Filled Arrays

Often the exact size needed for an array is not known when a program is written, or
the size may vary from one run of the program to another. One common and easy
way to handle this situation is to declare the array to be of the largest size the program
could possibly need. The program is then free to use as much or as little of the array
as needed.

Partially filled arrays require some care. The program must keep track of how
much of the array is used and must not reference any indexed variable that has not
been given a meaningful value. The program in Display 6.4 illustrates this point. It
reads in a list of golf scores and shows how much each score differs from the average.
This program will work for lists as short as 1 score, as long as 10 scores, and of any
length in between. The scores are stored in the array score, which has 10 indexed
variables, but the program uses only as much of the array as it needs. The variable
numberUsed keeps track of how many elements are stored in the array. The elements
(that is, the scores) are stored in positions score[0] through score[numberUsed – 1].
The details are very similar to what they would be if numberUsed were score.length
and the entire array were used. Note that the variable numberUsed usually must be an
argument to any method that manipulates the partially filled array. For example, the
methods showDifference and computeAverage use the argument numberUsed to
ensure that only meaningful array indices are used.

partially
filled array

Display 6.4 Partially Filled Array (part 1 of 3)

 1 import java.util.Scanner;

 2 public class GolfScores
 3 {
 4 public static final int MAX_NUMBER_SCORES = 10;

 5 /**
 6 Shows differences between each of a list of golf scores and their

average.
 7 */
 8 public static void main(String[] args)
 9 {
10 double[] score = new double[MAX_NUMBER_SCORES];
11 int numberUsed = 0;

12 System.out.println("This program reads golf scores and shows");
13 System.out.println("how much each differs from the average.");
14 System.out.println("Enter golf scores:");
15 numberUsed = fillArray(score);
16 showDifference(score, numberUsed);
17 }

(continued)

Contrary to normal practice, this allows fractional scores,
such as 71.5. However, this makes it a better example for our
purposes. (Anyway, when I play golf, losing a ball is only half a
stroke penalty. Try it sometime.)

402 CHAPTER 6 Arrays

18 /**
19 Reads values into the array a. Returns the number of values placed

in the array a.
20 */
21 public static int fillArray(double[] a)
22 {
23 System.out.println("Enter up to " + a.length
24 + " nonnegative numbers.");
25 System.out.println("Mark the end of the list with a negative

number.");
26 Scanner keyboard = new Scanner(System.in);
27
28 double next;
29 int index = 0;
30 next = keyboard.nextDouble();
31 while ((next >= 0) && (index < a.length))
32 {
33 a[index] = next;
34 index++;
35 next = keyboard.nextDouble();
36 //index is the number of array indexed variables used so far.
37 }
38 //index is the total number of array indexed variables used.
39 if (next >= 0)
40 System.out.println("Could only read in "
41 + a.length + " input values.");

42 return index;
43 }

44 /**
45 Precondition: numberUsed <= a.length.
46 a[0] through a[numberUsed-1] have values.
47 Returns the average of numbers a[0] through a[numberUsed-1].
48 */
49 public static double computeAverage(double[] a, int numberUsed)
50 {
51 double total = 0;
52 for (int index = 0; index < numberUsed; index++)
53 total = total + a[index];
54 if (numberUsed > 0)
55 {
56 return (total/numberUsed);
57 }
58 else
59 {
60 System.out.println("ERROR: Trying to average 0 numbers.");
61 System.out.println("computeAverage returns 0.");
62 return 0;
63 }
64 }

Display 6.4 Partially Filled Array (part 2 of 3)

The value of index is the number of
values stored in the array.

Programming with Arrays 403

Display 6.4 Partially Filled Array (part 3 of 3)

65 /**
66 Precondition: numberUsed <= a.length.
67 The first numberUsed indexed variables of a have values.
68 Postcondition: Gives screen output showing how much each of the first
69 numberUsed elements of the array a differ from their average.
70 */
71 public static void showDifference(double[] a, int numberUsed)
72 {
73 double average = computeAverage(a, numberUsed);
74 System.out.println("Average of the " + numberUsed
75 + " scores = " + average);
76 System.out.println("The scores are:");
77 for (int index = 0; index < numberUsed; index++)
78 System.out.println(a[index] + " differs from average by "
79 + (a[index] - average));
80 }
81 }

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.

Enter golf scores:

Enter up to 10 nonnegative numbers.

Mark the end of the list with a negative number.

69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69.0 differs from average by -1.33333

74.0 differs from average by 3.66667

68.0 differs from average by -2.33333

(continued)

Self-Test Exercises

13. Complete the definition of the following method that could be added to the
class GolfScores in Display 6.4:

/**
 Precondition: numberUsed <= argumentArray.length;
 the first numberUsed indexed variables of argumentArray
 have values.
 Returns an array of length numberUsed whose ith element
 is argumentArray[i] - adjustment.
*/
public static double[] differenceArray(
 double[] argumentArray, int numberUsed, double adjustment)

404 CHAPTER 6 Arrays

EXAMPLE: A Class for Partially Filled Arrays

If you are going to use some array in a disciplined way, such as using the array as a
partially filled array, then it is often best to create a class that has the array as an instance
variable and to have the constructors and methods of the class provide the needed
operations as methods. For example, in Display 6.5, we wrote a class for a partially filled
array of doubles. In Display 6.6, we wrote the program in Display 6.4 using this class.

In Display 6.6, we wrote the code to be exactly analogous to that of Display 6.4
so that you could see how one program mirrors the other. However, this resulted
in occasionally recomputing a value several times. For example, the method
computeAverage contains the following expression three times:

a.getNumberOfElements()

Because the PartiallyFilledArray a is not changed in this method, these each
return the same value. Some programmers advocate computing this value once only
and saving the value in a variable. These programmers would use something such
as the following for the definition of computeAverage rather than what we used in
Display 6.6. The variable numberOfElementsIna is used to save a value so it need
not be recomputed.

public static double computeAverage(PartiallyFilledArray a)
{
 double total = 0;
 double numberOfElementsInA = a.getNumberOfElements();
 for (int index = 0; index < numberOfElementsInA; index++)
 total = total + a.getElement(index);
 if (numberOfElementsInA > 0)
 {
 return (total/numberOfElementsInA);
 }
 else
 {

Self-Test Exercises (continued)

14. Rewrite the class GolfScores from Display 6.4 using the method
differenceArray from Self-Test Exercise 13.

15. Rewrite the class GolfScores from Display 6.4 making the array of scores a
static variable. Also, make the int variable numberUsed a static variable. Start
with Display 6.4, not with the answer to Self-Test Exercise 14. Hint: All, or at
least most, methods will have no parameters.

Programming with Arrays 405

EXAMPLE: (continued)

 System.out.println(
 "ERROR: Trying to average 0 numbers.");
 System.out.println("computeAverage returns 0.");
 return 0;
 }
}

This is not likely to produce a noticeable difference in the efficiency of the program
in Display 6.6, but if the number of elements in the PartiallyFilledArray were
large so that the for loop would be executed many times, it might make a difference
in a situation where efficiency is critical.

Display 6.5 Partially Filled Array Class (part 1 of 4)

 1 /**
 2 Class for a partially filled array of doubles. The class enforces the
 3 following invariant: All elements are at the beginning of the array in
 4 locations 0, 1, 2, and so forth up to a highest index with no gaps.
 5 */
 6 public class PartiallyFilledArray
 7 {
 8 private int maxNumberElements; //Same as a.length
 9 private double[] a;
10 private int numberUsed; //Number of indices currently in use

11 /**
12 Sets the maximum number of allowable elements to 10.
13 */
14 PartiallyFilledArray()
15 {
16 maxNumberElements = 10;
17 a = new double[maxNumberElements];
18 numberUsed = 0;
19 }

20 /**
21 Precondition arraySize > 0.
22 */
23 PartiallyFilledArray(int arraySize)
24 {
25 if (arraySize <= 0)
26 {
27 System.out.println("Error Array size zero or negative.");
28 System.exit(0);
29 }

(continued)

406 CHAPTER 6 Arrays

30 maxNumberElements = arraySize;
31 a = new double[maxNumberElements];
32 numberUsed = 0;
33 }
34 PartiallyFilledArray(PartiallyFilledArray original)
35 {
36 if (original == null)
37 {
38 System.out.println("Fatal Error: aborting program.");
39 System.exit(0);
40 }
41 maxNumberElements =
42 original.maxNumberElements;
43 numberUsed = original.numberUsed;
44 a = new double[maxNumberElements];
45 for (int i = 0; i < numberUsed; i++)
46 a[i] = original.a[i];
47 }

48 /**
49 Adds newElement to the first unused array position.
50 */
51 public void add(double newElement)
52 {
53 if (numberUsed >= a.length)
54 {
55 System.out.println("Error: Adding to a full array.");
56 System.exit(0);
57 }
58 else
59 {
60 a[numberUsed] = newElement;
61 numberUsed++;
62 }
63 }

64 public double getElement(int index)
65 {
66 if (index < 0 || index >= numberUsed)
67 {
68 System.out.println("Error:Illegal or unused index.");
69 System.exit(0);
70 }
71 return a[index];
72 }

Display 6.5 Partially Filled Array Class (part 2 of 4)

Note that the instance variable a
is a copy of original.a. The
following would not be correct:
a = original.a;.
This point is discussed later in this
chapter in the subsection entitled
“Privacy Leaks with Array Instance
Variables.”

Programming with Arrays 407

Display 6.5 Partially Filled Array Class (part 3 of 4)

 73 /**
 74 index must be an index in use or the first unused index.
 75 */
 76 public void resetElement(int index, double newValue)
 77 {
 78 if (index < 0 || index >= maxNumberElements)
 79 {
 80 System.out.println("Error:Illegal index.");
 81 System.exit(0);
 82 }
 83 else if (index > numberUsed)
 84 {
 85 System.out.println(
 86 "Error: Changing an index that is too large.");
 87 System.exit(0);
 88 }
 89 else
 90 a[index] = newValue;
 91 }

 92 public void deleteLast()
 93 {
 94 if (empty())
 95 {
 96 System.out.println("Error:Deleting from an empty array.");
 97 System.exit(0);
 98 }
 99 else
100 numberUsed--;
101 }
102 /**
103 Deletes the element in position index. Moves down all elements with
104 indices higher than the deleted element.
105 */
106 public void delete(int index)
107 {
108 if (index < 0 || index >= numberUsed)
109 {
110 System.out.println("Error:Illegal or unused index.");
111 System.exit(0);
112 }

113 for (int i = index; i < numberUsed; i++)
114 a[i] = a[i + 1];
115 numberUsed--;
116 }

(continued)

408 CHAPTER 6 Arrays

117 public boolean empty()
118 {
119 return (numberUsed == 0);
120 }

121 public boolean full()
122 {
123 return (numberUsed == maxNumberElements);
124 }

125 public int getMaxCapacity()
126 {
127 return maxNumberElements;
128 }
129
130 public int getNumberOfElements()
131 {
132 return numberUsed;
133 }
134 }

Display 6.5 Partially Filled Array Class (part 4 of 4)

TIP: Accessor Methods Need Not Simply Return Instance Variables

Note that in the class PartiallyFilledArray in Display 6.5, there is no
accessor method that returns a copy of the entire instance variable a. The reason
this was not done is that, when the class is used as intended, a user of the class
PartiallyFilledArray would have no need for the entire array a. That is an
implementation detail. The other methods that start with get allow a programmer
using the class to obtain all the data that he or she needs. ■

The “for-each” Loop ★

As you have already seen, you can use a for loop to cycle through all the elements in
an array. For example,

double[] a = new double[10];
<Some code to fill the array a>
for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

The standard Java libraries contain definitions of a number of so-called collection classes.
A collection class is a class whose objects store a collection of values. You cannot cycle

Programming with Arrays 409

Display 6.6 Display 6.4 Redone Using the Class PartiallyFilledArray (part 1 of 2)

 1 import java.util.Scanner;

 2 /**
 3 Demonstrates using the class PartiallyFilledArray,
 4 */
 5 public class GolfScoresVersion2
 6 {

 7 public static final int MAX_NUMBER_SCORES = 10;

 8 /**
 9 Shows the differences between each of a list of golf scores and

their average.
10 */
11 public static void main(String[] args)
12 {
13 PartiallyFilledArray score =
14 new PartiallyFilledArray(MAX_NUMBER_SCORES);

15 System.out.println("This program reads golf scores and shows");
16 System.out.println("how much each differs from the average.");

17 System.out.println("Enter golf scores:");
18 fillArray(score);
19 showDifference(score);
20 }
21 /**
22 Reads values into the PartiallyFilledArray a.
23 */
24 public static void fillArray(PartiallyFilledArray a)
25 {
26 System.out.println("Enter up to " + a.getMaxCapacity()
27 + " nonnegative numbers, one per line.");
28 System.out.println("Mark the end of the list with a negative

number");
29 Scanner keyboard = new Scanner(System.in);
31
32 double next = keyboard.nextDouble();
31 while ((next >= 0) && (!a.full()))
33 {
34 a.add(next);
35 next = keyboard.nextDouble();
36 }
37 if (next >= 0)
38 System.out.println("Could only read in "
39 + a.getMaxCapacity() + " input values.");
40 }

(continued)

Sample dialogue is the same as in Display 6.4.

410 CHAPTER 6 Arrays

41 /**
42 Returns the average of numbers in the PartiallyFilledArray a.
43 */
44 public static double computeAverage(PartiallyFilledArray a)
45 {
46 double total = 0;
47 for (int index = 0; index < a.getNumberOfElements(); index++)
48 total = total + a.getElement(index);

49 if (a.getNumberOfElements() > 0)
50 {
51 return (total/a.getNumberOfElements());
52 }
53 else
54 {
55 System.out.println("ERROR: Trying to average 0 numbers.");
56 System.out.println("computeAverage returns 0.");
57 return 0;
58 }
59 }

60 /**
61 Gives screen output showing how much each of the
62 elements in the PartiallyFilledArray a differs from the average.
63 */
64 public static void showDifference(PartiallyFilledArray a)
65 {
66 double average = computeAverage(a);
67 System.out.println("Average of the " + a.getNumberOfElements()
68 + " scores = " + average);
69 System.out.println("The scores are:");
70 for (int index = 0; index < a.getNumberOfElements(); index++)
71 System.out.println(a.getElement(index)

 + "differs from average by"
72 + (a.getElement(index)- average));
73 }

74 }

Display 6.6 Display 6.4 Redone Using the Class PartiallyFilledArray (part 2 of 2)

through all the elements of a collection object with this kind of for loop, because these
collection classes normally do not have indices associated with their elements, as an
array does.4 However, starting with version 5.0, Java has added a new kind of for loop
that can cycle through all the elements in a collection even though there are no indices

4You can construct a similar for loop using something called an iterator in place of the array index, but
we will not go into that until later in this book.

Programming with Arrays 411

for the elements (as there are with an array). This new kind of for loop is called a
for-each loop or enhanced for loop. We will discuss these for-each loops in detail
when we cover collections (Chapter 16). However, these new for-each loops can be
used with arrays as well as with objects of these collection classes. In this subsection,
we tell you how to use for-each loops with arrays in case you want to get started
using them. However, we do not use the for-each loop in this book until we discuss
collection classes in Chapter 16.

The following code ends with a for-each loop that is equivalent to the regular for
loop that we gave at the start of this subsection:

double[] a = new double[10];
<Some code to fill the array a>
for (double element : a)
 System.out.println(element);

You can read the line beginning with for as “for each element in a, do the
following.” Note that the variable, element, has the same type as the elements in
the array. The variable, like element, must be declared in the for-each loop as we
have done. If you attempt to declare element before the for-each loop, you will get a
compiler error message.

The general syntax for a for-each loop statement used with an array is

for (Array_Base_Type Variable : Array_Name)
 Statement

Be sure to notice that you use a colon (not a semicolon) after the Variable. You may
use any legal variable name for the Variable; you do not have to use element. Although
it is not required, the Statement typically contains the Variable. When the for-each
loop is executed, the Statement is executed once for each element of the array. More
specifically, for each element of the array, the Variable is set to the array element and
then the Statement is executed.

The for-each loop can make your code a lot cleaner and a lot less error prone. If you
are not using the indexed variable in a for loop for anything other than as a way to
cycle through all the array elements, then a for-each loop is preferable. For example,

for (double element : a)
 sum += element;

is preferable to

for (int i = 0; i < a.length; i++)
 sum += a[i];

The two loops do the same thing, but the second one mentions an index i that is not
used for anything other than enumerating the array elements. Also, the syntax for the
for-each loop is simpler than that of the regular for loop.

for-each loop

412 CHAPTER 6 Arrays

On the other hand, you should leave the following for loop as is and not attempt to
convert it to a for-each loop:

for (int i = 0; i < a.length; i++)
 a[i]= 2*i;

Because this for loop uses the index i in the body of the for loop and uses it in an
essential way, it does not make sense to convert this for loop to a for-each loop.

For-Each Loop for Arrays
SYNTAX

for (Array_Base_Type Variable : Array_Name)
Statement

EXAMPLES

for (double element : a)
 sum += element;

The array a has base type double. This for-each loop sets each element of the array a
to 0.0.

A good way to read the first line of the example is “For each element in a, do the following.”

Methods with a Variable Number of Parameters ★

Because of overloading, you can have a method named max that returns the largest of
two int values and have another method named max that takes three int arguments
and returns the largest of the three. If you decide you need a method that returns the
largest of four int values, you can define a version of the method max that takes four
arguments. However, with this approach, there is no way to cover all cases of computing
the maximum of some number of int values. Covering all cases in this way would
require an infinite number of definitions for the method name max, and no programmer
has enough time to write an infinite number of definitions. What we would like is a
single method definition for a method named max that can take any number of int
arguments. Starting with version 5.0, Java lets you define methods that take any number
of arguments. For example, the following is the definition of a method named max that
takes any number of int arguments and returns the largest of its arguments:

public static int max(int... arg)
{
 if (arg.length == 0)
 {
 System.out.println("Fatal Error: "+
 "maximum of zero values.");
 System.exit(0);
 }

Programming with Arrays 413

 int largest = arg[0];
 for (int i = 1; i < arg.length; i++)
 if (arg[i] > largest)
 largest = arg[i];
 return largest;
}

This method max works by taking its int arguments and placing them in an array
named arg whose base type is int. For example, suppose this definition of the method
max is in a class named UtilityClass, and consider the following method call:

int highestScore = UtilityClass.max(3, 2, 5, 1);

The array arg is automatically declared and initialized as follows:

int[] arg = {3, 2, 5, 1};

So, arg[0] == 3, arg[1] == 2, arg[2] == 5, and arg[3] == 1. After this, the
code in the body of the method definition is executed. Display 6.7 shows a sample
program that uses this method max.

Note that a method (such as max) that takes any number of arguments is basically a
method that takes an array as an argument, except that the job of placing values in the

Display 6.7 Method with a Variable Number of Parameters (part 1 of 2)

 1 public class UtilityClass
 2 {
 3 /**
 4 Returns the largest of any number of int values.
 5 */
 6 public static int max(int... arg)
 7 {
 8 if (arg.length == 0)
 9 {
10 System.out.println("Fatal Error: maximum of zero values.");
11 System.exit(0);
12 }

13 int largest = arg[0];
14 for (int i = 1; i < arg.length; i++)
15 if (arg[i] > largest)
16 largest = arg[i];
17 return largest;
18 }
19 }
20

(continued)

This is the file UtilityClass.java.

414 CHAPTER 6 Arrays

 1 import java.util.Scanner;

 2 public class VariableParameterDemo
 3 {

 4 public static void main(String[] args)
 5 {
 6 System.out.println("Enter scores for Tom, Dick, and Harriet:");
 7 Scanner keyboard = new Scanner(System.in);
 8 int tomsScore = keyboard.nextInt();
 9 int dicksScore = keyboard.nextInt();
10 int harrietsScore = keyboard.nextInt();

11 int highestScore = UtilityClass.max(tomsScore, dicksScore,
harrietsScore);

12 System.out.println("Highest score = " + highestScore);
13 }
14 }

Sample Dialogue

Enter scores for Tom, Dick, and Harriet:

55 100 99

Highest score = 100

Display 6.7 Method with a Variable Number of Parameters (part 2 of 2)

This is the file
VariableParameterDemo.java.

array is done automatically for the programmer. The values for the array are given as
arguments, and Java automatically creates an array and places the arguments in the array.

A parameter specification that specifies any number of parameters, such as int…
arg, is called a vararg specification. (It would make more sense to call it a varparameter
specification, but the word vararg is too well entrenched, so we will go along with
common usage.) The three dots in a vararg specification are called an ellipsis. Note
that the ellipsis is part of the Java syntax and not an abbreviation used in this book.
You type in the three dots.

You can have only one variable parameter specification, such as int… arg, in a method
definition. However, you may also have any number of ordinary parameters, in which case
the vararg specification must be the last item on the parameter list. This is illustrated in
Display 6.8, which we discuss in the next subsection.

In Chapter 2, you saw one example of a method that accepts a variable number of
arguments, namely the method System.out.printf. However, we could not tell you
how to define such methods yourself until we covered the basics about arrays.

vararg
specification

ellipsis

Programming with Arrays 415

Method with a Variable Number of Parameters
A method with a variable number of parameters has a vararg specification as the last item
on its parameter list. A vararg specification has the following form:

Type... Array_Name

Some examples of vararg specifications are

int... arg
double... a
String... unwanted

Displays 6.7 and 6.8 show two of these vararg specifications in complete method definitions.

In any invocation of a method with a vararg specification, you handle arguments corresponding
to regular parameters in the usual way. Following the arguments for regular parameters, you
can have any number of arguments of the type given in the vararg specification. These
arguments are automatically placed in an array, and the array can be used in the method
definition. A full description of the details is given in this chapter.

Self-Test Exercises

16. Redo the definition of the method max in Display 6.7 using a for-each loop in
place of the regular for loop.

17. What would be the dialogue in Display 6.8 if we omit the following line from
the program?

sentence = Utility2.censor(sentence, " ,"); //Deletes extra commas

EXAMPLE: A String Processing Example ★

This example uses material from the earlier starred subsection “Methods with a
Variable Number of Parameters.” If you have not read that subsection, you should
skip this example.

Display 6.8 contains a utility class with the string processing method named
censor and an example of a program that uses that method. The method censor
takes a single String parameter followed by any number of additional parameters
of type String. The first parameter will be a sentence or other string that may
contain substrings you want to delete. The method returns its first parameter with all
occurrences of the remaining string parameters removed.

(continued)

416 CHAPTER 6 Arrays

EXAMPLE: (continued)

Note that the method censor has one regular parameter followed by a specification
for any number of additional string parameters. In this case, all parameters are of type
String. However, that first regular parameter (or parameters) in a method heading
can be of any type (or types); they need not match the type of the vararg specification.
We just happen to want the type String here.

Because the first parameter is of type String and the vararg specification in this
case says the remaining arguments are of type String, you might wonder why we
did not omit the first String parameter sentence, have only a vararg specification,
and then use unwanted[0] to serve the same role as sentence. If we did so, then the
method censor could be called with no arguments at all. A vararg specification allows
any number of arguments, including the possibility of zero arguments. However, we
want to insist that the method censor have at least one argument, and the parameter
sentence ensures that censor will always have at least one argument.

Privacy Leaks with Array Instance Variables

In Chapter 5, we explained why it is a compromise of privacy for a class to have an
accessor (or other method) that returns a reference to a private mutable object. As we
noted there, an accessor method should instead return a reference to a deep copy of
the private object. (See the Pitfall subsection of Chapter 5 entitled “Privacy Leaks.”)
At the time, we had in mind returning the contents of a private instance variable of a
class type. However, the lesson applies equally well to private instance variables of an
array type.

For example, suppose that you decide that you want an accessor method for the
array instance variable in the class PartiallyFilledArray in Display 6.5. You might
be tempted to define the accessor method as follows:

public double[] getInsideArray() // Problematic version
{
 return a;
}

As indicated in the comment, this definition has a problem, which is this accessor
method allows a programmer to change the array object named by the private instance
variable a in ways that bypass the checks built into the mutator methods of the class
PartiallyFilledArray. To see why this is true, suppose we added this definition of the
method getInsideArray to the class PartiallyFilledArray, and then consider the
following code:

PartiallyFilledArray leakyArray =
 new PartiallyFilledArray(10);
double[] arrayName = leakyArray.getInsideArray();

The variable arrayName and the private instance variable a now contain the same
reference, so both arrayName and the private instance variable a name the same array.
Using arrayName as a name for the array named by the private instance variable a, we

Programming with Arrays 417

Display 6.8 String Processing Method with a Variable Number of Parameters (part 1 of 2)

 1 public class Utility2
 2 {
 3 /**
 4 Returns the first argument with all occurrences of other arguments

deleted.
 5 */
 6 public static String censor(String sentence, String... unwanted)
 7 {
 8 for (int i = 0; i < unwanted.length; i++)
 9 sentence = deleteOne(sentence, unwanted[i]);
10 return sentence;
11 }

12 /**
13 Returns sentence with all occurrences of oneUnwanted removed.
14 */
15 private static String deleteOne(String sentence, String oneUnwanted)
16 {
17 String ending;
18 int position = sentence.indexOf(oneUnwanted);
19 while (position >= 0) //While word was found in sentence
20 {
21 ending = sentence.substring(position + oneUnwanted.length());
22 sentence = sentence.substring(0, position) + ending;
23 position = sentence.indexOf(oneUnwanted);
24 }
25 return sentence;
26 }
27 }

 1 import java.util.Scanner;

 2 public class StringProcessingDemo
 3 {

 4 public static void main(String[] args)
 5 {
 6 System.out.println("What did you eat for dinner?");
 7 Scanner keyboard = new Scanner(System.in);
 8 String sentence = keyboard.nextLine();
 9 sentence = Utility2.censor(sentence,
10 "candy", "french fries", "salt", "beer");
11 sentence = Utility2.censor(sentence, " ,"); //Deletes extra commas
12 System.out.println("You would be healthier if you could answer:");
13 System.out.println(sentence);
14 }
15 }

Both methods use the parameter sentence as a local variable. If this
puzzles you, review the material on parameters in Chapters 4 and 5,
particularly Display 4.5 in Chapter 4.

If you have trouble following this string
processing, review the subsection
entitled “String Processing” in Chapter 1.

This is the file
StringProcessingDemo.java.

This is the file Utility2.java.

(continued)

418 CHAPTER 6 Arrays

Display 6.8 String Processing Method with a Variable Number of Parameters (part 2 of 2)

Sample Dialogue

What did you eat for dinner?

I ate salt cod, broccoli, french fries, salt peanuts, and apples.

You would be healthier if you could answer:

I ate cod, broccoli, peanuts, and apples.

can now fill the indexed variables of a in any order and need not fill the array starting
at the first element. This violates the spirit of the private modifier for the array
instance variable a. For this reason, the accessor method getInsideArray should
return a deep copy of the array named by the private instance variable a. A safe
definition of getInsideArray is the following:

public double[] getInsideArray() // Good version
{
 //Recall that maxNumberElements == a.length.
 double[] temp = new double[maxNumberElements];
 for (int i = 0; i < maxNumberElements; i++)
 temp[i] = a[i];
 return temp;
}

If a private instance variable is an array type that has a class as its base type, then you
need to be sure to make copies of the class objects in the array when you make a copy
of the array. This is illustrated by the toy class in Display 6.9.

Display 6.9 also includes a copy constructor. As illustrated in that display, the copy
constructor should make a completely independent copy of the array instance variable
(that is, a deep copy) in the same way that the accessor method does. This same point is
also illustrated by the copy constructor in Display 6.5.

Display 6.9 Accessor Method for an Array Instance Variable (part 1 of 2)

1 /**
2 Demonstrates the correct way to define an accessor
3 method to a private array of class objects.
4 */
5 public class ToyExample
6 {
7 private Date[] a;

The class Date is defined in Display 4.11, but
you do not need to know the details of the
definition to understand the point of this
example.

Programming with Arrays 419

 8 public ToyExample(int arraySize)
 9 {
10 a = new Date[arraySize];
11 for (int i = 0; i < arraySize; i++)
12 a[i] = new Date();
13 }

14 public ToyExample(ToyExample object)
15 {
16 int lengthOfArrays = object.a.length;
17 this.a = new Date[lengthOfArrays];
18 for (int i = 0; i < lengthOfArrays; i++)
19 this.a[i] = new Date(object.a[i]);
20 }

21 public Date[] getDateArray()
22 {
23 Date[] temp = new Date[a.length];
24 for (int i = 0; i < a.length; i++)
25 temp[i] = new Date(a[i]);
26 return temp;
27 }

 <There presumably are other methods that are not shown,
 but they are irrelevant to the point at hand.>

28 }

Display 6.9 Accessor Method for an Array Instance Variable (part 2 of 2)

Copy constructor for ToyExample

Accessor method

Copy constructor for Date

Self-Test Exercises

18. Define a method named removeAll that can be added to the class
PartiallyFilledArray. This method has no parameters. When invoked, the
method removeAll deletes all the elements in its calling object.

19. Define a method named increaseCapacity that can be added to the
class PartiallyFilledArray in Display 6.5. The method has one
int parameter named newCapacity that increases the capacity of the
PartiallyFilledArray so that it can hold up to newCapacity numbers. If
newCapacity is less than or equal to maxNumberOfElements, then the method
does nothing. If newCapacity is greater than maxNumberOfElements, then
maxNumberElements is set equal to newCapacity and a new array of length
newCapacity is created for the array instance variable a. The old values of the
array instance variable are copied to the newly created array.

Copy constructor for Date

420 CHAPTER 6 Arrays

EXAMPLE: Sorting an Array

In this example, we define a method called sort that will sort a partially filled array
of numbers so that they are ordered from smallest to largest.

The procedure sort has one array parameter, a. The array a will be partially filled,
so there is an additional formal parameter called numberUsed, which tells how many
array positions are used. Thus, the heading for the method sort will be

public static void sort(double[] a, int numberUsed)

The method sort rearranges the elements in array a so that after the method call
is completed, the elements are sorted as follows:

a[0] ≤ a[1] ≤ a[2] ≤ ... ≤ a[numberUsed – 1]

The algorithm we use to do the sorting is called selection sort. It is one of the easiest
of the sorting algorithms to understand.

One way to design an algorithm is to rely on the definition of the problem. In
this case, the problem is to sort an array a from smallest to largest. That means
rearranging the values so that a[0] is the smallest, a[1] the next smallest, and so
forth. That definition yields an outline for the selection sort algorithm:

for (int index = 0; index < numberUsed; index++)
Place the indexth smallest element in a[index]

There are many ways to realize this general approach. The details could be developed
by using two arrays and copying the elements from one array to the other in sorted
order, but using one array should be both adequate and economical. Therefore, the
method sort uses only the one array containing the values to be sorted. The method
sort rearranges the values in the array a by interchanging pairs of values. Let us go
through a concrete example so that you can see how the algorithm works.

Consider the array shown in Display 6.10. The selection sort algorithm will place
the smallest value in a[0]. The smallest value is the value in a[4]. So the algorithm
interchanges the values of a[0] and a[4]. The algorithm then looks for the next
smallest element. The value in a[0] is now the smallest element, so the next smallest
element is the smallest of the remaining elements a[1], a[2], a[3],…, a[9]. In
the example in Display 6.10, the next smallest element is in a[6], so the algorithm
interchanges the values of a[1] and a[6]. This positioning of the second smallest
element is illustrated in the fourth and fifth array pictures in Display 6.10. The
algorithm then positions the third smallest element, and so forth. As the sorting
proceeds, the beginning array elements are set equal to the correct sorted values. The
sorted portion of the array grows by adding elements one after the other from the
elements in the unsorted end of the array. Notice that the algorithm need not do
anything with the value in the last indexed variable, a[9], because once the other
elements are positioned correctly, a[9] must also have the correct value. After all, the
correct value for a[9] is the smallest value left to be moved, and the only value left to
be moved is the value that is already in a[9].

Programming with Arrays 421

EXAMPLE: (continued)

The definition of the method sort, included in a class, is given in Display 6.11.
sort uses the method indexOfSmallest to find the index of the smallest element
in the unsorted end of the array, and then it does an interchange to move this next
smallest element down into the sorted part of the array.

The method interchange, shown in Display 6.11, is used to interchange the
values of indexed variables. For example, the following call will interchange the values
of a[0] and a[4]:

interchange(0, 4, a);

A sample use of the sort method is given in Display 6.12.

Display 6.10 Selection Sort

.

.

.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 11 17 3 15 5 19 28 12

Unsorted array

8 6 11 17 3 15 5 19 28 12

3 6 11 17 8 15 5 19 28 12

3 6 11 17 8 15 5 19 28 12

3 5 11 17 8 15 6 19 28 12

3 5 6 8 11 12 15 17 19 28

422 CHAPTER 6 Arrays

Self-Test Exercises

20. How would you need to change the method sort in Display 6.11 so that it
can sort an array of values of type double into decreasing order, instead of
increasing order?

21. If an array of int values has a value that occurs twice (such as b[0] == 42 and
b[7] == 42) and you sort the array using the method SelectionSort.sort,
will there be one or two copies of the repeated value after the array is sorted?

Display 6.11 Selection Sort Class (part 1 of 2)

 1 public class SelectionSort
 2 {
 3 /**
 4 Precondition: numberUsed <= a.length;
 5 The first numberUsed indexed variables have values.
 6 Action: Sorts a so that a[0] <= a[1] <= ... <= a[numberUsed - 1].
 7 */
 8 public static void sort(double[] a, int numberUsed)
 9 {
10 int index, indexOfNextSmallest;
11 for (index = 0; index < numberUsed - 1; index++)
12 {//Place the correct value in a[index]:
13 indexOfNextSmallest = indexOfSmallest(index, a, numberUsed);
14 interchange(index,indexOfNextSmallest, a);
15 //a[0] <= a[1] <= ...<= a[index] and these are the smallest
16 //of the original array elements. The remaining positions
17 //contain the rest of the original array elements.
18 }
19 }

20 /**
21 Returns the index of the smallest value among
22 a[startIndex], a[startIndex+1], ... a[numberUsed - 1]
23 */
24 private static int indexOfSmallest(int startIndex,
25 double[] a, int numberUsed)
26 {
27 double min = a[startIndex];
28 int indexOfMin = startIndex;
29 int index;
30 for (index = startIndex + 1; index < numberUsed; index++)
31 if (a[index] < min)
32 {
33 min = a[index];
34 indexOfMin = index;
35 //min is smallest of a[startIndex] through a[index]
36 }
37 return indexOfMin;
38 }

Programming with Arrays 423

39 /**
40 Precondition: i and j are legal indices for the array a.
41 Postcondition: Values of a[i] and a[j] have been interchanged.
42 */
43 private static void interchange(int i, int j, double[] a)
44 {
45 double temp;
46 temp = a[i];
47 a[i] = a[j];
48 a[j] = temp; //original value of a[i]
49 }
50 }

Display 6.11 Selection Sort Class (part 2 of 2)

Display 6.12 Demonstration of the SelectionSort Class

 1 public class SelectionSortDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 double[] b = {7.7, 5.5, 11, 3, 16, 4.4, 20, 14, 13, 42};

 6 System.out.println("Array contents before sorting:");
 7 int i;
 8 for (i = 0; i < b.length; i++)
 9 System.out.print(b[i] + " ");
10 System.out.println();
11
12 SelectionSort.sort(b, b.length);

13 System.out.println("Sorted array values:");
14 for (i = 0; i < b.length; i++)
15 System.out.print(b[i] + " ");
16 System.out.println();
17 }
18 }

Sample Dialogue

Array contents before sorting:

7.7 5.5 11.0 3.0 16.0 4.4 20.0 14.0 13.0 42.0

Sorted array values:

3.0 4.4 5.5 7.7 11.0 13.0 14.0 16.0 20.0 42.0

424 CHAPTER 6 Arrays

Enumerated Types ★

Sometimes you need a simple type consisting of a short list of named values. For
example, the values might be clothing sizes, the days of the week, or some other brief
list. Starting with version 5.0, Java allows you to have such an enumerated type. For
example, the following is an enumerated type for the days of a five-day work week:

enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

A value of an enumerated type is a kind of named constant and so, by convention, is
spelled with all uppercase letters. So, we used, for example, MONDAY, not Monday, in
the above definition of the enumerated type WorkDay. Using Monday would have been
legal, but poor style.

As with any other type, you can have variables of an enumerated type; for example,

WorkDay meetingDay, availableDay;

A variable of an enumerated type can have a value that must be either one of the
values listed in the definition of the type or else the special value null, which serves as
a placeholder indicating that the variable has no “real” value. For example, you can set
the value of a variable of an enumerated type with an assignment statement, as follows:

meetingDay = WorkDay.THURSDAY;

Note that when you write the value of an enumerated type, you need to preface the
name of the value, such as THURSDAY, with the name of the type. For example, you use
WorkDay.THURSDAY, not THURSDAY.

As with any other type, you can combine the declaration of a variable with the
assignment of a value to the variable, as in

WorkDay meetingDay = WorkDay.THURSDAY;

A program that demonstrates the syntax for using enumerated types is given in
Display 6.13. Be sure to notice that we placed the definition of the enumerated type
outside of the main method in the same place that you would give named constants.

enumerated
type

Display 6.13 An Enumerated Type (part 1 of 2)

 1 public class EnumDemo
 2 {
 3 enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

 4 public static void main(String[] args)
 5 {
 6 WorkDay startDay = WorkDay.MONDAY;
 7 WorkDay endDay = WorkDay.FRIDAY;

Programming with Arrays 425

 8 System.out.println("Work starts on " + startDay);
 9 System.out.println("Work ends on " + endDay);
10 }
11 }

Sample Dialogue

Work starts on MONDAY

Work ends on FRIDAY

Display 6.13 An Enumerated Type (part 2 of 2)

Enumerated Type
An enumerated type is a type for which you give all the values of the type in a typically
short list. A value of an enumerated type is a kind of named constant and so, by convention,
is spelled with all uppercase letters.

SYNTAX

enum Type_Name {FIRST_VALUE,SECOND_VALUE, …, LAST_VALUE};

Starting with version 5.0, enum is a keyword in Java.

EXAMPLE

enum Flavor {VANILLA, CHOCOLATE, STRAWBERRY};

The definition of an enumerated type is normally placed outside of all methods in the same
place that you give named constants. The location for an enumerated type definition is
illustrated in Display 6.13. (The definition can be placed in other locations, but we will not
need to place them anywhere else.)

You can output the value of a variable of an enumerated type using println. For
example,

System.out.println(WorkDay.THURSDAY);

will produce the following screen output:

THURSDAY

Note that the type name WorkDay is not output. Other examples of outputting an
enumerated type value are given in Display 6.13.

426 CHAPTER 6 Arrays

The values of an enumerated type, such as WorkDay.THURSDAY, are not String
values. In fact, you should not care what kind of values they are. How they are
implemented is not relevant to being able to use the values of an enumerated type. All
you really need to know is that, for example, WorkDay.THURSDAY and WorkDay.FRIDAY
are different values and will test as being different if you compare them with ==.

Although values of an enumerated type are not String values, they are used for
tasks that could be done by String values; however, enumerated types work better
than String values for some tasks. You could use a String variable in place of a
variable of an enumerated type. For example, you could use

String meetingDay = "THURSDAY";

instead of

WorkDay meetingDay = WorkDay.THURSDAY;

However, using a String variable allows for the possibility of setting the variable equal
to a nonsense value, such as "SUNDAY" or "GaGa" for a work day, and to do so without
the computer issuing any warning statement. With an enumerated type, you know the
only possible values for a variable of that type are the values given in the enumerated type
definition; if you try to give the variable a different value, you will get an error message.

An enumerated type is actually a class, and its values are objects of the class. Some methods
that are automatically provided with every enumerated type are given in Display 6.14.

Display 6.14 Some Methods Included with Every Enumerated Type (part 1 of 2)

public boolean equals(Any_Value_Of_An_Enumerated_Type)

Returns true if its argument is the same value as the calling value. While it is perfectly legal to
use equals, it is easier and more common to use ==.

EXAMPLE

For enumerated types, (Value1.equals(Value2)) is equivalent to (Value1 == Value2).

public String toString()

Returns the calling value as a string. This is often invoked automatically. For example, this method
is invoked automatically when you output a value of the enumerated type using System.out.
println or when you concatenate a value of the enumerated type to a string. See Display 6.15
for an example of this automatic invocation.

EXAMPLE

WorkDay.MONDAY.toString() returns "MONDAY". The enumerated type WorkDay is
defined in Display 6.13.

Programming with Arrays 427

public int ordinal()

Returns the position of the calling value in the list of enumerated type values. The first position
is 0.

EXAMPLE

WorkDay.MONDAY.ordinal() returns 0, WorkDay.TUESDAY.ordinal() returns 1, and so
forth. The enumerated type WorkDay is defined in Display 6.13.

public int compareTo(Any_Value_Of_The_Enumerated_Type)

Returns a negative value if the calling object precedes the argument in the list of values, returns
0 if the calling object equals the argument, and returns a positive value if the argument precedes
the calling object.

EXAMPLE

WorkDay.TUESDAY.compareTo(WorkDay.THURSDAY)returns a negative value. The type WorkDay
is defined in Display 6.13.

public EnumeratedType [] values()

Returns an array whose elements are the values of the enumerated type in the order in which
they are listed in the definition of the enumerated type.

EXAMPLE

See Display 6.15.

public static EnumeratedType valueOf(String name)

Returns the enumerated type value with the specified name. The string name must be an
exact match.

EXAMPLE

WorkDay.valueOf("THURSDAY")returns WorkDay.THURSDAY. The type WorkDay is defined in
Display 6.13.

Display 6.14 Some Methods Included with Every Enumerated Type (part 2 of 2)

When comparing two variables (or constants) of an enumerated type, you can
use the equals method, but it is more common to instead use the == operator. For
example,

if (meetingDay == availableDay)
 System.out.println("Meeting will be on schedule.");
if (meetingDay == WorkDay.THURSDAY)
 System.out.println("Long weekend!");

With enumerated types, the equals method and the == operator are equivalent, but
the == operator has nicer syntax.

428 CHAPTER 6 Arrays

To get the full potential from an enumerated type, you need some way to cycle
through all its values. The static method values() provides you with that ability. This
method returns an array whose elements are the values of the enumerated type, and is
provided automatically for every enumerated type. Display 6.15 gives a simple example
of using the method values() to cycle through all the values in an enumerated type.
(This is one situation where it is much cleaner to use a for-each loop instead of an
ordinary for loop. If you have read the starred section on the for-each loop, be sure to
do Self-Test Exercise 22, which redoes Display 6.15 using a for-each loop.)

Display 6.15 The Method values (part 1 of 2)

 1 import java.util.Scanner;
 2
 3 public class EnumValuesDemo
 4 {

 5 enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

 6 public static void main(String[] args)
 7 {
 8 WorkDay[] day = WorkDay.values();

 9 Scanner keyboard = new Scanner(System.in);
10 double hours = 0, sum = 0;

11 for (int i = 0; i < day.length; i++)
12 {
13 System.out.println("Enter hours worked for " + day[i]);
14 hours = keyboard.nextDouble();
15 sum = sum + hours;
16 }

17 System.out.println("Total hours work = " + sum);
18 }
19 }

The values Method
Every enumerated type has a static method named values(), which returns an array
whose elements are the values of the enumerated type in the order in which they are
listed in the definition of the enumerated type. The base type for the array returned is the
enumerated type. See Display 6.15 for an example.

This is equivalent to day[i].toString().

Programming with Arrays 429

Sample Dialogue

Enter hours worked for MONDAY

8

Enter hours worked for TUESDAY

8

Enter hours worked for WEDNESDAY

8

Enter hours worked for THURSDAY

8

Enter hours worked for FRIDAY

7.5

Total hours worked = 39.5

Display 6.15 The Method values (part 2 of 2)

TIP: Enumerated Types in switch Statements ★

You can use an enumerated type to control a switch statement. In other words, the
type of the controlling expression in a switch statement can be an enumerated type.
This is illustrated in Display 6.16. Note that the case labels must be unqualified
names; use VANILLA, not Flavor.VANILLA.

This program uses the static method valueOf to convert an input string to a value
of the enumerated type. For example,

Flavor.valueOf("STRAWBERRY")

returns Flavor.STRAWBERRY. Note that the program changes the input to all
uppercase letters before giving it as an argument to the method valueOf. The method
valueOf requires an exact match. An invocation of Flavor.valueOf("Vanilla")
will end your program with an error message;5 you must use "VANILLA" to match the
exact spelling (including upper- versus lowercase) of the value in Flavor.

At this point, you may wonder what the difference is between STRAWBERRY and
Flavor.STRAWBERRY and how to tell which one to use in a given situation. The value of
the enumerated type is STRAWBERRY. We write Flavor.STRAWBERRY to say we mean
STRAWBERRY as defined in Flavor, as opposed to STRAWBERRY as defined in some
other type, such as

enum Berry {STRAWBERRY. BLUEBERRY, RASPBERRY};

5After you cover exceptions in Chapter 9, you will be able to cope with answers such as PISTACHIO that
do not correspond to any value of type Flavor. An invocation of Flavor.valueOf("PISTACHIO")
will throw an IlllegalArgumentException, something explained in Chapter 9. Until then, your program
will simply give an error message when valueOf cannot cope with its argument.

(continued)

430 CHAPTER 6 Arrays

TIP: (continued)

A single program with both type definitions (Flavor and Berry) could use both
Flavor.STRAWBERRY and Berry.STRAWBERRY.

So, when can you use STRAWBERRY instead of Flavor.STRAWBERRY? The approximate
answer is when there is enough context for the compiler to know STRAWBERRY means
STRAWBERRY as defined in the type Flavor. For example, in a switch statement, if the
type of the controlling expression is Flavor, then STRAWBERRY can only mean Flavor.
STRAWBERRY. This rule will help in remembering when to use STRAWBERRY and when to
use Flavor.STRAWBERRY. But, sometimes you may simply have to check a reference or try
the two possibilities out and see which one (or ones) the compiler accepts. ■

Display 6.16 Enumerated Type in a switch Statement (part 1 of 2)

 1 import java.util.Scanner;
 2
 3 public class EnumSwitchDemo
 4 {
 5 enum Flavor {VANILLA, CHOCOLATE, STRAWBERRY};

 6 public static void main(String[] args)
 7 {
 8 Flavor favorite = null;
 9 Scanner keyboard = new Scanner(System.in);

10 System.out.println("What is your favorite flavor?");
11 String answer = keyboard.next();
12 answer = answer.toUpperCase();
13 favorite = Flavor.valueOf(answer);

14 switch (favorite)
15 {
16 case VANILLA:
17 System.out.println("Classic");
18 break;
19 case CHOCOLATE:
20 System.out.println("Rich");
21 break;
22 default:
23 System.out.println("I bet you said STRAWBERRY.");
24 break;
25 }
26 }
27 }

The case labels must have just the name of
the value without the type name and dot.

Multidimensional Arrays 431

Sample Dialogue

What is your favorite flavor?

Vanilla

Classic

Sample Dialogue

What is your favorite flavor?

STRAWBERRY

I bet you said STRAWBERRY.

Sample Dialogue

What is your favorite flavor?

PISTACHIO
This input causes the program to
end and issue an error message.

Display 6.16 Enumerated Type in a switch Statement (part 2 of 2)

Self-Test Exercise

22. Rewrite the program in Display 6.15 using a for-each loop.

6.4 Multidimensional Arrays
Two indices are better than one.

ANONYMOUS

Java allows you to declare arrays with more than one index. In this section, we describe
these multidimensional arrays.

Multidimensional Array Basics

It is sometimes useful to have an array with more than one index, and this is allowed in
Java. The following creates an array of characters called page. The array page has two
indices, the first index ranging from 0 to 29 and the second from 0 to 99.

char[][] page = new char[30][100];

This is equivalent to the following two steps:

char[][] page;
page = new char[30][100];

array
declarations

432 CHAPTER 6 Arrays

The indexed variables for this array each have two indices. For example, page[0]
[0], page[15][32], and page[29][99] are three of the indexed variables for this
array. Note that each index must be enclosed in its own set of square brackets. As was
true of the one-dimensional arrays we have already seen, each indexed variable for a
multidimensional array is a variable of the base type—in this case, the type char.

An array may have any number of indices, but perhaps the most common number is
two. A two-dimensional array can be visualized as a two-dimensional display with the
first index giving the row and the second index giving the column. For example, the
array indexed variables of the two-dimensional array a, declared and created as

char[][] a = new char[5][12];

can be visualized as follows:

a[0][0], a[0][1], a[0][2], ..., a[0][11]
a[1][0], a[1][1], a[1][2], ..., a[1][11]
a[2][0], a[2][1], a[2][2], ..., a[2][11]
a[3][0], a[3][1], a[3][2], ..., a[3][11]
a[4][0], a[4][1], a[4][2], ..., a[4][11]

You might use the array a to store all the characters on a (very small) page of text that has
5 lines (numbered 0 through 4) and 12 characters on each line (numbered 0 through 11).

indexed
variables

Declaring and Creating a Multidimensional Array

You declare a multidimensional array variable and create a multidimensional array object in
basically the same way that you create and name a one-dimensional array. You simply use
as many square brackets as there are indices.

SYNTAX

Base_Type []...[]Variable_Name = new Base_Type [Length_l]…[Length_n];

EXAMPLES

char[][] a = new char[5][12];
char[][] page = new char[30][100];
double[][] table = new double[100][10];
int[][][] figure = new int[10][20][30];
Person[][] entry = new Person[10][10];

Person is a class.

In Java, a two-dimensional array, such as a, is actually an array of arrays. The
above array a is actually a one-dimensional array of size 5, whose base type is a one-
dimensional array of characters of size 12. This is diagrammed in Display 6.17. As
shown in that display, the array variable a contains a reference to a one-dimensional
array of length 5 with a base type of char[]; that is, the base type of a is the type for an
entire one-dimensional array of characters. Each indexed variable a[0], a[1], and so
forth contains a reference to a one-dimensional array of characters.

a multi-
dimensional

array is an
array of

arrays

Multidimensional Arrays 433

Display 6.17 Two-Dimensional Array as an Array of Arrays

A three-dimensional array is an array of arrays of arrays, and so forth for higher
dimensions.

Normally, the fact that a two-dimensional array is an array of arrays need not concern
you, and you can usually act as if the array a is actually an array with two indices (rather
than an array of arrays, which is harder to keep track of). There are, however, some

char[][] a = new char[5][12];

Code that fills the array is not shown.

int row, column;
for (row = 0; row < 5; row++)
{
 for (column = 0; column < 12; column++)
 System.out.print(a[row][column]);
 System.out.println();
}

Produces the following output:
Once upon
a time
there were
three little
programmers.

a[0]

a[1]

a[2]

a[3]

a[4]

a

0 1 2 3 4 5 6 7 8 9 10 11

O n c e u p o n

a t i m e

t h e r e w e r e

t h r e e l i t t l e

p r o g r a m m e r s .

Blank entries contain the
space (blank) character.

a[1][2]

We will see that these can
and should be replaced with
expressions involving the length
instance variable.

434 CHAPTER 6 Arrays

situations where a two-dimensional array looks very much like an array of arrays. For
example, you will see that when using the instance variable length, you must think of a
two-dimensional array as an array of arrays.

Using the length Instance Variable

Suppose you want to fill all the elements in the following two-dimensional array with 'Z':

char[][] page = new char[30][100];

You can use a nested for loop such as the following:

int row, column;
for (row = 0; row < page.length; row++)
 for (column = 0; column < page[row].length; column++)
 page[row][column] = 'Z';

Let’s analyze this nested for loop in a bit more detail. The array page is actually a one-
dimensional array of length 30, and each of the 30 indexed variables page[0] through
page[29] is a one-dimensional array with base type char and with a length of 100. That
is why the first for loop is terminated using page.length. For a two-dimensional array
such as page, the value of length is the number of first indices or, equivalently, the
number of rows—in this case, 30. Now let’s consider the inside for loop.

The 0th row in the two-dimensional array page is the one-dimensional array
page[0], and it has page[0].length entries. More generally, page[row] is a one-
dimensional array of chars, and it has page[row].length entries. This is why
the inner for loop is terminated using page[row].length. Of course, in this case,
page[0].length, page[1].length, and so forth through to page[29].length are
all equal and all equal to 100. (If you read the optional section entitled “Ragged
Arrays,” which follows this section, you will see that these need not all be equal.)

Self-Test Exercise

23. What is the output produced by the following code?

int[][] myArray = new int[4][4];
int index1, index2;
for (index1 = 0; index1 < myArray.length; index1++)
 for (index2 = 0;
 index2 < myArray[index1].length; index2++)
 myArray[index1][index2] = index2;
for (index1 = 0; index1 < myArray.length; index1++)
{
 for (index2 = 0;
 index2 < myArray[index1].length; index2++)
 System.out.print(myArray[index1][index2] + " ");
 System.out.println();
}

Multidimensional Arrays 435

Ragged Arrays ★

Most programmers typically create a two-dimensional array with the same number
of entries for each row. However, it is possible for different rows to have a different
numbers of columns. These sorts of arrays are called ragged arrays.

To help explain the details, let’s start with an ordinary, nonragged two-dimensional
array, created as follows:

double[][] a = new double[3][5];

This is equivalent to the following:

double[][] a;
a = new double[3][];
a[0] = new double[5];
a[1] = new double[5];
a[2] = new double[5];

The line

a = new double[3][];

makes a the name of an array with room for three entries, each of which can be an
array of doubles that can be of any length. The next three lines each create an array
of doubles of length 5 to be named by a[0], a[1], and a[2]. The net result is a two-
dimensional array of base type double with three rows and five columns.

If you want, you can make each of a[0], a[1], and a[2] a different length. The
following code makes a ragged array b in which each row has a different length:

double[][] b;
b = new double[3][];
b[0] = new double[5];
b[1] = new double[10];
b[2] = new double[4];

There are situations in which you can profitably use ragged arrays, but most
applications do not require them. However, if you understand ragged arrays, you will
have a better understanding of how all multidimensional arrays work in Java.

Multidimensional Array Parameters and Returned Values

Methods may have multidimensional array parameters and may have a multidimensional
array type as the type for the value returned. The situation is similar to that of the one-
dimensional case, except that you use more square brackets when specifying the type

ragged arrays

array
arguments

436 CHAPTER 6 Arrays

name. For example, the following method will display a two-dimensional array in the
usual way as rows and columns:6

public static void showMatrix(int[][] a)
{
 int row, column;
 for (row = 0; row < a.length; row++)
 {
 for (column = 0; column < a[row].length; column++)
 System.out.print(a[row][column] + " ");
 System.out.println();
 }
}

If you want to return a multidimensional array, you use the same kind of type
specification as you use for a multidimensional array parameter. For example, the
following method returns a two-dimensional array with base type double:

/**
 Precondition: Each dimension of a is at least the value of size.
The array returned is the same as the size-by-size upper upper-
left corner of the array a.
*/
public static double[][] corner(double[][] a,int size)
{
 double[][] temp = new double[size][size];
 int row, column;
 for (row = 0; row < size; row++)
 for (column = 0; column < size; column++)
 temp[row][column] = a[row][column];
 return temp;
}

returning an
array

EXAMPLE: A Grade Book Class

Display 6.18 contains a class for grade records in a class whose only recorded scores
are quiz scores. An object of this class has three array instance variables. One is a two-
dimensional array named grade that records the grade of each student on each quiz.
For example, the score that student number 4 received on quiz number 1 is recorded
in grade[3][0]. Because the student numbers and quiz numbers start with 1 and the
array indices start with 0, we subtract one from the student number or quiz number
to obtain the corresponding array index.

6It is worth noting that this method works fine for ragged arrays.

Multidimensional Arrays 437

EXAMPLE: (continued)

All the raw data is in the array grade, but two other arrays hold computed data.
The array studentAverage is used to record the average quiz score for each of the
students. For example, the program sets studentAverage[0] equal to the average of
the quiz scores received by student 1, studentAverage[1] equal to the average of
the quiz scores received by student 2, and so forth. The array quizAverage is used to
record the average score for each quiz. For example, the program sets quizAverage[0]
equal to the average of all the student scores for quiz 1, quizAverage[1] records the
average score for quiz 2, and so forth. Display 6.19 illustrates the relationship between
the arrays grade, studentAverage, and quizAverage. In that display, we have
shown some sample data for the array grade. The data in grade, in turn, determines
the values that are stored in studentAverage and in quizAverage. Display 6.19
also shows these computed values for studentAverage and quizAverage. The two
arrays studentAverage and quizAverage are created and filled by the constructor
that creates the GradeBook object. (The constructors do this by calling private
helping methods.)

The no-argument constructor for the class GradeBook obtains the data for the
array instance variable grade via a dialogue with the user. Although this is not my
favorite way to define a no-argument constructor, some programmers like it, and you
should see an example of it. Another alternative would be to have a no-argument
constructor that essentially does nothing and then have an input method that sets all
the instance variables, including creating the array objects.

A very simple demonstration program along with the dialogue it produces is given
in Display 6.20.

Display 6.18 A Grade Book Class (part 1 of 4)

 1 import java.util.Scanner;

 2 public class GradeBook
 3 {

 4 private int numberOfStudents; // Same as studentAverage.length.
 5 private int numberOfQuizzes; // Same as quizAverage.length.

 6 private int[][] grade; //numberOfStudents rows and numberOfQuizzes
//columns.

 7 private double[] studentAverage;
 8 private double[] quizAverage;

 9 public GradeBook(int[][] a)
10 {
11 if (a.length == 0 || a[0].length == 0)
12 {
13 System.out.println("Empty grade records. Aborting.");
14 System.exit(0);
15 }

(continued)

438 CHAPTER 6 Arrays

Display 6.18 A Grade Book Class (part 2 of 4)

16 numberOfStudents = a.length;
17 numberOfQuizzes = a[0].length;
18 fillGrade(a);
19 fillStudentAverage();
20 fillQuizAverage();
21 }

22 public GradeBook(GradeBook book)
23 {
24 numberOfStudents = book.numberOfStudents;
25 numberOfQuizzes = book.numberOfQuizzes;
26 fillGrade(book.grade);
27 fillStudentAverage();
28 fillQuizAverage();
29 }

30 public GradeBook()
31 {
32 Scanner keyboard = new Scanner(System.in);

33 System.out.println("Enter number of students:");
34 numberOfStudents = keyboard.nextInt();

35 System.out.println("Enter number of quizzes:");
36 numberOfQuizzes = keyboard.nextInt();

37 grade = new int[numberOfStudents][numberOfQuizzes];
38 for (int studentNumber = 1;
39 studentNumber <= numberOfStudents; studentNumber++)
40 for (int quizNumber = 1;
41 quizNumber <= numberOfQuizzes; quizNumber++)
42 {
43 System.out.println("Enter score for student number "
44 + studentNumber);
45 System.out.println("on quiz number " + quizNumber);
46 grade[studentNumber - 1][quizNumber - 1] =
47 keyboard.nextInt();
48 }

49 fillStudentAverage();
50 fillQuizAverage();
51 }

52 private void fillGrade(int[][] a)
53 {
54 grade = new int[numberOfStudents][numberOfQuizzes];
55 for (int studentNumber = 1;
56 studentNumber <= numberOfStudents; studentNumber++)
57 {

This class should have more accessor and
mutator methods, but we have omitted them
to save space. See Self-Test Exercises 24
through 27.

Multidimensional Arrays 439

Display 6.18 A Grade Book Class (part 3 of 4)

58 for (int quizNumber = 1;
59 quizNumber <= numberOfQuizzes; quizNumber++)
60 grade[studentNumber-1][quizNumber-1] =
61 a[studentNumber-1][quizNumber-1];
62 }
63 }

64 /**
65 Fills the array studentAverage using the data from the array grade.
66 */
67 private void fillStudentAverage()
68 {
69 studentAverage = new double[numberOfStudents];

70 for (int studentNumber = 1;
71 studentNumber <= numberOfStudents; studentNumber++)
72 {//Process one studentNumber:
73 double sum = 0;
74 for (int quizNumber = 1;
75 quizNumber <= numberOfQuizzes; quizNumber++)
76 sum = sum + grade[studentNumber - 1][quizNumber - 1];
77 //sum contains the sum of the quiz scores for student number

//studentNumber.
78 studentAverage[studentNumber - 1] = sum/numberOfQuizzes;
79 //Average for student studentNumber is
 //studentAverage[studentNumber - 1]
80 }
81 }
82 /**
83 Fills the array quizAverage using the data from the array grade.
84 */
85 private void fillQuizAverage()
86 {
87 quizAverage = new double[numberOfQuizzes];

88 for (int quizNumber = 1; quizNumber <= numberOfQuizzes; quizNumber++)
89 {//Process one quiz (for all students):
90 double sum = 0;
91 for (int studentNumber = 1;
92 studentNumber <= numberOfStudents;

studentNumber++)
93 sum = sum + grade[studentNumber - 1][quizNumber - 1];
94 //sum contains the sum of all student scores on quiz number

//quizNumber.
95 quizAverage[quizNumber - 1] = sum/numberOfStudents;
96 //Average for quiz quizNumber is the value of

//quizAverage[quizNumber - 1]
97 }
98 }

(continued)

440 CHAPTER 6 Arrays

Display 6.18 A Grade Book Class (part 4 of 4)

 99 public void display()
100 {
101 for (int studentNumber = 1;
102 studentNumber <= numberOfStudents; studentNumber++)

103 {//Display for one studentNumber:
104 System.out.print("Student " + studentNumber + " Quizzes: ");
105 for (int quizNumber = 1;
106 quizNumber <= numberOfQuizzes; quizNumber++)
107 System.out.print(grade[studentNumber - 1][quizNumber - 1] +

" ");
108 System.out.println(" Ave = " +

 studentAverage[studentNumber - 1]);
109 }

110 System.out.println("Quiz averages: ");
111 for (int quizNumber = 1 ; quizNumber <= numberOfQuizzes;

 quizNumber++)
112 System.out.print("Quiz " + quizNumber
113 + " Ave = " + quizAverage[quizNumber - 1] +

" ");
114 System.out.println();
115 }
116

Display 6.19 The Two-Dimensional Array grade

Multidimensional Arrays 441

Display 6.20 Demonstration of the Class GradeBook

1 public class GradeBookDemo
2 {
3 public static void main(String[] args)
4 {
5 GradeBook book = new GradeBook();
6 book.display();
7 }
8 }

Sample Dialogue

Enter number of students:

4

Enter number of quizzes:

3

Enter score for student number 1

on quiz number 1

10

Enter score for student number 1

on quiz number 2

10

 <The rest of the input dialogue is omitted to save space.>

Student 1 Quizzes: 10 10 10 Ave = 10.0
Student 2 Quizzes: 2 0 1 Ave = 1.0
Student 3 Quizzes: 8 6 9 Ave = 7.66666666667
Student 4 Quizzes: 8 4 10 Ave = 7.33333333333
Quiz averages:
Quiz 1 Ave = 7.0 Quiz 2 Ave = 5.0 Quiz 3 Ave = 7.5

Self-Test Exercises

24. Write a method definition for a method with the following heading. The
method is to be added to the class GradeBook in Display 6.18.

/**
 Returns the grade that student numbered studentNumber received
on quiz number quizNumber.

*/
public int getGrade(int studentNumber,int quizNumber)

(continued)

442 CHAPTER 6 Arrays

Chapter Summary

• An array can be used to store and manipulate a collection of data that is all of the
same type.

• The indexed variables of an array can be used just like any other variables of the base
type of the array.

• Arrays are objects that are created with new just like the class objects we discussed
before this chapter (although there is a slight difference in the syntax used).

• A for loop is a good way to step through the elements of an array and perform some
program action on each indexed variable.

• The most common programming error made when using arrays is to attempt to
 access a nonexistent array index. Always check the first and last iterations of a loop
that manipulates an array to make sure it does not use an index that is illegally small
or illegally large.

Self-Test Exercises (continued)

25. Write a method definition for a method with the following heading. The
method is to be added to the class GradeBook in Display 6.18.

/**
 Changes the grade for student number studentNumber on quiz
 number quizNumber to newGrade.

*/
public void changeGrade(int studentNumber,
 int quizNumber, int newGrade))

26. Write a method definition for a method with the following heading. The
method is to be added to the class GradeBook in Display 6.18.

/**
 Returns an array with the average quiz score for each student.
*/
public double[] getStudentAverages()

27. Write a method definition for a method with the following heading. The
method is to be added to the class GradeBook in Display 6.18.

/**
 Returns an array with the average score for each quiz.
*/
public double[] getQuizAverages()

Answers to Self-Test Exercises 443

• The indexed variables of an array can be used as an argument to be plugged in for a
parameter of the array’s base type.

• A method can have parameters of an array type. When the method is invoked, an
entire array is plugged in for the array parameter.

• A method may return an array as the value returned by the method.

• When using a partially filled array, your program needs an additional variable of type
int to keep track of how much of the array is being used.

• An instance variable of a class can be of an array type.

• If you need an array with more than one index, you can use a multidimensional array,
which is actually an array of arrays.

Answers to Self-Test Exercises

 1. a. word

 b. String

 c. 5

 d. 0 through 4 inclusive

 e. Any of the following would be correct:
 word[0], word[1], word[2], word[3], word[4]

 2. a. 10

 b. 0

 c. 9

 3. a, b, c,

 4. 1.1 2.2 3.3

 1.1 3.3 3.3

 5. The for loop uses indices 1 through sampleArray.length, but the correct indices
are 0 through sampleArray.length – 1. The last index, sampleArray.length,
is out of bounds. What was probably intended is the following:

 int[] sampleArray = new int[10];

 for (int index = 0; index < sampleArray.length; index++)

 sampleArray[index] = 3*index;

 6. The last value of index is a.length – 1, which is the last index of the array.
However, when index has the value a.length – 1, a[index + 1] has an index
that is out of bounds because index + 1 is one more than the largest array index.
The for loop ending condition should instead be index < a.length – 1.

 7. SomeClass.doSomething(number); //Legal.
 SomeClass.doSomething(a[2]); //Legal.

 SomeClass.doSomething(a[3]); //Illegal. Index out of bounds.

 SomeClass.doSomething(a[number]); //Legal.

 SomeClass.doSomething(a); //Illegal.

 8. public static void oneMore(int[] a)
 {

 for (int i = 0; i < a.length; i++)

 a[i] = a[i] + 1;

 }

 9. public static int outOfOrder(double[]a)
 {

 for (int index = 0; index < a.length – 1; index++)

 if (a[index] > a[index + 1])

 return (index + 1);

 return 1;

 }

10. This method is legal but pointless. When invoked, it has no effect on its argument.
The parameter a is a local variable that contains a reference. The reference does
indeed get changed so it refers to an array of double the size of the argument, but
that reference goes away when the method ends. A method can change the values
of the indexed variables of its argument, but it cannot change the reference in the
array variable used as an argument.

11. public static double[] halfArray(double[] a)
 {

 double[] temp = new double[a.length];

 for (int i = 0; i < a.length; i++)

 temp[i] = a[i]/2.0;

 return temp;

 }

12. The method will compile and run. The array returned has the correct values for
its elements. However, the method will change the values of its array argument. If
you want to change the values in the array argument, a void method would make
more sense. If you want to return an array, you should probably return a new array
(as in the version in the previous subsection), not return a changed version of the
argument array.

13. /**
 Precondition: numberUsed <= argumentArray.length;

 the first numberUsed indexed variables of argumentArray

have values.

 Returns an array of length numberUsed whose ith element

is argumentArray[i] adjustment.

 */

444 CHAPTER 6 Arrays

Answers to Self-Test Exercises 445

 public static double[] differenceArray(

 double[] argumentArray, int numberUsed, double adjustment)

 {

 double[] temp = new double[numberUsed];

 for (int i = 0; i < numberUsed; i++)

 temp[i] = argumentArray[i] - adjustment;

 return temp;

 }

14. The only changes are to add the method differenceArray and to rewrite the
method showDifference as follows (the complete class definition is in the file
GolfScoresExercise.java on the accompanying website):

 public static void showDifference(double[] a,

 int numberUsed)

 {

 double average = computeAverage(a, numberUsed);

 System.out.println("Average of the " + numberUsed

 + " scores = " + average);

 double[] difference =

 differenceArray(a, numberUsed, average);

 System.out.println("The scores are:");

 for (int index = 0; index < numberUsed; index++)

 System.out.println(a[index] +

 " differs from average by "

 + difference[index]);

 }

15. The main differences are to remove parameters, replace the array name a by
score, and make the method fillArray a void method. This code is in the file
 GolfScoresStaticExercise.java on the accompanying website.

 import java.util.Scanner;

 public class GolfScoresStaticExercise

 {

 public static final int MAX_NUMBER_SCORES = 10;

 private static double[] score =

 new double[MAX_NUMBER_SCORES];

 private static int numberUsed = 0;

 /**

 Shows differences between each of a list of golf scores

 and their average.

 */

 public static void main(String[] args)

 {

extra code
on website

extra code
on website

 System.out.println(

 "This program reads golf scores and shows");

 System.out.println(

 "how much each differs from the average.");

 System.out.println("Enter golf scores:");

 fillArray();

 showDifference();

 }

 /**

 Reads values into the array score.

 */

 public static void fillArray()

 {

 System.out.println("Enter up to " + score.length

 + " nonnegative numbers:");

 System.out.println(

 "Mark the end of the list with a negative number.");

 Scanner keyboard = new Scanner(System.in);

 double next;

 int index = 0;

 next = keyboard.nextDouble();

 while ((next >= 0) && (index < score.length))

 {

 score[index] = next;

 index++;

 next = keyboard.nextDouble();

 //index is the number of

 //array indexed variables used so far.

 }

 //index is the total number of array indexed variables used.

 if (next >= 0)

 System.out.println("Could only read in "

 + score.length + " input values.");

 numberUsed = index;

 }

 /**

 Precondition: numberUsed <= score.length.

 score[0] through score[numberUsed-1] have values.

 Returns the average of numbers ascore[0] through

 score[numberUsed-1].

 */

446 CHAPTER 6 Arrays

Answers to Self-Test Exercises 447

 public static double computeAverage()

 {

 double total = 0;

 for (int index = 0; index < numberUsed; index++)

 total = total + score[index];

 if (numberUsed > 0)

 {

 return (total/numberUsed);

 }

 else

 {

 System.out.println(

 "ERROR: Trying to average 0 numbers.");

 System.out.println("computeAverage returns 0.");

 return 0;

 }

 }

 /**

 Precondition: numberUsed <= score.length.

 The first numberUsed indexed variables of score have values.

 Postcondition: Gives screen output showing how much each of the

first numberUsed elements of the array a differs from the average.

 */

 public static void showDifference()

 {

 double average = computeAverage();

 System.out.println("Average of the " + numberUsed

 + " scores = " + average);

 System.out.println("The scores are:");

 for (int index = 0; index < numberUsed; index++)

 System.out.println(score[index] +

 " differs from average by "

 + (score[index] – average));

 }

 }

16. public static int max(int... arg)
 {
 if (arg.length == 0)

 {

 System.out.println(

 "Fatal Error: maximum of zero values.");

 System.exit(0);

 }

 int largest = Integer.MIN_VALUE;

 for (int element : arg)

 if (element > largest)

 largest = element;

 return largest;

 }

17. The last line would change to the following:

 I ate cod, broccoli, , peanuts, and apples.

18. public void removeAll()
 {

 numberUsed = 0;

 }

19. public void increaseCapacity(int newCapacity)
 {

 if (newCapacity > numberUsed)

 {

 maxNumberElements = newCapacity;

 double[] temp = new double[newCapacity];

 for (int i = 0; i < a.length; i++)

 temp[i] = a[i];

 a = temp;

 }//else do nothing.

 }

20. All you need to do to make your code work for sorting into decreasing order is to
replace the < with > in the following line of the definition of indexOfSmallest:

 if (a[index] < min)

 However, to make your code easy to read, you should also rename the method
 indexOfSmallest to indexOfLargest, rename the variable min to max, and
 rename the variable indexOfMin to indexOfMax. You should rewrite some of the
comments to reflect these changes as well.

21. If an array has a value that occurs more than once and you sort the array using the
method SelectionSort.sort, then there will be as many copies of the repeated
value after the array is sorted as there originally were in the array.

22. We give two slightly different versions. Both versions are on the accompanying
website.

 import java.util.Scanner;

 public class ForEachEnumDemo

 {

 enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY,FRIDAY};

 public static void main(String[] args)

 {

 WorkDay[] day = WorkDay.values();

extra code
on website

448 CHAPTER 6 Arrays

Answers to Self-Test Exercises 449

 Scanner keyboard = new Scanner(System.in);

 double hours = 0, sum = 0;

 for (WorkDay oneDay : day)

 {

 System.out.println("Enter hours worked for " +

oneDay);

 hours = keyboard.nextDouble();

 sum = sum + hours;

 }

 System.out.println("Total hours work = " + sum);

 }

 }

 import java.util.Scanner;

 public class ForEachEnumDemo2

 {

 enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

 public static void main(String[] args)

 {

 Scanner keyboard = new Scanner(System.in);

 double hours = 0, sum = 0;

 for (WorkDay oneDay : WorkDay.values())

 {

 System.out.println("Enter hours worked for " + oneDay);

 hours = keyboard.nextDouble();

 sum = sum + hours;

 }

 System.out.println("Total hours work = " + sum);

 }

 }

23. 0 1 2 3
 0 1 2 3

 0 1 2 3

 0 1 2 3

24. If the array indices are out of bounds, then Java will halt the program with an error
message, so no other checks on the parameters are needed.

 /**

 Returns the grade that student number studentNumber received on

quiz number quizNumber.

 */

 public int getGrade(int studentNumber,int quizNumber)

 {

 return grade[studentNumber][quizNumber];

 }

25. If the array indices are out of bounds, then Java will halt the program with an error
message, so no other checks on the parameters are needed.

 /**

 Changes the grade for student number studentNumber on quiz number

quizNumber to newGrade.

 */

 public void changeGrade(int studentNumber,

 int quizNumber, int newGrade)

 {

 grade[studentNumber][quizNumber] = newGrade;

 }

26. /**
 Returns an array with the average quiz score for each student.

 */

 public double[] getStudentAverages()

 {

 int arraySize = studentAverage.length;

 double[] temp = new double[arraySize];

 for (int i = 0; i < arraySize; i++)

 temp[i] = studentAverage[i];

 return temp;

 }

27. /**
 Returns an array with the average score for each quiz.

 */

 public double[] getQuizAverages()

 {

 int arraySize = quizAverage.length;

 double[] temp = new double[arraySize];

 for (int i = 0; i < arraySize; i++)

 temp[i] = quizAverage[i];

 return temp;

 }

Programming Projects

 1. You are running a courier agency. The weight of a parcel determines the number
of stamps that will be needed to send that parcel. For each kilogram, a stamp of
$2 is needed. Create a class to accept the weight of five parcels in floating-point
values. Also, the courier company charges an additional rate depending on where
the courier has to be delivered. The charges are $20 for delivery within the city
of posting, and $40 for delivery anywhere else in the country. Write a computer
program to calculate and display the total cost of each parcel depending on the
weight and delivery location of the parcel.

450 CHAPTER 6 Arrays

Programming Projects 451

 2. A common memory matching game played by young children is to start with a
deck of cards that contain identical pairs. For example, given six cards in the deck,
two might be labeled 1, two labeled 2, and two labeled 3. The cards are shuffled
and placed face down on the table. A player then selects two cards that are face
down, turns them face up, and if the cards match, they are left face up. If the two
cards do not match, they are returned to their original face down position. The
game continues until all cards are face up.

 Write a program that plays the memory matching game. Use 16 cards that are laid
out in a 4 4 square and are labeled with pairs of numbers from 1 to 8. Your
program should allow the player to specify the cards that he or she would like to
select through a coordinate system.

 For example, in the following layout:

 1 2 3 4

 1 8 * * *

 2 * * * *

 3 * 8 * *

 4 * * * *

 all of the face down cards are indicated by *. The pairs of 8 that are face up are at
coordinates (1,1) and (2,3). To hide the cards that have been temporarily placed
face up, output a large number of newlines to force the old board off the screen.

 Hint: Use a 2D array for the arrangement of cards and another 2D array that
indicates if a card is face up or face down. Or, a more elegant solution is to create
a single 2D array where each element is an object that stores both the card’s value
and face. Write a function that “shuffles” the cards in the array by repeatedly select-
ing two cards at random and swapping them.

 3. Write a program to calculate the average salary of an employee in a company.
The program should read the monthly salary and overtime hours of an employee
for each of the previous 12 months. The program should then print out a nicely
formatted table showing the salary for each of the previous 12 months including
salary for overtime hours. It should also show how much above or below average
the total salary was for each month. The output should correctly label the months.
There are a variety of ways to deal with the month names. One straightforward
method is to code the months as integers and then do a conversion to a string for
the month name before doing the output. The month input can be handled in any
manner you wish so long as it is relatively easy and pleasant for the user.

 The salary for the overtime hours is calculated as per the following rates:

 a. If salary is above $10,000, then the rate per overtime hour is $25.

 b. If salary is greater than $5,000 and below $10,000, then the rate per overtime
hour is $20.

 c. If salary is greater than $2,000 and below $5,000, then the rate per overtime
hour is $15.

 If salary is below $2,000, then the rate per overtime hour is $10.

 4. Write a program to document the marks of an additional value added course taught
to the students. The marks of the students cannot be negative and cannot be more
than 100 i.e. 0<=marks<=100. Create a class that should maintain the following
information about each student of the class.

 a. Student name

 b. Student ID

 c. Array of marks in five subjects

 Also, write a method called validateMarks that deletes all the marks less than zero
and greater than 100 from the array. When a value of marks is deleted, the remain-
ing marks are moved one position to fill in the gap. This creates empty positions
at the end of the array so that less of the array is used. For example, consider the
following given array:

 intarrMarks [] = new int[5];

 arrMarks [0] = 10;

 arrMarks [1] = –15;

 arrMarks [2] = 25;

 arrMarks [3] = 102;

 arrMarks [4] = 30;

 After execution of validateMarks, the value of arrMarks [0] is 10, the value of
arrMarks [1] is –15, the value of arrMarks [2] is 30, the value of arrMarks [3] is
102 and the value of arrMarks [4] is 30 and the value of length is 5. (The value of
arrMarks [1] and arrMarks [3] is no longer of any concern, because the partially
filled array no longer uses this indexed variable). Write a suitable test program for
your method.

 5. Write a program that takes as input a set of 15 numbers from the keyboard into an
array of type int[]. Create another array that will also read 15 other numbers of
type int into it. Now merge the elements of these two arrays into one. The output
is to be a two-column list. The first column is a list of the distinct array elements;
the second column is the count of the number of occurrences of each element.

 For example, if the elements of the first array are:

 –22, 3, –22, 4, 1, 1, –22, 1, –1, 1, 2, 3, 4, 2, –22

 And the elements of second array are:

 –1, 1, 2, 3, 4, 2, –22, –22, 3, –22, 4, 1, 1, –22, 1

 Then output should be

 N Count

 –22 8

 –1 2

 1 8

 2 4

 3 4

 4 4

452 CHAPTER 6 Arrays

Programming Projects 453

 6. Write a program that reads numbers from the keyboard into an array of type
int[]. You may assume that there will be 50 or fewer entries in the array. Your
program allows any number of numbers to be entered, up to 50. The output is to
be a two-column list. The first column is a list of the distinct array elements; the
second column is the count of the number of occurrences of each element. The list
should be sorted on entries in the first column, largest to smallest.

 For the array

 –12 3 –12 4 1 1 –12 1 –1 1 2 3 4 2 3 –12

 the output should be

 N Count

 4 2

 3 3

 2 2

 1 4

 –1 1

 –12 4

 7. An array can be used to store large integers one digit at a time.

 For example, the integer 1234 could be stored in the array a by setting a[0] to 1,
a[1] to 2, a[2] to 3, and a[3] to 4. However, for this exercise you might find it
more useful to store the digits backward; that is, place 4 in a[0], 3 in a[1], 2 in
a[2], and 1 in a[3]. In this exercise, write a program that reads in 2 positive inte-
gers that are 20 or fewer digits in length and then outputs the sum of the 2 num-
bers. Your program will read the digits as values of type char so that the number
1234 is read as the four characters '1', '2', '3', and '4'. After they are read into
the program, the characters are changed to values of type int. The digits should
be read into a partially filled array; you might find it useful to reverse the order
of the elements in the array after the array is filled with data from the keyboard.
(Whether or not you reverse the order of the elements in the array is up to you. It
can be done either way, and each way has its advantages and disadvantages.) Your
program should perform the addition by implementing the usual paper-and-pencil
addition algorithm. The result of the addition should be stored in an array of size
20, and the result should then be written to the screen. If the result of the addition
is an integer with more than the maximum number of digits (that is, more than
20 digits), then your program should issue a message saying that it has encountered
“integer overflow.” You should be able to change the maximum length of the inte-
gers by changing only one named constant. Include a loop that allows the user to
continue to do more additions until the user says the program should end.

 8. Design a class called BubbleSort that is similar to the class SelectionSort given
in Display 6.11. The class BubbleSort will be used in the same way as the class
SelectionSort, but it will use the bubble sort algorithm.

 The bubble sort algorithm checks all adjacent pairs of elements in the array from
the beginning to the end and interchanges any two elements that are out of order.
This process is repeated until the array is sorted. The algorithm is as follows:

 Bubble Sort Algorithm to Sort an Array a

 Repeat the following until the array a is sorted:

 for (index = 0; index < a.length – 1; index++)

 if (a[index] > a[index + 1])

 Interchange the values of a[index] and a[index + 1].

 The bubble sort algorithm is good for sorting an array that is “almost sorted.” It is
not competitive with other sorting methods for most other situations.

 9. Enhance the definition of the class PartiallyFilledArray (Display 6.5) in the
following way: When the user attempts to add one additional element and there
is no room in the array instance variable a, the user is allowed to add the element.
The object creates a second array that is twice the size of the array a, copies values
from the array a to the user’s new array, makes this array (or more precisely its
reference) the new value of a, and then adds the element to this new larger array a.
Hence, this new class should have no limit (other than the physical size of the com-
puter) to how many numbers it can hold. The instance variable maxNumberOfElements
remains and the method getMaxCapacity is unchanged, but these now refer to the
currently allocated memory and not to an absolute upper bound. Write a suitable
test program.

10. Write a program to simulate a simple game using arrays. The program should
create a grid of stars using 2D arrays for the user to move in. When the program
is started, the user’s current position should be generated randomly in row and
column format. It should then ask the user for the movement selection, i.e., left,
right, up, and down. The program should then reprint the grid with the old loca-
tion of user replaced with a $ symbol and the new location with an N symbol. The
program displays the game positions as follows:

 * * *

 * * *

 * * *

 A sample grid configuration is

 * * *

 $ N *

 * * *

454 CHAPTER 6 Arrays

Solution to
Programming
Project 6.8

VideoNote

Programming Projects 455

11. Write a program to assign passengers seats in an airplane. Assume a small airplane
with seat numberings as follows:

 1 A B C D

 2 A B C D

 3 A B C D

 4 A B C D

 5 A B C D

 6 A B C D

 7 A B C D

 The program should display the seat pattern, with an 'X' marking the seats already
assigned. For example, after seats 1A, 2B, and 4C are taken, the display should look
like the following:

 1 X B C D

 2 A X C D

 3 A B C D

 4 A B X D

 5 A B C D

 6 A B C D

 7 A B C D

 After displaying the seats available, the program should prompt for the seat desired,
the user can type in a seat, and then the display of available seats should be updated.
This continues until all seats are filled or until the user signals that the program
should end. If the user types in a seat that is already assigned, the program should
say that that seat is occupied and ask for another choice.

12. Write a program that plays a simple trivia game. The game should have five ques-
tions. Each question has a corresponding answer and point value between 1 and
3 based on the difficulty of the question. Implement the game using three arrays.
An array of type String should be used for the questions. Another array of type
String should be used to store the answers. An array of type int should be used
for the point values. All three arrays should be declared to be of size 5.

 The index into the three arrays can be used to tie the question, answer, and point
value together. For example, the item at index 0 for each array would correspond
to question 1, answer 1, and the point value for question 1. The item at index 1
for each array would correspond to question 2, answer 2, and the point value for
question 2, and so forth. Manually hardcode the five questions, answers and point
values into your program using trivia of your choice.

 Your program should ask the player each question one at a time and allow the
player to enter an answer. If the player’s answer matches the actual answer, the
player wins the number of points for that question. If the player’s answer is incor-
rect, the player wins no points for the question. Your program should show the
correct answer if the player is incorrect. After the player has answered all five ques-
tions, the game is over, and your program should display the player’s total score.

13. Modify Programming Project 12 to use a single array instead of three arrays. This
can be accomplished by creating a Trivia object that encapsulates the question,

answer, and point value for a particular trivia question. Next, create a single array
of five Trivia objects instead of three separate arrays for the question, answer,
and point values. This change will make your game more scalable if there were
ever additional properties to add to a Trivia object (you would not need to add
another array for each property). Although the program has internally changed to
a single array of objects, the execution of the program should be identical to before.

14. Traditional password entry schemes are susceptible to “shoulder surfing” in which
an attacker watches an unsuspecting user enter his or her password or PIN number
and uses it later to gain access to the account. One way to combat this problem
is with a randomized challenge-response system. In these systems, the user enters
different information every time based on a secret in response to a randomly gener-
ated challenge. Consider the following scheme in which the password consists of a
five-digit PIN number (00000 to 99999). Each digit is assigned a random number
that is 1, 2, or 3. The user enters the random numbers that correspond to their PIN
instead of their actual PIN numbers.

 For example, consider an actual PIN number of 12345. To authenticate it, the user
would be presented with a screen such as the following:

 PIN: 0 1 2 3 4 5 6 7 8 9

 NUM: 3 2 3 1 1 3 2 2 1 3

 The user would enter 23113 instead of 12345. This does not divulge the password
even if an attacker intercepts the entry because 23113 could correspond to other
PIN numbers, such as 69440 or 70439. The next time the user logs in, a different
sequence of random numbers would be generated, such as the following:

 PIN: 0 1 2 3 4 5 6 7 8 9

 NUM: 1 1 2 3 1 2 2 3 3 3

 Your program should simulate the authentication process. Store an actual PIN
number in your program. The program should use an array to assign random
numbers to the digits from 0 to 9. Output the random digits to the screen, input
the response from the user, and output whether or not the user’s response correctly
matches the PIN number.

15. Programming Project 4.12 asked you to create a PizzaOrder class that stores an
order consisting of up to three pizzas. Modify the class to store the pizzas using an
array. This will allow the class to include an arbitrary number of pizzas in the order
instead of a maximum of three. The setNumPizzas method can be used to create
an array of the appropriate size. The array structure allows you to eliminate the
methods setPizza1, setPizza2, and setPizza3 and replace them with a single
method, setPizza(int index, Pizza newPizza). Include appropriate tests to
determine if the new PizzaOrder class is working correctly.

16. Programming Project 3.15 asked you to explore Benford’s Law. An easier way to
write the program is to use an array to store the digit counts. That is, count[0]
might store the number of times 0 is the first digit (if that is possible in your data
set), count[1] might store the number of times 1 is the first digit, and so forth.
Redo Programming Project 3.15 using arrays.

456 CHAPTER 6 Arrays

Solution to
Programming
Project 6.15

VideoNote

Programming Projects 457

 Write a program that tests Benford’s Law. Collect a list of at least 100 numbers
from some real-life data source and enter them into a text file. Your program
should use an array to store the digit counts. That is, count[0] might store the
number of times 0 is the first digit (if that is possible in your data set), count[1]
might store the number of times 1 is the first digit, and so forth. For each digit,
output the percentage it appears as the first digit.

17. Programming Project 4.14 asked you to read in a CSV file of product ratings. The
file was limited to exactly five products. Redo Programming Project 4.14, except
calculate the name of each product and how many products are in the file based
on the header line. Then read the CSV file and translate the data into a 2D array
that stores all of the ratings. Finally, output the average rating for each product.

18. Programming Project 4.13 asked you to create a BoxOfProduce class representing
a box of produce to deliver from a CSA farm. The box contained exactly three
items. Modify the class so it uses an array of type String to represent the items
in the box. You can still start with three random items to place in the box, but
your menu should be modified to allow the user to add additional items and still
substitute one item for another. You will likely need to modify the constructor of
the BoxOfProduce class and also add new methods.

19. Some word games require the player to find words that can be formed using the let-
ters of another word. For example, given the word SWIMMING, other words that
can be formed using the letters include SWIM, WIN, WING, SING, MIMING,
etc. Write a program that lets the user enter a word and then output all the words
contained in the file words.txt that can be formed from the letters of the entered
word. One algorithm to do this is to compare the letter histograms for each word.
Create an array that counts up the number of each letter in the entered word (e.g.,
one S, one W, two I, two M, etc.) and then creates a similar array for the current
word read from the file. The two arrays can be compared to see if the word from
the file could be created out of the letters from the entered word.

20. Write a program that manages a list of up to 10 players and their high scores in the
computer’s memory (not on disk for this Programming Project). Use two arrays
to manage the list. One array should store the players’ names, and the other array
should store the players’ high scores. Use the index of the arrays to correlate the
names with the scores. Your program should support the following features:

a. Add a new player and score (up to 10 players).

b. Print all the players’ names and their scores to the screen.

c. Allow the user to enter a player’s name and output that player’s score or a mes-
sage if that player’s name has not been entered.

d. Allow the user to enter a player’s name and remove the player from the list.

 Create a menu system that allows the user to select which option to invoke.

21. Redo Programming Project 6.20 but this time create a class named Player that
stores a player’s name and the player’s high score. The class should have suitable
constructors, accessors, and mutators. Next create a single array of type Player
that stores the players’ names and scores. Implement the same features as in Pro-
gramming Project 6.20 using the single array rather than multiple arrays.

This page intentionally left blank

7.2 Encapsulation and
inhEritancE 484

Protected and Package Access 487

7.3 programming with
inhEritancE 493

Access to a Redefined Base Method 493
The Class Object 496
The Right Way to Define equals 497

7.1 inhEritancE Basics 460
Derived Classes 461
Overriding a Method Definition 471
Changing the Return Type of an Overridden

Method 471
Changing the Access Permission of an Overridden

Method 472
The super Constructor 474
The this Constructor 476
Example: An Enhanced StringTokenizer

Class ★ 481

Inheritance

chapter summary 504 answers to self-test Exercises 505 programming projects 508

7

Inheritance

Like mother, like daughter.

Anonymous

Introduction
Object-oriented programming (OOP) is a popular and powerful programming
philosophy. One of the main techniques of OOP is known as inheritance. Inheritance
means that a very general form of a class can be defined and compiled. Later, more
specialized versions of that class may be defined by starting with the already defined class
and adding more specialized instance variables and methods. The specialized classes are
said to inherit the methods and instance variables of the previously defined general class. In
this chapter, we cover inheritance in general and more specifically how it is realized in Java.

Prerequisites
This chapter does not use any material on arrays from Chapter 6. It does require
Chapters 1 through 5 with the exception that most of the chapter does not require
Section 5.4 on packages and javadoc. In this chapter, the subsection “Protected and
Package Access” is the only section that requires any knowledge from Section 5.4, and
it requires only the material on packages, not the material on javadoc. If you omit the
subsection “Protected and Package Access,” you will not suffer any loss of continuity in
reading this chapter.

7.1 Inheritance Basics

If there is anything that we wish to change in the child, we should
first examine it and see whether it is not something that could better
be changed in ourselves.

CARL GUSTAV JUNG, The Integration of the Personality,
FARRAR & RiNehART, Incorporated, 1939, 1939.

Inheritance is the process by which a new class—known as a derived class—is created
from another class, called the base class. A derived class automatically has all the
instance variables and all the methods that the base class has, and can have additional
methods and/or additional instance variables.

7

Inheritance Basics 461

Derived Classes

Suppose we are designing a record-keeping program that has records for salaried
employees and hourly employees. There is a natural hierarchy for grouping these
classes. These are all classes of people who share the property of being employees.

Employees who are paid an hourly wage are one subset of employees. Another
subset consists of salaried employees who are paid a fixed wage each month. Although
the program may not need any type corresponding to the set of all employees, thinking
in terms of the more general concept of employees can be useful. For example, all
employees have a name and a hire date (when they started working for the company),
and the methods for setting and changing names and hire dates will be the same for
salaried and hourly employees. The classes for hourly employees and salaried employees
may be further subdivided as diagrammed in Display 7.1.

Within Java, you can define a class called Employee that includes all employees
(salaried or hourly) and then use this class to define classes for hourly employees and
salaried employees. You can then, in turn, use classes such as HourlyEmployee to
define classes such as PartTimeHourlyEmployee, and so forth.

Display 7.2 shows our definition for the class Employee. This class is a pretty
ordinary class. What is interesting about this class is how we use it to create a class for
hourly employees and a class for salaried employees. It is legal to create an object of the
class Employee, but our reason for defining the class Employee is so that we can define
derived classes for different kinds of employees.

ExecutivePartTimeEmployee TechnicalStaff

SalariedEmployeeHourlyEmployee

Employee

FullTimeHourlyEmployee

Engineer ClericalStaffTechnician

Display 7.1 A Class Hierarchy

462 CHAPTER 7 Inheritance

Display 7.2 The Base Class Employee (part 1 of 2)

 1 /**
 2 Class Invariant: All objects have a name string and hire date.
 3 A name string of "No name" indicates no real name specified yet.
 4 A hire date of January 1, 1000 indicates no real hire date specified yet.

 5 */
 6 public class Employee
 7 {
 8 private String name;
 9 private Date hireDate;
10 public Employee()
11 {
12 name = "No name";
13 hireDate = new Date("January", 1, 1000); //Just a placeholder.
14 }

15 /**
16 Precondition: Neither theName nor theDate is null.

17 */
18 public Employee(String theName, Date theDate)
19 {
20 if (theName == null || theDate == null)
21 {
22 System.out.println("Fatal Error creating employee.");
23 System.exit(0);
24 }
25 name = theName;
26 hireDate = new Date(theDate);
27 }

28 public Employee(Employee originalObject)
29 {
30 name = originalObject.name;
31 hireDate = new Date(originalObject.hireDate);
32 }

33 public String getName()
34 {
35 return name;
36 }

37 public Date getHireDate()
38 {
39 return new Date(hireDate);
40 }

The class Date is defined in
Display 4.13.

Inheritance Basics 463

41 /**
42 Precondition newName is not null.

43 */
44 public void setName(String newName)
45 {
46 if (newName == null)
47 {
48 System.out.println("Fatal Error setting employee name.");
49 System.exit(0);
50 }
51 else
52 name = newName;
53 }

54 /**
55 Precondition newDate is not null.

56 */
57 public void setHireDate(Date newDate)
58 {
59 if (newDate == null)
60 {
61 Syst em.out.println("Fatal Error setting employee hire " +

 "date.");
62 System.exit(0);
63 }
64 else
65 hireDate = new Date(newDate);
66 }

67 public String toString()
68 {
69 return (name + " " + hireDate.toString());
70 }

71 public boolean equals(Employee otherEmployee)
72 {
73 return (name.equals(otherEmployee.name)
74 && hireDate.equals(otherEmployee.hireDate));
75 }
76 }

Display 7.2 The Base Class Employee (part 2 of 2)

464 CHAPTER 7 Inheritance

Display 7.3 contains the definition of a class for hourly employees. An hourly
employee is an employee, so we define the class HourlyEmployee to be a derived
class of the class Employee. A derived class is a class defined by adding instance
variables and methods to an existing class. The existing class that the derived class is
built upon is called the base class. In our example, Employee is the base class and
HourlyEmployee is the derived class. As you can see in Display 7.3, the way we
indicate that HourlyEmployee is a derived class of Employee is by including the phrase
extends Employee on the first line of the class definition, like so:

public class HourlyEmployee extends Employee

A derived class is also called a subclass, in which case the base class is usually called a
superclass. However, we prefer to use the terms derived class and base class.

When you define a derived class, you give only the added instance variables and the
added methods. For example, the class HourlyEmployee has all the instance variables
and all the methods of the class Employee, but you do not mention them in the
definition of HourlyEmployee. Every object of the class HourlyEmployee has instance
variables called name and hireDate, but you do not specify the instance variable name or
the instance variable hireDate in the definition of the class HourlyEmployee. The class
HourlyEmployee (or any other derived class) is said to inherit the instance variables and
methods of the base class that it extends. For this reason, the topic of derived classes is
called inheritance.

Just as it inherits the instance variables of the class Employee, the class
HourlyEmployee inherits all the methods from the class Employee. So, the class
HourlyEmployee inherits the methods getName, getHireDate, setName, and
setHireDate, from the class Employee.

For example, suppose you create a new object of the class HourlyEmployee as
follows:

HourlyEmployee joe = new HourlyEmployee();

Then, the name of the object joe can be changed using the method setName, which
the class HourlyEmployee inherited from the class Employee. The inherited method
setName is used just like any other method; for example,

joe.setName("Josephine");

A small demonstration of this is given in Display 7.4.
Display 7.5 contains the definition of the class SalariedEmployee, which is also

derived from the class Employee. The class SalariedEmployee inherits all the instance
variables and methods of the class Employee. Inheritance allows you to reuse code, such
as the code in the class Employee, without needing to literally copy the code into the
definitions of the derived classes, such as HourlyEmployee and SalariedEmployee.

derived class

base class

extends

subclass and
superclass

inheritance

Inheritance

Walkthrough

VideoNote

Inheritance Basics 465

Display 7.3 The Derived Class HourlyEmployee (part 1 of 3)

 1 /**
 2 Class Invariant: All objects have a name string, hire date, nonnegative
 3 wage rate, and nonnegative number of hours worked. A name string of
 4 "No name" indicates no real name specified yet. A hire date of
 5 January 1, 1000 indicates no real hire date specified yet.
 6 */
 7 public class HourlyEmployee extends Employee
 8 {
 9 private double wageRate;
10 private double hours; //for the month

11 public HourlyEmployee()
12 {
13 super();
14 wageRate = 0;
15 hours = 0;
16 }

17 /**
18 Precondition: Neither theName nor theDate is null;
19 theWageRate and theHours are nonnegative.
20 */
21 public HourlyEmployee(String theName, Date theDate,
22 double theWageRate, double theHours)
23 {
24 super(theName, theDate);
25 if ((theWageRate >= 0) && (theHours >= 0))
26 {
27 wageRate = theWageRate;
28 hours = theHours;
29 }
30 else
31 {
32 System.out.println(
33 "Fatal Error: creating an illegal hourly employee.");
34 System.exit(0);
35 }
36 }

37 public HourlyEmployee(HourlyEmployee originalObject)
38 {
39 super (originalObject);

(continued)

It will take the rest of Section
7.1 to explain this class
definition.

If this line is omitted, Java will still invoke
the no-argument constructor for the
base class.

An object of the class
HourlyEmployee is also an
instance of the class Employee.

466 CHAPTER 7 Inheritance

40 wageRate = originalObject.wageRate;
41 hours = originalObject.hours;
42 }
43 public double getRate()
44 {
45 return wageRate;
46 }
47 public double getHours()
48 {
49 return hours;
50 }

51 /**
52 Returns the pay for the month.
53 */
54 public double getPay()
55 {
56 return wageRate*hours;
57 }

58 /**
59 Precondition: hoursWorked is nonnegative.
60 */
61 public void setHours(double hoursWorked)
62 {
63 if (hoursWorked >= 0)
64 hours = hoursWorked;
65 else
66 {
67 System.out.println("Fatal Error: Negative hours worked.");
68 System.exit(0);
69 }
70 }

71 /**
72 Precondition: newWageRate is nonnegative.
73 */
74 public void setRate(double newWageRate)
75 {
76 if (newWageRate >= 0)
77 wageRate = newWageRate;
78 else
79 {
80 System.out.println("Fatal Error: Negative wage rate.");
81 System.exit(0);

Display 7.3 The Derived Class HourlyEmployee (part 2 of 3)

Inheritance Basics 467

82 }
83 }

84 public String toString()
85 {
86 return (getName() + " " + getHireDate().toString()
87 + "\n$" + wageRate + " per hour for " + hours + " hours");
88 }

89 public boolean equals(HourlyEmployee other)
90 {
91 return (getName().equals(other.getName())
92 && getHireDate().equals(other.getHireDate())
93 && wageRate == other.wageRate
94 && hours == other.hours);
95 }
96 }

Display 7.3 The Derived Class HourlyEmployee (part 3 of 3)

We will show you a better way to
define equals in the subsection
“The Right Way to Define equals.”

The method toString is overridden so it is different in the
derived class HourlyEmployee than it is in the base class
Employee.

Derived Class (Subclass)

Define a derived class by starting with another already defined class and adding (or
changing) methods, instance variables, and static variables. The class you start with is called
the base class. The derived class inherits all the public methods, all the public and private
instance variables, and all the public and private static variables from the base class, and it
can add more instance variables, more static variables, and more methods. So, of the things
we have seen thus far, the only members not inherited are private methods. (As discussed
in the subsection “Overriding a Method Definition,” the derived class definition can also
change the definition of an inherited method.) A derived class is also called a subclass, in
which case the base class is usually called a superclass.

SYNTAX

public class Derived_Class_Name extends Base_Class_Name
{
 Declarations_of_Added_Static_Variables
 Declarations_of_Added_Instance_Variables
 Definitions_of_Added__And_Overridden_Methods
}

EXAMPLE

See Displays 7.3 and 7.5.

468 CHAPTER 7 Inheritance

Display 7.4 Inheritance Demonstration

 1 public class InheritanceDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 HourlyEmployee joe = new HourlyEmployee("Joe Worker",
 6 new Date("January", 1, 2015),

 50.50, 160);

 7 System.out.println("joe's longer name is " +
 joe.getName());

 8 System.out.println("Changing joe's name to Josephine.");
 9 joe.setName("Josephine");

10 System.out.println("joe's record is as follows:");
11 System.out.println(joe);
12 }
13 }

Sample Dialogue

joe's longer name is Joe Worker
Changing joe's name to Josephine.
joe's record is as follows:
Josephine January 1, 2015
$50.5 per hour for 160 hours

The methods getName and setName are
inherited from the base class Employee.

Inherited Members

A derived class automatically has all the instance variables, all the static variables, and
all the public methods of the base class. These members from the base class are said
to be inherited. These inherited methods and inherited instance and static variables are,
with one exception, not mentioned in the definition of the derived class, but they are
automatically members of the derived class. The one exception is as follows: As explained
in the subsection “Overriding a Method Definition,” you can give a definition for an
inherited method in the definition of the derived class; this will redefine the meaning of the
method for the derived class.

Inheritance Basics 469

(continued)

Display 7.5 The Derived Class SalariedEmployee (part 1 of 2)

 1 /**
 2 Class Invariant: All objects have a name string, hire date,
 3 and nonnegative salary. A name string of "No name" indicates
 4 no real name specified yet. A hire date of January 1, 1000 indicates
 5 no real hire date specified yet.
 6 */
 7 public class SalariedEmployee extends Employee
 8 {
 9 private double salary; //annual

10 public SalariedEmployee()
11 {
12 super();
13 salary = 0;
14 }

15 /**
16 Precondition: Neither theName nor theDate is null;
17 theSalary is nonnegative.
18 */
19 public SalariedEmployee(String theName, Date theDate, double theSalary)
20 {
21 super(theName, theDate);
22 if (theSalary >= 0)
23 salary = theSalary;
24 else
25 {
26 System.out.println("Fatal Error: Negative salary.");
27 System.exit(0);
28 }
29 }

30 public SalariedEmployee(SalariedEmployee originalObject)
31 {
32 super(originalObject);
33 salary = originalObject.salary;

34 }

35 public double getSalary()
36 {
37 return salary;
38 }

An object of the class
SalariedEmployee is also an
object of the class Employee.

It will take the rest of Section 7.1 to
fully explain this class definition.

If this line is omitted, Java will still invoke
the no-argument constructor for the
base class.

470 CHAPTER 7 Inheritance

39 /**
40 Returns the pay for the month.
41 */
42 public double getPay()
43 {
44 return salary/12;
45 }

46 /**
47 Precondition: newSalary is nonnegative.
48 */
49 public void setSalary(double newSalary)
50 {
51 if (newSalary >= 0)
52 salary = newSalary;
53 else
54 {
55 System.out.println("Fatal Error: Negative salary.");
56 System.exit(0);
57 }
58 }

59 public String toString()
60 {
61 return (getName() + " " + getHireDate().toString()
62 + "\n$" + salary + " per year");
63 }

64 public boolean equals(SalariedEmployee other)
65 {
66 return (getName().equals(other.getName())
67 && getHireDate().equals(other.getHireDate())
68 && salary == other.salary);
69 }
70 }

We will show you a better way to
define equals in the subsection
“The Right Way to Define equals.”

Display 7.5 The Derived Class SalariedEmployee (part 2 of 2)

Parent and Child Classes

A base class is often called the parent class. A derived class is then called a child class.
This analogy is often carried one step further. A class that is a parent of a parent of a parent
of another class (or some other number of “parent of” iterations) is often called an ancestor
class. If class A is an ancestor of class B, then class B is often called a descendent of class A.

parent class

child class

ancestor class

descendent
class

overriding

Inheritance Basics 471

Overriding a Method Definition

The definition of an inherited method can be changed in the definition of a derived
class so that it has a meaning in the derived class that is different from what it is
in the base class. This is called overriding the definition of the inherited method.
For example, the methods toString and equals are overridden (redefined) in the
definition of the derived class HourlyEmployee. They are also overridden in the class
SalariedEmployee. To override a method definition, simply give the new definition
of the method in the class definition, just as you would with a method that is added in
the derived class.

overriding

Overriding a Method Definition

A derived class inherits methods that belong to the base class. However, if a derived class
requires a different definition for an inherited method, the method may be redefined in the
derived class. This is called overriding the method definition.

The final Modifier

If you add the modifier final to the definition of a method, it indicates that the method
may not be redefined in a derived class. If you add the modifier final to the definition of a
class, it indicates that the class may not be used as a base class to derive other classes. We
will say more about the final modifier in Chapter 8.

Changing the Return Type of an Overridden Method

In a derived class, you can override (change) the definition of a method from the base
class. As a general rule, when overriding a method definition, you may not change the
type returned by the method, and you may not change a void method to a method
that returns a value, nor a method that returns a value to a void method. The one
exception to this rule is if the returned type is a class type, then you may change the
returned type to that of any descendent class of the returned type. For example, if a
function returns the type Employee (Display 7.2), when you override the function
definition in a derived class, you may change the returned type to HourlyEmployee
(Display 7.3), SalariedEmployee (Display 7.5), or any other descendent class of
the class Employee. This sort of changed return type is known as a covariant return
type and is new in Java version 5.0; it was not allowed in earlier versions of Java.
Earlier versions of Java allowed absolutely no changes to the returned type. We will
give complete examples of changing the returned type of an overridden method in
Chapter 8. Here we will just outline an example.

covariant
return type

472 CHAPTER 7 Inheritance

For example, suppose one class definition includes the following details:

public class BaseClass
{
 ...
 public Employee getSomeone(int someKey)
 ...

In this case, the following details would be allowed in a derived class:

public class DerivedClass extends BaseClass
{
 ...
 public HourlyEmployee getSomeone(int someKey)
 ...

When the method definition for getSomeone is overridden in DerivedClass, the
returned type is changed from Employee to HourlyEmployee.

It is worth noting that when you change the returned type of an overridden
method in this way, such as from Employee to HourlyEmployee, you are not really
changing the returned type so much as placing additional restrictions on it. Every
HourlyEmployee is an Employee with some additional properties that, while they are
properties of every HourlyEmployee, are not properties of every Employee. Any code
that was written for a method of the base class and that assumed the value returned
by the method is Employee will be legal for an overridden version of the method
that returns an HourlyEmployee. This is true because every HourlyEmployee is an
Employee.

Changing the Access Permission of an Overridden Method

You can change the access permission of an overridden method from private in
the base class to public in the derived class (or in any other way that makes access
permissions more permissive). For example, if the following is a method heading in a
base case:

private void doSomething()

then you can use the following heading when overriding the method definition in a
derived class:

public void doSomething()

Note that you cannot change permissions to make them more restricted in the
derived class. You can change private to public, but you cannot change public to
private.

Inheritance Basics 473

This makes sense, because you want code written for the base class method to work
for the derived class method. You can use a public method anyplace that you can use a
private method, but it is not true that you can use a private method anyplace that you
can use a public method.

PITFALL: Overriding versus Overloading

Do not confuse overriding (that is, redefining) a method definition in a derived class
with overloading a method name. When you override a method definition, the new
method definition given in the derived class has the exact same number and types
of parameters. On the other hand, if the method in the derived class were to have a
different number of parameters or a parameter of a different type from the method
in the base class, then the derived class would have both methods. That would be
overloading. For example, suppose we add the following method to the definition of
the class HourlyEmployee (Display 7.3):

public void setName(String firstName, String lastName)
{
 if ((firstName == null) || (lastName == null))
 {
 System.out.println("Fatal Error setting employee name.");
 System.exit(0);
 }
 else
 name = firstName + " " + lastName;
}

The class HourlyEmployee would then have this two-argument method setName,
and it would also inherit the following one-argument method setName from the base
class Employee:

public void setName(String newName)
{
 if (newName == null)
 {
 System.out.println("Fatal Error setting employee name.");
 System.exit(0);
 }
 else
 name = newName;
}

The class HourlyEmployee would have two methods named setName. This would
be overloading the method name setName.

(continued)

474 CHAPTER 7 Inheritance

The super Constructor

You can invoke a constructor of the base class within the definition of a derived class
constructor. A constructor for a derived class uses a constructor from the base class in
a special way. A constructor for the base class normally initializes all the data inherited
from the base class. So a constructor for a derived class begins with an invocation of a
constructor for the base class. The details are described next.

There is a special syntax for invoking the base class constructor that is illustrated by
the constructor definitions for the class HourlyEmployee given in Display 7.3. In what
follows, we have reproduced the beginning of one of the constructor definitions for the
class HourlyEmployee taken from that display:

public HourlyEmployee(String theName, Date theDate,
 double theWageRate, double theHours)
{
 super (theName, theDate);
 if ((theWageRate >= 0) && (theHours >= 0))
 {
 wageRate = theWageRate;
 hours = theHours;
 }
 else
 ...

The line

super (theName, theDate);

is a call to a constructor for the base class, which in this case is a call to a constructor for
the class Employee.

PITFALL: (continued)

On the other hand, both the class Employee and the class HourlyEmployee define
a method with the following method heading:

public String toString()

In this case, the class HourlyEmployee has only one method named toString(), but
the definition of the method toString() in the class HourlyEmployee is different
from the definition of toString() in the class Employee; the method toString()
has been overridden (that is, redefined).

If you get overriding and overloading confused, you do have one consolation. They
are both legal. ■

super

Inheritance Basics 475

There are some restrictions on how you can use the base class constructor call
super. You cannot use an instance variable as an argument to super. Also, the call to
the base class constructor (super) must always be the first action taken in a constructor
definition. You cannot use it later in the definition of a constructor.

Notice that you use the keyword super to call the constructor of the base class. You
do not use the name of the constructor; you do not use

Employee(theName, theDate); //ILLEGAL

If a constructor definition for a derived class does not include an invocation of
a constructor for the base class, then the no-argument constructor of the base class
is invoked automatically as the first action of the derived class constructor. So, the

Self-Test Exercises

1. Suppose the class named DiscountSale is a derived class of a class called Sale.
Suppose the class Sale has instance variables named price and numberOfItems.
Will an object of the class DiscountSale also have instance variables named
price and numberOfItems?

2. Suppose the class named DiscountSale is a derived class of a class called Sale,
and suppose the class Sale has public methods named getTotal and getTax.
Will an object of the class DiscountSale have methods named getTotal and
getTax? If so, do these methods have to perform the exact same actions in the
class DiscountSale as in the class Sale?

3. Suppose the class named DiscountSale is a derived class of a class called Sale,
and suppose the class Sale has a method with the following heading and no
other methods named getTax, as follows:

public double getTax()

 And suppose the definition of the class DiscountSale has a method definition
with the following heading and no other method definitions for methods named
getTax, as follows:

public double getTax(double rate)

 How many methods named getTax will the class DiscountSale have and what
are their headings?

4. The class HourlyEmployee (Display 7.3) has methods named getName and
getRate (among others). Why does the definition of the class HourlyEmployee
contain a definition of the method getRate but no definition of the method
getName?

476 CHAPTER 7 Inheritance

following definition of the no-argument constructor for the class HourlyEmployee
(with super omitted) is equivalent to the version we gave in Display 7.3:

public HourlyEmployee()
{
 wageRate = 0;
 hours = 0;
}

A derived class object has all the instance variables of the base class. These inherited
instance variables should be initialized, and the base class constructor is the most
convenient place to initialize these inherited instance variables. That is why you should
always include a call to one of the base class constructors when you define a constructor
for a derived class. As already noted, if you do not include a call to a base class constructor
(using super), then the no-argument constructor of the base class is called automatically.
(If there is no no-argument constructor for the base class, that is an error condition.)

Call to a Base Class Constructor

Within the definition of a constructor for a class, you can use super as a name for a constructor
of the base class. Any invocation of super must be the first action taken by the constructor.

EXAMPLE

public SalariedEmployee(SalariedEmployee originalObject)
{
 super(originalObject); //Invocation of base class

 //constructor.
 salary = originalObject.salary;
}

The this Constructor

When defining a constructor, it is sometimes convenient to be able to call one of the
other constructors in the same class. You can use the keyword this as a method name
to invoke a constructor in the same class. This use of this is similar to the use of super,
but with this, the call is to a constructor of the same class, not to a constructor for the
base class. For example, consider the following alternate, and equivalent, definition of
the no-argument constructor for the class HourlyEmployee (from Display 7.3):

public HourlyEmployee()
{
 this("No name", new Date("January", 1, 1000), 0, 0);
}

this

Inheritance Basics 477

The line with this is an invocation of the constructor with the following heading:

public HourlyEmployee(String theName, Date theDate,
 double theWageRate, double theHours)

The restrictions on how you can use the base class constructor call super also
apply to the this constructor. You cannot use an instance variable as an argument
to this. Also, any call to the constructor this must always be the first action taken
in a constructor definition. Thus, a constructor definition cannot contain both an
invocation of super and an invocation of this. If you want to include both a call to
super and a call to this, use a call with this, and have the constructor that is called
with this have super as its first action.

Call to Another Constructor in the Same Class

Within the definition of a constructor for a class, you can use this as a name for another
constructor in the same class. Any invocation of this must be the first action taken by the
constructor.

EXAMPLE

public HourlyEmployee()
{
 this("No name", new Date("January", 1, 1000), 0,0);
}

TIP: An Object of a Derived Class Has More than One Type

An object of a derived class has the type of the derived class. It also has the type
of the base class, and more generally, it has the type of every one of its ancestor
classes. For example, consider the following copy constructor definition from the
class HourlyEmployee (Display 7.3):

public HourlyEmployee(HourlyEmployee originalObject)
{
 super(originalObject);
 wageRate = originalObject.wageRate;
 hours = originalObject.hours;
}

(continued)

478 CHAPTER 7 Inheritance

TIP: (continued)

The line

super(originalObject);

is an invocation of a constructor for the base class Employee. The class Employee has
no constructor with a parameter of type HourlyEmployee, but originalObject is of
type HourlyEmployee. Fortunately, every object of type HourlyEmployee is also of
type Employee. So, this invocation of super is an invocation of the copy constructor
for the class Employee.

The fact that every object is not only of its own type but is also of the type of
its ancestor classes simply reflects what happens in the everyday world. An hourly
 employee is an employee as well as an hourly employee. This sometimes is referred to
as the “is a” relationship: For example, an HourlyEmployee is an Employee.

Display 7.6 contains a program demonstrating that an HourlyEmployee and a
SalariedEmployee are also Employee objects. The method showEmployee requires
an argument of type Employee. The objects joe and sam are of type Employee because
they are instances of classes derived from the class Employee and so are suitable argu-
ments for showEmployee. ■

“is a”
relationship

An Object of a Derived Class Has More than One Type

An object of a derived class has the type of the derived class, and it also has the type of the
base class. More generally, a derived class has the type of every one of its ancestor classes.
So, you can assign an object of a derived class to a variable of any ancestor type (but not
the other way around). You can plug in a derived class object for a parameter of any of its
ancestor types. More generally, you can use a derived class object anyplace you can use an
object of any of its ancestor types.

Inheritance Basics 479

Display 7.6 An Object Belongs to Multiple Classes

 1 public class IsADemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 SalariedEmployee joe = new SalariedEmployee("Josephine",
 6 new Date("January", 1, 2015), 100000);
 7 HourlyEmployee sam = new HourlyEmployee("Sam",
 8 new Date("February", 1, 2015), 50.50, 40);

 9 System.out.println("joe's longer name is " + joe.getName());
10 System.out.println("showEmployee(joe) invoked:");
11 showEmployee(joe);

12 System.out.println("showEmployee(sam) invoked:");
13 showEmployee(sam);

14 }

15 public static void showEmployee(Employee employeeObject)
16 {
17 System.out.println(employeeObject.getName());
18 System.out.println(employeeObject.getHireDate());
19 }
20 }

Sample Dialogue

joe's longer name is Josephine

showEmployee(joe) invoked:

Josephine

January 1, 2015

showEmployee(sam) invoked:

Sam

February 1, 2015

A SalariedEmployee
is an Employee.

An HourlyEmployee is an Employee.

480 CHAPTER 7 Inheritance

subclass and
superclass

PITFALL: The Terms Subclass and Superclass

Many programmers and authors use the term subclass for a derived class and use
superclass for its base class (or any of its ancestor classes). This is logical. For example,
the collection of all hourly employees in the world is a subclass of all employees.
Similarly, the collection of all objects of type HourlyEmployee is a subcollection
of the collection of all objects of the class Employee. As you add more instance
variables and methods, you restrict the number of objects that can satisfy the class
definition. Despite this logic, people often reverse the terms subclass and superclass.
Remember that these terms refer to the collections of objects of the derived class and
the base class and not to the number of instance variables or methods. A derived class
is a subclass (not a superclass) of its base class. Another way to remember which is a
superclass is to recall that the super constructor invocation is an invocation of the
base class, and so the base class is the superclass. ■

Self-Test Exercises

5. Is the following program legal? The relevant classes are defined in Displays 7.2,
7.3, and 7.5.

public class EmployeeDemo
 {
 public static void main(String[] args)
 {
 HourlyEmployee joe =
 new HourlyEmployee("Joe Young",
 new Date("February", 1, 2015), 10.50, 40);
 SalariedEmployee boss =
 new SalariedEmployee("Mr. Big Shot",
 new Date("January", 1, 2015), 100000);
 printName(joe);
 printName(boss);
 }
 public void printName(Employee object)
 {
 System.out.println(object.getName());
 }

 }

6. Give a definition for a class TitledEmployee that is a derived class of the base
class SalariedEmployee given in Display 7.5. The class TitledEmployee has
one additional instance variable of type String called title. It also has two
additional methods: getTitle, which takes no arguments and returns a String,
and setTitle, which is a void method that takes one argument of type String.
It also overrides (redefines) the method definition for getName, so that the string
returned includes the title as well as the name of the employee.

Inheritance Basics 481

EXAMPLE: An Enhanced StringTokenizer Class ★

Inheritance allows you to reuse all the code written for a base class in a derived class,
and it lets you reuse it without copying it or even seeing the code in the base class.
This means that, among other things, if one of the standard Java library classes
does not have all the methods you want it to have, you can, in most cases, define a
derived class that has the desired additional methods. In this subsection, we give a
simple example of this process. This example requires that you have already covered
the basics about arrays given in Section 6.1 of Chapter 6. It also requires you to have
read the starred section on the StringTokenizer class in Chapter 4. If you have not
covered this material, you will have to skip this example until you cover it.

The StringTokenizer class allows you to generate all the tokens in a string one
time, but sometimes you want to cycle through the tokens a second or third time. There
are lots of ways to accomplish this. For example, you can use the StringTokenizer
constructor two (or more) times to create two (or more) StringTokenizer objects.
However, it would be cleaner and more efficient if you could do it with just one
StringTokenizer object. Display 7.7 shows a derived class of the StringTokenizer
class that allows you to cycle through the tokens in a string any number of times. This
class is called EnhancedStringTokenizer. The class EnhancedStringTokenizer
behaves exactly the same as the StringTokenizer class, except that the class
EnhancedStringTokenizer has one additional method named tokensSoFar. This
method has no parameters and returns an array of strings containing all the tokens that
have so far been returned by the methods named nextToken. After an object of the
class EnhancedStringTokenizer has gone through all the tokens with the methods
nextToken, it can invoke the method tokensSoFar to produce an array containing
all the tokens. This array can be used to cycle through the tokens any number of
additional times. A simple example of this is given in the program in Display 7.8.

The class EnhancedStringTokenizer has methods, such as countTokens, that
it inherits unchanged from the class StringTokenizer. The class EnhancedString
Tokenizer also has two methods—namely, the two methods named nextToken—
whose definitions are overridden. From the outside, the methods named nextToken
of the class EnhancedStringTokenizer behave exactly the same as the methods
named nextToken in the class StringTokenizer. However, each of the two methods
named nextToken of the class EnhancedStringTokenizer also save the tokens in
an array instance variable, a, so that an array of tokens can be returned by the method
tokensSoFar. The method tokensSoFar is the only completely new method in the
derived class EnhancedStringTokenizer.

(continued)

482 CHAPTER 7 Inheritance

Notice that the definitions of the methods named nextToken in the class
EnhancedStringTokenizer each include an invocation of super.nextToken,
which is the version of the corresponding method nextToken in the base class
StringTokenizer. Each overridden version of the method nextToken uses the
method super.nextToken to produce the token it returns, but before returning the
token, it stores the token in the array instance variable a. The instance variable count
contains a count of the number of tokens stored in the array instance variable a.1

1The class StringTokenizer also has a method named nextElement with a return type
of Object. This method should also be overridden. We have not yet even mentioned this
method because we have not yet discussed the class Object. For now, you can simply pretend
StringTokenizer has no such method nextElement. We will discuss this point in Self-
Test Exercise 23 later in this chapter after we introduce the class Object.

The method countTokens is inherited
and is not overridden.

This method nextToken has its definition
overridden.

Display 7.7 Enhanced StringTokenizer (part 1 of 2)

 1 import java.util.StringTokenizer;
 2
 3 public class EnhancedStringTokenizer extends StringTokenizer

 4 {

 5 private String[] a;
 6 private int count;

 7 public EnhancedStringTokenizer(String theString)
 8 {
 9 super (theString);
10 a = new String[countTokens()];
11 count = 0;

12 }

13 public EnhancedStringTokenizer(String theString, String delimiters)
14 {
15 super (theString, delimiters);
16 a = new String[countTokens()];

17 count = 0;
18 }

19 /**
20 Returns the same value as the same method in the StringTokenizer
21 class, but it also stores data for the method tokensSoFar to use.

22 */
23 public String nextToken()

24 {

EXAMPLE: (continued)

Inheritance Basics 483

This method nextToken also
has its definition overridden.

super.nextTokens is the version of nextToken
defined in the base class StringTokenizer.

tokensSoFar is a new method.

super.nextTokens is the version of
nextToken defined in the base class
StringTokenizer. This is explained
more fully in Section 7.3.

Display 7.8 Use of the EnhancedStringTokenizer Class (part 1 of 2)

 1 import java.util.Scanner;

 2 public class EnhancedStringTokenizerDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);

 7 System.out.println("Enter a sentence:");
 8 String sentence = keyboard.nextLine();

(continued)

Display 7.7 Enhanced StringTokenizer (part 2 of 2)

25 String token = super.nextToken();
26 a[count] = token;

27 count++;

28 return token;
29 }

30 /**
31 Returns the same value as the same method in the StringTokenizer
32 class, and changes the delimiter set in the same way as does the
33 same method in the StringTokenizer class, but it also stores data
 for the method tokensSoFar to use.
34 */
35 public String nextToken(String delimiters)
36 {
37 String token = super.nextToken(delimiters);
38 a[count] = token;
39 count++;
40 return token;
41 }

42 /**
43 Returns an array of all tokens produced so far. Array returned
44 has length equal to the number of tokens produced so far.

45 */
46 public String[] tokensSoFar()
47 {
48 String[] arrayToReturn = new String[count];
49 for (int i = 0; i < count; i++)
50 arrayToReturn[i] = a[i];
51 return arrayToReturn;
52 }
53 }

484 CHAPTER 7 Inheritance

Display 7.8 Use of the EnhancedStringTokenizer Class (part 2 of 2)

 9 EnhancedStringTokenizer wordFactory =
10 new EnhancedStringTokenizer(sentence);

11 System.out.println("Your sentence with extra blanks deleted:");
12 while (wordFactory.hasMoreTokens())
13 System.out.print(wordFactory.nextToken() + " ");
14 System.out.println();
15 //All tokens have been dispensed.

16 System.out.println("Sentence with each word on a separate line:");
17 String[] token = wordFactory.tokensSoFar();
18 for (int i = 0; i < token.length; i++)
19 System.out.println(token[i]);
20 }
21 }

Sample Dialogue

Enter a sentence:

 I love you, madly.

Your sentence with extra blanks deleted:

I love you, madly.

Sentence with each word on a separate line:

I

love

you,

madly.

7.2 Encapsulation and Inheritance

Ignorance is bliss.

Anonymous

This section is a continuation of Section 7.1 and uses the same example classes we
used there. In this section, we consider how the information-hiding facilities of Java,
primarily the private modifier, interact with inheritance.

Encapsulation and Inheritance 485

PITFALL: Use of Private Instance Variables from the Base Class

An object of the class HourlyEmployee (Display 7.3) inherits, among other things, an
instance variable called name from the class Employee (Display 7.2). For example, the
following would set the value of the instance variable name of the HourlyEmployee
object joe to "Josephine":

joe.setName("Josephine");

But you must be a bit careful about how you manipulate inherited instance variables
such as name. The instance variable name of the class HourlyEmployee was inherited
from the class Employee, but the instance variable name is a private instance variable
in the definition of the class Employee. That means that name can only be accessed by
name within the definition of a method in the class Employee. An instance variable
(or method) that is private in a base class is not accessible by name in the definition of
a method in any other class, not even in a method definition of a derived class.

For example, notice the following method definition taken from the definition of
the class HourlyEmployee in Display 7.3:

public String toString()
{
 return (getName() + " " + getHireDate().toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

You might wonder why we needed to use the methods getName and getHireDate.
You might be tempted to rewrite the method definition as follows:

public String toString() //Illegal version
{
 return (name + " " + hireDate.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

As the comment indicates, this will not work. The instance variables name and
hireDate are private instance variables in the class Employee, and although a derived
class such as HourlyEmployee inherits these instance variables, it cannot access them
directly. You must instead use some public methods to access the instance variable
name or hireDate, as we did in Display 7.3.

In the definition of a derived class, you cannot mention a private inherited instance
variable by name. You must instead use public accessor and mutator methods (such as
getName and setName) that were defined in the base class.

The fact that a private instance variable of a base class cannot be accessed in the def-
inition of a method of a derived class often seems wrong to people. After all, if you are
an hourly employee and you want to change your name, nobody says, “Sorry, name is
a private instance variable of the class Employee.” If you are an hourly employee, you

(continued)

486 CHAPTER 7 Inheritance

are also an employee. In Java, this is also true; an object of the class HourlyEmployee is
also an object of the class Employee. However, the laws on the use of private instance
variables and methods must be as we described, or else they would be compromised. If
private instance variables of a class were accessible in method definitions of a derived
class, then anytime you want to access a private instance variable, you could simply
create a derived class and access it in a method of that class, which would mean that all
private instance variables would be accessible to anybody who wants to put in a little
extra effort. This scenario illustrates the problem, but the big problem is uninten-
tional errors, not intentional subversion. If private instance variables of a class were
accessible in method definitions of a derived class, then the instance variables might
be changed by mistake or in inappropriate ways. (Remember, accessor and mutator
methods can guard against inappropriate changes to instance variables.)

We will discuss one possible way to get around this restriction on private instance
variables of the base class in the upcoming subsection entitled “Protected and Package
Access.” ■

Self-Test Exercises

7. Would the following be legal for the definition of a method to add to the class
Employee (Display 7.2)? (Remember, the question is whether it is legal, not
whether it is sensible.)

public void crazyMethod()
{
 Employee object = new Employee("Joe",
 new Date("January", 1, 2005));
 System.out.println("Hello " + object.name);
}

 Would it be legal to add this crazyMethod to the class HourlyEmployee?

8. Suppose you change the modifier before the instance variable name from
private to public in the class Employee. Would it then be legal to add the
method crazyMethod (from Self-Test Exercise 7) to the class HourlyEmployee?

PITFALL: Private Methods Are Effectively Not Inherited

As we noted in the Pitfall section, “Use of Private Instance Variables from the Base
Class,” an instance variable (or method) that is private in a base class is not directly
accessible outside of the definition of the base class, not even in a method definition
for a derived class. The private methods of the base class are just like private variables
in terms of not being directly available. But in the case of methods, the restriction

PITFALL: (continued)

Encapsulation and Inheritance 487

Protected and Package Access

As you have seen, you cannot access (by name) a private instance variable or private
method of the base class within the definition of a derived class. There are two
classifications of instance variables and methods that allow them to be accessed by
name in a derived class. The two classifications are protected access, which always gives
access, and package access, which gives access if the derived class is in the same package
as the base class.

If a method or instance variable is modified by protected (rather than public
or private), then it can be accessed by name inside its own class definition, it can
be accessed by name inside any class derived from it, and it can also be accessed by
name in the definition of any class in the same package (even if the class in the same
package is not derived from it). However, the protected method or instance variable
cannot be accessed by name in any other classes. Thus, if an instance variable is marked
protected in the class Parent and the class Child is derived from the class Parent,
then the instance variable can be accessed by name inside any method definition in the
class Child. However, in a class that is not in the same package as Parent and is not
derived from Parent, it is as if the protected instance variable were private.

For example, consider the class HourlyEmployee that was derived from the
base class Employee. We were required to use accessor and mutator methods to
manipulate the inherited instance variables in the definition of HourlyEmployee.
Consider the definition of the toString method of the class HourlyEmployee,
which we repeat here:

public String toString()
{
 return (getName() + " " + getHireDate().toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

is more dramatic. A private variable can be accessed indirectly via an accessor or
mutator method. A private method is simply not available. It is just as if the private
method were not inherited. (In one sense, private methods in the base class may be
indirectly available in the derived class. If a private method is used in the definition
of a public method of the base class, then that public method can be invoked in the
derived class, or any other class, so the private method can be indirectly invoked.)

This should not be a problem. Private methods should just be used as helping
methods, so their use should be limited to the class in which they are defined. If you
want a method to be used as a helping method in a number of inherited classes, then
it is not just a helping method, and you should make the method public. ■

PITFALL: (continued)

488 CHAPTER 7 Inheritance

If the private instance variables name and hireDate had been marked protected in
the class Employee, the definition of toString in the derived class HourlyEmployee
could be simplified to the following:

public String toString() //Legal if instance variables in
 // Employee are marked protected
{
 return (name + " " + hireDate.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

The protected Modifier

If a method or instance variable is modified by protected (rather than public or
private), then it can be accessed by name inside its own class definition, by name inside
any class derived from it, and by name in the definition of any class in the same package.

The protected modifier provides very weak protection compared to the private
modifier, because it allows direct access to any programmer who is willing to go
through the bother of defining a suitable derived class. Many programming authorities
discourage the use of the protected modifier. Instance variables should normally not
be marked protected. On rare occasions, you may want to have a method marked
protected. If you want an access intermediate between public and private, then the
access described in the next paragraph is often a preferable alternative to protected.

You may have noticed that if you forget to place one of the modifiers public,
private, or protected before an instance variable or method definition, then your
class definition will still compile. If you do not place any of these modifiers before
an instance variable or method definition, then the instance variable or method can
be accessed by name inside the definition of any class in the same package but not
outside of the package. This is called package access, default access, or friendly access.
Use package access in situations where you have a package of cooperating classes that act
as a single encapsulated unit. Note that package access is more restricted than protected,
and that package access gives more control to the programmer defining the classes. If you
control the package directory (folder), then you control who is allowed package access.

The diagram in Display 7.9 may help you to understand who has access to members
with public, private, protected, and package access. The diagram tells who can directly
access, by name, variables that have public, private, protected, and package access. The
same access rules apply to methods that have public, private, protected, and package access.

Encapsulation and Inheritance 489

Display 7.9 Access Modifiers

public class C
extends A

{
 can access v1.

 can access v2.
 can access v3.

cannot access v4.

public class D
extends A

{
 can access v1.

 can access v2.
cannot access v3.
cannot access v4.

public class A
{
 public int v1;
 protected int v2;

int v3.//package
//access

 private int v4;

public class B
{
 can access v1.

 can access v2.
 can access v3.

cannot access v4.

public class E
{
 can access v1.
cannot access v2.
cannot access v3.
cannot access v4.

package somePackage;

If the instance variables are
replaced by methods, the same
access rules apply.

In this diagram, “access” means access
directly, that is, access by name.

A line from one class to another means the lower class
is a derived class of the higher class.

Package Access

If you do not place any of the modifiers public, private, or protected before an
instance variable or method definition, then the instance variable or method is said to have
package access. Package access is also known as default access and as friendly access.
If an instance variable or method has package access, it can be accessed by name inside
the definition of any class in the same package, but not outside of the package.

490 CHAPTER 7 Inheritance

PITFALL: A Restriction on Protected Access ★

The situation described in this pitfall does not occur often, but when it does, it can be
very puzzling if you do not understand what is going on.

Suppose class D is derived from class B, the instance variable n has protected access
in class B, and the classes D and B are in different packages, so the class definitions begin
as follows:

package one;

public class B
{
 protected int n;
 ...
}

package two;

import one.B;

public class D extends B
{
 ...
}

Then the following is a legitimate method that can appear in the definition of class D:

public void demo()
{
 n = 42; //n is inherited from B.
}

PITFALL: Forgetting about the Default Package

When considering package access, do not forget the default package. Recall that all the
classes in your current directory (that do not belong to some other package) belong to
an unnamed package called the default package. So, if a class in your current directory
is not in any other package, then it is in the default package. If an instance variable or
method has package access, then that instance variable or method can be accessed by
name in the definition of any other class in the default package. ■

Encapsulation and Inheritance 491

PITFALL: (continued)

The following is also a legitimate method definition for the derived class D:

public void demo2()
{
 D object = new D();
 object.n = 42; //n is inherited from B.
}

However, the following is not allowed as a method of D:

public void demo3()
{
 B object = new B();
 object.n = 42;//Error
}

The compiler will give an error message saying that n is protected in B.
Similar remarks apply to protected methods.
A class can access its own classes’ inherited variables and methods that are marked

protected in the base class, but cannot directly access any such instance variables or
methods of an object of the base class (or of any other derived class of the base class).
In the above example, n is an instance variable of the base class B and an instance vari-
able of the derived class D. D can access n whenever n is used as an instance variable of
D, but D cannot access n when n is used as an instance variable of B.

If the classes B and D are in the same package, you will not get the error message
because, in Java, protected access implies package access. In particular, if the classes B
and D are both in the default package, you will not get the error message. ■

Self-Test Exercises

9. Suppose you change the modifier before the instance variable name from
private to protected in the class Employee (Display 7.2). Would it then be
legal to add the method crazyMethod (from Self-Test Exercise 7) to the class
HourlyEmployee (Display 7.3)?

10. Which is more restricted, protected access or package access?

(continued)

492 CHAPTER 7 Inheritance

“is a”
relationship

“has a”
relationship

super
relationship

Self-Test Exercises (continued)

11. Suppose class D is derived from class B, the method doStuff() has protected
access in class B, and the classes D and B are in different packages, so the class
definitions begin as follows:

package one;
public class B
{
 protected void doStuff()
 {
 ...
}

package two;
import one.B;
public class D extends B
{
 ...
}

 Is the following a legitimate method that can appear in the definition of the class D?

public void demo()
{
 doStuff();//doStuff is inherited from B.
}

12. Suppose B and D are as described in Self-Test Exercise 11. Is the following a
legitimate method that can appear in the definition of the class D?

public void demo2()
{
 D object = new D();
 object.doStuff();//doStuff is inherited from B.
}

13. Suppose B and D are as described in Self-Test Exercise 11. Is the following a
legitimate method that can appear in the definition of the class D?

public void demo3()
{
 B object = new B();
 object.doStuff();

}

Programming with Inheritance 493

Access to a Redefined Base Method

Suppose you redefine a method so that it has a different definition in the derived class
from what it has in the base class. The definition that was given in the base class is not
completely lost to the derived class objects. However, if you want to invoke the version
of the method given in the base class with an object in the derived class, you need some
way to say, “use the definition of this method as given in the base class (even though
I am an object of the derived class).” The way you say this is to use the keyword super
as if it were a calling object.

7.3 Programming with Inheritance

The devil is in the details.

Anonymous

In the previous section, we described the basic idea and details of derived classes.
In this section, we continue that discussion and go on to cover some more subtle
points about derived classes. In the process, we also discuss the class Object, which
is an ancestor class of all Java classes, and we describe a better way to define an
equals method.

TIP: Static Variables Are Inherited

Static variables in a base class are inherited by any derived classes. The modifiers
public, private, and protected, and package access have the same meaning for
static variables as they do for instance variables. ■

“is a”
relationship

“has a”
relationship

composition

TIP: “is a” versus “has a”

Early in this chapter, we defined a derived class called HourlyEmployee using the
class Employee as the base class. In such a case, an object of the derived class
HourlyEmployee is also an instance of the class Employee, or, stated more simply,
an HourlyEmployee is an Employee. This is an example of the “is a” relationship
between classes. It is one way to make a more complex class out of a simpler class.

Another way to make a more complex class out of a simpler class is known as the “has
a” relationship. For example, the class Employee defined earlier has an instance variable
of the class type Date. We express this relationship by saying an Employee “has a” Date.
Using the “has a” relationship to build a class (such as building the class Employee by
using Date as an instance variable) is often called composition.

Because the class HourlyEmployee inherits the instance variable of type Date from
the class Employee, it is also correct to say an HourlyEmployee “has a” Date. Thus,
an HourlyEmployee is an Employee and has a Date. ■

super
relationship

494 CHAPTER 7 Inheritance

For example, the method toString of the class HourlyEmployee (Display 7.3) is
defined as follows:

public String toString() //in the derived class HourlyEmployee
{
 return (getName() + " " + getHireDate().toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

This overrides the following definition of toString() that was given in the definition
of the base class Employee:

public String toString() //in the base class Employee
{
 return (name + " " + hireDate.toString());
}

We can use the version of the method toString() defined in the base class
Employee to simplify the definition of the method toString() in the derived class
HourlyEmployee. The following is an equivalent way to define toString() in the
derived class HourlyEmployee:

public String toString() //in the derived class HourlyEmployee
{
 return (super.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

The expression super.toString() is an invocation of the method toString() using
the definition of toString() given in the base class Employee.

You can only use super in this way within the definition of a method in a derived
class. Outside of the definition of the derived class, you cannot invoke an overridden
method of the base class using an object of the derived class.

Invoking the Old Version of an Overridden Method?

Within the definition of a method of a derived class, you can invoke the base class version
of an overridden method of the base class by prefacing the method name with super and a
dot. Outside of the derived class definition, there is no way to invoke the base class version
of an overridden method using an object of the derived class.

EXAMPLE

public String toString()
{
 return (super.toString()
 + "\n$" + wageRate + " per hour for " + hours + " hours");
}

Programming with Inheritance 495

PITFALL: You Cannot Use Multiple supers

As we already noted, within the definition of a method of a derived class, you can call
an overridden method of the base class by prefacing the method name with super
and a dot. However, you cannot repeat the use of super to invoke a method from
some ancestor class other than a direct parent. For example, suppose that the class
Employee were derived from the class Person, and the class HourlyEmployee is
derived from the class Employee. You might think that you can invoke a method of
the class Person within the definition of the class HourlyEmployee by using super.
super, as in

super.super.toString() //ILLEGAL!

However, as the comment indicates, it is illegal to have such multiple supers in Java. ■

Self-Test Exercises

14. Redefine the toString method of the class SalariedEmployee (Display 7.5)
so that it uses super.toString(). This new definition of toString will be
equivalent to the one given in Display 7.5.

15. Redefine the equals method for the class HourlyEmployee (Display 7.3) using
super.equals to invoke the equals method of the base class Employee.

16. Is the following program legal? The relevant classes are defined in Displays 7.2
and 7.3.

public class EmployeeDemo
{
 public static void main(String[] args)
 {
 HourlyEmployee joe =
 new HourlyEmployee("Joe Young",
 new Date("Feb", 1, 2015), 10.50, 40);
 String nameNDate = joe.super.toString();
 System.out.println(nameNDate);
 }
}

(continued)

496 CHAPTER 7 Inheritance

The class Object is in the package java.lang, which is always imported
automatically. So, you do not need any import statement to make the class Object
available to your code.

The class Object does have some methods that every Java class inherits. For example,
every object inherits the methods equals and toString from some ancestor class,
which either is the class Object or a class that itself inherited the methods ultimately
from the class Object. However, the inherited methods equals and toString will
not work correctly for (almost) any class you define. You need to override the inherited
method definitions with new, more appropriate definitions.

It is important to include definitions of the methods toString and equals in the
classes you define, because some Java library classes assume your class has such methods.
There are no subtleties involved in defining (actually redefining or overriding) the
method toString. We have seen good examples of the method toString in many of
our class definitions. The definition of the overridden method equals does have some
subtleties; we discuss them in the next subsection.

The Class Object

In Java, every class is a descendent of the class Object. So, every object of every class is
of type Object, as well as being of the type of its class.

toString

equals

The Class Object

Java has a class that is an ancestor of every class. In Java, every class is a derived class of
a derived class of . . . (for some number of iterations of “a derived class of ”) of the class
Object. So, every object of every class is of type Object, as well as being of the type of its
class (and also of the types of all its ancestor classes). Even classes that you define yourself
are descendent classes of the class Object. If you do not make your class a derived class of
some class, then Java will automatically make it a derived class of the class Object.

The class Object allows you to write Java code for methods with a parameter of type
Object that can be replaced by an object of any class whatsoever. You will eventually
encounter library methods that accept an argument of type Object and hence can be
used with an argument that is an object of absolutely any class.

object
class

Self-Test Exercises (continued)

17. Suppose you add the following defined constant to the class Employee (Display 7.2):

public static final int STANDARD_HOURS = 160; //per month

Would it then be legal to add the following method to the class HourlyEmployee
(Display 7.3)?

public void setHoursToStandard()
{

 hours = STANDARD_HOURS;

}

Programming with Inheritance 497

Another method inherited from the class Object is the method clone, which
is intended to return a copy of the calling object. We discuss the method clone in
Chapters 8 and 13.

The Right Way to Define equals

Earlier we said that the class Object has an equals method, and that when you define
a class with an equals method, you should override the definition of the method
equals given in the class Object. However, we did not, strictly speaking, follow
our own advice. The heading for the method equals in our definition of the class
Employee (Display 7.2) is as follows:

public boolean equals(Employee otherEmployee)

On the other hand, the heading for the method equals in the class Object is as
follows:

public boolean equals(Object otherObject)

The two equals methods have different parameter types, so we have not overridden
the definition of equals We have merely overloaded the method equals. The class
Employee has both of these methods named equals.

In most situations, this will not matter. However, there are situations in which it
does. Some library methods assume your class’s definition of equals has the following
heading, the same as in the class Object:

public boolean equals(Object otherObject)

We need to change the type of the parameter for the equals method in the
class Employee from type Employee to type Object. A first try might produce
the following:

public boolean equals(Object otherObject)
{
 Employee otherEmployee = (Employee)otherObject;
 return (name.equals(otherEmployee.name)
 && hireDate.equals(otherEmployee.hireDate));
}

We needed to type cast the parameter otherObject from type Object to type
Employee. If we omit the type cast and simply proceed with otherObject, the
compiler will give an error message when it sees the following:

otherObject.name

The class Object does not have an instance variable named name.
This first try at an improved equals method does override the definition of equals

given in the class Object and will work well in many cases. However, it still has
a shortcoming.

Our definition of equals now allows an argument that can be any kind of object
whatsoever. What happens if the method equals is used with an argument that is not
an Employee? A run-time error will occur when the type cast to Employee is executed.

clone

498 CHAPTER 7 Inheritance

We need to make our definition work for any kind of object. If the object is not
an Employee, we simply return false. The calling object is an Employee, so if the
argument is not an Employee, they should not be considered equal. But how can we
tell whether the parameter is or is not of type Employee?

Every object inherits the method getClass() from the class Object. The method
getClass() is marked final in the class Object, so it cannot be overridden. For any
object o, o.getClass() returns a representation of the class used to create o. For example,
after the following is executed:

o = new Employee();

o.getClass() returns a representation Employee.
We will not describe the details of this representation except to say that two

such representations should be compared with == or != if you want to know if
two representations are the same. Thus,

if (object1.getClass() == object2.getClass())
 System.out.println("Same class.");
else
 System.out.println("Not the same class.");

will output "Same class." if object1 and object2 were created with the same class
when they were created using new, and output "Not the same class." otherwise.

Our final version of the method equals is shown in Display 7.10. Note that we
have also taken care of one more possible case. The predefined constant null can
be plugged in for a parameter of type Object. The Java documentation says that an
equals method should return false when comparing an object and the value null.
So that is what we have done.

On the accompanying website, the subdirectory improvedEquals (of the directory
for this chapter) has a definition of the class Employee that includes this definition
of equals.

extra code
on website

Display 7.10 A Better equals Method for the Class Employee

 1 public boolean equals(Object otherObject)
 2 {
 3 if (otherObject == null)
 4 return false;
 5 else if (getClass() != otherObject.getClass())
 6 return false;
 7 else
 8 {
 9 Employee otherEmployee = (Employee)otherObject;
10 return (name.equals(otherEmployee.name)
11 && hireDate.equals(otherEmployee.hireDate));
12 }
13 }

instanceof

Programming with Inheritance 499

instanceof

TIP: getClass versus instanceof ★

Many authors suggest that in the definition of equals for a class such as Employee,
given in Display 7.10, you should not use

else if (getClass() != otherObject.getClass())
 return false;

but should instead use

else if (!(otherObject instanceof Employee))
 return false;

What is the difference, and which should you use? At first glance, it seems like you
should use instanceof in the definition of equals. The instanceof operator
checks to see if an object is of the type given as its second argument. The syntax is

Object instanceof Class_Name

which returns true if Object is of type Class_Name; otherwise it returns false. So,
the following will return true if otherObject is of type Employee:

(otherObject instanceof Employee)

Suppose that (contrary to what we really did) we instead used instanceof in
our definition of equals for the class Employee and also used instanceof in
our definition for the class HourlyEmployee, so that the definition of equals for
HourlyEmployee is as follows:

public boolean equals(Object otherObject)
//This is NOT the right way to define equals.
{
 if (otherObject == null)
 return false;
 else if (!(otherObject instanceof HourlyEmployee))
 return false;
 else
 {
 HourlyEmployee otherHourlyEmployee =
 (HourlyEmployee)otherObject;
 return (super.equals(otherHourlyEmployee)
 && (wageRate == otherHourlyEmployee.wageRate)
 && (hours == otherHourlyEmployee.hours));
 }
}

(continued)

500 CHAPTER 7 Inheritance

TIP: (continued)

Assuming that the equals method for both Employee and HourlyEmployee are
defined using instanceof (as previously mentioned), consider the following situation:

Employee e =
 new Employee("Joe Worker", new Date("January", 1, 2004));
HourlyEmployee hourlyE = new HourlyEmployee("Joe Worker",
 new Date("January", 1, 2004), 50.50, 160);

Then, with the definition of equals that uses instanceof, we get that

e.equals(hourlyE)

returns true, because hourlyE is an Employee with the same name and hire date as e.
So far, it sounds reasonable.

However, since we are assuming that we also used instanceof in the definition of
equals for the class HourlyEmployee, we also get that

hourlyE.equals(e)

returns false because e instanceof HourlyEmployee returns false. (e is an
Employee but e is not an HourlyEmployee.)

So, if we define equals in both classes using instanceof, then e equals hourlyE,
but hourlyE does not equal e. That is no way for equals to behave.

Since instanceof does not yield a suitable definition of equals, you should instead
use getClass() as we did in Display 7.10. If we use getClass() in a similar way in
the definition of equals for the class HourlyEmployee (see Self-Test Exercise 19), then

e.equals(hourlyE)

and

hourlyE.equals(e)

both return false. ■

Programming with Inheritance 501

instanceof and getClass()★

Both the instanceof operator and the getClass() method can be used to check
the class of an object. The instanceof operator simply tests an object for type. The
getClass() method, used in a test with == or !=, tests if two objects were created with
the same class. The details follow.

THE instanceof OPERATOR

The instanceof operator checks if an object is of the type given as its second argument.
The syntax is

Object instanceof Class_Name

which returns true if Object is of type Class_Name; otherwise it returns false. So, the
following will return true if otherObject is of type Employee:

(otherObject instanceof Employee)

Note that this means it returns true if otherObject is of the type of any descendent
class of Employee, because in that case otherObject is also of type Employee.

THE getClass() METHOD

Every object inherits the method getClass() from the class Object. The method
getClass() is marked final in the class Object, so it cannot be overridden. For any
object of any class,

object.getClass()

returns a representation of the class that was used with new to create object. Any two
such representations can be compared with == or != to determine whether or not they
represent the same class. Thus,

if (object1.getClass() == object2.getClass())
 System.out.println("Same class.");
else
 System.out.println("Not the same class.");

will output Same class if object1 and object2 were created with the same class when
they were created using new, and output Not same class otherwise.

(continued)

502 CHAPTER 7 Inheritance

EXAMPLE

Suppose that HourlyEmployee is a derived class of Employee and that
employeeObject and hourlyEmployeeObject are created as follows:

Employee employeeObject = new Employee();
HourlyEmployee hourlyEmployeeObject = new HourlyEmployee();

Then,

employeeObject.getClass() == hourlyEmployeeObject.getClass()

returns false.

employeeObject instanceof Employee

returns true.

hourlyEmployeeObject instanceof Employee

returns true.

employeeObject instanceof HourlyEmployee

returns false.

hourlyEmployeeObject instanceof HourlyEmployee

returns true.

Self-Test Exercises

18. Redefine the method equals given in Display 7.10 using instanceof instead
of getClass(). Give the complete definition. Remember, we do not want you
to define equals this way in your class definitions; this is just an exercise.

19. Redefine the equals method of the class HourlyEmployee (Display 7.3) so
that it has a parameter of type Object and follows the other guidelines we gave
for an equals method. Assume the definition of the method equals for the
class Employee has been changed to be as in Display 7.10. (Remember, you
should use getClass(), not instanceof.)

Programming with Inheritance 503

Self-Test Exercises (continued)

20. Redefine the equals method of the class SalariedEmployee (Display 7.5) so
that it has a parameter of type Object and follows the other guidelines we gave
for an equals method. Assume the definition of the method equals for the
class Employee has been changed to be as in Display 7.10. (Remember, you
should use getClass(), not instanceof.)

21. Redefine the equals method of the class Date (Display 4.13) so that it has
a parameter of type Object and follows the other guidelines we gave for an
equals method. (Remember, you should use getClass(), not instanceof.)

22. What is the output produced by the following program? (The classes Employee
and HourlyEmployee were defined in this chapter.)

public class Test
{
 public static void main(String[] args)
 {
 Employee object1 = new Employee();
 Employee object2 = new HourlyEmployee();

 if (object1.getClass() == object2.getClass())
 System.out.println("Same class.");
 else
 System.out.println("Not the same class.");
 }

}

23. (This exercise requires that you have covered the starred subsection “An
Enhanced StringTokenizer Class *,” earlier in this chapter.)

Although we did not discuss it when we covered the class StringTokenizer,
the class StringTokenizer has a method with the following heading:

public Object nextElement()

The method nextElement() returns the same string as the method nextToken(),
but nextElement() returns it as something of type Object, as opposed to type
String. Give a suitable definition of nextElement to add to the definition of
EnhancedStringTokenizer. This definition will override the definition of
nextElement in the class StringTokenizer. (Hint : the definition is just like the
definition of nextToken except for fixing the type of the string returned.)

504 CHAPTER 7 Inheritance

Chapter Summary

• Inheritance provides a tool for code reuse by deriving one class from another. The
derived class automatically inherits the features of the old (base) class and may add
features as well.

• A derived class object inherits the instance variables, static variables, and public
 methods of the base class and may add additional instance variables, static variables,
and methods.

• An object of a derived class has the type of the derived class, and it also has the type
of the base class, and more generally, has the type of every one of its ancestor classes.

• If an instance variable is marked private in a base class, then it cannot be accessed
by name in a derived class.

• Private methods are effectively not inherited.

• A method may be redefined in a derived class so that it performs differently from
how it performs in the base class. This is called overriding the method definition. The
definition for an overridden method is given in the class definition of the derived
class, in the same way as the definitions of any added methods.

• A constructor of a base class can be used in the definition of a constructor for a
derived class. The keyword super is used as the name for a constructor of the base class.

• A constructor definition can use the keyword this, as if it were a method name, to
invoke a constructor of the same class.

• If a constructor does not contain an invocation of either super or this, then Java
automatically inserts an invocation of super() as the first action in the body of the
constructor definition.

• A protected instance variable or method in the base class can be accessed by name
in the definition of a method of a derived class and in the definition of any method
in the same package.

• If an instance variable or method has none of the modifiers public, private, or
protected, then it is said to have package access. An instance variable or method
with package access can be accessed by name in the definition of any method in the
same package.

• The class Object is an ancestor class of every class in Java.

• The equals method for a class should have Object as the type of its one parameter.

Answers to Self-Test Exercises

 1. Yes, it will have the instance variables. A derived class has all the instance variables
that the base class has and can add more instance variables besides.

 2. Yes, it will have the methods. A derived class has all the public methods that the
base class has and can also add more methods. If the derived class does not over-
ride (redefine) a method definition, then it performs exactly the same action in
the derived class as it does in the base class. However, the base class can contain
an overriding definition of (a new definition of) a method, and the new defini-
tion will replace the old definition (provided it has the same number and types
of parameters).

 3. The class DiscountSale will have two methods named getTax and will have the
following two headings. This is an example of overloading.

public double getTax()

public double getTax(double rate)

 4. The method getName is inherited from the class Employee and so needs no defini-
tion. The method getRate is a new method added in the class HourlyEmployee
and so needs to be defined.

 5. Yes. You can plug in an object of a derived class for a parameter of the base class
type. An HourlyEmployee is an Employee. A SalariedEmployee is an Employee.

 6. public class TitledEmployee extends SalariedEmployee

{

 private String title;

 public TitledEmployee()

 {

 super ("no name", newDate("January," 1, 1000), 0);
 title = "No title";

 }

 public TitledEmployee(String theName, String theTitle,

 Date theDate, double theSalary)
 {

 super (theName, theDate, theSalary);

 title = theTitle;

 }

 public String getTitle()

 {

 return title;

 }

Answers to self-Test Exercises 505

506 CHAPTER 7 Inheritance

 public void setTitle(String theTitle)

 {

 title = theTitle;

 }

 public String getName()

 {

 return (title + super.getName());
 }

}

 7. It would be legal to add crazyMethod to the class Employee. It would not be legal
to add crazyMethod to the class HourlyEmployee because, although the class
HourlyEmployee has an instance variable name, name is private in the base class
Employee and so cannot be accessed by name in HourlyEmployee.

 8. Yes, it would be legal as long as name is marked public in the base class Employee.

 9. Yes, it would be legal as long as name is marked protected in the base class
 Employee.

10. Package access is more restricted. Anything allowed by package access is also
 allowed by protected access, but protected access allows even more.

11. Yes, it is legitimate.

12. Yes, it is legitimate.

13. No, it is not legitimate. The compiler will give an error message saying doStuff()
is protected in B.

14. public String toString()
{

 return (super.toString()
 + "\n$" + salary + " per year");
}

15. public boolean equals(HourlyEmployee other)

{

 return (super.equals(other)
 && wageRate == other.wageRate
 && hours == other.hours);

}

A better definition of equals for the class HourlyEmployee is given in Display 7.10.

16. It is not legal. You cannot use super in this way. super.toString() as used here
refers to toString() in the class Employee and can only be used in definitions of
classes derived from Employee. Moreover, you cannot have a calling object, such
as joe, before super, so this is even illegal if you add extends Employee to the
first line of the class definition.

17. Yes, all static variables are inherited. Because a defined constant is a form of
static variable, it is inherited. So, the class HourlyEmployee inherits the constant
 STANDARD_HOURS from the class Employee.

18. public boolean equals(Object otherObject)
//This is NOT the right way to define equals.

{

 if (otherObject == null)
 return false;
 else if (!(otherObject instanceof Employee))

 return false;
 else

 {

 Employee otherEmployee = (Employee)otherObject;

 return (name.equals(otherEmployee.name)
 && hireDate.equals(otherEmployee.hireDate));

 }

}

19. A version of the HourlyEmployee class with this definition of equals is in the
subdirectory improvedEquals of the ch07 directory on the accompanying website.

public boolean equals(Object otherObject)

{

 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else

 {

 HourlyEmployee otherHourlyEmployee =

 (HourlyEmployee)otherObject;

 return (super.equals(otherHourlyEmployee)

 && (wageRate == otherHourlyEmployee.wageRate)

 && (hours == otherHourlyEmployee.hours));

 }

}

20. A version of the SalariedEmployee class with this definition of equals is in the
subdirectory improvedEquals of the ch07 directory on the accompanying website.

public boolean equals(Object otherObject)

{

 if (otherObject == null)

 return false;
 else if (getClass() != otherObject.getClass())

 return false;
 else

 {

extra code
on website

extra code
on website

Answers to self-Test Exercises 507

508 CHAPTER 7 Inheritance

 SalariedEmployee otherSalariedEmployee =

 (SalariedEmployee)otherObject;

 return (super.equals(otherSalariedEmployee)

 && (salary == otherSalariedEmployee.salary));

 }

}

 21. A version of the Date class with this definition of equals is in the subdirectory
improvedEquals of the ch07 directory on the accompanying website.

public boolean equals(Object otherObject)

{

 if (otherObject == null)

 return false;

 else if (getClass() != otherObject.getClass())

 return false;
 else

 {

 Date otherDate = (Date)otherObject;

 return (month.equals(otherDate.month)

 && (day == otherDate.day)

 && (year == otherDate.year));

 }

}

22. Not the same class.

23. The following is included in the definition of EnhancedStringTokenizer on the
accompanying website.

public Object nextElement()

{

 String token = super.nextToken();

 a[count] = token;

 count++;

 return (Object)token;

}

Programming Projects

 1. Define a class named Person that contains two instance variables of type String
that stores the first name and last name of a person and appropriate accessor and
mutator methods. Also create a method named displayDetails that outputs the
details of a person. Next, define a class named Student that is derived from Person,
the constructor for which should receive first name and last name from the class
Student and also assigns values to student id, course, and teacher name. This class
should redefine the displayDetails method to person details as well as details of
a student. Include appropriate constructor(s). Define a class named Teacher that

extra code
on website

extra code
on website

is derived from Person. This class should contain instance variables for the subject
name and salary. Include appropriate constructor(s). Finally, redefine the
 displayDetails method to include all teacher information in the printout.
 Create a main method that creates at least two student objects and two teacher
objects with different values and calls displayDetails for each.

 2. Define a class named Message that contains an instance variable of type String
named text that stores any textual content for the Message. Create a method named
toString that returns the text field and also include a method to set this value.

 Next, define a class for SMS that is derived from Message and includes instance
variables for the recipientContactNo. Implement appropriate accessor and mu-
tator methods. The body of the SMS message should be stored in the inherited
variable text. Redefine the toString method to concatenate all text fields.

 Similarly, define a class for Email that is derived from Message and includes an
instance variable for the sender, receiver, and subject. The textual contents of the
file should be stored in the inherited variable text. Redefine the toString method
to concatenate all text fields.

 Create sample objects of type Email and SMS in your main method. Test your
objects bypassing them to the following subroutine that returns true if the object
contains the specified keyword in the text property.

public static boolean ContainsKeyword(Message messageObject,

 String keyword)
{

 if (messageObject.toString().indexOf(keyword,0) >= 0)

 return true;
 return false;
}

 Finally, include a method to encode the final message “This is Java” using an
encoding scheme, according to which, each character should be replaced by the
character that comes after it. For example, if the message contains character B or b,
it should be replaced by C or c accordingly, while Z or z should be replaced with
an A or a. If the final message is “This is Java”, then the encoded message should
be “UijtjtKbwb”.

 3. The following is some code designed by J. Hacker for a video game. There is an
Alien class to represent a monster and an AlienPack class that represents a band
of aliens and how much damage they can inflict:

class Alien

{

 public static final int SNAKE_ALIEN = 0;

 public static final int OGRE_ALIEN = 1;

 public static final int MARSHMALLOW_MAN_ALIEN = 2;

 public int type; // Stores one of the three above types
 public int health; // 0=dead, 100=full strength
 public String name;

Programming Projects 509

Solution to
Programming
Project 7.3

VideoNote

510 CHAPTER 7 Inheritance

 public Alien (int type, int health, String name)
 {

 this.type = type;

 this.health = health;

 this.name = name;

 }

}

public class AlienPack

{

 private Alien[] aliens;

 public AlienPack (int numAliens)

 {

 aliens = new Alien[numAliens];

 }

 public void addAlien(Alien newAlien, int index)
 {

 aliens[index] = newAlien;

 }

 public Alien[] getAliens()

 {

 return aliens;

 }

}

public int calculateDamage()

{

 int damage = 0;

 for (int i=0; i < aliens.length; i++)
 {

 if (aliens[i].type==Alien.SNAKE_ALIEN)
 {

 damage +=10;// Snake does 10 damage

 }

 else if (aliens[i].type==Alien.OGRE_ALIEN)

 {

 damage +=6;// Ogre does 6 damage

 }

 else if (aliens[i].type==

Alien.MARSHMALLOW_MAN_ALIEN)

 {

 damage +=1;

 // Marshmallow Man does 1 damage

 }

 }

 return damage;

 }

}

 The code is not very object oriented and does not support information hiding in
the Alien class. Rewrite the code so that inheritance is used to represent the dif-
ferent types of aliens instead of the “type” parameter. This should result in deletion
of the “type” parameter. Also rewrite the Alien class to hide the instance variables
and create a getDamage method for each derived class that returns the amount of
damage the alien inflicts. Finally, rewrite the calculateDamage method to use
getDamage and write a main method that tests the code.

 4. Define a class called Administrator, which is a derived class of the class
SalariedEmployee in Display 7.5. You are to supply the following additional
instance variables and methods:

• An instance variable of type String that contains the administrator’s title (such
as "Director" or "Vice President").

• An instance variable of type String that contains the administrator’s area of
responsibility (such as "Production", "Accounting", or "Personnel").

• An instance variable of type String that contains the name of this administra-
tor’s immediate supervisor.

• Suitable constructors, and suitable accessor and mutator methods.
• A method for reading in an administrator’s data from the keyboard.

 Override the definitions for the methods equals and toString so they are app-
ropriate to the class Administrator.

 Also, write a suitable test program.

 5. Give the definition of a class named Doctor whose objects are records for a clinic’s
doctors. This class will be a derived class of the class SalariedEmployee given in
Display 7.5. A Doctor record has the doctor’s specialty (such as "Pediatrician",
"Obstetrician", "General Practitioner", and so forth; so use the type String)
and office visit fee (use type double). Be sure your class has a reasonable complement
of constructors, accessor, and mutator methods, and suitably defined equals and
toString methods. Write a program to test all your methods.

 6. Create a class called Vehicle that has the manufacturer’s name (type String),
number of cylinders in the engine (type int), and owner (type Person given
next). Then, create a class called Truck that is derived from Vehicle and has the
 following additional properties: the load capacity in tons (type double since it may
contain a fractional part) and towing capacity in pounds (type int). Be sure your
class has a reasonable complement of constructors, accessor and mutator methods,
and suitably defined equals and toString methods. Write a program to test all
your methods.

 The definition of the class Person follows. Completing the definitions of the
methods is part of this programming project.

public class Person

{

 private String name;

Programming Projects 511

Solution to
Programming
Project 7.5

VideoNote

512 CHAPTER 7 Inheritance

 public Person()

 {...}

 public Person(String theName)

 {...}

 public Person(Person theObject)

 {...}

 public String getName()

 {...}

 public void setName(String theName)

 {...}

 public String toString()

 {...}

 public boolean equals(Object other)

 {...}

}

 7. Give the definition of two classes, Patient and Billing, whose objects are records
for a clinic. Patient will be derived from the class Person given in Programming
Project 7.6. A Patient record has the patient’s name (inherited from the class
Person) and primary physician of type Doctor defined in Programming Project 7.5
A Billing object will contain a Patient object, a Doctor object, and an amount
due of type double. Be sure your classes have a reasonable complement of construc-
tors, accessor and mutator methods, and suitably defined equals and toString
methods. First write a driver program to test all your methods, then write a test
program that creates at least two patients, at least two doctors, and at least two
Billing records, and then prints out the total income from the Billing records.

 8. Programming Project 4.10 required adding an instance variable to the Pet class
defined in Display 4.15 to indicate if the pet is a dog or cat. A better organiza-
tion is to define Pet as a superclass of the Dog and Cat classes. This organization
 eliminates the need for an instance variable to indicate the type of the pet. Do
or redo Programming Project 4.10 with inheritance. The acepromazine() and
 carprofen() methods should be defined in the Pet class to simply return 0. Over-
ride both methods in the Dog and Cat classes to calculate the correct dosage. Write
a main method with appropriate tests to exercise the changes.

Programming Projects 513

 9. Programming Project 6.18 asked you to use an array of Strings to store the fruits
and vegetables shipped in a BoxOfProduce object for a CSA farm.

 Modify your solution further by creating a Produce class. This class should have an
instance variable of type String for the name, appropriate constructors, and a public
toString() method. Then create a Fruit and a Vegetable class that are derived
from Produce. These classes should have constructors that take the name as a String
and invoke the appropriate constructor from the base class to set the name.

 Next, modify the text file of produce so it indicates whether each item is a fruit or
a vegetable. Here is one possible organization, although you can use others:

Broccoli,Vegetable

Tomato,Fruit

Kiwi,Fruit

Kale,Vegetable

Tomatillo,Fruit

 Finally, modify the BoxOfProduce class so it creates an array of type Produce
instead of type String. The class should read the produce from the text file and
create instances of either Fruit or Vegetable, with the appropriate name, in the
array. After a box is finished, loop through the contents of the array and output
how many fruit and how many vegetables are in the box. The rest of the program
should behave the same as the solution to Programming Project 6.18.

This page intentionally left blank

Downcasting and Upcasting 529
A First Look at the clone Method 536

8.2 AbstrAct clAsses 541
Abstract Classes 542

8.1 PolymorPhism 516
Late Binding 517
The final Modifier 519
Example: Sales Records 520
Late Binding with toString 527

8Polymorphism and
Abstract Classes

chapter summary 548 Answers to self-test exercises 548 Programming Projects 550

Don’t make any commitments until you have to.

Henry AdAms

Introduction
The three main programming mechanisms that constitute object-oriented programming
(OOP) are encapsulation, inheritance, and polymorphism. We have already covered the
first two. In this chapter, we discuss polymorphism. Polymorphism refers to the ability
to associate many meanings to one method name by means of a special mechanism
known as late binding or dynamic binding.

This chapter also covers abstract classes, which are classes in which some methods
are not fully defined. Abstract classes are designed to be used only as base classes for
defining new classes. You cannot create instances of (objects of) an abstract class; you
can only create instances of its descendent classes.

Both polymorphism and abstract classes deal with code in which a method is used
before it is defined. Although this may sound paradoxical, it all works out smoothly
in Java.

Prerequisites
This chapter requires Chapters 1 through 5 and Chapter 7, with the exception that
Section 5.4 on packages and javadoc is not required. This chapter does not use any
material on arrays from Chapter 6.

Sections 8.1 on polymorphism and 8.2 on abstract classes are independent of each
other, and you may cover Section 8.2 before Section 8.1 if you wish.

8.1 Polymorphism

All experience is an arch, to build upon.

Henry AdAms

Inheritance allows you to define a base class and to define software for the base class.
That software can then be used not only for objects of the base class but also for objects
of any class derived from the base class. Polymorphism allows you to make changes
in the method definition for the derived classes and to have those changes apply to
the software written in the base class. This all happens automatically in Java, but it
is important to understand the process. To understand polymorphism, we need a
concrete example. The next subsection begins with such an example.

8 Polymorphism and Abstract Classes

Polymorphism 517

Late Binding

Suppose you are designing software for a graphics package that has classes for several kinds
of figures, such as rectangles, circles, ovals, and so forth. Each figure might be an object
of a different class. For example, the Rectangle class might have instance variables for a
height, width, and center point, while the Circle class might have instance variables for
a center point and a radius. In a well-designed programming project, all of these classes
would be descendents of a single parent class called, for example, Figure. Now, suppose
you want a method to draw a figure on the screen. To draw a circle, you need different
instructions from those you need to draw a rectangle. So, each class needs to have a
different method to draw its kind of figure. However, because the methods belong to the
classes, they can all be called draw. If r is a Rectangle object and c is a Circle object,
then r.draw() and c.draw() can be methods implemented with different code. All
this is not new, but next we are going to expand on this.

Now, the parent class Figure may have methods that apply to all figures. For
example, it might have a method called center that moves a figure to the center
of the screen by erasing it and then redrawing it in the center of the screen. The
method center of the class Figure might use the method draw to redraw the figure
in the center of the screen. When you think of using the inherited method center
with figures of the classes Rectangle and Circle, you begin to see that there are
complications here.

To make the point clear and more dramatic, let’s suppose the class Figure is
already written and in use, and at some later time you add a class for a brand-new
kind of figure—say, the class Triangle. Now Triangle can be a derived class of the
class Figure, so the method center will be inherited from the class Figure and thus
should apply to (and perform correctly for!) all Triangles. But there is a complication.
The method center uses draw, and the method draw is different for each type of
figure. But, the method center is defined in the class Figure, which means the
method center was compiled before we wrote the code for the method draw of the
class Triangle. When we invoke the method center with an object of the class
Triangle, we want the code for the method center to use a method that was not
even defined when we compiled the method center—namely, the method draw for
the class Triangle. Can this be made to happen in Java? Yes, it can, and moreover, it
happens automatically. You need not do anything special when you define either the
base class Figure or the derived class Triangle.

The situation we discussed for the method center in the derived class Triangle
works out as we want because Java uses a mechanism known as late binding or
dynamic binding. Let’s see how late binding works in this case involving figure classes.

Binding refers to the process of associating a method definition with a method
invocation. If the method definition is associated with the method invocation when
the code is compiled, that is called early binding. If the method definition is associated
with the method invocation when the method is invoked (at run time), that is called
late binding or dynamic binding. Java uses late binding for all methods except for a
few cases discussed later in this chapter. Let’s see how late binding works in the case of
our method center.

late binding

early binding

binding

dynamic
binding

518 CHAPTer 8 Polymorphism and Abstract Classes

Recall that the method center was defined in the class Figure and that the
definition of the method center included an invocation of the method draw. If,
contrary to fact, Java used early binding, then when the code for the method center
compiles, the invocation of the method draw would be bound to the currently available
definition of draw, which is the one given in the definition of Figure. If early binding
were used, the method center would behave exactly the same for all derived classes of
the class Figure as it does for objects created using the class Figure. But, fortunately,
Java uses late binding, so when center is invoked by an object of the class Triangle,
the invocation of draw (inside the method center) is not bound to a definition of
draw until the invocation actually takes place. At this point in time, the run-time
system knows the calling object is an instance of the class Triangle and so uses the
definition of draw given in the definition of the class Triangle (even if the invocation
of draw is inside the definition of the method center). So, the method center
behaves differently for an object of the class Triangle than it would for an object that
is just a plain old Figure. With late binding, as in Java, things automatically work out
the way you normally want them to.

Note that in order for late binding to work, each object must somehow know which
definition of each method applies to that object. So, when an object is created in a
system using late binding, the description of the object must include (either directly or
indirectly) a description of where the appropriate definition of each method is located.
This additional overhead is the penalty you pay for the convenience of late binding.

Late Binding
With late binding, the definition of a method is not bound to an invocation of the method
until run time—in fact, not until the time at which the particular invocation takes place. Java
uses late binding (for all methods except those discussed in the Pitfall section entitled “No
Late Binding for Static Methods”).

The terms polymorphism and late binding are essentially just different words for
the same concept. The term polymorphism refers to the processes of assigning multiple
meanings to the same method name using late binding.

Polymorphism
Polymorphism refers to the ability to associate many meanings to one method name
by means of the late binding mechanism. Thus, polymorphism and late binding are really
the same topic.

polymorphism

Late Binding
Example

VideoNote

Polymorphism 519

The final Modifier

You can mark a method to indicate that it cannot be overridden with a new definition
in a derived class. Do this by adding the final modifier to the method heading, as in
the following sample heading:

public final void someMethod()
{
 .
 .
 .

An entire class can be declared final, in which case you cannot use it as a base class
to derive any other class from it. The syntax for declaring a class to be final is illustrated
in what follows:

public final class SomeClass
{
 .
 .
 .

If a method is marked as final, it means the compiler can use early binding with
that particular method, which enables the compiler to be more efficient. However, the
added efficiency is normally not great, and we suggest not using the final modifier
solely for reasons of efficiency. (Also, it can sometimes aid security to mark certain
methods as final.)

You can view the final modifier as a way of turning off late binding for a method
(or an entire class). Of course, it does more than just turn off late binding—it turns off
the ability to redefine the method in any descendent class.

The final Modifier
If you add the modifier final to the definition of a method, it indicates that the method
may not be redefined in a derived class. If you add the modifier final to the definition of
a class, it indicates that the class may not be used as a base class to derive other classes.

final

520 CHAPTer 8 Polymorphism and Abstract Classes

ExaMPLE: Sales Records

Suppose you are designing a record-keeping program for an automobile parts store.
You want to make the program versatile, but you are not sure you can account for
all possible situations. For example, you want to keep track of sales, but you cannot
anticipate all types of sales. At first, there will only be regular sales to retail customers
who go to the store to buy one particular part. However, later you may want to add
sales with discounts or mail order sales with a shipping charge. All of these sales will be
for an item with a basic price and ultimately will produce some bill. For a simple sale,
the bill is just the basic price, but if you later add discounts, then some kinds of bills
will also depend on the size of the discount. Now your program needs to compute daily
gross sales, which intuitively should just be the sum of all the individual sales bills. You
may also want to calculate the largest and smallest sales of the day or the average sale
for the day. All of these can be calculated from the individual bills, but many of the
methods for computing the bills will not be added until later, when you decide what
types of sales you will be dealing with. Because Java uses late binding, you can write a
program to total all bills, even though you will not determine the code for some of the
bills until later. (For simplicity in this first example, we assume that each sale is for just
one item, although we could—but will not here—account for sales of multiple items.)

Display 8.1 contains the definition for a class named Sale. All types of sales will
be derived classes of the class Sale. The class Sale corresponds to simple sales of a
single item with no added discounts and no added charges. Note that the methods
lessThan and equalDeals both include invocations of the method bill. We can
later define derived classes of the class Sale and define their versions of the method
bill, and the definitions of the methods lessThan and equalDeals (which we gave
with the class Sale) will use the version of the method bill that corresponds to the
object of the derived class.

For example, Display 8.2 shows the derived class DiscountSale. Notice that
this class requires a different definition for its version of the method bill. Now the
methods lessThan and equalDeals, which use the method bill, are inherited from
the base class Sale. But, when the methods lessThan and equalDeals are used
with an object of the class DiscountSale, they will use the version of the method
definition for bill that was given with the class DiscountSale. This is indeed a
pretty fancy trick for Java to pull off. Consider the method call d1.lessThan(d2)
for objects d1 and d2 of the class DiscountSale. The definition of the method
lessThan (even for an object of the class DiscountSale) is given in the definition
of the base class Sale, which was compiled before we ever even thought of the class
DiscountSale. Yet, in the method call d1.lessThan(d2), the line that calls the
method bill knows enough to use the definition of the method bill given for the
class DiscountSale. This all works out because Java uses late binding.

Display 8.3 gives a sample program that illustrates how the late binding of the
method bill and the methods that use bill work in a complete program.

Polymorphism 521

display 8.1 The Base Class Sale (part 1 of 3)

 1 /**
 2 Class for a simple sale of one item with no tax, discount, or other

adjustments.
 3 Class invariant: The price is always nonnegative; the name is a nonempty

string.
 4 */
 5 public class Sale
 6 {
 7 private String name; //A nonempty string
 8 private double price; //nonnegative

 9 public Sale()
10 {
11 name = "No name yet";
12 price = 0;
13 }

14 /**
15 Precondition: theName is a nonempty string; thePrice is nonnegative.
16 */
17 public Sale(String theName, double thePrice)
18 {
19 setName(theName);
20 setPrice(thePrice);
21 }

22 public Sale(Sale originalObject)
23 {
24 if (originalObject == null)
25 {
26 System.out.println("Error: null Sale object.");
27 System.exit(0);
28 }
29 //else
30 name = originalObject.name;
31 price = originalObject.price;
32 }

33 public static void announcement()
34 {
35 System.out.println("This is the Sale class.");
36 }

37 public double getPrice()
38 {
39 return price;
40 }

(continued)

522 CHAPTer 8 Polymorphism and Abstract Classes

41 /**
42 Precondition: newPrice is nonnegative.
43 */
44 public void setPrice(double newPrice)
45 {
46 if (newPrice >= 0)
47 price = newPrice;
48 else
49 {
50 System.out.println("Error: Negative price.");
51 System.exit(0);
52 }
53 }

54 public String getName()
55 {
56 return name;
57 }

58 /**
59 Precondition: newName is a nonempty string.
60 */
61 public void setName(String newName)
62 {
63 if (newName != null && newName != "")
64 name = newName;
65 else
66 {
67 System.out.println("Error: Improper name value.");
68 System.exit(0);
69 }
70 }

71 public String toString()
72 {
73 return (name + " Price and total cost = $" + price);
74 }

75 public double bill()
76 {
77 return price;
78 }

display 8.1 The Base Class Sale (part 2 of 3)

Polymorphism 523

 79 /*
 80 Returns true if the names are the same and the bill for the calling
 81 object is equal to the bill for otherSale; otherwise returns false.
 82 Also returns false if otherObject is null.
 83 */
 84 public boolean equalDeals(Sale otherSale)
 85 {
 86 if (otherSale == null)
 87 return false;
 88 else
 89 return (name.equals(otherSale.name)
 90 && bill() == otherSale.bill());
 91 }

 92 /*
 93 Returns true if the bill for the calling object is less
 94 than the bill for otherSale; otherwise returns false.
 95 */
 96 public boolean lessThan (Sale otherSale)
 97 {
 98 if (otherSale == null)
 99 {
100 System.out.println("Error: null Sale object.");
101 System.exit(0);
102 }
103 //else
104 return (bill() < otherSale.bill());
105 }

106 public boolean equals(Object otherObject)
107 {
108 if (otherObject == null)
109 return false;
110 else if (getClass() != otherObject.getClass())
111 return false;
112 else
113 {
114 Sale otherSale = (Sale)otherObject;
115 return (name.equals(otherSale.name)
116 && (price == otherSale.price));
117 }
118 }
119 }

When invoked, these methods
will use the definition of
the method bill that
is appropriate for each of
the objects.

display 8.1 The Base Class Sale (part 3 of 3)

524 CHAPTer 8 Polymorphism and Abstract Classes

display 8.2 The Derived Class DiscountSale (part 1 of 2)

 1 /**
 2 Class for a sale of one item with discount expressed as a percent of
 3 the price, but no other adjustments.
 4 Class invariant: The price is always nonnegative; the name is a
 5 nonempty string; the discount is always nonnegative.
 6 */

 7 public class DiscountSale extends Sale
 8 {
 9 private double discount; //A percent of the price. Cannot be

//negative.

10 public DiscountSale()
11 {
12 super();
13 discount = 0;
14 }

15 /**
16 Precondition: theName is a nonempty string; thePrice is

nonnegative; theDiscount is expressed as a percent of the price
17 and is nonnegative.
18 */
19 public DiscountSale(String theName,
20 double thePrice, double theDiscount)
21 {
22 super (theName, thePrice);
23 setDiscount(theDiscount);
24 }

25 public DiscountSale(DiscountSale originalObject)
26 {
27 super (originalObject);
28 discount = originalObject.discount;
29 }

30 public static void announcement()
31 {
32 System.out.println("This is the DiscountSale class.");
33 }

34 public double bill()
35 {
36 double fraction = discount/100;
37 return (1 − fraction)*getPrice();
38 }

The meaning would be unchanged if
this line were omitted.

Polymorphism 525

39 public double getDiscount()
40 {
41 return discount;
42 }

43 /**
44 Precondition: Discount is nonnegative.
45 */
46 public void setDiscount(double newDiscount)
47 {
48 if (newDiscount >= 0)
49 discount = newDiscount;
50 else
51 {
52 System.out.println("Error: Negative discount.");
53 System.exit(0);
54 }
55 }

56 public String toString()
57 {
58 return (getName() + " Price = $" + getPrice()
59 + " Discount = " + discount + "%\n"
60 + " Total cost = $" + bill());
61 }

62 public boolean equals(Object otherObject)

63 }

The rest of the definition of equals is located in Self-Test Exercise 4.

display 8.2 The Derived Class DiscountSale (part 2 of 2)

526 CHAPTer 8 Polymorphism and Abstract Classes

Sample Dialogue

floor mat Price and total cost = $10.0

floor mat Price = $11.0 Discount = 10.0%

 Total cost = $9.9

Discounted item is cheaper.

cup holder Price and total cost = $9.9

cup holder Price = $11.0 Discount = 10.0%

 Total cost = $9.9

Deals are equal

display 8.3 Late Binding Demonstration

 1 /**
 2 Demonstrates late binding.
 3 */
 4 public class LateBindingDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 Sale simple = new Sale("floor mat", 10.00);

 //One item at $10.00.
 9 DiscountSale discount = new DiscountSale("floor mat", 11.00,
10 10); //One item at $11.00 with a 10% discount.
11 System.out.println(simple);
12 System.out.println(discount);

13 if (discount.lessThan(simple))
14 System.out.println("Discounted item is cheaper.");
15 else
16 System.out.println("Discounted item is not cheaper.");

17 Sale regularPrice = new Sale("cup holder", 9.90);
 //One item at $9.90.

18 DiscountSale specialPrice = new DiscountSale("cup holder",
 11.00,10);

19 //One item at $11.00 with a 10% discount.
20 System.out.println(regularPrice);
21 System.out.println(specialPrice);

22 if (specialPrice.equalDeals(regularPrice))
23 System.out.println("Deals are equal.");
24 else
25 System.out.println("Deals are not equal.");
26 }
27 }

The method lessThan uses different
definitions for discount.bill()
and simple.bill().

The method equalDeals
uses different definitions for
specialPrice.bill()
and regularPrice.
bill().

The equalDeals method says that two items are equal provided they have
the same name and the same bill (same total cost). It does not matter how the
bill (the total cost) is calculated.

Polymorphism 527

Late Binding with toString

In the subsection “The Methods equals and toString” in Chapter 4, we noted that if
you include an appropriate toString method in the definition of a class, then you can
output an object of the class using System.out.println. For example, the following
works because Sale has a suitable toString method:

Sale aSale = new Sale("tire gauge", 9.95);
System.out.println(aSale);

This produces the following screen output:

tire gauge Price and total cost = $9.95

This happens because Java uses late binding. We explain this here.
The method invocation System.out.println(aSale) is an invocation of the

method println with the calling object System.out. One definition of the method
println has a single argument of type Object. The definition is equivalent to the
following:

public void println(Object theObject)
{
 System.out.println(theObject.toString());
}

(The invocation of the method println inside the braces is a different, overloaded
definition of the method println. That invocation inside the braces uses a method
println that has a parameter of type String, not a parameter of type Object.)

Self-Test Exercises

1. Explain the difference between the terms late binding and polymorphism.

2. Suppose you modify the definitions of the class Sale (Display 8.1) by adding the
modifier final to the definition of the method bill. How would that change
the output of the program in Display 8.3?

3. Would it be legal to add the following method definition to the class
DiscountSale?

public static boolean isAGoodBuy(Sale theSale)
{
 return (theSale.getDiscount() > 20);
}

4. Complete the definition of the method equals for the class DiscountSale
(Display 8.2).

528 CHAPTer 8 Polymorphism and Abstract Classes

This definition of println was given before the class Sale was defined. Yet in the
invocation

System.out.println(aSale);

with an argument aSale of type Sale (and hence also of type Object), it is the
definition of toString in the class Sale that is used, not the definition of toString in
the class Object. Late binding is what makes this work.

static binding

PITFaLL: No Late Binding for Static Methods

Java does not use late binding with private methods, methods marked final, or static
methods. With private methods and final methods, this is not an issue because
dynamic binding would serve no purpose anyway. However, with static methods it
can make a difference when the static method is invoked using a calling object. Such
cases arise more often than you might think.

When Java (or any language) does not use late binding, it uses static binding.
With static binding, the decision of which definition of a method to use with a calling
object is made at compile time based on the type of the variable naming the object.

Display 8.4 illustrates the effect of static binding on a static method with a
calling object. Note that the static method announcement() in the class Sale
has its definition overridden in the derived class DiscountSale. However, when
an object of type DiscountSale is named by a variable of type Sale, it is the
definition announcement() in the class Sale that is used, not the definition of
announcement in the class DiscountSale.

“So, what’s the big deal?” you may ask. A static method is normally called with a
class name and not a calling object. It may look that way, but there are cases where
a static method has a calling object in an inconspicuous way. If you invoke a static
method within the definition of a nonstatic method but without any class name or
calling object, then the calling object is an implicit this, which is a calling object.
For example, suppose you add the following method to the class Sale:

public void showAdvertisement()
{
 announcement();
 System.out.println(toString());
}

Suppose further that the method showAdvertisement is not overridden in the
class DiscountSale. Then the method showAdvertisement is inherited unchanged
from Sale.

Polymorphism 529

Downcasting and Upcasting

The following is perfectly legal (given the class definitions in Displays 8.1 and 8.2):

Sale saleVariable;
DiscountSale discountVariable =

 new DiscountSale("paint", 15, 10);
saleVariable = discountVariable;
System.out.println(saleVariable.toString());

An object of a derived class (in this case, the derived class DiscountSale) also has the
type of its base class (in this case, Sale) and so can be assigned to a variable of the base
class type. Now let’s consider the invocation of the method toString() on the last
line of the preceding code.

PITFaLL: (continued)

Now consider the following code:

Sale s = new Sale("floor mat", 10.00);
DiscountSale discount = new DiscountSale("floor mat", 11.00,10);
s.showAdvertisement();
discount.showAdvertisement();

You might expect the following output:

This is the Sale class.
floor mat Price and total cost = $10.0
This is the DiscountSale class.
floor mat Price = $11.0 Discount = 10.0%
Total cost = $9.9

However, because the definition used for the static method announcement, inside of
showAdvertisement, is determined at compile time (based on the type of the variable
holding the calling object), the output actually is the following, where the change is
shown in blue:

This is the Sale class.
floor mat Price and total cost = $10.0
This is the Sale class.
floor mat Price = $11.0 Discount = 10.0%
Total cost = $9.9

Java uses late binding with the nonstatic method toString but static binding with
the static method announcement. ■

530 CHAPTer 8 Polymorphism and Abstract Classes

display 8.4 No Late Binding with Static Methods ★

 1 /**
 2 Demonstrates that static methods use static binding.
 3 */
 4 public class StaticMethodsDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 Sale.announcement();
 9 DiscountSale.announcement();
10 System.out.println(
11 "That showed that you can override a static method " +

"definition.");

12 Sale s = new Sale();
13 DiscountSale discount = new DiscountSale();
14 s.announcement();
15 discount.announcement();
16 System.out.println("No surprises so far, but wait.");

17 Sale discount2 = discount;
18 System.out.println(
19 "discount2 is a DiscountSale object in a Sale variable.");
20 System.out.println("Which definition of announcement() will " +

 "it use?");
21 discount2.announcement();
22 System.out.println(
23 "It used the Sale version of announcement()!");
24 }
25 }

Sample Dialogue

Java uses static binding with static
methods so the choice of which
definition of a static method to use is
determined by the type of the variable,
not by the object.

discount and discount2 name the same
object, but one is a variable of type Sale and
one is a variable of type DiscountSale.

This is the Sale class.

This is the DiscountSale class.

That showed that you can override a static method definition.

This is the Sale class.

This is the DiscountSale class.

No surprises so far, but wait.

discount2 is a DiscountSale object in a Sale variable.

Which definition of announcement() will it use?

This is the Sale class.

It used the Sale version of announcement()!

If Java had used
late binding
with static
methods, then
this would have
been the other
announcement.

Polymorphism 531

Because Java uses late binding, the invocation

saleVariable.toString()

uses the definition of the method toString given in the class DiscountSale. So the
output is

paint Price = $15.0 Discount = 10.0%
 Total cost = $13.5

Because of late binding, the meaning of the method toString is determined by the
object, not by the type of the variable saleVariable.

You may well respond, “Who cares? Why would I ever want to assign an object of
type DiscountSale to a variable of type Sale?”1 You make such assignments more
often than you might think, but you tend to not notice them because they happen
behind the scenes. Recall that a parameter is really a local variable, so every time
you use an argument of type DiscountSale for a parameter of type Sale, you are
assigning an object of type DiscountSale to a variable of type Sale. For example,
consider the following invocation taken from the definition of the copy constructor for
DiscountSale (Display 8.2):

super(originalObject);

In this invocation, originalObject is of type DiscountSale, but super is the copy
constructor for the base class Sale. Therefore, super has a parameter of type Sale,
which is a local variable of type Sale that is set equal to the argument originalObject
of type DiscountSale.

Note that the type of the variable naming an object determines which method
names can be used in an invocation with that calling object. (Self-Test Exercise 3 may
help you to understand this point.) However, the object itself always determines the
meaning of a method invocation performed by an object; this is what we mean by
late binding.

1It is actually the references to the object that are assigned, not the objects themselves, but that subtlety
is not relevant to what we are discussing here, and the language is already complicated enough.

an Object Knows the Definitions of Its Methods
The type of a class variable determines which method names can be used with the variable,
but the object named by the variable determines which definition of the method name is
used. A special case of this rule is the following: The type of a class parameter determines
which method names can be used with the parameter, but the argument determines which
definition of the method name is used.

532 CHAPTer 8 Polymorphism and Abstract Classes

Assigning an object of a derived class to a variable of a base class (or any ancestor
class) is often called upcasting because it is like a type cast to the type of the base
class. In the normal way of writing inheritance diagrams, base classes are drawn above
derived classes.2

When you do a type cast from a base case to a derived class (or from any ancestor class
to any descendent class), it is called a downcast. Upcasting is pretty straightforward;
there are no funny cases to worry about, and in Java things always work out the way
you want them to. Downcasting is more troublesome. First of all, downcasting does
not always make sense. For example, the downcast

Sale saleVariable = new Sale("paint", 15);
DiscountSale discountVariable;
discountVariable = (DiscountSale)saleVariable;//Error

does not make sense because the object named by saleVariable has no instance variable
named discount and so cannot be an object of type DiscountSale. Every DiscountSale
is a Sale, but not every Sale is a DiscountSale, as indicated by this example. It is your
responsibility to use downcasting only in situations where it makes sense.

It is instructive to note that

discountVariable = (DiscountSale)saleVariable;

produces a run-time error but will compile with no error. However, the following,
which is also illegal, produces a compile-time error:

discountVariable = saleVariable;

Java catches these downcasting errors as soon as it can, which may be at compile time
or at run time, depending on the case.

Although downcasting can be dangerous, it is sometimes necessary. For example, we
inevitably use downcasting when we define an equals method for a class. For example,
note the following line from the definition of equals in the class Sale (Display 8.1):

Sale otherSale = (Sale)otherObject;

This is a downcast from the type Object to the type Sale. Without this downcast, the
instance variables name and price in the return statement, reproduced as follows,
would be illegal, because the class Object has no such instance variables:

return (name.equals(otherSale.name)
 && (price == otherSale.price));

2 We prefer to think of an object of the derived class as actually having the type of its base class as well
as its own type. So this is not, strictly speaking, a type cast, but it does no harm to follow standard
usage and call it a type cast in this case.

upcasting

downcasting

Polymorphism 533

PITFaLL: Downcasting

It is the responsibility of the programmer to use downcasting only in situations where
it makes sense. The compiler makes no checks to see if downcasting is reasonable.
However, if you use downcasting in a situation in which it does not make sense, you
will usually get a run-time error message. ■

TIP: Checking to See Whether Downcasting Is Legitimate ★

You can use the instanceof operator to test whether or not downcasting is sensible.
Downcasting to a specific type is reasonable if the object being cast is an instance of
that type, which is exactly what the instanceof operator tests for.

The instanceof operator checks whether an object is of the type given as its second
argument. The syntax is

Object instanceof Class_Name

which returns true if Object is of type Class_Name; otherwise it returns false. So,
the following will return true if someObject is of type DiscountSale:

someObject instanceof DiscountSale

Note that because every object of every descendent class of DiscountSale is also
of type DiscountSale, this expression will return true if someObject is an instance
of any descendent class of DiscountSale.

So, if you want to type cast to DiscountSale, then you can make the casts safer
as follows:

DiscountSale ds = new DiscountSale();
if (someObject instanceof DiscountSale)
{
 ds = (DiscountSale)someObject;
 System.out.println("ds was changed to " + someObject);
}
else
 System.out.println("ds was not changed.");

someObject might be, for example, a variable of type Sale or of type Object. ■

instanceof

534 CHAPTer 8 Polymorphism and Abstract Classes

Self-Test Exercises

5. Consider the following code, which is identical to the code discussed earlier in
the opening of the subsection, “Downcasting and Upcasting,” except that we
added the type cast shown in color:

Sale saleVariable;
DiscountSale discountVariable =
 new DiscountSale("paint", 15, 10);
saleVariable = (Sale)discountVariable;
System.out.println(saleVariable.toString());

 We saw that without the type cast, the definition of the toString method used
is the one given in the definition of the class DiscountSale. With this added
type cast, will the definition of the toString method used still be the one given
in DiscountSale or will it be the one given in the definition of Sale?

6. Would it be legal to add the following method definition to the class
DiscountSale?

 What about adding it to the class Sale?

public static void showDiscount(Sale object)
{
 System.out.println("Discount = "
 + object.getDiscount());
}

7. ★ What output is produced by the following code?

Sale someObject = new DiscountSale("map", 5, 0);
DiscountSale ds = new DiscountSale();
if (someObject instanceof DiscountSale)
{
 ds = (DiscountSale)someObject;
 System.out.println("ds was changed to " + someObject);
}
else
 System.out.println("ds was not changed.");

Polymorphism 535

Self-Test Exercises (continued)

8. ★ What output is produced by the following code?

Sale someObject = new Sale("map", 5);
DiscountSale ds = new DiscountSale();
if (someObject instanceof DiscountSale)
{
 ds = (DiscountSale)someObject;
 System.out.println("ds was changed to " + someObject);
}
else
 System.out.println("ds was not changed.");

9. ★ Suppose we removed the qualifier static from the method announcement()
in both Sale (Display 8.1) and DiscountSale (Display 8.2). What would
be the output produced by the following code (which is similar to the end of
Display 8.4)?

Sale s = new Sale();
DiscountSale discount = new DiscountSale();
s.announcement();
discount.announcement();
System.out.println("No surprises so far, but wait.");

Sale discount2 = discount;
System.out.println(
 "discount2 is a DiscountSale object in a Sale variable.");
System.out.println(
 "Which definition of announcement() will it use?");
discount2.announcement();
System.out.println(
 "Did it use the Sale version of announcement()?");

536 CHAPTer 8 Polymorphism and Abstract Classes

a First Look at the clone Method

Every object inherits a method named clone from the class Object. The method
clone has no parameters and is supposed to return a copy of the calling object.
However, the inherited version of clone was not designed to be used as is. Instead,
you are expected to override the definition of clone with a version appropriate for the
class you are defining. The officially sanctioned way to define the method clone turns
out to be a bit complicated and requires material we do not cover until Chapter 13, so
we will describe how to do so in that chapter. In this section, we will describe a simple
way to define clone that will work in most situations and will allow us to discuss
how polymorphism interacts with the clone method. If you are in a hurry to see the
officially sanctioned way to define clone, you can read Chapter 13 immediately after
this section (Section 8.1) with no loss of continuity in your reading.

The method clone has no parameters and should return a copy of the calling
object. The returned object should have identical data to that of the calling object, but
it normally should be a different object (an identical twin or “a clone”). You usually
want the clone method to return the same kind of copy as what we have been defining
for copy constructors, which is what is known as a deep copy. (You many want to review
the subsection entitled “Copy Constructors” in Chapter 5.)

A clone method serves very much the same purpose as a copy constructor, but, as
you will see in the Pitfall titled “Limitations of Copy Constructors,” there are situations
where a clone method works as you want, whereas a copy constructor does not
perform as desired.

As with other methods inherited from the class Object, the method clone needs
to be redefined (overridden) before it performs properly. The heading for the method
clone in the class Object is as follows:

protected Object clone()

If a class has a copy constructor, you can define the clone method for that class
by using the copy constructor to create the copy returned by the clone method. For
example, consider the class Sale defined in Display 8.1. The following definition of
the clone method can be added to the definition of Sale given in Display 8.1:

public Sale clone()
{
 return new Sale(this);
}

Using a copy constructor is not the officially sanctioned way to define a clone method,
and in fact, the Java documentation says you should not define it this way. However,
it does work correctly, and some authorities say it is acceptable. In Chapter 13, we
will discuss the official way of defining the method clone when we introduce the
Cloneable interface.

Note that, as we defined the method clone for the class Sale, the method clone has
Sale as its return type and is given public rather than protected access. Despite these

clone

Polymorphism 537

changes in the method heading, this definition overrides the method clone inherited
from the class Object. As we noted in Chapter 7, a change to a more permissive access,
such as from protected to public, is always allowed when overriding a method
definition. Changing the return type from Object to Sale is allowed because Sale
(and every other class, for that matter) is a descendent class of the class Object. This
is an example of a covariant return type, as discussed in the subsection of Chapter 7
entitled “Changing the Return Type of an Overridden Method.”

The clone method for the DiscountSale class can be defined similarly:

public DiscountSale clone()
{
 return new DiscountSale(this);
}

The definitions of the classes Sale and DiscountSale on the website that
accompanies this book each include the method clone defined as we just described.

extra code
on website

PITFaLL: Sometimes the clone Method Return Type Is Object

Prior to version 5.0, Java did not allow covariant return types and so did not
allow any changes whatsoever in the return type of an overridden method. In those
earlier versions of Java, the clone method for all classes had Object as its return
type. This is because the clone method for a class overrides the clone method of
the class Object, and the clone method of the class Object has a return type of
Object. If you encounter a clone method for a class that was designed and coded
before version 5.0 of Java, the clone method will have a return type of Object.
When using such older clone methods, you will need to use a type cast on the value
returned by clone.

For example, suppose the class OldClass was defined before Java 5.0. If
 original is an object of the class OldClass, then the following will produce a
compiler error message:

OldClass copy = original.clone();

The problem is that original.clone() returns a value of type Object, while the
variable copy is of type OldClass. To correct the situation, you must add a type cast
as follows:

OldClass copy = (OldClass)original.clone();

(continued)

538 CHAPTer 8 Polymorphism and Abstract Classes

PITFaLL: (continued)

You may encounter this problem even with classes defined after Java version 5.0. In
Java version 5.0 and later, it is perfectly legal to use Object as a return type for a
clone method (even if that is not the preferred return type). When in doubt, it causes
no harm to include the type cast. For example, the following is legal for the clone
method of the class Sale defined in the previous section:

Sale copySale = originalSale.clone();

However, adding the following type cast produces no problems:

Sale copySale = (Sale)originalSale.clone();

When in doubt about the clone method of a class, include the type cast. ■

PITFaLL: Limitations of Copy Constructors ★

Copy constructors work well in most simple cases. However, there are situations where
they do not—indeed, cannot—do their job. That is why Java favors using the method
clone in place of using a copy constructor. Here is a simple example of where the copy
constructor does not do its job, but the clone method does.

For this discussion, assume that the classes Sale and DiscountSale each have
a clone method added. The definitions of these clone methods are given in the
previous subsection.

Suppose you have a method with the following heading (the methods Sale and
DiscountSale were defined in Displays 8.1 and 8.2):

/**
 Supposedly returns a safe copy of a. That is, if b is the array
returned, then b[i] is supposedly an independent copy of a[i].

*/
public static Sale[] badCopy(Sale[] a)
{
 Sale[] b = new Sale[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = new Sale(a[i]);//Problem here!
 return b;
}

Now if your array a contains objects from derived classes of Sale, such as objects of
type DiscountSale, then badCopy(a) will not return a true copy of a. Every element
of the array badCopy(a) will be a plain old Sale, because the Sale copy constructor
produces only plain old Sale objects; no element in badCopy(a) will be an instance
of the class DiscountSale.

Polymorphism 539

PITFaLL: (continued)

If we instead use the method clone, things work out as they should; the following
is the correct way to define our copy method:

public static Sale[] goodCopy(Sale[] a)
{
 Sale[] b = new Sale[a.length];
 for (int i = 0; i < a.length; i++)
 b[i] = a[i].clone();
 return b;
}

Because of late binding (polymorphism), a[i].clone() always means the correct
 version of the clone method. If a[i] is an object created with a constructor of the
class DiscountSale, a[i].clone() will invoke the definition of clone() given in the
definition of the class DiscountSale. If a[i] is an object created with a constructor
of the class Sale, a[i].clone() will invoke the definition of clone() given in the
definition of the class Sale. This is illustrated in Display 8.5.

This may seem like a sleight of hand. After all, in the classes Sale and DiscountSale,
we defined the method clone in terms of copy constructors. We reproduce the defini-
tions of clone from the class Sale and DiscountSale as follows:

//For Sale class
public Sale clone()
{
 return new Sale(this);
}
//For DiscountSale class
public DiscountSale clone()
{
 return new DiscountSale(this);
}

So, why is using the method clone any different than using a copy constructor? The
difference is simply that the method creating the copy of an element a[i] has the
same name clone in all the classes, and polymorphism works with method names.
The copy constructors named Sale and DiscountSale have different names, and
polymorphism has nothing to do with methods of different names.

We will have more to say about the clone method in Chapter 13 when we discuss
the Cloneable interface. ■

540 CHAPTer 8 Polymorphism and Abstract Classes

display 8.5 Copy Constructor Versus clone Method (part 1 of 2)

 1 /**
 2 Demonstrates where the clone method works,
 3 but copy constructors do not.
 4 */
 5 public class CopyingDemo
 6 {

 7 public static void main(String[] args)
 8 {
 9 Sale[] a = new Sale[2];
10 a[0] = new Sale("atomic coffee mug", 130.00);
11 a[1] = new DiscountSale("invisible paint", 5.00, 10);
12 int i;

13 Sale[] b = badCopy(a);

14 System.out.println("With copy constructors:");
15 for (i = 0; i < a.length; i++)
16 {
17 System.out.println("a[" + i + "] = " + a[i]);
18 System.out.println("b[" + i + "] = " + b[i]);
19 System.out.println();
20 }
21 System.out.println();

22 b = goodCopy(a);

23 System.out.println("With clone method:");
24 for (i = 0; i < a.length; i++)
25 {
26 System.out.println("a[" + i + "] = " + a[i]);
27 System.out.println("b[" + i + "] = " + b[i]);
28 System.out.println();
29 }

30 }

31 /**
32 Supposedly returns a safe copy of a. That is, if b is the
33 array returned, then b[i] is supposedly an independent copy of a[i].
34 */

35 public static Sale[] badCopy(Sale[] a)
36 {
37 Sale[] b = new Sale[a.length];
38 for (int i = 0; i < a.length; i++)
39 b[i] = new Sale(a[i]);//Problem here!
40 return b;
41 }
42

This program assumes that a clone
method has been added to the class
Sale and to the class DiscountSale.

Abstract Classes 541

display 8.5 Copy Constructor Versus clone Method (part 2 of 2)

43 /**
44 Returns a safe copy of a. That is, if b is the
45 array returned, then b[i] is an independent copy of a[i].
46 */
47 public static Sale[] goodCopy(Sale[] a)
48 {
49 Sale[] b = new Sale[a.length];
50 for (int i = 0; i < a.length; i++)
51 b[i] = a[i].clone();
52 return b;
53 }
54 }

Sample Dialogue

With copy constructors:

a[0] = atomic coffee mug Price and total cost = $130.0

b[0] = atomic coffee mug Price and total cost = $130.0

a[1] = invisible paint Price = $5.0 Discount 10.0%

 Total cost = $4.5

b[1] = invisible paint Price and total cost = $5.0

With clone method:

a[0] = atomic coffee mug Price and total cost = $130.0

b[0] = atomic coffee mug Price and total cost = $130.0

a[1] = invisible paint Price = $5.0 Discount 10.0%

 Total cost = $4.5

b[1] = invisible paint Price = $5.0 Discount 10.0%

 Total cost = $4.5

8.2 abstract Classes

It is for us, the living, rather to be dedicated here to the unfinished work which
they who fought here have thus far so nobly advanced.

ABrAHAm LInCOLn, Gettysburg Address, 1864.

An abstract class is a class that has some methods without complete definitions. You
cannot create an object using an abstract class constructor, but you can use an abstract
class as a base class to define a derived class.

The copy constructor
lost the discount.

The clone method did
not lose the discount.

542 CHAPTer 8 Polymorphism and Abstract Classes

abstract Classes

In Chapter 7, we defined a class named Employee and two of its derived classes,
HourlyEmployee and SalariedEmployee. Display 8.6 repeats the details of these
class definitions, which we will use in this discussion.

Suppose that when we define the class Employee, we know that we are going to
frequently compare employees to see if they have the same pay. We might add the
following method to the class Employee:

public boolean samePay(Employee other)
{
 return (this.getPay() == other.getPay());
}

There is, however, one problem with adding the method samePay to the class
Employee: The method samePay includes an invocation of the method getPay, and
the class Employee has no getPay method. Moreover, there is no reasonable definition
we might give for a getPay method so that we could add it to the class Employee.
The only instance variables in the class Employee give an employee’s name and hire
date, but give no information about pay. To see how we should proceed, let’s compare
objects of the class Employee to employees in the real world.

Every real-world employee does have some pay because every real-world employee
is either an hourly employee or a salaried employee, and the two derived classes
HourlyEmployee and SalariedEmployee each have a getPay method. The problem is
that we do not know how to define the getPay method until we know if the employee is
an hourly or salaried. We would like to postpone the definition of the getPay method and
give it only in each derived class of the Employee class. We would like to simply add a note
to the Employee class that says: “There will be a method getPay for each Employee but
we do not yet know how it is defined.” Java lets us do exactly what we want. The official
Java equivalent of our promissory note about the method getPay is to make getPay an
abstract method. An abstract method has a heading just like an ordinary method, but
no method body. The syntax rules of Java require the modifier abstract and require a
semicolon in place of the missing method body, as illustrated by the following:

public abstract double getPay();

abstract
method

Abstract Classes 543

display 8.6 Employee Class and Its Derived Classes (part 1 of 2)

 1 public class Employee
 2 {
 3 private String name;
 4 private Date hireDate;

 5 public Employee()

 6 public boolean equals(Object otherObject)

 7 }

 1 public class SalariedEmployee extends Employee
 2 {
 3 private double salary; //annual

 4 /**
 5 Returns the pay for the month.
 6 */
 7 public double getPay()
 8 {
 9 return salary / 12;
10 }

11 public boolean equals(Object otherObject)

12 }

These show the details needed for the current discussion. You
should not need to review the entire class definitions from Chapter 7.
Complete definitions of all these classes are given in the subdirectory
for this chapter on the website that comes with this text.

The class Date is defined in Display 4.13, but the
details are not important to the current
discussion. There is no need to review the definition
of the class Date.

The body of the constructor as given in Display 7.2 should initialize the
instance variables, but the details are not needed for this discussion.

The body of the method equals is the same as in Display 7.10, but the details of the definition are not
important to the current discussion.

All other constructor and other method definitions are exactly the same as in Display 7.2.

The class Employee has no method named getPay.

The rest of the definition of equals is the same as in the answer to Self-Test Exercise 20 of Chapter 7,
but the details of the definition are not important to the current discussion.

All constructor and other method definitions are exactly the same as in Display 7.5.

(continued)

544 CHAPTer 8 Polymorphism and Abstract Classes

 1 public class HourlyEmployee extends Employee
 2 {
 3 private double wageRate;
 4 private double hours; //for the month

 5 /**
 6 Returns the pay for the month.
 7 */
 8 public double getPay()
 9 {
10 return wageRate * hours;
11 }

12 public boolean equals(Object otherObject)
13 {
14 if (otherObject == null)
15 return false;
16 else if (getClass() != otherObject.getClass())
17 return false;
18 else
19 {
20 HourlyEmployee otherHourlyEmployee =
21 (HourlyEmployee)otherObject;
22 return (super.equals(otherHourlyEmployee)
23 && (wageRate == otherHourlyEmployee.wageRate)
24 && (hours == otherHourlyEmployee.hours));
25 }
26 }

27 }

If we add this abstract method getPay to the class Employee, then we are free to add
the method samePay to the class Employee.

An abstract method can be thought of as the interface part of a method with the
implementation details omitted. Because a private method is normally only a helping
method and so not part of the interface for a programmer using the class, it follows that
it does not make sense to have a private abstract method. Java enforces this reasoning.
In Java, an abstract method cannot be private. Normally an abstract method is public
but protected, and package (default) access is allowed.

An abstract method serves a purpose, even though it is not given a full definition. It
serves as a placeholder for a method that must be defined in all (nonabstract) derived
classes. Note that in Display 8.7, the method samePay includes invocations of the
method getPay. If the abstract method getPay were omitted, this invocation of
getPay would be illegal.

display 8.6 Employee Class and Its Derived Classes (part 2 of 2)

All constructor and other method definitions are exactly the same as in Display 7.3.

abstract
cannot be

private

Abstract Classes 545

A class that has at least one abstract method is called an abstract class and, in Java,
must have the modifier abstract added to the class heading. The redefined, now
abstract, class Employee is shown in Display 8.7.

An abstract class can have any number of abstract methods. In addition, it can have,
and typically does have, other regular (fully defined) methods. If a derived class of an
abstract class does not give full definitions to all the abstract methods, or if the derived
class adds an abstract method, then the derived class is also an abstract class and must
include the modifier abstract in its heading.

In contrast with the term abstract class, a class with no abstract methods is called a
concrete class.

abstract Method
An abstract method serves as a placeholder for a method that will be fully defined in a
descendent class. An abstract method has a complete method heading with the addition of
the modifier abstract. It has no method body but does end with a semicolon in place of a
method body. An abstract method cannot be private.

ExaMPLES

public abstract double getPay();
public abstract void doSomething(int count);

abstract class

concrete class

display 8.7 Employee Class as an Abstract Class (part 1 of 2)

 1 /**
 2 Class Invariant: All objects have a name string and hire date.
 3 A name string of "No name" indicates no real name specified yet.
 4 A hire date of January 1, 1000 indicates no real hire date specified

yet.
 5 */
 6 public abstract class Employee
 7 {
 8 private String name;
 9 private Date hireDate;

10 public abstract double getPay();

11 public Employee()
12 {
13 name = "No name";
14 hireDate = new Date("January", 1, 1000);

 //Just a placeholder.
15 }

16 public boolean samePay(Employee other)
17 {
18 if (other == null)

The class Date is defined in Display 4.13, but the
details are not relevant to the current discussion
of abstract methods and classes. There is no
need to review the definition of the class Date.

(continued)

546 CHAPTer 8 Polymorphism and Abstract Classes

19 {
20 System.out.println("Error: null Employee object.");
21 System.exit(0);
22 }
23 //else
24 return (this.getPay() == other.getPay());
25 }

26 }

All other constructor and other method definitions are exactly the same as in Display 7.2.
In particular, they are not abstract methods.

display 8.7 Employee Class as an Abstract Class (part 2 of 2)

abstract Class
An abstract class is a class with one or more abstract methods. An abstract class must
have the modifier abstract included in the class heading, as illustrated by the example.

ExaMPLE

public abstract class Employee
{
 private String name;
 private Date hireDate;

 public abstract double getPay();
 ...

PITFaLL: You Cannot Create Instances of an abstract Class

You cannot use an abstract class constructor to create an object of the abstract class.
You can only create objects of the derived classes of the abstract class. For example,
with the class Employee defined as in Display 8.7, the following would be illegal:

Employee joe = new Employee(); //Illegal because
 //Employee is an abstract class.

But, this is no problem. The object joe could not correspond to any real-world
employee. Any real-world employee is either hourly or a salaried. In the real world,
one cannot be just an employee. One must be either an hourly employee or a
salaried employee. Still, it is useful to discuss employees in general. In particular,
we can compare employees to see if they have the same pay, even though the way of
calculating the pay might be different for the two employees. ■

Abstract Classes 547

TIP: an abstract Class Is a Type

You cannot create an object of an abstract class (unless it is actually an object of
some concrete descendent class). Nonetheless, it makes perfectly good sense to have
a parameter of an abstract class type such as Employee (as defined in Display 8.7).
Then, an object of any of the descendent classes of Employee can be plugged in for
the parameter. It even makes sense to have a variable of an abstract class type such as
Employee, although it can only name objects of its concrete descendent classes. ■

an abstract Class Is a Type
You can have a parameter of an abstract class type such as the abstract class Employee
defined in Display 8.7. Then, an object of any of the concrete descendent classes of Employee
can be plugged in for the parameter. You can also have variables of an abstract class type such
as Employee, although it can only name objects of its concrete descendent classes.

Self-Test Exercises

10. Can a method definition include an invocation of an abstract method?

11. Can you have a variable whose type is an abstract class?

12. Can you have a parameter whose type is an abstract class?

13. Is it legal to have an abstract class in which all methods are abstract?

14. The abstract class Employee (Display 8.7) uses the method definitions from
Display 7.2. After we did Display 7.2, we later gave the following improved
version of equals:

public boolean equals(Object otherObject)
{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 Employee otherEmployee =
 (Employee)otherObject;
 return(name.equals(otherEmployee.name)
 && hireDate.equals(otherEmployee.hireDate));
 }
}

Would it be legal to replace the version of equals for the abstract class
Employee with this improved version?

(continued)

548 CHAPTer 8 Polymorphism and Abstract Classes

Chapter Summary

• Late binding (also called dynamic binding) means that the decision of which version
of a method is appropriate is decided at run time. Java uses late binding.

• Polymorphism means using the process of late binding to allow different objects to
use different method actions for the same method name. Polymorphism is essentially
another word for late binding.

• You can assign an object of a derived class to a variable of its base class (or any ances-
tor class), but you cannot do the reverse.

• If you add the modifier final to the definition of a method, it indicates that the
method may not be redefined in a derived class. If you add the modifier final to
the definition of a class, it indicates that the class may not be used as a base class to
derive other classes.

• An abstract method serves as a placeholder for a method that will be fully defined in
a descendent class.

• An abstract class is a class with one or more abstract methods.

• An abstract class is designed to be used as a base class to derive other classes. You can-
not create an object of an abstract class type (unless it is an object of some concrete
descendent class).

• An abstract class is a type. You can have variables whose type is an abstract class and
you can have parameters whose type is an abstract type.

answers to Self-Test Exercises

 1. In essence, there is no difference between the two terms. There is only a slight
difference in their usage. Late binding refers to the mechanism used to decide
which method definition to use when a method is invoked, and polymorphism
refers to the fact that the same method name can have different meanings because
of late binding.

 2. There would be problems well before you wrote the program in Display 8.3. Since
final means you cannot change the definition of the method bill in a derived

Self-Test Exercises (continued)

15. The abstract class Employee given in Display 8.7 has a constructor (in fact, it
has more than one, although only one is shown in Display 8.7). But using a
constructor to create an instance of an abstract class, as in the following, is illegal:

Employee joe = new Employee(); //Illegal

So why bother to have any constructors in an abstract class? Aren’t they useless?

Answers to self-Test exercises 549

class, the definition of the method DiscountSale would not compile. If you omit
the definition of the method bill from the class DiscountSale, the output would
change to

floor mat Price and total cost = $10.0
floor mat Price = $11.0 Discount = 10.0%
 Total cost = $11.0
Discounted item is not cheaper.
cup holder Price and total cost = $9.9
cup holder Price = $11.0 Discount = 10.0%
 Total cost = $11.0
Items are not equal.

 Note that all objects use the definition of bill given in the definition of Sale.

 3. It would not be legal to add it to any class definition because the class Sale has no
method named getDiscount and so the invocation

theSale.getDiscount()

 is not allowed. If the type of the parameter were changed from Sale to DiscountSale,
it would then be legal.

 4. public boolean equals(Object otherObject)

{
 if (otherObject == null)
 return false;
 else if (getClass() != otherObject.getClass())
 return false;
 else
 {
 DiscountSale otherDiscountSale =
 (DiscountSale)otherObject;
 return (super.equals(otherDiscountSale)
 && discount == otherDiscountSale.discount);
 }
}

 5. The definition of toString always depends on the object and not on any type
cast. So, the definition used is the same as without the added type cast; that is, the
definition of toString that is used is the one given in DiscountSale.

 6. It would not be legal to add it to any class definition because the parameter is
of type Sale, and Sale has no method named getDiscount. If the parameter
type were changed to DiscountSale, it would then be legal to add it to any class
definition.

 7. ds was changed to map Price $ 5.0 discount 0.0%
Total cost $5.0

 8. ds was not changed.

550 CHAPTer 8 Polymorphism and Abstract Classes

 9. The output would be the following (the main change from Display 8.4 is shown
in blue):
This is the Sale class.
This is the DiscountSale class.
No surprises so far, but wait.
discount2 is a DiscountSale object in a Sale variable.
Which definition of announcement() will it use?
This is the DiscountSale class.
Did it use the Sale version of announcement()?

 10. Yes. See Display 8.7.

 11. Yes, you can have a variable whose type is an abstract class.

 12. Yes, you can have a parameter whose type is an abstract class.

 13. Yes, it is legal to have an abstract class in which all methods are abstract.

 14. Yes, it would be legal to replace the version of equals for the abstract class
Employee with this improved version. In fact, the version of Employee on the
 accompanying website does use the improved version of equals.

15. No, you can still use constructors to hold code that might be useful in derived
classes. The constructors in the derived classes can—in fact, must—include invoca-
tions of constructors in the base (abstract) class. (Recall the use of super as a name
for the base class constructor.)

Programming Projects

 1. In Programming Project 7.3 from Chapter 7, the Alien class was rewritten to use
inheritance. The rewritten Alien class should be made abstract because there
will never be a need to create an instance of it, only its derived classes. Change this
to an abstract class and also make the getDamage method an abstract method. Test
the class from your main method to ensure that it still operates as expected.

 2. Create a class named Employee that can be used to calculate the salaries of different
employees. The Employee class should keep a track of the employee ID, name, de-
partment, salary, and designation with appropriate accessor and mutator methods.
Also create an equals() method that overrides Object’s equals() method,
where employees can check if their designation is identical. Next, create two addi-
tional classes named Manager and Clerk that are derived from Employee. Create an
overridden method named addBonus that returns the salary of the employee after
adding up the bonus. There is a default bonus of $200/month. Managers have a
bonus of $300/month and clerks have a bonus of $100/month. Finally create a dis-
play method to print the details of the employee. You may assume the initial salary
of an employee and other necessary values. Test your classes from a main method.

 3. Extend the previous problem to calculate the salary deductions based on the num-
ber of days an employee is on leave. Consider 20 working days per month. Add
a method that calculates the deductions of each employee based on their leave

Solution to
Programming
Project 8.1

VideoNote

record. In your main method, create an array of type deduction filled with sample
data of all types of Employees. Finally calculate the total deduction that iterates
through the array and returns the total amount of deductions of all the employees
in a month.

 4. The goal for this programming project is to create a simple 2D predator–prey
simulation. In this simulation, the prey is ants, and the predators are doodlebugs.
These critters live in a world composed of a 20 3 20 grid of cells. Only one critter
may occupy a cell at a time. The grid is enclosed, so a critter is not allowed to move
off the edges of the grid. Time is simulated in time steps. Each critter performs
some action every time step.

 The ants behave according to the following model:

 • Move. Every time step, randomly try to move up, down, left, or right. If the
cell in the selected direction is occupied or would move the ant off the grid,
then the ant stays in the current cell.

 • Breed. If an ant survives for three time steps, then at the end of the third time
step (i.e., after moving), the ant will breed. This is simulated by creating a new
ant in an adjacent (up, down, left, or right) cell that is empty. If there is no
empty cell available, no breeding occurs. Once an offspring is produced, the
ant cannot produce an offspring until three more time steps have elapsed.

 The doodlebugs behave according to the following model:

 • Move. Every time step, if there is an adjacent cell (up, down, left, or right)
occupied by an ant, then the doodlebug will move to that cell and eat the ant.
Otherwise, the doodlebug moves according to the same rules as the ant. Note
that a doodlebug cannot eat other doodlebugs.

 • Breed. If a doodlebug survives for eight time steps, then at the end of the time
step, it will spawn off a new doodlebug in the same manner as the ant.

 • Starve. If a doodlebug has not eaten an ant within the last three time steps,
then at the end of the third time step, it will starve and die. The doodlebug
should then be removed from the grid of cells.

 During one turn, all the doodlebugs should move before the ants.

 Write a program to implement this simulation and draw the world using ASCII
characters of “o” for an ant and “X” for a doodlebug. Create a class named
 Organism that encapsulates basic data common to both ants and doodlebugs.

 This class should have an overridden method named move that is defined in the
derived classes of Ant and Doodlebug. You may need additional data structures to
keep track of which critters have moved.

 Initialize the world with 5 doodlebugs and 100 ants. After each time step, prompt
the user to press Enter to move to the next time step. You should see a cyclical pat-
tern between the population of predators and prey, although random perturbations
may lead to the elimination of one or both species.

 5. Consider a graphics system that has classes for various figures—say, rectangles,
boxes, triangles, circles, and so on. For example, a rectangle might have data

Programming Projects 551

552 CHAPTer 8 Polymorphism and Abstract Classes

 members’ height, width, and center point, while a box and circle might have only
a center point and an edge length or radius, respectively. In a well-designed system,
these would be derived from a common class, Figure. You are to implement such
a system.

 The class Figure is the base class. You should add only Rectangle and Triangle
classes derived from Figure. Each class has stubs for methods erase and draw.
Each of these methods outputs a message telling the name of the class and what
method has been called. Because these are just stubs, they do nothing more than
output this message. The method center calls the erase and draw methods to
erase and redraw the figure at the center. Because you have only stubs for erase
and draw, center will not do any “centering” but will call the methods erase and
draw, which will allow you to see which versions of draw and center it calls.
Also, add an output message in the method center that announces that center is
being called. The methods should take no arguments. Also, define a demonstration
 program for your classes.

 For a real example, you would have to replace the definition of each of these
 methods with code to do the actual drawing. You will be asked to do this in
 Programming Project 8.6.

 6. Flesh out Programming Project 8.5. Give new definitions for the various construc-
tors and methods center, draw, and erase of the class Figure; draw and erase
of the class Triangle; and draw and erase of the class Rectangle. Use character
graphics; that is, the various draw methods will place regular keyboard characters
on the screen in the desired shape. Use the character '*' for all the character graph-
ics. That way, the draw methods actually draw figures on the screen by placing the
character '*' at suitable locations on the screen. For the erase methods, you can
simply clear the screen (by outputting blank lines or by doing something more
sophisticated). There are a lot of details in this project, and you will have to decide
on some of them on your own.

 7. Define a class named MultiItemSale that represents a sale of multiple items of
type Sale given in Display 8.1 (or of the types of any of its descendent classes).
The class MultiItemSale will have an instance variable whose type is Sale[],
which will be used as a partially filled array. There will also be another instance
variable of type int that keeps track of how much of this array is currently used.
The exact details on methods and other instance variables, if any, are up to you.
Use this class in a program that obtains information for items of type Sale and of
type DiscountSale (Display 8.2) and that computes the total bill for the list of
items sold.

 8. Programming Project 7.8 required rewriting the solution to Programming Project 4.10
with inheritance. Redo or do Programming Project 7.8, but instead define the Pet
class as an abstract class. The acepromazine() and carprofen() methods should
be defined as abstract methods.

 In your main method, define an array of type Pet and add two instances of cats
and two instances of dogs to the array. Iterate through the array and output how
much carprofen and acepromazine each pet would require.

Programming Projects 553

 9. The following is a short snippet of code that simulates rolling a 6-sided dice 100 times.
There is an equal chance of rolling any digit from 1 to 6.
public static void printDiceRolls(Random randGenerator)
{
 for (int i = 0; i < 100; i++)
 {
 System.out.println(randGenerator.nextInt(6) + 1);
 }
}

public static void main(String[] args)
{
 Random randGenerator = new Random();
 printDiceRolls(randGenerator);
}

 Create your own class, LoadedDice, that is derived from Random. The constructor
for LoadedDice needs to only invoke Random’s constructor. Override the public
int nextInt(int num) method so that with a 50% chance, your new method
always returns the largest number possible (i.e., num – 1), and with a 50% chance,
it returns what Random’s nextInt method would return.

 Test your class by replacing the main method with the following:
 LoadedDice myDice = new LoadedDice();
 printDiceRolls(myDice);

 You do not need to change the printDiceRolls method even though it takes
a parameter of type Random. Polymorphism tells Java to invoke LoadedDice’s
 nextInt() method instead of Random’s nextInt() method.

Solution to
Programming
Project 8.9

VideoNote

This page intentionally left blank

Exceptions to the Catch or Declare Rule 593
throws Clause in Derived Classes 594
When to Use Exceptions 595
Example: Retrieving a High Score 596
Event-Driven Programming ★ 599

9.3 More PrograMMing Techniques
for excePTion handling 601

The finally Block ★ 601
Rethrowing an Exception ★ 603
The AssertionError Class ★ 603
ArrayIndexOutOfBoundsException 604

9.1 excePTion handling Basics 557
try-catch Mechanism 557
Exception Handling with the Scanner Class 559
Throwing Exceptions 562
Example: A Toy Example of Exception Handling 564
Exception Classes 569
Exception Classes from Standard Packages 570
Defining Exception Classes 572
Multiple catch Blocks 583

9.2 Throwing excePTions
in MeThods 588

Throwing an Exception in a Method 588
Declaring Exceptions in a throws Clause 590

9Exception
Handling

chapter summary 601 answers to self-Test exercises 602 Programming Projects 606

It’s the exception that proves the rule.

Anonymous, 1700s.

Introduction
One way to divide the task of designing and coding a method is to code two main cases
separately: the case where nothing unusual happens and the case where exceptional
things happen. Once you have the program working for the case where things always
go smoothly, you can then code the second case where notable things can happen. In
Java, there is a way to mirror this approach in your code. Write your code more or less
as if nothing very unusual happens. After that, use the Java exception handling facilities
to add code for those unusual cases.

The most important use of exceptions is to deal with methods that have some
special case that is handled differently depending on how the method is used. For
example, if there is a division by zero in the method, then it may turn out that for
some invocations of the method, the program should end, but for other invocations
of the method, something else should happen. Such a method can be defined to throw
an exception if the special case occurs; that exception will permit the special case to be
handled outside of the method. This allows the special case to be handled differently
for different invocations of the method.

In Java, exception handling proceeds as follows: Either some library software or
your code provides a mechanism that signals when something unusual happens. This
is called throwing an exception. At another place in your program, you place the
code that deals with the exceptional case. This is called handling the exception. This
method of programming makes for cleaner code. Of course, we still need to explain the
details of how you do this in Java.

Prerequisites
Almost this entire chapter uses only material from Chapters 1 through 5 and Chapter 7.
The only exception is the subsection “ArrayIndexOutOfBoundsException,” which
also uses material from Chapter 6. However, that subsection may be omitted if you have
not yet covered Chapter 6. Chapter 8 is not needed for this chapter.

9 Exception Handling

throw
exception

handle
exception

Exception Handling Basics 557

9.1 Exception Handling Basics

Well the program works for most cases. I didn’t know it had to work for
that case.

COMPUTER SCIENCE STUDENT, appealing a grade

Exception handling is meant to be used sparingly and in some situations that are more
involved than what is reasonable to include in an introductory example. So, in some cases,
we will teach you the exception handling details of Java by means of simple examples
that would not normally use exception handling. This makes a lot of sense for learning
about the exception handling details of Java, but do not forget that these examples are toy
examples and, in practice, you would not use exception handling for anything this simple.

try-catch Mechanism

The basic way of handling exceptions in Java consists of the try-throw-catch trio. At
this point, we will start with only try and catch. The general setup consists of a try
block followed by one or more catch blocks. First let’s describe what a try block is. A
try block has the following syntax:

try
{
 Some_Code_That_May_Throw_An_Exception
}

This try block contains the code for the basic algorithm that tells what to do when
everything goes smoothly. It is called a try block because it “tries” to execute the case
where all goes well.

Now, an exception can be “thrown” as a way of indicating that something unusual
happened. For example, if our code tries to divide by zero, then an ArithmeticException
object is thrown. In most of this chapter, our own code will throw the exception, but
initially we will have existing Java classes do the throwing.

As the name suggests, when something is “thrown,” something goes from one place
to another place. In Java, what goes from one place to another is the flow of control
as well as the exception object that is thrown. When an exception is thrown, the code
in the surrounding try block stops executing and (normally) another portion of code,
known as a catch block, begins execution. The catch block has a parameter, and the
exception object thrown is plugged in for this catch block parameter. This executing
of the catch block is called catching the exception or handling the exception. When
an exception is thrown, it should ultimately be handled by (caught by) some catch
block. The appropriate catch block immediately follows the try block; for example,

catch(Exception e)
{
 String message = e.getMessage();
 System.out.println(message);
 System.exit(0);
}

try block

catch block

handling an
exception

558 CHAPTER 9 Exception Handling

This catch block looks very much like a method definition that has a parameter
of a type Exception. By using the type Exception, this catch block will catch any
possible exception that is thrown. We will see at the end of this section that we can
also restrict the catch block to specific exception classes. The catch block is not a
method definition, but in some ways, it is like a method. It is a separate piece of code
that is executed when your code throws an exception. The catch block in the previous
example will print out a message about the exception that was thrown.

So, when an exception is thrown, it is similar to a method call, but instead of calling
a method, it calls the catch block and says to execute the code in the catch block.
A catch block is often referred to as an exception handler.

Let’s focus on the identifier e in the following line from a catch block:

catch(Exception e)

That identifier e in the catch block heading is called the catch block parameter.
Each catch block can have at most one catch block parameter. The catch block
parameter does two things:

•	 The catch block parameter is preceded by an exception class name that specifies
what type of thrown exception object the catch block can catch. If the class name is
Exception, then the block can catch any exception.

•	 The	catch block parameter gives you a name for the thrown object that is caught, so
you can write code in the catch block that does things with the thrown object that
is caught.

Although the identifier e is often used for the catch block parameter, this is not
required. You may use any nonkeyword identifier for the catch block parameter just as
you can for a method parameter.

exception
handler

catch block
parameter

catch Block Parameter
The catch block parameter is an identifier in the heading of a catch block that serves as a
placeholder for an exception that might be thrown. When a suitable exception is thrown in
the preceding try block, that exception is plugged in for the catch block parameter. The
identifier e is often used for catch block parameters, but this is not required. You can use
any legal (nonkeyword) identifier for a catch block parameter.

SYNTAX

catch(Exception_Class_Name Catch_Block_Parameter)
{
 Code to be performed if an exception of the named exception class is thrown in

the try block.
}

You may use any legal identifier for the Catch_Block_Parameter.

Exception Handling Basics 559

Let’s consider two possible cases of what can happen when a try block is executed:
(1) no exception is thrown in the try block, and (2) an exception is thrown in the
try block and caught in the catch block. (Later in the Tip, “What Happens If an
Exception Is Never Caught?,” we will describe a third case where the catch block does
not catch the exception.)

•	 If	no	exception	is	thrown,	the	code	in	the	try block is executed to the end of the
try block, the catch block is skipped, and execution continues with the code placed
after the catch block.

•	 If	 an	 exception	 is	 thrown	 in	 the	try block, the rest of the code in the try block
is skipped, and (in simple cases) control is transferred to a following catch block.
The thrown object is plugged in for the catch block parameter, and the code in
the catch block is executed. And then (provided the catch block code does not
end the program or do something else to end the catch block code prematurely), the
code that follows that catch block is executed.

Exception Handling with the Scanner Class

As a concrete example, consider a program that reads an int value from the keyboard
using the nextInt method of the Scanner class. You have probably noticed that
the program will end with an error message if the user enters something other than
a well-formed int value. That is true as far as it goes, but the full detail is that
if the user enters something other than a well-formed int value, an exception of
type InputMismatchException will be thrown. If the exception is not caught, your
program ends with an error message. However, you can catch the exception, and
in the catch block, give code for some alternative action, such as asking the user to
reenter the input. You are not required to account for an InputMismatchException
by catching it in a catch block or declaring it in a throws clause (this is because
InputMismatchException is a descendent class of RuntimeException). However,
you are allowed to catch an InputMismatchException in a catch block, which can
sometimes be useful.

EXAMPLE

In the following, e is the catch block parameter.

catch(Exception e)
{
 System.out.println(e.getMessage());
 System.out.println("Aborting program.");
 System.exit(0);
}

560 CHAPTER 9 Exception Handling

InputMismatchException is in the standard Java package java.util, so if your
program mentions InputMismatchException, then it needs an import statement,
such as the following:

import java.util.InputMismatchException;

Display 9.1 contains an example of how you might usefully catch an
InputMismatchException. This program gets an input int value from the keyboard
and then does nothing with it other than echo the input value. However, you can use
code such as this to require robust input for any program that uses keyboard input.
The Tip “Exception Controlled Loops” explains the general technique we used for the
loop in Display 9.1.

TIP: Exception Controlled Loops

Sometimes when an exception is thrown, such as an InputMismatchException for
an ill-formed input, you want your code to simply repeat some code so that the user
can get things right on a second or subsequent try. One way to set up your code to
repeat a loop every time a particular exception is thrown is as follows:

boolean done = false;

while (!done)
{

try
{

Code that may throw an exception in the class Exception_Class.
done = true; //Will end the loop.
<Possibly more code.>

}
catch(Exception_Class e)
{

<Some code.>
}

}

Note that if an exception is thrown in the first piece of code in the try block, then
the try block ends before the line that sets done to true is executed, so the loop body
is repeated. If no exception is thrown, then done is set to true and the loop body is
not repeated.

Display 9.1 contains an example of such a loop. Minor variations on this outline
can accommodate a range of different situations for which you want to repeat code on
throwing an exception. ■

Exception Handling Basics 561

Display 9.1 An Exception Controlled Loop

 1 import java.util.Scanner;
 2 import java.util.InputMismatchException;

 3 public class InputMismatchExceptionDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 Scanner keyboard = new Scanner(System.in);
 8 int number = 0; //to keep compiler happy
 9 boolean done = false;

10 while (!done)

11 {

12 try

13 {

14 System.out.println("Enter a whole number:");

15 number = keyboard.nextInt();

16 done = true;

17 }

18 catch(InputMismatchException e)

19 {

20 keyboard.nextLine();
21 System.out.println("Not a correctly written whole

 number.");
22 System.out.println("Try again.");

23 }

24 }

25 System.out.println("You entered " + number);

26 }

27 }

Sample Dialogue

Enter a whole number:
forty two

Not a correctly written whole number.

Try again.

Enter a whole number:

Fortytwo

Not a correctly written whole number.

Try again.

Enter a whole number:

42

You entered 42

If nextInt throws an exception, the
try block ends and the Boolean
variable done is not set to true.

562 CHAPTER 9 Exception Handling

Throwing Exceptions

In the previous example, an exception was thrown by the nextInt() method if a
noninteger was entered. We did not write the method that threw the exception; we
were responsible only for catching and handling any exceptions. For many programs,
this pattern is all that is necessary.

However, it is also possible for your own code to throw the exception. To do this,
use a throw statement inside the try block in the format

throw new Exception(String_describing _the_exception);

The following example is from Display 9.3 and consists of a try block with throw
statements included. The setting for the program is a dance lesson. The program checks
to see if there are no men or no women in which case the lesson is canceled. Otherwise,
the number of dance partners is computed:

Self-Test Exercises

1. How would the dialogue in Display 9.1 change if you were to omit the following
line from the catch block? (Try it and see.)

 keyboard.nextLine();

2. Give the definition for the following method. Use the techniques given in
Display 9.1.

/**
 Precondition: keyboard is an object of the class Scanner that
has been set up for keyboard input (as we have been doing
right along). Returns: An int value entered at the keyboard.
If the user enters an incorrectly formed input, she or he
is prompted to reenter the value,

*/
public static int getInt(Scanner keyboard)

try
{

if (men == 0 && women == 0)
throw new Exception("Lesson is canceled. No students.");

else if (men == 0)
throw new Exception("Lesson is canceled. No men.");

else if (women == 0)
throw new Exception("Lesson is canceled. No women.");

// women >= 0 && men >= 0
if (women >= men)

System.out.println("Each man must dance with " +
 women/(double)men + "women.");

else
System.out.println("Each woman must dance with " +

 men/(double)women + " men.");
}

Exception Handling Basics 563

This try block contains the following three throw statements:

throw new Exception("Lesson is canceled. No students.");
throw new Exception("Lesson is canceled. No men.");
throw new Exception("Lesson is canceled. No women.");

The value thrown is an argument to the throw operator and is always an object of some
exception class. The execution of a throw statement is called throwing an exception.

throw
statement

throwing an
exception

throw Statement
SYNTAX

throw new Exception_Class_Name (Possibly_Some_Arguments);

When the throw statement is executed, the execution of the surrounding try block is stopped
and (normally) control is transferred to a catch block. The code in the catch block is executed
next. See the box entitled "try-throw-catch" later in this chapter for more details.

EXAMPLE

throw new Exception("Division by zero.");

The getMessage Method
Every exception has a String instance variable that contains some message, which typically
identifies the reason for the exception. For example, if the exception is thrown as follows:

throw new Exception(String_Argument);

then the string given as an argument to the constructor Exception is used as the
value of this String instance variable. If the object is called e, then the method call
e.getMessage() returns this string.

EXAMPLE

Suppose the following throw statement is executed in a try block:

throw new Exception("Input must be positive.");

And suppose the following is a catch block immediately following the try block:

catch (Exception e)
{

System.out.println(e.getMessage());
System.out.println("Program aborted.");
System.exit(0);

}

In this case, the method call e.getMessage() returns the string
"Input must be positive."

564 CHAPTER 9 Exception Handling

EXAMPLE: A Toy Example of Exception Handling

Display 9.2 contains a simple program that might, by some stretch of the
imagination, be used at a dance studio. This program does not use exception
handling, and you would not normally use exception handling for anything this
simple. The setting for use of the program is a dance lesson. The program simply
checks to see if there are more men than women or more women than men and
then announces how many partners each man or woman will have. The exceptional
case is when there are no men or no women or both. In that exceptional case, the
dance lesson is canceled.

In Display 9.3, we rewrote the program using exception handling. The
nonexceptional cases go inside the try block, and the try block checks for the
exceptional cases. The exceptional cases are not handled in the try block, but if
detected, they are signaled by throwing an exception. The following three lines taken
from inside the multiway if-else statement are the code for throwing the exception:

throw new Exception("Lesson is canceled. No students.");
throw new Exception("Lesson is canceled. No men.");
throw new Exception("Lesson is canceled. No women.");

If the program does not encounter an exceptional case, then none of these
statements that throw an exception is executed. In that case, we need not even know
what happens when an exception is thrown. If no exception is thrown, then the code
in the section labeled “catch block” is skipped and the program proceeds to the last
statement, which happens to output "Begin the lesson." Now, let’s see what
happens in an exceptional case.

If the number of men or the number of women is zero (or both), that is an
exceptional case in this program and results in an exception being thrown. To make
things concrete, let’s say that the number of men is zero, but the number of women is
not zero. In that case, the following statement is executed, which is how Java throws
an exception:

throw new Exception("Lesson is canceled. No men.");

Let’s analyze this statement. The following is the invocation of a constructor for the
class Exception, which is the standard Java package java.lang:

new Exception("Lesson is canceled. No men.");

The created Exception object is not assigned to a variable, but rather is used as
an (anonymous) argument to the throw operator. (Anonymous arguments were
discussed in Chapter 5.) The keyword throw is an operator with syntax similar to the

Exception Handling Basics 565

unary + or unary − operators. To make it look more like an operator, you can write it
with parentheses around the argument, as follows:

throw (new Exception("Lesson is canceled. No men."));

Although it is perfectly legal and sensible to include these extra parentheses, nobody
includes them.

To understand this process of throwing, you need to know two things: What is
this Exception class? And what does the throw operator do with the Exception
object? The class Exception is another class from the standard Java package java.
lang. As you have already seen, the class Exception has a constructor that takes a
single String argument. The Exception object created stores this String argument
(in a private instance variable). As you will see, this String argument can later be
retrieved from the Exception object.

The throw operator causes a change in the flow of control and delivers the Exception
object to a suitable place, as we are about to explain. When the throw operator is executed,
the try block ends immediately and control passes to the following catch block. (If it
helps, you can draw an analogy between the execution of the throw operator in a try block
and the execution of a break statement in a loop or switch statement.) When control is
transferred to the catch block, the Exception object that is thrown is plugged in for the
catch block parameter e. So, the expression e.getMessage() returns the string "Lesson
is canceled. No men." The method getMessage() of the class Exception is an
accessor method that retrieves the String in the private instance variable of the Exception
object—that is, the String used as an argument to the Exception constructor.

To see if you get the basic idea of how this exception throwing mechanism works,
study the Sample Dialogues in Displays 9.2 and 9.3. The next few sections explain
this mechanism in more detail.

EXAMPLE: (continued)

Display 9.2 Handling a Special Case without Exception Handling (part 1 of 3)

 1 import java.util.Scanner;

 2 public class DanceLesson
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);
 7
 8 System.out.println("Enter number of male dancers:");
 9 int men = keyboard.nextInt();

10 System.out.println("Enter number of female dancers: ");
11 int women = keyboard.nextInt();

(continued)

566 CHAPTER 9 Exception Handling

12 if (men == 0 && women == 0)
13 {
14 System.out.println("Lesson is canceled. No students.");
15 System.exit(0);
16 }
17 else if (men == 0)
18 {
19 System.out.println("Lesson is canceled. No men.");
20 System.exit(0);
21 }
22 else if (women == 0)
23 {

24 System.out.println("Lesson is canceled. No women.");
25 System.exit(0);
26 }

27 // women >= 0 && men >= 0
28 if (women >= men)
29 System.out.println("Each man must dance with " +
30 women/(double)men + " women.");
31 else
32 System.out.println("Each woman must dance with " +
33 men/(double)women + " men.");
34 System.out.println("Begin the lesson.");
35 }
36 }

Sample Dialogue 1

Enter number of male dancers:

4

Enter number of female dancers:

6

Each man must dance with 1.5 women.
Begin the lesson.

Sample Dialogue 2

Enter number of male dancers:

0

Enter number of female dancers:

0

Lesson is canceled. No students.

Display 9.2 Handling a Special Case without Exception Handling (part 2 of 3)

Exception Handling Basics 567

Display 9.3 Same Thing Using Exception Handling (part 1 of 3)

 1 import java.util.Scanner;

 2 public class DanceLesson2
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);

 7 System.out.println("Enter number of male dancers:");
 8 int men = keyboard.nextInt();
 9 System.out.println("Enter number of female dancers:");
10 int women = keyboard.nextInt();

This is just a toy example to learn Java syntax. Do not take it
as an example of good typical use of exception handling.

(continued)

Display 9.2 Handling a Special Case without Exception Handling (part 3 of 3)

Sample Dialogue 3

Enter number of male dancers:

0

Enter number of female dancers:

5

Lesson is canceled. No men.

Sample Dialogue 4

Enter number of male dancers:

4

Enter number of female dancers:

0

Lesson is canceled. No women.

568 CHAPTER 9 Exception Handling

11 try
12 {
13 if (men == 0 && women == 0)
14 throw new Exception("Lesson is canceled. No students.");
15 else if (men == 0)
16 throw new Exception("Lesson is canceled. No men.");
17 else if (women == 0)
18 throw new Exception("Lesson is canceled. No women.");

19 // women >= 0 && men >= 0
20 if (women >= men)
21 System.out.println("Each man must dance with " +
22 women/(double)men + " women.");
23 else
24 System.out.println("Each woman must dance with " +
25 men/(double)women + " men.");
26 }
27 catch(Exception e)
28 {
29 String message = e.getMessage();
30 System.out.println(message);
31 System.exit(0);
32 }

33 System.out.println("Begin the lesson.");
34 }

35 }

Sample Dialogue 1

Enter number of male dancers:

4

Enter number of female dancers:

6

Each man must dance with 1.5 women.

Begin the lesson.

Sample Dialogue 2

Enter number of male dancers:

0

Enter number of female dancers:

0

Lesson is canceled. No students.

catch block

try block

Display 9.3 Same Thing Using Exception Handling (part 2 of 3)

Note that this dialogue and
the dialogues that follow do not
say "Begin the lesson".

Exception Handling Basics 569

Exception Classes

There are more exception classes than just the single class Exception. There are more
exception classes in the standard Java libraries and you can define your own. All the
exception classes in the Java libraries have—and the exception classes you define should
have—the following properties:

•	 There	is	a	constructor	that	takes	a	single	argument	of	type	String.
•	 The	class	has	an	accessor	method	getMessage() that can recover the string given as

an argument to the constructor when the exception object was created.

try-throw-catch

When used together, the try, throw, and catch statements are the basic mechanism
for throwing and catching exceptions. The throw statement throws the exception. The
catch block catches the exception. The throw statement is normally included in a try
block. When the exception is thrown, the try block ends and then the code in the catch
block is executed. After the catch block is completed, the code after the catch block(s) is
executed (provided the catch block has not ended the program or performed some other
special action).

If no exception is thrown in the try block, then after the try block is completed, program
execution continues with the code after the catch block(s). (In other words, if no exception
is thrown, the catch block(s) are ignored.)

(continued)

Sample Dialogue 3

Enter number of male dancers:

0

Enter number of female dancers:

5

Lesson is canceled. No men.

Sample Dialogue 4

Enter number of male dancers:

4

Enter number of female dancers:

0

Lesson is canceled. No women.

Display 9.3 Same Thing Using Exception Handling (part 3 of 3)

570 CHAPTER 9 Exception Handling

Exception Classes from Standard Packages

Numerous predefined exception classes are included in the standard packages that come
with Java. The names of predefined exceptions are designed to be self-explanatory.
Some sample predefined exceptions are

IOException
NoSuchMethodException
FileNotFoundException

The predefined exception class Exception is the root class for all exceptions. Every
exception class is a descendent of the class Exception (that is, it is derived directly
from the class Exception or from a class that is derived from the class Exception,
or it arises from some longer chain of derivations ultimately starting with the class
Exception). You can use the class Exception itself, just as we did in Display 9.3, but
you are even more likely to use it to define a derived class of the class Exception. The
class Exception is in the java.lang package and so requires no import statement.

SYNTAX

try
{
 Some_Statements
 <Either a throw statement or
 a method invocation that might throw an exception
 or other statement that might throw an exception.>
 Some_More_Statements
}
catch (Exception_Class_Name Catch_Block_Parameter)
{
 <Code to be performed if an exception of the named exception
 class is thrown in the try block.>
}

You may use any legal identifier for the Catch_Block_Parameter; a common choice is e.
The code in the catch block may refer to the Catch_Block_Parameter. If there is an explicit
throw statement, it is usually embedded in an if statement or an if-else statement.
There may be any number of throw statements and/or any number of method invocations
that may throw exceptions. Each catch block can list only one exception, but there can be
more than one catch block.

EXAMPLE

See Display 9.3.

Exception

Exception Handling Basics 571

The Class Exception
Every exception class is a descendent class of the class Exception. You can use the class
Exception itself in a class or program, but you are even more likely to use it to define a
derived class of the class Exception. The class Exception is in the java.lang package
and so requires no import statement.

Self-Test Exercises

3. What output is produced by the following code?

int waitTime = 46;

try
{
 System.out.println("Try block entered.");
 if (waitTime > 30)
 throw new Exception("Over 30.");
 else if (waitTime < 30)
 throw new Exception("Under 30.");
 else
 System.out.println("No exception.");
 System.out.println("Leaving try block.");
}
catch(Exception thrownObject)
{
 System.out.println(thrownObject.getMessage());
}
System.out.println("After catch block");

4. Suppose that in Self-Test Exercise 3, the line

int waitTime = 46;

is changed to

int waitTime = 12;

 How would this affect the output?

5. In the code given in Self-Test Exercise 3, what are the throw statements?

6. What happens when a throw statement is executed? This is a general question.
Explain what happens in general, not simply what happens in the code in Self-Test
Exercise 1 or some other sample code.

7. In the code given in Self-Test Exercise 3, what is the try block?

(continued)

572 CHAPTER 9 Exception Handling

Defining Exception Classes

A throw statement can throw an exception object of any exception class. A common
thing to do is to define an exception class whose objects can carry the precise kinds of
information you want thrown to the catch block. An even more important reason for
defining a specialized exception class is so that you can have a different type to identify
each possible kind of exceptional situation.

Every exception class you define must be a derived class of some already defined
exception class. An exception class can be a derived class of any exception class in
the standard Java libraries or of any exception class that you have already successfully
defined. Our examples will be derived classes of the class Exception.

When defining an exception class, the constructors are the most important members.
Often there are no other members, other than those inherited from the base class. For example,
in Display 9.4, we have defined an exception class called DivisionByZeroException
whose only members are a no-argument constructor and a constructor with one String
parameter. In most cases, these two constructors are all the exception class definition
contains. However, the class does inherit all the methods of the class Exception.1 In
particular, the class DivisionByZeroException inherits the method getMessage, which
returns a string message. In the no-argument constructor, this string message is set with the
following, which is the first line in the no-argument constructor definition:

super("Division by Zero!");

This is a call to a constructor of the base class Exception. As we have already noted,
when you pass a string to the constructor for the class Exception, it sets the value

constructors

1Some programmers would prefer to derive the DivisionByZeroException class from the pre-
defined class ArithmeticException, but that would make it a kind of exception that you are not
required to catch in your code, so you would lose the help of the compiler in keeping track of uncaught
exceptions. For more details, see the subsection “Exceptions to the Catch or Declare Rule” later in this
chapter. If this footnote does not make sense to you, you can safely ignore it.

Self-Test Exercises (continued)

8. In the code given in Self-Test Exercise 3, what is the catch block?

9. In the code given in Self-Test Exercise 3, what is the catch block parameter?

10. Is the following legal?

Exception exceptionObject =
 new Exception("Oops!");

11. Is the following legal?

Exception exceptionObject =
 new Exception("Oops!");
throw exceptionObject;

Exception Handling Basics 573

of a String instance variable that can later be recovered with a call to getMessage.
The method getMessage is an ordinary accessor method of the class Exception. The
class DivisionByZeroException inherits this String instance variable as well as the
accessor method getMessage.

For example, in Display 9.5, we give a sample program that uses this exception class.
The exception is thrown using the no-argument constructor, as follows:

throw new DivisionByZeroException();

Display 9.4 A Programmer-Defined Exception Class

 1 public class DivisionByZeroException extends Exception
 2 {
 3 public DivisionByZeroException()
 4 {
 5 super("Division by Zero!");
 6 }

 7 public DivisionByZeroException(String message)
 8 {
 9 super(message);
10 }

11 }

You can do more in an exception
constructor, but this form is
common.

super is an invocation of the constructor
for the base class Exception.

Display 9.5 Using a Programmer-Defined Exception Class (part 1 of 3)

 1 import java.util.Scanner;

 2 public class DivisionDemoFirstVersion
 3 {

 4 public static void main(String[] args)
 5 {
 6 try
 7 {
 8 Scanner keyboard = new Scanner(System.in);

 9 System.out.println("Enter numerator:");
10 int numerator = keyboard.nextInt();

11 System.out.println("Enter denominator:");

12 int denominator = keyboard.nextInt();

We will present an improved version of this
program later in this chapter in Display 9.10.

(continued)

574 CHAPTER 9 Exception Handling

13 if (denominator == 0)

14 throw new DivisionByZeroException();

15 double quotient = numerator/(double)denominator;

16 System.out.println(numerator + "/"

17 + denominator

18 + " = " + quotient);

19 }

20 catch (DivisionByZeroException e)

21 {

22 System.out.println(e.getMessage());

23 secondChance();

24 }

25 System.out.println("End of program.");

26 }

27 public static void secondChance()

28 {

29 Scanner keyboard = new Scanner(System.in);

30 System.out.println("Try again:");

31 System.out.println("Enter numerator:");

32 int numerator = keyboard.nextInt();

33 System.out.println("Enter denominator:");

34 System.out.println("Be sure the denominator is not zero.");

35 int denominator = keyboard.nextInt();

36

37 if (denominator == 0)

38 {

39 System.out.println("I cannot do division by zero.");

40 System.out.println("Aborting program.");

41 System.exit(0);

42 }

43 double quotient = ((double)numerator)/denominator;

44 System.out.println(numerator + "/"

45 + denominator

46 + " = " + quotient);

47 }

48 }

Sometimes it is better to handle
an exceptional case without throwing
an exception.

Display 9.5 Using a Programmer-Defined Exception Class (part 2 of 3)

Exception Handling Basics 575

Sample Dialogue 1

Enter numerator:

11

Enter denominator:

5

11/5 = 2.2

End of program.

Sample Dialogue 2

Enter numerator:

11

Enter denominator:

0

Division by Zero!

Try again.

Enter numerator:

11

Enter denominator:

Be sure the denominator is not zero.

5

11/5 = 2.2

End of program.

Sample Dialogue 3

Enter numerator:

11

Enter denominator:

0

Division by Zero!

Try again.

Enter numerator:

11

Enter denominator:

Be sure the denominator is not zero.

0

I cannot do division by zero.

Aborting program.

Display 9.5 Using a Programmer-Defined Exception Class (part 3 of 3)

576 CHAPTER 9 Exception Handling

This exception is caught in the catch block shown in Display 9.5. Consider the
following line from that catch block:

System.out.println(e.getMessage());

This line produces the following output to the screen in Sample Dialogues 2 and 3
(in Display 9.5):

Division by Zero!

The definition of the class DivisionByZeroException in Display 9.4 has a second
constructor with one parameter of type String. This constructor allows you to choose any
message you like when you throw an exception. If the throw statement in Display 9.5 had
instead used the string argument

throw new DivisionByZeroException(
 "Oops. Shouldn't divide by zero.");

then in Sample Dialogues 2 and 3, the statement

System.out.println(e.getMessage());

would have produced the following output to the screen:

Oops. Shouldn't divide by zero.

Notice that in Display 9.5, the try block is the normal part of the program. If all goes
routinely, that is the only code that will be executed, and the dialogue will be like the one
shown in Sample Dialogue 1. In the exceptional case, when the user enters a zero for a
denominator, the exception is thrown and then is caught in the catch block. The catch
block outputs the message of the exception and then calls the method secondChance.
The method secondChance gives the user a second chance to enter the input correctly
and then carries out the calculation. If the user tries a second time to divide by zero, the
method ends the program. The method secondChance is there only for this exceptional
case. So, we have separated the code for the exceptional case of a division by zero into a
separate method, where it will not clutter the code for the normal case.

TIP: Preserve getMessage

For all predefined exception classes, getMessage will return the string that is passed
as an argument to the constructor (or will return a default string if no argument is
used with the constructor). For example, if the exception is thrown as follows:

throw new Exception("Wow, this is exceptional!");

then “Wow, this is exceptional!” is used as the value of the String instance variable of
the object created. If the object is called e, the method invocation e.getMessage()
returns “Wow, this is exceptional!” You want to preserve this behavior in the exception
classes you define.

Exception Handling Basics 577

TIP: (continued)

For example, suppose you are defining an exception class named NegativeNumber
Exception. Be sure to include a constructor with a string parameter that begins with
a call to super, as illustrated by the following constructor:

public NegativeNumberException(String message)
{
 super (message);
}

The call to super is a call to a constructor of the base class. If the base class constructor
handles the message correctly, then so will a class defined in this way.

You should also include a no-argument constructor in each exception class. This
no-argument constructor should set a default value to be retrieved by getMessage. The
constructor should begin with a call to super, as illustrated by the following constructor:

public NegativeNumberException()
{
 super("Negative Number Exception!");
}

If getMessage works as we described for the base class, then this sort of no- argument
constructor will work correctly for the new exception class being defined. A full defini-
tion of the class NegativeNumberException is given in Display 9.9. ■

Exception Object Characteristics
The two most important things about an exception object are its type (the exception class) and
a message that it carries in an instance variable of type String. This string can be recovered
with the accessor method getMessage. This string allows your code to send a message
along with an exception object, so that the catch block can use the message.

Programmer-Defined Exception Classes
You may define your own exception classes, but every such class must be a derived class
of an already existing exception class (either from one of the standard Java libraries or
programmer defined).

GUIDELINES

• If you have no compelling reason to use any other class as the base class, use the
class Exception as the base class.

• You should define two (or more) constructors, as described later in this list.

(continued)

578 CHAPTER 9 Exception Handling

• Your exception class inherits the method getMessage. Normally, you do not need
to add any other methods, but it is legal to do so.

• You should start each constructor definition with a call to the constructor of the base
class, such as the following:

 super("Sample Exception thrown!");

• You should include a no-argument constructor, in which case the call to super
should have a string argument that indicates what kind of exception it is. This string
can then be recovered by using the getMessage method.

• You should also include a constructor that takes a single string argument. In this
case, the string should be an argument in a call to super. That way, the string can
be recovered with a call to getMessage.

EXAMPLE

public class SampleException extends Exception
{
 public SampleException()
 {
 super("Sample Exception thrown!");
 }

 public SampleException(String message)
 {
 super(message);
 }
}

The class SampleException is on the website that comes with this text.extra code
on website

TIP: An Exception Class Can Carry a Message of Any Type

It is possible to define your exception classes so they have constructors that take
arguments of other types that are stored in instance variables. In such cases, you would
define accessor methods for the value stored in the instance variable. For example, if that
is desired, you can have an exception class that carries an int as a message. In that case,
you would need a new accessor method name, perhaps getBadNumber(). An example
of one such exception class is given in Display 9.6. Display 9.7 is a demonstration of
how to use the accessor method getBadNumber(). This is just a toy program, but it does
illustrate the details of how an exception object can carry a numeric message. ■

Display 9.6 An Exception Class with an int Message (part 1 of 2)

 1 public class BadNumberException extends Exception
 2 {
 3 private int badNumber;
 4 public BadNumberException(int number)
 5 {

Exception Handling Basics 579

 6 super ("BadNumberException");
 7 badNumber = number;
 8 }

 9 public BadNumberException()
10 {
11 super ("BadNumberException");
12 }

13 public BadNumberException(String message)
14 {
15 super (message);
16 }

17 public int getBadNumber()
18 {
19 return badNumber;
20 }
21 }

Display 9.7 Demonstration of How to Use BadNumberException (part 1 of 2)

 1 import java.util.Scanner;

 2 public class BadNumberExceptionDemo

 3 {

 4 public static void main(String[] args)
 5 {
 6 try
 7 {
 8 Scanner keyboard = new Scanner(System.in);

 9 System.out.println("Enter one of the numbers 42 and 24:");
10 int inputNumber = keyboard.nextInt();

11 if ((inputNumber != 42) && (inputNumber != 24))
12 throw new BadNumberException(inputNumber);

13 System.out.println("Thank you for entering " + inputNumber);
14 }
15 catch(BadNumberException e)
16 {
17 System.out.println(e.getBadNumber() +
18 " is not what I asked for.");
19 }
20 System.out.println("End of program.");
21 }
22 }
23

(continued)

Display 9.6 An Exception Class with an int Message (part 2 of 2)

580 CHAPTER 9 Exception Handling

Sample Dialogue 1

Enter one of the numbers 42 and 24:

42

Thank you for entering 42

End of program.

Sample Dialogue 2

Enter one of the numbers 42 and 24:

44

44 is not what I asked for.

End of program.

Self-Test Exercises

12. Define an exception class called PowerFailureException. The class should
have a constructor with no parameters. If an exception is thrown with this zero-
argument constructor, getMessage should return "Power Failure!" The
class should also have a constructor with a single parameter of type String.
If an exception is thrown with this constructor, then getMessage returns the
value that was used as an argument to the constructor.

13. Define an exception class called TooMuchStuffException. The class should
have a constructor with no parameters. If an exception is thrown with this zero-
argument constructor, getMessage should return "Too much stuff!" The
class should also have a constructor with a single parameter of type String.
If an exception is thrown with this constructor, then getMessage returns the
value that was used as an argument to the constructor.

14. Suppose the exception class ExerciseException is defined as follows:

public class ExerciseException extends Exception
{
 public ExerciseException()
 {
 super("Exercise Exception thrown!");
 System.out.println("Exception thrown.");
 }

 public ExerciseException(String message)
 {
 super(message);
 System.out.println(
 "ExerciseException invoked with an argument.");
 }
}

extra code
on website

extra code
on website

Display 9.7 Demonstration of How to Use BadNumberException (part 2 of 2)

Exception Handling Basics 581

extra code
on website

extra code
on website

(continued)

Self-Test Exercises (continued)

 What output would be produced by the following code (which is just an
exercise and not likely to occur in a program)?

ExerciseException e =
 new ExerciseException("Do Be Do");
System.out.println(e.getMessage());

The class ExerciseException is on the website that comes with this text.

15. Suppose the exception class TestException is defined as follows:

public class TestException extends Exception
{
 public TestException()
 {
 super("Test Exception thrown!");
 System.out.println(
 "Test exception thrown!!");
 }

 public TestException(String message)
 {
 super(message);
 System.out.println(
 "Test exception thrown with an argument!");
 }

 public void testMethod()
 {
 System.out.println("Message is " + getMessage());
 }
}

What output would be produced by the following code (which is just an
exercise and not likely to occur in a program)?

TestException exceptionObject = new TestException();
System.out.println(exceptionObject.getMessage());
exceptionObject.testMethod();

The class TestException is on the website that comes with this text.

16. Suppose the exception class MyException is defined as follows:

public class MyException extends Exception
{
 public MyException()
 {
 super("My Exception thrown!");
 }

582 CHAPTER 9 Exception Handling

 public MyException(String message)
 {
 super("MyException: " + message);
 }
}

What output would be produced by the following code (which is just an
exercise and not likely to occur in a program)?

int number;
try
{
 System.out.println("try block entered:");
 number = 42;
 if (number > 0)
 throw new MyException("Hi Mom!");
 System.out.println("Leaving try block.");
}

catch(MyException exceptionObject)
{
 System.out.println(exceptionObject.getMessage());
}
System.out.println("End of example.");

The class MyException is on the website that comes with this text.

17. Suppose that in Self-Test Exercise 16, the catch block were changed to the
following. (The type MyException is replaced with Exception.) How would
this affect the output?

catch(Exception exceptionObject)
{
 System.out.println(exceptionObject.getMessage());
}

18. Suppose that in Self-Test Exercise 16, the line

 number = 42;

were changed to

 number = −58;

How would this affect the output?

extra code
on website

Self-Test Exercises (continued)

extra code
on website

Exception Handling Basics 583

19. Although an exception class normally carries only a string message, you can
define exception classes to carry a message of any type. For example, objects of
the following type can also carry a double “message” (as well as a string message):

public class DoubleException extends Exception
{
 private double doubleMessage;

 public DoubleException()
 {
 super("DoubleException thrown!");
 }

 public DoubleException(String message)
 {
 super(message);
 }

 public DoubleException(double number)
 {
 super("DoubleException thrown!");
 doubleMessage = number;
 }

 public double getNumber()
 {
 return doubleMessage;
 }
}

What output would be produced by the following code (which is just an
exercise and not likely to occur in a program)?

DoubleException e =
 new DoubleException(41.9);

System.out.println(e.getNumber());
System.out.println(e.getMessage());

The class DoubleException is on the website that comes with this text.

20. There is an exception class named IOException that is defined in the standard
Java libraries. Can you define an exception class as a derived class of the
predefined class IOException, or must a defined exception class be derived
from the class Exception?

Multiple catch Blocks

A try block can potentially throw any number of exception values, and they
can be of differing types. In any one execution of the try block, at most
one exception will be thrown (since a throw statement ends the execution of

Self-Test Exercises (continued)

extra code
on website

584 CHAPTER 9 Exception Handling

Display 9.8 Catching Multiple Exceptions (part 1 of 2)

 1 import java.util.Scanner;

 2 public class MoreCatchBlocksDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);
 7
 8 try
 9 {
10 System.out.println("How many pencils do you have?");
11 int pencils = keyboard.nextInt();

12 if (pencils < 0)
13 throw new NegativeNumberException("pencils");

14 System.out.println("How many erasers do you have?");
15 int erasers = keyboard.nextInt();
16 double pencilsPerEraser;

17 if (erasers < 0)
18 throw new NegativeNumberException("erasers");
19 else if (erasers != 0)
20 pencilsPerEraser = pencils/(double)erasers;
21 else
22 throw new DivisionByZeroException();

23 System.out.println("Each eraser must last through "
24 + pencilsPerEraser + " pencils.");
25 }
26 catch(NegativeNumberException e)
27 {
28 System.out.println("Cannot have a negative number of "
29 + e.getMessage());
30 }
31 catch(DivisionByZeroException e)
32 {
33 System.out.println("Do not make any mistakes.");

the try block), but different types of exception values can be thrown on different
occasions when the try block is executed. Each catch block can only catch values of
the exception class type given in the catch block heading. However, you can catch
exception values of differing types by placing more than one catch block after a try
block. For example, the program in Display 9.8 has two catch blocks after its try
block. The class NegativeNumberException, which is used in that program, is given
in Display 9.9.

Exception Handling Basics 585

34 }

35 System.out.println("End of program.");
36 }
37 }

Sample Dialogue 1

How many pencils do you have?

5

How many erasers do you have?

2

Each eraser must last through 2.5 pencils

End of program.

Sample Dialogue 2

How many pencils do you have?

−2

Cannot have a negative number of pencils

End of program.

Sample Dialogue 3

How many pencils do you have?

5

How many erasers do you have?

0

Do not make any mistakes.

End of program.

PITFALL: Catch the More Specific Exception First

When catching multiple exceptions, the order of the catch blocks can be important.
When an exception is thrown in a try block, the catch blocks are examined in
order, and the first one that matches the type of the exception thrown is the one that
is executed. Thus, the following ordering of catch blocks would not be good:

catch (Exception e)
{
 .
 .
 .
}

Display 9.8 Catching Multiple Exceptions (part 2 of 2)

(continued)

586 CHAPTER 9 Exception Handling

catch(NegativeNumberException e)
{
 .
 .
 .
}

With this ordering, the catch block for NegativeNumberException would
never be used, because all exceptions are caught by the first catch block.
 Fortunately, the compiler will warn you about this. The correct ordering is to
 reverse the catch blocks so that the more specific exception comes before its
 parent exception class, as shown in the following:

catch(NegativeNumberException e)
{
 .
 .
 .
}

catch(Exception e)
{
 .
 .
 .

} ■

The second catch block can
never be reached.

PITFALL: (continued)

Display 9.9 The Class NegativeNumberException

 1 public class NegativeNumberException extends Exception
 2 {
 3 public NegativeNumberException()
 4 {
 5 super("Negative Number Exception!");
 6 }
 7 public NegativeNumberException(String message)
 8 {
 9 super(message);
10 }
11 }

Exception Handling Basics 587

Self-Test Exercises

21. What output will be produced by the following code? (The definition of the
class NegativeNumberException is given in Display 9.9.)

int n;
try
{
 n = 42;
 if (n > 0)
 throw new Exception();
 else if (n < 0)
 throw new NegativeNumberException();
 else
 System.out.println("Bingo!");
}
catch(NegativeNumberException e)
{
 System.out.println("First catch.");
}
catch(Exception e)
{
 System.out.println("Second catch.");
}
System.out.println("End of exercise.");

22. Suppose that in Self-Test Exercise 21, the line

n = 42;

 is changed to

n = –42;

 How would this affect the output?

23. Suppose that in Self-Test Exercise 21, the line

n = 42;

 is changed to

n = 0;

 How would this affect the output?

588 CHAPTER 9 Exception Handling

9.2 Throwing Exceptions in Methods

The buck stops here.

HARRy s. TRumAn (sign on Truman’s desk while he was president), 1945.

So far, our examples of exception handling have been toy examples. We have not
yet shown any examples of a program that makes good and realistic use of exception
handling. However, now you know enough about exception handling to discuss
more realistic uses of it. This section explains the single most important exception
handling technique, namely throwing an exception in a method and catching it
outside the method.

Throwing an Exception in a Method

Sometimes it makes sense to throw an exception in a method but not catch it in the
method. For example, you might have a method with code that throws an exception
if there is an attempt to divide by zero, but you may not want to catch the exception
in that method. Perhaps some programs that use that method should simply end if the
exception is thrown, and other programs that use the method should do something
else. So, you would not know what to do with the exception if you caught it inside
the method. In such cases, it makes sense to not catch the exception in the method
definition, but instead to have any program (or other code) that uses the method place
the method invocation in a try block and catch the exception in a catch block that
follows that try block.

Look at the program in Display 9.10. It has a try block, but there is no throw
statement visible in the try block. The statement that does the throwing in that
program is

if (bottom == 0)
 throw new DivisionByZeroException();

This statement is not visible in the try block. However, it is in the try block in terms
of program execution, because it is in the definition of the method safeDivide, and
there is an invocation of safeDivide in the try block.

The meaning of throws DivisionByZero in the heading of safeDivide is discussed
in the next subsection.

Throwing Exceptions in methods 589

Display 9.10 Use of a throws Clause (part 1 of 2)

 1 import java.util.Scanner;

 2 public class DivisionDemoSecondVersion
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);

 7 try
 8 {
 9 System.out.println("Enter numerator:");
10 int numerator = keyboard.nextInt();

11 System.out.println("Enter denominator:");

12 int denominator = keyboard.nextInt();

13 double quotient = safeDivide(numerator, denominator);

14 System.out.println(numerator + "/"

15 + denominator

16 + " = " + quotient);

17 }

18 catch (DivisionByZeroException e)

19 {

20 System.out.println(e.getMessage());

21 secondChance();

22 }

23

24 System.out.println("End of program.");

25 }

26

27 public static double safeDivide(int top, int bottom)

28 throws DivisionByZeroException

29 {

30 if (bottom == 0)

31 throw new DivisionByZeroException();

32 return top/(double)bottom;

33 }

(continued)

590 CHAPTER 9 Exception Handling

Declaring Exceptions in a throws Clause

If a method does not catch an exception, then (in most cases) it must at least warn
programmers that any invocation of the method might possibly throw an exception.
This warning is called a throws clause, and including an exception class in a throws
clause is called declaring the exception. For example, a method that might possibly
throw a DivisionByZeroException and that does not catch the exception would
have a heading similar to the following:

public void sampleMethod()throws DivisionByZeroException

The part throws DivisionByZeroException is a throws clause stating that an
invocation of the method sampleMethod might throw a DivisionByZeroException.

If there is more than one possible exception that can be thrown in the method definition,
then the exception types are separated by commas, as illustrated in what follows:

public void sampleMethod()
 throws DivisionByZeroException, SomeOtherException

throws clause

declaring an
exception

throws clause

34 public static void secondChance()

35 {

36 Scanner keyboard = new Scanner(System.in);

37

38 try

39 {

40 System.out.println("Enter numerator:");

41 int numerator = keyboard.nextInt();

42 System.out.println("Enter denominator:");

43 int denominator = keyboard.nextInt();

44 double quotient = safeDivide(numerator, denominator);

45 System.out.println(numerator + "/"

46 + denominator

47 + " = " + quotient);

48 }

49 catch(DivisionByZeroException e)

50 {

51 System.out.println("I cannot do division by zero.");

52 System.out.println("Aborting program.");

53 System.exit(0);

54 }

55 }

56 }

The input/output dialogues are
identical to those for the program in
Display 9.5.

Display 9.10 Use of a throws Clause (part 2 of 2)

Throwing Exceptions in methods 591

Most “ordinary” exceptions that might be thrown when a method is invoked must
be accounted for in one of two ways:

•	 The	possible	exception	can	be	caught	in	a	catch block within the method definition.
•	 The	 possible	 exception	 can	 be	 declared	 at	 the	 start	 of	 the	 method	 definition	 by	

placing the exception class name in a throws clause (and letting whoever uses the
method worry about how to handle the exception).

This is often called the Catch or Declare Rule. In any one method, you can mix the
two alternatives, catching some exceptions and declaring others in a throws clause.

You already know about the first technique, handling exceptions in a catch block.
The second technique is a form of shifting responsibility (“passing the buck”). For
example, suppose yourMethod has a throws clause as follows:

public void yourMethod()throws DivisionByZeroException

In this case, yourMethod is absolved of the responsibility of catching any exceptions
of type DivisionByZeroException that might occur when yourMethod is executed.
If, however, there is another method (myMethod) that includes an invocation of
yourMethod, then myMethod must handle the exception. When you add a throws
clause to yourMethod, you are saying to myMethod, “If you invoke yourMethod, you
must handle any DivisionByZeroException that is thrown.” In effect, yourMethod
has passed the responsibility for any exceptions of type DivisionByZeroException
from itself to any method that calls it.

Of course, if yourMethod passes responsibility to myMethod by including
DivisionByZeroException in a throws clause, then myMethod may also pass the
responsibility to whoever calls it by including the same throws clause in its definition.
But in a well-written program, every exception that is thrown should eventually be
caught by a catch block in some method that does not just declare the exception class
in a throws clause.

Catch or
Declare Rule

throws Clause
If you define a method that might throw exceptions of some particular class, then normally
either your method definition must include a catch block that will catch the exception or
you must declare (that is, list) the exception class within a throws clause, as described in
what follows.

SYNTAX (COVERS MOST COMMON CASES)

public Type_Or_void Method(Parameter_List)throws List_Of_Exceptions
Body_Of_Method

EXAMPLE

public void yourMethod(int n) throws MyException, YourException
{
 .
 .
 .
}

592 CHAPTER 9 Exception Handling

When an exception is thrown in a method but not caught in that method, that
immediately ends the method invocation.

Be sure to note that the throws clause for a method is for exceptions that “get outside”
the method. If they do not get outside the method, they do not belong in the throws
clause. If they get outside the method, they belong in the throws clause no matter where
they originate. If an exception is thrown in a try block that is inside a method definition
and is caught in a catch block inside the method definition, then its exception class
need not be listed in the throws clause. If a method definition includes an invocation of
another method and that other method can throw an exception that is not caught, then
the exception class of that exception should be placed in the throws clause.

Throwing an Exception Can End a Method
If a method throws an exception, and the exception is not caught inside the method, then
the method invocation ends immediately after the exception is thrown.

In Display 9.10, we have rewritten the program from Display 9.5 so that the exception
is thrown in the method safeDivide. The method main includes a call to the method
safeDivide and puts the call in a try block. Because the method safeDivide can
throw a DivisionByZeroException that is not caught in the method safeDivide, we
need to declare this in a throws clause at the start of the definition of safeDivide. If
we set up our program in this way, the case in which nothing goes wrong is completely
isolated and easy to read. It is not even cluttered by try blocks and catch blocks.

Catch or Declare Rule
Most “ordinary” exceptions that might be thrown when a method is invoked must be
accounted for in one of two ways:

• The possible exception can be caught in a catch block within the method definition.
• The possible exception can be declared at the start of the method definition by placing

the exception class name in a throws clause (and letting whoever uses the method
worry about how to handle the exception).

This is known as the Catch or Declare Rule. In any one method, you can mix the two
alternatives, catching some exceptions and declaring others in a throws clause.

If you use a class that is subject to the Catch or Declare Rule and you do not follow the rule,
you will get a compiler error message. The box entitled “Checked and Unchecked Exceptions”
explains exactly which exception classes are subject to the Catch or Declare Rule.

The next subsection, entitled “Exceptions to the Catch or Declare Rule,” explains
exactly which exception classes are subject to the Catch or Declare Rule. However, the
compiler will ensure that you follow the Catch or Declare Rule when it is required. So
if you do not know whether a class is subject to the Catch or Declare Rule, you can rely
on the compiler to tell you. If you use a class that is subject to the Catch or Declare
Rule and you do not follow the rule, you will get a compiler error message.

Throwing Exceptions in methods 593

Exceptions to the Catch or Declare Rule

As we already noted, in most “ordinary” cases, an exception must either be caught in
a catch block or declared in a throws clause. This is the Catch or Declare Rule, but
there are exceptions to this rule. There are some classes whose exceptions you do not
need to account for in this way (although you can catch them in a catch block if you
want to). These are typically exceptions that result from errors of some sort. They
usually indicate that your code should be fixed, not that you need to add a catch
block. They are often thrown by methods in standard library classes, but it would be
legal to throw one of these exceptions in the code you write.

Exceptions that are descendents of the class RuntimeException do not need to be
accounted for in a catch block or throws clause. Another category of classes called Error
classes behave like exception classes in that they can be thrown and caught in a catch
block. However, you are not required to account for Error objects in a catch block or
throws clause. The situation is diagrammed as a class hierarchy in Display 9.11. All the
classes shown in blue follow the Catch or Declare Rule, which says that if their objects are
thrown, then they must either be caught in a catch block or declared in a throws clause.
All the classes shown in yellow are exempt from the Catch or Declare Rule.

Display 9.11 Hierarchy of Throwable Objects

Exception

Throwable

These are checked
exceptions, which means
they are subject to the
Catch or Declare Rule.

Error

All descendents of the class Throwable
can be thrown and caught in a catch
block.

RuntimeException

Exceptions
that must either be

caught in a catch block or
declared in a throws clause.

Exceptions
that do not need

to be accounted for
in a catch block or
throws clause.

Errors,
all of which

do not need to
be accounted for

in a catch block or
throws clause.

594 CHAPTER 9 Exception Handling

What Happens If an Exception Is Never Caught?
If every method up to and including the main method simply includes a throws clause for
a particular class of exceptions, then it may turn out that an exception of that class is thrown
but never caught. In such cases, when an exception is thrown but never caught, then for
the kinds of programs we have seen so far, the program ends with an error message giving
the name of the exception class. (In Chapter 17 we will discuss programs with windowing
interfaces that are known as GUI programs. For GUI programs, if an exception is thrown but
never caught, then nothing happens, but if your code does not somehow account for the
thrown exception, then the user may be left in an unexplained situation.)

In a well-written program, every exception that is thrown should eventually be caught by a
catch block in some method.

Exception classes that follow the Catch or Declare Rule are often called checked
exceptions. Exceptions that are exempt from the Catch or Declare Rule are often
called unchecked exceptions.

checked and
unchecked
exceptions

Checked and Unchecked Exceptions
Exceptions that are subject to the Catch or Declare Rule are called checked exceptions
because the compiler checks to see if they are accounted for with a catch block or
throws clause. Exceptions that are not subject to the Catch or Declare Rule are called
unchecked exceptions. The classes Throwable, Exception, and all descendents of the
class Exception are checked exceptions. All other exceptions are unchecked exceptions.
The class Error and all its descendent classes are called error classes and are not subject
to the Catch or Declare Rule. Although they are technically not exceptions, you can safely
consider these error classes to be unchecked exceptions. (Strictly speaking, the class
Throwable is neither an exception nor an error class, but it is seldom used and can be
treated as a checked exception if it is used.)

You need not worry too much about which exceptions you do and do not need to
declare in a throws clause. If you fail to account for some exception that Java requires
you to account for, the compiler will tell you about it, and you can then either catch it
or declare it in a throws clause.

throws Clause in Derived Classes

When you override a method definition in a derived class, it should have the same
exception classes listed in its throws clause that it had in the base class, or it should have a
throws clause whose exceptions are a subset of those in the base class throws clause. Put
another way, when you override a method definition, you cannot add any exceptions to
the throws clause (but you can delete some exceptions if you want; you also can replace
an exception class by any descendent exception class). This makes sense, because an

Throwing Exceptions in methods 595

object of the derived class might be used anyplace an object of the base class can be used,
so an overridden method must fit into any code written for an object of the base class.

When to Use Exceptions

So far, most of our examples of exception handling have been unrealistically simple.
A better guideline for how you should use exceptions is to separate throwing an
exception and catching the exception into separate methods. In most cases, you should
include any throw statement within a method definition, list the exception class in
a throws clause for that method, and place the try and catch blocks in a different
method. In outline form, the technique is as follows:

public void yourMethod()throws YourException
{
 ...
 throw new YourException(<Maybe an argument.>);
 ...
}

Then, when yourMethod is used by some otherMethod, the otherMethod must
account for the exception. For example,

public void otherMethod()
{
 ...
 try
 {
 ...
 yourMethod();
 ...
 }
 catch(YourException e)
 {
 <Handle exception.>
 }
 ...
}

Even this kind of use of a throw statement should be reserved for cases where
it is unavoidable. If you can easily handle a problem in some other way, do not throw
an exception. Reserve throw statements for situations in which the way the exceptional
condition is handled depends on how and where the method is used. If the way that the
exceptional condition is handled depends on how and where the method is invoked,
then the best thing to do is to let the programmer who invokes the method handle the
exception. In all other situations, it is preferable to avoid throwing exceptions. Let’s
outline a sample scenario of this kind of situation.

Suppose you are writing a library of methods to deal with patient monitoring systems
for hospitals. One method might compute the patient’s average daily temperature by

596 CHAPTER 9 Exception Handling

accessing the patient’s record in some file and dividing the sum of the temperatures by
the number of times the temperature was taken. Now suppose these methods are used
for creating different systems to be used in different situations. What should happen if
the patient’s temperature was never taken and so the averaging would involve a division
by zero? In an intensive care unit, this would indicate something is very wrong. So for
this system, when this potential division by zero would occur, an emergency message
should be sent out. However, for a system that is to be used in a less urgent setting, such
as outpatient care or even in some noncritical wards, it might have no significance, and
so a simple note in the patient’s record would suffice. In this scenario, the method for
doing the averaging of the temperatures should throw an exception when this division
by zero occurs, list the exception in the throws clause, and let each system handle the
exception case in the way that is appropriate to that system.

When to Throw an Exception
Exceptions should be reserved for situations where a method has an exceptional case
and individual invocations of the method would handle the exceptional case differently.
In this situation, you would throw an exception in the method definition and not catch
the exception in the method, but list it in the throws clause for the method. This
way the programmers who invoke the method can handle the exception differently in
different situations.

EXAMPLE: Retrieving a High Score

Throwing an exception in a method is especially helpful when the exception has no
relationship to the return value of the method. For example, consider a method that
returns the high score for a game. What should the method return if the high score
has never been set? One strategy is to return a special value, such as a negative num-
ber. This strategy is employed in the program shown in Display 9.12.

Display 9.12 Method Returning a High Score without an Exception (part 1 of 2)

 1 public class HighScore
 2 {
 3 private int score = 0;
 4 private boolean scoreSet = false;
 5
 6 public HighScore()
 7 {
 8 score = 0;
 9 scoreSet = false;
10 }
11
12 public void setScore(int newScore)

Throwing Exceptions in methods 597

This program outputs −1 when the high score has not been set. In this case, the
return value is treated like a normal high score, but it is really an exceptional condition.
We could add a check for a negative number, but what if a negative high score is valid?
We have no way to tell if the return value means that the score was never set or if it is
an actual high score.

A solution to our quandary is to throw an exception if the high score is never set. The
code in the main method can check for the exception and handle it separately from the
return value. A modified version of the program that uses a ScoreNotSetException is
shown in Display 9.13.

Display 9.12 Method Returning a High Score without an Exception (part 2 of 2)

13 {
14 score = newScore;
15 scoreSet = true;
16 }
17
18 public int getScore()
19 {
20 if (!scoreSet)
21 return -1;
22 else
23 return score;
24 }
25
26 // Short test program
27 public static void main(String[] args)
28 {
29 HighScore highscore = new HighScore();
30 System.out.println(highscore.getScore());
31 highscore.setScore(100);
32 System.out.println(highscore.getScore());
33 }
34 }

Sample Dialogue

-1
100

Display 9.13 Method Returning a High Score Using an Exception (part 1 of 3)

 1 public class ScoreNotSetException extends
 2 Exception
 3 {
 4 public ScoreNotSetException()
 5 {
 6 super("Score not set");
 7 }

(continued)

598 CHAPTER 9 Exception Handling

 8 public ScoreNotSetException(String message)
 9 {
10 super(message);
11 }
12 }
13
14 public class HighScore
15 {
16 private int score = 0;
17 private boolean scoreSet = false;
18
19 public HighScore()
20 {
21 score = 0;
22 scoreSet = false;
23 }
24
25 public void setScore(int newScore)
26 {
27 score = newScore;
28 scoreSet = true;
29 }
30
31 public int getScore() throws
32 ScoreNotSetException
33 {
34 if (!scoreSet)
35 throw new ScoreNotSetException();
36 else
37 return score;
38 }
39
40 // Short test program
41 public static void main(String[] args)
42 {
43 HighScore highscore = new HighScore();
44 try
45 {
46 System.out.println
47 (highscore.getScore());
48 }
49 catch (ScoreNotSetException e)
50 {
51 System.out.println
52 (e.getMessage());
53 }
54 highscore.setScore(100);
55 try

Display 9.13 Method Returning a High Score Using an Exception (part 2 of 3)

Throwing Exceptions in methods 599

This program throws a ScoreNotSetException when the high score has not been
set. This allows the main method to differentiate between a high score that is not set
and a high score that is –1 by catching the exception.

Event-Driven Programming ★

Exception handling is our first example of a programming methodology known as
event-driven programming. With event-driven programming, objects are defined so
that they send events, which are themselves objects, to other objects that handle the
events. Sending the event is called firing the event. In exception handing, the event
objects are the exception objects. They are fired (thrown) by an object when the object
invokes a method that throws the exception. An exception event is sent to a catch
block, where it is handled. Of course, a catch block is not exactly an object, but the
idea is the same. Also, our programs have mixed event-driven programming (exception
handling) with more traditional programming techniques.When we study how you
construct windowing systems using the Swing libraries (Chapter 17), you will see
examples of programming where the dominant technique is event-driven programming.

event-driven
programming

firing an event

Self-Test Exercises

24. What is the output produced by the following program?

public class Exercise
{
 public static void main(String[] args)
 {
 try

56 {
57 System.out.println
58 (highscore.getScore());
59 }
60 catch (ScoreNotSetException e)
61 {
62 System.out.println
63 (e.getMessage());
64 }
65 }
66 }

Sample Dialogue

Score not set
100

Display 9.13 Method Returning a High Score Using an Exception (part 3 of 3)

600 CHAPTER 9 Exception Handling

extra code
on website

Self-Test Exercises (continued)

 {
 System.out.println("Trying");
 sampleMethod(98.6);
 System.out.println("Trying after call.");
 }
 catch(Exception e)
 {
 System.out.println("Catching.");
 }

 System.out.println("End program.");
 }

 public static void sampleMethod(double test)
 throws Exception
 {
 System.out.println("Starting sampleMethod.");
 if (test < 100)
 throw new Exception();
 }
}

 The class Exercise is on the website that comes with this text.

25. Suppose that in Self-Test Exercise 22, the line

sampleMethod(98.6);

 in the try block is changed to

sampleMethod(212);

 How would this affect the output?

26. Correct the following method definition by adding a suitable throws clause:

public static void doStuff(int n)
{
 if (n < 0)
 throw new Exception("Negative number.");
}

27. What happens if an exception is thrown inside a method invocation, but the
exception is not caught inside the method?

28. Suppose there is an invocation of method A inside of method B, and an
invocation of method B inside of method C. When method C is invoked, this
leads to an invocation of method B, and that in turn leads to an invocation of
method A. Now, suppose that method A throws an exception but does not catch
it within A. Where might the exception be caught? In B? In C? Outside of C?

more Programming Techniques for Exception Handling 601

9.3 More Programming Techniques for
 Exception Handling

Only use this in exceptional circumstances.

BOB Shaw, Who Goes Here? Ace Books, 1979.

In this section, we present a number of the finer points about programming with
exception handling in Java.

PITFALL: Nested try-catch Blocks

You can place a try block and its following catch blocks inside a larger try block
or inside a larger catch block. On rare occasions this may be useful, but it is almost
always better to place the inner try catch blocks inside a method definition and
place an invocation of the method in the outer try or catch block (or maybe just
eliminate one or more try blocks completely).

If you place a try block and its following catch blocks inside a larger catch block,
you will need to use different names for the catch block parameters in the inner and
outer blocks. This has to do with how Java handles nested blocks of any kind. Remem-
ber, try blocks and catch blocks are blocks.

If you place a try block and its following catch blocks inside a larger try block,
and an exception is thrown in the inner try block but is not caught in the inner catch
blocks, then the exception is thrown to the outer try block for processing and might
be caught in one of its catch blocks. ■

The finally Block ★

The finally block contains code to be executed whether or not an exception is
thrown in a try block. The finally block, if used, is placed after a try block and its
following catch blocks. The general syntax is as follows:

try
{
 ...
}
catch(ExceptionClass1 e)
{
 ...
}
.
.
.

602 CHAPTER 9 Exception Handling

catch(ExceptionClassLast e)
{
 ...
}
finally
{
 < Code to be executed whether or not an exception is thrown or caught.>
}

Now, suppose that the try-catch-finally blocks are inside a method definition.
(After all, every set of try-catch-finally blocks is inside of some method, even if
it is only the method main.) There are three possibilities when the code in the try-
catch-finally blocks is run:

•	 The	try block runs to the end and no exception is thrown. In this case, the finally
block is executed after the try block.

•	 An	exception	is	thrown	in	the	try block and is caught in one of the catch blocks
positioned after the try block. In this case, the finally block is executed after the
catch block is executed.

•	 An	exception	is	thrown	in	the	try block and there is no matching catch block in
the method to catch the exception. In this case, the method invocation ends and the
exception object is thrown to the enclosing method. However, the finally block
is executed before the method ends. Note that you cannot account for this last case
simply by placing code after the catch blocks.

Self-Test Exercises

29. Can you have a try block and corresponding catch blocks inside another
larger try block?

30. Can you have a try block and corresponding catch blocks inside another
larger catch block?

31. What is the output produced by the following program? What would the
output be if the argument to exerciseMethod were −42 instead of 42? (The
class NegativeNumberException is defined in Display 9.8, but you need not
review that definition to do this exercise.)

public class FinallyDemo
{
 public static void main(String[] args)
 {
 try
 {
 exerciseMethod(42);
 }

more Programming Techniques for Exception Handling 603

Rethrowing an Exception ★

A catch block can contain code that throws an exception. In rare cases, you may
find it useful to catch an exception and then, depending on the string produced by
getMessage or depending on something else, decide to throw the same or a different
exception for handling further up the chain of exception handling blocks.

The AssertionError Class ★

When we discussed the assert operator and assertion checking in Chapter 3, we said
that if your program contains an assertion check and the assertion check fails, your
program will end with an error message. This statement is more or less true, but it is
incomplete. What happens is that an object of the class AssertionError is thrown. If
it is not caught in a catch block, your program ends with an error message. However,
if you wish, you can catch it in a catch block, although that is not a very common

extra code
on website

Self-Test Exercises (continued)

 catch(Exception e)
 {
 System.out.println("Caught in main.");
 }
 }
 public static void exerciseMethod(int n) throws Exception
 {
 try
 {
 if (n > 0)
 throw new Exception();
 else if (n < 0)
 throw new NegativeNumberException();
 else
 System.out.println("No Exception.");
 System.out.println("Still in sampleMethod.");
 }
 catch(NegativeNumberException e)
 {
 System.out.println("Caught in sampleMethod.");
 }
 finally
 {
 System.out.println("In finally block.");
 }
 System.out.println("After finally block.");
 }
}

 The class FinallyDemo is on the website that comes with this text.

604 CHAPTER 9 Exception Handling

thing to do. The AssertionError class is in the java.lang package and so requires
no import statement.

As the name suggests, the class AssertionError is derived from the class Error, so
you are not required to either catch it in a catch block or declare it in a throws clause.

ArrayIndexOutOfBoundsException

Read Section 6.1 of Chapter 6, which covers array basics, before reading this short
subsection. If you have not yet covered some of Chapter 6, omit this section and return
to it at a later time.

If your program attempts to use an array index that is out of bounds, an
ArrayIndexOutOfBoundsException is thrown and your program ends, unless the
exception is caught in a catch block. ArrayIndexOutOfBoundsException is a
descendent of the class RuntimeException and so need not be caught or accounted for
in a throws clause. This sort of exception normally indicates that there is something
wrong with your code and means that you need to fix your code, not catch an
exception. Thus, an ArrayIndexOutOfBoundsException normally functions more
like a run-time error message than a regular exception.

ArrayIndexOutOfBoundsException is in the standard Java package java.lang
and so requires no import statement should you decide to use it by name.

Chapter Summary

• Exception handling allows you to design and code the normal case for your program
separately from the code that handles exceptional situations.

• An exception can be thrown in a try block. Alternatively, an exception can be thrown
in a method definition that does not include a try block (or does not include a catch
block to catch that type of exception). In this case, an invocation of the method can
be placed in a try block.

• An exception is caught in a catch block.

• A try block must be followed by at least one catch block and can be followed by
more than one catch block. If there are multiple catch blocks, always list the catch
block for a more specific exception class before the catch block for a more general
exception class.

• The best use of exceptions is to throw an exception in a method (but not catch it in
the method)—but to do this only when the way the exception is handled will vary
from one invocation of the method to another. There is seldom any other situation
that can profitably benefit from throwing an exception.

• If an exception is thrown in a method but not caught in that method, then if
the exception is not a descendent of the class RuntimeException (and is not a
descendent of the class Error), the exception type must be listed in the throws
clause for that method.

Answers to Self-Test Exercises

 1. Assuming the first item input is not a correctly formed int value, the program will
go into an infinite loop after reading the first item input. The screen will continu-
ally output a prompt for an input number. The problem is that unless the new-line
symbol '\n' is read, the program will continue to try to read on the first input line
and so continually reads in the empty string.

 2. The following is the method definition embedded in a test program. This program
would give the same dialogue as the one in Display 9.1. The program is included
on the website that accompanies this book.

 import java.util.Scanner;

 import java.util.InputMismatchException;

 public class getIntDemo

 {

 /**

 Precondition: keyboard is an object of the class Scanner that

has been set up for keyboard input (as we have been doing right

along).

 Returns: An int value entered at the keyboard.

 If the user enters an incorrectly formed input, she or he

is prompted to reenter the value,

 */

 public static int getInt(Scanner keyboard)

 {

 int number = 0; //to keep compiler happy

 boolean done = false;

 while (! done)

 {

 try

 {

 System.out.println("Enter a whole number:");

 number = keyboard.nextInt();

 done = true;

 }

 catch(InputMismatchException e)

 {

 keyboard.nextLine();

 System.out.println(

 "Not a correctly written whole number.");

 System.out.println("Try again.");

 }

 }

 return number;

 }

extra code
on website

Answers to self-Test Exercises 605

606 CHAPTER 9 Exception Handling

 public static void main(String[] args)

 {

 Scanner keyboardArg = new Scanner(System.in);

 int number = getInt(keyboardArg);

 System.out.println("You entered " + number);

 }

 }

 3. Try block entered.
 Over 30.

 After catch block

 4. The output would then be

 Try block entered.

 Under 30.

 After catch block

 5. There are two throw statements:

 throw new Exception("Over 30.");

 throw new Exception("Under 30.");

 6. When a throw statement is executed, it is the end of the enclosing try block. No
other statements in the try block are executed, and control passes to the following
catch block(s). When we say that control passes to the following catch block, we
mean that the exception object that is thrown is plugged in for the catch block
parameter and the code in the catch block is executed.

 7. try
 {

 System.out.println("Try block entered.");

 if (waitTime > 30)

 throw new Exception("Over 30.");

 else if (waitTime < 30)

 throw new Exception("Under 30.");

 else

 System.out.println("No exception.");

 System.out.println("Leaving try block.");

 }

 8. catch(Exception thrownObject)
 {

 System.out.println(thrownObject.getMessage());

 }

 9. thrownObject

10. Yes, it is legal.

11. Yes, it is legal.

12. public class PowerFailureException extends Exception

Answers to self-Test Exercises 607

 {

 public PowerFailureException()

 {

 super("Power Failure!");

 }

 public PowerFailureException(String message)

 {

 super(message);

 }

 }

13. public class TooMuchStuffException extends Exception
 {

 public TooMuchStuffException()

 {

 super("Too much stuff!");

 }

 public TooMuchStuffException(String message)

 {

 super(message);

 }

 }

14. ExerciseException invoked with an argument.

 Do Be Do

15. Test exception thrown!!

 Test Exception thrown!

 Message is Test Exception thrown!

16. try block entered:

 MyException: Hi Mom!

 End of example.

17. The output would be the same.

18. The output would then be

 try block entered:

 Leaving try block.

 End of example.

19. 41.9

 DoubleException thrown!

20. Yes, you can define an exception class as a derived class of the class

 IOException.

21. Second catch.

 End of exercise.

608 CHAPTER 9 Exception Handling

22. The output would then be

 First catch.

 End of exercise.

23. The output would then be

 Bingo!

 End of exercise.

24. Trying

 Starting sampleMethod.

 Catching.

 End program.

25. The output would then be

 Trying

 Starting sampleMethod.

 Trying after call.

 End program.

26. public static void doStuff(int n)throws Exception
 {

 if (n < 0)

 throw new Exception("Negative number.");

 }

27. If a method throws an exception and the exception is not caught inside the method,
then the method invocation ends immediately after the exception is thrown. If the
method invocation is inside a try block, then the exception is thrown to a match-
ing catch block, if there is one. If there is no catch block matching the exception,
then the method invocation ends as soon as that exception is thrown.

28. It might be caught in method B. If it is not caught in method B, it might
be caught in method C. If it is not caught in method C, it might be caught
outside of method C.

29. Yes, you can have a try block and corresponding catch blocks inside another
larger try block.

30. Yes, you can have a try block and corresponding catch blocks inside another
larger catch block.

31. In finally block.
 Caught in main.

 If the argument to sampleMethod is -42 instead of 42, the output would be
 Caught in sampleMethod.

 In finally block.

 After finally block.

Programming Projects

 1. Write a program that calculates the average of N integers. The program should
prompt the user to enter the value for N and then afterward must enter all N
numbers. If the user enters a nonpositive value for N, then an exception should be
thrown (and caught) with the message “N must be positive.” If there is any excep-
tion as the user is entering the N numbers, an error message should be displayed,
and the user prompted to enter the number again.

 2. Define a class to maintain bank accounts of customers. The program should place
the code into a try-catch block with multiple catches to check for the validity of
various attributes based on the following criteria.

 a. Customer ID must start with a letter and should be followed by three digits.

 b. Account number must be of five digits.

 c. Initial balance must be above $1000.

 Print suitable error matches within the catch block. If any of the criteria mentioned
above is not fulfilled, the program should loop back and let the user enter new data.

 3. Modify the previous exercise to include methods for amount deposited and
amount withdrawn. Create your own exception class which will check inside
the method for the amount deposited so that after the deposit, the maximum
balance in the account must not be more than $5000. Also, check inside the
method for amount withdrawn so that the available balance after the withdrawal
does not go below $1000. Invoke the defined methods from your main method
and catch the exceptions.

 4. (This is a version of an exercise from Chapter 5) Programming Project 5.2 from
Chapter 5 asked you to create a class named Fraction. This class is used to
represent a ratio of two integers. It should include mutator functions that allow
the user to set the numerator and the denominator along with a method that
displays the fraction on the screen as a ratio (e.g., 5/9). Modify the class so that
it throws the exception DenominatorIsZeroException if the denominator is set
to zero. Do not forget to account for the constructors! You will have to create the
DenominatorIsZeroException class and it should be derived from Exception.

 Write a main method that tests the new Fraction class, attempts to set the
 denominator to zero, and catches the DenominatorIsZeroException exception.

 5. Write a program that converts dates from numerical month/day/year format to nor-
mal “month day, year” format (for example, 12/25/2000 corresponds to December
25, 2000). You will define three exception classes, one called MonthException,
another called DayException, and a third called YearException. If the user enters

Solution to
Programming

Project 9.1

VideoNote

Programming Projects 609

610 CHAPTER 9 Exception Handling

anything other than a legal month number (integers from 1 to 12), your program
will throw and catch a MonthException and ask the user to reenter the month.
Similarly, if the user enters anything other than a valid day number (integers from 1 to
either 28, 29, 30, or 31, depending on the month and year), then your program will
throw and catch a DayException and ask the user to reenter the day. If the user enters
a year that is not in the range 1000 to 3000 (inclusive), then your program will throw
and catch a YearException and ask the user to reenter the year. (There is nothing
very special about the numbers 1000 and 3000 other than giving a good range of likely
dates.) See Self-Test Exercise 19 in Chapter 4 for details on leap years.

 6. Write a program that can serve as a simple calculator. This calculator keeps track of
a single number (of type double) that is called result and that starts out as 0.0.
Each cycle allows the user to repeatedly add, subtract, multiply, or divide by a second
number. The result of one of these operations becomes the new value of result.
The calculation ends when the user enters the letter R for “result” (either in upper- or
lowercase). The user is allowed to do another calculation from the beginning as often
as desired.

 The input format is shown in the following sample dialogue. If the user enters any
operator symbol other than +, −, *, or /, then an UnknownOperatorException
is thrown and the user is asked to reenter that line of input. Defining the class
 UnknownOperatorException is part of this project.

 Calculator is on.

 result = 0.0

 +5

 result + 5.0 = 5.0

 new result = 5.0

 * 2.2

 result * 2.2 = 11.0

 updated result = 11.0

 % 10

 % is an unknown operation.

 Reenter, your last line:

 * 0.1

 result * 0.1 = 1.1

 updated result = 1.1

 r

 Final result = 1.1

 Again? (y/n)

 yes

 result = 0.0

 +10

 result + 10.0 = 10.0

 new result = 10.0

 /2

 result / 2.0 = 5.0

Programming Projects 611

 updated result = 5.0

 r

 Final result = 5.0

 Again? (y/n)

 N

 End of Program

 7. A method that returns a special error code is usually better accomplished throwing an
exception instead. The following class maintains an account balance:

 class Account
 {

 private double balance;

 public Account()

 {

 balance = 0;

 }

 public Account(double initialDeposit)

 {

 balance = initialDeposit;

 }

 public double getBalance()

 {

 return balance;

 }

 // returns new balance or -1 if error

 public double deposit(double amount)

 {

 if (amount > 0)

 balance += amount;

 else

 return -1;// Code indicating error

 return balance;

 }

 // returns new balance or -1 if invalid amount

 public double withdraw(double amount)

 {

 if ((amount > balance) || (amount < 0))

 return -1;

 else

 balance -= amount;

 return balance;

 }

 }

Solution to
Programming
Project 9.7

VideoNote

612 CHAPTER 9 Exception Handling

 Rewrite the class so that it throws appropriate exceptions instead of returning −1
as an error code. Write test code that attempts to withdraw and deposit invalid
amounts and catches the exceptions that are thrown.

 8. Study the class java.util.Arrays from the Oracle documentation located at
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html. The sort method
throws an IllegalArgumentException and an OutOfBoundsException. Write
a short Java test program that sorts an array of integers and outputs the array ele-
ments in sorted order. Your program should catch both of the exceptions listed
above. Modify your program to test that the exceptions are properly caught.

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html

10.3 The File Class 645
Programming with the File Class 645

10.4 Binary Files ★ 649
Writing Simple Data to a Binary File 650
UTF and writeUTF 654
Reading Simple Data from a Binary File 655
Checking for the End of a Binary File 660
Binary I/O of Objects 662
The Serializable Interface 663
Array Objects in Binary Files 666

10.5 random aCCess To
Binary Files ★ 668

Reading and Writing to the Same File 668

10.1 inTroduCTion To File i/o 614
Streams 614
Text Files and Binary Files 615

10.2 TexT Files 616
Writing to a Text File 616
Appending to a Text File 623
Reading from a Text File 625
Reading a Text File Using Scanner 625
Testing for the End of a Text File with

Scanner 628
Reading a Text File Using BufferedReader 635
Testing for the End of a Text File with

BufferedReader 639
Path Names 641
Nested Constructor Invocations 642
System.in, System.out, and System.err 643

 10File I/O

Chapter summary 674 answers to self-Test exercises 675 Programming Projects 679

As a leaf is carried by a stream, whether the stream ends in a lake or in

the sea, so too is the output of your program carried by a stream, not

knowing if the stream goes to the screen or to a file.

WASHROOM WALL OF A COMPUTER SCIENCE DEPARTMENT, 1995.

Introduction
In this chapter, we explain how you can write your programs to take input from a file
and send output to a file. This chapter covers the most common ways of doing file I/O
in Java. However, it is not an exhaustive study of Java I/O classes. The Java I/O class
library contains bewilderingly many classes, and an exhaustive treatment of all of them
would be a book by itself.

Prerequisites
You need only some of Chapter 9 on exception handling to read this chapter. You do
not need Chapters 6, 7, or 8 on arrays, inheritance, and polymorphism, except in the
final subsection, which covers writing and reading of arrays to binary files. If you have
not yet covered some basic material on one-dimensional arrays, you can, of course,
simply omit this last subsection.

You may postpone all or part of this chapter if you wish. Nothing in the rest of this
book requires any of this chapter.

10.1 Introduction to File I/O
Good Heavens! For more than forty years I have been speaking prose without
knowing it.

MOLIÈRE, Le Bourgeois Gentilhomme, 1670.

In this section, we go over some basic concepts about file I/O before we go into any
Java details.

Streams

A stream is an object that allows for the flow of data between your program and some
I/O device or some file. If the flow is into your program, the stream is called an input
stream. If the flow is out of your program, the stream is called an output stream. If
the input stream flows from the keyboard, then your program will take input from the
keyboard. If the input stream flows from a file, then your program will take its input
from that file. Similarly, an output stream can go to the screen or to a file.

10 File I/O

stream

input stream

output stream

Introduction to File I/O 615

Although you may not realize it, you have already been using streams in your
programs when you have output something to the screen. System.out (used in
System.out.println) is an output stream connected to the screen. System.in is an
input stream connected to the keyboard. You used System.in in expressions such as
the following:

Scanner keyboard = new Scanner(System.in);

These two streams are automatically available to your program. You can define other
streams that come from or go to files. Once you have defined them, you can use them
in your program in ways that are similar to how you use System.out and System.in.

System.out

System.in

Streams
A stream is a flow of data. If the data flows into your program, then the stream is called an
input stream. If the data flows out of your program, the stream is called an output stream.

Streams are used for both console I/O, which you have been using already, and file I/O.

Text Files and Binary Files

Text files are files that appear to contain sequences of characters when viewed in a text
editor or read by a program. For example, the files that contain your Java programs
are text files. Text files are sometimes also called ASCII files because they contain
data encoded using a scheme known as ASCII coding. Files whose contents must be
handled as sequences of binary digits are called binary files.

Although it is not technically correct, you can safely think of a text file as containing
a sequence of characters, and think of a binary file as containing a sequence of binary
digits. Another way to distinguish between binary files and text files is to note that text
files are designed to be read by human beings, whereas binary files are designed to be
read only by programs.

One advantage of text files is that they are usually the same on all computers, so you
can move your text files from one computer to another with few or no problems. The
implementation of binary files usually differs from one computer to another, so your
binary data files ordinarily must be read only on the same type of computer, and with
the same programming language, as the computer that created that file.

The benefit of binary files is that they are more efficient to process than text files.
Unlike other programming languages, Java also gives its binary files some of the
advantages of text files. In particular, Java binary files are platform independent; that
is, with Java, you can move your binary files from one type of computer to another,
and your Java programs will still be able to read the binary files. This combines the
portability of text files with the efficiency of binary files.

The one big asset of text files is that you can read and write to them using a text editor.
With binary files, all the reading and writing must normally be done by a program.

text file

ASCII file

binary file

616 CHAPTER 10 File I/O

Text Files versus Binary Files
Files that you write and read using an editor are called text files. Binary files represent data
in a way that is not convenient to read with a text editor, but that can be written to and read
from a program very efficiently.

Self-Test Exercises

1. A stream is a flow of data. From where and to where does the data flow in an
input stream? From where and to where does the data flow in an output stream?

2. What is the difference between a binary file and a text file?

10.2 Text Files
Polonius: What do you read, my lord?
Hamlet: Words, words, words.

WILLIAM SHAKESPEARE, Hamlet, 1603.

In this section, we describe the most common ways to do text file I/O in Java.

Writing to a Text File

The class PrintWriter is the preferred stream class for writing to a text file. An object
of the class PrintWriter has the methods print and println, which are like the
methods System.out.print and System.out.println that you can use for screen
output. However, with an object of the class PrintWriter, the output goes to a text
file. Display 10.1 contains a simple program that uses PrintWriter to send output to
a text file. Let’s look at the details of that program.

All the file I/O–related classes we introduce in this chapter are in the package java.io,
so all our program files begin with import statements similar to the ones in Display 10.1.

The program in Display 10.1 creates a text file named stuff.txt that a person can
read using an editor, or that another Java program can read. The program creates an
object of the class PrintWriter as follows:

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

The variable outputStream is of type PrintWriter and is declared outside the try
block. The preceding two lines of code connect the stream named outputStream to
the file named stuff.txt. This is called opening the file. When you connect a file to a
stream in this way, your program always starts with an empty file. If the file stuff.txt

PrintWriter

java.io

opening a file

Text Files 617

already exists, the old contents of stuff.txt will be lost. If the file stuff.txt does not
exist, then a new, empty file named stuff.txt will be created.

We want to associate the output stream outputStream with the file named stuff.txt.
However, the class PrintWriter has no constructor that takes a file name as its argument.
So we use the class FileOutputStream to create a stream that can be used as an argument
to a PrintWriter constructor. The expression

new FileOutputStream("stuff.txt")

takes a file name as an argument and creates an anonymous object of the class
FileOutputStream, which is then used as an argument to a constructor for the class
PrintWriter as follows:

new PrintWriter(new FileOutputStream("stuff.txt"))

This produces an object of the class PrintWriter that is connected to the file
stuff.txt. Note that the name of the file, in this case, stuff.txt, is given as a
String value and so is given in quotes.

If you want to read the file name from the keyboard, you could read the name
to a variable of type String and use the String variable as the argument to the
FileOutputStream constructor.

When you open a text file in the way just discussed, a FileNotFoundException
can be thrown, and any such possible exception should be caught in a catch
block. (Actually, it is the FileOutputStream constructor that might throw the
FileNotFoundException, but the net effect is the same.)

Notice that the try block in Display 10.1 encloses only the opening of the file.
That is the only place that an exception might be thrown. Also note that the variable
outputStream is declared outside of the try block—this is so that this variable can be
used outside of the try block. Remember, anything declared in a block (even in a try
block) is local to the block.

FileOutput
Stream

file name

reading the
file name

FileNot
Found

Exception

Display 10.1 Sending Output to a Text File (part 1 of 2)

 1 import java.io.PrintWriter;
 2 import java.io.FileOutputStream;
 3 import java.io.FileNotFoundException;

 4 public class TextFileOutputDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 PrintWriter outputStream = null;
 9 try
10 {
11 outputStream =
12 new PrintWriter(new FileOutputStream("stuff.txt"));
13 }
14 catch (FileNotFoundException e)

(continued)

618 CHAPTER 10 File I/O

You can read this file
using a text editor.

15 {
16 System.out.println("Error opening the file stuff.txt.");
17 System.exit(0);
18 }

19 System.out.println("Writing to file.");

20 outputStream.println("The quick brown fox");
21 outputStream.println("jumps over the lazy dog.");

22 outputStream.close();

23 System.out.println("End of program.");
24 }
25 }

Sample Dialogue

Writing to file.

End of program.

File stuff.txt (after the program is run.)

The quick brown fox

jumps over the lazy dog.

Display 10.1 Sending Output to a Text File (part 2 of 2)

Opening a Text File for Writing Output
You create a stream of the class PrintWriter and connect it to a text file for writing as follows.

SYNTAX

PrintWriter Output_Stream_Name;
Output_Stream_Name =

new PrintWriter(new FileOutputStream(File_Name));

EXAMPLE

PrintWriter outputStream = null;
outputStream =

new PrintWriter(new FileOutputStream("stuff.txt"));

After this, you can use the methods println and print to write to the file.

When used in this way, the FileOutputStream constructor, and thus the PrintWriter
constructor invocation, can throw a FileNotFoundException, which is a kind of
IOException.

Text Files 619

We said that when you open a text file for writing output to the file, the constructor
might throw a FileNotFoundException. But in this situation you want to create a
new file for output, so why would you care that the file was not found? The answer is
simply that the exception is poorly named. A FileNotFoundException does not mean
that the file was not found. In this case, it actually means that the file could not be
created. A FileNotFoundException is thrown if it is impossible to create the file—for
example, because the file name is already used for a directory (folder) name.

File Names
The rules for how you spell file names depend on your operating system, not on Java. When
you give a file name to a Java constructor for a stream, you are not giving the constructor
a Java identifier. You are giving the constructor a string corresponding to the file name. A
suffix, such as .txt in stuff.txt, has no special meaning to a Java program. We are
using the suffix .txt to indicate a text file, but that is just a common convention. You can
use any file names that are allowed by your operating system.

A File Has Two Names
Every input file and every output file used by your program has two names: (1) the real file
name that is used by the operating system and (2) the name of the stream that is connected
to the file.

The stream name serves as a temporary name for the file and is the name that is primarily
used within your program. After you connect the file to the stream, your program always
refers to the file by using the stream name.

IOException

When dealing with file I/O, there are many situations in which your code might throw
an exception of some class, such as FileNotFoundException. Many of these various
exception classes are descended classes of the class IOException. The class IOException
is the root class for various exception classes having to do with input and output.

A FileNotFoundException is a kind of IOException, so a catch block for an
IOException would also work and would look more sensible. However, it is best to
catch the most specific exception that you can, because that can give more information.

As illustrated in Display 10.1, the method println of the class PrintWriter
works the same for writing to a text file as the method System.out.println works
for writing to the screen. The class PrintWriter also has the methods print and

println

print

620 CHAPTER 10 File I/O

printf, which behave just like System.out.print and System.out.printf except
that the output goes to a text file. Display 10.2 describes some of the methods in the
class PrintWriter.

public PrintWriter(OutputStream streamObject)

This is the only constructor you are likely to need. There is no constructor that accepts a file name as
an argument. If you want to create a stream using a file name, use

new PrintWriter(new FileOutputStream(File_Name))

When the constructor is used in this way, a blank file is created. If there already is a file named
File_Name, then the old contents of the file are lost. If you want instead to append new text to the
end of the old file contents, use

new PrintWriter(new FileOutputStream(File_Name, true))

(For an explanation of the argument true, read the later subsection “Appending to a Text File.”)

When used in either of these ways, the FileOutputStream constructor, and so the PrintWriter
constructor invocation, can throw a FileNotFoundException, which is a kind of IOException.

If you want to create a stream using an object of the class File, you can use a File object in place
of the File_Name. (The File class will be covered later in Section 10.3. We discuss it here so that
you will have a more complete reference in this display, but you can ignore the reference to the
class File until after you have read that section.)

Display 10.2 Some Methods of the Class PrintWriter (part 1 of 2)

PrintWriter and FileOutputStream are in the java.io package.

printf

public void println(Argument)

The Argument can be a string, character, integer, floating-point number, boolean value, or any
combination of these, connected with + signs. The Argument can also be any object, although it will
not work as desired unless the object has a properly defined toString() method. The Argument
is output to the file connected to the stream. After the Argument has been output, the line ends,
and so the next output is sent to the next line.

public void print(Argument)

This is the same as println, except that this method does not end the line, so the next output will
be on the same line.

public PrintWriter printf(Argument)

This is the same as System.out.printf, except that this method sends output to a text file
rather than to the screen. It returns the calling object. However, we have always used printf as
a void method.

Text Files 621

When your program is finished writing to a file, it should close the stream connected
to that file. In Display 10.1, the stream connected to the file stuff.txt is closed with
the statement

outputStream.close();

The class PrintWriter, and every other class for file output or file input streams, has a
method named close. When this method is invoked, the system releases any resources
used to connect the stream to the file and does any other housekeeping that is needed.
If your program does not close a file before the program ends, Java will close it for you
when the program ends, but it is safest to close the file with an explicit call to close.

Output streams connected to files are often buffered, which means that, rather than
physically writing every instance of output data as soon as possible, the data is saved
in a temporary location, known as a buffer; when enough data is accumulated in this
temporary location, it is physically written to the file. This can add to efficiency, since
physical writes to a file can be slow. The method flush causes a physical write to the file
of any buffered data. The method close includes an invocation of the method flush.

public void close()

Closes the stream’s connection to a file. The following method calls flush before closing the file:

public void flush()

Flushes the output stream. This forces an actual physical write to the file of any data that has been
buffered and not yet physically written to the file. Normally, you should not need to invoke flush.

Display 10.2 Some Methods of the Class PrintWriter (part 2 of 2)

buffered

buffer

Closing a File
When your program is finished writing to a file or reading from a file, it should close the
stream connected to that file by invoking the method named close.

SYNTAX

Stream_Object.close();

EXAMPLE

outputStream.close();
inputStream.close();

It may seem like there is no reason to use the method close to close a file. If your
program ends normally but without closing a file, the system will automatically close
it for you. So why should you bother to close files with an explicit call to the method
close? There are at least two reasons. First, if your program ends abnormally, then

622 CHAPTER 10 File I/O

Java may not be able to close the file for you. This could damage the file. In particular,
if it is an output file, any buffered output will not have been physically written to the
file. So, the file will be incomplete. The sooner you close a file, the less likely it is that
this will happen. Second, if your program writes to a file and later reads from the same
file, it must close the file after it is through writing to the file and then reopen the file
for reading. (Java does have a class that allows a file to be opened for both reading and
writing, which we will discuss later in Section 10.5.)

PITFALL: A try Block Is a Block

Notice that in Display 10.1, we declare the variable outputStream outside of the
try block. If you were to move that declaration inside the try block, you would get a
compiler error message. Let’s see why.

Suppose you replace

PrintWriter outputStream = null;
try
{

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

}

in Display 10.1 with the following:

try
{

PrintWriter outputStream =
new PrintWriter(new FileOutputStream("stuff.txt"));

}

This replacement looks innocent enough, but it makes the variable outputStream a local
variable for the try block, which would mean that you could not use outputStream
outside of the try block. If you make this change and try to compile the changed
program, you will get an error message saying that outputStream, when used outside
the try block, is an undefined identifier. ■

PITFALL: Overwriting an Output File

When you connect a stream to a text file for writing to the text file, as illustrated by
what follows, you always produce an empty file:

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

If there is no file named stuff.txt, this will create an empty file named stuff.txt.
If a file named stuff.txt already exists, then this will eliminate that file and
create a new, empty file named stuff.txt. So if there is a file named stuff.txt
before this file opening, then all the data in that file will be lost. The later section

Text Files 623

Appending to a Text File

When you open a text file for writing in the way we did it in Display 10.1 and a file
with the given name already exists, the old contents are lost. However, sometimes you
instead want to add the program output to the end of the file. This is called appending
to a file. If you want to append program output to the file stuff.txt, connect the file
to the stream outputStream in the following manner:

outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt", true));

If the file stuff.txt does not already exist, Java will create an empty file of that
name and append the output to the end of this empty file. So if there is no file named
stuff.txt, the effect of opening the file is the same as in Display 10.1. However, if
the file stuff.txt already exists, then the old contents will remain, and the program’s
output will be placed after the old contents of the file.

When appending to a text file in this way, you would still use the same try and
catch blocks as in Display 10.1.

That second argument of true deserves a bit of explanation. Why did the designers
use true to signal appending? Why not something such as the string "append"? The
reason is that this version of the constructor for the class FileOutputStream was
designed to also allow you to use a Boolean variable (or expression) to decide whether
you append to an existing file or create a new file. For example, the following might
be used:

System.out.println(
 "Enter A for append or N for a new file:");
char answer;

<Use your favorite way to read a single character into the variable answer.>
boolean append = (answer = = 'A' || answer = = 'a');
outputStream = new PrintWriter(
 new FileOutputStream("stuff.txt", append));

From this point on, your program writes to the file in exactly the same way that the
program in Display 10.1 does. If the user answers with upper- or lowercase A, then
any input will be added after the old file contents. If the user answers with upper- or
lowercase N (or with anything other than an A), then any old contents of the file are lost.

PITFALL: (continued)

“The File Class” tells you how to test to see whether a file already exists so that you
can avoid accidentally overwriting a file. The following subsection, “Appending to a
Text File,” shows you how to add data to a text file without losing the data that is
already in the file. ■

appending

624 CHAPTER 10 File I/O

TIP: toString Helps with Text File Output

In Chapter 4, we noted that if a class has a suitable toString() method and
anObject is an object of that class, then anObject can be used as an argument to
System.out.println, which will produce sensible output.1 The same thing applies
to the methods println and print of the class PrintWriter. Both println and
print of the class PrintWriter can take any object as an argument and will produce
reasonable output so long as the object has a sensible toString() method. ■

1There is a more detailed discussion of this in Chapter 8, but you need not read Chapter 8 to use
this fact.

Opening a Text File for Appending
To create an object of the class PrintWriter and connect it to a text file for appending to
the end of the text already in the file, proceed as follows.

SYNTAX

Output_Stream_Name =
 new PrintWriter(
 new FileOutputStream(File_Name, True_Boolean_Expression));

EXAMPLE

PrintWriter outputStream;
outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt", true));

After this statement, you can use the methods println and print to write to the file, and
the new text will be written after the old text in the file.

(If you want to create a stream using an object of the class File, you can use a File
object in place of the File_Name. The File class is discussed later in the section entitled
“The File Class.”)

When used in this way, the FileOutputStream constructor, and so the PrintWriter
constructor invocation, can throw a FileNotFoundException, which is a kind of IOException.

Self-Test Exercises

3. What kind of exception might be thrown by the following, and what would it
indicate if this exception is thrown?

PrintWriter outputStream =
 new PrintWriter(new FileOutputStream("stuff.txt"));

Text Files 625

Reading from a Text File

The two most common stream classes used for reading from a text file are the Scanner
class and the BufferedReader class. We will discuss both of these approaches to
reading from a text file. The Scanner class offers a richer group of methods for reading
from a text file and is our preferred class to use when reading from a text file. However,
the BufferedReader class is also widely used and is a reasonable choice. You, or your
instructor, will need to decide which class you will use.

Reading a Text File Using Scanner

The same Scanner class that we used for reading from the keyboard can also be
used for reading from a text file. To do so, replace the argument System.in (in the
Scanner constructor) with a suitable stream that is connected to the text file. This is a
good illustration of the notion of a stream. The class Scanner does not care if its stream
argument comes from the keyboard or from a text file.

The use of Scanner for reading from a text file is illustrated in Display 10.3, which
contains a program that reads three numbers and a line of text from a text file named
morestuff.txt and writes them back to the screen. The file morestuff.txt is a text
file that a person could have created with a text editor or that a Java program could
have created using PrintWriter.

Reading a Text
File

VideoNote

Self-Test Exercises (continued)

4. Does the class PrintWriter have a constructor that accepts a string (for a file
name) as an argument, so that the following code would be legal?

PrintWriter outputStream =
 new PrintWriter("stuff.txt");

5. Write some code that will create a stream named outStream that is a member of the
class PrintWriter, and that connects this stream to a text file named sam so that
your program can send output to the file. Do this so that the file sam always starts
out empty. So, if there already is a file named sam, the old contents of sam are lost.

6. As in Self-Test Exercise 5, write some code that will create a stream named
outStream that is a member of the class PrintWriter, and that connects this
stream to a text file named sam so that your program can send output to the file.
This time, however, do it in such a way that, if the file sam already exists, the old
contents of sam will not be lost, and the program output will be written after the
old contents of the file.

7. The class Person was defined in Display 5.19 of Chapter 5. Suppose mary is an
object of the class Person, which has a toString method defined, and suppose
outputStream is connected to a text file as in Display 10.1. Will the following
send sensible output to the file connected to outputStream?

outputStream.println(mary);

626 CHAPTER 10 File I/O

The program opens the Scanner stream and connects it to the text file morestuff.txt
as follows:

Scanner inputStream = null;
 ...
inputStream = new Scanner(new FileInputStream("stuff.txt"));

The class Scanner, like the class PrintWriter, has no constructor that takes a
file name as its argument, so we need to use another class—in this case, the class
FileInputStream—to convert the file name to an object that can be a suitable
argument to the Scanner constructor.

Note that the methods nextInt and nextLine read from the text files in exactly
the same way as they read from the keyboard. The other Scanner methods for reading
input (given in Display 2.6 and repeated in Display 10.6) also behave the same when
reading from a text file as they do when used to read from the keyboard.

opening a file

Opening a Text File for Reading with Scanner
Create a stream of the class Scanner and connect it to a text file for reading as follows:

SYNTAX

Scanner Stream_Object =
 new Scanner(new FileInputStream(File_Name));

EXAMPLE

Scanner inputStream =
 new Scanner(new FileInputStream("morestuff.txt"));

After this statement, you can use the methods nextInt, nextDouble, nextLine, and so
forth to read from the named text files just as you have used these methods to read from
the keyboard.

When used in this way, the FileInputStream constructor, and hence the Scanner constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.

FileNotFoundException

If your program attempts to open a file for reading and there is no such file, then a File
NotFoundException is thrown. As you saw earlier in this chapter, a FileNotFound
Exception is also thrown in some other situations. A FileNotFoundException is a kind
of IOException.

Text Files 627

Display 10.3 Reading Input from a Text File Using Scanner (part 1 of 2)

 1 import java.util.Scanner;
 2 import java.io.FileInputStream;
 3 import java.io.FileNotFoundException;
 4
 5 public class TextFileScannerDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 System.out.println("I will read three numbers and a line");
10 System.out.println("of text from the file morestuff.txt.");
11
12 Scanner inputStream = null;
13
14 try
15 {
16 inputStream =
17 new Scanner(new FileInputStream("morestuff.txt"));
18 }
19 catch (FileNotFoundException e)
20 {
21 System.out.println("File morestuff.txt was not found");
22 System.out.println("or could not be opened.");
23 System.exit(0);
24 }
25 int n1 = inputStream.nextInt();
26 int n2 = inputStream.nextInt();
27 int n3 = inputStream.nextInt();
28
29 inputStream.nextLine(); //To go to the next line
30
31 String line = inputStream.nextLine();
32
33 System.out.println("The three numbers read from the file are:");
34 System.out.println(n1 + ", " + n2 + ", and " + n3);
35
36 System.out.println("The line read from the file is:");
37 System.out.println(line);
38
39 inputStream.close();
40 }
41 }

File morestuff.txt

1 2
3 4
Eat my shorts.

This file could have been made with a
text editor or by another Java program.

(continued)

628 CHAPTER 10 File I/O

Testing for the End of a Text File with Scanner

When using the class Scanner, if your program tries to read beyond the end of the
file with any of the input methods, such as nextInt or nextLine, then the method
throws an exception. If all goes well and there are no problems, such as using nextInt
when the input is not a correctly formed int, then the exception thrown will be
NoSuchElementException. This throwing of a NoSuchElementException can be
used to signal the end of input. However, there is a more robust way of testing for
the end of input from a text file. Each of the input methods (such as nextInt and
nextLine) has a corresponding method (such hasNextInt and hasNextLine) that
checks to see if there is any more well-formed input of the appropriate type. The nice
thing about these methods is that they report when there is not a suitable next token
for any reason; they do not check only for the end of a file. For example, hasNextInt
returns false if there is no more file input of any kind or if the next token is not a
well-formed int value. It returns true if there is a well-formed int as the next token.

A sample program that illustrates the use of hasNextLine to test for the end of input
is given in Display 10.4. A sample program that illustrates the use of hasNextInt to
test for the end of input is given in Display 10.5. A summary of some of the methods
in the Scanner class is given in Display 10.6.

Screen Output

I will read three numbers and a line

of text from the file morestuff.txt.

The three numbers read from the file are:

1, 2, and 3

The line read from the file is:

Eat my shorts.

Display 10.3 Reading Input from a Text File Using Scanner (part 2 of 2)

Checking for the End of a Text File with Scanner
You can check for the end of input with methods such as hasNextInt, hasNextLine, and
so forth.

Text Files 629

Display 10.4 Checking for the End of a Text File with hasNextLine (part 1 of 2)

 1 import java.util.Scanner;
 2 import java.io.FileInputStream;
 3 import java.io.FileNotFoundException;
 4 import java.io.PrintWriter;
 5 import java.io.FileOutputStream;
 6
 7 public class HasNextLineDemo
 8 {
 9 public static void main(String[] args)
10 {
11 Scanner inputStream = null;
12 PrintWriter outputStream = null;

13 try
14 {
15 inputStream =
16 new Scanner(new FileInputStream("original.txt"));
17 outputStream = new PrintWriter(
18 new FileOutputStream("numbered.txt"));
19 }
20 catch(FileNotFoundException e)
21 {
22 System.out.println("Problem opening files.");
23 System.exit(0);
24 }

25 String line = null;
26 int count = 0;
27 while (inputStream.hasNextLine())
28 {
29 line = inputStream.nextLine();
30 count++;
31 outputStream.println(count + " " + line);
32 }

33 inputStream.close();
34 outputStream.close();
35 }
36 }

File original.txt

Little Miss Muffet
sat on a tuffet
eating her curves away.
Along came a spider
who sat down beside her
and said "Will you marry me?"

(continued)

630 CHAPTER 10 File I/O

Display 10.4 Checking for the End of a Text File with hasNextLine (part 2 of 2)

File numbered.txt (after the program is run)

1 Little Miss Muffet
2 sat on a tuffet
3 eating her curves away.
4 Along came a spider
5 who sat down beside her
6 and said "Will you marry me?"

Display 10.5 Checking for the End of a Text File with hasNextInt

 1 import java.util.Scanner;
 2 import java.io.FileInputStream;
 3 import java.io.FileNotFoundException;

 4 public class HasNextIntDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 Scanner inputStream = null;

 9 try
10 {
11 inputStream =
12 new Scanner(new FileInputStream("data.txt"));
13 }
14 catch(FileNotFoundException e)
15 {
16 System.out.println("File data.txt was not found");
17 System.out.println("or could not be opened.");
18 System.exit(0);
19 }

20 int next, sum = 0;
21 while (inputStream.hasNextInt())
22 {
23 next = inputStream.nextInt();
24 sum = sum + next;
25 }

26 inputStream.close();

27 System.out.println("The sum of the numbers is " + sum);
28 }
29 }

File data.txt

1 2
3 4 hi 5

Screen Output

The sum of the numbers is 10

Reading ends when either the end of the file is
reached or a token that is not an int is reached.
So, the 5 is never read.

Text Files 631

Display 10.6 Methods in the Class Scanner (part 1 of 4)

Scanner is in the java.util package.

public Scanner(InputStream streamObject)

There is no constructor that accepts a file name as an argument. If you want to create a stream
using a file name, you can use

new Scanner(new FileInputStream(File_Name))

When used in this way, the FileInputStream constructor, and thus the Scanner constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.

To create a stream connected to the keyboard, use

new Scanner(System.in)

public Scanner(File fileObject)

The File class will be covered in the section entitled “The File Class,” later in this chapter. We
discuss it here so that you will have a more complete reference in this display, but you can ignore
this entry until after you have read that section.

If you want to create a stream using a file name, you can use

new Scanner(new File(File_Name))

public int nextInt()

Returns the next token as an int, provided the next token is a well-formed string representation of
an int.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of an int.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNextInt()

Returns true if the next token is a well-formed string representation of an int; otherwise returns false.

Throws an IllegalStateException if the Scanner stream is closed.

public long nextLong()

Returns the next token as a long, provided the next token is a well-formed string representation of
a long.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of a long.

Throws an IllegalStateException if the Scanner stream is closed.

(continued)

632 CHAPTER 10 File I/O

Display 10.6 Methods in the Class Scanner (part 2 of 4)

public boolean hasNextLong()

Returns true if the next token is a well-formed string representation of a long; otherwise
returns false.

Throws an IllegalStateException if the Scanner stream is closed.

public byte nextByte()

Returns the next token as a byte, provided the next token is a well-formed string representation of
a byte.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of a byte.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNextByte()

Returns true if the next token is a well-formed string representation of a byte; otherwise
returns false.

Throws an IllegalStateException if the Scanner stream is closed.

public short nextShort()

Returns the next token as a short, provided the next token is a well-formed string representation
of a short.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of a short.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNextShort()

Returns true if the next token is a well-formed string representation of a short; otherwise
returns false.

Throws an IllegalStateException if the Scanner stream is closed.

public double nextDouble()

Returns the next token as a double, provided the next token is a well-formed string representation
of a double.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of a double.

Throws an IllegalStateException if the Scanner stream is closed.

Text Files 633

Display 10.6 Methods in the Class Scanner (part 3 of 4)

public boolean hasNextDouble()

Returns true if the next token is a well-formed string representation of a double; otherwise
returns false.

Throws an IllegalStateException if the Scanner stream is closed.

public float nextFloat()

Returns the next token as a float, provided the next token is a well-formed string representation
of a float.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of a float.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNextFloat()

Returns true if the next token is a well-formed string representation of a float; otherwise
returns false.

Throws an IllegalStateException if the Scanner stream is closed.

public String next()

Returns the next token.

Throws a NoSuchElementException if there are no more tokens.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNext()

Returns true if there is another token. May wait for a next token to enter the stream.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean nextBoolean()

Returns the next token as a boolean value, provided the next token is a well-formed string
representation of a boolean.

Throws a NoSuchElementException if there are no more tokens.

Throws an InputMismatchException if the next token is not a well-formed string representation
of a boolean value.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNextBoolean()

Returns true if the next token is a well-formed string representation of a boolean value; otherwise
returns false.

Throws an IllegalStateException if the Scanner stream is closed.

(continued)

634 CHAPTER 10 File I/O

public String nextLine()

Returns the rest of the current input line. Note that the line terminator '\n' is read and discarded;
it is not included in the string returned.

Throws a NoSuchElementException if there are no more lines.

Throws an IllegalStateException if the Scanner stream is closed.

public boolean hasNextLine()

Returns true if there is a next line. May wait for a next line to enter the stream.

Throws an IllegalStateException if the Scanner stream is closed.

public Scanner useDelimiter(String newDelimiter);

Changes the delimiter for input so that newDelimiter will be the only delimiter that separates
words or numbers. See the subsection “Other Input Delimiters” in Chapter 2 for the details. (You
can use this method to set the delimiters to a more complex pattern than just a single string, but we
are not covering that.)

Returns the calling object, but we have always used it as a void method.

Display 10.6 Methods in the Class Scanner (part 4 of 4)

Unchecked Exceptions
The exception classes NoSuchElementException, InputMismatchException, and
IllegalStateException are all unchecked exceptions, which means that an exception
of any of these classes is not required to be caught or declared in a throws clause.

Self-Test Exercises

 8. Write some code that will create a stream named fileIn that is a member of
the class Scanner. It should connect the stream to a text file named sally so
that your program can read input from the text file sally.

 9. Might the method nextInt in the class Scanner throw an exception? If so,
what type of exception?

10. If the method hasNextInt returns false, does that mean that reading has
reached the end of the file?

Text Files 635

Reading a Text File Using BufferedReader

Until the Scanner class was introduced with version 5.0 of Java, the class
BufferedReader was the preferred stream class to use for reading from a text file. It
is still a commonly used class for reading from a text file. The use of BufferedReader
is illustrated in Display 10.7, which contains a program that reads two lines from
a text file named morestuff2.txt and writes them back to the screen. The file
morestuff2.txt is a text file that a person could have created with a text editor or that
a Java program could have created using PrintWriter.

The program opens the text file morestuff2.txt as follows:

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff2.txt"));

The class BufferedReader, like the classes PrintWriter and Scanner, has no
constructor that takes a file name as its argument, so we need to use another class—in
this case, the class FileReader—to convert the file name to an object that can be an
argument to BufferedReader.

An object of the class BufferedReader that is connected to a text file, as in Display 10.7,
has a method named readLine that is like the method nextLine of the Scanner class.
This use of readLine to read from a text file is illustrated in Display 10.7.

Display 10.8 describes some of the methods in the class BufferedReader. Notice
that there are only two methods for reading from a text file, readLine and read. We
have already discussed readLine.

Buffered
Reader

opening a file

readLine

Display 10.7 Reading Input from a Text File Using BufferedReader (part 1 of 2)

 1 import java.io.BufferedReader;
 2 import java.io.FileReader;
 3 import java.io.FileNotFoundException;
 4 import java.io.IOException;

 5 public class TextFileInputDemo
 6 {
 7 public static void main(String[] args)
 8 {

(continued)

Self-Test Exercises (continued)

11. Might the following throw an exception that needs to be caught or declared in
a throws clause?

Scanner inputStream =
 new Scanner(new FileInputStream("morestuff.txt"));

 (The stream inputStream would be used to read from the text file
morestuff.txt.)

636 CHAPTER 10 File I/O

 9 try
10 {
11 BufferedReader inputStream =
12 new BufferedReader(new FileReader("morestuff2.txt"));

13 String line = inputStream.readLine();
14 System.out.println(
15 "The first line read from the file is:");
16 System.out.println(line);
17
18 line = inputStream.readLine();
19 System.out.println(
20 "The second line read from the file is:");
21 System.out.println(line);
22 inputStream.close();
23 }
24 catch(FileNotFoundException e)
25 {
26 System.out.println("File morestuff2.txt was not found");
27 System.out.println("or could not be opened.");
28 }
29 catch(IOException e)
30 {
31 System.out.println("Error reading from morestuff2.txt.");
32 }
33 }
34 }

File morestuff2.txt

1 2 3
Jack jump over
the candle stick.

Screen Output

The first line read from the file is:

1 2 3

The second line read from the file is:

Jack jump over

Display 10.7 Reading Input from a Text File Using BufferedReader (part 2 of 2)

This file could have been made with a
text editor or by another Java program.

Text Files 637

Opening a Text File for Reading with BufferedReader
Create a stream of the class BufferedReader and connect it to a text file for reading
as follows:

SYNTAX

BufferedReader Stream_Object =
 new BufferedReader(new FileReader(File_Name));

EXAMPLE

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff2.txt"));

After this statement, you can use the methods readLine and read to read from the file.

When used in this way, the FileReader constructor, and hence the BufferedReader
constructor invocation, can throw a FileNotFoundException, which is a kind of
IOException.

Display 10.8 Some Methods of the Class BufferedReader (part 1 of 2)

BufferedReader and FileReader are in the java.io package.

public BufferedReader(Reader readerObject)

This is the only constructor you are likely to need. There is no constructor that accepts a file name
as an argument. If you want to create a stream using a file name, use

new BufferedReader(new FileReader(File_Name))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.

The File class will be covered later in the section entitled “The File Class.” We discuss it here
so that you will have a more complete reference in this display, but you can ignore the following
reference to the class File until after you have read that section.

If you want to create a stream using an object of the class File, use

new BufferedReader(new FileReader(File_Object))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.

public String readLine()throws IOException

Reads a line of input from the input stream and returns that line. If the read goes beyond the end of
the file, null is returned. (Note that an EOFException is not thrown at the end of a file. The end
of a file is signaled by returning null.)

(continued)

638 CHAPTER 10 File I/O

Display 10.8 Some Methods of the Class BufferedReader (part 2 of 2)

public int read()throws IOException

Reads a single character from the input stream and returns that character as an int value. If the
read goes beyond the end of the file, then -1 is returned. Note that the value is returned as an int.
To obtain a char, you must perform a type cast on the value returned. The end of a file is signaled
by returning -1. (All of the “real” characters return a positive integer.)

public long skip(long n) throws IOException

Skips n characters.

public void close()throws IOException

Closes the stream’s connection to a file.

The method read reads a single character. But note that read returns a value of
type int that corresponds to the character read; it does not return the character itself.
Thus, to get the character, you must use a type cast, as in

char next = (char)(inputStream.read());

If inputStream is in the class BufferedReader and is connected to a text file, this will
set next equal to the first character in the file that has not yet been read.

Notice that the program in Display 10.7 catches two kinds of exceptions,
FileNotFoundException and IOException. An attempt to open the file may throw
a FileNotFoundException, and any of the invocations of inputStream.readLine()
may throw an IOException. Because FileNotFoundException is a kind of
IOException, you could use only the catch block for IOException. However, if you
were to do this, then you would get less information if an exception were thrown. If you
use only one catch block and an exception is thrown, you will not know if the problem
occurred when opening the file or when reading from the file after it was opened.

read method

Self-Test Exercises

12. Write some code that will create a stream named fileIn that is a member of
the class BufferedReader and that connects the stream to a text file named
joe so that your program can read input from the text file joe.

13. What is the type of a value returned by the method readLine in the class
BufferedReader? What is the type of a value returned by the method read in
the class BufferedReader?

14. Might the methods read and readLine in the class BufferedReader throw an
exception? If so, what type of exception?

Text Files 639

TIP: Reading Numbers with BufferedReader

Unlike the Scanner class, the class BufferedReader has no methods to read a
number from a text file. You must write your code to read the number as a string
and convert the string to a value of a numeric type, such as int or double. To read
a single number on a line by itself, read it using the method readLine, and then use
Integer.parseInt, Double.parseDouble, or some similar method to convert the
string read to a number. If there are multiple numbers on a single line, read the line
using readLine and then use the StringTokenizer class to decompose the string
into tokens. Next, use Integer.parseInt or a similar method to convert each token
to a number.

Integer.parseInt, Double.parseDouble, and similar methods that convert
strings to numbers are explained in Chapter 5 in the subsection entitled “Wrapper
Classes.” The StringTokenizer class is discussed in Chapter 4 in the starred subsec-
tion entitled “The StringTokenizer Class”. ■

Testing for the End of a Text File with BufferedReader

When using the class BufferedReader, if your program tries to read beyond the end
of the file with either of the methods readLine or read, then the method returns a
special value to signal that the end of the file has been reached. When readLine tries
to read beyond the end of a file, it returns the value null. Thus, your program can
test for the end of the file by testing to see if readLine returns null. This technique
is illustrated in Display 10.9. When the method read tries to read beyond the end of
a file, it returns the value -1. Because the int value corresponding to each ordinary
character is positive, this can be used to test for the end of a file.

Self-Test Exercises (continued)

15. One difference between the try blocks in Display 10.1 and Display 10.7 is
that the try block in Display 10.1 encloses only the opening of the file, while
the try block in Display 10.7 encloses most of the action in the program. Why
is the try block in Display 10.7 larger than the one in Display 10.1?

16. Might the following throw an exception that needs to be caught or declared in
a throws clause?

BufferedReader inputStream =
 new BufferedReader(new FileReader("morestuff2.txt"));

(The stream inputStream would be used to read from the text file
morestuff2.txt.)

640 CHAPTER 10 File I/O

Checking for the End of a Text File with BufferedReader
The method readLine of the class BufferedReader returns null when it tries to read
beyond the end of a text file. The method read of the class BufferedReader returns -1
when it tries to read beyond the end of a text file.

Display 10.9 Checking for the End of a Text File with BufferedReader (part 1 of 2)

 1 import java.io.BufferedReader;
 2 import java.io.FileReader;
 3 import java.io.PrintWriter;
 4 import java.io.FileOutputStream;
 5 import java.io.FileNotFoundException;
 6 import java.io.IOException;

 7 /**
 8 Makes numbered.txt the same as original.txt, but with each line numbered.
 9 */
10 public class TextEOFDemo
11 {
12 public static void main(String[] args)
13 {
14 try
15 {
16 BufferedReader inputStream =
17 new BufferedReader(new FileReader("original.txt"));
18 PrintWriter outputStream =
19 new PrintWriter(new FileOutputStream("numbered.txt"));

20 int count = 0;
21 String line = inputStream.readLine();
22 while (line != null)
23 {
24 count++;
25 outputStream.println(count + " " + line);
26 line = inputStream.readLine();
27 }
28 inputStream.close();
29 outputStream.close();
30 }
31 catch(FileNotFoundException e)
32 {
33 System.out.println("Problem opening files.");
34 }
35 catch(IOException e)
36 {
37 System.out.println("Error reading from original.txt.");
38 }
39 }
40 }

Text Files 641

File original.txt

Little Miss Muffet
sat on a tuffet
eating her curves away.
Along came a spider
who sat down beside her
and said "Will you marry me?"

File numbered.txt (after the program is run)

1 Little Miss Muffet
2 sat on a tuffet
3 eating her curves away.
4 Along came a spider
5 who sat down beside her
6 and said "Will you marry me?"

Display 10.9 Checking for the End of a Text File with BufferedReader (part 2 of 2)

Self-Test Exercises

17. Does the class BufferedReader have a method to read an int value from a
text file?

18. What happens when the method readLine in the class BufferedReader
attempts to read beyond the end of a file? How can you use this to test for the
end of a file?

19. What is the type of the value returned by the method read in the class
BufferedReader?

20. What happens when the method read in the class BufferedReader attempts to
read beyond the end of a file? How can you use this to test for the end of a file?

21. Does the program in Display 10.9 work correctly if original.txt is an empty file?

Path Names

When giving a file name as an argument to a constructor for opening a file in any of
the ways we have discussed, you may use a simple file name, in which case it is assumed
that the file is in the same directory (folder) as the one in which the program is run.
You can also use a full or relative path name.

A path name not only gives the name of the file, but also tells what directory
(folder) the file is in. A full path name, as the name suggests, gives a complete path
name, starting from the root directory. A relative path name gives the path to the

path names

If your version of numbered.txt has
numbered blank lines after line 6, that means
you had blank lines at the end of
original.txt.

642 CHAPTER 10 File I/O

file, starting with the directory that your program is in. The way that you specify path
names depends on your particular operating system.

A typical UNIX path name is

/user/sallyz/data/data.txt

To create a BufferedReader input stream connected to this file, use

BufferedReader inputStream =
 new BufferedReader(
 new FileReader("/user/sallyz/data/data.txt"));

Windows uses \ instead of / in path names. A typical Windows path name is

C:\dataFiles\goodData\data.txt

To create a BufferedReader input stream connected to this file, use

BufferedReader inputStream =
 new BufferedReader(
 new FileReader("C:\\dataFiles\\goodData\\data.txt"));

Note that you need to use \\ in place of \, since otherwise Java will interpret a
backslash paired with a character, such as \d, as an escape character. Although you
must worry about using a backslash (\) in a quoted string, this problem does not occur
with path names read in from the keyboard.

One way to avoid these escape character problems altogether is to always use
UNIX conventions when writing path names. A Java program will accept a path name
written in either Windows or UNIX format, even if it is run on a computer with an
operating system that does not match the syntax. Thus, an alternate way to create a
BufferedReader input stream connected to the Windows file

C:\dataFiles\goodData\data.txt

is the following:

BufferedReader inputStream =
 new BufferedReader(
 new FileReader("C:/dataFiles/goodData/data.txt"));

Nested Constructor Invocations

Expressions with two constructors, such as the following, are common when dealing
with Java’s library of I/O classes:

new BufferedReader(new FileReader("original.txt"))

This is a manifestation of the general approach to how Java I/O libraries work. Each
I/O class serves one or a small number of functions. To obtain full functionality, you
normally need to combine two (or more) class constructors. For example, in the previous
code, the object new FileReader("original.txt") establishes a connection with the
file original.txt but provides only very primitive methods for input. The constructor
for BufferedReader takes this file reader object and adds a richer collection of input
methods. In these cases, the inner object, such as new FileReader("original.txt"),
is transformed into an instance variable of the outer object, such as BufferedReader.

using \,
\\, or /

Text Files 643

System.in, System.out, and System.err

The streams System.in, System.out, and System.err are three streams that are
automatically available to your Java code. You have already been using System.in and
System.out. System.err is just like System.out, except that it has a different name.
For example, both of the following statements will send the string "Hello" to the
screen so the screen receives two lines, each containing "Hello":

System.out.println("Hello");
System.err.println("Hello");

The output stream System.out is intended to be used for normal output from code
that is not in trouble. System.err is meant to be used for error messages.

Having two different standard output streams can be handy when you redirect
output. For example, you can redirect the regular output to one file and redirect the
error messages to a different file. Java allows you to redirect any of these three standard
streams to or from a file (or other I/O device). This is done with the static methods
setIn, setOut, and setErr of the class System.

For example, suppose your code connects the output stream errStream (of a type
to be specified later) to a text file. You can then redirect the stream System.err to this
text file as follows:

System.setErr(errStream);

If the following appears later in your code,

System.out.println("Hello from System.out.");
System.err.println("Hello from System.err.");

then "Hello from System.out." will be written to the screen, but "Hello from
System.err." will be written to the file connected to the output stream errStream.
A simple program illustrating this is given in Display 10.10.

Self-Test Exercises

22. Of the classes PrintWriter, Scanner, BufferedReader, FileReader, and
FileOutputStream, which have a constructor that accepts a file name as an
argument so that the stream created by the constructor invocation is connected
to the named file?

23. Is the following legal?

FileReader readerObject =
 new FileReader("myFile.txt");
BufferedReader inputStream =
 new BufferedReader(readerObject);

redirecting
output

644 CHAPTER 10 File I/O

Note that the arguments to the redirecting methods must be of the types shown in
the following headings, and that these are classes we do not discuss in this book:

public static void setIn(InputStream inStream)
public static void setOut(PrintStream outStream)
public static void setErr(PrintStream outStream)

None of the input or output streams we constructed in our previous programs are
of a type suitable to be an argument to any of these redirection methods. Space
constraints keep us from giving any more details on the stream classes that are suitable for
producing arguments for these redirection methods. However, you can use Display 10.10
as a model to allow you to redirect either System.err or System.out to a text file of
your choice.

Self-Test Exercises

24. Suppose you want the program in Display 10.10 to send an error message to
the screen and regular (System.out) output to the file errormessages.txt.
(This is the reverse of what the program in Display 10.10 does.) How would
you change the program in Display 10.10?

25. Suppose you want the program in Display 10.10 to send all output (both
System.out and System.err) to the file errormessages.txt. How would
you change the program in Display 10.10?

Display 10.10 Redirecting Error Messages (part 1 of 2)

 1 import java.io.PrintStream;
 2 import java.io.FileOutputStream;
 3 import java.io.FileNotFoundException;

 4 public class RedirectionDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 PrintStream errStream = null;
 9 try
10 {
11 errStream =
12 new PrintStream(
13 new FileOutputStream("errormessages.txt"));
14 }
15 catch(FileNotFoundException e)
16 {
17 System.out.println(
18 "Error opening file with FileOutputStream.");
19 System.exit(0);
20 }

Note the
stream
classes
used.

21 System.setErr(errStream);

22 System.err.println("Hello from System.err.");
23 System.out.println("Hello from System.out.");
24 System.err.println("Hello again from System.err.");

25 errStream.close();
26 }
27 }

File errormessages.txt

Hello from System.err.
Hello again from System.err.

Screen Output

Hello from System.out.

Display 10.10 Redirecting Error Messages (part 2 of 2)

None of System.in, System.out, or
System.err needs to be closed, but the
streams you create should be explicitly
closed.

The File Class 645

10.3 The File Class
The scars of others should teach us caution.

SAINT JEROME, c. 347 – 30.

In this section, we describe the class File, which is not really an I/O stream class but
is often used in conjunction with file I/O. The class File is so important to file I/O
programming that it was even placed in the java.io package.

Programming with the File Class

The File class contains methods that allow you to check various properties of a file,
such as whether there is a file with a specified name, whether the file can be written to,
and so forth. Display 10.11 gives a sample program that uses the class File with text
files. (The class File works the same with binary files as it does with text files.)

Note that the File class constructor takes a name, known as the abstract name, as
an (string) argument. So the File class really checks properties of names. For example,
the method exists tests whether there is a file with the abstract name. Moreover, the
abstract name may be a potential directory (folder) name. For example, the method
isDirectory tests whether the abstract name is the name of a directory (folder). The
abstract name may be either a relative path name (which includes the case of a simple
file name) or a full path name.

Display 10.12 lists some of the methods in the class File.

abstract name

646 CHAPTER 10 File I/O

The File Class
The File class is like a wrapper class for file names. The constructor for the class File
takes a string as an argument and produces an object that can be thought of as the file
with that name. You can use the File object and methods of the class File to answer
questions, such as the following: Does the file exist? Does your program have permission
to read the file? Does your program have permission to write to the file? Display 10.12 has a
summary of some of the methods for the class File.

EXAMPLE

File fileObject = new File("data.txt");
if (! fileObject.canRead())
 System.out.println("File data.txt is not readable.");

Display 10.11 Using the File Class (part 1 of 2)

 1 import java.util.Scanner;
 2 import java.io.File;
 3 import java.io.PrintWriter;
 4 import java.io.FileOutputStream;
 5 import java.io.FileNotFoundException;
 6 public class FileClassDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 Scanner keyboard = new Scanner(System.in);
11 String line = null;
12 String fileName = null;

13 System.out.println("I will store a line of text for you.");
14 System.out.println("Enter the line of text:");
15 line = keyboard.nextLine();
16 System.out.println("Enter a file name to hold the line:");
17 fileName = keyboard.nextLine();
18 File fileObject = new File(fileName);
19
20 while (fileObject.exists())
21 {
22 System.out.println("There already is a file named "
23 + fileName);
24 System.out.println("Enter a different file name:");
25 fileName = keyboard.nextLine();
26 fileObject = new File(fileName);
27 }

28 PrintWriter outputStream = null;
29 try
30 {
31 outputStream =
32 new PrintWriter(new FileOutputStream(fileName));
33 }
34 catch(FileNotFoundException e)
35 {
36 System.out.println("Error opening the file " + fileName);
37 System.exit(0);
38 }

39 System.out.println("Writing \"" + line + "\"");
40 System.out.println("to the file" + fileName);
41 outputStream.println(line);

42 outputStream.close();
43 System.out.println("Writing completed.");
44 }
45 }

Sample Dialogue

I will store a line of text for you.

Enter the line of text:

May the hair on your toes grow long and curly.

Enter a file name to hold the line:

myLine.txt

There already is a file named myLine.txt

Enter a different file name:

mySaying.txt

Writing "May the hair on your toes grow long and curly."

to the file mySaying.txt

Writing completed.

Display 10.11 Using the File Class (part 2 of 2)

If you wish, you can use fileObject
instead of fileName as the argument to
FileOutputStream.

The dialogue assumes that there already is a file named
myLine.txt but that there is no file named mySaying.txt.

Display 10.12 Some Methods in the Class File (part 1 of 3)

File is in the java.io package.

public File(String File_Name)

A constructor. File_Name can be either a full or a relative path name (which includes the case of a
simple file name). File_Name is referred to as the abstract path name.

public boolean exists()

Tests whether there is a file with the abstract path name.

(continued)

The File Class 647

648 CHAPTER 10 File I/O

public boolean canRead()

Tests whether the program can read from the file. Returns true if the file named by the abstract
path name exists and is readable by the program; otherwise returns false.

public boolean setReadOnly()

Sets the file represented by the abstract path name to be read only. Returns true if successful;
otherwise returns false.

public boolean canWrite()

Tests whether the program can write to the file. Returns true if the file named by the abstract path
name exists and is writable by the program; otherwise returns false.

public boolean delete()

Tries to delete the file or directory named by the abstract path name. A directory must be empty
to be removed. Returns true if it was able to delete the file or directory. Returns false if it was
unable to delete the file or directory.

public boolean createNewFile()throws IOException

Creates a new empty file named by the abstract path name, provided that a file of that name does
not already exist. Returns true if successful, and returns false otherwise.

public String getName()

Returns the last name in the abstract path name (that is, the simple file name). Returns the empty
string if the abstract path name is the empty string.

public String getPath()

Returns the abstract path name as a String value.

public boolean renameTo(File New_Name)

Renames the file represented by the abstract path name to New_Name. Returns true if successful;
otherwise returns false. New_Name can be a relative or absolute path name. This may require
moving the file. Whether or not the file can be moved is system dependent.

public boolean isFile()

Returns true if a file exists that is named by the abstract path name and the file is a normal file;
otherwise returns false. The meaning of normal is system dependent. Any file created by a Java
program is guaranteed to be normal.

public boolean isDirectory()

Returns true if a directory (folder) exists that is named by the abstract path name; otherwise
returns false.

public boolean mkdir()

Makes a directory named by the abstract path name. Will not create parent directories. See mkdirs,
which follows. Returns true if successful; otherwise returns false.

Display 10.12 Some Methods in the Class File (part 2 of 3)

Binary Files 649

Display 10.12 Some Methods in the Class File (part 3 of 3)

public boolean mkdirs()

Makes a directory named by the abstract path name. Will create any necessary but nonexistent
parent directories. Returns true if successful; otherwise returns false. Note that if it fails, then
some of the parent directories may have been created.

public long length()

Returns the length in bytes of the file named by the abstract path name. If the file does not exist or
the abstract path name designates a directory, then the value returned is not specified and may be
anything.

Self-Test Exercises

26. Write a complete (although simple) Java program that tests whether or not the
directory (folder) containing the program also contains a file named Sally.txt.
The program has no input, and the only output tells whether or not there is a
file named Sally.txt.

27. Write a complete Java program that asks the user for a file name, tests whether
the file exists, and, if the file exists, asks the user whether or not it should be
deleted. It then either deletes or does not delete the file as the user requests.

10.4 Binary Files ★
A little more than kin, and less than kind.

WILLIAM SHAKESPEARE, Hamlet, 1603.

Binary files store data in the same format that is used in the computer’s memory to
store the values of variables. For example, a value of type int is stored as the same
sequence of bytes (same sequence of zeros and ones) whether it is stored in an int
variable in memory or in a binary file. So, no conversion of any kind needs to be
performed when you store or retrieve a value in a binary file. This is why binary files
can be handled more efficiently than text files.

Java binary files are unlike binary files in other programming languages in that
they are portable. A binary file created by a Java program can be moved from one
computer to another and still be read by a Java program—but only by a Java program.
They cannot normally be read with a text editor or with a program written in any
programming language other than Java.

The preferred stream classes for processing binary files are ObjectInputStream
and ObjectOutputStream. Each has methods to read or write data one byte at a time.
These streams can also automatically convert numbers and characters to bytes that can
be stored in a binary file. They allow your program to be written as if the data placed in

650 CHAPTER 10 File I/O

the file, or read from the file, is not just bytes but also strings or items of any of Java’s
primitive data types, such as int, char, and double, or even objects of classes you
define. If you do not need to access your files using an editor, then the easiest and most
efficient way to read data from and write data to files is to use binary files in the way we
describe here.

We conclude this section with a discussion of how you can use ObjectOutputStream
and ObjectInputStream to write and later read objects of any class you define. This
will let you store objects of the classes you define in binary files and later read them
back, all with the same convenience and efficiency that you get when storing strings
and primitive type data in binary files.

Writing Simple Data to a Binary File

The class ObjectOutputStream is the preferred stream class for writing to a binary
file.2 An object of the class ObjectOutputStream has methods to write strings and
values of any of the primitive types to a binary file. Display 10.13 shows a sample
program that writes values of type int to a binary file. Display 10.14 describes the
methods used for writing data of other types to a binary file.

Display 10.13 Writing to a Binary File (part 1 of 2)

 1 import java.io.ObjectOutputStream;
 2 import java.io.FileOutputStream;
 3 import java.io.IOException;

 4 public class BinaryOutputDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 try
 9 {
10 ObjectOutputStream outputStream =
11 new ObjectOutputStream(

new FileOutputStream("numbers.dat"));

12 int i;
13 for (i = 0; i < 5; i++)
14 outputStream.writeInt(i);

15 System.out.println("Numbers written to the file numbers.dat.");
16 outputStream.close();
17 }

2 DataOutputStream is also widely used and behaves exactly as we describe for ObjectOutputStream
in this section. However, the techniques given in the subsections “Binary I/O of Objects” and “Array Objects
in Binary Files” work only for ObjectOutputStream; they do not work for DataOutputStream.

Binary Files 651

18 catch (IOException e)
19 {
20 System.out.println("Problem with file output.");
21 }
22 }
23 }

File RepResentation (after program is run)

0
1
2
3
4

Display 10.13 Writing to a Binary File (part 2 of 2)

This is a binary file. It really contains representations
of each number as bytes—that is, zeros and ones—and
is read as bytes. You cannot read this file with your
text editor.

Display 10.14 Some Methods in the Class ObjectOutputStream (part 1 of 2)

ObjectOutputStream and FileOutputStream are in the java.io package.

public ObjectOutputStream(OutputStream streamObject)

There is no constructor that takes a file name as an argument. If you want to create a stream using
a file name, use

new ObjectOutputStream(new FileOutputStream(File_Name))

This creates a blank file. If there already is a file named File_Name, then the old contents of the
file are lost.

If you want to create a stream using an object of the class File, use

new ObjectOutputStream(new FileOutputStream(File_Object))

The constructor for FileOutputStream may throw a FileNotFoundException, which is a
kind of IOException. If the FileOutputStream constructor succeeds, then the constructor for
ObjectOutputStream may throw a different IOException.

public void writeInt(int n) throws IOException

Writes the int value n to the output stream.

public void writeShort(short n) throws IOException

Writes the short value n to the output stream.

public void writeLong(long n) throws IOException

Writes the long value n to the output stream.

public void writeDouble(double x) throws IOException

Writes the double value x to the output stream.

(continued)

652 CHAPTER 10 File I/O

Notice that almost all the code in the sample program in Display 10.13 is in a try
block. Any part of the code that does binary file I/O in the ways we are describing can
throw an IOException.

The output stream for writing to the binary file numbers.dat is created and named
with the following:

ObjectOutputStream outputStream =
 new ObjectOutputStream(new
 FileOutputStream("numbers.dat"));

As with text files, this is called opening the file. If the file numbers.dat does not
already exist, this statement will create an empty file named numbers.dat. If the file
numbers.dat already exists, this statement will erase the contents of the file so that the
file starts out empty. The situation is basically the same as what you learned for text
files, except that we are using a different class.

opening a file

Display 10.14 Some Methods in the Class ObjectOutputStream (part 2 of 2)

public void writeFloat(float x) throws IOException

Writes the float value x to the output stream.

public void writeChar(int n) throws IOException

Writes the char value n to the output stream. Note that it expects its argument to be an int
value. However, if you simply use the char value, then Java will automatically type cast it to an
int value. The following are equivalent:

outputStream.writeChar((int)'A');

and

outputStream.writeChar('A');

public void writeUTF(String aString) throws IOException

Writes the String value aString to the output stream. UTF refers to a particular method of
encoding the string. To read the string back from the file, you should use the method readUTF of
the class ObjectInputStream.

public void writeObject(Object anObject) throws IOException

Writes its argument to the output stream. The object argument should be an object of a serializable
class, a concept discussed later in the section titled “The Serializable Interface.” Throws
various IOExceptions.

public void close()throws IOException

Closes the stream’s connection to a file. This method calls flush before closing the file.

public void flush()throws IOException

Flushes the output stream. This forces an actual physical write to the file of any data that has been
buffered and not yet physically written to the file. Normally, you should not need to invoke flush.

Binary Files 653

As is typical of Java I/O classes, the constructor for the class ObjectOutputStream
takes another I/O class object as an argument—in this case, an anonymous argument
of the class FileOutputStream.

Opening a Binary File for Output
You create a stream of the class ObjectOutputStream and connect it to a binary file
as follows:

SYNTAX

ObjectOutputStream Output_Stream_Name =
 new ObjectOutputStream(new FileOutputStream(File_Name));

The constructor for FileOutputStream may throw a FileNotFoundException, which
is a kind of IOException. If the FileOutputStream constructor succeeds, then the
constructor for ObjectOutputStream may throw a different IOException. A single
catch block for IOException would cover all cases.

EXAMPLES

ObjectOutputStream myOutputStream =
 new ObjectOutputStream(new

FileOutputStream("mydata.dat"));

After opening the file, you can use the methods of the class ObjectOutputStream
(Display 10.14) to write to the file.

The class ObjectOutputStream does not have a method named println, as we had
with text file output and screen output. However, as shown in Display 10.13, an object of
the class ObjectOutputStream does have a method named writeInt that can write a single
int value to a file, and it also has the other output methods described in Display 10.14.

In Display 10.13, we made it look as though the numbers in the file numbers.dat
were written one per line in a human-readable form. That is not what happens,
however. There are no lines or other separators between the numbers. Instead, the
numbers are written in the file one immediately after the other, and they are encoded
as a sequence of bytes in the same way that the numbers would be encoded in the
computer’s main memory. These coded int values cannot be read using your editor.
Realistically, they can be read only by another Java program.

You can use a stream from the class ObjectOutputStream to output values of any
primitive type and also to write data of the type String. Each primitive data type has
a corresponding write method in the class ObjectOutputStream. We have already
mentioned the write methods for outputting int values. The methods for the other
primitive types are completely analogous to writeInt. For example, the following
would write a double value, a boolean value, and a char value to the binary file
connected to the ObjectOutputStream object outputStream:

outputStream.writeDouble(9.99);
outputStream.writeBoolean(false);
outputStream.writeChar((int)'A');

writeInt

654 CHAPTER 10 File I/O

The method writeChar has one possibly surprising property: It expects its argument
to be of type int. So if you start with a value of type char, the char value can be type
cast to an int before it is given to the method writeChar. For example, to output the
contents of a char variable named symbol, you can use

outputStream.writeChar((int)symbol);

In actual fact, you do not need to write in the type cast to an int, because Java
automatically performs a type cast from a char value to an int value for you. So, the
following is equivalent to the previous invocation of writeChar:

outputStream.writeChar(symbol);

To output a value of type String, use the method writeUTF. For example, if
outputStream is a stream of type ObjectOutputStream, the following will write the
string "Hello friend." to the file connected to that stream:

outputStream.writeUTF("Hello friend.");

You may write output of different types to the same file. So, you may write a
combination of, for example, int, double, and String values. However, mixing types
in a file does require special care to make it possible to read them back out of the file.
To read them back, you need to know the order in which the various types appear in
the file, because, as you will see, a program that reads from the file will use a different
method to read data of each different type.

Note that, as illustrated in Display 10.13 and as you will see shortly, you close a
binary output or input stream in the same way that you close a stream connected to
a text file.

UTF and writeUTF

Recall that Java uses the Unicode character set, which is a set of characters that includes
many characters used in languages whose character sets are different from English.
Readers of this book are undoubtedly using editors and operating systems that use
the ASCII character set, which is the character set normally used for English and
for our Java programs. The ASCII character set is a subset of the Unicode character
set, so the Unicode character set has a lot of characters you probably do not need.
There is a standard way of encoding all the Unicode characters, but for English-
speaking countries, it is not a very efficient coding scheme. The UTF coding scheme
is an alternative scheme that still codes all Unicode characters, but that favors the
ASCII character set. The UTF coding method gives short, efficient codes for the ASCII
characters. The price is that it gives long, inefficient codes to the other
Uni code characters. However, because you probably do not use the other Unicode
characters, this is a very favorable trade-off. The method writeUTF uses the UTF
coding method to write strings to a binary file.

The method writeInt writes integers into a file using the same number of
bytes—that is, the same number of zeros and ones—to store any integer. Similarly,
the method writeLong uses the same number of bytes to store each value of type
long. (But the methods writeInt and writeLong use a different number of bytes

writeChar

writeUTF
for strings

closing a
binary file

Binary Files 655

from each other.) The situation is the same for all the other write methods that
write primitive types to binary files. However, the method writeUTF uses differing
numbers of bytes to store different strings in a file. Longer strings require more
bytes than shorter strings. This can present a problem to Java, because there are no
separators between data items in a binary file. The way that Java manages to make
this work is by writing some extra information at the start of each string. This extra
information tells how many bytes are used to write the string, so readUTF knows how
many bytes to read and convert. (The method readUTF will be discussed a little later
in this chapter, but, as you may have already guessed, it reads a String value that was
written using the UTF coding method.)

The situation with writeUTF is even a little more complicated than what we
discussed in the previous paragraph. Notice that we said that the information at the
start of the string code in the file tells how many bytes to read, not how many characters
are in the string. These two figures are not the same. With the UTF way of encoding,
different characters are encoded in different numbers of bytes. However, all the ASCII
characters are stored in just one byte, and you are undoubtedly using only ASCII
characters, so this difference is more theoretical than real to you now.

Reading Simple Data from a Binary File

The stream class ObjectInputStream is used to read from a file that has been
written to using ObjectOutputStream. Display 10.15 gives some of the most
commonly used methods for this class. If you compare that table with the methods for
ObjectOutputStream given in Display 10.14, you will see that each output method
in ObjectOutputStream has a corresponding input method in ObjectInputStream.
For example, if you write an integer to a file using the method writeInt of
ObjectOutputStream, then you can read that integer back with the method readInt
of ObjectInputStream. If you write a number to a file using the method writeDouble
of ObjectOutputStream, then you can read that number back with the method
readDouble of ObjectInputStream, and so forth. Display 10.16 gives an example of
using readInt in this way.

Self-Test Exercises

28. How do you open the binary file bindata.dat so that it is connected to an
output stream of type ObjectOutputStream that is named outputThisWay?

29. Give two statements that will write the values of the two double variables
v1 and v2 to the file bindata.dat. Use the stream outputThisWay that you
created as the answer to Self-Test Exercise 28.

30. Give a statement that will write the string value "Hello" to the file
bindata.dat. Use the stream outputThisWay that you created as the answer
to Self-Test Exercise 28.

31. Give a statement that will close the stream outputThisWay created as the
answer to Self-Test Exercise 28.

656 CHAPTER 10 File I/O

The input stream for reading from the binary file numbers.dat is opened as follows:

ObjectInputStream inputStream =
 new ObjectInputStream(new

FileInputStream("numbers.dat"));

Note that this is identical to how we opened a file using ObjectOutputStream in
Display 10.13, except that here we have used the classes ObjectInputStream and
FileInputStream instead of ObjectOutputStream and FileOutputStream.

Opening a Binary File for Reading
Create a stream of the class ObjectInputStream and connect it to a binary file as follows:

SYNTAX

ObjectInputStream Input_Stream_Name =
 new ObjectInputStream(new FileInputStream(File_Name));

The constructor for FileInputStream may throw a FileNotFoundException, which
is a kind of IOException. If the FileInputStream constructor succeeds, then the
constructor for ObjectInputStream may throw a different IOException.

EXAMPLES

ObjectInputStream inputFile =
 new ObjectInputStream(new
 FileInputStream("somefile.dat"));

After this, you can use the methods in Display 10.15 to read from the file.

Display 10.15 Some Methods in the Class ObjectInputStream (part 1 of 3)

The classes ObjectInputStream and FileInputStream are in the java.io package.

public ObjectInputStream(InputStream streamObject)

There is no constructor that takes a file name as an argument. If you want to create a stream using
a file name, use

new ObjectInputStream(new FileInputStream(File_Name))

Alternatively, you can use an object of the class File in place of the File_Name, as follows:

new ObjectInputStream(new FileInputStream(File_Object))

The constructor for FileInputStream may throw a FileNotFoundException, which is a
kind of IOException. If the FileInputStream constructor succeeds, then the constructor for
ObjectInputStream may throw a different IOException.

Binary Files 657

public int readInt()throws IOException

Reads an int value from the input stream and returns that int value. If readInt tries to read
a value from the file and that value was not written using the method writeInt of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

public int readShort()throws IOException

Reads a short value from the input stream and returns that short value. If readShort tries to
read a value from the file and that value was not written using the method writeShort of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

public long readLong()throws IOException

Reads a long value from the input stream and returns that long value. If readLong tries to
read a value from the file and that value was not written using the method writeLong of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

public double readDouble()throws IOException

Reads a double value from the input stream and returns that double value. If readDouble tries
to read a value from the file and that value was not written using the method writeDouble of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

public float readFloat()throws IOException

Reads a float value from the input stream and returns that float value. If readFloat tries to
read a value from the file and that value was not written using the method writeFloat of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

public char readChar()throws IOException

Reads a char value from the input stream and returns that char value. If readChar tries to
read a value from the file and that value was not written using the method writeChar of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

public boolean readBoolean()throws IOException

Reads a boolean value from the input stream and returns that boolean value. If readBoolean
tries to read a value from the file and that value was not written using the method writeBoolean
of the class ObjectOutputStream (or written in some equivalent way), then problems will
occur. If an attempt is made to read beyond the end of the file, an EOFException is thrown.

Display 10.15 Some Methods in the Class ObjectInputStream (part 2 of 3)

(continued)

658 CHAPTER 10 File I/O

public String readUTF()throws IOException

Reads a String value from the input stream and returns that String value. If readUTF tries
to read a value from the file and that value was not written using the method writeUTF of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur. If an
attempt is made to read beyond the end of the file, an EOFException is thrown.

Object readObject() throws ClassNotFoundException, IOException

Reads an object from the input stream. The object read should have been written using
writeObject of the class ObjectOutputStream. Throws a ClassNotFoundException if
a serialized object cannot be found. If an attempt is made to read beyond the end of the file, an
EOFException is thrown. May throw various other IOExceptions.

public int skipBytes(int n) throws IOException

Skips n bytes.

public void close()throws IOException

Closes the stream’s connection to a file.

Display 10.15 Some Methods in the Class ObjectInputStream (part 3 of 3)

ObjectInputStream allows you to read input values of different types from the same
file. So, you may read a combination of, for example, int values, double values, and
String values. However, if the next data item in the file is not of the type expected by
the reading method, the result is likely to be a mess. For example, if your program writes
an integer using writeInt, then any program that reads that integer should read it using
readInt. If you instead use readLong or readDouble, your program will misbehave.

Note that, as illustrated in Display 10.16, you close a binary input stream in the
same way that you close all the other I/O streams we have seen.

closing a
binary file

reading
multiple

types

Self-Test Exercises

32. Write code to open the binary file named someStuff and connect it to an
ObjectInputStream object named inputThing so it is ready for reading.

33. Give a statement that will read a number of type double from the file
someStuff and place the value in a variable named number. Use the stream
inputThing that you created in Self-Test Exercise 32. (Assume the first thing
written to the file was written using the method writeDouble of the class
ObjectOutputStream and assume number is of type double.)

34. Give a statement that will close the stream inputThing created in Self-Test
Exercise 32.

35. Can one program write a number to a file using writeInt and then have
another program read that number using readLong? Can a program read that
number using readDouble?

36. Can you use readUTF to read a string from a text file?

Binary Files 659

Display 10.16 Reading from a Binary File

 1 import java.io.ObjectInputStream;

 2 import java.io.FileInputStream;

 3 import java.io.IOException;

 4 import java.io.FileNotFoundException;

 5 public class BinaryInputDemo

 6 {

 7 public static void main(String[] args)

 8 {

 9 try

10 {

11 ObjectInputStream inputStream =

12 new ObjectInputStream(new FileInputStream("numbers.dat"));

13 System.out.println("Reading the file numbers.dat.");

14 int n1 = inputStream.readInt();

15 int n2 = inputStream.readInt();

16 System.out.println("Numbers read from file:");

17 System.out.println(n1);

18 System.out.println(n2);

19 inputStream.close();

20 }

21 catch(FileNotFoundException e)

22 {

23 System.out.println("Cannot find file numbers.dat.");

24 }

25 catch(IOException e)

26 {

27 System.out.println("Problems with input from numbers.dat.");

28 }

29 System.out.println("End of program.");

30 }

31 }

Sample Dialogue

Reading the file numbers.dat.

Numbers read from file:

0

1

End of program.

Assumes the program in
Display 10.13 was run to
create the file numbers.dat.

660 CHAPTER 10 File I/O

Checking for the End of a Binary File

All of the ObjectInputStream methods that read from a binary file will throw an
EOFException when they try to read beyond the end of a file. So, your code can test for
the end of a binary file by catching an EOFException as illustrated in Display 10.17.

In Display 10.17, the reading is placed in an “infinite loop” through the use of true
as the Boolean expression in the while loop. The loop is not really infinite, because
when the end of the file is reached, an exception is thrown, and that ends the entire
try block and passes control to the catch block.

EOF-
Exception

EOFException

If your program is reading from a binary file using any of the methods listed in Display 10.15
for the class ObjectInputStream, and your program attempts to read beyond the end of
the file, then an EOFException is thrown. This can be used to end a loop that reads all the
data in a file.

The class EOFException is a derived class of the class IOException. So, every exception
of type EOFException is also of type IOException.

Display 10.17 Using EOFException (part 1 of 2)

 1 import java.io.ObjectInputStream;
 2 import java.io.FileInputStream;
 3 import java.io.EOFException;
 4 import java.io.IOException;
 5 import java.io.FileNotFoundException;

 6 public class EOFDemo
 7 {
 8 public static void main(String[] args)
 9 {
10 try
11 {
12 ObjectInputStream inputStream =
13 new ObjectInputStream(new FileInputStream("numbers.dat"));
14 int number;
15 System.out.println("Reading numbers in numbers.dat");
16 try
17 {
18 while (true)
19 {
20 number = inputStream.readInt();
21 System.out.println(number);
22 }
23 }

Binary Files 661

24 catch(EOFException e)
25 {
26 System.out.println("No more numbers in the file.");
27 }
28 inputStream.close();
29 }
30 catch(FileNotFoundException e)
31 {
32 System.out.println("Cannot find file numbers.dat.");
33 }
34 catch(IOException e)
35 {
36 System.out.println("Problem with input from file

numbers.dat.");
37 }
38 }
39 }

Sample Dialogue

Reading numbers in numbers.dat

0

1

2

3

4

No more numbers in the file.

Assumes the program in
Display 10.13 was run to
create the file numbers.dat.

Display 10.17 Using EOFException (part 2 of 2)

PITFALL: Checking for the End of a File in the Wrong Way

Different file-reading methods check for the end of a file in different ways. If you
test for the end of a file in the wrong way, one of two things will probably happen:
Your program will either go into an unintended infinite loop, or it will terminate
abnormally.

For the classes discussed in this book, the following rules apply: If your program
is reading from a binary file, then an EOFException will be thrown when the read-
ing goes beyond the end of the file. If your program is reading from a text file, then
no EOFException will be thrown when reading goes beyond the end of the file. ■

662 CHAPTER 10 File I/O

Self-Test Exercises

37. When opening a binary file for output in the ways discussed in this chapter,
might an exception be thrown? What kind of exception? When opening a
binary file for input in the ways discussed in this chapter, might an exception be
thrown? What kind of exception?

38. Suppose a binary file contains three numbers written to the file with the
method writeDouble of the class ObjectOutputStream. Suppose further that
your program reads all three numbers with three invocations of the method
readDouble of the class ObjectInputStream. When will an EOFException
be thrown? Right after reading the third number? When your program tries to
read a fourth number? Some other time?

39. The following appears in the program in Display 10.17:

try
{
 while (true)
 {
 number = inputStream.readInt();
 System.out.println(number);
 }
}
catch(EOFException e)
{
 System.out.println("No more numbers in the file.");
}

Why isn’t this an infinite loop?

Binary I/O of Objects

You can output objects of classes you define as easily as you output int values using
writeInt, and you can later read the objects back into your program as easily as you read
int values with the method readInt. For you to be able to do this, the class of objects
that your code is writing and reading must implement the Serializable interface.

We will discuss interfaces in general in Chapter 13. However, the Serializable
interface is particularly easy to use and requires no knowledge of interfaces. All you
need to do to make a class implement the Serializable interface is add the two
words implements Serializable to the heading of the class definition, as in the
following example:

public class Person implements Serializable
{

The Serializable interface is in the same java.io package that contains all the I/O
classes we have discussed in this chapter. For example, in Display 10.18, we define a
toy class named SomeClass that implements the Serializable interface. We will

Serializable
interface

Binary Files 663

explain the effect of the Serializable interface a bit later in this chapter, but first let’s
see how you do binary file I/O with a serializable class, such as this class SomeClass in
Display 10.18.

Display 10.19 illustrates how class objects can be written to and read from a binary
file. To write an object of a class such as SomeClass to a binary file, simply use the
method writeObject of the class ObjectOutputStream. You use writeObject in the
same way that you use the other methods of the class ObjectOutputStream, such as
writeInt, but you use an object as the argument.

If an object is written to a file with writeObject, then it can be read back out of
the file with readObject of the stream class ObjectInputStream, as also illustrated in
Display 10.19. The method readObject returns its value as an object of type Object.
If you want to use the values retuned by readObject as an object of a class such as
SomeClass, you must do a type cast, as shown in Display 10.19.

The Serializable Interface

A class that implements the Serializable interface is said to be a serializable class. To
use objects of a class with writeObject and readObject, that class must be serializable.
But to make the class serializable, we change nothing in the class. All we do is add
the phrase implements Serializable. This phrase tells the run-time system that it
is OK to treat objects of the class in a particular way when doing file I/O. If a class is

writeObject

readObject

serializable

Display 10.18 A Serializable Class

 1 import java.io.Serializable;

 2 public class SomeClass implements Serializable
 3 {
 4 private int number;
 5 private char letter;

 6 public SomeClass()
 7 {
 8 number = 0;
 9 letter = 'A';
10 }

11 public SomeClass(int theNumber, char theLetter)
12 {
13 number = theNumber;
14 letter = theLetter;
15 }
16 public String toString()
17 {
18 return "Number = " + number
19 + " Letter = " + letter;
20 }
21 }

664 CHAPTER 10 File I/O

Display 10.19 Binary File I/O of Objects (part 1 of 2)

 1 import java.io.ObjectOutputStream;
 2 import java.io.FileOutputStream;
 3 import java.io.ObjectInputStream;
 4 import java.io.FileInputStream;
 5 import java.io.IOException;
 6 import java.io.FileNotFoundException;

 7 /**
 8 Demonstrates binary file I/O of serializable class objects.
 9 */
10 public class ObjectIODemo
11 {
12 public static void main(String[] args)
13 {
14 try
15 {
16 ObjectOutputStream outputStream =
17 new ObjectOutputStream(new FileOutputStream("datafile"));

18 SomeClass oneObject = new SomeClass(1, 'A');
19 SomeClass anotherObject = new SomeClass(42, 'Z');

20 outputStream.writeObject(oneObject);
21 outputStream.writeObject(anotherObject);

22 outputStream.close();

23 System.out.println("Data sent to file.");
24 }
25 catch(IOException e)
26 {
27 System.out.println("Problem with file output.");
28 }

29 System.out.println(
30 "Now let's reopen the file and display the data.");
31 try
32 {
33 ObjectInputStream inputStream =
34 new ObjectInputStream(new FileInputStream("datafile"));

35 SomeClass readOne = (SomeClass)inputStream.readObject();
36 SomeClass readTwo = (SomeClass)inputStream.readObject();

37 System.out.println("The following were read from the file:");
38 System.out.println(readOne);
39 System.out.println(readTwo);
40 }
41 catch(FileNotFoundException e)
42 {
43 System.out.println("Cannot find datafile.");
44 }

Notice the type casts.

Binary Files 665

45 catch(ClassNotFoundException e)
46 {
47 System.out.println("Problems with file input.");
48 }
49 catch(IOException e)
50 {
51 System.out.println("Problems with file input.");
52 }
53 System.out.println("End of program.");
54 }
55 }

Sample Dialogue

Data sent to file.

Now let's reopen the file and display the data.

The following were read from the file:

Number = 1 Letter = A

Number = 42 Letter = Z

End of program.

Display 10.19 Binary File I/O of Objects (part 2 of 2)

serializable, Java assigns a serial number to each object of the class that it writes to a
stream of type ObjectOutputStream. If the same object is written to the stream more
than once, then after the first time, Java writes only the serial number for the object
and not a full description of the object’s data. This makes file I/O more efficient and
makes the files smaller. When read back out with a stream of type ObjectInputStream,
duplicate serial numbers are returned as references to the same object. Note that this
means that if two variables contain references to the same object and you write the
objects to the file and later read them from the file, then the two objects that are read
will again be references to the same object. So nothing in the structure of your object
data is lost when you write the objects to the file and later read them back.

When a serializable class has instance variables of a class type, then the classes for
the instance variables must also be serializable, and so on for all levels of class instance
variables within classes. So, a class is not serializable unless the classes for all instance
variables are also serializable.

Why aren’t all classes made serializable? For security reasons. The serial number
system makes it easier for programmers to get access to the object data written to
secondary storage. Also, for some classes, it may not make sense to write objects to
secondary storage, because they would be meaningless when read out again later. For
example, if the object contains system-dependent data, the data may be meaningless
when later read out.

class instance
variables

666 CHAPTER 10 File I/O

Array Objects in Binary Files

An array is an object and hence a suitable argument for writeObject. An entire array
can be saved to a binary file using writeObject and later read using readObject.
When doing so, if the array has a base type that is a class, then the class must be
serializable. This means that if you store all your data for one serializable class in a
single array, then you can output all your data to a binary file with one invocation of
writeObject.

This way of storing an array in a binary file is illustrated in Display 10.20. Note
that the base class type, SomeClass, is serializable. Also, notice the type cast that uses
the array type SomeClass[]. Because readObject returns its value as an object of type
Object, it must be type cast to the correct array type.

PITFALL: Mixing Class Types in the Same File

The best way to write and read objects using ObjectOutputStream and
ObjectInput Stream is to store only data of one class type in any one file. If you store
objects of multiple class types or even objects of only one class type mixed in with
primitive type data, it has been our experience that the system can get confused and
you could lose data. ■

Self-Test Exercises

40. How do you make a class implement the Serializable interface?

41. What import statement do you need to be able to use the Serializable
interface?

42. What is the return type for the method readObject of the class
ObjectInputStream?

43. Is an array of type Object?

Display 10.20 File I/O of an Array Object (part 1 of 3)

 1 import java.io.ObjectOutputStream;
 2 import java.io.FileOutputStream;
 3 import java.io.ObjectInputStream;
 4 import java.io.FileInputStream;
 5 import java.io.IOException;
 6 import java.io.FileNotFoundException;

 7 public class ArrayIODemo
 8 {

 9 public static void main(String[] args)

Binary Files 667

10 {
11 SomeClass[] a = new SomeClass[2];
12 a[0] = new SomeClass(1, 'A');
13 a[1] = new SomeClass(2, 'B');

14 try
15 {
16 ObjectOutputStream outputStream =
17 new ObjectOutputStream(new FileOutputStream("arrayfile"));
18 outputStream.writeObject(a);
19 outputStream.close();
20 }
21 catch(IOException e)
22 {
23 System.out.println("Error writing to file.");
24 System.exit(0);
25 }

26 System.out.println(
27 "Array written to file arrayfile.");

28 System.out.println(
29 "Now let's reopen the file and display the array.");

30 SomeClass[] b = null ;

31 try
32 {
33 ObjectInputStream inputStream =
34 new ObjectInputStream(new FileInputStream("arrayfile"));
35 b = (SomeClass[])inputStream.readObject();
36 inputStream.close();
37 }
38 catch(FileNotFoundException e)
39 {
40 System.out.println("Cannot find file arrayfile.");
41 System.exit(0);
42 }
43 catch(ClassNotFoundException e)
44 {
45 System.out.println("Problems with file input.");
46 System.exit(0);
47 }
48 catch(IOException e)
49 {
50 System.out.println("Problems with file input.");
51 System.exit(0);
52 }
53 System.out.println(
54 "The following array elements were read from the file:");
55 int i;

Display 10.20 File I/O of an Array Object (part 2 of 3)

(continued)

Notice the type cast.

668 CHAPTER 10 File I/O

10.5 Random Access to Binary Files ★
Anytime, anywhere.

Common response to a challenge for a confrontation.

The streams for sequential access to files, which we discussed in the previous sections
of this chapter, are the ones most often used for file access in Java. However, some
applications that require very rapid access to records in very large databases require
some sort of random access to particular parts of a file. Such applications might best be
done with specialized database software. But perhaps you are given the job of writing
such a package in Java, or perhaps you are just curious about how such things are done
in Java. Java does provide for random access to files so that your program can both read
from and write to random locations in a file. In this section, we will describe simple
uses of random access to files.

Reading and Writing to the Same File

If you want random access to both read and write to a file in Java, use the stream class
RandomAccessFile, which is in the java.io package like all other file I/O classes.

A random access file consists of a sequence of numbered bytes. There is a kind of
marker called the file pointer that is always positioned at one of these bytes. All reads
and writes take place starting at the location of the file pointer. You can move the file
pointer to a new location with the method seek.

Although a random access file is byte oriented, there are methods to allow for
reading or writing values of the primitive types and of string values to a random access
file. In fact, these are the same methods as those we already used for sequential access
files, as previously discussed. A RandomAccessFile stream has methods writeInt,
writeDouble, writeUTF, and so forth, as well as methods readInt, readDouble,

56 for (i = 0; i < b.length; i++)
57 System.out.println(b[i]);
58 System.out.println("End of program.");
59 }
60 }

Sample Dialogue

Array written to file arrayfile.

Now let's reopen the file and display the array.

The following array elements were read from the file:

Number = 1 Letter = A

Number = 2 Letter = B

End of program.

Display 10.20 File I/O of an Array Object (part 3 of 3)

file pointer

Random Access to Binary Files 669

Display 10.21 Some Methods of the Class RandomAccessFile (part 1 of 3)

The class RandomAccessFile is in the java.io package.

public RandomAccessFile(String fileName, String mode)

public RandomAccessFile(File fileObject, String mode)

Opens the file, does not delete data already in the file, but does position the file pointer at the first
(zeroth) location.

The mode must be one of the following:
"r" Open for reading only.
"rw" Open for reading and writing.
"rws" Same as "rw", and also requires that every update to the file’s content or metadata be
written synchronously to the underlying storage device.
"rwd" Same as "rw", and also requires that every update to the file’s content be written
synchronously to the underlying storage device.
"rws" and "rwd" are not covered in this book text.

public long getFilePointer()throws IOException

Returns the current location of the file pointer. Locations are numbered starting with 0.

public void seek(long location) throws IOException

Moves the file pointer to the specified location.

public long length()throws IOException

Returns the length of the file.

public void setLength(long newLength) throws IOException

Sets the length of this file.

If the present length of the file as returned by the length method is greater than the newLength
argument, then the file will be truncated. In this case, if the file pointer location as returned by the
getFilePointer method is greater than newLength, then after this method returns, the file
pointer location will be equal to newLength.

If the present length of the file as returned by the length method is smaller than newLength,
then the file will be extended. In this case, the contents of the extended portion of the file are
not defined.

public void close()throws IOException

Closes the stream’s connection to a file.

public void write(int b) throws IOException

Writes the specified byte to the file.

public void write(byte [] a) throws IOException

Writes a.length bytes from the specified byte array to the file.

(continued)

670 CHAPTER 10 File I/O

public final void writeByte(byte b) throws IOException

Writes the byte b to the file.

public final void writeShort(short n) throws IOException

Writes the short n to the file.

public final void writeInt(int n) throws IOException

Writes the int n to the file.

public final void writeLong(long n) throws IOException

Writes the long n to the file.

public final void writeDouble(double d) throws IOException

Writes the double d to the file.

public final void writeFloat(float f) throws IOException

Writes the float f to the file.

public final void writeChar(char c) throws IOException

Writes the char c to the file.

public final void writeBoolean(boolean b) throws IOException

Writes the boolean b to the file.

public final void writeUTF(String s) throws IOException

Writes the String s to the file.

public int read()throws IOException

Reads a byte of data from the file and returns it as an integer in the range 0 to 255.

public int read(byte [] a) throws IOException

Reads a.length bytes of data from the file into the array of bytes a. Returns the number of
bytes read or -1 if the end of the file is encountered.

public final byte readByte()throws IOException

Reads a byte value from the file and returns that value. If an attempt is made to read beyond the
end of the file, an EOFException is thrown.

public final short readShort()throws IOException

Reads a short value from the file and returns that value. If an attempt is made to read beyond
the end of the file, an EOFException is thrown.

Display 10.21 Some Methods of the Class RandomAccessFile (part 2 of 3)

Random Access to Binary Files 671

public final int readInt) throws IOException

Reads an int value from the file and returns that value. If an attempt is made to read beyond the
end of the file, an EOFException is thrown.

public final long readLong()throws IOException

Reads a long value from the file and returns that value. If an attempt is made to read beyond the
end of the file, an EOFException is thrown.

public final double readDouble()throws IOException

Reads a double value from the file and returns that value. If an attempt is made to read beyond
the end of the file, an EOFException is thrown.

public final float readFloat()throws IOException

Reads a float value from the file and returns that value. If an attempt is made to read beyond
the end of the file, an EOFException is thrown.

public final char readChar()throws IOException

Reads a char value from the file and returns that value. If an attempt is made to read beyond the
end of the file, an EOFException is thrown.

public final boolean readBoolean()throws IOException

Reads a boolean value from the file and returns that value. If an attempt is made to read beyond
the end of the file, an EOFException is thrown.

public final String readUTF()throws IOException

Reads a String value from the file and returns that value. If an attempt is made to read beyond
the end of the file, an EOFException is thrown.

Display 10.21 Some Methods of the Class RandomAccessFile (part 3 of 3)

readUTF, and so on. However, the class RandomAccessFile does not have the
methods writeObject or readObject. The most important methods of the class
RandomAccessFile are given in Display 10.21. A demonstration program for random
access files is given in Display 10.22.

The constructor for RandomAccessFile takes either a string name for the file or
an object of the class File as its first argument. The second argument must be one of
the four strings "rw", "r", and two modes we do not discuss in this book, "rws" and
"rwd". The string "rw" means your code can both read and write to the file after it is
open. The string "r" means your code can read from the file but cannot write to the file.

If the file already exists, then when it is opened, the length is not reset to 0, but the
file pointer will be positioned at the start of the file, which is what you would expect at
least for "r". If the length of the file is not what you want, you can change it with the
method setLength. In particular, you can use setLength to empty the file.

opening a file

672 CHAPTER 10 File I/O

Display 10.22 Random Access to a File (part 1 of 2)

 1 import java.io.RandomAccessFile;
 2 import java.io.IOException;
 3 import java.io.FileNotFoundException;

 4 public class RandomAccessDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 try
 9 {
10 RandomAccessFile ioStream =
11 new RandomAccessFile("bytedata", "rw");

12 System.out.println("Writing 3 bytes to the file bytedata.");
13 ioStream.writeByte(1);
14 ioStream.writeByte(2);
15 ioStream.writeByte(3);
16 System.out.println("The length of the file is now = "
17 + ioStream.length());
18 System.out.println("The file pointer location is "
19 + ioStream.getFilePointer());

20 System.out.println("Moving the file pointer to location 1.");
21 ioStream.seek(1);
22 byte oneByte = ioStream.readByte();
23 System.out.println("The value at location 1 is " + oneByte);
24 oneByte = ioStream.readByte();
25 System.out.println("The value at the next location is "
26 + oneByte);

27 System.out.println("Now we move the file pointer back to");
28 System.out.println("location 1, and change the byte.");
29 ioStream.seek(1);
30 ioStream.writeByte(9);
31 ioStream.seek(1);
32 oneByte = ioStream.readByte();
33 System.out.println("The value at location 1 is now "
 + oneByte);

34 System.out.println("Now we go to the end of the file");
35 System.out.println("and write a double.");
36 ioStream.seek(ioStream.length());
37 ioStream.writeDouble(41.99);
38 System.out.println("The length of the file is now = "
39 + ioStream.length());

Random Access to Binary Files 673

40 System.out.println("Returning to location 3,");
41 System.out.println("where we wrote the double.");
42 ioStream.seek(3);
43 double oneDouble = ioStream.readDouble();
44 System.out.println("The double value at location 3 is "
45 + oneDouble);

46 ioStream.close();
47 }
48 catch(FileNotFoundException e)
49 {
50 System.out.println("Problem opening file.");
51 }
52 catch(IOException e)
53 {
54 System.out.println("Problems with file I/O.");
55 }
56 System.out.println("End of program.");
57 }
58 }

Sample Dialogue

Writing 3 bytes to the file bytedata.

The length of the file is now = 3

The file pointer location is 3

Moving the file pointer to location 1.

The value at location 1 is 2

The value at the next location is 3

Now we move the file pointer back to

location 1, and change the byte.

The value at location 1 is now 9

Now we go to the end of the file

and write a double.

The length of the file is now = 11

Returning to location 3,

where we wrote the double.

The double value at location 3 is 41.99

End of program.

Display 10.22 Random Access to a File (part 2 of 2)

The location of readDouble
must be a location where
writeDouble wrote to the file.

Byte locations are numbered
starting with zero.

Three 1-byte values and 1 double
value that uses 8 bytes =
11 bytes total.

The dialogue assumes the file bytedata
did not exist before the program was run.

674 CHAPTER 10 File I/O

Self-Test Exercises

44. If you run the program in Display 10.22 a second time, will the output be
the same?

45. How can you modify the program in Display 10.22 so the file always starts
out empty?

Chapter Summary

• Files that are considered to be strings of characters and that look like characters
to your program and your editor are called text files. Files whose contents must be
handled as strings of binary digits are called binary files.

• You can use the class PrintWriter to write to a text file and can use the class Scanner
or BufferedReader to read from a text file.

• The class File can be used to check whether there is a file with a given name. It can
also check whether your program is allowed to read the file and/or allowed to write
to the file.

• Your program can use the class ObjectOutputStream to write to a binary file and
can use the class ObjectInputStream to read from a binary file.

• Your program can use the method writeObject of the class ObjectOutputStream
to write class objects to a binary file. The objects can be read back with the method
readObject of the class ObjectInputStream.

• To use the method writeObject of the class ObjectOutputStream or the method
readObject of the class ObjectInputStream, the class whose objects are written to
a file must implement the Serializable interface.

• The way that you test for the end of a file depends on whether your program is read-
ing from a text file or a binary file.

• You can use the class RandomAccessFile to create a stream that gives random access
to the bytes in a file.

PITFALL: RandomAccessFile Need Not Start Empty

If a file already exists, then when it is opened with RandomAccessFile, the length
is not reset to 0, but the file pointer will be positioned at the start of the file. So, old
data in the file is not lost and the file pointer is set for the most likely position for
reading, not the most likely position for writing.

Answers to Self-Test Exercises 675

Answers to Self-Test Exercises

 1. With an input stream, data flows from a file or input device to your program. With
an output stream, data flows from your program to a file or output device.

 2. A binary file contains data that is processed as binary data. A text file allows your
program and editor to view the file as if it contained a sequence of characters. A
text file can be viewed with an editor, whereas a binary file cannot.

 3. A FileNotFoundException would be thrown if the file cannot be opened because,
for example, there is already a directory (folder) named stuff.txt. Note that
if the file does not exist but can be created, then no exception is thrown. If you
answered IOException, you are not wrong, because a FileNotFoundException
is an IOException. However, the better answer is the more specific exception
class—namely, FileNotFoundException.

 4. Yes. This functionality was added to the constructor in Java 1.5. Prior to Java 1.5
the correct way to express the code displayed in the question is as follows:

 PrintWriter outputStream =

 new PrintWriter(new FileOutputStream("stuff.txt"));

 5. PrintWriter outputStream =
 new PrintWriter(new FileOutputStream("sam");

 6. PrintWriter outStream =
 new PrintWriter(new FileOutputStream("sam", true));

 7. Yes, it will send suitable output to the text file because the class Person has a
 well-defined toString() method.

 8. Scanner fileIn =
 new Scanner(new FileInputStream("sally"));

 9. It throws a NoSuchElementException if there are no more tokens. It throws an
InputMismatchException if the next token is not a well-formed string represen-
tation of an int. It throws an IllegalStateException if the Scanner stream
is closed.

10. No. Reading may have reached the end of the file, but another possibility is that
the next token may not be a well-formed string representation of an int value.

11. The FileInputStream constructor, and thus the Scanner constructor invocation,
can throw a FileNotFoundException. This exception needs to be caught or
 declared in a throws clause.

12. BufferedReader fileIn =
 new BufferedReader(new FileReader("joe"));

13. The method readLine returns a value of type String. The method read reads a
single character, but it returns it as a value of type int. To get the value to be of
type char, you need to do a type cast.

676 CHAPTER 10 File I/O

14. Both read and readLine in the class BufferedReader might throw an IOException.

15. The try block in Display 10.7 is larger so that it includes the invocations of the
method readLine, which might throw an IOException. The method println
in Display 10.1 does not throw any exceptions that must be caught.

16. Yes.

17. No, you must read the number as a string and then convert the string to a number
with Integer.parseInt (or in some other way).

18. When the method readLine tries to read beyond the end of a file, it returns the
value null. Thus, you can test for the end of a file by testing for null.

19. The method read reads a single character, but it returns it as a value of type int.
To get the value to be of type char, you need to do a type cast.

20. When the method read tries to read beyond the end of a file, it returns the
value -1. Thus, you can test for the end of a file by testing for the value -1. This
works because all “real” characters return a positive int value.

21. Yes, if original.txt is an empty file, then the file numbered.txt produced by
the program will also be empty.

22. Only the classes FileReader and FileOutputStream have a constructor that accepts
a file name as an argument. (Although we have not discussed it, the class Scanner has
a constructor that takes a String argument, but the argument is not a file name.)

23. Yes, it is legal.

24. Replace

 System.setErr(errStream);

 with

 System.setOut(errStream);

25. Add

 System.setOut(errStream);

 to get

 System.setErr(errStream);

 System.setOut(errStream);

26. import java.io.File;

 public class FileExercise

 {

 public static void main(String[] args)

 {

 File fileObject = new File("Sally.txt");

Answers to Self-Test Exercises 677

 if (fileObject.exists())

 System.out.println(

 "There is a file named Sally.txt.");

 else

 System.out.println(

 "There is no file named Sally.txt.");

 }

 }

27. import java.io.IOException;
 import java.io.File;
 import java.util.Scanner;

 public class FileExercise2
 {
 public static void main(String[] args)
 {
 Scanner keyboard = new Scanner(System.in);
 String fileName = null ;
 File fileObject = null ;

 try
 {
 System.out.print("Enter a file name and I will");
 System.out.println(" tell you if it exists.");
 fileName = keyboard.next();
 fileObject = new File(fileName);

 if (fileObject.exists())
 {
 System.out.println("There is a file named"
 + fileName);
 System.out.println("Delete the file? (y/n)");
 char answer = (char)System.in.read();

 if ((answer = = 'y') || (answer = = 'Y'))
 {

 if (fileObject.delete())
 System.out.println("File deleted.");
 else
 System.out.println(
 "Cannot delete file.");
 }
 }
 else
 System.out.println(
 "No file named " + fileName);
 }

678 CHAPTER 10 File I/O

 catch(IOException e)

 {

 System.out.println(

 "Error reading from keyboard.");

 }

 }

 }

28. ObjectOutputStream outputThisWay =
 new ObjectOutputStream(

 new FileOutputStream("bindata.dat"));

29. outputThisWay.writeDouble(v1);
 outputThisWay.writeDouble(v2);

30. outputThisWay.writeUTF("Hello");

31. outputThisWay.close();

32. ObjectInputStream inputThing =
 new ObjectInputStream(

 new FileInputStream("someStuff"));

33. number = inputThing.readDouble();

34. inputThing.close();

35. If a number is written to a file with writeInt, it should be read only with readInt.
If you use readLong or readDouble to read the number, something will go wrong.

36. You should not use readUTF to read a string from a text file. You should use
readUTF only to read a string from a binary file. Moreover, the string should have
been written to that file using writeUTF.

37. When opening a binary file for either output or input in the ways discussed in this
chapter, a FileNotFoundException might be thrown and other IOExceptions
may be thrown.

38. An EOFException is thrown when your program tries to read the (nonexisting)
fourth number.

39. It is not an infinite loop because when the end of the file is reached, an exception
will be thrown, and that will end the entire try block.

40. You add the two words implements Serializable to the beginning of the class
definition. You also must do this for the classes for the instance variables and so on
for all levels of class instance variables within classes.

41. import java.io.Serializable; or import java.io.*;

42. The return type is Object, which means the returned value usually needs to be
type cast.

Programming Projects 679

Programming Projects

PROJECTS INVOLVING ONLY TEXT FILES
 1. The text files boynames.txt and girlnames.txt, which are included in the

source code for this book text, contain a list of the 1,000 most popular boy and
girl names in the United States for the year 2003 as compiled by the Social Security
Administration.

 These are blank-delimited files, where the most popular name is listed first, the
second most popular name is listed second, and so on, to the 1,000th most popular
name, which is listed last. Each line consists of the first name followed by a blank
space and then the number of registered births using that name in the year. For
example, the girlnames.txt file begins with

Emily 25494

Emma 22532

Madison 19986

 This indicates that Emily was the most popular name with 25,494 registered
 namings, Emma was the second most popular with 22,532, and Madison was the
third most popular with 19,986.

 Write a program that reads both the girl and boy files into memory using arrays.
Then, allow the user to input a name. The program should search through both
arrays. If there is a match, then it should output the popularity ranking and the
number of namings. The program should also indicate if there is no match.

 For example, if the user enters the name “Justice,” then the program should output

Justice is ranked 456 in popularity among girls with 655 namings.

Justice is ranked 401 in popularity among boys with 653 namings.

 If the user enters the name “Walter,” then the program should output

Walter is not ranked among the top 1000 girl names.

Walter is ranked 356 in popularity among boys with 775 namings.

 2. Write a program that will count the total occurrences of the number ‘10’ in a text
file of strings representing numbers of type int and will show the value of the
count on the screen once the whole file is read. The file contains the following
numbers separated by space.

10 4 7 8 10 34 11 10 15 6 10

 3. Write a program that takes its input from a text file of strings representing numbers
of type double and outputs the average of the numbers in the file to the screen. The
file contains nothing but strings representing numbers of type double, one per line.

43. Yes. That is why it is a legitimate argument for writeObject.

44. No. Each time the program is run, the file will get longer.

45. Add the following near the start of main:

 ioStream.setLength(0);

Solution to
Programming
Project 10.1

VideoNote

680 CHAPTER 10 File I/O

 4. Write a program that takes its input from a text file of strings representing numbers
of type double. The program outputs to the screen the average and standard devia-
tion of the numbers in the file. The file contains nothing but strings representing
numbers of type double, one per line. The standard deviation of a list of numbers
n1, n2, n3, and so forth is defined as the square root of the average of the following
numbers:

(n1 - a)2, (n2 - a)2, (n3 - a)2, and so forth.

 The number a is the average of the numbers n1, n2, n3, and so forth. Hint: Write
your program so that it first reads the entire file and computes the average of all the
numbers, then closes the file, and then reopens the file and computes the standard
deviation. You will find it helpful to first do Programming Project 10.3 and then
modify that program in order to obtain the program for this project.

 5. Write a program that edits a text file to display each complete sentence with a
period at the end in a separate line. Your program should work as follows: Create
a temporary file, copy from the source file to a temporary file and perform the
required operation. Copy the contents of the temporary file back into the source
file. Use a method (or methods) in the class File to remove the temporary file.
You will also want to use the class File for other things in your program. The
temporary file should have a name that is different from all existing files so that
the existing files are not affected (except for the file being edited). Your program
will ask the user for the name of the file to be edited. However, it will not ask the
user for the name of the temporary file, but will instead generate the name within
the program. You can generate the name any way that is clear and efficient. One
possible way to generate the temporary file is to start with an unlikely name, such
as "Temp1", and to append a digit, such as '1', until a name is found that does
not name an existing file.

 6. Write a program that gives and takes advice on program writing. The program
starts by writing a piece of advice to the screen and asking the user to type in a dif-
ferent piece of advice. The program then ends. The next person to run the program
receives the advice given by the person who last ran the program. The advice is
kept in a text file and the content of the file changes after each run of the program.
You can use your editor to enter the initial piece of advice in the file so that the
first person who runs the program receives some advice. Allow the user to type in
advice of any length so that it can be any number of lines long. The user is told to
end his or her advice by pressing the Return key two times. Your program can then
test to see that it has reached the end of the input by checking to see when it reads
two consecutive occurrences of the character '\n'.

 7. Write a class that keeps track of the top five high scores that could be used for a
video game. Internally, the class should store the top scores in a data structure of
your choice (the most straightforward way is to use arrays). Each entry consists of
a name and a score. The data stored in memory should be synchronized with a text
file for persistent storage. For example, here are the contents of a sample file where
Ronaldo has the highest score and Pele has the third highest score:

Programming Projects 681

Ronaldo

10400

Didier

9800

Pele

9750

Kaka

8400

Cristiano

8000

 The constructor should test if the file exists. If it does not exist, then the file should
be created with blank names for each of the players and a score of 0. If the file does
exist, then the data from the file should be read into the class’s instance variables.
Along with appropriate constructors, accessors, and mutators, add the following
methods:

• void playerScore(String name, int score): Whenever a game is over,
this method is called with the player’s name and final score. If the name is one
of the top five, then it should be added to the list and the lowest score should
be dropped out. If the score is not in the top five, then nothing happens.

• String[] getTopNames(): Returns an array of the names of the top players,
with the top player first, the second best player second, etc.

• int[] getTopScores(): Returns an array of the scores of the top players, with
the highest score first, the second highest score second, etc.

 Test your program with several calls to playerScore and print out the list of top
names and scores to ensure that the correct values are stored. When the program
is restarted, it should remember the top scores from the last session.

 8. Create a file WordBuff.txt that contains the following list of words: MADAM,
DAD, RISK, JAVA, MALAYALAM, RACECAR, RADAR, ROTOR, REFER,
SEDES, SOLOS, COURSE, STATS, TOROT, TENET, MACHINE, VIRTUAL,
STUDENT, PULLUP, PROGRAMME, and CORE. Write a program that reads
each word from the file and outputs the number of palindromes in the file.

PROJECTS INVOLVING BINARY FILES
 9. Write a program that will search a binary file of numbers of type int and write

the largest and the smallest numbers to the screen. The file contains nothing but
numbers of type int written to the file with writeInt.

 10. Write a program that reads grades of type double of eight students that the user
provides. The grades lie between 0 and 10. These grades should be written to a
binary file and read from it. The program outputs the highest and lowest grades
achieved by students on the screen. The file contains nothing but numbers of type
double written to the file with writeDouble.

11. Write a program that takes its input from a binary file of numbers of type double.
The file contains nothing but numbers of type double written to the file with

Solution to
Programming
Project 10.9

VideoNote

682 CHAPTER 10 File I/O

writeDouble. The program outputs to the screen the average and standard devia-
tion of the numbers in the file. The standard deviation of a list of numbers n1,
n2, n3, and so forth is defined as the square root of the average of the following
 numbers:
(n1 - a)2, (n2 - a)2, (n3 - a)2, and so forth.

 The number a is the average of the numbers n1, n2, n3, and so forth. Hint: Write
your program so that it first reads the entire file and computes the average of all the
numbers, then closes the file, and then reopens the file and computes the standard
deviation. You will find it helpful to first do Programming Project 10.8 and then
modify that program in order to obtain the program for this project.

 12. Change the definition of the class Person in Display 5.19 to be serializable. Note
that this requires that you also change the class Date. Then write a program
to maintain a binary file of records of people (records of type Person). Allow
commands to delete a record specified by the person’s name, to add a record, to
retrieve and display a record, and to obtain all records of people within a specified
age range. To obtain the age of a person, you need the current date. Your pro-
gram will ask the user for the current date when the program begins. You can do
this with random access files, but do not use random access files for this exercise.
Use a file or files that record records with the method writeObject of the class
ObjectOutputStream.

 13. Programming Projects 6.12 and 6.13 asked you to write a program to play a simple
trivia game consisting of five questions. The questions, answers, and point values
were hardcoded into array(s). This programming project involves moving the trivia
questions into one or more binary files instead, and then loading the trivia ques-
tions into memory when the program starts.

 First, write a program that allows an administrator to manage the questions for the
trivia game. When the program is run, it should check to see if a data file exists. If
the data file exists, then the trivia questions should be loaded from the data file into
array(s) in memory. If the data file does not exist, start the program with no trivia
questions in memory. The program should then present a menu that allows the
administrator to list all trivia items (question, answer, and value) in the database,
add a new trivia item, or delete an existing trivia item. Upon exiting the program,
the trivia data in memory should be stored to one or more binary files using the
writeObject method.

 Second, modify either solution to Programming Project 6.12 or 6.13 to read
in the trivia data from the binary file created by the administrator’s program.
Note that the game is no longer limited to five questions, since an arbitrary
number of trivia items may be created by the administrator’s program and
stored in the binary file(s).

11.3 Thinking RecuRsively 703
Recursive Design Techniques 703
Binary Search ★ 704
Efficiency of Binary Search ★ 710
Example: Finding a File 712

11.1 RecuRsive void MeThods 685
Example: Vertical Numbers 685
Tracing a Recursive Call 688
A Closer Look at Recursion 691
Stacks for Recursion ★ 694
Recursion versus Iteration 696

11.2 RecuRsive MeThods ThaT
ReTuRn a value 697

General Form for a Recursive Method That
Returns a Value 698

Example: Another Powers Method 698

11 Recursion

chapter summary 715 answers to self-Test exercises 715 Programming Projects 720

After a lecture on cosmology and the structure of the solar system,

William James was accosted by a little old lady.

“Your theory that the sun is the center of the solar system, and the earth is

a ball which rotates around it has a very convincing ring to it, Mr. James,

but it's wrong. I've got a better theory,” said the little old lady.

“And what is that, madam?” inquired James politely.

“That we live on a crust of earth which is on the back of a giant turtle.”

Not wishing to demolish this absurd little theory by bringing to bear the

masses of scientific evidence he had at his command, James decided

to gently dissuade his opponent by making her see some of the

 inadequacies of her position.

“If your theory is correct, madam,” he asked, “what does this turtle stand on?”

“You're a very clever man, Mr. James, and that's a very good question”

replied the little old lady, “but I have an answer to it. And it is this:

the first turtle stands on the back of a second, far larger, turtle, who

stands directly under him.”

“But what does this second turtle stand on?” persisted James patiently.

To this the little old lady crowed triumphantly. “It’s no use, Mr. James—

it's turtles all the way down.”

J. R. ROSS, Constraints on Variables in Syntax, Massachusetts Institute of

Technology, 1967.

Introduction
A method definition that includes a call to itself is said to be recursive. Like most
modern programming languages, Java allows methods to be recursive; if used with a
little care, this can be a useful programming technique. In this chapter, we introduce
the basic techniques needed for defining successful recursive methods. There is nothing
in this chapter that is truly unique to Java. If you are already familiar with recursion,
you can safely skip this chapter. No new Java elements are introduced here.

Prerequisites
Except for the subsections on binary search and searching for a file, this chapter uses
material only from Chapters 1–5. The subsection entitled “Binary Search” also uses
the basic material on one-dimensional arrays from Chapter 6 and the Example entitled
“Finding a File” uses material from the File class in Chapter 10.

11 Recursion

recursive
method

Recursive void Methods 685

You may postpone all or part of this chapter if you wish. Nothing in the rest of this
book requires any of this chapter.

11.1 Recursive void Methods
I remembered too that night which is at the middle of the Thousand and One
Nights when Scheherazade (through a magical oversight of the copyist) begins to
relate word for word the story of the Thousand and One Nights, establishing the
risk of coming once again to the night when she must repeat it, and thus to infinity.

JORGE LUIS BORGES, The Garden of Forking Paths, Editorial Sur, 1948.

When you are writing a method to solve a task, one basic design technique is to
break the task into subtasks. Sometimes it turns out that at least one of the subtasks
is a smaller example of the same task. For example, if the task is to search a list for
a particular value, you might divide this into the subtask of searching the first half
of the list and the subtask of searching the second half of the list. The subtasks of
searching the halves of the list are “smaller” versions of the original task. Whenever
one subtask is a smaller version of the original task to be accomplished, you can solve
the original task by using a recursive method. We begin with a simple example to
illustrate this technique. (For simplicity, our examples are static methods; however,
recursive methods need not be static.)

Recursion

In Java, a method definition may contain an invocation of the method being defined. In such
cases, the method is said to be recursive.

ExaMPlE: Vertical Numbers

Display 11.1 contains a demonstration program for a recursive method named
writeVertical, which takes one (nonnegative) int argument and writes that int
to the screen with the digits going down the screen one per line. For example, the
invocation

writeVertical(1234);

would produce the output

1
2
3
4

(continued)

686 CHAPTER 11 Recursion

Display 11.1 A Recursive void Method

 1 public class RecursionDemo1
 2 {
 3 public static void main(String[] args)
 4 {
 5 System.out.println("writeVertical(3):");
 6 writeVertical(3);

 7 System.out.println("writeVertical(12):");
 8 writeVertical(12);

 9 System.out.println("writeVertical(123):");
10 writeVertical(123);
11 }

12 public static void writeVertical(int n)
13 {
14 if (n < 10)
15 {
16 System.out.println(n);
17 }
18 else //n is two or more digits long:
19 {
20 writeVertical(n / 10);
21 System.out.println(n % 10);
22 }
23 }
24 }

Sample Dialogue

writeVertical(3):
3
writeVertical(12):
1
2
writeVertical(123):
1
2
3

Recursive void Methods 687

The task to be performed by writeVertical may be broken down into the following
two subtasks:

Simple Case: If n < 10, then write the number n to the screen.

After all, if the number is only one digit long, the task is trivial.

Recursive Case: If n >= 10, then do two subtasks:

1. Output all the digits except the last digit.

2. Output the last digit.

For example, if the argument were 1234, the first part would output

1
2
3

and the second part would output 4. This decomposition of tasks into subtasks can
be used to derive the method definition.

Subtask 1 is a smaller version of the original task, so we can implement this
subtask with a recursive call. Subtask 2 is just the simple case we listed previously.
Thus, an outline of our algorithm for the method writeVertical with parameter n
is given by the following pseudocode:

if (n < 10)
{
 System.out.println(n);
}
else //n is two or more digits long:
{

 writeVertical(the number n with the last digit removed);

 System.out.println(the last digit of n);
}

If you observe the following identities, it is easy to convert this pseudocode to a
complete Java method definition:

n / 10 is the number n with the last digit removed.
n % 10 is the last digit of n.

For example, 1234 / 10 evaluates to 123 and 1234 % 10 evaluates to 4.
(continued)

ExaMPlE: (continued)

Recursive subtask

688 CHAPTER 11 Recursion

Tracing a Recursive Call

Let’s see exactly what happens when the following method call is made (as in Display 11.1):

writeVertical(123);

When this method call is executed, the computer proceeds just as it would with any
method call. The argument 123 is substituted for the parameter n, and the body of
the method is executed. After the substitution of 123 for n, the code to be executed is
equivalent to

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123 / 10);
 System.out.println(123 % 10);
}

Because 123 is not less than 10, the else part is executed. However, the else part
begins with the method call

writeVertical(n / 10);

ExaMPlE: (continued)

The following is the complete code for the method:

public static void writeVertical(int n)
{
 if (n < 10)
 {
 System.out.println(n);
 }
 else //n is two or more digits long:
 {
 writeVertical(n / 10);
 System.out.println(n % 10);
 }

}

Computation will stop here
until the recursive call
returns.

Recursive void Methods 689

which (because n is equal to 123) is the call

writeVertical(123 / 10);

which is equivalent to

writeVertical(12);

When execution reaches this recursive call, the current method computation is placed
in suspended animation, and this recursive call is executed. When this recursive call is
finished, the execution of the suspended computation will return to this point, and the
suspended computation will continue from this point.

The recursive call

writeVertical(12);

is handled just like any other method call. The argument 12 is substituted for the
parameter n, and the body of the method is executed. After substituting 12 for n, there
are two computations, one suspended and one active, as follows:

if (123 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12 / 10);
 System.out.println(12 % 10);
}

Because 12 is not less than 10, the else part is executed. However, as you already
saw, the else part begins with a recursive call. The argument for the recursive call is
n/10, which in this case is equivalent to 12/10. So, this second computation of the
method writeVertical is suspended, and the following recursive call is executed:

writeVertical(12 / 10);

which is equivalent to

writeVertical(1);

if (12 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12 / 10);
 System.out.println(12 % 10);
}

Computation will stop here
until the recursive call
returns.

690 CHAPTER 11 Recursion

At this point, there are two suspended computations waiting to resume, and the
computer begins to execute this new recursive call, which is handled just like all the
previous recursive calls. The argument 1 is substituted for the parameter n, and the body
of the method is executed. At this point, the computation looks like the following:

When the body of the method is executed this time, something different happens.
Because 1 is less than 10, the Boolean expression in the if-else statement is true,
so the statement before the else is executed. That statement is simply an output
statement that writes the argument 1 to the screen, so the call writeVertical(1)
writes 1 to the screen and ends without any recursive call.

When the call writeVertical(1) ends, the suspended computation that is waiting
for it to end resumes where that suspended computation left off, as shown by the
following:

output the
digit 1

output the
digit 3

if (123 < 10)
{
 System.out.println(1);
}
else //n is two or more digits long:
{
 writeVertical(1 / 10);
 System.out.println(1 % 10);
}

if (12 < 10)
{
 System.out.println(1);
}
else //n is two or more digits long:
{
 writeVertical(1 / 10);
 System.out.println(1 % 10);
}

if (1 < 10)
{
 System.out.println(1);
}
else //n is two or more digits long:
{
 writeVertical(1 / 10);
 System.out.println(1 % 10);
}

No recursive
call this time

if (123 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12 / 10);
 System.out.println(12 % 10);
}

if (12 < 10)
{
 System.out.println(12);
}
else //n is two or more digits long:
{
 writeVertical(12 / 10);
 System.out.println(12 % 10);
}

Computation resumes
here.

Recursive void Methods 691

When this suspended computation resumes, it executes an output statement that
outputs the value 12 % 10, which is 2. That ends that computation, but there is
yet another suspended computation waiting to resume. When this last suspended
computation resumes, the situation is

output the
digit 2

Computation resumes
here.

if (123 < 10)
{
 System.out.println(123);
}
else //n is two or more digits long:
{
 writeVertical(123 / 10);
 System.out.println(123 % 10);

}

When this last suspended computation resumes, it outputs the value 123 % 10, which is 3,
and the execution of the original method call ends. And, sure enough, the digits 1, 2, and 3
have been written to the screen one per line, in that order.

a Closer look at Recursion

The definition of the method writeVertical uses recursion. Yet, we did nothing
new or different in evaluating the method call writeVertical(123). We treated it
just like any of the method calls we saw in previous chapters. We simply substituted
the argument 123 for the parameter n and then executed the code in the body of the
method definition. When we reached the recursive call

writeVertical(123 / 10)

we simply repeated this process one more time.
The computer keeps track of recursive calls in the following way. When a method

is called, the computer plugs in the arguments for the parameter(s) and begins to
execute the code. If it should encounter a recursive call, then it temporarily stops
its computation, because it must know the result of the recursive call before it can
proceed. It saves all the information it needs to continue the computation later on,
and proceeds to evaluate the recursive call. When the recursive call is completed, the
computer returns to finish the outer computation.

The Java language places no restrictions on how recursive calls are used in method
definitions. However, in order for a recursive method definition to be useful, it must
be designed so that any call of the method must ultimately terminate with some piece
of code that does not depend on recursion. The method may call itself, and that
recursive call may call the method again. The process may be repeated any number of

output the
digit 3

how
recursion

works

how
recursion

ends

692 CHAPTER 11 Recursion

times. However, the process will not terminate unless eventually one of the recursive
calls does not depend on recursion to return a value. The general outline of a successful
recursive method definition is as follows:

• One or more cases in which the method accomplishes its task by using recursive
call(s) to accomplish one or more smaller versions of the task.

• One or more cases in which the method accomplishes its task without the use of
any recursive calls. These cases without any recursive calls are called base cases or
stopping cases.

Often an if-else statement determines which of the cases will be executed. A typical
scenario is for the original method call to execute a case that includes a recursive call.
That recursive call may in turn execute a case that requires another recursive call. For
some number of times, each recursive call produces another recursive call, but eventually
one of the stopping cases should apply. Every call of the method must eventually lead to a
stopping case, or else the method call will never end because of an infinite chain of recursive
calls. (In practice, a call that includes an infinite chain of recursive calls will usually
terminate abnormally rather than actually running forever.)

The most common way to ensure that a stopping case is eventually reached
is to write the method so that some (positive) numeric quantity is decreased on
each recursive call and to provide a stopping case for some “small” value. This is
how we designed the method writeVertical in Display 11.1. When the method
writeVertical is called, that call produces a recursive call with a smaller argument.
This continues with each recursive call producing another recursive call until the
argument is less than 10. When the argument is less than 10, the method call ends
without producing any more recursive calls, the process works its way back to the
original call, and the process ends.

base case

stopping
case

General Form of a Recursive Method Definition

The general outline of a successful recursive method definition is as follows:

•	 One or more cases that include one or more recursive calls to the method being defined.
These recursive calls should solve “smaller” versions of the task performed by the
method being defined.

•	 One or more cases that include no recursive calls. These cases without any recursive
calls are called base cases or stopping cases.

Recursive void Methods 693

PITFall: Infinite Recursion

In the example of the method writeVertical discussed in the previous subsec-
tions, the series of recursive calls eventually reached a call of the method that did not
involve recursion (that is, a stopping case was reached). If, on the other hand, every
recursive call produces another recursive call, then a call to the method will, in theory,
run forever. This is called infinite recursion. In practice, such a method will typically
run until the computer runs out of resources, and the program terminates abnormally.

Examples of infinite recursion are not hard to come by. The following is a syntacti-
cally correct Java method definition, which might result from an attempt to define an
alternative version of the method writeVertical:

public static void newWriteVertical(int n)
{
 newWriteVertical(n / 10);
 System.out.println(n % 10);
}

If you embed this definition in a program that calls this method, the program
will compile with no error messages, and you can run the program. Moreover,
the definition even has a certain reasonableness to it. It says that to output the
argument to newWriteVertical, first output all but the last digit and then output
the last digit. However, when called, this method will produce an infinite sequence
of recursive calls. If you call newWriteVertical(12), that execution will stop
to execute the recursive call newWriteVertical(12/10), which is equivalent to
newWriteVertical(1). The execution of that recursive call will, in turn, stop
to execute the recursive call

newWriteVertical(1 / 10);

which is equivalent to

newWriteVertical(0);

This, in turn, will stop to execute the recursive call newWriteVertical(0 / 10); which
is also equivalent to

newWriteVertical(0);

This will produce another recursive call to again execute the same recursive
method call newWriteVertical(0); and so on, forever. Because the definition of
newWriteVertical has no stopping case, the process will proceed forever (or until
the computer runs out of resources). ■

694 CHAPTER 11 Recursion

Self-Test Exercises

1. What is the output of the following program?

public class Exercise1
{
 public static void main(String[] args)
 {
 cheers(3);
 }
 public static void cheers(int n)
 {
 if (n == 1)
 {
 System.out.println("Hurray");
 }
 else
 {
 System.out.println("Hip");
 cheers(n – 1);
 }
 }
}

2. Write a recursive void method that has one parameter that is an integer and
that writes to the screen the number of asterisks '*' given by the argument. The
output should be all on one line. You can assume the argument is positive.

3. Write a recursive void method that has one parameter, which is a positive
integer. When called, the method writes its argument to the screen backward.
That is, if the argument is 1234, it outputs the following to the screen:

4321

4. Write a recursive void method that takes a single (positive) int argument n and
writes the integers 1, 2, . . . , n to the screen.

5. Write a recursive void method that takes a single (positive) int argument n and
writes integers n, n–1, . . . , 3, 2, 1 to the screen. Hint: The solution for
Self-Test Exercise 4 and this exercise vary by an exchange of as little as two lines.

stack

Stacks for Recursion ★

To keep track of recursion, and a number of other things, most computer systems use
a structure called a stack. A stack is a very specialized kind of memory structure that
is analogous to a stack of paper. In this analogy, there is an inexhaustible supply of
extra blank sheets of paper. To place some information in the stack, it is written on
one of these sheets of paper and placed on top of the stack of papers. To place more

Recursive void Methods 695

information in the stack, a clean sheet of paper is taken, the information is written on
it, and this new sheet of paper is placed on top of the stack. In this straightforward way,
more and more information may be placed on the stack.

Getting information out of the stack is also accomplished by a very simple procedure.
The top sheet of paper can be read, and when it is no longer needed, it is thrown away.
There is one complication: Only the top sheet of paper is accessible. In order to read,
say, the third sheet from the top, the top two sheets must be thrown away. Because the
last sheet that is put on the stack is the first sheet taken off the stack, a stack is often
called a last-in/first-out memory structure, abbreviated as LIFO.

Using a stack, the computer can easily keep track of recursion. Whenever a method
is called, a new sheet of paper is taken. The method definition is copied onto this
sheet of paper, and the arguments are plugged for the method parameters. Then the
computer starts to execute the body of the method definition. When it encounters a
recursive call, it stops the computation it is doing on that sheet in order to compute
the value returned by the recursive call. But, before computing the recursive call, it
saves enough information so that, when it does finally determine the value returned
by the recursive call, it can continue the stopped computation. This saved information
is written on a sheet of paper and placed on the stack. A new sheet of paper is used for
the recursive call. The computer writes a second copy of the method definition on this
new sheet of paper, plugs in the arguments for the method parameters, and starts to
execute the recursive call. When it gets to a recursive call within the recursively called
copy, it repeats the process of saving information on the stack and using a new sheet
of paper for the new recursive call. This process is illustrated in the earlier subsection
entitled “Tracing a Recursive Call.” Even though we did not call it a stack at the time,
the illustrations of computations placed one on top of the other illustrate the actions
of the stack.

This process continues until some recursive call to the method completes its
computation without producing any more recursive calls. When this happens, the
computer turns its attention to the top sheet of paper on the stack. This sheet contains
the partially completed computation that is waiting for the recursive computation that
just ended. So, it is possible to proceed with that suspended computation. When that
suspended computation ends, the computer discards that sheet of paper, and the
suspended computation that is below it on the stack becomes the computation on
top of the stack. The computer turns its attention to the suspended computation
that is now on the top of the stack, and so forth. The process continues until the
computation on the bottom sheet is completed. Depending on how many recursive
calls are made and how the method definition is written, the stack may grow and
shrink in any fashion. Notice that the sheets in the stack can only be accessed in a
last-in/first-out fashion—but, this is exactly what is needed to keep track of recursive
calls. Each suspended version is waiting for the completion of the version directly
above it on the stack.

Of course, computers do not have stacks of paper. This is just an analogy. The
computer uses portions of memory rather than pieces of paper. The contents of one
of these portions of memory (“sheets of paper”) is called a stack frame or activation
record. These stack frames are handled in the last-in/first-out manner we just discussed.

last-in/
first-out

activation
record

stack frame

696 CHAPTER 11 Recursion

(These stack frames do not contain a complete copy of the method definition, but
merely reference a single copy of the method definition. However, a stack frame
contains enough information to allow the computer to act as if the stack frame contains
a complete copy of the method definition.)

PITFall: Stack Overflow ★

There is always some limit to the size of the stack. If there is a long chain in which a
method makes a recursive call to itself, and that call results in another recursive call,
and that call produces yet another recursive call, and so forth, then each recursive call
in this chain will cause another suspended computation to be placed on the stack. If
this chain is too long, then the stack will attempt to grow beyond its limit. This is
an error condition known as a stack overflow. If you receive an error message that
says stack overflow, it is likely that some method call has produced an excessively long
chain of recursive calls. One common cause of stack overflow is infinite recursion. If
a method is recursing infinitely, then it will eventually try to make the stack exceed
any stack size limit. ■

extra code on
website

iterative
version

Stack ★

A stack is a last-in/first-out memory structure. The first item referenced or removed from a
stack is always the last item entered into the stack. Stacks are used by computers to keep
track of recursion (and for other purposes).

Recursion and
the Stack

VideoNote

Recursion versus Iteration

Recursion is not absolutely necessary. In fact, some programming languages do not
allow it. Any task that can be accomplished using recursion can also be done in some
other way without using recursion. For example, Display 11.2 contains a nonrecursive
version of the method given in Display 11.1. The nonrecursive version of a method
typically uses a loop (or loops) of some sort in place of recursion. For this reason, the
nonrecursive version is usually referred to as an iterative version. If the definition of
the method writeVertical given in Display 11.1 is replaced by the version given
in Display 11.2, then the output will be the same. As is true in this case, a recursive
version of a method can sometimes be much simpler than an iterative version. The full
program with the iterative version of the method is given in the file IterativeDemo1
on the accompanying website.

A recursively written method will usually run slower and use more storage than
an equivalent iterative version. The computer must do extra work manipulating the
stack to keep track of the recursion. However, because the system does all this for you
automatically, using recursion can sometimes make your job as a programmer easier
and can sometimes produce code that is easier to understand. Additionally, there are
some cases in which the compiler or JVM can convert a recursive algorithm into an
iterative version for you.

Recursive Methods That Return a Value 697

Display 11.2 Iterative Version of the Method in Display 11.1

 1 public static void writeVertical(int n)
 2 {
 3 int nsTens = 1;
 4 int leftEndPiece = n;
 5 while (leftEndPiece > 9)
 6 {
 7 leftEndPiece = leftEndPiece / 10;
 8 nsTens = nsTens * 10;
 9 }
10 //nsTens is a power of 10 that has the same number
11 //of digits as n. For example, if n is 2345, then
12 //nsTens is 1000.

13 for (int powerOf10 = nsTens;
14 powerOf10 > 0; powerOf10 = powerOf10 / 10)
15 {
16 System.out.println(n / powerOf10);
17 n = n % powerOf10;
18 }
19 }

11.2 Recursive Methods That Return a Value

To iterate is human, to recurse divine.

L. PETER DEUTSCH

Self-Test Exercises

 6. If your program produces an error message that says stack overflow, what is a
likely source of the error?

 7. Write an iterative version of the method cheers defined in Self-Test Exercise 1.

 8. Write an iterative version of the method defined in Self-Test Exercise 2.

 9. Write an iterative version of the method defined in Self-Test Exercise 3.

10. Trace the recursive solution you made to Self-Test Exercise 4.

11. Trace the recursive solution you made to Self-Test Exercise 5.

698 CHAPTER 11 Recursion

General Form for a Recursive Method That Returns a Value

The recursive methods you have seen thus far are all void methods, but recursion is
not limited to these methods. A recursive method can return a value of any type. The
technique for designing recursive methods that return a value is basically the same
as what you learned for void methods. An outline for a successful recursive method
definition that returns a value is as follows:

• One or more cases in which the value returned is computed in terms of calls to the
same method (that is, using recursive calls). As is the case with void methods, the
arguments for the recursive calls should intuitively be “smaller.”

• One or more cases in which the value returned is computed without the use of any
recursive calls. These cases without any recursive calls are called base cases or stopping
cases (just as they were with void methods).

This technique is illustrated in the next Programming Example.

ExaMPlE: Another Powers Method

In Chapter 5, we introduced the static method pow of the class Math, that computes
powers. For example, Math.pow(2.0,3.0) returns 2.03.0, so the following sets the
variable result equal to 8.0:

double result = Math.pow(2.0, 3.0);

The method pow takes two arguments of type double and returns a value of type
double. Display 11.3 contains a recursive definition for a static method that is
similar to pow, but that works with the type int rather than double. This new
method is called power. For example, the following will set the value of result2
equal to 8, because 23 is 8:

int result2 = power(2, 3);

Outside the defining class, this would be written as

int result2 = RecursionDemo2.power(2, 3);

Our main reason for defining the method power is to have a simple example of a
recursive method, but there are situations in which the method power would be
preferable to the method pow. The method pow returns a value of type double,
which is only an approximate quantity. The method power returns a value of type
int, which is an exact quantity. In some situations, you might need the additional
accuracy provided by the method power.

The definition of the method power is based on the following formula:

xn is equal to xn−1 * x

Recursive Methods That Return a Value 699

ExaMPlE: (continued)

Translating this formula into Java says that the value returned by power(x, n)
should be the same as the value of the expression

power(x, n – 1)*x

The definition of the method power given in Display 11.3 does return this value for
power(x, n), provided n > 0.

The case where n is equal to 0 is the stopping case. If n is 0, then power(x, n)
simply returns 1 (because x0 is 1).

Let’s see what happens when the method power is called with some sample values.
First, consider the simple expression:

power(2, 0)

When the method is called, the value of x is set equal to 2, the value of n is set equal
to 0, and the code in the body of the method definition is executed. Because the
value of n is a legal value, the if-else statement is executed. Because this value of n
is not greater than 0, the return statement after the else is used, so the method call
returns 1. Thus, the following would set the value of result3 equal to 1:

int result3 = power(2, 0);

Now let’s look at an example that involves a recursive call. Consider the expression

power(2, 1)

When the method is called, the value of x is set equal to 2, the value of n is set equal
to 1, and the code in the body of the method definition is executed. Because this
value of n is greater than 0, the following return statement is used to determine the
value returned:

return (power(x, n – 1)*x);

which in this case is equivalent to

return (power(2, 0)*2);

At this point, the computation of power(2, 1) is suspended, a copy of this suspended
computation is placed on the stack, and the computer then starts a new method call to
compute the value of power(2, 0). As you have already seen, the value of power(2, 0)
is 1. After determining the value of power(2, 0), the computer replaces the expression

(continued)

700 CHAPTER 11 Recursion

Display 11.3 The Recursive Method power (part 1 of 2)

 1 public class RecursionDemo2
 2 {
 3 public static void main(String[] args)
 4 {
 5 for (int n = 0; n < 4; n++)
 6 System.out.println("3 to the power " + n
 7 + " is " + power(3, n));
 8 }

 9 public static int power(int x, int n)
10 {

ExaMPlE: (continued)

power(2, 0) with its value of 1 and resumes the suspended computation. The resumed
computation determines the final value for power(2, 1) from the above return
statement as

Power(2, 0)*2 is 1*2 which is 2

so the final value returned for power(2, 1) is 2. So, the following would set the
value of result4 equal to 2:

int result4 = power(2, 1);

Larger numbers for the second argument will produce longer chains of recursive calls.
For example, consider the statement

System.out.println(power(2, 3));

The value of power(2, 3) is calculated as follows:

power(2, 3) is power(2, 2)*2
 power(2, 2) is power(2, 1)*2
 power(2, 1) is power(2, 0)*2
 power(2, 0) is 1 (stopping case)

When the computer reaches the stopping case, power(2, 0), there are three suspended
computations. After calculating the value returned for the stopping case, it resumes the
most recently suspended computations to determine the value of power(2, 1). After
that, the computer completes each of the other suspended computations, using each
value computed as a value to plug into another suspended computation, until it reaches
and completes the computation for the original call power(2, 3). The details of the
entire computation are illustrated in Display 11.4.

Recursive Methods That Return a Value 701

Display 11.3 The Recursive Method power (part 2 of 2)

11 if (n < 0)
12 {
13 System.out.println("Illegal argument to power.");
14 System.exit(0);
15 }
16 if (n > 0)
17 return (power(x, n – 1)*x);
18 else // n == 0
19 return (1);
20 }
21 }

Sample Dialogue

3 to the power 0 is 1
3 to the power 1 is 3
3 to the power 2 is 9
3 to the power 3 is 27

1

power(2, 0) *2

 power(2, 1) *2

 power(2, 2) *2

 power(2, 3)

Start here

1

 1 *2

 1*2 is 2

 2 *2

 2*2 is 4

 4 *2

 4*2 is 8

 8

power(2, 3) is 8

Display 11.4 Evaluating the Recursive Method Call power(2,3)

702 CHAPTER 11 Recursion

Self-Test Exercises

12. What is the output of the following program?

public class Exercise12
{
 public static void main(String[] args)
 {
 System.out.println(mystery(3));
 }

 public static int mystery(int n)
 {
 if (n <= 1)
 return 1;
 else
 return (mystery(n − 1) + n);
 }
}

13. What is the output of the following program? What well-known mathematical
method is rose?

public class Exercise13
{
 public static void main(String[] args)
 {
 System.out.println(rose(4));
 }

 public static int rose(int n)
 {
 if (n <= 0)
 return 1;
 else
 return (rose(n – 1) * n);
 }
}

14. Redefine the method power (Display 11.3) so that it also works for negative
exponents. To do this, you also have to change the type of the value returned to
double. The method heading for the redefined version of power is as follows:

/**
 Precondition: If n < 0, then x is not 0.
 Returns x to the power n.
*/
public static double power(int x, int n)

Hint: x-n is equal to 1√(xn).

Thinking Recursively 703

11.3 Thinking Recursively

There are two kinds of people in the world, those who divide the world into
two kinds of people and those who do not.

ROBERT BENCHLEy

Recursive Design Techniques

When defining and using recursive methods, you do not want to be continually aware
of the stack and the suspended computations. The power of recursion comes from the
fact that you can ignore that detail and let the computer do the bookkeeping for you.
Consider the example of the method power in Display 11.3. The way to think of the
definition of power is as follows:

power(x, n) returns power(x, n – 1)*x

Because xn is equal to xn–1*x, this is the correct value to return, provided that the
computation will always reach a stopping case and will correctly compute the stopping
case. So, after checking that the recursive part of the definition is correct, all you need
to check is that the chain of recursive calls will always reach a stopping case and that the
stopping case will always return the correct value. In other words, all that you need to
do is check that the following three properties are satisfied:

1. There is no infinite recursion. (A recursive call may lead to another recursive
call, which may lead to another, and so forth, but every such chain of recursive
calls eventually reaches a stopping case.)

2. Each stopping case returns the correct value for that case.

3. For the cases that involve recursion: if all recursive calls return the correct value,
then the final value returned by the method is the correct value.

For example, consider the method power in Display 11.3:

1. There is no infinite recursion: The second argument to power(x, n) is
 decreased by one in each recursive call, so any chain of recursive calls must eventually
reach the case power(x, 0), which is the stopping case. Thus, there is no infinite
recursion.

2. Each stopping case returns the correct value for that case: The only stopping
case is power(x, 0). A call of the form power(x, 0) always returns 1, and the
correct value for x0 is 1. So, the stopping case returns the correct value.

3. For the cases that involve recursion, if all recursive calls return the correct
value, then the final value returned by the method is the correct value: The only
case that involves recursion is when n > 1. When n > 1, power(x, n) returns

power(x, n – 1)*x.

criteria for
methods that

return a value

704 CHAPTER 11 Recursion

To see that this is the correct value to return, note that, if power(x, n – 1) returns
the correct value, then power(x, n – 1) returns xn–1 and so power(x, n) returns

xn–1 * x, which is xn

This is the correct value for power(x, n).

That is all you need to check to be sure that the definition of power is correct. (The
previous technique is known as mathematical induction, a concept that you may have
heard about in a mathematics class. However, you do not need to be familiar with the
term mathematical induction to use this technique.)

We gave you three criteria to use in checking the correctness of a recursive method
that returns a value. Basically, the same rules can be applied to a recursive void
method. If you show that your recursive void method definition satisfies the following
three criteria, then you will know that your void method performs correctly:

1. There is no infinite recursion.
2. Each stopping case performs the correct action for that case.
3. For each of the cases that involve recursion, if all recursive calls perform their

actions correctly, then the entire case performs correctly.

Binary Search ★

In this subsection, we will develop a recursive method that searches an array to find out
whether it contains a specified value. For example, the array may contain a list of the
numbers for credit cards that are no longer valid. A store clerk needs to search the list
to see if a customer’s card is valid or invalid.

The indices of the array a are the integers 0 through finalIndex. To make the task
of searching the array easier, we will assume that the array is sorted. Hence, we know
the following:

a[0] ≤ a[1] ≤ a[2] ≤ … ≤ a[finalIndex]

In fact, the binary search algorithm we will use requires that the array be sorted
like this.

When searching an array, you are likely to want to know both whether the value is
in the array and, if it is, where it is in the array. For example, if you are searching for a
credit card number, then the array index may serve as a record number. Another array
indexed by these same indices may hold a phone number or other information to use
for reporting the suspicious card. Hence, if the sought-after value is in the array, we
will have our method return an index of where the sought-after value is located. If the
value is not in the array, our method will return –1. (The array may contain repeats,
which is why we say “an index” and not “the index.”)

Now let us proceed to produce an algorithm to solve this task. It will help to
visualize the problem in very concrete terms. Suppose the list of numbers is so long
that it takes a book to list them all. This is in fact how invalid credit card numbers are
distributed to stores that do not have access to computers. If you are a clerk and are

criteria for
void methods

Thinking Recursively 705

handed a credit card, you must check to see if it is on the list and hence invalid. How
would you proceed? Open the book to the middle and see if the number is there. If
it is not and it is smaller than the middle number, then work backward toward the
beginning of the book. If the number is larger than the middle number, you work your
way toward the end of the book. This idea produces our first draft of an algorithm:

mid = approximate midpoint between 0 and finalIndex;
if (key == a[mid])
 return mid;
else if (key < a[mid])
 search a[0] through a[mid – 1];
else if (key > a[mid])
 search a[mid + 1] through a[finalIndex];

Because the searchings of the shorter lists are smaller versions of the very task we are
designing the algorithm to perform, this algorithm naturally lends itself to the use of
recursion. The smaller lists can be searched with recursive calls to the algorithm itself.

Our pseudocode is a bit too imprecise to be easily translated into Java code. The
problem has to do with the recursive calls. There are two recursive calls shown:

search a[0] through a[mid – 1];
 and
search a[mid + 1] through a[finalIndex];

To implement these recursive calls, we need two more parameters. A recursive call
specifies that a subrange of the array is to be searched. In one case, it is the elements
indexed by 0 through mid – 1. In the other case, it is the elements indexed by mid + 1
through finalIndex. The two extra parameters will specify the first and last indices of
the search, so we will call them first and last. Using these parameters for the lowest
and highest indices, instead of 0 and finalIndex, we can express the pseudocode more
precisely as follows:

To search a[first] through a[last] do the following:
mid = approximate midpoint between first and last;
if (key == a[mid])
 return mid;
else if (key < a[mid])
 return the result of searching a[first] through a[mid – 1];
else if (key > a[mid])
 return the result of searching a[mid + 1] through a[last];

To search the entire array, the algorithm would be executed with first set equal to
0 and last set equal to finalIndex. The recursive calls will use other values for first
and last. For example, the first recursive call would set first equal to 0 and last
equal to the calculated value mid – 1.

As with any recursive algorithm, we must ensure that our algorithm ends rather than
producing infinite recursion. If the sought-after number is found on the list, then there

algorithm
first version

more
parameters

algorithm
first

refinement

stopping case

706 CHAPTER 11 Recursion

is no recursive call, and the process terminates, but we need some way to detect when
the number is not on the list. On each recursive call, the value of first is increased or
the value of last is decreased. If they ever pass each other and first actually becomes
larger than last, then we will know that there are no more indices left to check and
that the number key is not in the array. If we add this test to our pseudocode, we
obtain a complete solution, as shown in Display 11.5.

Now we can routinely translate the pseudocode into Java code. The result is shown
in Display 11.6. The method search is an implementation of the recursive algorithm
given in Display 11.5. A diagram of how the method performs on a sample array is
given in Display 11.7. Display 11.8 illustrates how the method search is used.

Notice that the method search solves a more general problem than the original
task. Our goal was to design a method to search an entire array. Yet the method will
let us search any interval of the array by specifying the indices first and last. This
is common when designing recursive methods. Frequently, it is necessary to solve a
more general problem in order to be able to express the recursive algorithm. In this
case, we want only the answer in the case where first and last are set equal to 0
and finalIndex. However, the recursive calls will set them to values other than 0 and
finalIndex.

Display 11.5 Pseudocode for Binary Search ★

Algorithm to seArch a[first] through a[last]

/**
 Precondition:
 a[first]<= a[first + 1] <= a[first + 2] <= … <= a[last]
*/

to locAte the vAlue key

if (first > last) //A stopping case
 return –1;
else
{
 mid = approximate midpoint between first and last;
 if (key == a[mid]) //A stopping case
 return mid;
 else if key < a[mid]//A case with recursion
 return the result of searching a[first] through a[mid – 1];
 else if key > a[mid] //A case with recursion
 return the result of searching a[mid + 1] through a[last];
}

algorithm
final version

Thinking Recursively 707

Display 11.6 Recursive Method for Binary Search ★

 1 public class BinarySearch
 2 {
 3 /**
 4 Searches the array a for key. If key is not in the array segment,
 5 then –1 is returned. Otherwise returns an index in the segment such

that key == a[index].
 6 Precondition: a[first] <= a[first + 1]<= … <= a[last]
 7 */
 8 public static int search(int[] a, int first, int last, int key)
 9 {
10 int result = 0; //to keep the compiler happy.

11 if (first > last)
12 result = –1;
13 else
14 {
15 int mid = (first + last)/2;

16 if (key == a[mid])
17 result = mid;
18 else if (key < a[mid])
19 result = search(a, first, mid – 1, key);
20 else if (key > a[mid])
21 result = search(a, mid + 1, last, key);
22 }
23 return result;
24 }
25 }

In the earlier subsection entitled “Tracing a Recursive Call,” we gave three criteria
that you should check to ensure that a recursive void method definition is correct.
Let’s check these three things for the method search given in Display 11.6:

1. There is no infinite recursion: On each recursive call, the value of first is
 increased or the value of last is decreased. If the chain of recursive calls does
not end in some other way, then eventually the method will be called with
first larger than last, which is a stopping case.

2. Each stopping case performs the correct action for that case: There are two stop-
ping cases, when first > last and when key == a[mid]. Let’s consider each case.

 If first > last, there are no array elements between a[first] and a[last],
so key is not in this segment of the array. (Nothing is in this segment of the
 array!) So, if first > last, the method search correctly returns –1, indicating
that key is not in the specified range of the array.

 If key == a[mid], the algorithm correctly sets location equal to mid. Thus,
both stopping cases are correct.

708 CHAPTER 11 Recursion

Display 11.7 Execution of the Method search ★

key is 63

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

 first == 0

mid = (0 + 9)/2

last == 9

mid = (5 + 9)/2

first == 5

last == 9

last == 6

first == 5

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

Thinking Recursively 709

Display 11.8 Using the search Method ★

 1 public class BinarySearchDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 int[] a = {–2, 0, 2, 4, 6, 8, 10, 12, 14, 16};
 6 int finalIndex = 9;

 7 System.out.println("Array contains:");
 8 for (int i = 0; i < a.length; i++)
 9 System.out.print(a[i] + " ");
10 System.out.println();
11 System.out.println();

12 int result;
13 for (int key = –3; key < 5; key++)
14 {
15 result = BinarySearch.search(a, 0, finalIndex, key);
16 if (result >= 0)
17 System.out.println(key + " is at index " + result);
18 else
19 System.out.println(key + " is not in the array.");
20 }
21 }
22 }

Sample Dialogue

Array contains:
–2 0 2 4 6 8 10 12 14 16

–3 is not in the array.
–2 is at index 0
–1 is not in the array.
0 is at index 1
1 is not in the array.
2 is at index 2
3 is not in the array.
4 is at index 3

710 CHAPTER 11 Recursion

3. For each of the cases that involve recursion, if all recursive calls perform
their actions correctly, then the entire case performs correctly: There are two
cases in which there are recursive calls, when key < a[mid] and when key >
a[mid]. We need to check each of these two cases.

First, suppose key < a[mid]. In this case, because the array is sorted, we know
that if key is anywhere in the array, then key is one of the elements a[first]
through a[mid – 1]. Thus, the method need only search these elements, which
is exactly what the recursive call

search(a, first, mid – 1, key)

does. So if the recursive call is correct, then the entire action is correct.

Next, suppose key > a[mid]. In this case, because the array is sorted, we know
that if key is anywhere in the array, then key is one of the elements a[mid + 1]
through a[last]. Thus, the method need only search these elements, which is
exactly what the recursive call

search(a, mid + 1, last, key)

does. So if the recursive call is correct, then the entire action is correct. Thus, in
both cases, the method performs the correct action (assuming that the recursive
calls perform the correct action).

The method search passes all three of our tests, so it is a good recursive method definition.

Efficiency of Binary Search ★

The binary search algorithm is extremely fast compared to an algorithm that simply
tries all array elements in order. In the binary search, you eliminate about half the array
from consideration right at the start. You then eliminate a quarter, then an eighth of the
array, and so forth. These savings add up to a dramatically fast algorithm. For an array
of 100 elements, the binary search will never need to compare more than 7 array elements
to the key. A serial search could compare as many as 100 array elements to the key, and
on the average will compare about 50 array elements to the key. Moreover, the larger
the array is, the more dramatic the savings will be. On an array with 1,000 elements,
the binary search will only need to compare about 10 array elements to the key value, as
compared to an average of 500 for the serial search algorithm.1

An iterative version of the method search is given in Display 11.9. On some
systems, the iterative version will run more efficiently than the recursive version. The
algorithm for the iterative version was derived by mirroring the recursive version. In the
iterative version, the local variables first and last mirror the roles of the parameters
in the recursive version, which are also named first and last. As this example

1The binary search algorithm has worst-case running time that is logarithmic—that is, O(log n). The
serial search algorithm is linear—that is, O(n). If the terms used in this footnote are not familiar to
you, you can safely ignore it.

iterative
version

Thinking Recursively 711

illustrates, it often makes sense to derive a recursive algorithm even if you expect
to later convert it to an iterative algorithm. You can see the iterative method from
Display 11.9 embedded in a full demonstration in the files IterativeBinarySearch.
java and IterativeBinarySearchDemo.java on the accompanying website.

Display 11.9 Iterative Version of Binary Search ★

 1 /**
 2 Searches the array a for key. If key is not in the array segment, then
 3 –1 is returned. Otherwise returns an index in the segment such that key

== a[index].
 4 Precondition: a [lowEnd] <= a[lowEnd + 1]<= … <= a[highEnd]
 5 */
 6 public static int search(int[] a, int lowEnd, int highEnd, int key)
 7 {
 8 int first = lowEnd;
 9 int last = highEnd;
10 int mid;

11 boolean found = false; //so far
12 int result = 0; //to keep compiler happy

13 while ((first <= last) && !(found))
14 {
15 mid = (first + last)/2;

16 if (key == a[mid])
17 {
18 found = true;
19 result = mid;
20 }
21 else if (key < a[mid])
22 {
23 last = mid – 1;
24 }
25 else if (key > a[mid])
26 {
27 first = mid + 1;
28 }
29 }

30 if (first > last)
31 result = –1;
32 return result;
33 }

extra code
on website

712 CHAPTER 11 Recursion

Most modern compilers will convert certain simple recursive method definitions to
iterative ones before running the program. A method that uses tail recursion has the
property that it does nothing after the recursive call except return the method’s value.
In this case, a tail recursive method can be easily converted to an equivalent iterative
solution. This operation may be performed by the compiler or by the JVM.

tail
recursion

ExaMPlE: Finding a File

The next program is an example where a recursive solution is much easier to write
and understand than an iterative solution. Consider the problem of finding a file
buried somewhere in your file system. For example, using the Windows file system,
let’s say that you have the following file and directory structure on your hard drive:

Display 11.10 Sample File System Structure

C:\
 JavaPrograms\
 Recursion\
 FindFile.java
 BinarySearch.java
 Homework\
 Homework1.java
 Homework2.java
 Test.java
 Papers\
 TermPaper.odt
 Workfile.docx
 Letter.txt

Self-Test Exercise

15. Write a recursive method definition for the following method:

/**
 Precondition: n >= 1
 Returns the sum of the squares of the numbers 1 through n.
*/
public static int squares(int n)

 For example, squares(3) returns 14 because 12 + 22 + 32 is 14.

Thinking Recursively 713

We would like to find the location of a file given its name. For example, given
TermPaper.odt, we would like to know that it is located in C:\Papers. Given
FindFile.java, we would like to know that it is located in C:\JavaPrograms\
Recursion. The general solution is to start at some root directory, such as C:\, and
to go through all the items in that directory. If an item is a file, check if it matches the
target. If an item is a directory, then make a recursive call to restart the search using
that directory as the new root directory.

Pseudocode of our recursive solution follows:

searchForFile(currentPath, targetFile)
 if currentPath is not a directory
 return error
 for every item i in currentPath
 if i is a directory
 r = searchForFile(i, targetFile)
 if r is a successful match
 return r
 if i is a file
 if i matches targetFile
 return path to file i
return target not found

To implement our algorithm, we need a way to determine if a path is a directory or
a file, and we need to find a way to get all of the items within a directory. Java’s File
object will do all of this for us. To use it, we must import java.io.File. Here are the
relevant constructor and methods:

CONSTRUCTORS aND METHODS DESCRIPTION

File(String pathname) The constructor takes a pathname and creates a
File object corresponding to the file or directory
with that pathname.

String getAbsolutePath() Returns the pathname of the File object, e.g.,
C:\Papers\TermPaper.odt.

String getName() Returns the name of the File object, e.g.,
TermPaper.odt.

boolean isDirectory() Returns true if the File object is a directory.

File[] listFiles() If the File object is a directory then this returns
an array of File objects corresponding to all the
items within the directory.

Using the File object, we can implement the recursive algorithm to find a file. The
implementation in Display 11.11 returns an empty string if the target file is not found. If
the initial root folder supplied is not a directory, then an error message is returned. The
sample results assume the program runs using the directory structure given in Display 11.10.

714 CHAPTER 11 Recursion

Display 11.11 Program to Recursively Find a File

 1 import java.io.File;
 2 public class FindFile
 3 {
 4 public static String searchForFile(File dir, String target)
 5 {
 6 String result = "";
 7 // If dir is not a directory, return
 8 if (!dir.isDirectory())
 9 return "Path is not a directory.";
10
11 // Check each item in the directory
12 for (File folderItem : dir.listFiles())
13 {
14 // Recurse if it's a directory
15 if (folderItem.isDirectory())
16 {
17 result = searchForFile(folderItem,target);
18 // Return the result if it is not empty
19 if (!result.equals(""))
20 return result;
21 }
22 // If it's a file, check for a match
23 else
24 {
25 if (folderItem.getName().equals(target))
26 return folderItem.getAbsolutePath();
27 }
28 }
29 // If we got here, nothing was found
30 return "";
31 }
32
33 public static void main(String[] args)
34 {
35 // The root folder to search
36 File rootFolder = new File("C:\\");
37 String result = searchForFile(rootFolder, "FindFile.java");
38 if (!result.equals(""))
39 System.out.println(result);
40 else
41 System.out.println("File not found.");
42 }
43 }

Sample Dialogue Using Directory Structure of Display 11.10

C:\JavaPrograms\Recursion\FindFile.java

Answers to Self-Test Exercises 715

Chapter Summary

• If a problem can be reduced to smaller instances of the same problem, then a recursive
solution is likely to be easy to find and implement.

• A recursive algorithm for a method definition normally contains two kinds of cases:
one or more cases that include at least one recursive call and one or more stopping
cases in which the problem is solved without any recursive calls.

• When writing a recursive method definition, always check to see that the method will
not produce infinite recursion.

• When you define a recursive method, use the three criteria given in the subsection
“Recursive Design Techniques” to check that the method is correct.

• When you design a recursive method to solve a task, it is often necessary to solve
a more general problem than the given task. This may be required to allow for the
proper recursive calls, because the smaller problems may not be exactly the same
problem as the given task. For example, in the binary search problem, the task was to
search an entire array, but the recursive solution is an algorithm to search any portion
of the array (either all of it or a part of it).

answers to Self-Test Exercises

 1. Hip Hip Hurray

 2. public static void stars(int n)
{
 System.out.print('*');
 if (n > 1)
 stars(n – 1);
}

 The following answer to Self-Test Exercise 3 is also correct, but is more
 complicated.

Self-Test Exercises

16. How might you write a nonrecursive version of the program in Display 11.11?
You do not have to write actual code, just think of what approach you might use.

17. The program in Display 11.11 could make thousands of recursive calls if you
have a lot of subdirectories on your hard drive. Why is it unlikely that you will
encounter a stack overflow error?

18. What is the stopping case in Display 11.11?

716 CHAPTER 11 Recursion

 3. public static void stars(int n)
{

 if (n <= 1)
 {
 System.out.print('*');
 }
 else
 {
 stars(n – 1);
 System.out.print('*');
 }
}

public static void backward(int n)
{
 if (n < 10)
 {
 System.out.print(n);
 }
 else
 {
 System.out.print(n%10);//write last digit
 backward(n/10);//write the other digits backward
 }
}

 4. public static void writeUp(int n)
{
 if (n >= 1)
 {
 writeUp(n – 1);
 System.out.print(n + " "); //write while the
 //recursion unwinds
 }
}

 5. public static void writeDown(int n)
{
 if (n >= 1)
 {
 System.out.print(n + " "); //write while the
 //recursion winds
 writeDown(n – 1);
 }
}

 6. An error message that says stack overflow is telling you that the computer has
 attempted to place more stack frames on the stack than are allowed on your system.
A likely cause of this error message is infinite recursion.

Answers to Self-Test Exercises 717

 7. public static void cheers(int n)
{
 while (n > 1)
 {
 System.out.print("Hip ");
 n--;
 }
 System.out.println("Hurray");
}

 8. public static void stars(int n)
{
 for (int count = 1; count <= n; count++)
 System.out.print('*');
}

 9. public static void backward(int n)
{
 while (n >= 10)
 {
 System.out.print(n%10);//write last digit
 n = n/10;//discard the last digit
 }
 System.out.print(n);
}

10. The trace for Self-Test Exercise 4: If n = 3, the code to be executed is

if (3 >= 1)
{
 writeUp(2);
 System.out.print(3 + " ");
}

The execution is suspended before the System.out.println. On the next recursion,
n = 2; the code to be executed is

if (2 >= 1)
{
 writeUp(1);
 System.out.print(2 + " ");
}

The execution is suspended before the System.out.println. On the next recursion,
n = 1 and the code to be executed is

if (1 >= 1)
{
 writeUp(0);
 System.out.print(1 + " ");
}

718 CHAPTER 11 Recursion

The execution is suspended before the System.out.println. On the final recursion,
n = 0 and the code to be executed is

if (0 >= 1) // condition false, body skipped
{
 // skipped

}

The suspended computations are completed from the most recent to the least
recent. The output is 1 2 3.

11. The trace for Self-Test Exercise 5: If n = 3, the code to be executed is

if (3 >= 1)
{
 System.out.print(3 + " ");
 writeDown(2);
}

Next recursion, n = 2, the code to be executed is

if (2 >= 1)
{

 System.out.print(2 + " ");
 writeDown(1);
}

Next recursion, n = 1, the code to be executed is

if (1 >= 1)
{
 System.out.print(1 + " ");
 writeDown(0);
}

Final recursion, n = 0, and the if statement does nothing, ending the recursive calls:

if (0 >= 1) // condition false
{
 // this clause is skipped
}

The output is 3 2 1.

12. 6

13. The output is 24. The method rose is the factorial method, usually written as n!
and defined as follows:

n! is equal to n*(n – 1)*(n – 2)*…*1

Answers to Self-Test Exercises 719

14. public static double power(int x, int n)
{
 if (n < 0 && x == 0)
 {
 System.out.println(
 "Illegal argument to power.");
 System.exit(0);
 }

 if (n < 0)
 return (1/power(x, – n));
 else if (n > 0)
 return (power(x, n – 1)*x);
 else // n == 0
 return (1.0);
}

15. public static int squares(int n)
{
 if (n <= 1)
 return 1;
 else
 return (squares(n – 1) + n*n);
}

16. One approach is to keep a list of all directories that have been encountered. The
list could be implemented with an array. Initially, this list would be set to the root
directory. While there is at least one directory on the list, repeat the following:

 • Remove a directory from the list.
 Find all files within the directory. If one of these files matches the target,

return the pathname to the file.
 Find all subdirectories within the directory. Add each subdirectory to

the list.

This approach is a little more complicated than the recursive version because we
have to manage the list. In the recursive version, the list is essentially managed for
us through the series of recursive calls.

17. A stack overflow in the context of recursion occurs when there is a long chain of
recursive calls. In the FindFile program, one link of this chain is created when a
subdirectory is in another directory. To create a stack overflow, we would need to
have a folder in a folder, which is in a folder, which is in a folder, etc. How many
folders must be linked in this way to cause a stack overflow will vary from one
system to another, but you can expect hundreds would be necessary, an unlikely
scenario in a typical file system. Although there could be thousands of recursive
calls when searching for a file, there will likely be many short chains instead of
single long chains. This allows recursive calls to exit and prevent a stack overflow.

18. Recursion stops if the file passed in is not a directory, if there are no subdirectories
in the directory, or after all subdirectories have been recursively called. If a match
is found, then recursion also stops.

720 CHAPTER 11 Recursion

Programming Projects

 1. A savings account typically accrues savings using compound interest. If you deposit
$1,000 with a 10% interest rate per year, then after one year you have a total of
$1,100. If you leave this money in the account for another year at 10% interest,
then after two years the total will be $1,210. After three years, you would have
$1,331, and so on.

Write a program that inputs the amount of money to deposit, an interest rate per
year, and the number of years the money will accrue compound interest. Write a
recursive function that calculates the amount of money that will be in the savings
account using the input information.

To verify your function, the amount should be equal to P(1 + i)n, where P is the
amount initially saved, i is the interest rate per year, and n is the number of years.

 2. There are n people in a room, where n is an integer greater than or equal to 1. Each
person shakes hands once with every other person. What is the total number, h(n),
of handshakes? Write a recursive function to solve this problem. To get you started,
if there are only one or two people in the room, then
handshake(1) = 0
handshake(2) = 1

If a third person enters the room, he or she must shake hands with each of the
two people already there. This is two handshakes in addition to the number
of handshakes that would be made in a room of two people, or a total of three
handshakes.

If a fourth person enters the room, he or she must shake hands with each of the
three people already present. This is three handshakes in addition to the number
of handshakes that would be made in a room of three people, or six handshakes.

If you can generalize this to n handshakes, then it should help you write the
recursive solution.

 3. Consider a frame of bowling pins shown below, where each * represents a pin:

 *

 * *

 * * *

 * * * *

* * * * *

There are 5 rows and a total of 15 pins.

If we had only the top 4 rows, then there would be a total of 10 pins.

If we had only the top three rows, then there would be a total of six pins.

If we had only the top two rows, then there would be a total of three pins.

If we had only the top row, then there would be a total of one pin.

Solution to
Programming
Project 11.3

VideoNote

Programming Projects 721

Write a recursive function that takes as input the number of rows n and outputs
the total number of pins that would exist in a pyramid with n rows. Your program
should allow for values of n that are larger than 5.

 4. The game of “Jump It” consists of a board with n positive integers in a row except
for the first column, which always contains zero. These numbers represent the cost
to enter each column. Here is a sample game board where n is 6:

0 3 80 6 57 10

The object of the game is to move from the first column to the last column in the
lowest total cost. The number in each column represents the cost to enter that
column. Always start the game in the first column and have two types of moves. You
can either move to the adjacent column or jump over the adjacent column to land
two columns over. The cost of a game is the sum of the costs of the visited columns.

In the board shown above, there are several ways to get to the end. Starting in the
first column, our cost so far is 0. We could jump to 80, then jump to 57, then
move to 10 for a total cost of 80 + 57 + 10 = 147. However, a cheaper path would
be to move to 3, jump to 6, then jump to 10, for a total cost of 3 + 6 + 10 = 19.

Write a recursive solution to this problem that computes the cheapest cost of the
game and outputs this value for an arbitrarily large game board represented as an
array. Your program does not have to output the actual sequence of jumps, only
the cheapest cost of this sequence. After making sure that your solution works on
small arrays, test your solution on boards of larger and larger values of n to get a
feel for how efficient and scalable your solution is.

 5. Write a recursive method definition to implement a method named findNum-
ber that has two parameters: the first is an array of integers, and the second is the
number to search. This parameter should receive from the user a list of n integer
values. This method should search the number using a binary search. For example,
if the user enters the values (23 34 45 65 78 90 98) the output should be Number
found in array or Number not found in array. Also, write the main method
to implement the program.

 6. The formula for calculating the exponentiation of a number x with exponent m is:

ExpResult = xm

Write a recursive method named expEvaluate with the following header:

public long expEvaluate(int x, int m)

The method should accept the value of x and m with the following conditions:

a. Value of x should be in the range 0 < x <=10

b. Value of m should be in the range 0 <= m <=10

The method should return the exponent. Also, write the main method to
implement the program.

 7. Towers of Hanoi. There is a story about Buddhist monks who are playing this
puzzle with 64 stone disks. The story claims that when the monks finish moving
the disks from one post to a second via the third post, time will end.

722 CHAPTER 11 Recursion

A stack of n disks of decreasing size (from bottom to top) is placed on one of three
posts. The task is to move the disks one at a time from the first post to the second.
To do this, any disk can be moved from any post to any other post, subject to the
rule that you can never place a larger disk over a smaller disk. The (spare) third
post is provided to make the solution possible. Your task is to write a recursive
static method that gives instructions for a solution to this problem. We do not
want to bother with graphics, so you should output a sequence of instructions
that will solve the problem. The number of disks is a parameter to the method.

Hint: If you could move up n–1 of the disks from the first post to the third post
using the second post as a spare, the last disk could be moved from the first post
to the second post. Then, by using the same technique (whatever that may be),
you can move the n–1 disks from the third post to the second post, using the
first disk as a spare. There! You have the puzzle solved. You have only to decide
what the nonrecursive case is, what the recursive case is, and when to output
instructions to move the disks.

 8. Write a recursive method named searchList with the following header:

boolean searchList (int[] a, int size, int num)

The method should accept as parameter the following values with the specification
mentioned below:

a. A list of integer values

b. Size of the array, size >=5

c. Number to be searched in the parameter num, num >=0

The method should return true if the number is contained within the array list
and false if the number is not in the array list.

 9. The program to recursively find a file in Display 11.11 stops searching when the
first match is found. Modify the program so that if there are multiple files with the
same name in different directories, then all matching files are found and output.
The simplest way to do this is to output all matches in the recursive method with
a print statement. For a more challenging version, modify the method to return
an array of Strings containing the pathnames of all matching files. It can return
null or an empty array if there are no matches. Feel free to create additional helper
classes if needed (e.g., to manage the number of items in the array of Strings). In
Chapter 14, we will introduce ArrayLists, which make it easier to create an array-
like structure with an arbitrary number of entries.

10. Given the definition of a 2-D array such as the following:

String[][] data = {
 {"A", "B"},
 {"1", "2"},
 {"XX","YY","ZZ"}
};

Programming Projects 723

write a recursive program that outputs all combinations of each subarray in order.
In the previous example, the desired output (although it does not have to be in
this order) is

A 1 XX
A 1 YY
A 1 ZZ
A 2 XX
A 2 YY
A 2 ZZ
B 1 XX
B 1 YY
B 1 ZZ
B 2 XX
B 2 YY
B 2 ZZ

Your program should work with arbitrarily sized arrays in either dimension. For
example, the following data

String[][] data = {
 {"A"},
 {"1"},
 {"2"},
 {"XX","YY"}
};

should output

A 1 2 YY
A 1 2 YY

11. Simulate a simple word game. Begin with a start word and then rearrange its letters
to note down all the possible word combinations that can be generated from the
word start following the criteria mentioned below.

 a. Each word entered by the user must be a three-letter word.

 b. Each word generated must be a three-letter word.

 c. No letter should be repeated in the word entered by the use. For example, “bee”
is an invalid word, but “cat” is a valid word.

 d. The program should not only give valid English words but also all combina-
tions. For example, if the given word is eat, then the output of the program
should list all the possible permutations:

 tea, tae, ate, aet, eta

 Write a recursive program to find the list of words and also letter combinations
by keeping in mind all the criteria mentioned above.

This page intentionally left blank

12.1 UML 726
History of UML 727
UML Class Diagrams 727
Class Interactions 728
Inheritance Diagrams 728
More UML 730

 12 UML and Patterns

Answers to Self-Test Exercises 741 Programming Projects 743

12.2 PATTErnS 731
Adaptor Pattern ★ 731
The Model-View-Controller Pattern ★ 732
Example: A Sorting Pattern 733
Restrictions on the Sorting Pattern 739
Efficiency of the Sorting Pattern ★ 739
Pattern Formalism 740

Chapter Summary 741

Einstein argued that there must be simplified explanations of nature,

because God is not capricious or arbitrary. No such faith comforts

the software engineer. Much of the complexity that he must master is

arbitrary complexity.

F. BROOKS, “No Silver Bullet: Essence and Accidents

of Software Engineering,” IEEE Computer, April 1987.

Introduction
UML and patterns are two software design tools that apply no matter what
programming language you are using, as long as the language provides for classes and
related facilities for object-oriented programming (OOP). This chapter presents a
very brief introduction to these two topics. It contains no new details about the Java
language.

UML is a graphical language that is used for designing and documenting software
created within the OOP framework.

A pattern in programming is very similar to a pattern in any other context. It is a
kind of template or outline of a software task that can be realized as different code in
different, but similar, applications.

Prerequisites
Section 12.1 on UML and Section 12.2 on patterns can be read in either order.
Nothing in the rest of this book requires any of this chapter. Section 12.1 on UML uses
material from Chapters 1–5 and Chapter 7 on inheritance. Section 12.2 on patterns
uses material from Chapters 1–7 and Chapter 11.

12.1 UML
One picture is worth a thousand words.

FREdERicK BARNARd, ascribed to Chinese origin, 1911.

Most people do not think in Java or in any other programming language. As a result,
computer scientists have always sought to produce more human-oriented ways of
representing programs. One widely used representation is pseudocode, which is a
mixture of a programming language, such as Java, and a natural language, such as
English. To think about a programming problem without needing to worry about
the syntax details of a language such as Java, you can simply relax the syntax rules and
write in pseudocode. Pseudocode has become a standard tool used by programmers,

12 UML and Patterns

but it is a linear and algebraic representation of programming. Computer scientists
have long sought to give software design a graphical representation. To this end, a
number of graphical representation systems for program design have been proposed,
used, and ultimately found to be wanting. Terms such as flowchart, structure
diagram, and many more names of graphical program representations are today
recognized only by those of the older generation. Today’s candidate for a graphical
representation formalism is the Unified Modeling Language (UML). UML was
designed to reflect and be used with the OOP philosophy. It is too early to say
whether or not UML will stand the test of time, but it is off to a good start.
A number of companies have adopted the UML formalism to use in their software
design projects.

History of UML

UML developed along with OOP. As the OOP philosophy became more and
more commonly used, different groups worked out their own graphical or other
representations for OOP design. In 1996, Grady Booch, Ivar Jacobson, and James
Rumbaugh released an early version of UML. UML was intended to bring together the
various different graphical representation methods to produce a standardized graphical
representation language for object-oriented design and documentation. Since that
time, UML has been developed and revised in response to feedback from the OOP
community. Today the UML standard is maintained and certified by the Object
Management Group (OMG), a nonprofit organization that promotes the use of object-
oriented techniques.

UML Class Diagrams

Classes are central to OOP, and the class diagram is the easiest of the UML
graphical representations to understand and use. Display 12.1 shows the class
diagram for a class to represent a square. The diagram consists of a box divided into
three sections. (The colors are optional and not standardized.) The top section has
the class name, Square. The next section has the data specification for the class.
In this example, there are three pieces of data (three instance variables), a value of
type double giving the length of a side, and two more values of type double giving
the x and y coordinates of the center of the square. The third section gives the
actions (class methods). The notation for method entries is not identical to that of a
Java method heading, but it contains the same information. A minus sign indicates
a private member. So, for the class Square, all data is private. A plus sign indicates
a public member. A sharp (#) indicates a protected member. A tilde (~) indicates
package access. So, for the class Square, the class diagram shows two public methods
and one protected method. A class diagram need not give a complete description of
the class. When you do not need all the members in a class for the analysis at hand,
you do not list all the members in the class diagram. Missing members are indicated
with an ellipsis (three dots).

UML

class diagram

UML 727

728 cHAPTER 12 UML and Patterns

display 12.1 A UML Class Diagram

Square

— side: double

— xCoordinate: double

— yCoordinate: double

+ resize(double newSide): void

+ move(double newX, double newY): void

erase(): void

. . .

Class Interactions

Class diagrams by themselves are of little value, because they simply repeat the
class interface, possibly with ellipses. To understand a design, you need to indicate
how objects of the various classes interact. UML has various ways to indicate class
interactions; for example, various sorts of annotated arrows indicate the information
flow from one class object to another. UML also has annotations for class groupings
into packages, annotations for inheritance, and annotations for other interactions.
Moreover, UML is extensible. If what you want and need is not in UML, you
can add it. Of course, this all takes place inside a prescribed framework so that
different software developers can understand each other’s UML. One of the most
fundamental of class interactions is inheritance, which is discussed in the next
subsection.

Inheritance Diagrams

Display 12.2 shows a possible inheritance diagram used in a university’s
record-keeping software for some of its classes. Note that the class diagrams are
incomplete. You normally show only as much of the class diagram as you need for
the design task at hand. Note that the arrow heads point up from a derived class
to its base class. In UML an unfilled arrowhead is used to indicate an inheritance
relationship between two classes.

The arrows also help in locating method definitions. If you are looking for a method
definition for some class, the arrows show the path you (or the computer) should
follow. If you are looking for the definition of a method used by an object of the class
Undergraduate, first look in the definition of the class Undergraduate; if it is not
there, look in the definition of Student; if it is not there, look in the definition of the
class Person.

inheritance
diagram

arrows

Display 12.3 shows some possible additional details of the inheritance hierarchy for
the two classes Person and one of its derived classes, Student. Suppose s is an object
of the class Student. The diagram in Display 12.3 tells you that you can find the
definition of

s.toString();

and

s.set("Joe Student", 4242);

in the class Student, but the definition of

s.setName("Josephine Student");

is found in the definition of the class Person.

Undergraduate

Person

FacultyGraduate

Arrows go from a
derived class to its
base class.

EmployeeStudent

Staff

display 12.2 A Class Hierarchy in UML Notation

UML 729

730 cHAPTER 12 UML and Patterns

More UML

This is just a hint of what UML is all about. If you are interested in learning more,
consult one of the many available references on UML.

display 12.3 Some Details of a UML Class Hierarchy

Person

— name: String

+ setName(String newName): void
+ getName(): String
+ toString(): String
+ sameName(Person otherPerson)): boolean

Student

— studentNumber: int

+ set(String newName,
int newStudentNumber): void

+ getStudentNumber(): int
+ setStudentNumber(

int newStudentNumber): void
+ toString(): String
+ equals(Object otherObject): boolean

Self-Test Exercises

1. Draw a class diagram for a class whose objects represent circles. Use Display 12.1
as a model.

2. Suppose aStudent is an object of the class Student. Based on the inheritance
diagram in Display 12.3, where will you find the definition of the method
sameName used in the following invocation, which compares aStudent and
another object named someStudent? Explain your answer.

Student someStudent =
new Student("Joe Student", 7777);

if (aStudent.sameName(someStudent))
System.out.println("wow");

Container-
Iterator

Patterns 731

12.2 Patterns ★

I bid him look into the lives of men as though into a mirror, and from others to
take an example for himself.

TERENcE (Publius Terentius Afer) 190–159 B.c., Adelphoe, 190–159 B.c.

Patterns are design outlines that apply across a variety of software applications. To
be useful, the pattern must apply across a variety of situations. To be substantive,
the pattern must make some assumptions about the domain of applications to which
it applies. For example, one well-known pattern is the Container-Iterator pattern.
A container is a class (or other construct) whose objects hold multiple pieces of data.
One example of a container is an array. Other examples, which will be discussed later
in this book, are vectors and linked lists. Any class or other construct designed to
hold multiple values can be viewed as a container. For example, a String value can
be viewed as a container that contains the characters in the string. Any construct that
allows you to cycle through all the items in a container is an iterator. For example, an
array index is an iterator for an array. It can cycle through the array as follows:

for (int i; i < a.length; i++)
 Do something with a[i]

The index variable i is the iterator. The Container-Iterator pattern describes how an
iterator is used on a container.

In this brief chapter, we can give you only a taste of what patterns are all about. In
this section, we will discuss a few sample patterns to let you see what patterns look like.
There are many more known and used patterns and many more yet to be explicated.
This is a new and still developing field of software engineering.

Adaptor Pattern ★

The Adaptor or Adapter pattern transforms one class into a different class without
changing the underlying class but merely by adding a new interface. (The new interface
replaces the old interface of the underlying class.) For example, in Chapter 11, we
mentioned the stack data structure, which is used to, among other things, keep track
of recursion. One way to create a stack data structure is to start with an array and add

pattern

Container-
Iterator

container

iterator

Adaptor

Self-Test Exercises (continued)

3. Suppose aStudent is an object of the class Student. Based on the inheritance
diagram in Display 12.3, where will you find the definition of the method used
in the following invocation? Explain your answer.

aStudent.setNumber(4242);

732 cHAPTER 12 UML and Patterns

the stack interface. The Adaptor pattern says to start with a container, such as an array,
and add an interface, such as the stack interface.

The Model-View-Controller Pattern ★

The Model-View-Controller pattern is a way of separating the I/O task of an application
from the rest of the application. The Model part of the pattern performs the heart of
the application. The View part is the output part; it displays a picture of the Model’s
state. The Controller is the input part; it relays commands from the user to the Model.
Normally, each of the three interacting parts is realized as an object with responsibilities
for its own tasks. The Model-View-Controller pattern is an example of a divide-and-
conquer strategy. One big task is divided into three smaller tasks with well-defined
responsibilities. Display 12.4 gives a diagram of the Model-View-Controller pattern.
Note that the arrowheads are open. In UML, an open arrowhead indicates an association
where one object has a reference to another object of the type connected by the arrow.

As a very simple example, the Model might be a container class, such as an array. The
View might display one element of the array. The Controller gives commands to display
the element at a specified index. The Model (the array) notifies the View to display a
new element whenever the array contents change or a different index location is given.

Any application can be made to fit the Model-View-Controller pattern, but it is
particularly well suited to GUI (Graphical User Interface) design projects where the
View can indeed be a visualization of the state of the Model. (A GUI interface is simply
a windowing interface of the form you find in most modern software applications, as
opposed to the simple text I/O we have used so far in this book.) For example, the Model
might be an object to represent your list of computer desktop object names. The View
could then be a GUI object that produces a screen display of your desktop icons. The
Controller relays commands to the Model (which is a desktop object) to add or delete
names. The Model object notifies the View object when the screen needs to be updated.

data1
data2

.

.

.

Model

ManipulateNotify

...

update()
...

View

...

...

Controller

action1()
action2()

.

.

.

display 12.4 Model-View-Controller Pattern

Model-View-
Controller

We have presented the Model-View-Controller pattern as if the user is the Controller,
primarily to simplify the examples. The Controller need not be under the direct control
of the user but could be some other kind of software or hardware component.

EXAMPLE: A Sorting Pattern

The most efficient sorting algorithms all seem to follow a similar pattern. Expressed
recursively, they divide the list of elements to be sorted into two smaller lists,
recursively sort the two smaller lists, and then recombine the two sorted lists to
obtain the final sorted list. In Display 12.5, this pattern is expressed as pseudocode
(in fact, almost correct Java code) for a method to sort an array into increasing order
using the < operator.

Our sorting pattern uses a divide-and-conquer strategy. It divides the entire
collection of elements to be sorted into two smaller collections, sorts the smaller
collections by recursive calls, and then combines the two sorted collections to obtain
the final sorted array. The following is the heart of our sorting pattern:

int splitPoint = split(a, begin, end);
sort(a, begin, splitPoint);
sort(a, splitPoint + 1, end);
join(a, begin, splitPoint, end);

Although the pattern does impose some minimum requirements on the methods
split and join, it does not say exactly how the methods split and join are defined.
Different definitions of split and join will yield different sorting algorithms.

The method split rearranges the elements in the interval a[begin] through
a[end] and divides the rearranged interval at a split point, splitPoint. The two
smaller intervals a[begin] through a[splitPoint]and[splitPoint + 1] through
a[end] are then sorted by a recursive call to the method sort. Note that the split
method both rearranges the elements in the array interval a[begin] through a[end]
and returns the index splitPoint that divides the interval. After the two smaller
intervals are sorted, the method join then combines the two sorted intervals to
obtain the final sorted version of the entire larger interval.

The pattern says nothing about how the method split rearranges and divides the
interval a[begin] through a[end]. In a simple case, split might simply choose a
value splitPoint between begin and end and divide the interval into the points
before splitPoint and the points after splitPoint, with no rearranging. Display 12.6
realizes the sorting pattern by defining split this way. On the other hand, the method
split could do something more elaborate such as move all the “small” elements to the
front of the array and all the “large” elements toward the end of the array. This would be
a step on the way to fully sorting the values. We will also see an example in Display 12.8
that realizes the sorting pattern in this second way.

(continued)

Patterns 733

734 cHAPTER 12 UML and Patterns

EXAMPLE: (continued)

The simplest realization of this sorting pattern is the merge sort realization given
in Display 12.6. In this realization, the array base type, Type, is specialized to the type
double. The merge sort is an example where the definition of split is very simple.
It just divides the array into two intervals with no rearranging of elements. The join
method is more complicated. After the two subintervals are sorted, the method join
merges the two sorted subintervals, copying elements from the array to a temporary
array. The merging starts by comparing the smallest elements in each smaller sorted
interval. The smaller of these two elements is the smallest of all the elements in either
subinterval, so it is moved to the first position in the temporary array. The process
is then repeated with the remaining elements in the two smaller sorted intervals to
find the next smallest element, and so forth. A demonstration of using the merge sort
version of sort is given in Display 12.7.

There is a trade-off between the complexity of the methods split and join. You
can make either of them simple at the expense of making the other more complicated.
For merge sort, split was simple and join was complicated. We next give a realization
where split is complicated and join is simple.

Display 12.8 gives the quick sort realization of our sorting pattern for the
type double.

In the quick sort realization, the definition of split is quite sophisticated. An
arbitrary value in the array is chosen; this value is called the splitting value. In our
realization, we chose a[begin] as the splitting value, but any value will do equally well.
The elements in the array are rearranged so that all those elements that are less than or
equal to the splitting value are at the front of the array, all the values that are greater

display 12.5 Divide-and-Conquer Sorting Pattern

 1 /**

 2 Precondition: Interval a[begin] through a[end] of a have elements.

 3 Postcondition: The values in the interval have

 4 been rearranged so that a[begin] <=a[begin+1] <= . . . <= a[end].

 5 */

 6 public static void sort(Type [] a, int begin, int end)

 7 {

 8 if ((end - begin) >= 1)

 9 {

10 int splitPoint = split(a, begin, end);

11 sort(a, begin, splitPoint);

12 sort(a, splitPoint + 1, end);

13 join(a, begin, splitPoint, end);

14 }//else sorting one (or fewer) elements so do nothing.

15 }

To get a correct Java method
definition, Type must be replaced
with a suitable type name.

Different definitions for the methods
split and join will give different
realizations of this pattern.

display 12.6 Merge Sort Realization of Sorting Pattern (part 1 of 2)

 1 /**
 2 Class that realizes the divide-and-conquer sorting pattern and
 3 uses the merge sort algorithm.
 4 */
 5 public class MergeSort
 6 {

 7 /**
 8 Precondition: Interval a[begin] through a[end] of a have elements.
 9 Postcondition: The values in the interval have
10 been rearranged so that a[begin] < = a[begin+1] < = . . . < =
 a[end].
11 */
12 public static void sort(double [] a, int begin, int end)
13 {
14 if ((end — begin) >= 1)
15 {
16 int splitPoint = split(a, begin, end);
17 sort(a, begin, splitPoint);
18 sort(a, splitPoint + 1, end);
19 join(a, begin, splitPoint, end);
20 }//else sorting one (or fewer) elements so do nothing.
21 }

22 private static int split(double [] a, int begin, int end)
23 {
24 return ((begin + end)/2);
25 }

26 private static void join(double [] a, int begin, int splitPoint,
int end)

27 {
28 double[] temp;
29 int intervalSize = (end - begin + 1);
30 temp = new double [intervalSize];
31 int nextLeft = begin; //index for first chunk
32 int nextRight = splitPoint + 1; //index for second chunk
33 int i = 0; //index for temp

34 //Merge til one side is exhausted:
35 while ((nextLeft <= splitPoint) && (nextRight <= end))
36 {
37 if (a[nextLeft] < a[nextRight])
38 {
39 temp[i] = a[nextLeft];
40 i++; nextLeft++;
41 }

The method sort is identical to the version in
the pattern (Display 12.5) except that Type is
replaced with double.

(continued)

Patterns 735

736 cHAPTER 12 UML and Patterns

42 else
43 {

than the splitting value are at the other end of the array, and the splitting value is
placed so that it divides the entire array into these smaller and larger elements. Note
that the smaller elements are not sorted and the larger elements are not sorted, but
all the elements before the splitting value are smaller than any of the elements after
the splitting value. The smaller elements are sorted by a recursive call, the larger
elements are sorted by another recursive call, and then these two sorted segments
are combined with the join method. In this case, the join method is as simple as it
could be. It does nothing. Because the sorted smaller elements all precede the sorted
larger elements, the entire array is sorted.

A demonstration program for the quick sort method sort in Display 12.8 is given in
the file QuickSortDemo.java on the accompanying website.

(Both the merge sort and the quick sort realizations can be done without the use
of a second temporary array, temp. However, that detail would only distract from the
message of this example. In a real application, you may or may not, depending on
details, want to consider the possibility of doing a sort realization without the use of the
temporary array.)

EXAMPLE: (continued)

display 12.6 Merge Sort Realization of Sorting Pattern (part 2 of 2)

44 temp[i] = a[nextRight];
45 i++; nextRight++;
46 }
47 }

48 while (nextLeft <= splitPoint)
//Copy rest of left chunk, if any.

49 {
50 temp[i] = a[nextLeft];
51 i++; nextLeft++;
52 }
53 while (nextRight <= end) //Copy rest of right chunk, if any.
54 {
55 temp[i] = a[nextRight];
56 i++; nextRight++;
57 }

58 for (i = 0; i < intervalSize; i++)
59 a[begin + i] = temp[i];
60 }

61 }

display 12.7 Using the MergeSort Class

 1 public class MergeSortDemo

 2 {

 3 public static void main(String[] args)

 4 {

 5 double[]b = {7.7, 5.5, 11, 3, 16, 4.4, 20, 14, 13, 42};

 6 System.out.println("Array contents before sorting:");

 7 int i;

 8 for (i = 0; i < b.length; i++)

 9 System.out.print(b[i] + " ");

10 System.out.println();

11 MergeSort.sort(b, 0, b.length—1);

12 System.out.println("Sorted array values:");

13 for (i = 0; i < b.length; i++)

14 System.out.print(b[i] + " ");

15 System.out.println();

16 }

17 }

Sample Dialogue

Array contents before sorting:

7.7 5.5 11.0 3.0 16.0 4.4 20.0 14.0 13.0 42.0

Sorted array values:

3.0 4.4 5.5 7.7 11.0 13.0 14.0 16.0 20.0 42.0

display 12.8 Quick Sort Realization of Sorting Pattern (part 1 of 3)

 1 /**

 2 Class that realizes the divide-and-conquer sorting pattern and

 3 uses the quick sort algorithm.

 4 */

 5 public class QuickSort

 6 {

 7 /**

 8 Precondition: Interval a[begin] through a[end] of a have elements.

 9 Postcondition: The values in the interval have

10 been rearranged so that a[begin] <= a[begin+1] <= . . . <=
a[end].

(continued)

Patterns 737

738 cHAPTER 12 UML and Patterns

display 12.8 Quick Sort Realization of Sorting Pattern (part 2 of 3)

11 */
12 public static void sort(double[] a, int begin, int end)

13 {

14 if ((end — begin) >= 1)

15 {

16 int splitPoint = split(a, begin, end);

17 sort(a, begin, splitPoint);

18 sort(a, splitPoint + 1, end);

19 join(a, begin, splitPoint, end);

20 }//else sorting one (or fewer) elements so do nothing.

21 }

22 private static int split(double [] a, int begin, int end)

23 {

24 double[] temp;

25 int size = (end — begin + 1);

26 temp = new double [size];

27 double splitValue = a[begin];

28 int up = 0;

29 int down = size — 1;

30 //Note that a[begin] = splitValue is skipped.

31 for (int i = begin + 1; i < = end; i++)

32 {

33 if (a[i] <= splitValue)

34 {

35 temp[up] = a[i];

36 up++;

37 }

38 else

39 {

40 temp[down] = a[i];

41 down— —;

42 }

43 }

44 //0 < = up = down < size

45 temp[up] = a[begin]; //Positions the split value

46 //temp[i] <= splitValue for i < up

47 // temp[up] = splitValue

48 // temp[i] > splitValue for i > up

49 for (int i = 0; i < size; i++)

The method sort is identical to the version in the
pattern (Display 12.5) except that Type is replaced
with double.

Restrictions on the Sorting Pattern

The sorting pattern, like all patterns, has some restrictions on where it applies.
As we formulated the sorting pattern, it applies only to types for which the
< operator is defined. Also, it applies only to sorting into increasing order; it
does not apply to sorting into decreasing order. However, this is a result of our
simplifying details to make the presentation clearer. You can make the pattern
more general by replacing the < operator with a boolean valued method called
compare that has two arguments of the base type of the array, which returns true
or false depending on whether the first “comes before” the second. Then, the
only restriction is that the compare method must have a reasonable definition.1
This sort of generalization is discussed in Chapter 13 in the subsection entitled
“The Comparable Interface.”

Efficiency of the Sorting Pattern ★

Essentially any sorting algorithm can be realized using this sorting pattern. However,
the most efficient implementations are those for which the split method divides the
array into two substantial size chunks, such as half and half, or one-fourth and three-
fourths. A realization of split that divides the array into one or a very few elements
and the rest of the array will not be very efficient.

For example, the merge sort realization of split divides the array into two roughly
equal parts, and merge sort is indeed very efficient. It can be shown (although we will
not do so here) that merge sort has a worst-case running time that is the best possible
“up to an order of magnitude.”

display 12.8 Quick Sort Realization of Sorting Pattern (part 3 of 3)

50 a[begin + i] = temp[i];
51 return (begin + up);

52 }

53 private static void join(double [] a, int begin,

54 int splitPoint, int end)

55 {

56 //Nothing to do.

57 }

58 }

1The technical requirement is that the compare method be a total ordering, a concept discussed in
Chapter 13. Essentially, all common orderings that you might want to sort by are total orderings.

The Comparable interface has a method compareTo, which is slightly different from compare.
However, the method we described as compare can easily be defined using the method compareTo
as a helping method.

Patterns 739

740 cHAPTER 12 UML and Patterns

The quick sort realization of split divides the array into two portions that might
be almost equal or might be very different in size depending on the choice of a splitting
value. Since in extremely unfortunate cases the split might be very uneven, the worst-
case running time for quick sort is not as fast as that of merge sort. However, in
practice, quick sort turns out to be a very good sorting algorithm and usually preferable
to merge sort.

Selection sort, which we discussed in Chapter 6, divides the array into two pieces,
one with a single element and one with the rest of the array interval. (See Self-Test
Exercise 4.) Because of this uneven division, selection sort has a poor running time,
although it does have the virtue of simplicity.

TIP: Pragmatics and Patterns

You should not feel compelled to follow all the fine details of a pattern. Patterns are
guides, not requirements. For example, we did the quick sort implementation by
exactly following the pattern. We did this to have a clean example. In practice, we
would have taken some liberties. Notice that, with quick sort, the join method does
nothing. In practice, we would simply eliminate the calls to join. These calls incur
overhead and accomplish nothing. Other optimizations can also be done once the
general pattern of the algorithm is clear. ■

Pattern Formalism

There is a well-developed body of techniques for using patterns. We will not go into
the details here. The UML discussed in Section 12.1 is one formalism used to express
patterns. The place within the software design process of patterns and any specific
formalisms for patterns is not yet clear. However, it is evident that the basic idea of
patterns, as well as certain pattern names, such as Model-View-Controller, have become
standard and useful tools for software design.

Self-Test Exercises

4. Give an implementation of the divide-and-conquer sorting pattern (Display 12.5)
that will realize the selection sort algorithm (Display 6.11) for an array with base
type double.

5. Which of the following would give the fastest run time when an array is sorted
using the quick sort algorithm: a fully sorted array, an array of random values,
or an array sorted from largest to smallest (that is, sorted backward)? Assume
all arrays are of the same size and have the same base type.

Answers to Self-Test Exercises 741

Chapter Summary

• The Unified Modeling Language (UML) is a graphical representation language for
object-oriented software design.

• Patterns are design principles that apply across a variety of software applications.

• The patterns discussed in this chapter are the Container-Iterator, Adaptor, Model-
View-Controller, and Divide-and-Conquer Sorting patterns.

• UML is one formalism that can and is used to express patterns.

Answers to Self-Test Exercises
 1. There are many correct answers. The following is one:

Circle

— radius: double

— centerX: double

— centerY: double

+ resize(double newRadius): void

+ move(double newX, double newY): void

erase(): void

. . .

 2. The method sameName is not listed in the class diagram for Student. So, you
follow the arrow to the class diagram for Person. The method sameName with a
single parameter of type Person is in the class diagram for Person. Because you
know a Student is a Person, you know that this definition works for the method
sameName with a single parameter of type Student. So, the definition used for the
method sameName is in the class definition of Person.

 3. You start at the class diagram for Student. The method setStudentNumber with a
single parameter of type int is in the class diagram for Student, so you need look
no further. The definition used for the method setStudentNumber is in the class
definition of Student.

 4. The code for this is also on the website that comes with this book. This code is
in the file SelectionSort.java. A demonstration program is in the file
SelectionSortDemo.java.

extra code
on website

742 cHAPTER 12 UML and Patterns

 public class SelectionSort

 {

 public static void sort(double [] a,

 int begin, int end)

 {

 if ((end – begin) >= 1)

 {

 int splitPoint = split(a, begin, end);

 sort(a, begin, splitPoint);

 sort(a, splitPoint + 1, end);

 join(a, begin, splitPoint, end);

 }//else sorting one (or fewer) elements

 //so do nothing.

 }

 private static int split(double [] a,

 int begin , int end)

 {

 int index = indexOfSmallest(begin, a, end);

 interchange(begin,index, a);

 return begin;

 }

 private static void join(double [] a, int begin,

 int splitPoint, int end)

 {

 //Nothing to do.

 }

 private static int indexOfSmallest(int startIndex,

 double [] a, int endIndex)

 {

 double min = a[startIndex];

 int indexOfMin = startIndex;

 int index;

 for (index = startIndex + 1;

 index < endIndex; index++)

 if (a[index] < min)

 {

 min = a[index];

 indexOfMin = index;

 //min is smallest of a[startIndex]

 //through a[index]

 }

 return indexOfMin;

 }

Programming Projects 743

 private static void interchange(int i,int j, double [] a)

 {

 double temp;

 temp = a[i];

 a[i] = a[j];

 a[j] = temp; //original value of a[i]

 }

 }

 5. An array of random values would have the fastest run time, because it would divide
the array segments into approximately equal subarrays most of the time. The other
two cases would give approximately the same running time and would be signifi-
cantly slower, because the algorithms would always divide an array segment into
very unequal size pieces, one piece with only one element and one piece with the
rest of the elements. It is ironic but true that our version of the quick sort algo-
rithms has its worst behavior on an already sorted array. There are variations on the
quick sort algorithms that perform well on a sorted array. For example, choosing
the middle element as the splitting value will give good performance on an already
sorted array. But, whatever splitting value you choose, there will always be a few
cases with slow running time.

Programming Projects

 1. The UML diagram below describes a class named Movie. Implement this class
in Java and test it from a main method that creates several Movie objects. The
printDescription() method should output all member variables for the class.

 The word “in” means the parameter is used to deliver data to the method.

Movie

— title: String

— minutes: int

— year: int

price: double

+ Movie(in String title, in int year, in double price)

+ getTitle(): String

+ setTitle(in String newTitle)

+ printDescription()

744 cHAPTER 12 UML and Patterns

 2. The following UML diagram shows the relationship between a class called
P izzaOrder and a class called Pizza:

PizzaOrder

Pizza

1

-Pizza[MAXPIZZAS]
-numPizzas: int

+addPizzaToOrder(in char size, in boolean pepperoni, in boolean sausage, in boolean mushrooms)
+calcCost(): double

-pepperoni: boolean
-sausage: boolean
-mushrooms: boolean
-size: boolean

+Pizza(in char size, in boolean pepperoni, in boolean sausage, in boolean mushrooms)
+getSize(): char
+getNumToppings(): int

 The word “in” means the parameter is used to deliver data to the method.

 The Pizza class contains information about a specific pizza. The variables of
 pepperoni, sausage, and mushrooms are booleans that indicate whether or not
these toppings are present on the pizza. The size variable is a character of value 's',
'm', or 'l' to indicate small, medium, or large. There is also a Pizza constructor
that initializes all of these values. The getSize() method returns the size of the
pizza and the getNumToppings() method returns a number from 0–3 depending
on what toppings are present (e.g., if the pizza has pepperoni and mushrooms, it
would be 2).

 The PizzaOrder class contains an array of Pizza’s. There is a method to add a
new pizza to the array (which increments numPizzas) and also a method to calcu-
late the cost of the entire order. A small pizza costs $8, a medium pizza is $10, and
a large pizza costs $12. Each topping adds $1 to the pizza.

 The arrow connecting PizzaOrder to Pizza indicates that the PizzaOrder class
has a reference to the Pizza class, but not vice versa. The solid diamond on the
PizzaOrder class is a UML construct that indicates that the PizzaOrder class has
a collection of the Pizza class. There may be many (*) Pizza’s for a single (one)
PizzaOrder.

 Given this information, write Java code that implements the Pizza and
PizzaOrder classes. Also, write a test main function that creates a pizza order, adds
several pizzas to it, and outputs the cost of the order.

Programming Projects 745

 3. The UML diagram below shows the relationship between four classes. I mplement
the classes in a test program that creates instances of CreditCard, Cash, and
Check. Output the string description of each. Note that the italicized Payment
class indicates that this is an abstract class. The word “in” means the parameter is
used to deliver data to the method.

-counter

+CounterModel(in initialValue int)
+Increment(): void

CounterModel

-startValue
-endValue

+CounterController(in int startValue, in int endValue)
+Start()

CounterController
+Display(in int counterValue)

CounterView

 4. Use the Model-View-Controller pattern to implement a simple timer-based coun-
ter. The counter should start at a user-specified initial value and increment by one
every second until it reaches a user-specified final value. A UML diagram depicting
the three classes for the pattern is shown below. The word “in” means the param-
eter is used to deliver data to the method.

746 cHAPTER 12 UML and Patterns

 The CounterView class should simply take an input counter value and print it
on the console screen.

 The CounterModel class should have a variable that represents the counter’s value.
The Increment method increments the counter by one and calls CounterView’s
Display method.

 The CounterController class takes a start and end value that is specified by
the user. CounterModel is then initialized with the start value. When the Start
method is invoked, it calls CounterModel’s increment method once per second
until endValue — startValue seconds have elapsed.

 You will need to implement additional variables or methods in addition to those
shown above in order to create the linkages between classes.

 You can use the method call Thread.sleep(1000) to make the CounterController
wait for one second. The call must be placed inside a try/catch block.

 Test your program with a main method that counts several different ranges
of values.

 5. It is possible to purchase “geek” watches that output the time of day in binary. To
illustrate the flexibility of the Model-View-Controller pattern, modify the view
class (CounterView) of the previous problem so that the display outputs the coun-
ter’s value in binary.

 Test your new program by counting values in binary. You should not have to
change the model or controller classes.

 6. Recode the QuickSort class implementation by adding two efficiency improve-
ments to the method sort: (1) Eliminate the calls to join, because it accomplishes
nothing. (2) Add code for the special case of an array of exactly two elements and
make the general case apply to arrays of three or more elements.

 7. Redo the QuickSort class so that it chooses the splitting point as follows: The
splitting point is the middle (in size) of the first element, the last element, and an
element at approximately the middle of the array. This will make a very uneven
split less likely.

 8. Redo the QuickSort class to have the modifications given for Programming
 Projects 12.6 and 12.7.

 9. Use the sorting pattern to implement insertion sort. In insertion sort, the split
method always returns the value (end — 1). This results in splitting the array
into two pieces, one with a single value at the end of the array and the other with
everything else. The join method does more work. A precondition for entry into
join is that the elements from a[begin] to a[end-1] will be in sorted order. The
method should insert a[end] into the correct spot from a[begin] to a[end] such
that sorted order is maintained. For example, if array a contains {2, 4, 6, 8, 5}
where begin = 0 and end = 4, then a[end] = 5 and the method should insert the
value 5 between the 4 and 6, resulting in {2, 4, 5, 6, 8}. This entails copying
the 6 and 8 one element to the right and then copying the value 5 to index 2.

Solution to
Programming
Project 12.9

VideoNote

13

13.3 More about Inner Classes 776
Static Inner Classes 776
Public Inner Classes 777
Nesting Inner Classes 781
Inner Classes and Inheritance 781
Anonymous Classes 782

13.1 InterfaCes 749
Interfaces 749
Abstract Classes Implementing Interfaces 751
Derived Interfaces 751
The Comparable Interface 755
Example: Using the Comparable Interface 756
Defined Constants in Interfaces 761
The Serializable Interface ★ 765
The Cloneable Interface 765

13.2 sIMple uses of Inner Classes 770
Helping Classes 770
Example: A Bank Account Class 771
The .class File for an Inner Class 775

Interfaces and
Inner Classes

Chapter summary 785 answers to self-test exercises 785 programming projects 790

Art, it seems to me, should simplify. That, indeed, is very nearly the

whole of the higher artistic process; finding what conventions of form

and what details one can do without and yet preserve the spirit of

the whole….

WILLA SIBERT CATHER, On the Art of Fiction, The Borzoi, 1920.

Introduction
A Java interface specifies a set of methods that any class that implements the interface
must have. An interface is itself a type, which allows you to define methods with
parameters of an interface type and then have the code apply to all classes that
implement the interface. One way to view an interface is as an extreme form of an
abstract class. However, as you will see, an interface allows you to do more than an
abstract class allows you to do. Interfaces are Java’s way of approximating multiple
inheritance. You cannot have multiple base classes in Java, but interfaces allow you to
approximate the power of multiple base classes.

The second major topic of this chapter is inner classes. An inner class is simply
a class defined within another class. Because inner classes are local to the class that
contains them, they can help make a class self-contained by allowing you to make
helping classes inner classes.

Prerequisites
Section 13.1 on interfaces and Section 13.2 on simple uses of inner classes are
independent of each other and can be covered in any order. Section 13.3 on more
subtle details of inner classes requires both Sections 13.1 and 13.2.

Section 13.1 on interfaces requires Chapters 1 through 9. No material from
Chapters 10 through 12 is used anywhere in this chapter.

Section 13.2 on simple uses of inner classes requires Chapters 1 through 5. It does
not use any material from Chapters 6 through 12.

Section 13.3 on more advanced inner class material requires both Sections 13.1
and 13.2 (and of course their prerequisites).The material in Section 13.3 is not used
elsewhere in this book.

13 Interfaces and Inner Classes

Interfaces 749

13.1 Interfaces

Autonomy of Syntax

A linguistic concept attributed to Noam Chomsky

In this section, we describe interfaces. An interface is a type that groups together a
number of different classes that all include method definitions for a common set of
method headings.

Interfaces

An interface is something like the extreme case of an abstract class. An interface is not
a class. It is, however, a type that can be satisfied by any class that implements the interface.
An interface is a property of a class that says what methods it must have.

An interface specifies the headings for methods that must be defined in any class
that implements the interface. For example, Display 13.1 shows an interface named
Ordered. Note that an interface contains only method headings. It contains no
instance variables nor any complete method definitions. (Although, as we will see, it
can contain defined constants.)

To implement an interface, a concrete class (that is, a class other than an abstract
class) must do two things:

1. It must include the phrase

implements Interface_Name

 at the start of the class definition. To implement more than one interface, you list
all the interface names, separated by commas, as in

implements SomeInterface, AnotherInterface

interface

implementing
an interface

Do not forget the semicolons at
the end of the method headings.

Display 13.1 The Ordered Interface

1 public interface Ordered
2 {
3 public boolean precedes(Object other);

4 /**
5 For objects of the class o1 and o2,
6 o1.follows(o2) == o2.precedes(o1).
7 */
8 public boolean follows(Object other);
9 }
 Neither the compiler nor the run-time system will do anything to ensure that this comment is satisfied.

It is only advisory to the programmer implementing the interface.

750 CHAPTER 13 Interfaces and Inner Classes

2. The class must implement all the method headings listed in the definitions of the
interfaces.

For example, to implement the Ordered interface, a class definition must contain
the phrase implements Ordered at the start of the class definition, as shown in the
following:

public class OrderedHourlyEmployee
 extends HourlyEmployee implements Ordered
{

The class must also implement the two methods precedes and follows. The full
definition of OrderedHourlyEmployee is given in Display 13.2.

Display 13.2 Implementation of an Interface

 1 public class OrderedHourlyEmployee
 2 extends HourlyEmployee implements Ordered
 3 {
 4 public boolean precedes(Object other)
 5 {
 6 if (other == null)
 7 return false;
 8 else if (!(other instanceof OrderedHourlyEmployee))
 9 return false;
10 else
11 {
12 OrderedHourlyEmployee otherOrderedHourlyEmployee =
13 (OrderedHourlyEmployee)other;
14 return (getPay() < otherOrderedHourlyEmployee.getPay());
15 }
16 }

17 public boolean follows(Object other)
18 {
19 if (other == null)
20 return false;
21 else if (!(other instanceof OrderedHourlyEmployee))
22 return false;
23 else
24 {
25 OrderedHourlyEmployee otherOrderedHourlyEmployee =
26 (OrderedHourlyEmployee)other;
27 return (otherOrderedHourlyEmployee.precedes(this));
28 }
29 }
30 }

Although getClass works better than
instanceof for defining equals,
instanceof works better in this case.
However, either will do for the points being
made here.

extending an
interface

Interfaces 751

An interface and all of its method headings are normally declared to be public. They
cannot be given private, protected, or package access. (The modifier public may be
omitted, but all the methods will still be treated as if they are public.) When a class
implements an interface, it must make all the methods in the interface public.

An interface is a type. This allows you to write a method with a parameter of an
interface type, such as a parameter of type Ordered, and that parameter will accept as
an argument any class you later define that implements the interface.

An interface serves a function similar to a base class, but it is important to note
that it is not a base class. (In fact, it is not a class of any kind.) Some programming
languages (such as C++) allow one class to be a derived class of two or more different
base classes. This is not allowed in Java. In Java, a derived class can have only one base
class. However, in addition to any base class that a Java class may have, it can also
implement any number of interfaces. This allows Java programs to approximate the
power of multiple base classes without the complications that can arise with multiple
base classes.

You might want to say the argument to precedes in the Ordered interface
(Display 13.2) is the same as the class doing the implementation (for example,
OrderedHourlyEmployee). There is no way to say this in Java, so we normally make
such parameters of type Object. It would be legal to make the argument to precedes
of type Ordered, but that is not normally preferable to using Object as the parameter
type. If you make the argument of type Ordered, you would still have to handle
the case of null and the case of an argument that (while Ordered) is not of type
OrderedHourlyEmployee.

An interface definition is stored in a .java file and compiled just as a class definition
is compiled.

Abstract Classes Implementing Interfaces

As you saw in the previous subsection, a concrete class (that is, a regular class) must
give definitions for all the method headings given in an interface in order to implement
the interface. However, you can define an abstract class that implements an interface
but gives only definitions for some of the method headings given in the interface. The
method headings given in the interface that are not given definitions are made into
abstract methods. A simple example is given in Display 13.3.

Derived Interfaces

You can derive an interface from a base interface. This is often called extending
the interface. The details are similar to deriving a class. An example is given in
Display 13.4.

extending an
interface

752 CHAPTER 13 Interfaces and Inner Classes

Display 13.3 An Abstract Class Implementing an Interface ★

 1 public abstract class MyAbstractClass implements Ordered
 2 {
 3 private int number;
 4 private char grade;
 5
 6 public boolean precedes(Object other)
 7 {
 8 if (other == null)
 9 return false;
10 else if (!(other instanceof HourlyEmployee))
11 return false;
12 else
13 {
14 MyAbstractClass otherOfMyAbstractClass =
15 (MyAbstractClass)other;
16 return (this.number < otherOfMyAbstractClass.number);
17 }
18 }

19 public abstract boolean follows(Object other);

20 }

Display 13.4 Extending an Interface

1 public interface ShowablyOrdered extends Ordered
2 {
3 /**
4 Outputs an object of the class that precedes the calling object.
5 */
6 public void showOneWhoPrecedes();
7 }

 A (concrete) class that implements the ShowablyOrdered interface must have a
definition for the method showOneWhoPrecedes and also have definitions for the
methods precedes and follows given in the Ordered interface.

Neither the compiler nor the run-time system
will do anything to ensure that this comment is
satisfied.

Interfaces 753

Interfaces
An interface is a type that specifies method headings (and, as we will see, possibly defined
constants as well). The syntax for defining an interface is similar to the syntax of defining a
class, except that the word interface is used in place of class and the method headings
without any method body (but followed by a semicolon) are given only.

Note that an interface has no instance variables and no method definitions.

A class can implement any number of interfaces. To implement an interface, the class
must include

implements Interface_Name

at the end of the class heading and must supply definitions for the method headings given
in the interface. If the class does not supply definitions for all the method headings given
in the interface, then the class must be an abstract class and the method headings without
definitions must be abstract methods.

EXAMPLE

See Displays 13.1, 13.2, and 13.3.

Self-Test Exercises

1. Can you have a variable of an interface type? Can you have a parameter of an
interface type?

2. Can an abstract class ever implement an interface?

3. Can a derived class have two base classes? Can it implement two interfaces?

4. Can an interface implement another interface?

PITFALL: Interface Semantics Are Not Enforced

As far as the Java compiler is concerned, an interface has syntax but no semantics. For
example, the definition of the Ordered interface (Display 13.1) says the following in
a comment:

/**
 For objects of the class o1 and o2,
 o1.follows(o2) == o2.precedes(o1).
*/

You might have assumed that this is true even if there were no comment in the
 interface. After all, in the real world, if I precede you, then you follow me. However,
that is giving your intuitive interpretation to the word “precedes.”

(continued)

754 CHAPTER 13 Interfaces and Inner Classes

PITFALL: (continued)

As far as the compiler and run-time systems are concerned, the Ordered interface
merely says that the methods precedes and follows each take one argument of type
Object and return a boolean value. The interface does not really require that the
boolean value be computed in any particular way. For example, the compiler would
be satisfied if both precedes and follows always return true or if they always return
false. It would even allow the methods to use a random number generator to gener-
ate a random choice between true and false.

It would be nice if we could safely give an interface some simple semantics, such as
saying that o1.follows(o2) means the same as o2.precedes(o1). However, if Java
did allow that, there would be problems with having a class implement two interfaces
or even with having a class derived from one base class and implementing an interface.
Either of these situations could produce two semantic conditions, both of which must
be implemented for the same method, and the two semantics may not be consistent.
For example, suppose that (contrary to fact) you could require that o1.follows(o2)
means the same as o2.precedes(o1). You could also define another interface with
an inconsistent semantics, such as saying that precedes always returns true and that
follows always returns false. As long as a class can have two objects, there is no
way a class could implement both of these semantics. Interfaces in Java are very well
behaved, the price of which is that you cannot count on Java to enforce any semantics
in an interface.

If you want to require semantics for an interface, you can add it to the documenta-
tion, as illustrated by the comments in Displays 13.1 and 13.4, but always remember that
these are just comments; they are not enforced by either the compiler or the run-time
system, so you cannot necessarily rely on such semantics being followed. However, we
live in an imperfect world, and sometimes you will find that you must specify a semantics
for an interface; do so in the interface’s documentation. It then becomes the responsibility
of the programmers implementing the interface to follow the semantics.

Having made our point about interface semantics not being enforced by the com-
piler or run-time system, we want to nevertheless urge you to follow the specified
semantics for an interface. Software written for classes that implement an interface
will assume that any class that implements the interface does satisfy the specified se-
mantics. So, if you define a class that implements an interface but does not satisfy
the semantics for the interface, then software written for classes that implement that
interface will probably not work correctly for your class. ■

Interface Semantics Are Not Enforced
When you define a class that implements an interface, the compiler and run-time system
will let you define the body of an interface method any way you want, provided you keep
the method heading as it is given in the interface. However, you should follow the specified
semantics for an interface whenever you define a class that implements that interface;
otherwise, software written for that interface may not work for your class.

Interfaces 755

The Comparable Interface

This subsection requires material on arrays from Chapter 6. If you have not yet covered
Chapter 6, you can skip this section and the following Programming Example without
any loss of continuity. But if you have read Chapter 6, you should not consider this
section to be optional.

In Chapter 6 (Display 6.11), we introduced a method for sorting a partially filled
array of base type double into increasing order. It is very easy to transform the code
into a method to sort into decreasing order instead of increasing order. (See Self-Test
Exercise 20 of Chapter 6 and its answer if this is not clear to you.) It is also easy to
modify the code to obtain methods for sorting integers instead of doubles or sorting
strings into alphabetical order. Although these changes are easy, they seem to be—and
in fact are—a useless nuisance. All these sorting methods are essentially the same.
The only differences are the types of the values being sorted and the definition of the
ordering. It would seem that we should be able to give a single sorting method that
covers all these cases. The Comparable interface lets us do this.

The Comparable interface is in the java.lang package and so is automatically
available to your program. The Comparable interface has only the following method
heading that must be implemented for a class to implement the Comparable interface:

public int compareTo(Object other);

The Comparable interface has semantics, and it is the programmer’s responsibility
to follow the semantics when implementing the Comparable interface. The semantics
says that compareTo returns

a negative number if the calling object “comes before” the parameter other,
a zero if the calling object “equals” the parameter other,
and a positive number if the calling object “comes after” the parameter other.1

Almost any reasonable notions of “comes before” should be acceptable. In particular,
all of the standard less-than relations on numbers and lexicographic ordering on strings
are suitable ordering for compareTo. (The relationship “comes after” is just the reverse
of “comes before.”) If you need to consider other ordering, the precise rule is that the
ordering must be a total ordering, which means the following rules must be satisfied:

(Irreflexive) For no object o does o come before o.
(Trichotomy) For any two objects o1 and o2, one, and only one, of the following
holds true: o1 comes before o2, o1 comes after o2, or o1 equals o2.
(Transitivity) If o1 comes before o2 and o2 comes before o3, then o1 comes before o3.
The “equals” of the compareTo method semantics should coincide with the equals

methods if possible, but this is not absolutely required by the semantics.

1Because the parameter to CompareTo is of type Object, an argument to CompareTo might not be
an object of the class being defined. If the parameter other is not of the same type as the class being
defined, then the semantics specifies that a ClassCastException should be thrown.

compareTo

756 CHAPTER 13 Interfaces and Inner Classes

If you define a class that implements the Comparable interface but that does not
satisfy these conditions, then code written for Comparable objects will not work
properly. It is the responsibility of you, the programmer, to ensure that the semantics is
satisfied. Neither the compiler nor the run-time system enforces any semantics on the
Comparable interface.

If you have read this subsection, you should also read the following Programming
Example.

The Comparable Interface
The Comparable interface is in the java.lang package and so is automatically available
to your program. The Comparable interface has only the following method heading that
must be given a definition for a class to implement the Comparable interface:

public int compareTo(Object other);

The method compareTo should return

a negative number if the calling object “comes before” the parameter other,
a zero if the calling object “equals” the parameter other,
and a positive number if the calling object “comes after” the parameter other.

The “comes before” ordering that underlies compareTo should be a total ordering. Most
normal ordering, such as less-than ordering on numbers and lexicographic ordering on
strings, is total ordering.

EXAMPLE: Using the Comparable Interface

Display 13.5 shows a class with a method that can sort any partially filled array whose
base type implements the Comparable interface (including implementing the semantics
we discussed in the previous subsection). To obtain the code in Display 13.5, we started
with selection sort of an array of doubles and mechanically replaced all occurrences of the
array type double[] with the type Comparable[]. We replaced all Boolean expressions
of the form

Expression_1 < Expression_2

with

Expression_1.compareTo(Expression_2) < 0

The changes are highlighted in Display 13.5. Only four small changes to the code
were needed.

(continued on page 726)

Interfaces 757

Display 13.5 Sorting Method for Array of Comparable (part 1 of 2)

 1 public class GeneralizedSelectionSort
 2 {
 3 /**
 4 Precondition: numberUsed <= a.length;
 5 The first numberUsed indexed variables have values.
 6 Action: Sorts a so that a[0], a[1], ... , a[numberUsed - 1] are in
 7 increasing order by the compareTo method.
 8 */
 9 public static void sort(Comparable[] a, int numberUsed)
10 {
11 int index, indexOfNextSmallest;
12 for (index = 0; index < numberUsed - 1; index++)
13 { //Place the correct value in a[index]:
14 indexOfNextSmallest = indexOfSmallest(index, a,

 numberUsed);
15 interchange(index,indexOfNextSmallest, a);
16 //a[0], a[1],..., a[index] are correctly ordered and
 //these are
17 //the smallest of the original array elements. The remaining
18 //positions contain the rest of the original array elements.
19 }
20 }

21 /**
22 Returns the index of the smallest value among
23 a[startIndex], a[startIndex+1], ... a[numberUsed - 1]
24 */
25 private static int indexOfSmallest(int startIndex,
26 Comparable [] a, int numberUsed)
27 {
28 Comparable min = a[startIndex];
29 int indexOfMin = startIndex;
30 int index;
31 for (index = startIndex + 1; index < numberUsed; index++)
32 if (a[index].compareTo(min) < 0)//if a[index] is less than min
33 {
34 min = a[index];
35 indexOfMin = index;
36 //min is smallest of a[startIndex] through a[index]
37 }
38 return indexOfMin;
39 }

(continued)

758 CHAPTER 13 Interfaces and Inner Classes

40 /**
41 Precondition: i and j are legal indices for the array a.
42 Postcondition: Values of a[i] and a[j] have been interchanged.
43 */
44 private static void interchange(int i, int j, Comparable[] a)
45 {
46 Comparable temp;
47 temp = a[i];
48 a[i] = a[j];
49 a[j] = temp; //original value of a[i]
50 }

51 }

EXAMPLE: (continued)

Display 13.6 shows a demonstration of using the sorting method given in Display 13.5.
To understand why the demonstration works, you need to be aware of the fact that
both of the classes Double and String implement the Comparable interface.

If you were to check the full documentation for the class Double, you would see
that Double implements the Comparable interface and so has a compareTo method.
Moreover, for objects o1 and o2 of Double,

o1.compareTo(o2) < 0 //o1 "comes before" o2

means the same thing as

o1.doubleValue() < o2.doubleValue()

So, the implementation of the Comparable interface for the class Double is really
just the ordinary less-than relationship on the double values corresponding to the
Double objects.

Similarly, if you were to check the full documentation for the class String,
you would see that String implements the Comparable interface and so has a
compareTo method. Moreover, the implementation of the compareTo method for
the class String is really just the ordinary lexicographic relationship on the strings.

This Programming Example uses the standard library classes Double and String
for the base type of the array. You can do the same thing with arrays whose base
class is a class you defined, so long as the class implements the Comparable interface
(including the standard semantics, which we discussed earlier in the Pitfall “Interface
Semantics Are Not Enforced”).

This Programming Example does point out one restriction on interfaces. They can
apply only to classes. A primitive type cannot implement an interface. So, in Display 13.6,
we could not sort an array with base type double using the sorting method for an array of
Comparable. We had to settle for sorting an array with base type Double. This is a good
example of using a wrapper class with its “wrapper class personality.”

Display 13.5 Sorting Method for Array of Comparable (part 2 of 2)

Interfaces 759

Display 13.6 Sorting Arrays of Comparable (part 1 of 2)

 1 /**
 2 Demonstrates sorting arrays for classes that
 3 implement the Comparable interface.
 4 */
 5 public class ComparableDemo
 6 {
 7 public static void main(String[] args)
 8 {
 9 Double[] d = new Double[10];
10 for (int i = 0; i < d.length; i++)
11 d[i] = new Double(d.length - i);

12 System.out.println("Before sorting:");
13 for (int i = 0; i < d.length; i++)
14 System.out.print(d[i].doubleValue() + ", ");
15 System.out.println();

16 GeneralizedSelectionSort.sort(d, d.length);

17 System.out.println("After sorting:");
18 for (int i = 0; i < d.length; i++)
19 system.out.print(d[i].doubleValue() + ", ");
20 System.out.println();

21 String[] a = new String[10];
22 a[0] = "dog";
23 a[1] = "cat";
24 a[2] = "cornish game hen";
25 int numberUsed = 3;

26 System.out.println("Before sorting:");
27 for (int i = 0; i < numberUsed; i++)
28 System.out.print(a[i] + ", ");
29 System.out.println();
30
31 GeneralizedSelectionSort.sort(a, numberUsed);

32 System.out.println("After sorting:");
33 for (int i = 0; i < numberUsed; i++)
34 System.out.print(a[i] + ", ");
35 System.out.println();
36 }
37 }

The classes Double and String do
implement the Comparable interface.

(continued)

760 CHAPTER 13 Interfaces and Inner Classes

Sample Dialogue

Before Sorting

10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0,

After sorting:

1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,

Before sorting;

dog, cat, cornish game hen,

After sorting:

cat, cornish game hen, dog,

Display 13.6 Sorting Arrays of Comparable (part 2 of 2)

Self-Test Exercises

These exercises are for the material on the Comparable interface.
5. The method interchange in Display 13.5 makes no use of the fact that its

second argument is an array with base type Comparable. Suppose we change
the parameter type Comparable[] to Object[] and change the type of the
variable temp to Object. Would the program in Display 13.6 produce the
same dialogue?

6. Is the following a suitable implementation of the Comparable interface?

public class Double2 implements Comparable
{
 private double value;
 public Double2(double theValue)
 {
 value = theValue;
 }
 public int compareTo(Object other)
 {
 return -1;
 }
 public double doubleValue()
 {
 return value;
 }
}

 You can think of the underlying “comes before” relationship as saying that for
any objects d1 and d2, d1 comes before d2.

Interfaces 761

Defined Constants in Interfaces

The designers of Java often used the interface mechanism to take care of a number of
miscellaneous details that do not really fit the spirit of what an interface is supposed
to be. One example of this is the use of an interface as a way to name a group of
defined constants.

An interface can contain defined constants as well as method headings, or instead of
method headings. When a method implements the interface, it automatically gets the
defined constants. For example, the following interface defines constants for months:

public interface MonthNumbers
{
 public static final int JANUARY = 1,
 FEBRUARY = 2, MARCH = 3, APRIL = 4, MAY = 5,
 JUNE = 6, JULY = 7, AUGUST = 8, SEPTEMBER = 9,
 OCTOBER = 10, NOVEMBER = 11, DECEMBER = 12;
}

Any class that implements the MonthNumbers interface will automatically have the
12 constants defined in the MonthNumbers interface. For example, consider the
following toy class:

public class DemoMonthNumbers implements MonthNumbers
{
 public static void main(String[] args)
 {
 System.out.println(
 "The number for January is " + JANUARY);
 }
}

Self-Test Exercises (continued)

7. Suppose you have a class Circle that represents circles which all have centers at
the same point. (To make it concrete, you can take the circles to be in the usual
x,y plane and to all have their centers at the origin.) Suppose there is a boolean
valued method inside of the class Circle such that, for circles c1 and c2,

c1.inside(c2)

 returns true if c1 is completely inside of c2 (and c2 is not the same as c1). Is
the following a total ordering?

 c1 comes before c2 if c1 is inside of c2
(that is, if c1.inside(c2) returns true).

 You could represent objects of the class Circle by a single value of type double
that gives the radius of the circle, but the answer does not depend on such details.

762 CHAPTER 13 Interfaces and Inner Classes

Note that the constant JANUARY is used in the class DemoMonthNumbers but is not
defined there. The class DemoMonthNumbers automatically gets the month constants
because it implements the MonthNumbers interface.

An interface cannot have instance variables, although it can use the syntax for
instance variables as a way to define constants. Any variables defined in an interface
must be public, static, and final, so Java allows you to omit those modifiers. The
following is an equivalent definition of the interface MonthNumbers:

public interface MonthNumbers
{
 int JANUARY = 1,
 FEBRUARY = 2, MARCH = 3, APRIL = 4, MAY = 5,
 JUNE = 6, JULY = 7, AUGUST = 8, SEPTEMBER = 9,
 OCTOBER = 10, NOVEMBER = 11, DECEMBER = 12;
}

Thus, an interface can be used to give a name for a group of defined constants, so
that you can easily add the needed constants to any class by implementing the interface.
This is really a different use for interfaces than what we have seen before, which was to
use interfaces to specify method headings. It is legal to mix these two uses by including
both defined constants and method headings in a single interface.

no instance
variables

PITFALL: Inconsistent Interfaces

Java allows a class to have only one base class but also allows the class to implement
any number of interfaces. The reason that a class can have only one base class is
that if Java allowed two base classes, the two base classes could provide different
and inconsistent definitions of a single method heading. Because interfaces have
no method bodies at all, this problem cannot arise when a class implements two
interfaces. The ideal that the designers of Java apparently hoped to realize was
that any two interfaces will always be consistent. However, this ideal was not fully
realized. Although it is a rare phenomenon, two interfaces can be inconsistent. In
fact, there is more than one kind of inconsistency that can be exhibited. If you write
a class definition that implements two inconsistent interfaces, that is an error, and the
class definition is illegal. Let’s see how two interfaces can be inconsistent.

The most obvious way that two interfaces can be inconsistent is by defining two
constants with the same name but with different values. For example,

public interface Interface1
{
 int ANSWER = 42;
}

public interface Interface2
{
 int ANSWER = 0;
}

inconsistent
constants

inconsistent
method

headings

Interfaces 763

2If the class never uses the constant ANSWER, then there is no inconsistency, and the class will compile
and run with no error messages.

PITFALL: (continued)

Suppose a class definition begins with

public class MyClass
 implements Interface1, Interface2
{ ...

Clearly this has to be, and is, illegal. The defined constant ANSWER cannot be simul-
taneously 42 and 0.2

Even two method headings can be inconsistent. For example, consider the following
two interfaces:

public interface InterfaceA
{
 public int getStuff();
}
public interface InterfaceB
{
 public String getStuff();
}

Suppose a class definition begins with

public class YourClass
 implements InterfaceA, InterfaceB
{ ...

Clearly this has to be, and is, illegal. The method getStuff in the class YourClass
cannot be simultaneously a method that returns an int and a method that returns a
value of type String. (Remember that you cannot overload a method based on the
type returned; so, overloading cannot be used to get around this problem.) ■

inconsistent
method

headings

Self-Test Exercises

8. Will the following program compile? If it does compile, will it run? Interface1
and Interface2 were defined in the previous subsection.

public class MyClass
 implements Interface1, Interface2
{
 public static void main(String[] args)
 {
 System.out.println(ANSWER);
 }
}

(continued)

764 CHAPTER 13 Interfaces and Inner Classes

Self-Test Exercises (continued)

 9. Will the following program compile? If it does compile, will it run?
Interface1 and Interface2 were defined in the previous subsection.

public class MyClass
 implements Interface1, Interface2
{
 public static void main(String[] args)
 {
 System.out.println("Hello");
 }
}

10. Will the following program compile? If it does compile, will it run?
InterfaceA and InterfaceB were defined in the previous subsection.

public class YourClass
 implements InterfaceA, InterfaceB
{
 public String getStuff()
 {
 return "one";
 }
}

11. Will the following two interfaces and the following program class compile? If
they compile, will the program run with no error messages?

public interface InterfaceA
{
 public int getStuff();
}
public interface InterfaceOtherB
{
 public String getStuff(String someStuff);
}
public class OurClass
 implements InterfaceA, InterfaceOtherB
{
 private int intStuff = 42;

 public static void main(String[] args)
 {
 OurClass object = new OurClass();
 System.out.println(object.getStuff()
 + object.getStuff("Hello"));
 }

Interfaces 765

The Serializable Interface ★

As we have already noted, the designers of Java often used the interface mechanism to
take care of miscellaneous details that do not really fit the spirit of what an interface
is supposed to be. An extreme example of this is the Serializable interface. The
Serializable interface has no method headings and no defined constants. As a
traditional interface, it is pointless. However, Java uses it as a type tag that means the
programmer gives permission to the system to implement file I/O in a particular way.
If you want to know what that way of implementing file I/O is, see Chapter 10, in
which the Serializable interface is discussed in detail.

The Cloneable Interface

The Cloneable interface is another example where Java uses the interface mechanism
for something other than its traditional role. The Cloneable interface has no method
headings that must be implemented (and has no defined constants). However, it is
used to say something about how the method clone, which is inherited from the class
Object, should be used and how it should be redefined.

So, what is the purpose of the Cloneable interface? When you define a class to
implement the Cloneable interface, you are agreeing to redefine the clone method
(inherited from Object) in a particular way. The primary motivation for this appears
to be security issues. Cloning can potentially copy private data if not done correctly.
Also, some software may depend on your redefining the clone method in a certain
way. Programmers have strong and differing views on how to handle cloning and the
Cloneable interface. What follows is the official Java line on how to do it.

The method Object.clone() does a bit-by-bit copy of the object’s data in storage.
If the data is all primitive type data or data of immutable class types (such as String),
then this works fine and has no unintended side effects. However, if the data in the
object includes instance variables whose type is a mutable class, then this would cause
what we refer to as privacy leaks. (See the Pitfall section entitled “Privacy Leaks” in
Chapter 5.) To avoid these privacy leaks when you define the clone method in a
derived class, you should invoke the clone method of the base class Object (or

Serializable

Cloneable

Self-Test Exercises (continued)

 public int getStuff()
 {
 return intStuff;
 }
 public String getStuff(String someStuff)
 {
 return someStuff;
 }
}

766 CHAPTER 13 Interfaces and Inner Classes

whatever the base class is) and then reset the values of any new instance variables whose
types are mutable class types. Reset these instance variables to copies of the instance
variables in the calling object. There are also issues of exception handling to deal with.
An example may be clearer than an abstract discussion.

Let’s start with the simple case. Suppose your class has no instance variables of a
mutable class type, or to phrase it differently, suppose your class has instance variables
all of whose types are either a primitive type or an immutable class type, like String.
And to make it even simpler, suppose your class has no specified base class, so the base
class is Object. If you want to implement the Cloneable interface, you should define
the clone method as in Display 13.7.

The try-catch blocks are required because the inherited method clone can
throw the exception CloneNotSupportedException if the class does not correctly
implement the Cloneable interface. Of course, in this case the exception will never be
thrown, but the compiler will still insist on the try-catch blocks.

Now let’s suppose your class has one instance variable of a mutable class type named
DataClass. Then, the definition of the clone method should be as in Display 13.8.
First, a bit-by-bit copy of the object is made by the invocation of super.clone(). The
dangerous part of copy is the reference to the mutable object in the instance variable

Display 13.7 Implementation of the Method clone (Simple case)

 1 public class YourCloneableClass implements Cloneable
 2 {
 3 .
 4 .
 5 .
 6 public Object clone()
 7 {
 8 try
 9 {
10 return super.clone();//Invocation of clone
11 //in the base class Object
12 }
13 catch (CloneNotSupportedException e)
14 {//This should not happen.
15 return null; //To keep the compiler happy.
16 }
17 }
18 .
19 .
20 .
21 }

Works correctly if each instance variable is of
a primitive type or of an immutable type like
String

Interfaces 767

someVariable. So, the reference is replaced by a reference to a copy of the object
named by someVariable. This is done with the following line:3

copy.someVariable = (DataClass)someVariable.clone();

The object named by copy is now safe and so can be returned by the clone method.
If there are more instance variables that have a mutable class type, then you repeat

what we did for someVariable for each of the mutable instance variables.
This requires that the class type DataClass has a correctly working clone method

that is marked public, but that will be true if the class type DataClass implements
the Cloneable interface in the way we are now describing. That is, DataClass should
implement the Cloneable interface following the model of Displays 13.7 or 13.8,

3Depending on how the clone method was defined in the class DataClass, the type cast may or
may not be needed, but causes no harm in any case.

Display 13.8 Implementation of the Method clone (Harder Case)

 1 public class YourCloneableClass2 implements Cloneable
 2 {
 3 private DataClass someVariable;
 4 .
 5 .
 6 .
 7 public Object clone()
 8 {
 9 try
10 {
11 YourCloneableClass2 copy =
12 (YourCloneableClass2)super.clone();
13 copy.someVariable = (DataClass)someVariable.clone();
14 return copy;
15 }
16 catch(CloneNotSupportedException e)
17 {//This should not happen.
18 return null; //To keep the compiler happy.
19 }
20 }
21 .
22 .
23 .
24 }

DataClass is a mutable class. Any other
instance variables are each of a primitive
type or of an immutable type like String.

If the clone method return type is DataClass rather
than Object, then this type cast is not needed.

The class DataClass must also properly implement
the Cloneable interface including defining the clone
method as we are describing.

768 CHAPTER 13 Interfaces and Inner Classes

whichever is appropriate; similarly, all classes for instance variables in DataClass
should follow the model of Display 13.7 or 13.8, and so forth for classes for instance
variables inside of classes all the way down. You want every class in sight and every class
used in every class in sight to follow the model of Display 13.7 or 13.8.

The same basic technique applies if your class is derived from some class other than
Object, except that, in this case, there normally is no required exception handling. To
implement the Cloneable interface in a derived class with a base class other than Object,
the details are as follows: The base class must properly implement the Cloneable
interface, and the derived class must take care of any mutable class instance variable
added in the definition of the derived class. These new mutable class instance variables are
handled by the technique shown in Display 13.8 for the instance variable someVariable.
As long as the base class properly implements the Cloneable interface, including defining
the clone method as we are describing, then the derived class’s clone method need not
worry about any inherited instance variables. Also, usually, you do not need to have try
and catch blocks for CloneNotSupportedException because the base class clone
method, super.clone(), normally catches all its CloneNotSupportedExceptions,
so super.clone() will never throw a CloneNotSupportedException. (See Self-Test
Exercise 15 for an example.)

Self-Test Exercises

12. Modify the following class definition so it correctly implements the Cloneable
interface (all the instance variables are shown):

public class StockItem
{
 private int number;
 private String name;
 public void setNumber(int newNumber)
 {
 number = newNumber;
 }
 ...
}

13. Modify the following class definition so it correctly implements the Cloneable
interface (all the new instance variables are shown):

public class PricedItem extends StockItem
{
 private double price;

 ...
}

Interfaces 769

Self-Test Exercises (continued)

14. Modify the following class definition so it correctly implements the Cloneable
interface (all the new instance variables are shown):

public class PricedItem extends StockItem
{
 private double price;

 ...
}

15. Modify the following class definition so it correctly implements the Cloneable
interface (all the instance variables are shown):

public class Record
{
 private StockItem item1;
 private StockItem item2;
 private String description;

 ...
}

16. Modify the following class definition so it correctly implements the Cloneable
interface (all the new instance variables are shown):

public class BigRecord extends Record
{
 private StockItem item3;

 ...
}

17. Modify the definition of the class Date (Display 4.13) so it implements
the Cloneable interface. Be sure to define the method clone in the style
of Display 13.7.

18. Modify the definition of the class Employee (Display 7.2) so it implements
the Cloneable interface. Be sure to define the method clone in the style
of Display 13.8.

19. Modify the definition of the class HourlyEmployee (Display 7.3) so it
implements the Cloneable interface. Be sure to define the method clone in
the style of Display 13.8.

770 CHAPTER 13 Interfaces and Inner Classes

13.2 Simple Uses of Inner Classes

The ruling ideas of each age have ever been the ideas of its ruling class.

KARL MARX and FRIEDRICH ENGELS, The Communist Manifesto, 1848.

Inner classes are classes defined within other classes. In this section, we will describe
one of the most useful applications of inner classes, namely, inner classes used as
helping classes.

Helping Classes

Defining an inner class is straightforward; simply include the definition of the inner
class within another class, as follows:

public class OuterClass
{
 private class InnerClass
 {
 Declarations_of_InnerClass_Instance_Variables
 Definitions_of_InnerClass_Methods
 }
 Declarations_of_OuterClass_Instance_Variables
 Definitions_of_OuterClass_Methods
}

As this outline suggests, the class that includes the inner class is called an outer class.
The definition of the inner class (or classes) need not be the first item(s) of the outer
class, but it is good to place it either first or last so that it is easy to find. The inner class
need not be private, but that is the only case we will consider in this section. We will
consider other modifiers besides private in Section 13.3.

An inner class definition is a member of the outer class in the same way that
the instance variables of the outer class and the methods of the outer class are
members of the outer class. Thus, an inner class definition is local to the outer class
definition. So you may reuse the name of the inner class for something else outside
the definition of the outer class. If the inner class is private, as ours will always be in
this section, then the inner class cannot be accessed by name outside the definition
of the outer class.

There are two big advantages to inner classes. First, because they are defined
within a class, they can be used to make the outer class self-contained or more
self-contained than it would otherwise be. The second advantage is that the inner
and outer classes’ methods have access to each other’s private methods and private
instance variables.

inner class

outer class

Simple Uses of Inner Classes 771

TIP: Inner and Outer Classes Have Access to Each Other’s
Private Members

Within the definition of a method of an inner class, it is legal to reference a private
instance variable of the outer class and to invoke a private method of the outer class.
To facilitate this, Java follows this convention: If a method is invoked in an inner class
and the inner class has no such method, then it is assumed to be an invocation of the
method by that name in the outer class. (If the outer class also has no method by that
name, that is, of course, an error.) Similarly, an inner class can use the name of an
 instance variable of the outer class.

The reverse situation, invoking a method of the inner class from the outer class, is
not so simple. To invoke a (nonstatic) method of the inner class from within a method
of the outer class, you need an object of the inner class to use as a calling object, as we
do in Display 13.9.

As long as you are within the definition of the inner or outer classes, the modifiers
public and private (used within the inner or outer classes) are equivalent.

These sorts of invocations and variable references that cross between inner and outer
classes can get confusing. So, it is best to confine such invocations and variable refer-
ences to cases that are clear and straightforward. It is easy to tie your code in knots if
you get carried away with this sort of thing. ■

Access Privileges between Inner and Outer Classes
Inner and outer classes have access to each other’s private members.

EXAMPLE: A Bank Account Class

Display 13.9 contains a simplified bank account program with an inner class for
amounts of money. The bank account class uses values of type String to obtain or
return amounts of money, such as the amount of a deposit or the answer to a query for
the account balance. However, inside the class it stores amounts of money as values of
type Money, which is an inner class. Values of type Money are not stored as Strings,
which would be difficult to do arithmetic on, nor are they stored as values of type
double, which would allow round-off errors that would not be acceptable in banking
transactions. Instead, the class Money stores amounts of money as two integers, one
for the dollars and one for the cents. In a real banking program, the class Money might
have a larger collection of methods, such as methods to do addition, subtraction, and
compute percentages, but in this simple example we included only the method for
adding an amount of money to the calling object. The outer class BankAccount would
also have more methods in a real class, but here we included only methods to deposit
an amount of money to the account and to obtain the account balance. Display 13.10
contains a simple demonstration program using the class BankAccount.

(continued)

772 CHAPTER 13 Interfaces and Inner Classes

Display 13.9 Class with an Inner Class (part 1 of 2)

 1 public class BankAccount
 2 {

 3 private class Money
 4 {
 5 private long dollars;
 6 private int cents;

 7 public Money(String stringAmount)
 8 {
 9 abortOnNull(stringAmount);
10 int length = stringAmount.length();
11 dollars = Long.parseLong(
12 stringAmount.substring(0, length - 3));
13 cents = Integer.parseInt(
14 stringAmount.substring(length - 2, length));
15 }

16 public String getAmount()
17 {
18 if (cents > 9)

EXAMPLE: (continued)

The class Money is a private inner class of the class BankAccount. So, the class
Money cannot be used outside of the class BankAccount. (Public inner classes are
discussed in Section 13.3 and have some subtleties involved in their use.) Because the
class Money is local to the class BankAccount, the name Money can be used for the
name of another class outside of the class BankAccount. (This would be true even if
Money were a public inner class.)

We have made the instance variables in the class Money private following our
usual conventions for class members. When we discuss public inner classes, this
will be important. However, for use within the outer class (and a private inner class
cannot be used anyplace else), there is no difference between public and private or
other member modifiers. All instance variables and all methods of the inner class are
public to the outer class no matter whether they are marked public or private or
anything else. Notice the method closeAccount of the outer class. It uses the private
instance variables dollars and cents of the inner class.

This is still very much a toy example, but we will have occasion to make serious
use of private inner classes when we discuss linked lists in Chapter 15 and when we
study Swing GUIs starting in Chapter 17.

The modifier private in this line
should not be changed to public.
However, the modifiers public and
private inside the inner class Money
can be changed to anything else and
it would have no effect on the class
BankAccount.

Simple Uses of Inner Classes 773

19 return (dollars + "." + cents);
20 else
21 return (dollars + ".0" + cents);
22 }

23 public void addIn(Money secondAmount)
24 {
25 abortOnNull(secondAmount);
26 int newCents = (cents + secondAmount.cents)%100;
27 long carry = (cents + secondAmount.cents)/100;
28 cents = newCents;
29 dollars = dollars + secondAmount.dollars + carry;
30 }
31 private void abortOnNull(Object o)
32 {
33 if (o == null)
34 {
35 System.out.println("Unexpected null argument.");
36 System.exit(0);
37 }
38 }
39 }
40 private Money balance;

41 public BankAccount()
42 {
43 balance = new Money("0.00");
44 }

45 public String getBalance()
46 {
47 return balance.getAmount();
48 }

49 public void makeDeposit(String depositAmount)
50 {
51 balance.addIn(new Money(depositAmount));
52 }

53 public void closeAccount()
54 {
55 balance.dollars = 0;
56 balance.cents = 0;
57 }
58 }

The definition of the inner class ends here, but the definition
of the outer class continues in this display.

To invoke a nonstatic method of
the inner class outside of the inner
class, you need to create an object
of the inner class.

This invocation of the inner class
method getAmount() would
be allowed even if the method
getAmount() were marked as
private.

Notice that the outer class has access
to the private instance variables of the
inner class.

This class would normally have more methods, but we have only included the methods we need
to illustrate the points covered here.

Display 13.9 Class with an Inner Class (part 2 of 2)

774 CHAPTER 13 Interfaces and Inner Classes

Display 13.10 Demonstration Program for the Class BankAccount

 1 public class BankAccount
 2 {
 3 public static void main(String[] args)
 4 {
 5 System.out.println("Creating a new account.");
 6 BankAccount account = new BankAccount();
 7 System.out.println("Account balance now = $"
 8 + account.getBalance());

 9 System.out.println("Depositing $100.00");
10 account.makeDeposit("100.00");
11 System.out.println("Account balance now = $"
12 + account.getBalance());
13 System.out.println("Depositing $99.99");
14 account.makeDeposit("99.99");
15 System.out.println("Account balance now = $"
16 + account.getBalance());
17 System.out.println("Depositing $0.01");
18 account.makeDeposit("0.01");
19 System.out.println("Account balance now = $"
20 + account.getBalance());
21 System.out.println("Closing account.");
22 account.closeAccount();
23 System.out.println("Account balance now = $"
24 + account.getBalance());
25 }

26 }

Sample Dialogue

Creating a new account.

Account balance now = $0.00

Depositing $100.00

Account balance now = $100.00

Depositing $99.99

Account balance now = $199.99

Depositing $0.01

Account balance now = $200.00

Closing account.

Account balance now = $0.00

Helping Inner Classes
You may define a class within another class. The inside class is called an inner class. A
common and simple use of an inner class is to use it as a helping class for the outer class, in
which case the inner class should be marked private.

Simple Uses of Inner Classes 775

Self-Test Exercises

20. Would the following invocation of getAmount in the method getBalance of
the outer class BankAccount still be legal if we change the method getAmount
of the inner class Money from public to private?

public String getBalance()
{
 return balance.getAmount();
}

21. Because it does not matter if we make the members of a private inner class
public or private, can we simply omit the public or private modifiers from
the instance variables and methods of a private inner class?

22. Would it be legal to add the following method to the inner class Money in
Display 13.9? Remember, the question is would it be legal, not would it be sensible.

public void doubleBalance()
{
 balance.addIn(balance);
}

23. Would it be legal to add the following method to the inner class Money in
Display 13.9? Remember, the question is would it be legal, not would it
be sensible.

public void doubleBalance2()
{
 makeDeposit(balance.getAmount());
}

The .class File for an Inner Class

When you compile any class in Java, it produces a .class file. When you
compile a class with an inner class, this compiles both the outer class and the
inner class and produces two .class files. For example, when you compile
the class BankAccount in Display 13.9, this produces the following two
.class files:

BankAccount.class and BankAccount$Money.class

If BankAccount had two inner classes, then three .class files would be produced.

776 CHAPTER 13 Interfaces and Inner Classes

13.3 More about Inner Classes

Something deeply hidden had to be behind things.

ALBERT EINSTEIN, Note quoted in New York Times Magazine (August 2, 1964), 1964.

In this section, we cover some of the more subtle details about using inner classes. It
might be best to treat this section as a reference section and look up the relevant cases
as you need them. None of the material in this section is used in the rest of this book.

Static Inner Classes

A normal (nonstatic) inner class, which is the kind of inner class we have discussed so
far, has a connection between each of its objects and the object of the outer class that
created the inner class object. Among other things, this allows an inner class definition
to reference an instance variable or invoke a method of the outer class. If you do not
need this connection, you can make your inner class static by adding the static
modifier to your inner class definition, as illustrated by the following sample beginning
of a class definition:

public class OuterClass
{
 private static class InnerClass
 {

A static inner class can have nonstatic instance variables and methods, but an object of
a static inner class has no connection to an object of the outer class.

You may encounter situations where you need an inner class to be static. For
example, if you create an object of the inner class within a static method of the outer
class, then the inner class must be static. This follows from the fact that a nonstatic
inner class object must arise from an outer class object.

Also, if you want your inner class to itself have static members, then the inner class
must be static.

Because a static inner class has no connection to an object of the outer class, you
cannot reference an instance variable or invoke a nonstatic method of the outer class
within the static inner class.

To invoke a static method of a static inner class within the outer class, simply
preface the method name with the name of the inner class and a dot. Similarly, to

PITFALL: Other Uses of Inner Classes

In this section, we have shown you how to use an inner class in only one way, namely to
create and use objects of the inner class from within the outer class method definitions.
There are other ways to use inner classes, but they can involve subtleties. If you intend
to use inner classes in any of these other ways, you should consult Section 13.3. ■

static

More about Inner Classes 777

name a static variable of a static inner class within the outer class, just preface the static
variable name with the name of the inner class and a dot.

Static Inner Class
A static inner class is one that is not associated with an object of the outer class. It is
indicated by including the modifier static in its class heading.

Public Inner Classes

If an inner class is marked with the public modifier instead of the private modifier,
then it can be used in all the ways we discussed so far, but it can also be used outside of
the outer class.

The way that you create an object of the inner class outside of the outer class is a bit
different for static and nonstatic inner classes. We consider the case of a nonstatic inner
class first. When creating an object of a nonstatic inner class, you need to keep in mind
that every object of the nonstatic inner class is associated with some object of the outer
class. To put it another way, to create an object of the inner class, you must start with
an object of the outer class. This has to be true, because an object of the inner class may
invoke a method of the outer class or reference an instance variable of the outer class,
and you cannot have an instance variable of the outer class unless you have an object of
the outer class.

For example, if you change the class Money in Display 13.9 from private to public,
so that the class definition begins

public class BankAccount
{
 public class Money

then you can use an object of the nonstatic inner class Money outside of the class
BankAccount as illustrated by the following:

BankAccount account = new BankAccount();
BankAccount.Money amount =
 account.new Money("41.99");
System.out.println(amount.getAmount());

This code produces the output

41.99

Self-Test Exercises

24. Can you have a static method in a nonstatic inner class?

25. Can you have a nonstatic method in a static inner class?

public inner
class

778 CHAPTER 13 Interfaces and Inner Classes

Note that the object amount of the inner class Money is created starting with an object,
account, of the outer class BankAccount, as follows:

BankAccount.Money amount =
 account.new Money("41.99");

Also, note that the syntax of the second line is not

new account.Money("41.99"); //Incorrect syntax

Within the definition of the inner class Money, an object of the inner class can
invoke a method of the outer class. However, this is not true outside of the inner class.
Outside of the inner class, an object of the inner class can only invoke methods of the
inner class. So, we could not have continued the previous sample code (which is outside
the class BankAccount and so outside the inner class Money) with the following:

System.out.println(amount.getBalance()); //Illegal

The meaning of amount.getBalance() is clear, but it is still not allowed. If
you want something equivalent to amount.getBalance(), you should use the
corresponding object of the class BankAccount; in this case, you would use account.
getBalance(). (Recall that account is the BankAccount object used to create the
inner class object amount.)

Now let’s consider the case of a static inner class. You can create objects of a public
static inner class and do so outside of the inner class—in fact, even outside of the outer
class. To do so outside of the outer class, the situation is similar to, but not exactly the
same as, what we outlined for nonstatic inner classes. Consider the following outline:

public class OuterClass
{
 public static class InnerClass
 {
 public void nonstaticMethod()
 { ... }

 public static void staticMethod()
 {...}

 Other_Members_of_InnerClass
 }

 Other_Members_of_OuterClass
}

You can create an object of the inner class outside of the outer class as in the
following example:

OuterClass.InnerClass innerObject =
 new OuterClass.InnerClass();

More about Inner Classes 779

Note that the syntax is not

OuterClass.new InnerClass();

This may seem like an apparent inconsistency with the syntax for creating the object
of a nonstatic inner class. It may help to keep in mind that for a static inner class,
OuterClass.InnerClass is a well-specified class name and all the information for
the object is in that class name. To remember the syntax for a nonstatic inner class,
remember that for that case, the object of the outer class modifies how the new operator
works to create an object of the inner class.

Once you have created an object of the inner class, the object can invoke a nonstatic
method in the usual way. For example,

innerObject.nonstaticMethod();

You can also use the object of the inner class to invoke a static method in the same
way. For example,

innerObject.staticMethod();

However, it is more common, and clearer, to use class names when invoking a static
method. For example,

OuterClass.InnerClass.staticMethod();

TIP: Referring to a Method of the Outer Class

As we have already noted, if a method is invoked in an inner class and the inner class
has no such method, then it is assumed to be an invocation of the method by that
name in the outer class. For example, we could add a method showBalance to the
inner class Money in Display 13.9, as outlined in what follows:

public class BankAccount
{
 private class Money
 {
 private long dollars;
 private int cents;

 public void showBalance()
 {
 System.out.println(getBalance());
 }
 ...
 }//End of Money

(continued)

780 CHAPTER 13 Interfaces and Inner Classes

TIP: (continued)

 public String getBalance()
 {...}
 ...
} //End of BankAccount

This invocation of getBalance is within the definition of the inner class Money. But
the inner class Money has no method named getBalance, so it is presumed to be the
method getBalance of the outer class BankAccount.

But suppose the inner class did have a method named getBalance; then this
 invocation of getBalance would be an invocation of the method getBalance de-
fined in the inner class.

If both the inner and outer classes have a method named getBalance, then you
can specify that you mean the method of the outer class as follows:

public void showBalance()
{
 System.out.println(
 BankAccount.this.getBalance());
}

The syntax

Outer_Class_Name.this.Method_Name

always refers to a method of the outer class. In the example, BankAccount.this
means the this of BankAccount, as opposed to the this of the inner class Money. ■

Self-Test Exercises

26. Consider the following class definition:

public class OuterClass
{
 public static class InnerClass
 {
 public static void someMethod()
 {
 System.out.println("From inside.");
 }
 }
 Other_Members_of_OuterClass
}

 Write an invocation of the static method someMethod that you could use in
some class you define.

More about Inner Classes 781

Self-Test Exercises (continued)

27. Consider the following class definition:

public class Outs
{
 private int outerInt = 100;

 public class Ins
 {
 private int innerInt = 25;
 public void specialMethod()
 {
 System.out.println(outerInt);
 System.out.println(innerInt);
 }
 }
 Other_Members_of_OuterClass
}

Write an invocation of the method specialMethod with an object of the class
Ins. Part of this exercise is to create the object of the class Ins. This should be
code that you could use in some class you define.

Nesting Inner Classes

It is legal to nest inner classes within inner classes. The rules are the same as what
we have already discussed except that names can get longer. For example, if A has a
public inner class B, and B has a public inner class C, then the following is valid code:

A aObject = new A();
A.B bObject =
 aObject.new B();
A.B.C cObject =
 bObject.new C();

Inner Classes and Inheritance

Suppose OuterClass has an inner class named InnerClass. If you derive
DerivedClass from OuterClass, then DerivedClass automatically has
InnerClass as an inner class just as if it were defined within DerivedClass.

Just as with any other kind of class in Java, you can make an inner class a
derived class of some other class. You can also make the outer class a derived
class of a different (or the same) base class.

It is not possible to override the definition of an inner class when you define
a derived class of the outer class.

It is also possible to use an inner class as a base class to derive classes, but we will
not go into those details in this book; there are some subtleties to worry about.

782 CHAPTER 13 Interfaces and Inner Classes

Anonymous Classes

If you wish to create an object but have no need to name the object’s class, then you
can embed the class definition inside the expression with the new operator. These
sorts of class definitions are called anonymous classes because they have no class
name. An expression with an anonymous class definition is, like everything in Java,
inside of some class definition. Thus, an anonymous class is an inner class. Before we
go into the details of the syntax for anonymous classes, let’s say a little about where
one might use them.

The most straightforward way to create an object is the following:

YourClass anObject = new YourClass();

If new YourClass() is replaced by some expression that defines the class but does not
give the class any name, then there is no name YourClass to use to declare the variable
anObject. So, it does not make sense to use an anonymous class in this situation.
However, it can make sense in the following scenario:

SomeOtherType anObject = new YourClass();

Here SomeOtherType must be a type such that an object of the class YourClass is also
an object of SomeOtherType. In this case, you can replace new YourClass() with an
expression including an anonymous class instead of YourClass. The type SomeOtherType
is usually a Java interface.

Here is an example of an anonymous class. Suppose you define the following
interface:

public interface NumberCarrier
{
 public void setNumber(int value);
 public int getNumber();
}

Then the following creates an object using an anonymous class definition:

NumberCarrier anObject = new NumberCarrier()
 {
 private int number;
 public void setNumber(int value)
 {
 number = value;
 }
 public int getNumber()
 {
 return number;
 }
 };

anonymous
class

More about Inner Classes 783

The part in the braces is the same as the part inside the main braces of a class
definition. The closing brace is followed by a semicolon, unlike a class definition. (This
is because the entire expression will be used as a Java statement.) The beginning part,
repeated as follows, may seem strange:

new NumberCarrier()

The new is sensible enough but what is the point of NumberCarrier()? It looks like
this is an invocation of a constructor for NumberCarrier. But, NumberCarrier is an
interface and has no constructors. The meaning of new NumberCarrier() is simply

implements NumberCarrier

So what is being said is that the anonymous class implements the NumberCarrier
interface and is defined as shown between the main braces.

Display 13.11 shows a simple demonstration with two anonymous class definitions.
For completeness, we have also repeated the definition of the NumberCarrier interface
in this display.

Display 13.11 Anonymous Classes (part 1 of 2)

 1 public class AnonymousClassDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 NumberCarrier anObject =
 6 new NumberCarrier()
 7 {
 8 private int number;
 9 public void setNumber(int value)
10 {
11 number = value;
12 }
13 public int getNumber()
14 {
15 return number;
16 }
17 };

18 NumberCarrier anotherObject =
19 new NumberCarrier()
20 {
21 private int number;
22 public void setNumber(int value)
23 {
24 number = 2*value;
25 }

(continued)

This is just a toy example to
demonstrate the Java syntax
for anonymous classes.

784 CHAPTER 13 Interfaces and Inner Classes

26 public int getNumber()
27 {
28 return number;
29 }
30 };

31 anObject.setNumber(42);
32 anotherObject.setNumber(42);
33 showNumber(anObject);
34 showNumber(anotherObject);
35 System.out.println("End of program.");
36 }

37 public static void showNumber(NumberCarrier o)
38 {
39 System.out.println(o.getNumber());
40 }

41 }

Sample Dialogue

42

84

End of program.

1 public interface NumberCarrier
2 {
3 public void setNumber(int value);
4 public int getNumber();
5 }

Display 13.11 Anonymous Classes (part 2 of 2)

This is the file AnonymousClassDemo.java.

This is the file NumberCarrier.java.

TIP: Why Use Inner Classes?

Most simple situations do not need inner classes. However, there are situations for
which inner classes are a good solution. For example, suppose you want to have a
class with two base classes. This is not allowed in Java. However, you can have an
outer class derived from one base class with an inner class derived from the other base
class. Because the inner and outer classes have access to each other’s instance variables
and methods, this can often serve as if it were a class with two base classes.

As another example, if you need only one object of a class and the class definition
is very short, many programmers like to use an anonymous class (but I must admit I
am not one of them).

When we study linked lists in Chapter 15, you will see cases where using an inner
class as a helping class makes the linked list class self-contained in a very natural
way. We will also use inner classes when defining Graphical User Interfaces (GUIs)
starting in Chapter 17. But until you learn what linked lists and GUIs are, these are
not likely to be compelling examples. ■

Answers to Self-Test Exercises 785

Chapter Summary

• An interface is a property of a class that says what methods a class that implements
the interface must have.

• An interface is defined the same way as a class is defined except that the keyword
interface is used in place of the keyword class and method bodies are replaced
by semicolons.

• An interface may not have any instance variables, with one exception: An interface
may have defined constants. If you use the syntax for an instance variable in an inner
class, the variable is automatically a constant, not a real instance variable.

• An inner class is a class defined within another class.

• One simple use of an inner class is as a helping class to be used in the definition of
the outer class methods and/or instance variables.

• A static inner class is one that is not associated with an object of the outer class. It must
include the modifier static in its class heading.

• To create an object of a nonstatic inner class outside the definition of the outer class,
you must first create an object of the outer class and use it to create an object of the
inner class.

Answers to Self-Test Exercises

 1. Yes to both. An interface is a type and can be used like any other type.

 2. Yes. Any of the interface methods that it does not fully define must be made
 abstract methods.

 3. A derived class can have only one base class, but it can implement any number of
interfaces.

Self-Test Exercise

28. Suppose we replace

 NumberCarrier anObject

 with

 Object anObject

 in Display 13.11. What would be the first statement in the program to cause an
error message? Would it be a compiler error message or a run-time error message?

786 CHAPTER 13 Interfaces and Inner Classes

 4. No, but the way to accomplish the same thing is to have one interface extend
the other.

These exercises are for the material on the Comparable interface.

 5. Yes, the dialogue would be the same. The change from the parameter type
 Comparable[] to Object[] in the method interchange is in fact a good idea.

 6. No. This will compile without any error messages. However, the less-than order-
ing does not satisfy the semantics of the Comparable interface. For example, the
trichotomy law does not hold.

 7. Yes. The three required conditions are true for objects of the class Circle:
 (Irreflexive) By definition, no circle is inside itself.

 (Trichotomy) For any two circles c1 and c2 with centers at the origin, one, and only
one, of the following holds true: c1 is inside of c2, c2 is inside of c1, or c1 equals c2.

 (Transitivity) If c1 is inside of c2 and c2 is inside of c3, then c1 is inside of c3.

 8. The class will produce a compiler error message saying that there is an inconsis-
tency in the definitions of ANSWER.

 9. The class will compile and run with no error messages. Because the named constant
ANSWER is never used, there is no inconsistency.

10. The class will produce a compiler error message saying that you have not imple-
mented the heading for getStuff in InterfaceA.

11. They will all compile and the program will run. The two definitions of
getStuff have different numbers of parameters, so this is overloading. There is
no inconsistency.

12. public class StockItem implements Cloneable
 {

 private int number;
 private String name;
 public void setNumber(int newNumber)
 {

 number = newNumber;
 }

 ...

 public Object clone()
 {

 try

 {
 return super.clone();

 }
 catch (CloneNotSupportedException e)

 {//This should not happen.

 return null; //To keep compiler happy.

 }
 }

 }

Answers to Self-Test Exercises 787

13. Note that you do not catch a CloneNotSupportedException because any
such thrown exception in super.clone is caught inside the base class method
super.clone.

 public class PricedItem extends StockItem
 implements Cloneable
 {
 private double price;
 ...
 public Object clone()
 {
 return super.clone();
 }
 }

14. public class Record implements Cloneable
 {
 private StockItem item1;
 private StockItem item2;
 private String description;

 ...
 public Object clone()
 {
 try
 {
 Record copy =
 (Record)super.clone();
 copy.item1 =
 (StockItem)item1.clone();
 copy.item2 =
 (StockItem)item2.clone();
 return copy;
 }
 catch (CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }
 }

788 CHAPTER 13 Interfaces and Inner Classes

15. Note that you do not catch a CloneNotSupportedException because any
such thrown exception in super.clone is caught inside the base class method
super.clone.

 public class BigRecord extends Record
 implements Cloneable
 {
 private StockItem item3;

 ...
 public Object clone()
 {
 BigRecord copy =
 (BigRecord)super.clone();
 copy.item3 =
 (StockItem)item3.clone();
 return copy;
 }
 }

16. The heading of the class definition changes to what is shown in the following and
the method clone shown there is added. The version of Date for this chapter on the
accompanying website includes this definition of clone.

public class Date implements Cloneable
{

private String month;
private int day;
private int year;

...
public Object clone()
{
 try
 {
 return super.clone();//Invocation of
 //clone in the base class Object
 }
 catch(CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }

}

17. The heading of the class definition changes to what is shown in the following and
the method clone shown there is added. The version of Employee for this chapter
on the accompanying website includes this definition of clone.

extra code
on website

extra code
on website

Answers to Self-Test Exercises 789

public class Employee implements Cloneable
{
 private String name;
 private Date hireDate;

 ...
 public Object clone()
 {
 try
 {
 Employee copy =
 (Employee)super.clone();
 copy.hireDate =
 (Date)hireDate.clone();
 return copy;
 }
 catch (CloneNotSupportedException e)
 {//This should not happen.
 return null; //To keep compiler happy.
 }
 }
}

18. The heading of the class definition changes to what is shown in the following,
and the method clone shown there is added. Note that you do not catch a
CloneNotSupportedException because any such thrown exception in super.
clone is caught inside the base class method super.clone. The version of
HourlyEmployee for this chapter on the accompanying website includes this
definition of clone.

public class HourlyEmployee extends Employee
 implements Cloneable
{
 private double wageRate;
 private double hours;

 ...
 public Object clone()
 {
 HourlyEmployee copy =
 (HourlyEmployee)super.clone();
 return copy;
 }
}

19. It would still be legal. An outer class has access to all the private members of an
inner class.

20. Yes, they can be omitted, but the reason is that it indicates package access, and in
a private inner class, all privacy modifiers, including package access, are equivalent
to public. (Note that the situation for public inner classes will be different.)

extra code
on website

790 CHAPTER 13 Interfaces and Inner Classes

21. Yes, it is legal to add the method doubleBalance to the inner class Money because
an inner class has access to the instance variables, such as balance of the outer
class. To test this out, add the following as a method of the outer class:

public void test()
{
 balance.doubleBalance();
}

22. It would be legal. The method makeDeposit is assumed to be the method
makeDeposit of the outer class. The calling object balance is assumed to be
the instance variable of the outer class. These sorts of tricks can lead to confusing
code. So, use them sparingly. This is just an exercise.

23. No, a nonstatic inner class cannot have any static methods.

24. Yes, you can have a nonstatic method in a static inner class.

25. OuterClass.InnerClass.someMethod();

26. Outs outerObject = new Outs();
Outs.Ins innerObject =
 outerObject.new Ins();
innerObject.specialMethod();

27. You would get your first error on the following statement and it would be a
 complier error:

anObject.setNumber(42);

 With the change described in the exercise, anObject is of type Object and Object
has no method named setNumber.

28. Line 31 will cause a compiler error because at the level of Object because there
is no setNumber method.

Programming Projects

 1. Modify the recursive implementation of binary search from Chapter 11 so that the
search method works on any array of type Comparable[]. Test the implementa-
tion with arrays of different types to see if it works.

 2. Listed next is the skeleton for a class named City. Each city has a name and tem-
perature:

class City

{

private String cityName;

private double temperature;

}

 Flesh out the class with appropriate accessors, constructors, and mutators. The tem-
peratures are assigned by you and can be set from outside the City class—your

Solution to
Programming
Project 13.1

VideoNote

Programming Projects 791

code does not have to ensure that they are unique. Next, modify the class so that
it implements the Comparable interface. The class also overrides the compareTo
method. This method imposes an order between instances of the City class
 depending upon their temperature. Test your class by creating an array of sample
temperatures and sort them in an ascending order using a sorting method that takes
as input an array of type Comparable.

 3. Listed next is a code skeleton for an interface called Enumeration and a class
called NameCollection. Enumeration provides an interface to sequentially iter-
ate through some type of collection. In this case, the collection will be the class
NameCollection that simply stores a collection of names using an array of strings.

interface Enumeration
{
 // Returns true if another element in the collection exists
 public boolean hasNext();

 // Returns the next element in the collection as an Object
 public Object getNext();
}

/**
 * NameCollection implements a collection of names using
 * a simple array.
 */
class NameCollection
{
 String[] names;

 /**
 * The list of names is initialized from outside
 * and passed in as an array of strings
 */
 NameCollection(String[] names)
 {
 this.names = names;
 }

 /**
 * getEnumeration should return an instance of a class that

 implements
 * the Enumeration interface where hasNext() and getNext()
 * correspond to data stored within the names array.
 */
 Enumeration getEnumeration ()
 {
 // Complete code here using an inner class
 }
}

792 CHAPTER 13 Interfaces and Inner Classes

Complete the method getEnumeration() so that it returns an anonymous inner
class that corresponds to the Enumeration interface for the names array in
NamesCollection. Then write a main method that creates a NamesCollection
object with a sample array of strings, retrieves the Enumeration for this class via
getEnumeration(), and then iterates through the enumeration outputting each
name using the getNext() method.

 4. In Display 13.5, we described a sorting method to sort an array of type
 Comparable[]. In Display 12.6, we described a sorting method that used the
merge sort algorithm to sort an array of type double[] into increasing order. Redo
the method in Display 12.6 so it applies to an array of type Comparable[]. Also,
do a suitable test program.

 5. In Display 13.5, we described a sorting method to sort an array of type Comparable[].
In Display 12.8, we described a sorting method that used the quick sort
 algorithm to sort an array of type double[] into increasing order. Redo the
method in Display 12.8 so it applies to an array of type Comparable[]. Also,
do a suitable test program.

 6. Redo the class Person in Display 5.19 so that it implements the Cloneable
 interface. This may require that you also redo the class Date so it implements the
Cloneable interface. Also, do a suitable test program.

 7. Redo the class Person in Display 5.19 so that the class Date is a private inner class
of the class Person. Also, do a suitable test program. (You need not start from the
version produced in Programming Project 13.6. You can ignore Programming
Project 13.6 when you do this project.)

 8. This is a combination of Programming Projects 13.6 and 13.7. Redo the class
Person in Display 5.19 so that the class Date is a private inner class of the class
Person, and so that the class Person implements the Cloneable interface. Also,
do a suitable test program.

 9. Redo the class Employee and the class HourlyEmployee in Displays 7.2 and 7.3
so that the class Date is an inner class of the class Employee and an inherited inner
class of the class HourlyEmployee. Also, do a suitable test program.

10. Define an interface named Shape with a single method named area that calculates
the area of the geometric shape:

public double area();

 Next, define a class named Circle that implements Shape. The Circle class should
have an instance variable for the radius, a constructor that sets the radius, accessor/
mutator methods for the radius, and an implementation of the area method. Also
define a class named Rectangle that implements Shape. The Rectangle class
should have instance variables for the height and width, a constructor that sets the
height and width, accessor and mutator methods for the height and width, and an
implementation of the area method.

Programming Projects 793

 The following test code should then output the area of the Circle and Rectangle
objects:

public static void main(String[] args)
{
 Circle c = new Circle(4); // Radius of 4
 Rectangle r = new Rectangle(4,3); // Height = 4, Width = 3
 ShowArea(c);
 ShowArea(r);
}

public static void ShowArea(Shape s)
{
 double area = s.area();
 System.out.println("The area of the shape is " + area);
}

11. Create a Student class that has instance variables for the student’s last name and
ID number, along with appropriate constructors, accessors, and mutators. Make the
Student class implement the Comparable interface. Define the compareTo method
to order Student objects based on the student ID number. In the main method,
create an array of at least five Student objects, sort them using Arrays.sort, and
output the students. They should be listed by ascending student number. Next,
modify the compareTo method so it orders Student objects based on the lexico-
graphic ordering of their last name. Without modification to the main method, the
program should now output the students ordered by name.

Solution to
Programming
Project 13.11

VideoNote

This page intentionally left blank

14.2 Generics 814
Generic Basics 815
Example: A Generic Class for Ordered Pairs 817
Bounds for Type Parameters 825
Generic Methods ★ 828
Inheritance with Generic Classes ★ 830

14.1 The ArrayList class 797
Using the ArrayList Class 798
Methods in the Class ArrayList 803
The “for-each” Loop 806
Example: Golf Scores 809
The Vector Class 813
Parameterized Classes and Generics 814

14Generics and the
ArrayList Class

chapter summary 832 answers to self-Test exercises 832 Programming Projects 835

Hamlet: Do you see yonder cloud that’s almost in shape of a camel?

Polonius: By the mass, and ’tis like a camel, indeed.

Hamlet: Me think it is like a weasel.

Polonius: It is backed like a weasel.

Hamlet: Or like a whale.

Polonius: Very like a whale.

WILLIAM SHAKESPEARE, Hamlet, 1603.

Introduction
Beginning with version 5.0, Java allows class and method definitions that include
parameters for types. Such definitions are called generics. Generic programming with
a type parameter allows you to write code that applies to any class. For example, you
can define a class for a list of items of type T, where T is a type parameter. You can then
use this class with the class String plugged in for T to automatically get a class for a list
of String objects. Similarly, you can plug in the class Double for T to obtain a class
for a list of Doubles, and you can do a comparable thing for any other class. The class
ArrayList in the standard Java libraries is, in fact, just such a class for a list of items
of type T, where T is a type parameter. We will first show you how to use classes with a
type parameter by using the ArrayList class as an example. We will then tell you how
you can define other classes with a type parameter.

Prerequisites
Section 14.1 covering the ArrayList class requires only Chapters 1 through 6 and
Chapter 9. It can reasonably be read without first reading Chapter 9 if you ignore all
references to “exceptions.”

Section 14.2 on generics requires Chapters 1 through 7 and Chapter 9. (There is
one very short Tip section entitled “Generic Interfaces” that requires Section 13.1 on
interfaces, but that Tip section can easily be skipped if you have not yet read Section 13.1.)
You need not read Section 14.1 before Section 14.2, but you are encouraged to do so;
Section 14.1 can serve as a motivation for Section 14.2.

14 Generics and the ArrayList Class

generics

The ArrayList Class 797

14.1 The ArrayList Class

“Well, I’ll eat it,” said Alice, “and if it makes me grow larger, I can reach the key;
and if it makes me grow smaller, I can creep under the door; so either way I’ll
get into the garden. . . .”

LEWIS CARROLL, Alice’s Adventures In Wonderland, Macmillan, 1865.

ArrayList is a class in the standard Java libraries. You can think of an ArrayList
object as an array that can grow (and shrink) in length while your program is running.
In Java, you can read in the length of an array when the program is running, but once
your program creates an array of that length, it cannot change the length of the array.
For example, suppose you write a program to record customer orders for a mail-order
house, and suppose you store all the orders for one customer in an array of objects of
some class called Item. You could ask the user how many items she or he will order,
store the number in a variable called numberOfItems, and then create the array item
with the following statement:

Item[] item = new Item[numberOfItems];

But suppose the customer enters numberOfItems and then decides to order another
item? There is no way to increase the size of the array item. There are ways around
this problem with arrays, but they are all rather complicated. ArrayLists serve
the same purpose as arrays, except that an ArrayList can change length while the
program is running. So an ArrayList could handle the customer’s extra order
without any problems.

The class ArrayList is implemented using an array as a private instance variable.
When this hidden array is full, a new larger hidden array is created, and the data
is transferred to this new array. However, you need not concern yourself with this
implementation detail. All you need to know is how to use the ArrayList class, and
we are about to tell you that.

If ArrayLists are like arrays but have the nice added feature of being able to
change length, then why don’t we just always use ArrayLists instead of arrays? It
often seems that every silver lining has a cloud, and this is true of ArrayLists as
well. There are three main disadvantages of ArrayLists: (1) They are less efficient
than arrays; (2) they do not have the square bracket notation, and so using an
ArrayList is sometimes notationally more awkward than using ordinary arrays; and
(3) the base type of an ArrayList must be class type (or other reference type); it
cannot be a primitive type, such as int, double, or char. For example, if you want
an ArrayList of int values, you must simulate this structure with an ArrayList
of Integer values, where Integer is the wrapper class whose objects simulate int
values. Automatic boxing and unboxing (as discussed in Chapter 5) make (3) less of a
problem, because an ArrayList with base type, for example, Integer can, in effect,
store values of type int.

ArrayList

798 CHAPTER 14 Generics and the ArrayList Class

Using the ArrayList Class

ArrayLists are used in much the same way as arrays, but there are some important
differences. First, the definition of the class ArrayList is not provided automatically.
The definition is in the package java.util, and any code that uses the class ArrayList
must contain the following, normally at the start of the file:

import java.util.ArrayList;

An ArrayList is created and named in the same way as objects of any class, except
that you specify the base type using a new notation. For example,

ArrayList<String> list = new ArrayList<String>(20);

This statement makes list the name of an ArrayList that stores objects of the class
String and that has an initial capacity of 20 items. When we say that an ArrayList
has a certain capacity, we mean that it has been allocated memory for that many items,
but if it needs to hold more items, the system will automatically allocate more memory.
By carefully choosing the initial capacity of an ArrayList, you can often make your
code more efficient, but this capacity has no effect on how many items the ArrayList
can hold. If you choose your capacity to be large enough, then the system will not need
to reallocate memory too often, and as a result, your program should run faster. On the
other hand, if you make your capacity too large, you will waste storage space. However, no
matter what capacity you choose, you can still do anything you want with the ArrayList.

Java 7 supports a slightly shorter but equivalent way to define the ArrayList. In
this format, the base type in the call to the constructor is not needed. For example,

ArrayList<String> list = new ArrayList<>(20);

This feature is called type inference and is briefly discussed in Section 14.2.
The type String in the previous ArrayList example is the base type of the

ArrayList class. An ArrayList—that is, an object of the ArrayList class—stores
objects of its base type. You can use any reference type as the base type of an ArrayList
class. In particular, you can use any class or interface type. However, you cannot use a
primitive type, such as int or double, as the base type of an ArrayList class. This is an
example of a type parameter. The ArrayList class is defined as having a type parameter
for the type of the elements in the list. Create a concrete class by specifying, in angular
brackets, a class type to be substituted for this type parameter. For example, the following
code, which we saw earlier in this section, substitutes the type String for the type
parameter to create the class ArrayList<String> and an object of this class named list:

ArrayList<String> list = new ArrayList<String>(20);

ArrayList objects can be used like arrays, but they do not have the array square-
bracket notation. If you use

a[index] = "Hi Mom!";

for an array of strings a, then the analogous statement for a suitable ArrayList named
list is

list.set(index, "Hi Mom!");

import
statement

capacity

base type

type
inference

set

The ArrayList Class 799

Creating and Naming an ArrayList Object
An object of the class ArrayList is created and named in the same way as any other
object, except that you specify the base type of the ArrayList.

SYNTAX

ArrayList<Base_Type> Object_Name = new ArrayList<Base_Type>();
ArrayList<Base_Type> Object_Name =
 new ArrayList<Base_Type>(Initial_Capacity);

The Base_Type must be a reference type, usually a class type; it cannot be a primitive type
such as int or double. When a number is given as an argument to the constructor, that
number determines the initial capacity of the ArrayList.

EXAMPLES

ArrayList<String> list = new ArrayList<String>();
ArrayList<Double> list2 = new ArrayList<Double>(30);

If you would use

String temp = a[index];

for an array of strings a, then the analogous statement for a suitable ArrayList named
list would be

String temp = list.get(index);

Accessing at an Index
If list is an ArrayList, its elements can be accessed as follows:

EXAMPLES

ArrayList<String> list = new ArrayList<String>();
int index;
 ...

list.set(index, "Here"); //Sets the element
 //at index to "Here".
String temp = list.get(index); //The expression
 //list.get(index)
 //returns the element
 //at position index.
ArrayList<Integer> list2 = new ArrayList<Integer>();
 ...
list2.set(42, index); //Sets the element at index to
 //new Integer(42). This example relies on
 // automatic boxing.

(continued)

800 CHAPTER 14 Generics and the ArrayList Class

The two methods set and get give ArrayLists approximately the same
functionality that square brackets give to arrays. However, you need to be aware of one
important point: The method invocation

list.set(index, "Hi Mom!");

is not always completely analogous to

a[index] = "Hi Mom!";

The method set can replace any existing element, but you cannot use set to put
an element at just any index, as you could with an array. The method set is used to
change the value of elements, not to set them for the first time. To set an element for
the first time, you usually use the method add. The basic form of the method add adds
elements at index position 0, position 1, position 2, and so forth in that order. This
means that ArrayLists must always be filled in this order. But your code can then go
back and change any individual element, just as it can in an array.

For example, suppose list is an ArrayList with base type String, which has not
yet had any elements added to it; that is, list is empty. The following statements will
add the strings "One", "Two", and "Three" to positions 0, 1, and 2:

list.add("One");
list.add("Two");
list.add("Three");

The method name add is overloaded. There is also a two-argument method named
add that allows you to add an element at any currently used index position or at the
first unused position. When inserting into an ArrayList with this version of add,
elements at the specified index and higher (if any) are moved up one position to make
room for the new element. For example,

list.add(0, "Zero");

adds the string "Zero" at position 0 and moves elements originally at positions 0, 1, 2,
and so forth up one position to positions 1, 2, 3, and so forth.

int temp2 = list2.get(index); //The expression
 //v.get(index) returns the
 //element at position index.
 // This example
 //relies on automatic unboxing.

The index must be greater than or equal to 0 and less than the current size of the
ArrayList list.

Creating and
Using an

ArrayList

add

The ArrayList Class 801

Suppose list starts out empty and your code executes our four add invocations,
which we repeat below:

list.add("One");
list.add("Two");
list.add("Three");
list.add(0, "Zero");

After these four invocations of list.add, the list would contain the strings
"Zero", "One", "Two", and "Three" in positions 0, 1, 2, and 3, respectively.

Note that the two-argument version of add cannot add an element at just any
position. It can only insert an element at some already used position or at the first unused
position. The elements in an ArrayList always occupy a contiguous set of positions
starting at 0; that is, they are always at positions 0, 1, 2, and so forth up to some last
position. This is just like a partially filled array (as discussed in Chapter 6), but unlike a
partially filled array, you do not need to do anything to keep track of how many elements
are on the list. The method size automatically takes care of this for any ArrayList.

The add Methods
Elements can be added to an ArrayList by using the methods named add. The elements
are added to index position 0, then 1, then 2, and so forth so there are no gaps in the indices
of elements.

The most straightforward method to use for adding to an ArrayList is the method named
add that has only one parameter.

EXAMPLES

list.add("Salud");
list.add("Dinero");
list.add("Java");

The object list is an ArrayList with base type String.

A second method named add allows you to add an element at any currently used index
position or at the first unused position. When inserted into an ArrayList with this version
of add, elements at the specified index and higher (if any) are moved up one position to
make room for the new element.

list.add(1, "Amor");

If list starts out empty and all four statements in the two sets of examples are executed,
then list would contain the following strings in the order given: "Salud", "Amor",
"Dinero", and "Java".

You can find out how many indices already have elements by using the method
size. If list is an ArrayList, list.size() returns the size of the ArrayList,
which is the number of elements stored in it. The indices of these elements go from 0
to one less than list.size().

size

802 CHAPTER 14 Generics and the ArrayList Class

The size Method
The method size returns the number of elements in an ArrayList.

EXAMPLE

for (int index = 0; index < list.size(); index++)
 System.out.println(list.get(index));

list is an ArrayList object.

TIP: Summary of Adding to an ArrayList

To place an element in an ArrayList position (at an ArrayList index) for the first
time, you usually use the method add. The simplest method named add has a single
parameter for the element to be added and adds elements at index positions 0, 1, 2,
and so forth, in that order.

You can add an element at an already occupied list position by using the two-parameter
version of add. When inserting into an ArrayList with this version of add, elements at
the specified index and higher are moved up one position to make room for the new ele-
ment. For example, suppose list is an ArrayList object with base type String that has
three elements already on its list. Consider the following method invocation:

list.add(1, "Amor");

Before, there were elements at index positions 0, 1, and 2. When this invocation of
add is executed, the element "Amor" is inserted at index 1, and the elements at index
positions 1 and 2 are moved to positions 2 and 3.

You can also use the two-argument version of add to add an element at the first
unused position. If list has elements at index positions 0, 1, 2, and 3, then the fol-
lowing is legal:

list.add(4, "Mucho Amor");

Your code can then go back and change any individual element, using set. However,
set can reset only the element at an index that already has an element.

The method size can be used to determine how many elements are stored in an
ArrayList. ■

add

Self-Test Exercises

1. Suppose list is an object of the class ArrayList<String>. How do you add
the string "Hello" to the ArrayList list?

2. Suppose instruction is an object of the class ArrayList<String> that contains
the string "Stop" at index position 5. How do you change the string at index
position 5 to "Go" (without changing any of the elements at other positions)?

3. Suppose instruction is an object of the class ArrayList<String> that contains
strings at index positions 0 through 10. How do you insert the string "Go" at index
position 5 so that no strings are removed from the list instruction?

The ArrayList Class 803

Methods in the Class ArrayList

With arrays, the square brackets and the instance variable length are the only tools
automatically provided for you, the programmer. If you want to use arrays for other
things, you must write code to manipulate the arrays. ArrayLists, on the other
hand, come with a selection of powerful methods that can do many of the things for
which you would need to write code in order to do with arrays. For example, the class
ArrayList has a version of the method add that inserts a new element between two
elements in the ArrayList. Most of these methods are described in Display 14.1.

Display 14.1 Some Methods in the Class ArrayList (part 1 of 3)

CONSTRUCTORS

 public ArrayList<Base_Type>(int initialCapacity)

Creates an empty ArrayList with the specified Base_Type and initial capacity.

 public ArrayList<Base_Type>()

Creates an empty ArrayList with the specified Base_Type and an initial capacity of 10.

ARRAYLIKE METHODS

 public Base_Type set(int index, Base_Type newElement)

Sets the element at the specified index to newElement. Returns the element previously at that
position, but the method is often used as if it were a void method. If you draw an analogy between
the ArrayList and an array a, this statement is analogous to setting a[index]to the value
newElement. The index must be a value greater than or equal to 0 and less than the current size of
the ArrayList. Throws an IndexOutOfBoundsException if the index is not in this range.

(continued)

Self-Test Exercises (continued)

4. Can you use the method set to place an element in an ArrayList at any index
you want?

5. Can you use the two-argument version of the method add to add an element in
an ArrayList at any index you want?

6. Consider the following two method invocations. Are there values of index1 that
are allowed but that are not allowed for index2? Are there values of index2 that
are allowed but that are not allowed for index1? list is an object of the class
ArrayList<String>.

list.set(index1, "Hello");

list.add(index2, "Hello");

7. If you create an ArrayList with the following statement, can the ArrayList
contain more than 20 elements?

ArrayList<Double> myList = new ArrayList<Double>(20);

804 CHAPTER 14 Generics and the ArrayList Class

 public Base_Type get(int index)

Returns the element at the specified index. This statement is analogous to returning a[index]
for an array a. The index must be a value greater than or equal to 0 and less than the current size
of the ArrayList. Throws IndexOutOfBoundsException if the index is not in this range.

METHODS TO ADD ELEMENTS

 public boolean add(Base_Type newElement)

Adds the specified element to the end of the calling ArrayList and increases the ArrayList's
size by one. The capacity of the ArrayList is increased if that is required. Returns true if the add is
successful. (The return type is boolean, but the method is typically used as if it were a void method.)

 public void add(int index, Base_Type newElement)

Inserts newElement as an element in the calling ArrayList at the specified index. Each element in
the ArrayList with an index greater than or equal to index is shifted upward to have an index that
is one greater than the value it had previously. The index must be a value greater than or equal to 0
and less than or equal to the current size of the ArrayList. Throws IndexOutOfBoundsException
if the index is not in this range. Note that you can use this method to add an element after the last
element. The capacity of the ArrayList is increased if that is required.

METHODS TO REMOVE ELEMENTS

 public Base_Type remove(int index)

Deletes and returns the element at the specified index. Each element in the ArrayList with
an index greater than index is decreased to have an index that is one less than the value it had
previously. The index must be a value greater than or equal to 0 and less than the current size
of the ArrayList. Throws IndexOutOfBoundsException if the index is not in this range.
Often used as if it were a void method.

 protected void removeRange(int fromIndex, int toIndex)

Deletes all the elements with indices i such that fromIndex ≤ i < toIndex. Elements with
indices greater than or equal to toIndex are decreased appropriately.

 public boolean remove(Object theElement)

Removes one occurrence of theElement from the calling ArrayList. If theElement is
found in the ArrayList, then each element in the ArrayList with an index greater than
the removed element’s index is decreased to have an index that is one less than the value it
had previously. Returns true if theElement was found (and removed). Returns false if
theElement was not found in the calling ArrayList.

 public void clear()

Removes all elements from the calling ArrayList and sets the ArrayList's size to zero.

SEARCH METHODS

 public boolean contains(Object target)

Returns true if the calling ArrayList contains target; otherwise, returns false. Uses the method
equals of the object target to test for equality with any element in the calling ArrayList.

Display 14.1 Some Methods in the Class ArrayList (part 2 of 3)

The ArrayList Class 805

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the
object target to test for equality. Returns —1 if target is not found.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the
object target to test for equality. Returns –1 if target is not found.

MEMORY MANAGEMENT (SIZE AND CAPACITY)

public boolean isEmpty()

Returns true if the calling ArrayList is empty (that is, has size 0); otherwise, returns false.

public int size()

Returns the number of elements in the calling ArrayList.

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling ArrayList, if necessary, in order to ensure that
the ArrayList can hold at least newCapacity elements. Using ensureCapacity can
sometimes increase efficiency, but its use is not needed for any other reason.

public void trimToSize()

Trims the capacity of the calling ArrayList to the ArrayList's current size. This method is
used to save storage space.

MAKE A COPY

public Object[] toArray()

Returns an array containing all the elements on the list. Preserves the order of the elements.

public Type[] toArray(Type[] a)
Returns an array containing all the elements on the list. Preserves the order of the elements. Type can
be any class types. If the list will fit in a, the elements are copied to a and a is returned. Any elements
of a not needed for list elements are set to null. If the list will not fit in a, a new array is created.

(As we will discuss in Section 14.2, the correct Java syntax for this method heading is

public <Type> Type[] toArray(Type[] a)

However, at this point we have not yet explained this kind of type parameter syntax.)

public Object clone()

Returns a shallow copy of the calling ArrayList. Warning: The clone is not an independent copy.
Subsequent changes to the clone may affect the calling object and vice versa. (See Chapter 5 for a
discussion of shallow copy.)

EQUALITY

public boolean equals(Object other)

If other is another ArrayList (of any base type), then equals returns true if, and only if,
both ArrayLists are of the same size and contain the same list of elements in the same order.
(In fact, if other is any kind of list, then equals returns true if, and only if, both the calling
ArrayList and other are of the same size and contain the same list of elements in the same
order. Lists are discussed in Chapter 16.)

Display 14.1 Some Methods in the Class ArrayList (part 3 of 3)

806 CHAPTER 14 Generics and the ArrayList Class

The “for-each” Loop

In Chapter 16, we will cover a family of classes known as collections. The ArrayList
classes are our first examples of collection classes. Starting with version 5.0, Java has
added a new kind of for loop that can cycle through all the elements in a collection
and can, in particular, cycle through all the elements in an ArrayList. This new kind
of for loop is called a for-each loop or enhanced for loop. A for-each loop can also
be used to cycle through all the elements in an array. The for-each loop was introduced
for use with arrays in a starred section of Chapter 6, but you need not go back and read
that subsection. The presentation of for-each loops here is complete.

For example, the following code ends with a for-each loop that outputs all the
elements in the ArrayList named mylist:

ArrayList<String> myList = new ArrayList<String>(20);
<Some code to fill myList>
for (String element : myList)
 System.out.println(element);

You can read the line beginning with for as “for each element in myList, do the
following.” Note that the variable, element, has the same type as the elements in the
ArrayList. The variable (in this case, element) must be declared in the for-each loop
as we have done. If you attempt to declare element before the for-each loop, you will
get a compiler error message.

The general syntax for a for-each loop statement is

for (Base_Type Variable : Collection_Object)
 Statement

Be sure to notice that you use a colon (not a semicolon) after the Variable. You may
use any legal variable name for the Variable; you do not have to use element. The only

Why Are Some Parameters of Type Base_Type and Others
of Type Object?
Look at the table of methods in Display 14.1. In some cases, when a parameter is naturally
an object of the base type, the parameter type is the base type, but in other cases, it is the
type Object.

For example, look at the add methods and the second remove method in the table. The
add methods have a parameter of the base type; the remove method has a parameter of
type Object. Why the difference in parameter types? The class ArrayList implements a
number of interfaces and inherits methods from various ancestor classes. These interfaces
and ancestor classes specify that certain parameters have type Object.

For example, in Chapter 7, we explained that the parameter for the equals method is
always of type Object because the method heading is inherited from the class Object.
In other cases, the designers of the ArrayList class were free to specify the parameter
types for the method.

for-each loop

The ArrayList Class 807

Collection_Objects we have seen so far are arrays and ArrayList objects. Although it
is not required, the Statement typically contains the Variable. When the for-each loop
is executed, the Statement is executed once for each element of the Collection_Object.
More specifically, for each element of the Collection_Object, the Variable is set to the
collection element and then the Statement is executed.

The program in Display 14.2 includes an example of a for-each loop as well as
examples of some of the other ArrayList details we have presented.

For-each Loop for ArrayList Objects

SYNTAX

for (Array_Base_Type Variable : ArrayList_Object)Statement

EXAMPLE
for (Integer element : numberList)
 System.out.println(element);

numberList is an ArrayList with base type Integer. This for-each loop outputs the
value of each element in numberList.

A good way to read the first line of the example is “For each element in numberList, do
the following.”

(continued)

Display 14.2 A for-each Loop Used with an ArrayList (part 1 of 2)

 1 import java.util.ArrayList;
 2 import java.util.Scanner;

 3 public class ArrayListDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 ArrayList<String> toDoList = new ArrayList<String>(20);
 8 System.out.println(
 9 "Enter list entries, when prompted.");
10 boolean done = false;
11 String next = null;
12 String answer;
13 Scanner keyboard = new Scanner(System.in);

14 while (!done)
15 {
16 System.out.println("Input an entry:");
17 next = keyboard.nextLine();
18 toDoList.add(next);

808 CHAPTER 14 Generics and the ArrayList Class

Self-Test Exercises

8. Suppose numberList is an object of the class ArrayList<Double>. Give code
that will output all the elements in numberList to the screen.

9. Write a class for sorting strings into lexicographic order that follows the outline
of the class SelectionSort in Display 6.11 of Chapter 6. Your definition,
however, will use an ArrayList of the class ArrayList<String>, rather than
an array of elements of type double. For words, lexicographic order reduces to
alphabetic order if all the words are in either all lowercase or all uppercase letters.
You can compare two strings to see which is lexicographically first by using
the String method compareTo. For strings s1 and s2, s1.compareTo(s2)
returns a negative number if s1 is lexicographically before s2, returns 0 if s1
equals s2, and returns a positive number if s1 is lexicographically after s2. Call

19 System.out.print("More items for the list? ");
20 answer = keyboard.nextLine();
21 if (!(answer.equalsIgnoreCase("yes")))
22 done = true;
23 }

24 System.out.println("The list contains:");
25 for (String entry : toDoList)
26 System.out.println(entry);
27 }
28 }

Sample Dialogue

Enter list entries, when prompted.

Input an entry:

Practice Dancing.

More items for the list? yes

Input an entry:

Buy tickets.

More items for the list? yes

Input an entry:

Pack clothes.

More items for the list? no

The list contains:

Practice Dancing.

Buy tickets.

Pack clothes.

Display 14.2 A for-each Loop Used with an ArrayList (part 2 of 2)

The ArrayList Class 809

extra code
on website

EXAMPLE: Golf Scores

The program in Display 14.3 reads in a list of golf scores and then outputs the
average of the scores and how much each differs from the average. The scores are read
and stored in an ArrayList so that they will be available later in the program to be
output along with how much each differs from the average. This is the kind of thing
that is well suited to being done with an ordinary array. However, it is much easier
and cleaner to use an ArrayList as we did in Display 14.3.

Our program deals with a list of values of type double. But we use an ArrayList
with base type Double to store these values. We did not use an ArrayList with base
type double because there is no such thing. The base type for an ArrayList must
be a class type (or other reference type). However, thanks to Java’s automatic boxing,
we can program as if an object of type ArrayList<Double> can store values of
type double.

The ArrayList automatically keeps track of how many elements are stored in the
ArrayList. If we had used an ordinary partially filled array in our program instead of
an ArrayList, we would need an extra int variable to keep track of how much of the
array is used. When we use an ArrayList, we are spared all the overhead associated

Self-Test Exercises (continued)

your class StringSelectionSort. A test program you can use to test your class
follows. (The program is included with the source code provided on the website
that accompanies this book.)

Import java.util.ArrayList;

public class StringSelectionSortDemo
{

 public static void main(String[] args)
 {
 ArrayList<String> b = new ArrayList<String>();
 b.add("time");
 b.add("tide");
 b.add("clouds");
 b.add("rain");
 System.out.println("ArrayList values before sorting:");
 for (String e : b)
 System.out.print(e + " ");
 System.out.println();
 StringSelectionSort.sort(b);
 System.out.println("ArrayList values after sorting:");
 for (String e : b)
 System.out.print(e + " ");
 System.out.println();
 }
}

(continued)

810 CHAPTER 14 Generics and the ArrayList Class

Display 14.3 Golf Score Program (part 1 of 3)

 1 import java.util.ArrayList;
 2 import java.util.Scanner;

 3 public class GolfScores
 4 {
 5 /**
 6 Shows differences between each of a list of golf scores and their

 average.
 7 */
 8 public static void main(String[] args)
 9 {
10 ArrayList<Double> score = new ArrayList<Double> ();

11 System.out.println("This program reads golf scores and shows");
12 System.out.println("how much each differs from the average.");

13 System.out.println("Enter golf scores:");
14 fillArrayList(score);
15 showDifference(score);
16 }

17 /**
18 Reads values into the array a.
19 */
20 public static void fillArrayList(ArrayList<Double> a)

with partially filled arrays. Those details are taken care of for us automatically. The
code for those details is in the definition of the ArrayList class, but there is no need
to look at that code. That code is all implementation detail that we need not worry
about when using an ArrayList.

Notice the use of for-each loops in our program. The cleanest and easiest way to
cycle through all the elements in an ArrayList is to use a for-each loop.

It is instructive to compare the program in Display 14.3, which uses an ArrayList,
with the program in Display 6.4, which does the same thing but uses an ordinary
array. The version that uses an ArrayList is much cleaner and even much shorter
than the one that uses an ordinary array. This is because an ArrayList does so many
things for you automatically that you would have to explicitly code for if you used
an ordinary array. This is a good example of information hiding and code reuse. The
programmers who defined the ArrayList class did a lot of programming for you so
that your programming task is simpler than it would otherwise be.

Parameters of type ArrayList<Double>()
are handled just like any other class parameter.

EXAMPLE: (continued)

The ArrayList Class 811

21 {
22 System.out.println("Enter a list of nonnegative numbers.");
23 System.out.println(

 "Mark the end of the list with a negative number.");
24 Scanner keyboard = new Scanner(System.in);

25 double next;
26 next = keyboard.nextDouble();
27 while (next >= 0)
28 {
29 a.add(next);
30 next = keyboard.nextDouble();
31 }
32 }
33 /**
34 Returns the average of numbers in a.
35 */
36 public static double computeAverage(ArrayList<Double> a)
37 {
38 double total = 0;
39 for (Double element : a)
40 total = total + element;
41 int numberOfScores = a.size();
42 if (numberOfScores > 0)
43 {
44 return (total/numberOfScores);
45 }
46 else
47 {
48 System.out.println("ERROR: Trying to average 0 numbers.");
49 System.out.println("computeAverage returns 0.");
50 return 0;
51 }
52 }

53 /**
54 Gives screen output showing how much each of the elements
55 in a differ from their average.
56 */
57 public static void showDifference(ArrayList<Double> a)
58 {
59 double average = computeAverage(a);
60 System.out.println("Average of the " + a.size()
61 + " scores = " + average);
62 System.out.println("The scores are:");
63 for (Double element : a)
64 System.out.println(element + " differs from average by "
65 + (element — average));
66 }
67 }

Display 14.3 Golf Score Program (part 2 of 3)

(continued)

Because of automatic boxing, we can treat
values of type double as if their type
were Double.

A for-each loop is the nicest way to
cycle through all the elements in an
ArrayList.

812 CHAPTER 14 Generics and the ArrayList Class

Sample Dialogue

This program reads golf scores and shows

how much each differs from the average.

Enter golf scores:

Enter a list of nonnegative numbers.

Mark the end of the list with a negative number.

69 74 68 —1

Average of the 3 scores = 70.3333

The scores are:

69.0 differs from average by —1.33333

74.0 differs from average by 3.66667

68.0 differs from average by —2.33333

Display 14.3 Golf Score Program (part 3 of 3)

TIP: Use trimToSize to Save Memory

ArrayLists automatically increase their capacity when your program needs them to
have additional capacity. However, the capacity may increase beyond what your program
requires. Also, when your program needs less capacity in an ArrayList, the ArrayList
does not automatically shrink. If your ArrayList has a large amount of excess capacity,
you can save memory by using the method trimToSize to shrink the capacity of an
ArrayList. If list is an ArrayList, an invocation of list.trimToSize() will shrink
the capacity of the ArrayList list down to the size of list, so that there is no unused
capacity in list. Normally, you should use trimToSize only when you know that the
ArrayList will not need its extra capacity later. ■

trimToSize

PITFALL: The clone Method Makes a Shallow Copy ★

There are situations in which you would like to make an independent copy of an
ArrayList object; that is, you would like to make a deep copy of the ArrayList
object. (Deep copying and shallow copying were discussed in Chapter 5; you may
want to review that material.) For example, if you define a class with a private
instance variable of an ArrayList type, then you would like an accessor method
to return a deep copy of the ArrayList stored in the private instance variable. The
reason you want a deep copy is the same as the reason that you want a deep copy of
an array instance variables. This was discussed in Chapter 6 in the subsection entitled
“Privacy Leaks with Array Instance Variables.” It would be a good idea to review that
subsection before going on with reading this subsection.

As we have often observed, the assignment operator merely copies a reference so that
you have another name for the object being copied. So, you do not have an independent

The ArrayList Class 813

PITFALL: (continued)

copy. You have what is known as a shallow copy. For example, assume that Pet is a
class with the usual kinds of accessor methods and consider the following code:

ArrayList<Pet> petList1 = new ArrayList<Pet>();
<Some code to set the instance variables of elements of petList1.>
ArrayList<Pet> petList2 = petList1;

petList2 and petList1 are just two names for the same ArrayList object. Making
a change to petList1 or to an element of petList1 will also change petList2
because they are the same list.

If you want an independent copy (deep copy) of petList1, you might think the
following would give you your independent copy:

ArrayList<Pet> petList2 = petList1.clone();

Unfortunately, the clone method also makes a shallow copy. There is no built-in
method to give you a deep copy (independent copy) of an ArrayList.

When you need a deep copy of an ArrayList, you will have to resort to some ad
hoc tricks. If you have a way to make a deep copy of objects of the base type, then you
can create a deep copy of each element in the ArrayList and place them into a new
ArrayList object. This is the exact same approach as the one we discussed for mak-
ing a deep copy of an ordinary array in the subsection of Chapter 6 entitled “Privacy
Leaks with Array Instance Variables.” The situation with respect to deep copying of an
ArrayList is exactly the same as the situation with respect to deep copying of an ordi-
nary array. Although the details of this subsection may seem subtle and difficult, they
are not new. You have already faced the exact same problem with ordinary arrays. ■

Self-Test Exercises

10. Can you have an ArrayList of ints?

11. The following for-each loop was used in the method showDifference in
Display 14.3. Rewrite it as an ordinary for loop. This should help you to see
how much cleaner it is to use a for-each loop.

for (Double element : a)
 System.out.println(element + " differs from average by "

 + (element – average));

The Vector Class

The Java standard libraries have a class named Vector that behaves almost exactly
the same as the class ArrayList. In fact, everything we have said about the class
ArrayList holds true for the Vector class. Although in almost all situations, you
could use either the class ArrayList or the class Vector, a clear preference seems to be

Vector

814 CHAPTER 14 Generics and the ArrayList Class

developing among programmers for the class ArrayList. There are some differences
between the classes Vector and ArrayList, but the differences involve material we
have not covered. If you encounter the class Vector in somebody’s code, chances are
the class Vector could be replaced by the class ArrayList, which would require at
most cosmetic changes in the code.1

Parameterized Classes and Generics

The class ArrayList is a parameterized class. It has a parameter, which we have
been denoting Base_Type, that can be replaced by any reference type to obtain a class
for ArrayLists with the specified base type. ArrayList is just a class that somebody
defined (and placed in the standard Java library package java.util), so you should
also be able to define these kinds of classes. Starting with version 5.0, Java allows
class definitions with parameters for types. These classes that have type parameters are
called parameterized classes or generic definitions or, more simply, generics. You
already know how to use classes with a type parameter, because we have been using the
parameterized class ArrayList. In Section 14.2, we will show you how to write your
own parameterized classes.

1 The biggest difference between the Vector and ArrayList classes is that Vectors are synchronized
whereas ArrayLists are not. However, synchronization is a topic that we do not cover and is not
relevant to the kinds of programming we are doing.

parameterized
class

generics

PITFALL: Nonparameterized ArrayList and Vector Classes

The ArrayList and Vector classes we discussed in this section have a type parameter
for the base type. There are also ArrayList and Vector classes with no parameter
for the base type. (They have base type Object.) These ArrayList and Vector
classes without type parameters are left over from earlier versions of Java. When
checking details in the Java documentation, be sure you get the documentation for the
ArrayList and Vector classes that have a type parameter. Using notation we introduce
in Section 14.2, the versions with type parameters are usually written as ArrayList<E>
and Vector<E> or as ArrayList<T> and Vector<T> in the Java documentation. ■

14.2 Generics

You can have this dish prepared with any type of meat or fish.

Entry on a restaurant menu

Starting with version 5.0, Java allows class definitions that contain a parameter (or
parameters) for a type (or types). In this section, we teach you how to write class
definitions that contain a type parameter.

Generics 815

Generic Basics

Classes and methods can have a type parameter. The type parameter may then have any
reference type, and hence any class type, plugged in for the type parameter. This plugging
in produces a specific class type or method. For example, Display 14.4 shows a very simple
class definition with a type parameter T. You may use any nonkeyword identifier for the
type parameter; you need not use T. However, by convention, type parameters start with
an uppercase letter, and there is some tradition of using a single letter for a type parameter.
Starting with an uppercase letter makes sense because typically a class type is plugged in for
the type parameter. The tradition of using a single letter is not so compelling.

A class definition with a type parameter is stored in a file and compiled just like
any other class. For example, the parameterized class shown in Display 14.4 would be
stored in a file named Sample.java. Once the parameterized class is compiled, it can
be used like any other class, except that when used in your code, you must specify a
class type to be plugged in for the type parameter. For example, the class Sample from
Display 14.4 could be used as follows:

Sample<String> object1 = new Sample<String>();
object1.setData("Hello");
System.out.println(object1.getData());
Sample<Pet> object2 = new Sample<Pet>();
Pet p = new Pet();
<Some code to set the data for the object p>
object2.setData(p);

The class Pet can be as defined in Chapter 4, but the details do not matter; it could be
any class.

A class, such as Sample<String>, that you obtain from a generic class by plugging
in a type for the type parameter is said to instantiate the generic class. So, we would
say “Sample<String> instantiates the generic class Sample.”

Notice the angular bracket notation for the type parameter and also for the class
type that is plugged in for the type parameter.

type
parameter

instantiate

Display 14.4 A Class Definition with a Type Parameter

 1 public class Sample<T>
 2 {
 3 private T data;

 4 public void setData(T newData)
 5 {
 6 data = newData;
 7 }

 8 public T getData()
 9 {
10 return data;
11 }
12 }

T is a parameter for a type.

816 CHAPTER 14 Generics and the ArrayList Class

Class Definition with a Type Parameter
You can define classes with a parameter for a type. Such a class is called a generic class
or a parameterized class. The type parameter is included in angular brackets after the
class name in the class definition heading. You may use any nonkeyword identifier for the
type parameter, but by convention, the type parameter starts with an uppercase letter.
The type parameter may be used like any other type in the definition of the class. (There
are some restrictions on where the type parameter can be used. These are discussed
later in the Pitfall section entitled “A Type Parameter Cannot Be Used Everywhere a Type
Name Can Be Used.”) For an example, see Display 14.4.

A generic class is used like any other class, except that you specify a reference type,
typically a class type, to be plugged in for the type parameter. This class type (or other
reference type) is given in angular brackets after the name of the generic class, as shown in
the following example:

EXAMPLE

Sample<String> object1 = new Sample<String>();
object1.setData("Hello");

Sample<String> is said to instantiate the generic class Sample.

Type Inference in Java 7
Starting with version 7, Java supports a feature called type inference. In type inference,
Java is able to infer the base type in the call to the constructor based on the base type used
in the variable declaration. That is, the following

ClassName<Base_Type> Object_Name = new ClassName<Base_Type>();

can equivalently be written in Java 7 as

ClassName<Base_Type> Object_Name = new ClassName<>();

The new format saves a little bit of typing and is also somewhat cleaner to read. However,
programmers have been using the earlier format for many years, so you are likely to see it
in existing code. For greater compatibility, most of the examples in this book do not use the
new syntax supported in JDK 7.

EXAMPLES

ArrayList<String> list = new ArrayList<>();
ArrayList<Double> list2 = new ArrayList<>(30);

Generics 817

TIP: Compile with the -Xlint Option

There are many pitfalls that you can encounter when using type parameters. If you
compile with the -Xlint option, you will receive more informative diagnostics of
any problems or potential problems in your code. For example, the class Sample in
Display 14.4 should be compiled as follows:

javac -Xlint Sample.java

If you are using an IDE to compile your programs, check your documentation to see
how to set compiler options. (For the TextPad environment, you can set compiler
options in the Preferences box under the Configure menu.)

When compiling with the -Xlint option, you will get more warnings than you
would otherwise get. A warning is not an error, and if the compiler gives only warnings
and no error message, then the class has compiled and can be used. However, in most
cases, be sure you understand the warning and feel confident that it does not indicate a
problem, or else change your code to eliminate the warning. One warning that you may
get on some programs in this text is “no definition of serialVersionUID.” Discussion of
this warning is beyond the scope of this book, but you can safely ignore the warning. ■

EXAMPLE: A Generic Class for Ordered Pairs

In Display 14.5, we have given a parameterized class for ordered pairs of values.
Notice that the constructor heading does not include the type parameter T. This is

counter to many people’s intuition, but that is the way it is done. A constructor can use
the type parameter, such as T, as the type for a parameter for the constructor, but the
constructor heading does not include the type parameter in angular brackets, such as <T>.

By using this parameterized class with the type String plugged in for the type
parameter T, as shown next, you get a class whose objects are pairs of String values:

Pair<String> secretPair =
 new Pair<String>("Happy", "Day");

By using this parameterized class with the type Integer plugged in for the type
parameter T, as shown next, you get a class whose objects are pairs of Integer objects:

Pair<Integer> rollOfDice =
 new Pair<Integer>(new Integer(2), new Integer(3));

If Pet is some class you defined, you can plug in Pet for the type parameter T, as
shown next, to get a class whose objects are pairs of objects of type Pet:

Pet male = new Pet();
Pet female = new Pet();
<Some code to set the data for the objects male and female.>
Pair<Pet> breedingPair =
 new Pair<Pet>(male, female);

Display 14.6 contains a simple example of using our generic class Pair.

818 CHAPTER 14 Generics and the ArrayList Class

Display 14.5 A Generic Ordered Pair Class (part 1 of 2)

 1 public class Pair<T>
 2 {
 3 private T first;
 4 private T second;

 5 public Pair()
 6 {
 7 first = null;
 8 second = null;
 9 }

10 public Pair(T firstItem, T secondItem)
11 {
12 first = firstItem;
13 second = secondItem;
14 }

15 public void setFirst(T newFirst)
16 {
17 first = newFirst;
18 }

19 public void setSecond(T newSecond)
20 {
21 second = newSecond;
22 }

23 public T getFirst()
24 {
25 return first;
26 }

27 public T getSecond()
28 {
29 return second;
30 }

31 public String toString()
32 {
33 return ("first: " + first.toString() + "\n"
34 + "second: " + second.toString());
35 }
36

Constructor headings do not
include the type parameter in
angular brackets.

Generics 819

37 public boolean equals(Object otherObject)
38 {
39 if (otherObject = = null)
40 return false;
41 else if (getClass() != otherObject.getClass())
42 return false;
43 else
44 {
45 Pair<T> otherPair = (Pair<T>)otherObject;
46 return (first.equals(otherPair.first)
47 && second.equals(otherPair.second));
48 }
49 }
50 }

Display 14.5 A Generic Ordered Pair Class (part 2 of 2)

Terminology
The terms generic class and parameterized class mean the same thing, namely a class with
one or more type parameters.

Display 14.6 Using Our Ordered Pair Class (part 1 of 2)

 1 import java.util.Scanner;

 2 public class GenericPairDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Pair<String> secretPair =
 7 new Pair<String>("Happy", "Day");
 8
 9 Scanner keyboard = new Scanner(System.in);
10 System.out.println("Enter two words:");
11 String word1 = keyboard.next();
12 String word2 = keyboard.next();
13 Pair<String> inputPair =
14 new Pair<String>(word1, word2);
15 if (inputPair.equals(secretPair))
16 {
17 System.out.println("You guessed the secret words");
18 System.out.println("in the correct order!");

(continued)

820 CHAPTER 14 Generics and the ArrayList Class

19 }
20 else
21 {
22 System.out.println("You guessed incorrectly.");
23 System.out.println("You guessed");
24 System.out.println(inputPair);
25 System.out.println("The secret words are");
26 System.out.println(secretPair);
27 }
28 }
29 }

Sample Dialogue

Enter two words:

two words

You guessed incorrectly.

You guessed

first: two

second: words

The secret words are

first: Happy

second: Day

Display 14.6 Using Our Ordered Pair Class (part 2 of 2)

PITFALL: A Generic Constructor Name Has No Type Parameter

The class name in a parameterized class definition has a type parameter attached, such
as Pair<T> in Display 14.5. This can mislead you into thinking you need to use the
type parameter in the heading of the constructor definition, but you do not repeat
the type parameter specification <T> in the heading of the constructor definition. For
example, use

public Pair()

Do not use

public Pair<T>()

A constructor can use the type parameter, such as T, as the type for a parameter for
the constructor, as in the following, but the constructor heading does not include the
type parameter in angular brackets, such as <T>:

public Pair(T firstItem, T secondItem)

For a complete example, see Display 14.5.
Sometimes it seems that people stay up late at night thinking of ways to make

things confusing. As we just noted, in the definition of a parameterized class, a

Generics 821

PITFALL: You Cannot Plug in a Primitive Type for a Type Parameter

The type plugged in for a type parameter must be a reference type. It cannot be a primitive
type such as int, double, or char. However, now that Java has automatic boxing, this
is not a big restriction in practice. For example, if you want Pair<int>, you cannot
have it, but you can have Pair<Integer>, and thanks to automatic boxing, you can use
Pair<Integer> with int values. This is illustrated by the program in Display 14.7.

The most typical type to plug in for a type parameter is a class type. However, you
can plug in any reference type. So, in particular, you can plug in an array type for a
type parameter. ■

PITFALL: A Type Parameter Cannot Be Used Everywhere a Type
Name Can Be Used

Within the definition of a parameterized class definition, there are places where
an ordinary class name would be allowed but a type parameter is not allowed. In
particular, you cannot use the type parameter in simple expressions using new to
create a new object. For example, the following are all illegal within the definition of
a parameterized class definition with type parameter T:

T object = new T(); //The first T is legal,
 //the second one is illegal.
T[] a = new T[10]; //The first T is legal,
 //the second one is illegal.

This restriction is not as arbitrary as it might at first appear. In the first case, T is
not being used as a type name; it is being used as a constructor name. In the second
case, T is being used as something like a constructor, although it is not officially a
constructor. ■

PITFALL: (continued)

constructor has no type parameter in angular brackets. So, you see the following
in Display 14.5:

public Pair(T firstItem, T secondItem)

But as shown in Display 14.6, when you instantiate a generic class by specifying a
type for the type parameter, you do specify the type in angular brackets when writing
the constructor name, as in the following from Display 14.6:

Pair<String> secretPair =
 new Pair<String>("Happy", "Day");

However, this second case is not hard to remember. If you leave out the <String>, Java
would not know which Pair class you meant. If you leave out the <String>, the compiler
could not tell if you meant Pair<String>, Pair<Double>, or some other Pair class. ■

822 CHAPTER 14 Generics and the ArrayList Class

PITFALL: An Instantiation of a Generic Class Cannot be
an Array Base Type

Arrays such as the following are illegal (the generic class Pair is the one defined in
Display 14.5):

Pair<String>[] a = new Pair<String>[10]; //Illegal

This is a reasonable thing to want to do, but it is not allowed because of technical
details having to do with how Java implements generic classes. The full explanation
for this restriction is beyond the scope of this book. ■

Display 14.7 Using Our Ordered Pair Class and Automatic Boxing (part 1 of 2)

 1 import java.util.Scanner;

 2 public class GenericPairDemo2
 3 {
 4 public static void main(String[] args)
 5 {
 6 Pair<Integer> secretPair =
 7 new Pair<Integer>(42, 24);
 8
 9 Scanner keyboard = new Scanner(System.in);
10 System.out.println("Enter two numbers:");
11 int n1 = keyboard.nextInt();
12 int n2 = keyboard.nextInt();
13 Pair<Integer> inputPair =
14 new Pair<Integer>(n1, n2);
15 if (inputPair.equals(secretPair))
16 {
17 System.out.println("You guessed the secret numbers");
18 System.out.println("in the correct order!");
19 }
20 else
21 {
22 System.out.println("You guessed incorrectly.");
23 System.out.println("You guessed");
24 System.out.println(inputPair);
25 System.out.println("The secret numbers are");
26 System.out.println(secretPair);
27 }
28 }
29 }

Automatic boxing allows you
to use an int argument for
an Integer parameter.

Generics 823

Sample Dialogue

Enter two numbers:

42 24

You guessed the secret numbers

in the correct order!

Display 14.7 Using Our Ordered Pair Class and Automatic Boxing (part 2 of 2)

TIP: A Class Definition Can Have More Than One Type Parameter

A generic class definition can have any number of type parameters. The multiple type
parameters are listed in angular brackets just as in the single type parameter case, but
are separated by commas. For example, in Display 14.8, we have rewritten the class
Pair so the first and second items of a pair can be of different types. In Display 14.9,
we give a simple example of using our generic class with two type parameters. ■

Display 14.8 Multiple Type Parameters (part 1 of 2)

 1 public class TwoTypePair<T1, T2>
 2 {
 3 private T1 first;
 4 private T2 second;

 5 public TwoTypePair()
 6 {
 7 first = null;
 8 second = null;
 9 }

10 public TwoTypePair(T1 firstItem, T2 secondItem)
11 {
12 first = firstItem;
13 second = secondItem;
14 }

15 public void setFirst(T1 newFirst)
16 {
17 first = newFirst;
18 }
19 public void setSecond(T2 newSecond)
20 {
21 second = newSecond;
22 }
23 public T1 getFirst()

(continued)

824 CHAPTER 14 Generics and the ArrayList Class

24 {
25 return first;
26 }

27 public T2 getSecond()
28 {
29 return second;
30 }

31 public String toString()
32 {
33 return ("first: " + first.toString() + "\n"
34 + "second: " + second.toString());
35 }
36
37 public boolean equals(Object otherObject)
38 {
39 if (otherObject = = null)
40 return false;
41 else if (getClass() != otherObject.getClass())
42 return false;
43 else
44 {
45 TwoTypePair<T1, T2> otherPair =
46 (TwoTypePair<T1, T2>)otherObject;
47 return (first.equals(otherPair.first)
48 && second.equals(otherPair.second));
49 }
50 }
51 }

The first equals is the equals of the type T1.
The second equals is the equals of the type T2.

Display 14.8 Multiple Type Parameters (part 2 of 2)

PITFALL: A Generic Class Cannot Be an Exception Class

If you begin an exception class definition as follows, you will get a compiler error
message:

public class MyException<T> extends Exception //Illegal

It is still illegal if you replace Exception with Error, Throwable, or any descendent
class of Throwable. You cannot create a generic class whose objects are throwable. ■

Generics 825

Bounds for Type Parameters

Sometimes it does not make sense to plug in just any reference type for the type
parameter in a generic class definition. For example, consider the generic class Pair
defined in Display 14.5. Suppose we want to add a method that returns the maximum
of the two elements in an ordered pair. We could add the following method definition
to the class Pair in Display 14.5:

public T max()
{
 if (first.compareTo(second) <= 0)
 return first;
 else
 return second;
}

Display 14.9 Using a Generic Class with Two Type Parameters

 1 import java.util.Scanner;

 2 public class TwoTypePairDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 TwoTypePair<String, Integer> rating =
 7 new TwoTypePair<String, Integer>("The Car Guys", 8);

 8 Scanner keyboard = new Scanner(System.in);
 9 System.out.println(
10 "Our current rating for " + rating.getFirst());
11 System.out.println(" is " + rating.getSecond());

12 System.out.println("How would you rate them?");
13 int score = keyboard.nextInt();
14 rating.setSecond(score);
15 System.out.println(
16 "Our new rating for " + rating.getFirst());
17 System.out.println(" is " + rating.getSecond());
18 }
19 }

Sample Dialogue

Our current rating for The Car Guys

is 8

How would you rate them?

10

Our new rating for The Car Guys

is 10

max

826 CHAPTER 14 Generics and the ArrayList Class

Recall that the method compareTo is required to be a member of any class that
implements the Comparable interface. The Comparable interface is a standard Java
interface that was discussed in Chapter 13. Recall that the Comparable interface has
only the following method heading that must be implemented:

public int compareTo(Object other);

When defining a class that implements the Comparable interface, the programmer is
expected to define compareTo so that it returns

a negative number if the calling object “comes before” the parameter other,

a zero if the calling object “equals” the parameter other,

and a positive number if the calling object “comes after” the parameter other.

This all works fine, except for one problem: This makes sense only if the type
plugged in for the type parameter T satisfies the Comparable interface, but Java allows
you to plug in any type for the type parameter T.

You can have Java enforce this restriction on the possible types that can be plugged
in for T. To ensure that only classes that implement the Comparable interface are
plugged in for T, begin the class definition as follows:

public class Pair<T extends Comparable>

The part extends Comparable is called a bound on the type parameter T. If you
attempt to plug in a type for T that does not implement the Comparable interface, you
will get a compiler error message. Note that you use the keyword extends, not the
keyword implements as you would naturally expect.

Note that the bound extends Comparable is not just an optional little nicety. If
you omit it, you will get an error message from the compiler saying it does not know
about the method compareTo.

This version of the generic class Pair with the method max is summarized in
Display 14.10. On the accompanying website, this version of Pair is in a subdirectory
named Bounded Pair.

A bound on a type may be a class name (rather than an interface name) in which
case only descendent classes of the bounding class may be plugged in for the type
parameters. For example, the following says that only descendent classes of the class
Employee may be plugged in for T, where Employee is some class:

public class SameGenericClass<T extends Employee>

compareTo

extends

bound

Generics 827

Display 14.10 A Bounded Type Parameter

 1 public class Pair<T extends Comparable>
 2 {
 3 private T first;
 4 private T second;

 5 public T max()
 6 {
 7 if (first.compareTo(second) <= 0)
 8 return first;
 9 else
10 return second;
11 }

 <All the constructors and methods given in Display 14.5
are also included as part of this generic class definition.>

12 }

This explains why the keyword extends is used in the bounds expression rather than
implements.

You can have multiple interfaces and possibly one class in a bounds expression. Just
separate the entries with the ampersand sign, &, as in the following example:

public class AnotherGenericClass<T extends Employee & Comparable>

If you have more than one type parameter, the syntax follows the following example:

public class YetAnotherGeneric
 <T1 extends Employee & Comparable, T2 extends Comparable>

You can list any number of interfaces in a bounds expression, but you may list only
one class in a bounds expression. Moreover, if you do list a class and some interfaces,
the class must be first in the list.

multiple
bounds

Type Parameter Bounds

You can specify that the class plugged in for a type parameter must be a descendent class
of a specified class, must implement specified interfaces, or both.

(continued)

828 CHAPTER 14 Generics and the ArrayList Class

Generic Methods ★

(This is a starred subsection because it is needed only for Chapter 16, which covers
the Java collection classes. If you choose to read Chapter 16, you will need to read this
subsection first.)

When you define a generic class, you can use the type parameter in the definitions
of the methods for that generic class. You also can define a generic method that has its
own type parameter that is not the type parameter of any class. This generic method
can be a member of an ordinary (nongeneric) class or a member of some generic class
with some other type parameter. For example,

public class Utility
{
 ...
 public static <T> T getMidpoint(T[] a)
 {
 return a[a.length/2];
 }
 public static <T> T getFirst(T[] a)
 {
 return a[0];
 }
 ...
}

SYNTAX (FOR CLASS DEFINITION HEADINGS)

public class Class_Name
 <Type extends Ancestor_Class & Interface_1 & Interface_2 & ...
 ...& Last_Interface>

If there are multiple type parameters, they are separated by commas. There can be any
number of interfaces but only one ancestor class for each type parameter.

EXAMPLES

public class Pair<T extends Comparable>
public class MyClass<T extends Employee & Comparable>
public class YourClass <T1 extends Employee & Comparable
 & Cloneable, T2 extends Comparable>

Employee is a class. Comparable and Cloneable are interfaces.

TIP: Generic Interfaces

An interface can have one or more type parameters. The details and notation are the
same as they are for classes with type parameters. ■

Generics 829

In this case, the class (Utility) has no type parameters, but the methods
getMidpoint and getFirst each have a type parameter. Note that the type parameter
in angular brackets, <T>, is placed after all the modifiers—in this case, public
static—and before the returned type.

When you invoke one of these generic methods, preface the method name with the
type to be plugged in, given in angular brackets, as in the following examples:

String midString = Utility.<String>getMidpoint(b);

double firstNumber = Utility.<Double>getFirst(c);

Note that the dot is before the type in angular brackets; the type is part of the method
name, not part of the class name. Also note that the methods getMidpoint and
getFirst use different types plugged in for their type parameter. The type parameter
is local to the method, not to the class. (The argument b is an array with base type
String. The argument c is an array with base type Double.)

You can also define such generic methods inside of generic classes, as in the following
example:

public class Sample<T>
{
 private T data;

 public Sample(T forData)
 {
 data = forData;
 }
 public <ViewerType> void showTo(ViewerType viewer)
 {
 System.out.println("Hello " + viewer);
 System.out.println("Data is " + data);
 }
 ...
}

Note that T and ViewerType are different type parameters. T is a type parameter for
the entire class, but ViewerType is a type parameter only for the method showTo.
What follows is a sample use of these generic methods:

Sample<Integer> object = new Sample<Integer>(42);
object.<String>showTo("Friend");

This produces the output

Hello Friend
Data is 42

830 CHAPTER 14 Generics and the ArrayList Class

Inheritance with Generic Classes ★

You can define a generic class to be a derived class of an ordinary class or a derived
class of another generic class. Display 14.11 contains the definition of a generic class
called UnorderedPair, which is a derived class of the generic class Pair (which we
gave in Display 14.5). The class UnorderedPair overrides the definition of equals
that it inherits from Pair. To a programmer using the class, UnorderedPair is just
like the class Pair with one exception. In UnorderedPair, the two components
do not have to be in the same order for two pairs to be equal. Less formally, in the
Pair<String> world, "beer" and "peanuts" is not the same as "peanuts" and
"beer". In the UnorderedPair<String> world, they are the same. This is illustrated
by the demonstration program in Display 14.12.

Just as you would expect, an object of type UnorderedPair<String> is also
of type Pair<String>. As we have seen so far, inheritance with generic classes is
straightforward in most cases. However, there are some situations with subtle pitfalls.
We discuss those next.

Display 14.11 A Derived Generic Class (part 1 of 2)

 1 public class UnorderedPair<T> extends Pair<T>
 2 {
 3 public UnorderedPair()
 4 {
 5 setFirst(null);
 6 setSecond(null);
 7 }

 8 public UnorderedPair(T firstItem, T secondItem)
 9 {
10 setFirst(firstItem);

11 setSecond(secondItem);

12 }

13 public boolean equals(Object otherObject)

14 {

15 if (otherObject = = null)

16 return false;

17 else if (getClass() != otherObject.getClass())

18 return false;

19 else

20 {

21 UnorderedPair<T> otherPair =

22 (UnorderedPair<T>)otherObject;

23 return (getFirst().equals(otherPair.getFirst())

24 && getSecond().equals(otherPair.getSecond()))

25 ||

Generics 831

26 (getFirst().equals(otherPair.getSecond())

27 && getSecond().equals(otherPair.getFirst()));

28 }

29 }

30 }

Display 14.11 A Derived Generic Class (part 2 of 2)

Suppose HourlyEmployee is a derived class of the class Employee. You might
think that an object of type Pair<HourlyEmployee> is also of type Pair<Employee>.
You might think that, but you would be wrong. If G is a generic class, there is no
relationship between G<A> and G, no matter what the relationship is between the
classes A and B.

Display 14.12 Using UnorderedPair

 1 public class UnorderedPairDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 UnorderedPair<String> p1 =
 6 new UnorderedPair<String>("peanuts", "beer");
 7 UnorderedPair<String> p2 =
 8 new UnorderedPair<String>("beer", "peanuts");
 9 if (p1.equals(p2))
10 {
11 System.out.println(p1.getFirst() + " and " +
12 p1.getSecond() + " is the same as");
13 System.out.println(p2.getFirst() + " and "
14 + p2.getSecond());
15 }
16 }
17 }

Sample Dialogue2

peanuts and beer is the same as

beer and peanuts

2A note to the grammar police: I intentionally used “is” instead of “are.” If you read and understand
the text, you will realize that “peanuts and beer” is a single item. Starting the sentence with a lowercase
letter and the absence of a period are also intentional.

832 CHAPTER 14 Generics and the ArrayList Class

Self-Test Exercises

12. (This question refers to the starred section “Generic Methods.” You should skip
this question if you have not yet read that subsection.) Define a generic method
named getMidindex, which is like getMidpoint, but returns the index of the
array midpoint as opposed to the element at the midpoint.

13. (This question refers to the starred section “Inheritance with Generic Classes.”
You should skip this question if you have not yet read that subsection.) Is an
array of type UnorderedPair<String>[] also of type Pair<String>[]?

Chapter Summary

• ArrayList is a parameterized class that is like an array that can grow (and shrink)
while the program is running.

• An ArrayList has a number of methods that allow you to use it as a kind of auto-
mated partially filled array.

• You can cycle through all the elements in an ArrayList using a for-each loop.

• You can define classes with one or more type parameters. Such classes are known as
generic classes.

Answers to Self-Test Exercises

 1. list.add("Hello");

 2. instruction.set(5, "Go");

 3. instruction.add(5, "Go");

 4. No. The index for set must be greater than or equal to 0 and less than the size
of the ArrayList. Thus, you can replace any existing element, but you cannot
place the element at any higher index. This situation is unlike that of an array. If
an array is partially filled to index 10, you can add an element at index 20, as long
as the array is that large. With an ArrayList, you cannot add an element beyond
the last-used index.

 5. No. The index for add must be greater than or equal to 0 and less than or equal to
the size of the ArrayList. Thus, you can replace any existing element or add an ele-
ment to the end of the list, but you cannot place the element at any higher index. This
situation is unlike that of an array. If an array is partially filled to index 10, you can
add an element at index 20, as long as the array is that large. With an ArrayList,
you cannot add an element beyond one more than the last-used index.

Answers to Self-Test Exercises 833

 6. The index for add (that is, index2) is allowed to be one larger than the index for
set (that is, index1). The index for set must be strictly less than the size of the
ArrayList. The index for add can also be equal to the size of the ArrayList.

 7. Yes. The ArrayList can contain more than 20 elements. The number 20 used as
an argument to the constructor merely gives the initial memory allocation for the
ArrayList. More memory is automatically allocated when it is needed.

 8. for (Double element : numberList)

 System.out.println(element);

 9. import java.util.ArrayList;
/**

 Class for sorting an ArrayList of Strings lexicographically
(approximately alphabetically).

*/

public class StringSelectionSort

{

 /**

 Sorts the ArrayList a so that a.get(0), a.get(1),...,

 a.get(a.size() — 1) are in lexicographic order.

 */

 public static void sort(ArrayList<String> a)

 {

 int index, indexOfNextSmallest;

 for (index = 0; index < a.size() 1; index++)

 {//Place the correct value in position index:

 indexOfNextSmallest =

 indexOfSmallest(index, a);

 interchange(index,indexOfNextSmallest, a);

 //a.get(0), a.get(1),...,a.get(index)

 //are sorted. The rest of the

 //elements are in the remaining positions.

 }

 }

 /**

 Precondition: i and j are legal indices for the ArrayList a.

 Postcondition: The values of a.get(i) and

 a.get(j) have been interchanged.

 */

 private static void interchange(

 int i, int j, ArrayList<String> a)

834 CHAPTER 14 Generics and the ArrayList Class

 {

 String temp;

 temp = a.get(i);

 a.set(i, a.get(j));

 a.set(j, temp);

 }

 /**

 Returns the index of the lexicographically first value among

 a.get(startIndex), a.get(startIndex+1),...,a.get(a.size()
— 1)

 */

 private static int indexOfSmallest(

 int startIndex, ArrayList<String> a)

 {

 String min = a.get(startIndex);

 int indexOfMin = startIndex;

 int index;

 for (index = startIndex + 1; index < a.size(); index++)

 if ((a.get(index)).compareTo(min) < 0)

 {

 min = a.get(index);

 indexOfMin = index;

 }

 return indexOfMin;

 }

}

10. No, the base type of an ArrayList cannot be a primitive type, such as int,
 double, or char. You can, however, have an ArrayList with base type Integer
that can be used to store integers.

11. Notice that the following, while correct, is not as easy to understand as the
for-each loop.
for (int i; i < a.size(); i++)

 System.out.println(a.get(i) + " differs from average by "

 + (a.get(i) average));

 12. public static <T> int getMidindex(T[] a)
{

 return a.length/2;

}

13. This is a trick question. As we explained in the text, you cannot have an array of
type UnorderedPair<String>[] or of type Pair<String>[].

Programming Projects 835

Programming Projects

 1. Write a computer program to make use of the dynamic data structure ArrayList
provided in Java. The program should create a list of items available in a depart-
mental store. First add at least five items in the list. Then display those items. Make
use of the methods that can be used with an ArrayList to perform the following
operations:

 a. Fetch the current number of elements available in the list.
 b. Check for a particular item in the list.
 c. Replace an item of a list with a new item.

 Also, in the end convert the latest ArrayList in to an Array and display the items
that are available in the array.

 2. Write a program that uses an ArrayList of parameter type Dictionary to store a
database of words. The Dictionary class should store the term and its synonyms.
Add appropriate accessor and mutator methods.

 Your database program should present a menu that allows the user to add a term,
delete a term, display all terms, search for a specific term, or search for a specific
term and give the user the option to delete it. The search should find any term
where any instance variable contains a target search string. For example, if “Legacy”
is the search target, then the term should be displayed or deleted. Use the "for-
each" loop to iterate through the ArrayList. The program should also check if
the user inputs only text and should prompt the user for “Invalid Input” if the
input is other than text.

 3. Many Global Positioning Satellite (GPS) units can record waypoints. The waypoint
marks the coordinates of a location on a map along with a timestamp. Consider a
GPS unit that stores waypoints in terms of an (X,Y) coordinate on a map together
with a timestamp t that records the number of seconds that have elapsed since the
unit was turned on. Write a program that allows the user to enter as many way-
points as desired, storing each waypoint in an ArrayList, where each waypoint is
represented by a class that you design. Each waypoint represents a successive sample
point during a hike along some route. The coordinates should be input as doubles,
and the timestamp as an integer. Have your program compute the total distance
traveled and the average speed in miles per hour. Use the map scaling factor of
1 = 0.1 miles. For example, if the only two waypoints are (X=1,Y=1,T=0) and
(X=2,Y=1,T=3600), then the hiker traveled a distance of 0.1 miles in 3,600 sec-
onds, or 0.1 miles per hour.

 4. Write a generic class, Marks, with a type parameter M where M is a numeric object
type (e.g., Integer, Double, or any class that extends java.lang.Number). Add
a method named orderAverage that takes an ArrayList of type M and returns
a double type data which is the average of the values in the ArrayList. Use the
doubleValue() method in the Number class to retrieve the value of each number
as a double. Test your method with suitable data. Your program should generate
a compile-time error if your average method is invoked on an ArrayList and a
nonnumeric element is encountered (e.g., Strings).

836 CHAPTER 14 Generics and the ArrayList Class

 5. Create a generic class with a type parameter that simulates drawing an item at
random out of a box. This class could be used for simulating a random drawing.
For example, the box might contain Strings representing names written on a slip
of paper, or the box might contain Integers representing a random drawing for a
lottery based on numeric lottery picks. Create an add method that allows the user
of the class to add an object of the specified type along with an isEmpty method
that determines whether or not the box is empty. Finally, your class should have
a drawItem method that randomly selects an object from the box and returns it.
If the user attempts to draw an item out of an empty box, return null. Write a
main method that tests your class.

 6. Implement a priority queue capable of holding objects of an arbitrary type, T, by
defining a PriorityQueue class that implements the queue with an ArrayList.
A priority queue is a type of list where every item added to the queue also has an
associated priority. Define priority in your application so that those items with the
largest numerical value have the highest priority. Your class should support the
following methods:

 • Add(item, priority)—Adds a new item to the queue with the associated
priority.

 • Remove()—Returns the item with the highest priority and removes it from the
queue. If the user attempts to remove from an empty queue, return null.

 For example, if q is a priority queue defined to take Strings

q.add("X", 10);
q.add("Y", 1);
q.add("Z", 3);

System.out.println(q.remove()); // Returns X
System.out.println(q.remove()); // Returns Z
System.out.println(q.remove()); // Returns Y

 Test your queue on data with priorities in various orders (e.g., ascending, descend-
ing, mixed). You can implement the priority queue by performing a linear search
through the ArrayList. In future courses, you may study a data structure called a
heap that is a more efficient way to implement a priority queue.

 7. Programming Project 6.13 implemented a simple trivia game using an array of
Trivia objects. Redo this project but use an ArrayList of Trivia objects instead
of an array. The run-time behavior should remain identical to before.

 8. In Programming Project 11.9, you were asked to implement a recursive algorithm
to find all files that matched a target file name. Redo this Programming Project
where the recursive method returns an ArrayList of String objects. Each string
should store the pathname to the matching file. Return null if no matching files
are found.

Solution to
Programming
Project 14.7

VideoNote

 9. Use inheritance and classes to represent a deck of playing cards. Create a Card class
that stores the suit (e.g., Clubs, Diamonds, Hearts, Spades) and name (e.g., Ace, 2,
10, Jack) of each card along with appropriate accessors, constructors, and mutators.

 Next, create a Deck class that stores an ArrayList of Card objects. The default
constructor should create objects that represent the standard 52 cards and store
them in the ArrayList. The Deck class should have methods to do the following:

 • Print every card in the deck.

 • Shuffle the cards in the deck. You can implement this by randomly swapping
every card in the deck.

 • Add a new card to the deck. This method should take a Card object as a param-
eter and add it to the ArrayList.

 • Remove a card from the deck. This removes the first card stored in the ArrayList
and returns it.

 • Sort the cards in the deck ordered by name.

 Next, create a Hand class that represents the cards in a hand. Hand should be de-
rived from Deck. This is because a hand is like a more specialized version of a deck;
we can print, shuffle, add, remove, and sort cards in a hand just like cards in a deck.
The default constructor should set the hand to an empty set of cards.

 Finally, write a main method that creates a deck of cards, shuffles the deck, and
creates two hands of 5 cards each. The cards should be removed from the deck and
added to the hand. Test the sort and print functions for the hands and the deck.
Finally, return the cards in the hand to the deck and test to ensure that the cards
have been properly returned.

 You may add additional methods or class variables as desired to implement your
solution.

 10. Do Programming Project 14.9 and extend the program to play blackjack, where
the computer plays the role of the house and the user is a single player playing
against the house. Use standard house rules for hitting or standing. Add more
methods as necessary to implement your program. For an additional challenge,
incorporate a betting component and additional blackjack rules, such as splitting
or insurance.

 11. Do Programming Project 14.9 and extend the program to play five-card stud poker
between two hands. Add more methods as necessary to implement your program.
For an additional challenge, incorporate a betting component.

Programming Projects 837

This page intentionally left blank

15.5 HasH Tables wiTH CHaining 904
A Hash Function for Strings 905
Efficiency of Hash Tables 908

15.6 seTs 909
Fundamental Set Operations 910
Efficiency of Sets Using Linked Lists 915

15.7 Trees 916
Tree Properties 916
Example: A Binary Search Tree Class ★ 919
Efficiency of Binary Search Trees ★ 924

15.1 Java linked lisTs 842
Example: A Simple Linked List Class 842
Working with Linked Lists 846
Node Inner Classes 852
Example: A Generic Linked List 855
The equals Method for Linked Lists 860

15.2 Copy ConsTruCTors and
THe clone MeTHod ★ 862

Simple Copy Constructors and clone
Methods ★ 862

Exceptions ★ 863
Example: A Linked List with a

Deep Copy clone Method ★ 870

15.3 iTeraTors 873
Defining an Iterator Class 874
Adding and Deleting Nodes 879

15.4 variaTions on a linked lisT 884
Doubly Linked List 884
The Stack Data Structure 893
The Queue Data Structure 895
Running Times and Big-O Notation 898
Efficiency of Linked Lists 903

15 Linked Data
Structures

Chapter summary 925 answers to self-Test exercises 926 programming projects 931

If somebody there chanced to be

Who loved me in a manner true

My heart would point him out to me

And I would point him out to you.

GILBERT AND SULLIVAN, Ruddigore, 1887.

Introduction
A linked data structure consists of capsules of data, known as nodes, which are connected
via what are known as links. These links can be viewed as arrows and thought of as
one-way passages from one node to another. The simplest kind of linked data structure
consists of a single chain of nodes, each connected to the next by a link; this is known as a
linked list. A sample linked list can be depicted as shown in Display 15.1. In Display 15.1,
the nodes are represented by boxes that can each hold two kinds of data, a string and
an integer, as in a shopping list. The links are depicted as arrows, which reflect the
fact that your code must traverse the linked list in one direction without backing up.
So there is a first node, a second node, and so on up to the last node. The first node
is called the head node.

That information is all very vague but provides the general picture of what is
going on in a linked list. It becomes concrete when you realize a linked list in some
programming language. In Java, the nodes are realized as objects of a node class. The
data in a node is stored via instance variables. The links are realized as references. Recall
that a reference is simply a memory address. A reference is what is stored in a variable
of a class type. So the link is realized as an instance variable of the type of the node
class itself. In Java, a node in a linked list is connected to the next node by having an
instance variable of the node type contain a reference (that is, a memory address) of
where in memory the next node is stored.

Java comes with a LinkedList library class as part of the java.util package.
It makes sense to use this library class, because it is well designed and well tested
and will save you a lot of work. However, using the library class will not teach you
how to implement linked data structures in Java. To do that, you need to see an
implementation of a simple linked data structure, such as a linked list. So to let you see
how this sort of thing is done in Java, we will construct our own simplified example of
a linked list.

After discussing linked lists, we then go on to discuss more elaborate linked data
structures, including sets, hash tables, and trees.

15 Linked Data Structures

node and link

linked list

head node

Linked Data Structures 841

Prerequisites
If you prefer, you may skip this chapter and go directly to Chapter 16 on collection classes
or to Chapter 17 to begin your study of windowing interfaces using the Swing library. You
have a good deal of flexibility in how you order the later chapters of this book.

This chapter requires material from Chapters 1 through 5, Chapter 14, and simple
uses of inner classes (Section 13.2 of Chapter 13). Section 15.7 on trees additionally
requires Chapter 11 on recursion.

Sections 15.2 through 15.7 do not depend on each other in any essential way. In
particular, you may omit Section 15.2 on cloning and still read the following sections.
Sections 15.2 through 15.7 do not depend in any essential way on the material on
generic linked lists in subsections of Section 15.1.

head
"rolls"

10

"jam"

3

"milk"

1

"tea"

2

end marker

Display 15.1 Nodes and Links in a Linked List

842 CHAPTER 15 Linked Data Structures

15.1 Java Linked Lists
A chain is only as strong as its weakest link.

Thomas Reid’s Essays on the Intellectual Powers of Man, 1786.

A linked list is a linked data structure consisting of a single chain of nodes, each
connected to the next by a link. This is the simplest kind of linked data structure, but it
is nevertheless widely used. In this section, we give examples of linked lists and develop
techniques for defining and working with linked lists in Java.

ExamPLE: A Simple Linked List Class

Display 15.1 is a diagram of a linked list. In the display, the nodes are the boxes. In
your Java code, a node is an object of some node class, such as the class Node1 given
in Display 15.2. Each node has a place (or places) for some data and a place to hold
a link to another node. The links are shown as arrows that point to the node they
“link” to. In Java, the links will be implemented as references to a node stored in an
instance variable of the node type.

The Node1 class is defined by specifying, among other things, an instance variable of
type Node1 that is named link. This allows each node to store a reference to another
node of the same type. There is a kind of circularity in such definitions, but this circularity
is allowed in Java. (One way to see that this definition is not logically inconsistent is to
note that we can draw pictures, or even build physical models, of our linked nodes.)

The first node, or start node, in a linked list is called the head node. If you start at
the head node, you can traverse the entire linked list, visiting each node exactly once.
As you will see shortly, in Java your code must intuitively “follow the link arrows.” In
Display 15.1, the box labeled head is not itself the head node; it is not even a node. The
box labeled head is a variable of type Node1 that contains a reference to the first node in
the linked list—that is, a reference to the head node. The function of the variable head
is that it allows your code to find that first or head node. The variable head is declared
in the obvious way:

Node1 head;

In Java, a linked list is an object that in some sense contains all the nodes of the linked
list. Display 15.3 contains a definition of a linked list class for a linked list such as the one in
Display 15.1. Notice that a linked list object does not directly contain all the nodes in the
linked list. It contains only the instance variable head that contains a reference to the first
or head node. However, every node can be reached from this first or head node. The link
instance variable of the first and every Node1 of the linked list contains a reference to the next
Node1 in the linked list. Thus, the arrows shown in the diagram in Display 15.1 are realized
as references in Java. Each node object of a linked list contains (in its link instance variable)
a reference to another object of the class Node1, and this other object contains a reference to
another object of the class Node1, and so on until the end of the linked list. Thus, a linked
list object, indirectly at least, contains all the nodes in the linked list.

Java Linked Lists 843

Display 15.2 A Node Class

public class Node1
{
 private String item;
 private int count;
 private Node1 link;

 public Node1()
 {
 link = null;
 item = null;
 count = 0;
 }
 public Node1(String newItem, int newCount, Node1 linkValue)
 {
 setData(newItem, newCount);
 link = linkValue;
 }

 public void setData(String newItem, int newCount)
 {
 item = newItem;
 count = newCount;
 }
 public void setLink(Node1 newLink)
 {
 link = newLink;
 }

 public String getItem()
 {
 return item;
 }

 public int getCount()
 {
 return count;
 }

 public Node1 getLink()
 {
 return link;
 }
}

A node contains a reference to another node.
That reference is the link to the next node.

We will define a number of node classes so we
numbered the names as in Node1.

We will give a better definition of a
node class later in this chapter.

844 CHAPTER 15 Linked Data Structures

Display 15.3 A Linked List Class (part 1 of 2)

 1 public class LinkedList1
 2 {
 3 private Node1 head;
 4
 5 public LinkedList1()
 6 {
 7 head = null;
 8 }

 9 /**
10 Adds a node at the start of the list with the specified data.
11 The added node will be the first node in the list.
12 */
13 public void addToStart(String itemName, int itemCount)
14 {
15 head = new Node1(itemName, itemCount, head);
16 }

17 /**
18 Removes the head node and returns true if the list contains at
19 least one node. Returns false if the list is empty.
20 */
21 public boolean deleteHeadNode()
22 {
23 if (head != null)
24 {
25 head = head.getLink();
26 return true;
27 }
28 else
29 return false;
30 }

31 /**
32 Returns the number of nodes in the list.
33 */
34 public int size()
35 {
36 int count = 0;
37 Node1 position = head;
38

We will define a letter linked list class later in
this chapter.

39 while (position != null)
40 {
41 count++;
42 position = position.getLink();
43 }
44 return count;
45 }

46 public boolean contains(String item)
47 {
48 return (find(item) != null);
49 }

50 /**
51 Finds the first node containing the target item, and returns a
52 reference to that node. If target is not in the list, null is

returned.
53 */
54 private Node1 find(String target)
55 {

56 Node1 position = head;
57 String itemAtPosition;
58 while (position != null)
59 {
60 itemAtPosition = position.getItem();
61 if (itemAtPosition.equals(target))
62 return position;
63 position = position.getLink();
64 }
65 return null; //target was not found
66 }
67 public void outputList()
68 {
69 Node1 position = head;
70 while (position != null)
71 {
72 System.out.println(position.getItem() + " "
73 + position.getCount());
74 position = position.getLink();
75 }
76 }
77 }

This last node is indicated
by the link field being equal
to null.

This is the way you
traverse an entire
linked list.

Java Linked Lists 845

Display 15.3 A Linked List Class (part 2 of 2)

846 CHAPTER 15 Linked Data Structures

Working with Linked Lists

When dealing with a linked list, your code needs to be able to “get to” that first or head
node, and you need some way to detect when the last node is reached. To get your
code to the first node, use a variable of type Node1 that always contains a reference to
the first node. In Display 15.3, the variable with a reference to the first node is named
head. From that first or head node, your code can follow the links through the linked
list. But how does your code know when it is at the last node in a linked list?

In Java, indicate the end of a linked list by setting the link instance variable of the
last node in the linked list to null, as shown in Display 15.4. That way your code can
test whether or not a node is the last node in a linked list by testing whether its link
instance variable contains null. Remember that you check for a link being “equal” to
null by using ==, and not using any equals method.

Also use null to indicate an empty linked list. The head instance variable contains
a reference to the first node in the linked list, or it contains null if the linked list is
empty (that is, if the linked list contains no nodes). The only constructor sets this head
instance variable to null, indicating that a newly created linked list is empty.

head
"rolls"

10

"jam"

3

"milk"

1

"tea"

2

null

position

This reference is
position.getLink().

When position is at this last node,
position.getLink() == null.

empty list

Display 15.4 Traversing a Linked List

Indicating the End of a Linked List

The last node in a linked list should have its link instance variable set to null. That way,
your code can check whether a node is the last node by checking whether its link instance
variable is equal to null.

an Empty List Is Indicated by null

Suppose the variable head is supposed to contain a reference to the first node in a linked
list. Linked lists usually start out empty. To indicate an empty linked list, give the variable
head the value null. This is traditional and works out nicely for many linked list manipulation
algorithms.

Before we go on to discuss how nodes are added and removed from a linked list,
let us suppose that the linked list already has a few nodes and that you want to write
out the contents of all the nodes to the screen. You can do this with the method
outputList (Display 15.3), whose body is reproduced here:

Node1 position = head;
while (position != null)
{
 System.out.println(position.getItem() + " "
 + position.getCount());
 position = position.getLink();
}

The method uses a local variable named position that contains a reference to one
node. The variable position starts out with the same reference as the head instance
variable, so it starts out positioned at the first node. The position variable then has its
position moved from one node to the next with the assignment

position = position.getLink();

This is illustrated in Display 15.4. To see that this assignment “moves” the position
variable to the next node, note that the position variable contains a reference to the
node pointed to by the position arrow in Display 15.4. So, position is a name for that
node, and position.link is a name for the link to the next node. The value of link is
produced with the accessor method getLink. Thus, a reference to the next node in the
linked list is position.getLink(). You “move” the position variable by giving it the
value of position.getLink().

traversing a
linked list

Java Linked Lists 847

848 CHAPTER 15 Linked Data Structures

The method outputList continues to move the position variable down the
linked list and outputs the data in each node as it goes along. When position reaches
the last node, it outputs the data in that node and then again executes

position = position.getLink();

If you study Display 15.4, you will see that when position leaves the last node, its
value is set to null. At this point, we want to stop the loop, so we iterate the loop

while (position != null)

A similar technique is used to traverse the linked list in the methods size and find.
Next let us consider how the method addToStart adds a node to the start of the

linked list so that the new node becomes the first node in the list. It does this with the
single statement

head = new Node1(itemName, itemCount, head);

The new node is created with

new Node1(itemName, itemCount, head)

which returns a reference to this new node. The assignment statement sets the variable
head equal to a reference to this new node, making the new node the first node in
the linked list. To link this new node to the rest of the list, we need only set the link
instance variable of the new node equal to a reference to the old first node. But we have
already done that: head used to point to the old first node, so if we use the name head
on the right-hand side of the assignment operator, head will denote a reference to the old
first node. Therefore, the new node produced by

new Node1(itemName, itemCount, head)

points to the old first node, which is just what we wanted. This is illustrated in Display 15.5.
Later, we will discuss adding nodes at other places in a linked list, but the easiest

place to add a node is at the start of the list. Similarly, the easiest place to delete a node
is at the start of the linked list.

The method deleteHeadNode removes the first node from the linked list and
leaves the head variable pointing to (that is, containing a reference to) the old second
node (which is now the first node) in the linked list. This is done with the following
assignment:

head = head.getLink();

adding a
node

removing a
node

new Node("beer", 6, head)
creates this node and positions
it here.

new Node("beer", 6, head)
moves head to the new node.

"rolls"

10

"jam"

3

"milk"

1

"tea"

2

null

head

"beer"

6

automatic
garbage

collection

Display 15.5 Adding a Node at the Start

This removes the first node from the linked list and leaves the linked list one node
shorter. But what happens to the deleted node? At some point, Java will automatically
collect it, along with any other nodes that are no longer accessible, and recycle the
memory they occupy. This is known as automatic garbage collection.

Display 15.6 contains a simple program that demonstrates how some of the methods
in the class LinkedList1 behave.

Java Linked Lists 849

850 CHAPTER 15 Linked Data Structures

Display 15.6 A Linked List Demonstration

 1 public class LinkedList1Demo
 2 {
 3 public static void main(String[] args)
 4 {
 5 LinkedList1 list = new LinkedList1();
 6 list.addToStart("Apples", 1);
 7 list.addToStart("Bananas", 2);
 8 list.addToStart("Cantaloupe", 3);
 9 System.out.println("List has " + list.size()
10 + " nodes.");
11 list.outputList();
12 if (list.contains("Cantaloupe"))
13 System.out.println("Cantaloupe is on list.");
14 else
15 System.out.println("Cantaloupe is NOT on list.");

16 list.deleteHeadNode();

17 if (list.contains("Cantaloupe"))
18 System.out.println("Cantaloupe is on list.");
19 else
20 System.out.println("Cantaloupe is NOT on list.");

21 while (list.deleteHeadNode())
22 ; //Empty loop body
23 System.out.println("Start of list:");
24 list.outputList();
25 System.out.println("End of list.");
26 }
27 }

Sample Dialogue

List has 3 nodes.
Cantaloupe 3
Bananas 2
Apples 1
Cantaloupe is on list.
Cantaloupe is NOT on list.
Start of list:
End of list.

Empties the list. There is
no loop body because the
method deleteHeadNode
both performs an action
on the list and returns a
Boolean value.

Cantaloupe is now in
the head node.

 Self-Test Exercises

1. What output is produced by the following code?

LinkedList1 list = new LinkedList1();
list.addToStart("apple pie", 1);

list.addToStart("hot dogs", 12);
list.addToStart("mustard", 1);
list.outputList();

2. Define a boolean valued method named is Empty that can be added to the
class LinkedList1 (Display 15.3). The method returns true if the list is empty
and false if the list has at least one node in it.

3. Define a void method named clear that can be added to the class LinkedList1
(Display 15.3). The method has no parameters and it empties the list.

PITFaLL: Privacy Leaks

It may help you to understand this section if you first review the Pitfall section of the
same name in Chapter 5.

Consider the method getLink in the class Node1 (Display 15.2). It returns a value
of type Node1. That is, it returns a reference to a Node1. In Chapter 5, we said that if
a method (such as getLink) returns a reference to an instance variable of a (mutable)
class type, then the private restriction on the instance variable can easily be defeated
because getting a reference to an object may allow a programmer to change the pri-
vate instance variables of the object. There are a number of ways to fix this, the most
straightforward of which is to make the class Node1 a private inner class in the method
Node1, as discussed in the next subsection.

There is no danger of a privacy leak with the class Node1 when it is used in the
class definition for LinkedList1. However, there is no way to guarantee that the class
Node1 will be used only in this way unless you take some precaution, such as making
the class Node1 a private inner class in the class LinkedList1 Node1.

An alternate solution is to place both of the classes Node1 and LinkedList1 into a
package, and change the private instance variable restriction to the package restric-
tion as discussed in Chapter 7.

Note that this privacy problem can arise in any situation in which a method returns
a reference to a private instance variable of a class type. The method getItem() of the
class Node1 comes very close to having this problem. In this case, the method getItem
causes no privacy leak, but only because the class String is not a mutable class (that
is, it has no methods that will allow the user to change the value of the string without
changing the reference). If instead of storing data of type String in our list we had
stored data of some mutable class type, then defining an accessor method similarly to
getItem would produce a privacy leak. ■

Java Linked Lists 851

852 CHAPTER 15 Linked Data Structures

Node Inner Classes

You can make a linked list, or any similar data structures, self-contained by making the
node class an inner class. In particular, you can make the class LinkedList1 more self-
contained by making Node1 an inner class, as follows:

public class LinkedList1
{
 private class Node1
 {
 < The rest of the definition of Node1 can be

the same as in Display 15.2.>
 }

 private Node1 head;
 <The constructor and methods in Display 15.3 are inserted here.>
}

Note that we have made the class Node1 a private inner class. If an inner class is
not intended to be used elsewhere, it should be made private. Making Node1 a private
inner class hides all objects of the inner class and avoids a privacy leak.

If you are going to make the class Node1 a private inner class in the definition of
LinkedList1, then you can safely simplify the definition of Node1 by eliminating the
accessor and mutator methods (the set and get methods) and just allowing direct
access to the instance variables (item, count, and link) from methods of the outer
class. In Display 15.7, we have written a class similar to LinkedList1 in this way. The
rewritten version, named LinkedList2, is like the class LinkedList1 in Display 15.3
in that it has the same methods that perform basically the same actions. To keep the
discussion simple, LinkedList2 has only one data field instead of two. We could easily
have retained the two data fields, but we wanted a notationally simple example without
any distracting details. (See Self-Test Exercise 8 for a version that has the same kind of
data in each node as in the nodes of LinkedList1.)

Display 15.7 A Linked List Class with a Node Inner Class (part 1 of 3)

 1 public class LinkedList2
 2 {
 3 private class Node
 4 {
 5 private String item;
 6 private Node link;

 7 public Node()
 8 {
 9 item = null;
10 link = null;
11 }

12 public Node(String newItem, Node linkValue)
13 {
14 item = newItem;
15 link = linkValue;
16 }
17 }//End of Node inner class

18 private Node head;

19 public LinkedList2()
20 {
21 head = null;
22 }
23 /**
24 Adds a node at the start of the list with the specified data.
25 The added node will be the first node in the list.
26 */
27 public void addToStart(String itemName)
28 {
29 head = new Node(itemName, head);
30 }

31 /**
32 Removes the head node and returns true if the list contains at
33 least one node. Returns false if the list is empty.
34 */
35 public boolean deleteHeadNode()
36 {
37 if (head != null)
38 {
39 head = head.link;
40 return true;
41 }
42 else
43 return false;
44 }

45 /**
46 Returns the number of nodes in the list.
47 */
48 public int size()
49 {
50 int count = 0;
51 Node position = head;
52 while (position != null)
53 {
54 count++;

Display 15.7 A Linked List Class with a Node Inner Class (part 2 of 3)

(continued)

Java Linked Lists 853

854 CHAPTER 15 Linked Data Structures

55 position = position.link;
56 }
57 return count;
58 }

59 public boolean contains(String item)
60 {
61 return (find(item) != null);
62 }

63 /**
64 Finds the first node containing the target item, and returns a
65 reference to that node. If target is not in the list, null is

returned.
66 */
67 private Node find(String target)
68 {
69 Node position = head;
70 String itemAtPosition;
71 while (position != null)
72 {
73 itemAtPosition = position.item;
74 if (itemAtPosition.equals(target))
75 return position;
76 position = position.link;
77 }
78 return null; //target was not found
79 }
80 public void outputList()
81 {
82 Node position = head;
83 while (position != null)
84 {
85 System.out.println(position.item);
86 position = position.link;
87 }
88 }

89 public boolean isEmpty()
90 {
91 return (head == null);
92 }

93 public void clear()
94 {
95 head = null;
96 }
97 }

Display 15.7 A Linked List Class with a Node Inner Class (part 3 of 3)

Note that the outer class
has direct access to the
inner class's instance
variables, such as link.

Self-Test Exercises

4. Would it make any difference if we changed the Node inner class in Display 15.7
from a private inner class to a public inner class?

5. Keeping the inner class Node in Display 15.7 as private, what difference would
it make if any of the instance variables or methods in the class Node had its access
modifiers changed from private to public or package access?

6. Why does the definition of the inner class Node in Display 15.7 not have
the accessor and mutator methods getLink, setLink, or other get and set
methods for the link fields similar to those in the class definition of Node1 in
Display 15.2?

7. Would it be legal to add the following method to the class LinkedList2 in
Display 15.7?

public Node startNode()
{
 return head;

}

8. Rewrite the definition of the class LinkedList2 in Display 15.7 so that it has
data of a type named Entry, which is a public inner class. Objects of type Entry
have two instance variables defined as follows:

private String item;
private int count;

 This rewritten version of LinkedList2 will be equivalent to LinkedList1 in
that it has the same methods doing the same things, and it will hold equivalent
data in its nodes.

ExamPLE: A Generic Linked List

Display 15.8 shows a generic linked list with a type parameter T for the type of data
stored in a node. This generic linked list has the same methods, coded in basically the
same way, as our previous linked list (Display 15.7), but we used a type parameter for
the type of data in the nodes.

Display 15.10 contains a demonstration program for our generic linked list. The
demonstration program uses the class Entry, defined in Display 15.9, as the type
plugged in for the type parameter T. Note that if you want multiple pieces of data in
each node, you simply use a class type that has multiple instance variables and plug in
this class for the type parameter T.

Java Linked Lists 855

856 CHAPTER 15 Linked Data Structures

 Display 15.8 A Generic Linked List Class (part 1 of 3)

 1 public class LinkedList3<T>
 2 {
 3 private class Node<T>
 4 {
 5 private T data;
 6 private Node<T> link;
 7 public Node()
 8 {
 9 data = null;
10 link = null;

11 }

12 public Node (T newData, Node<T> linkValue)
13 {
14 data = newData;
15 link = linkValue;
16 }
17 }//End of Node<T> inner class
18 private Node<T> head;

19 public LinkedList3()
20 {
21 head = null;
22 }

23 /**
24 Adds a node at the start of the list with the specified data.
25 The added node will be the first node in the list.
26 */
27 public void addToStart(T itemData)
28 {
29 head = new Node<T> (itemData, head);
30 }
31 /**
32 Removes the head node and returns true if the list contains at
33 least one node. Returns false if the list is empty.
34 */
35 public boolean deleteHeadNode()
36 {
37 if (head != null)
38 {
39 head = head.link;
40 return true;
41 }
42 else
43 return false;
44 }
45 /**

This linked list holds objects of type T.
The type T should have well-defined
equals and toString methods.

46 Returns the number of nodes in the list.
47 */
48 public int size()
49 {
50 int count = 0;
51 Node<T> position = head;
52 while (position != null)
53 {
54 count++;
55 position = position.link;
56 }
57 return count;
58 }

59 public boolean contains(T item)
60 {
61 return (find(item) != null);
62 }
63 /**
64 Finds the first node containing the target item, and returns a
65 reference to that node. If target is not in the list, null is

returned.
66 */
67 private Node find(T target)
68 {
69 Node<T> position = head;
70 T itemAtPosition;
71 while (position != null)
72 {
73 itemAtPosition = position.data;
74 if (itemAtPosition.equals(target))
75 return position;
76 position = position.link;
77 }
78 return null; //target was not found
79 }

80 /**
81 Finds the first node containing the target and returns a reference
82 to the data in that node. If target is not in the list, null is

returned.
83 */
84 public T findData(T target)
85 {
86 Node<T> result = find(target);
87 if (result == null)
88 return null;
89 else
90 return result.data;
91 }

Display 15.8 A Generic Linked List Class (part 2 of 3)

(continued)

Type T must have a well-defined
equals for this method to work.

Java Linked Lists 857

858 CHAPTER 15 Linked Data Structures

 92 public void outputList()
 93 {
 94 Node<T> position = head;
 95 while (position != null)
 96 {
 97 System.out.println(position.data);
 98 position = position.link;
 99 }
100 }

101 public boolean isEmpty()
102 {
103 return (head == null);
104 }

105 public void clear()
106 {
107 head = null;
108 }
109 /*
110 For two lists to be equal they must contain the same data items in
111 the same order. The equals method of T is used to compare data

items.
112 */
113 public boolean equals(Object otherObject)
114 {
115 if (otherObject == null)
116 return false;
117 else if (getClass() != otherObject.getClass())
118 return false;
119 else
120 {
121 LinkedList3<T> otherList = (LinkedList3<T>)otherObject;
122 if (size()!= otherList.size())
123 return false;
124 Node<T> position = head;
125 Node<T> otherPosition = otherList.head;
126 while (position != null)
127 {
128 if (!(position.data.equals(otherPosition.data)))
129 return false;
130 position = position.link;
131 otherPosition = otherPosition.link;
132 }
133 return true; //no mismatch was not found
134 }
135 }
136 }

Type T must have a well-defined toString
methods for this to work.

Display 15.8 A Generic Linked List Class (part 3 of 3)

This clears the entire list. Any nodes that
were referenced by head are reclaimed
through automatic garbage collection.

Display 15.9 A Sample Class for the Data in a Generic Linked List

 1 public class Entry
 2 {
 3 private String item;
 4 private int count;

 5 public Entry(String itemData, int countData)
 6 {
 7 item = itemData;
 8 count = countData;
 9 }

10 public String toString()
11 {
12 return (item + " " + count);
13 }

14 public boolean equals(Object otherObject)
15 {
16 if (otherObject == null)
17 return false;
18 else if (getClass() != otherObject.getClass())
19 return false;
20 else
21 {
22 Entry otherEntry = (Entry)otherObject;
23 return (item.equals(otherEntry.item)
24 && (count == otherEntry.count));
25 }
26 }

<There should be other constructors and methods, including accessor
and mutator methods, but we do not use them in this demonstration.>

27 }

Display 15.10 A Generic Linked List Demonstration (part 1 of 2)

 1 public class GenericLinkedListDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 LinkedList3<Entry> list = new LinkedList3<Entry>();

 6 Entry entry1 = new Entry("Apples", 1);
 7 list.addToStart(entry1);
 8 Entry entry2 = new Entry("Bananas", 2);
 9 list.addToStart(entry2);
10 Entry entry3 = new Entry("Cantaloupe", 3);
11 list.addToStart(entry3);
12 System.out.println("List has " + list.size()
13 + " nodes.");

(continued)

Java Linked Lists 859

860 CHAPTER 15 Linked Data Structures

Display 15.10 A Generic Linked List Demonstration (part 2 of 2)

14 list.outputList();
15 System.out.println("End of list.");
16 }
17 }

Sample Dialogue

List has 3 nodes.
Cantaloupe 3
Bananas 2
Apples 1
End of list.

PITFaLL: Using Node Instead of Node<T>

This pitfall is explained by example, using the LinkedList3<T> class in Display 15.8.
However, the lesson applies to any generic linked structure with a node inner class.
The type parameter need not be T and the node class name need not be Node, but for
simplicity, we will use T and Node.

When defining the LinkedList3<T> class in Display 15.8, the type for a node is
Node<T>; it is not Node. However, it is easy to forget the type specification <T> and write
Node instead of Node<T>. If you omit the <T>, you may or may not get a compiler error
message, depending on other details of your code. If you do get a compiler error mes-
sage, it is likely to seem bewilderingly strange. The problem is that Node actually means
something. (We do not have time to stop and explain what Node means, but it means
something similar to a node with data type Object, rather than data type T.) Your only
defense against this pitfall is to be very careful; if you do get a bewildering compiler error
message, look for a missing <T>.

Sometimes a compiler warning message can be helpful when you make this mistake.
If you get a warning that mentions a type cast from Node to Node<T>, look for an
omitted <T>.

Finally, we should note that sometimes your code will compile and even run cor-
rectly if you omit the <T> from Node<T>. ■

The equals method for Linked Lists

The linked lists we presented in Displays 15.3 and 15.7 do not have an equals method.
We did that to keep the examples simple and not detract from the main message.
However, a linked list class should normally have an equals method.

There is more than one approach to defining a reasonable equals method for a
linked list. The two most obvious are the following:

1. Two linked lists are equal if they contain the same data entries (possibly ordered
differently).

equals

2. Two linked lists are equal if they contain the same data entries in the same order;
that is, the data in the first node of the calling object equals the data in the first node
of the other linked list, the data in the two second nodes are equal, and so forth.

It is not true that one of these is the correct approach to defining an equals method
and the other is incorrect. In different situations, you might want different definitions
of equals. However, the most common way to define equals for a linked list is
approach 2. A definition of equals that follows approach 2 and that can be added to the
class LinkedList2 in Display 15.7 is given in Display 15.11. The generic linked list in
Display 15.8 also contains an equals method that follows approach 2.

Note that when we define equals for our linked list with type parameter T, we trust
the programmer who wrote the definition for the type plugged in for T. We are assuming
the programmer has redefined the equals method so that it provides a reasonable test
for equality. Situations such as this are the reason it is so important to always include an
equals method in the classes you define.

Display 15.11 An equals Method for the Linked List in Display 15.7

 1 /*
 2 For two lists to be equal they must contain the same data items in
 3 the same order.
 4 */
 5 public boolean equals(Object otherObject)
 6 {
 7 if (otherObject == null)
 8 return false;
 9 else if (getClass() != otherObject.getClass())
10 return false;
11 else
12 {
13 LinkedList2 otherList = (LinkedList2)otherObject;
14 if (size() != otherList.size())
15 return false;
16 Node position = head;
17 Node otherPosition = otherList.head;
18 while (position != null)
19 {
20 if ((!(position.item.equals(otherPosition.item))))
21 return false;
22 position = position.link;
23 otherPosition = otherPosition.link;
24 }
25 return true; //A mismatch was not found
26 }
27 }

Java Linked Lists 861

862 CHAPTER 15 Linked Data Structures

15.2 Copy Constructors and the clone method ★

There are three ways to do anything:

The right way,

the wrong way,

and the army way.

FILm A Walk in the Sun, 20th Century Fox, Written by Harry Brown and Robert
Rossen, 1945.

The way Java handles cloning, and object copying in general, is complicated and can
be both subtle and difficult. Some authorities think that the clone method was done
so poorly in Java that they prefer to ignore it completely and define their own methods
for copying objects. I have some sympathy for that view, but before you dismiss Java's
approach to cloning, it might be a good idea to see what the approach entails. Linked
data structures, such as linked lists, are an excellent setting for discussing cloning
because they are an excellent setting for discussing deep versus shallow copying.

This section first presents a relatively simple way to define copy constructors and
the clone method, but this approach unfortunately produces only shallow copies. We
then go on to present one way to produce a deep copy clone method and to do so
within the official prescribed rules of the Java documentation.

Readers with very little programming experience may be better off skipping this
entire section until they become more comfortable with Java. Other readers may
prefer to read only the first subsection and possibly the Pitfall “The clone Method Is
Protected in Object ★.”

Simple Copy Constructors and clone methods ★

Display 15.12 contains a copy constructor and clone method definitions that could
be added to the definition of the generic linked list class in Display 15.8. The real
work is done by the private helping method copyOf, so our discussion focuses on the
method copyOf.

The private method copyOf takes an argument that is a reference to the head node
of a linked list and returns a reference to the head node of a copy of that linked list. The
easiest way to do this is to return the argument. This would, however, simply produce
another name for the argument list. We do not want another name; we want another
list. So, the method goes down the argument list one node at a time (with position)
and makes a copy of each node. The linked list of the calling object is built up node by
node by adding these new nodes to its linked list. However, there is a complication. We
cannot simply add the new nodes at the head (start) end of the list being built. If we
did, then the nodes would end up in the reverse of the desired order. So, the new nodes
are added to the end of the linked list being built. The variable end of type Node<T>
is kept positioned at the last node so that it is possible to add nodes at the end of the
linked list being built. In this way, a copy of the list in the calling object is created so
that the order of the nodes is preserved.

Copy Constructors and the clone method 863

The copy constructor is defined by using the private helping method copyOf to
create a copy of the list of nodes. Other details of the copy constructor and the clone
method are done in the standard way.

Although the copy constructor and the clone method each produce a new linked
list with all new nodes, the new list is not truly independent because the data objects
are not cloned. See the Pitfall “The clone Method Is Protected in Object ★” for
a discussion of this point. One way to fix this shortcoming is discussed later in the
Programming Tip entitled “Use a Type Parameter Bound for a Better clone.”

Exceptions ★

A generic data structure, such as the class LinkedList in Display 15.12, is likely
to have methods that throw exceptions. Situations such as a null argument to
the copy constructor might be handled differently in different situations, so it is
best to throw a NullPointerException if this happens and let the programmer
who is using the linked list handle the exception. This is what we did with the
copy constructor in Display 15.12. A NullPointerException is an unchecked
exception, which means that it need not be caught or declared in a throws clause.
When thrown by a method of a linked list class, it can be treated simply as a run-
time error message. The exception can instead be caught in a catch block if there is
some suitable action that can be taken.

Display 15.12 A Copy Constructor and clone Method for a Generic Linked List (part 1 of 3)

 1 public class LinkedList3<T> implements Cloneable
 2 {
 3 private class Node<T>
 4 {
 5 private T data;
 6 private Node<T> link;

 7 public Node()
 8 {
 9 data = null;
10 link = null;
11 }

12 public Node(T newData, Node<T> linkValue)
13 {
14 data = newData;
15 link = linkValue;
16 }
17 }//End of Node<T> inner class

(continued)

This copy constructor and this clone
method do not make deep copies. We
discuss one way to make a deep copy in the
Programming Tip “Use a Type Parameter
Bound for a Better clone.“

864 CHAPTER 15 Linked Data Structures

18 private Node<T> head;
<All the methods from Display 15.8 are in the class definition,
 but they are not repeated in this display.>

19 /**
20 Produces a new linked list, but it is not a true deep copy.
21 Throws a NullPointerException if other is null.
22 */
23 public LinkedList3(LinkedList3<T> otherList)
24 {
25 if (otherList == null)
26 throw new NullPointerException();
27 if (otherList.head == null)
28 head = null;
29 else
30 head = copyOf(otherList.head);
31 }
32
33
34 public LinkedList3<T> clone()
35 {
36 try
37 {
38 LinkedList3<T> copy =
39 (LinkedList3<T>)super.clone();
40 if (head == null)
41 copy.head = null;
42 else
43 copy.head = copyOf(head);
44 return copy;
45 }
46 catch(CloneNotSupportedException e)
47 {//This should not happen.
48 return null; //To keep the compiler happy.
49 }
50 }

51 /*
52 Precondition: otherHead ! = null
53 Returns a reference to the head of a copy of the list
54 headed by otherHead. Does not return a true deep copy.
55 */

Display 15.12 A Copy Constructor and clone Method for a Generic Linked List (part 2 of 3)

56 private Node<T> copyOf(Node<T> otherHead)
57 {
58 Node<T> position = otherHead; //moves down other's list.
59 Node<T> newHead; //will point to head of the copy list.
60 Node<T> end = null; //positioned at end of new growing list.

61 //Create first node:
62 newHead =
63 new Node<T>(position.data, null);
64 end = newHead;
65 position = position.link;

66 while (position != null)
67 {//copy node at position to end of new list.
68 end.link =
69 new Node<T>(position.data, null);
70 end = end.link;
71 position = position.link;
72 }

73 return newHead;
74 }
75 }

Display 15.12 A Copy Constructor and clone Method for a Generic Linked List (part 3 of 3)

Invoking clone with position.data
would be illegal.

Invoking clone with position.data would be illegal.

PITFaLL: The clone method Is Protected in Object ★

When defining the copy constructor and clone method for our generic linked list
(Display 15.12), we would have liked to have cloned the data in the list being copied.
We would have liked to change the code in the helping method copyOf by adding
invocations of the clone method as follows:

newHead =
 new Node((T)(position.data).clone(), null);
end = newHead;
position = position.link;

while (position != null)
 {//copy node at position to end of new list.
 end.link =
 new Node((T)(position.data).clone(), null);
 end = end.link;
 position = position.link;
}

This code is identical to code in copyOf except for the addition of the invocations
of clone and the type casts. (The type casts are needed because Java thinks clone
returns a value of type Object.) If this modified code (with the clone method) would

(continued)

Copy Constructors and the clone method 865

866 CHAPTER 15 Linked Data Structures

compile (and if the type plugged in for T has a well-defined clone method that makes
a deep copy), then this modified code would produce a truly independent linked list
with no references in common with the list being copied. Unfortunately, this code will
not compile.

If you try to compile this code, you will get an error message saying that the method
clone is protected in the class Object. True, we used the type T, not the type Object,
but any class can be plugged in for T. So when the generic linked list is compiled, all
Java knows about the type T is that it is a descendent class of Object. Because the
designers of the Object class chose to make the method clone protected, you simply
cannot use the clone method in the definition of methods such as copyOf.

Why was the clone method labeled protected in Object? Apparently, this was done
for security reasons. If a class could use the clone method unchanged from Object, then
that would open the possibility of copying sections of memory unchanged and unchecked
and so might give unauthorized memory access. The problem is made more serious by the
fact that Java is used to run programs on other machines across the Internet.

The way Java defines the clone method in Object and the way it specifies how
clone should be defined in other classes are controversial. Do not be surprised if some
future version of Java handles the clone method differently. But for now, you are stuck
with these clone problems.

In many situations, the version of copyOf in Display 15.12 (without the use of
clone) is good enough, but there is a way to get a true deep copy. One way to get
a deep copy is to somehow restrict the type T to classes that do have a public clone
method that makes a deep copy. Something such as this can be done and is discussed
in the Programming Tip “Use a Type Parameter Bound for a Better clone.” ■

TIP: Use a Type Parameter Bound for a Better clone ★

One way to overcome the problem discussed in the previous Pitfall section is to place a
bound on the type parameter T (in Display 15.12) so that it must satisfy some suitable
interface. There is no standard interface that does the job, but it is very easy to define
such an interface. The interface PubliclyCloneable given in Display 15.13 is just
the interface we need. This short, simple interface guarantees all that we need to define
generic linked lists whose clone method returns a deep copy.

Note that any class that implements the PubliclyCloneable interface has the
 following three properties:

 1. The class implements the Cloneable interface. (This happens automatically
because PubliclyCloneable extends Cloneable.)

 2. The class has a public clone method.
 3. The clone method for the class makes a deep copy (in the officially sanctioned way).

Condition 3 is not enforced by the Java compiler or run-time software, but like
all interface semantics, it is the responsibility of the programmer defining the class to
ensure that condition 3 is satisfied.

PITFaLL: (continued)

1You might wonder whether we could use a type parameter in the PubliclyCloneable interface
and so avoid some type casts in the definition copyOf. We could do that, but that may be more trou-
ble than it is worth and, at this introductory level of presentation, would be an unnecessary distraction.

It is now easy to define our generic linked list whose clone method produces a deep
copy. The definition is given in Display 15.14. We have already discussed the main
points involved in this definition. The Programming Example subsection, “A Linked
List with a Deep Copy clone Method ★,” discusses some of the minor, but possibly
unclear, details of the definition.1 ■

TIP: (continued)

Display 15.13 The PubliclyCloneable Interface

1 /*
2 The programmer who defines a class implementing this interface
3 has the responsibility to define clone so it makes a deep copy
4 (in the officially sectioned way).
5 */

6 public interface PubliclyCloneable extends Cloneable
7 {
8 public Object clone();
9 }

Display 15.14 A Generic Linked List with a Deep Copy clone Method (part 1 of 3)

 1 public class LinkedList<T extends PubliclyCloneable>
 2 implements PubliclyCloneable
 3 {
 4 private class Node<T>
 5 {
 6 private T data;
 7 private Node<T> link;

 8 public Node()
 9 {
10 data = null;
11 link = null;
12 }

Any class that implements
PubliclyCloneable must have a
public clone method.

Any class that implements
PubliclyCloneable
automatically implements
Cloneable.

(continued)

Copy Constructors and the clone method 867

868 CHAPTER 15 Linked Data Structures

13 public Node(T newData, Node<T> linkValue)
14 {
15 data = newData;
16 link = linkValue;
17 }
18 }//End of Node<T> inner class

19 private Node<T> head;

20 public LinkedList()
21 {
22 head = null;
23 }
24 /**
25 Produces a new linked list, but it is not a true deep copy.
26 Throws a NullPointerException if other is null.
27 */
28 public LinkedList(LinkedList<T> otherList)
29 {
30 if (otherList == null)
31 throw new NullPointerException();
32 if (otherList.head == null)
33 head = null;
34 else
35 head = copyOf(otherList.head);
36 }
37
38 public LinkedList<T> clone()
39 {
40 try
41 {
42 LinkedList<T> copy =
43 (LinkedList<T>)super.clone();
44 if (head == null)
45 copy.head = null;
46 else
47 copy.head = copyOf(head);
48 return copy;
49 }
50 catch(CloneNotSupportedException e)
51 {//This should not happen.
52 return null; //To keep the compiler happy.
53 }
54 }

55 /*
56 Precondition: otherHead != null
57 Returns a reference to the head of a copy of the list
58 headed by otherHead. Returns a true deep copy.
59 */
60 private Node<T> copyOf(Node<T> otherHead)

Display 15.14 A Generic Linked List with a Deep Copy clone Method (part 2 of 3)

 61 {
 62 Node<T> position = otherHead; //moves down other's list.
 63 Node<T> newHead; //will point to head of the copy list.
 64 Node<T> end = null; //positioned at end of new growing list.

 65 //Create first node:
 66 newHead =
 67 new Node<T>((T)(position.data).clone(), null);
 68 end = newHead;
 69 position = position.link;
 70 while (position != null)
 71 {//copy node at position to end of new list.
 72 end.link =
 73 new Node<T>((T)(position.data).clone(), null);
 74 end = end.link;
 75 position = position.link;
 76 }

 77 return newHead;
 78 }
 79
 80 public boolean equals(Object otherObject)
 81 {
 82 if (otherObject == null)
 83 return false;
 84 else if (getClass() != otherObject.getClass())
 85 return false;
 86 else
 87 {
 88 LinkedList<T> otherList = (LinkedList<T>)otherObject;

<The rest of the definition is the same as in Display 15.8. The only difference
between this definition of equals and the one in Display 15.8 is that we
have replaced the class name LinkedList3<T> with LinkedList<T>.>

 89 }

<All the other methods from Display 15.8 are in the class definition,
but are not repeated in this display.>

 90 public String toString()
 91 {
 92 Node<T> position = head;
 93 String theString = "";
 94 while (position != null)
 95 {
 96 theString = theString + position.data + "\n";
 97 position = position.link;
 98 }
 99 return theString;
100 }
101 }

Display 15.14 A Generic Linked List with a Deep Copy clone Method (part 3 of 3)

This definition of copyOf gives a
deep copy of the linked list.

We added a toString method so LinkedList<T>
would have all the properties we want T to have.

Copy Constructors and the clone method 869

870 CHAPTER 15 Linked Data Structures

ExamPLE: A Linked List with a Deep Copy clone Method ★

We have already discussed how and why the clone method of the generic linked
list class in Display 15.14 returns a deep copy. Let us now look at some of the other
details and see an example of using this linked list class.

Note the definition of the clone method. Why did we not simplify it to the
following?

public LinkedList<T> clone()
{
 return new LinkedList<T>(this);
}

This simple, alternative definition would still return a deep copy of the linked list and
would work fine in most situations. It is likely that you would not notice any difference
if you used this definition of clone in place of the one given in Display 15.14.

The only reason for all the other detail in the clone method definition given in
Display 15.14 is to define the clone method as specified in the Java documentation.
The reason that the Java documentation asks for those details has to do with security
issues. (Some might say that there are three ways to define a clone method: the right
way, the wrong way, and the Java way. This extra detail is the Java way.)

If you look only quickly at Display 15.14, you might think the following at the
start of the definition is an unimportant detail:

implements PubliclyCloneable

However, it ensures that the linked list class implements the Cloneable interface.
In order for a class to have a Java-approved clone method, it must implement the
Cloneable interface. It also allows you to make linked lists of linked lists and have a
deep copy clone method in the linked list of linked lists.

A sample class that implements the PubliclyCloneable interface is given in
Display 15.15. Display 15.16 shows a demonstration program that makes a deep
copy clone of a linked list of objects of this sample class.

Display 15.15 A PubliclyCloneable Class (part 1 of 2)

1 public class StockItem implements PubliclyCloneable
2 {
3 private String name;
4 private int number;

5 public StockItem()
6 {
7 name = null;
8 number = 0;
9 }

10 public StockItem(String nameData, int numberData)
11 {
12 name = nameData;
13 number = numberData;
14 }

15 public void setNumber(int newNumber)
16 {
17 number = newNumber;
18 }
19 public void setName(String newName)
20 {
21 name = newName;
22 }

23 public String toString()
24 {
25 return (name + " " + number);
26 }

27 public Object clone()
28 {
29 try
30 {
31 return super.clone();
32 }
33 catch(CloneNotSupportedException e)
34 { //This should not happen.
35 return null; //To keep compiler happy.
36 }
37 }
38

39 public boolean equals(Object otherObject)
40 {
41 if (otherObject == null)
42 return false;
43 else if (getClass() != otherObject.getClass())
44 return false;
45 else
46 {
47 StockItem otherItem = (StockItem) otherObject;
48 return (name.equalsIgnoreCase(otherItem.name)
49 && number == otherItem.number);
50 }
51 }
52 }

Display 15.15 A PubliclyCloneable Class (part 2 of 2)

Copy Constructors and the clone method 871

872 CHAPTER 15 Linked Data Structures

Display 15.16 Demonstration of Deep Copy clone

 1 public class DeepDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 LinkedList<StockItem> originalList =
 6 new LinkedList<StockItem>();
 7 originalList.addToStart(new StockItem("red dress", 1));
 8 originalList.addToStart(new StockItem("black shoe", 2));

 9 LinkedList<StockItem> copyList = originalList.clone();
10 if (originalList.equals(copyList))
11 System.out.println("OK, Lists are equal.");

12 System.out.println("Now we change copyList.");
13 StockItem dataEntry =
14 copyList.findData(new StockItem("red dress", 1));
15 dataEntry.setName("orange pants");

16 System.out.println("originalList:");
17 originalList.outputList();

18 System.out.println("copyList:");
19 copyList.outputList();
20
21 System.out.println("Only one list is changed.");
22 }
23 }

Sample Dialogue

OK, Lists are equal.
Now we change copyList.
originalList:
black shoe 2
red dress 1
copyList:
black shoe 2
orange pants 1
Only one list is changed.

TIP: Cloning Is an “all or Nothing” affair

If you define a clone method, then you should do so following the official Java
guidelines, as we did in Display 15.14. In particular, you should always have the class
implement the Cloneable interface. If you define a clone method in any other way,
you may encounter problems in some situations. If you want to have a method for
producing copies of objects but do not want to follow the official guidelines on how
to define a clone method, then use some other name for your “clone-like” method,
such as copier, or make do with just a copy constructor. ■

Self-Test Exercises

 9. In the definition of copyOf in Display 15.14, can we replace

newHead =
 new Node<T>((T)(position.data).clone(), null);

with the following, which uses the copy constructor of T instead of the clone
method of T?

newHead =
 new Node<T>(new T(position.data), null);

10. The definition of the clone method in Display 15.14 returns a value
of type LinkedList<T>. But the class being defined implements the
PubliclyCloneable interface, and that interface says the value returned must
be of type Object. Is something wrong?

15.3 Iterators

Play it again, Sam.

Attributed (incorrectly) to the movie Casablanca, which contains similar lines.2

When you have a collection of objects, such as the nodes of a linked list, you often need
to step through all the objects in the collection one at a time and perform some action
on each object, such as writing it out to the screen or in some way editing the data in
each object. An iterator is any object that allows you to step through the list in this way.

2There is a Woody Allen movie with this title, but it is based on the misquote from Casablanca, which
was in common use before the movie came out.

iterator

Iterators 873

874 CHAPTER 15 Linked Data Structures

Defining an Iterator Class

In Display 15.17, we have rewritten the class LinkedList2 from Display 15.7 so that
it has an inner class for iterators and a method iterator() that returns an iterator
for its calling object. We have made the inner class List2Iterator public so that we
can have variables of type List2Iterator outside the class LinkedList2, but we do
not otherwise plan to use the inner class List2Iterator outside of the outer class
LinkedList2.

Use of iterators for the class LinkedList2 is illustrated by the program in
Display 15.18. Note that, given a linked list named list, an iterator for list is
produced by the method iterator as follows:

LinkedList2.List2Iterator i = list.iterator();

The iterator i produced in this way can only be used with the linked list named list.
Be sure to notice that outside of the class, the type name for the inner class iterator
must include the name of the outer class as well as the inner iterator class. The class
name for one of these iterators is

LinkedList2.List2Iterator

Display 15.17 A Linked List with an Iterator (part 1 of 3)

 1 import java.util.NoSuchElementException;

 2 public class LinkedList2
 3 {
 4 private class Node
 5 {
 6 private String item;
 7 private Node link;

<The rest of the definition of the Node inner class is given in Display 15.7.>

 8 }//End of Node inner class

 9 /**
10 If the list is altered any iterators should invoke restart or
11 the iterator's behavior may not be as desired.
12 */
13 public class List2Iterator
14 {
15 private Node position;
16 private Node previous; //previous value of position
17 public List2Iterator()
18 {
19 position = head; //Instance variable head of outer class.
20 previous = null;
21 }

This is the same as the class in Displays 15.7 and
15.11 except that the List2Iterator inner class
and the iterator() method have been added.

An inner class for iterators for
LinkedList2

22 public void restart()
23 {
24 position = head; //Instance variable head of outer class.
25 previous = null;
26 }

27 public String next()
28 {
29 if (!hasNext())
30 throw new NoSuchElementException();

31 String toReturn = position.item;
32 previous = position;
33 position = position.link;
34 return toReturn;
35 }

36 public boolean hasNext()
37 {
38 return (position != null);
39 }
40 /**
41 Returns the next value to be returned by next().
42 Throws an IllegalStateExpression if hasNext() is false.
43 */
44 public String peek()
45 {
46 if (!hasNext())
47 throw new IllegalStateException();
48 return position.item;
49 }

50 /**
51 Adds a node before the node at location position.
52 previous is placed at the new node. If hasNext() is
53 false, then the node is added to the end of the list.
54 If the list is empty, inserts node as the only node.
55 */
56 public void addHere(String newData)
57 {
58 if (position == null && previous != null)
59 // at end of the list, add to end
60 previous.link = new Node(newData, null);
61 else if (position == null || previous == null)
62 // list is empty or position is head node
63 LinkedList2.this.addtoStart(newData);

Display 15.17 A Linked List with an Iterator (part 2 of 3)

(continued)

Iterators 875

876 CHAPTER 15 Linked Data Structures

 64 else
 65 { // previous and position are consecutive nodes
 66 Node temp = new Node(newData, position)
 67 previous.link = temp;
 68 previous = temp;
 69 }
 70 }
 71 /**
 72 Changes the String in the node at location position.
 73 Throws an IllegalStateException if position is not at a node,
 74 */
 75 public void changeHere(String newData)

< Self-Test Exercise 13 asks you to complete the rest of the method changeHere.>

 76 /**
 77 Deletes the node at location position and
 78 moves position to the "next" node.
 79 Throws an IllegalStateException if the list is empty.
 80 */
 81 public void delete()
 82 {
 83 if (position == null)
 84 throw new IllegalStateException();
 85 else if (previous == null)
 86 { // remove node at head
 87 head = head.link;
 88 position = head;
 89 }
 90 else // previous and position are consecutive nodes
 91 {
 92 previous.link = position.link;
 93 position = position.link;
 94 }
 95 }
 96 private Node head;

 97 public List2Iterator iterator()
 98 {
 99 return new List2Iterator();
100 }

<The other methods and constructors are identical to those in Displays 15.7 and 15.11.>

101 }

Display 15.17 A Linked List with an Iterator (part 3 of 3)

If list is an object of the class
LinkedList2, then
list.iterator() returns an
iterator for list.

Display 15.18 Using an Iterator (part 1 of 2)

 1 public class IteratorDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 LinkedList2 list = new LinkedList2();
 6 LinkedList2.List2Iterator i = list.iterator();

 7 list.addToStart("shoes");
 8 list.addToStart("orange juice");
 9 list.addToStart("coat");

10 System.out.println("List contains:");
11 i.restart();
12 while(i.hasNext())
13 System.out.println(i.next());
14 System.out.println();

15 i.restart();
16 i.next();
17 System.out.println("Will delete the node for " + i.peek());
18 i.delete();

19 System.out.println("List now contains:");
20 i.restart();
21 while(i.hasNext())
22 System.out.println(i.next());
23 System.out.println();

24 i.restart();
25 i.next();
26 System.out.println("Will add one node before " + i.peek());
27 i.addHere("socks");
28 System.out.println("List now contains:");
29 i.restart();
30 while(i.hasNext())
31 System.out.println(i.next());
32 System.out.println();
33 System.out.println("Changing all items to credit card.");
34 i.restart();
35 while(i.hasNext())
36 {
37 i.changeHere("credit card");
38 i.next();
39 }
40 System.out.println();
41 System.out.println("List now contains:");

(continued)

Iterators 877

878 CHAPTER 15 Linked Data Structures

42 i.restart();
43 while(i.hasNext())
44 System.out.println(i.next());
45 System.out.println();
46 }
47 }

Sample Dialogue

List contains:
coat
orange juice
shoes

Will delete the node for orange juice
List now contains:
coat
shoes

Will add one node before shoes
List now contains:
coat
socks
shoes

Changing all items to credit card.

List now contains:
credit card
credit card
credit card

The basic method for cycling through the elements in the linked list using an
iterator is illustrated by the following code from the demonstration program:

System.out.println("List now contains:");
i.restart();
while(i.hasNext())
 System.out.println(i.next());

The iterator is named i in this code. The iterator i is reset to the beginning of the list
with the method invocation i.restart(), and each execution of i.next() produces
the next data item in the linked list. After all the data items in all the nodes have been
returned by i.next(), the Boolean i.hasNext() becomes false, and the while
loop ends.

Display 15.18 Using an Iterator (part 2 of 2)

Internally, the local variable position references the current node in the linked list,
whereas the local variable previous references the node linking to the current node.
The purpose of the previous variable will be seen when adding and deleting nodes. In
the constructor and the restart() method, position is set to head and previous
is set to null.

To determine if the end of the list has been reached, hasNext() returns whether
or not position is null:

return (position != null);

To step through the list, the next() method first throws an exception if we have
reached the end of the list:

if (!hasNext())
throw new NoSuchElementException();

Otherwise, the method retrieves the string value of the iterator referenced by position
in the variable toReturn, advances previous to reference the current position,
advances position to the next node in the list, and returns the string:

String toReturn = position.item;
previous = position;
position = position.link;
return toReturn;

The definition of the method changeHere is left to Self-Test Exercise 13. (If
necessary, you can look up the definition in the answer to Self-Test Exercise 13.) The
techniques for adding and deleting nodes are discussed in the next subsection.

The Java Iterator Interface

Java has an interface named Iterator that specifies how Java would like an iterator to
behave. It is in the package java.util (and so requires that you import this package). Our
iterators do not quite satisfy this interface, but they are in the same general spirit as that
interface and could be easily redefined to satisfy the Iterator interface.

The Iterator interface is discussed in Chapter 16.

adding and Deleting Nodes

To add or delete a node in a linked list, you normally use an iterator and add or delete
a node at the (approximate) location of the iterator. Because deleting is a little easier
than adding a node, we will discuss deleting first.

Iterators 879

880 CHAPTER 15 Linked Data Structures

Display 15.19 shows the technique for deleting a node. The linked list is an object
of the class LinkedList2 (Display 15.17). The variables position and previous are
the instance variables of an iterator for the linked list object. These variables each hold a
reference to a node, indicated with an arrow. Each time next() is invoked, previous
and position reference subsequent nodes in the list. As indicated in Display 15.19,
the node at location position is deleted by the following two lines of code:

previous.link = position.link;
position = position.link;

In Display 15.19, next() has been invoked twice, so position is referencing the
node with "shoes" and previous is referencing the node with "socks".

To delete the node referenced by position, the link from the previous node is set
to positions link. As shown in Display 15.19, this removes the linked list's reference
to that node. The variable position is then set to the next node in the list to remove
any references to the deleted node. As far as the linked list is concerned, the old node is
no longer on the linked list. But the node is still in the computer's memory. If there are
no longer any references to the deleted node, then the storage that it occupies should be
made available for other uses. In many programming languages, you, the programmer,
must keep track of items such as deleted nodes and must give explicit commands
to return their memory for recycling. This is called garbage collecting or explicit
memory management. In Java, this is done for you automatically, or, as it is ordinarily
phrased, Java has automatic garbage collection.

Note that there are special cases that must be handled for deletion. First, if the list is
empty, then nothing can be deleted and the delete() method throws an exception.
Second, if the node to delete is the head of the list, then there is no previous node to
update. Instead, head is set to head.link to bypass the first node in the list and set a
new head node.

Display 15.20 shows the technique for adding a node. We want to add a new node
between the nodes named by previous and position. In Display 15.20, previous
and position are variables of type Node, and each contains a reference to a node
indicated with an arrow. Thus, the new node goes between the two nodes referenced
by previous and position. In Display 15.20, the method next() has been invoked
twice to advance previous to "orange juice" and position to "shoes".

A constructor for the class Node does a lot of the work for us: It creates the new
node, adds the data, and sets the link field of the new node to reference the node
named by position. All this is done with the following:

new Node(newData, position)

So that we can recognize the node with newData in it when we study Display 15.20,
let us assume that newData holds the string "socks". The following gets us from the
first to the second picture:

temp = new Node(newData, position);

garbage
collecting

explicit
memory

management

1. Existing list with the iterator positioned at “shoes”

"orange juice" "shoes" "socks" null"coat"

head previous position

2. Bypass the node at position from previous

previous.link = position.link;

"orange juice" "shoes" "socks" null"coat"

head previous position

3. Update position to reference the next node
position = position.link;

"orange juice" "shoes" "socks" null"coat"

head previous position

Since no variable references the node “shoes”, Java will automatically
recycle the memory allocated for it.

4. Same picture with deleted node not shown

"orange juice" "socks" null"coat"

head previous position

Display 15.19 Deleting a Node

Iterators 881

882 CHAPTER 15 Linked Data Structures

1. Existing list with the iterator positioned at “shoes”

"orange juice" "shoes" null"coat"

head previous position

2. Create new Node with “socks” linked to “shoes”

temp = new Node(newData, position); // newData is "socks"

"orange juice" "shoes" null"coat"

head previous position

"socks"temp

Local variable of type Node

3. Make previous link to the Node temp

previous.link = temp;

"orange juice" "shoes" null"coat"

head previous position

"socks"
temp

4. Picture redrawn for clarity, but structurally identical to picture 3

"orange juice" "socks""coat"

head previous temp

"shoes" null

position

Display 15.20 Adding a Node between Two Nodes

To finish the job, all we need to do is link the previous node to the new node. We
want to move the arrow to the node named by temp. The following finishes our job:

previous.link = temp;

The new node is inserted in the desired place, but the picture is not too clear. The
fourth picture is the same as the third one; we have simply redrawn it to make it neater.

To summarize, the following two lines insert a new node with newData as its data.
The new node is inserted between the nodes named by previous and position.

temp = new Node(newData, position);
previous.link = temp;

previous, position, and temp are all variables of type Node. (When we use this code,
previous and position will be instance variables of an iterator and temp will be a
local variable.)

Just like deletion, special cases exist for insertion that must be handled. If the list is
empty, then addition is done by adding to the front of the list. If the position variable
is null, then the new node should be added to the end of the list.

Self-Test Exercises

11. Consider a variant of the class in Display 15.17 with no previous local
variable. In other words, there is no reference kept to the node that links to the
current node position. How could we modify the delete method to delete the
position node and still maintain a correct list? The solution is less efficient
than the version that uses previous.

12. Consider a variant of the class in Display 15.17 with no previous local
variable. In other words, there is no reference kept to the node that links to the
current node position. Write a method addAfterHere(String newData)
that adds a new node after the node in position.

13. Complete the definition of the method changeHere in the inner class
List2Iterator in Display 15.17.

14. Given an iterator pointing somewhere in a linked list, does i.next() return
the value that i is referencing prior to the invocation of i.next() or does it
return the value of the next node in the list?

Iterators 883

884 CHAPTER 15 Linked Data Structures

15.4 Variations on a Linked List

I have called this principle, by which each slight variation, if useful, is preserved,
by the term Natural Selection.

CHARLES DARWIN, On the Origin of Species, UK, 1859.

In this section, we discuss some variations on linked lists, including the two data
structures known as stacks and queues. Stacks and queues need not involve linked lists,
but one common way to implement a stack or a queue is to use a linked list.

Doubly Linked List

An ordinary linked list allows you to move down the list in one direction only
(following the links). A doubly linked list has one link that has a reference to the next
node and one that has a reference to the previous node. In some cases, the link to the
previous node can simplify our code. For example, we will no longer need to have a
previous instance variable to remember the node that links to the current position.
Diagrammatically, a doubly linked list looks like the sample list in Display 15.21.

The node class for a doubly linked list can begin as follows:

private class TwoWayNode
{
 private String item;
 private TwoWayNode previous;
 private TwoWayNode next;

 ...

The constructors and some of the methods in the doubly linked list class will require
changes (from the singly linked case) in their definitions to accommodate the extra link.
The major changes are to the methods that add and delete nodes. To make our code a
little cleaner, we can add a new constructor that sets the previous and next nodes:

public TwoWayNode(String newItem, TwoWayNode previousNode,
 TwoWayNode nextNode)
 {
 item = newItem;
 next = nextNode;
 previous = previousNode;
 }

To add a new TwoWayNode to the front of the list requires setting links on two nodes
instead of one. The general process is shown in Display 15.22. In the addToStart
method, we first create a new TwoWayNode. Because the new node will go on the front
of the list, we set the previous link to null and the next link to the current head:

TwoWayNode newHead = new TwoWayNode(itemName, null, head);

doubly
linked list

Display 15.21 A Doubly Linked List

"shoes"

null

"socks"

"coat"

"gloves"

null

Next, we must set the previous link on the old head node to reference the new head.
We can do this by setting head.previous = newHead, but we must take care to ensure
that head is not null (i.e., the list is not empty). Finally, we can set head to newHead:

if (head != null)
{
 head.previous = newHead;
}
head = newHead;

To delete a node from the doubly linked list also requires updating the references
on both sides of the node to delete. Thanks to the backward link, there is no need for
an instance variable to keep track of the previous node in the list, as was required for
the singly linked list. The general process of deleting a node referenced by position
is shown in Display 15.23. Note that some cases must be handled separately, such as
deleting a node from the beginning or the end of the list.

Variations on a Linked List 885

886 CHAPTER 15 Linked Data Structures

Display 15.22 Adding a Node to the Front of a Doubly Linked List

null

1. Existing list

"coat"

head

"shoes" "socks" null

2. Create new TwoWayNode linked to “coat”

TwoWayNode newHead = new TwoWayNode(itemName, null, head) // itemName = "shirt"

null "coat"

head

"shoes" "socks" null

newHead

null "shirt"

3. Set backward link and set new head
head.previous = newHead;
head = newHead;

"coat"

head

"shoes" "socks" null

newHead

null "shirt"

The process of inserting a new node into the doubly linked list is shown in Display 15.24 .
In this case, we will insert the new node in front of the iterator referenced by position.
Note that there are also special cases for the insert routine when inserting to the front
or adding to the end of the list. Only the general case of inserting between two existing
nodes is shown in Display 15.24.

A complete example of a doubly linked list is shown in Display 15.25. The code in
Display 15.25 is modified from the code in Display 15.17. Use of the doubly linked
list is virtually identical to use of a singly linked list. Display 15.26 demonstrates
addition, deletion, and insertion into the doubly linked list.

Variations on a Linked List 887

Display 15.23 Deleting a Node from a Doubly Linked List

null

1. Existing list with an iterator referencing “shoes”

"coat"

head

"shoes" "socks" null

position

2. Bypass the “shoes” node from the next link of the previous node

position.previous.next = position.next;

null "coat"

head

"shoes" "socks" null

position

3. Bypass the “shoes” node from the previous link of the next node
 and move position off the deleted node

null "coat"

head

"shoes" "socks" null

position

position.next.previous = position.previous;
position = positio n.next;

4. Picture redrawn for clarity with the “shoes” node removed since
 there are no longer references pointing to this node

null "coat"

head

"socks"

position

888 CHAPTER 15 Linked Data Structures

Display 15.24 Inserting a Node into a Doubly Linked List

null

1. Existing list with an iterator referencing “shoes”

head

null

position

2. Create new TwoWayNode with previous linked to “coat” and next to “shoes”
TwoWayNode temp = newTwoWayNode(newData, position.previous, position);
// newData = "shirt"

null

head

null

"shirt"

"shirt"

3. Set next link from “coat” to the new node of “shirt”

position.previous.next = temp;

positiontemp

null

head

null

positiontemp

4. Set previous link from “shoes” to the new node of “shirt”

position.previous = temp;

null "coat"

head

"shoes" "socks" null

"shirt "

positiontemp

"socks""shoes""coat"

"coat"

"coat"

"shoes"

"shoes"

"socks"

"socks"

"shirt"

Display 15.25 A Doubly Linked List with an Iterator (part 1 of 3)

 1 import java.util.NoSuchElementException;

 2 public class DoublyLinkedList
 3 {
 4 private class TwoWayNode
 5 {
 6 private String item;
 7 private TwoWayNode previous;
 8 private TwoWayNode next;

 9 public TwoWayNode()
10 {
11 item = null;
12 next = null;
13 previous = null;
14 }
15 public TwoWayNode(String newItem, TwoWayNode previousNode,
 TwoWayNode nextNode)
16 {
17 item = newItem;
18 next = nextNode;
19 previous = previousNode;
20 }
21 } //End of TwoWayNode inner class

22 public class DoublyLinkedIterator
23 {
24 // We do not need a previous node when using a doubly linked

// list
25 private TwoWayNode position = null;

26 public DoublyLinkedIterator()
27 {
28 position = head;
29 }
30 public void restart()
31 {
32 position = head;
33 }
34 public String next()
35 {
36 if (!hasNext())
37 throw new IllegalStateException();
38 String toReturn = position.item;
39 position = position.next;
40 return toReturn;
41 }

Variations on a Linked List 889

(continued)

890 CHAPTER 15 Linked Data Structures

42 public void insertHere(String newData)
43 {
44 if (position == null && head != null)
45 {
46 // Add to end. First move a temp
47 // pointer to the end of the list
48 TwoWayNode temp = head;
49 while (temp.next != null)
50 temp = temp.next;
51 temp.next = new TwoWayNode(newData, temp, null);
52 }
53 else if (head == null || position.previous == null)
54 // at head of list
55 DoublyLinkedList.this.addToStart (newData);
56 else
57 {
58 // Insert before the current position
59 TwoWayNode temp = new TwoWayNode(newData,
 position. previous, position);

60 position.previous.next = temp;
61 position.previous = temp;
62 }
63 }

64 public void delete()
65 {
66 if (position == null)
67 throw new IllegalStateException();
68 else if (position.previous == null)
69 { // Deleting first node
70 head = head.next;
71 position = head;
72 }
73 else if (position.next == null)
74 { // Deleting last node
75 position.previous.next = null;
76 position = null;
77 }
78 else
79 {
80 position.previous.next = position.next;
81 position.next.previous = position.previous;
82 position = position.next;

83 }
84 }
85 } // DoublyLinkedIterator

Display 15.25 A Doubly Linked List with an Iterator (part 2 of 3)

(continued)

 86 private TwoWayNode head;

 87 public DoublyLinkedIterator iterator()
 88 {
 89 return new DoublyLinkedIterator();
 90 }

 91 public DoublyLinkedList()
 92 {
 93 head = null;
 94 }

 95 /**
 96 The added node will be the first node in the list.
 97 */
 98 public void addToStart(String itemName)
 99 {
100 TwoWayNode newHead = new TwoWayNode(itemName, null, head);
101 if (head != null)
102 {
103 head.previous = newHead;
104 }
105 head = newHead;
106 }

<The methods hasNext, peek, clear, and isEmpty are identical
to those in Display 15.17. Other methods would also normally
be defined here, such as deleteHeadNode, size, outputList,
equals, clone, find, or contains. They have been left off to
simplify the example.>

107 } // DoublyLinkedList

Display 15.25 A Doubly Linked List with an Iterator (part 3 of 3)

Display 15.26 Using a Doubly Linked List with an Iterator (part 1 of 2)

 1 public class DoublyLinkedListDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 DoublyLinkedList list = new DoublyLinkedList();
 6 DoublyLinkedList.DoublyLinkedIterator i = list.iterator();

 7 list.addToStart("shoes");
 8 list.addToStart("orange juice");
 9 list.addToStart("coat");
10 System.out.println("List contains:");
11 i.restart();

Variations on a Linked List 891

892 CHAPTER 15 Linked Data Structures

12 while (i.hasNext())
13 System.out.println(i.next());
14 System.out.println();

15 i.restart();
16 i.next();
17 i.next();
18 System.out.println("Delete " + i.peek());
19 i.delete();

20 System.out.println("List now contains:");
21 i.restart();
22 while (i.hasNext())
23 System.out.println(i.next());
24 System.out.println();

25 i.restart();
26 i.next();
27 System.out.println("Inserting socks before " + i.peek());
28 i.insertHere("socks");

29 i.restart();
30 System.out.println("List now contains:");
31 while (i.hasNext())
32 System.out.println(i.next());
33 System.out.println();
34 }
35 }

Sample Dialogue

List contains:
coat
orange juice
shoes

Delete shoes
List now contains:
Coat
Orange juice

Inserting socks before orange juice
List now contains:
coat
socks
orange juice

Display 15.26 Using a Doubly Linked List with an Iterator (part 2 of 2)

The Stack Data Structure

A stack is not necessarily a linked data structure, but it can be implemented as a
linked list. A stack is a data structure that removes items in the reverse of the order in
which they were inserted. So if you insert “one”, then “two”, and then “three” into
a stack and then remove them, they will come out in the order “three”, then “two”,
and finally “one”. Stacks are discussed in more detail in Chapter 11. A linked list that
inserts and deletes only at the head of the list (such as those in Displays 15.3 and 15.8)
is, in fact, a stack.

You can imagine the stack data structure like a stack of trays in a cafeteria. You can
push a new tray on top of the stack to make a taller stack. Alternately, you can pop
the topmost tray off the stack until there are no more trays to remove. A definition of a
Stack class is shown in Display 15.27 that is based on the linked list from Display 15.3.
A short demonstration program is shown in Display 15.28. The addToStart method
has been renamed to push to use stack terminology. Similarly, the deleteHeadNode
method has been renamed to pop and returns the String from the top of the stack.
Although not shown here to keep the definition simple, it would be appropriate to add
other methods such as peek, clone, or equals or to convert the class to use a generic
data type.

Self-Test Exercises

15. What operations are easier to implement with a doubly linked list compared
with a singly linked list? What operations are more difficult?

16. If the addToStart method from Display 15.25 were removed, how could we
still add a new node to the head of the list?

stack

push and pop

Stacks
A stack is a last-in/first-out data structure; that is, the data items are retrieved in the
opposite order to which they were placed in the stack.

Display 15.27 A Stack Class (part 1 of 2)

 1 import java.util.NoSuchElementException;

 2 public class Stack
 3 {
 4 private class Node
 5 {
 6 private String item;
 7 private Node link;

Variations on a Linked List 893

(continued)

894 CHAPTER 15 Linked Data Structures

 8 public Node()
 9 {
10 item = null;
11 link = null;
12 }
13 public Node(String newItem, Node linkValue)
14 {
15 item = newItem;
16 link = linkValue;
17 }
18 }//End of Node inner class

19 private Node head;

20 public Stack()
21 {
22 head = null;
23 }

24 /**
25 This method replaces addToStart
26 */
27 public void push(String itemName)
28 {
29 head = new Node(itemName, head);
30 }
31 /**
32 This method replaces deleteHeadNode and
33 also returns the value popped from the list
34 */
35 public String pop()
36 {
37 if (head == null)
38 throw new IllegalStateException();
39 else
40 {
41 String returnItem = head.item;
42 head = head.link;
43 return returnItem;
44 }
45 }
46 public boolean isEmpty()

47 {
48 return (head == null);
49 }
50 }

Display 15.27 A Stack Class (part 2 of 2)

Items come out of the stack in the
reverse order that they were added.

Display 15.28 Stack Demonstration Program

 1 public class StackExample
 2 {
 3 public static void main(String[] args)
 4 {
 5 Stack stack = new Stack();
 6 Stack.push("Billy Rubin");
 7 Stack.push("Lou Pole");
 8 Stack.push("Polly Ester");

 9 while (!stack.isEmpty())
10 {
11 String s = stack.pop();
12 System.out.println(s);
13 }
14 }
15 }

Sample Dialogue

Polly Ester

Lou Pole

Billy Rubin

Self-Test Exercise

17. Display 15.27 does not contain a peek() method. Normally this method
would return the data on the top of the stack without popping it off. How
could a user of the Stack class get the same functionally as peek() even
though it is not defined?

The Queue Data Structure

A stack is a last-in/first-out data structure. Another common data structure is a queue,
which handles data in a first-in/first-out fashion. A queue is like a line at the bank.
Customers add themselves to the back of the line and are served from the front of the
line. A queue can be implemented with a linked list. However, a queue needs a pointer
at both the head of the list and at the tail (that is, the other end) of the linked list,
because action takes place in both locations. It is easier to remove a node from the head
of a linked list than from the tail of the linked list. So, a simple implementation will
remove nodes from the head of the list (which we will now call the front of the list)
and we will add nodes to the tail end of the list, which we will now call the back of the
list (or the back of the queue).

queue

tail

front

back

Variations on a Linked List 895

896 CHAPTER 15 Linked Data Structures

The definition of a simple Queue class that is based on a linked list is given in
Display 15.29. A short demonstration program is given in Display 15.30. We have not
made our queue a generic queue to keep the definition simple, but it would be routine
to replace the data type String with a type parameter.

Queue
A queue is a first-in/first-out data structure; that is, the data items are removed from the
queue in the same order that they were added to the queue.

Display 15.29 A Queue Class (part 1 of 2)

 1 public class Queue
 2 {
 3 private class Node
 4 {
 5 private String item;
 6 private Node link;

 7 public Node()
 8 {
 9 item = null;
10 link = null;
11 }

12 public Node(String newItem, Node linkValue)
13 {
14 item = newItem;
15 link = linkValue;
16 }
17 } //End of Node inner class

18 private Node front;
19 private Node back;

20 public Queue()
21 {
22 front = null;
23 back = null;
24 }

25 /**
26 Adds a String to the back of the queue.
27 */
28 public void addToBack(String itemName)
 <The definition of this method is defined in Self-Test Exercise 18.>

29 public boolean isEmpty()
30 {
31 return (front == null);
32 }

33 public void clear()
34 {
35 front = null;
36 back = null;
37 }
38 /**
39 Returns the String in the front of the queue.
40 Returns null if queue is empty.
41 */
42 public String whoIsNext()
43 {
44 if (front == null)
45 return null;
46 else
47 return front.item;
48 }
49
50 /**
51 Removes a String from the front of the queue.
52 Returns false if the list is empty.
53 */
54 public boolean removeFront()
55 {
56 if (front != null)
57 {
58 front = front.link;
59 return true;
60 }
61 else
62 return false;
63 }
64 }

Display 15.29 A Queue Class (part 2 of 2)

Variations on a Linked List 897

898 CHAPTER 15 Linked Data Structures

Display 15.30 Demonstration of the Queue Class

 1 public class QueueDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 Queue q = new Queue();

 6 q.addToBack("Tom");
 7 q.addToBack("Dick");
 8 q.addToBack("Harriet");
 9 while(!q.isEmpty())
10 {
11 System.out.println(q.whoIsNext());
12 q.removeFront();
13 }
14 System.out.println("The queue is empty.");
15 }
16 }

Sample Dialogue

Tom
Dick
Harriet
The queue is empty.

Items come out of the queue in
the same order that they went
into the queue.

Items come out of the queue in
the same order that they went
into the queue.

In order to have some terminology to discuss the efficiency of our Queue class and
linked list algorithms, we first present some background on how the efficiency of
algorithms is usually measured.

Running Times and Big-O Notation

If you ask a programmer how fast his or her program is, you might expect an answer
such as “two seconds.” However, the speed of a program cannot be given by a single
number. A program will typically take a longer amount of time on larger inputs than
it will on smaller inputs. You would expect that a program for sorting numbers would
take less time to sort 10 numbers than it would to sort 1,000 numbers. Perhaps it
takes 2 seconds to sort 10 numbers, but 10 seconds to sort 1,000 numbers. How,
then, should the programmer answer the question “How fast is your program?” The
programmer would have to give a table of values showing how long the program took

Self-Test Exercise

18. Complete the definition of the method addToBack in Display 15.29.

for different sizes of input. For example, the table might be as shown in Display 15.31.
This table does not give a single time, but instead gives different times for a variety of
different input sizes.

The table is a description of what is called a function in mathematics. Just as a
(non-void) Java method takes an argument and returns a value, so too does this
function take an argument, which is an input size, and returns a number, which is
the time the program takes on an input of that size. If we call this function T, then
T (10) is 2 seconds, T (100) is 2.1 seconds, T (1,000) is 10 seconds, and T (10,000)
is 2.5 minutes. The table is just a sample of some of the values of this function T.
The program will take some amount of time on inputs of every size. So although they
are not shown in the table, there are also values for T (1), T (2), … , T (101), T (102),
and so forth. For any positive integer N, T(N) is the amount of time it takes for the
program to sort N numbers. The function T is called the running time of the program.

So far we have been assuming that this sorting program will take the same amount
of time on any list of N numbers. That need not be true. Perhaps it takes much less
time if the list is already sorted or almost sorted. In this case, T(N) is defined to be the
time taken by the “hardest” list—that is, the time taken on that list of N numbers that
makes the program run the longest. This is called the worst-case running time. In this
chapter, we will always mean worst-case running time when we give a running time for
an algorithm or for some code.

The time taken by a program or algorithm is often given by a formula, such as
4N + 3, 5N + 4, or N 2. If the running time T(N) is 5N + 5, then on inputs of size N,
the program will run for 5N + 5 time units.

Presented next is some code to search an array a with N elements to determine
whether a particular value target is in the array:

int i = 0;
boolean found = false;
while ((i < N) && !(found))
{
 if (a[i] == target)
 found = true;
 else
 i++;
}

Display 15.31 Some Values of a Running-Time Function

Input Size Running Time

10 numbers 2 seconds

100 numbers 2.1 seconds

1,000 numbers 10 seconds

10,000 numbers 2.5 minutes

function

running time

worst-case
running time

Variations on a Linked List 899

900 CHAPTER 15 Linked Data Structures

We want to compute some estimate of how long it will take a computer to execute this
code. We would like an estimate that does not depend on which computer we use,
either because we do not know which computer we will use or because we might use
several different computers to run the program at different times.

One possibility is to count the number of “steps,” but it is not easy to decide what
a step is. In this situation, the normal thing to do is count the number of operations.
The term operations is almost as vague as the term step, but there is at least some
agreement in practice about what qualifies as an operation. Let us say that, for this Java
code, each application of any of the following will count as an operation: =, <, &&, !,
[], ==, and ++. The computer must do other things besides carry out these operations,
but these seem to be the main things that it is doing, and we will assume that they
account for the bulk of the time needed to run this code. In fact, our analysis of time
will assume that everything else takes no time at all and that the total time for our
program to run is equal to the time needed to perform these operations. Although this
is an idealization that clearly is not completely true, it turns out that this simplifying
assumption works well in practice, and so it is often made when analyzing a program
or algorithm.

Even with our simplifying assumption, we still must consider two cases: Either the
value target is in the array, or it is not. Let us first consider the case when target is
not in the array. The number of operations performed will depend on the number of
array elements searched. The operation = is performed two times before the loop is
executed. Because we are assuming that target is not in the array, the loop will be
executed N times, one for each element of the array. Each time the loop is executed,
the following operations are performed: <, &&, !, [], ==, and ++. This adds five
operations for each of N loop iterations. Finally, after N iterations, the Boolean
expression is again checked and found to be false. This adds a final three operations
(<, &&, !).3 If we tally all these operations, we get a total of 6N + 5 operations when the
target is not in the array. We will leave it as an exercise for the reader to confirm that if
the target is in the array, then the number of operations will be 6N + 5 or less. Thus,
the worst-case running time is T(N) = 6N + 5 operations for any array of N elements
and any value of target.

We just determined that the worst-case running time for our search code is 6N + 5
operations. But an operation is not a traditional unit of time, such as a nanosecond,
second, or minute. If we want to know how long the algorithm will take on some
particular computer, we must know how long it takes that computer to perform
one operation. If an operation can be performed in one nanosecond, then the time
will be 6N + 5 nanoseconds. If an operation can be performed in one second, the
time will be 6N + 5 seconds. If we use a slow computer that takes 10 seconds to
perform an operation, the time will be 60N + 50 seconds. In general, if it takes the
computer c nanoseconds to perform one operation, then the actual running time
will be approximately c(6N + 5) nanoseconds. (We said approximately because we

3Because of short-circuit evaluation, !(found) is not evaluated, so we actually get two, not three,
operations. However, the important thing is to obtain a good upper bound. If we add in one extra
operation, that is not significant.

are making some simplifying assumptions and therefore the result may not be the
absolutely exact running time.) This means that our running time of 6N + 5 is a very
crude estimate. To get the running time expressed in nanoseconds, you must multiply
by some constant that depends on the particular computer you are using. Our estimate
of 6N + 5 is only accurate to within a constant multiple.

Estimates on running time, such as the one we just went through, are normally
expressed in something called big-O notation. (The O is the letter “Oh,” not the
digit zero.) Suppose we estimate the running time to be, say, 6N + 5 operations,
and suppose we know that no matter what the exact running time of each different
operation may turn out to be, there will always be some constant factor c such that the
real running time is less than or equal to c (6N + 5). Under these circumstances, we say
that the code (or program or algorithm) runs in time O(6N + 5). This is usually read
as “big-O of 6N + 5.” We need not know what the constant c will be. In fact, it will
undoubtedly be different for different computers, but we must know that there is one
such c for any reasonable computer system. If the computer is very fast, the c might be
less than 1—say, 0.001. If the computer is very slow, the c might be very large—say,
1,000. Moreover, because changing the units (say from nanosecond to second) involves
only a constant multiple, there is no need to give any units of time.

Be sure to notice that a big-O estimate is an upper-bound estimate. We always
approximate by taking numbers on the high side rather than the low side of the true
count. Also notice that when performing a big-O estimate, we need not determine an
exact count of the number of operations performed. We need only an estimate that is
correct up to a constant multiple. If our estimate is twice as large as the true number,
that is good enough.

An order-of-magnitude estimate, such as the previous 6N + 5, contains a parameter
for the size of the task solved by the algorithm (or program or piece of code). In our
sample case, this parameter N was the number of array elements to be searched. Not
surprisingly, it takes longer to search a larger number of array elements than it does to
search a smaller number of array elements. Big-O running-time estimates are always
expressed as a function of the size of the problem. In this chapter, all our algorithms
will involve a range of values in some container. In all cases, N will be the number of
elements in that range.

The following is an alternative, pragmatic way to think about big-O estimates:

Only look at the term with the highest exponent and
do not pay attention to constant multiples.

For example, all of the following are O(N2):

N2 + 2N + 1, 3N2 + 7, 100N2 + N

All of the following are O(N3):

N3 + 5N 2 + N + 1, 8N3 + 7, 100N3 + 4N + 1

big-O
notation

Variations on a Linked List 901

902 CHAPTER 15 Linked Data Structures

These big-O running-time estimates are admittedly crude, but they do contain some
information. They will not distinguish between a running time of 5N + 5 and a running
time of 100N, but they do let us distinguish between some running times and so determine
that some algorithms are faster than others. Look at the graphs in Display 15.32 and
notice that all the graphs for functions that are O(N) eventually fall below the graph
for the function 0.5N 2. The result is inevitable: An O(N) algorithm will always run
faster than any O(N 2) algorithm, provided we use large enough values of N. Although
an O(N 2) algorithm could be faster than an O(N) algorithm for the problem size you
are handling, programmers have found that, in practice, O(N) algorithms perform
better than O(N) algorithms for most practical applications that are intuitively “large.”
Similar remarks apply to any other two different big-O running times.

Display 15.32 Comparison of Running Times

T(N
) =

 0.
5N

2

T(N
) =

 N
 +

2

T
(N

)
(r

un
ni

ng
 ti

m
e)

N (problem size)

T(N
) =

 N
 T(N

) =
 2

N

Some terminology will help with our descriptions of generic algorithm running
times. Linear running time means a running time of T(N) = aN + b. A linear running
time is always an O(N) running time. Quadratic running time means a running time
with a highest term of N2. A quadratic running time is always an O(N 2) running time.
We will also occasionally have logarithms in running-time formulas. Those normally
are given without any base, because changing the base is just a constant multiple. If you
see log N, think log base 2 of N, but it would not be wrong to think log base 10 of N.
Logarithms are very slow-growing functions. So, an O(log N) running time is very fast.

In many cases, our running-time estimates will be better than big-O estimates.
In particular, when we specify a linear running time, that is a tight upper bound and
you can think of the running time as being exactly T(N) = cN, although the c is still
not specified.

linear
running time

quadratic
running time

Self-Test Exercises

19. Show that a running time T(N) = aN + b is an O(N) running time. (Hint: The
only issue is the plus b. Assume N is always at least 1.)

20. Show that for any two bases a and b for logarithms, if a and b are both greater
than 1, then there is a constant c such that loga N … c (logb N). Thus, there is
no need to specify a base in O(log N). That is, O(loga N) and O(logb N) mean
the same thing.

Efficiency of Linked Lists

Now that we know about big-O notation, we can express the efficiency of various
methods for our linked data structures. As an example of analyzing the run-time efficiency
of an algorithm, consider the find method for the linked list class in Display 15.3.
This method starts at the head of the list and sequentially iterates through each node
to see whether it matches the target. If the linked list contains many nodes, then we
might get lucky if the target is found at the head of the list. In this case, the computer
had only to execute one step: Check the head of the list for the target. In the worst
case, the computer might have to search through all n nodes before finding (or not
finding) the target. In this case, the computer had to execute n steps. The worst case
will obviously take longer to execute than the best case. On average, we might expect
to search through about half of the list before finding the target. This would require
n/2 steps. In our big-O notation, the find operation is O(n). However, the addToStart
method requires linking only a new node to the head of the list. This runs in O(1) steps
(that is, a constant upper bound on the running time that is independent of the size of
the input).

Variations on a Linked List 903

904 CHAPTER 15 Linked Data Structures

Next we shall briefly examine more elaborate data structures that are capable of
performing find operations in fewer steps. However, a detailed treatment of these more
advanced data structures is beyond the scope of this chapter. The goal of this chapter
is to teach you the basic techniques for constructing and manipulating data structures
based on nodes and links (that is, nodes and references). The linked lists served as good
examples for our discussion.

15.5 Hash Tables with Chaining

Seek, and ye shall find.

mATTHEW 7:7

A hash table or hash map is a data structure that efficiently stores and retrieves data
from memory. There are many ways to construct a hash table; in this section, we will
use an array in combination with singly linked lists. In the previous section, we saw
that a linked list generally requires linear, or O(n), steps to determine if a target is in the
list. In contrast, a hash table has the potential to execute a fixed number of steps to look
up a target, regardless of the size of n. We saw that a constant-time lookup is written
O(1). However, the hash table we will present may still require n steps, but such a case
is unlikely.

An object is stored in a hash table by associating it with a key. Given the key, we
can retrieve the object. Ideally, the key is unique to each object. If the object has no
intrinsically unique key, then we can use a hash function to compute one. In most
cases, the hash function computes a number.

For example, let us use a hash table to store a dictionary of words. Such a hash table
might be useful to make a spell-checker—words missing from the hash table might not
be spelled correctly. We will construct the hash table with a fixed array in which each
array element references a linked list. The key computed by the hash function will map
to the index of the array. The actual data will be stored in a linked list at the hash value’s
index. Display 15.33 illustrates the idea with a fixed array of 10 entries. Initially, each
entry of the array hashArray contains a reference to an empty singly linked list. First, we
add the word "cat", which has been assigned the key or hash value of 2 (we will show
how this was computed shortly). Next, we add "dog" and "bird", which are assigned
hash values of 4 and 7, respectively. Each of these strings is inserted as the head of the
linked list using the hash value as the index in the array. Finally, we add "turtle",
which also has a hash of 2. Because "cat" is already stored at index 2, we now have a
collision. Both "turtle" and "cat" map to the same index in the array. When this
occurs in a hash table with chaining, we simply insert the new node onto the existing
linked list. In our example, there are now two nodes at index 2: "turtle" and "cat".

To retrieve a value from the hash table, we first compute the hash value of the
target. Next we search the linked list that is stored at hashArray[hashValue] for the
target, using an iterator to sequentially search the linked list. If the target is not found
in this linked list, then the target is not stored in the hash table. If the size of the linked
list is small, then the retrieval process will be quick.

hash table

hash map

hash function

collision

chaining

Hash Tables with Chaining 905

Display 15.33 Constructing a Hash Table

1. Existing hash table initialized with 10 empty linked lists

empty empty empty empty empty empty empty empty empty empty

0 1 2 3 4 5 6 7 8 9

hashArray = new LinkedList 3[SIZE]; // SIZE = 10

hashArray

2. After adding “cat” with hash of 2

empty empty empty empty null empty empty empty empty

0 1 2 3 4 5 6 7 8 9

hashArray

cat

3. After adding “dog” with hash of 4 and “bird” with hash of 7

empty empty empty empty empty empty empty

0 1 2 3 4 5 6 7 8 9

hashArray

cat dog bird

4. After adding “turtle” with hash of 2 – collision and chained to linked list with “cat”

empty empty empty empty empty empty empty

0 1 2 3 4 5 6 7 8 9

hashArray

turtle dog bird

cat

A Hash Function for Strings

A simple way to compute a numeric hash value for a string is to sum the ASCII value of
every character in the string and then compute the modulus of the sum using the size
of the fixed array. A subset of ASCII codes is given in Appendix 3. Code to compute
the hash value is shown next:

private int computeHash(String s)
{
 int hash = 0;

906 CHAPTER 15 Linked Data Structures

 for (int i = 0; i < s.length(); i++)
 {
 hash += s.charAt(i);
 }
 return hash % SIZE; // SIZE = 10 in example
}

For example, the ASCII codes for the string "dog" are as follows:

d —>100
o —>111
g —>103

The hash function is computed as follows:

Sum = 100 + 111 + 103 = 314
Hash = Sum % 10 = 314 % 10 = 4

In this example, we first compute an unbounded value, the sum of the ASCII values
in the string. However, the array was defined to only hold a finite number of elements.
To scale the sum to the size of the array, we compute the modulus of the sum with
respect to the size of the array, which is 10 in the example. In practice, the size of the
array is generally a prime number larger than the number of items that will be put into
the hash table.4 The computed hash value of 4 serves like a fingerprint for the string
"dog". However, different strings may map to the same value. We can verify that
"cat" maps to (99 + 97 + 116) % 10 = 2 and also that "turtle" maps to (116 + 117
+ 114 + 116 + 108 + 101) % 10 = 2.

A complete code listing for a hash table class is given in Display 15.34, and a
demonstration is provided in Display 15.35. The hash table definition in Display 15.34
uses an array in which each element is a LinkedList2 class defined in Display 15.7.

4A prime number avoids common divisors after modulus that can lead to collisions.

Display 15.34 A Hash Table Class (part 1 of 2)

 1 public class HashTable
 2 {
 3 // Uses the generic LinkedList2 class from Display 15.7
 4 private LinkedList2[] hashArray;
 5 private static final int SIZE = 10;

 6 public HashTable()
 7 {
 8 hashArray = new LinkedList2[SIZE];
 9 for (int i=0; i < SIZE; i++)
10 hashArray[i] = new LinkedList2();
11 }

Walkthrough of
the Hash Table
Class

VideoNote

Display 15.34 A Hash Table Class (part 2 of 2)

12 private int computeHash(String s)
13 {
14 int hash = 0;
15 for (int i = 0; i < s.length(); i++)
16 {
17 hash += s.charAt(i);
18 }
19 return hash % SIZE;
20 }

21 /**
22 Returns true if the target is in the hash table,
23 false if it is not.
24 */

25 public boolean containsString(String target)
26 {
27 int hash = computeHash(target);
28 LinkedList2 list = hashArray[hash];
29 if (list.contains(target))
30 return true;
31 return false;
32 }
33 /**
34 Stores or puts string s into the hash table
35 */

36 public void put(String s)
37 {
38 int hash = computeHash(s);// Get hash value

39 LinkedList2 list = hashArray[hash];
40 if (!list.contains(s))
41 {
42 // Only add the target if it's not already
43 // on the list.

44 hashArray[hash].addToStart(s);
45 }
46 }
47 } // End HashTable class

Hash Tables with Chaining 907

908 CHAPTER 15 Linked Data Structures

Display 15.35 Hash Table Demonstration

 1 public class HashTableDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 HashTable h = new HashTable();

 6 System.out.println("Adding dog, cat, turtle, bird");
 7 h.put("dog");
 8 h.put("cat");
 9 h.put("turtle");
10 h.put("bird");
11 System.out.println("Contains dog? " +
12 h.containsString("dog"));
13 System.out.println("Contains cat? " +
14 h.containsString("cat"));
15 System.out.println("Contains turtle? " +
16 h.containsString("turtle"));
17 System.out.println("Contains bird? " +
18 h.containsString("bird"));

19 System.out.println("Contains fish? " +
20 h.containsString("fish"));
21 System.out.println("Contains cow? " +
22 h.containsString("cow"));
23 }
24 }

Sample Dialogue

Adding dog, cat, turtle, bird

Contains dog? true

Contains cat? true

Contains turtle? true

Contains bird? true

Contains fish? false

Contains cow? false

Efficiency of Hash Tables

The efficiency of our hash table depends on several factors. First, let us examine some
extreme cases. The worst-case run-time performance occurs if every item inserted into
the table has the same hash key. Everything will then be stored in a single linked list.
With n items, the find operation will require O(n) steps. Fortunately, if the items that
we insert are somewhat random, the probability that all of them will hash to the same
key is highly unlikely. In contrast, the best-case run-time performance occurs if every

item inserted into the table has a different hash key. This means that there will be no
collisions, so the find operation will require constant, or O(1), steps because the target
will always be the first node in the linked list.

We can decrease the chance of collisions by using a better hash function. For
example, the simple hash function that sums each letter of a string ignores the ordering
of the letters. The words "rat" and "tar" would hash to the same value. A better hash
function for a string s is to multiply each letter by an increasing weight depending
upon the position in the word. For example,

int hash = 0;
for (int i = 0; i < s.length(); i++)
{
 hash = 31 * hash + s.charAt(i);
}

Another way to decrease the chance of collisions is by making the hash table bigger.
For example, if the hash table array stored 10,000 entries but we are only inserting
1,000 items, then the probability of a collision is much smaller than if the hash table
array stored only 1,000 entries. However, a drawback to creating an extremely large
hash table array is wasted memory. If only 1,000 items are inserted into the 10,000-entry
hash table, then at least 9,000 memory locations will go unused. This illustrates the
time-space tradeoff. It is usually possible to increase run-time performance at the
expense of memory space, and vice versa.

time-space
tradeoff

Self-Test Exercises

21. Suppose that every student in your university is assigned a unique nine-digit
ID number. You would like to create a hash table that indexes ID numbers to
an object representing a student. The hash table has a size of N, where N has
less than nine digits. Describe a simple hash function that you can use to map
from a ID number to a hash index.

22. Write an outputHashTable() method for the HashTable class that outputs
every item stored in the hash table.

15.6 Sets

There are two classes in good society in England. The equestrian classes and
the neurotic classes.

GEORGE BERNARD SHAW, Heartbreak House, 1919.

A set is a collection of elements in which order and multiplicity are ignored. Many
problems in computer science can be solved with the aid of a set data structure.
A variation on linked lists is a straightforward way to implement a set. In this
implementation, the items in each set are stored using a singly linked list. The data

Sets 909

910 CHAPTER 15 Linked Data Structures

variable contains a reference to an object we wish to store in the set, whereas the link
variable refers to the next Node<T> in the list (which in turn contains a reference to
the next object to store in the set). The node class for a generic set of objects can begin
as follows:

private class Node<T>
{
 private T data;
 private Node<T> link;

 ...

A complete listing is provided in Display 15.37. The Node class is a private inner
class, similar to how we constructed the generic LinkedList3<T> class in Display 15.8.
In fact, the set operations of add, contains, output, clear, size, and isEmpty
are virtually identical to those from Display 15.8. The add method (which was
addToStart) has been slightly changed to prevent duplicate items from being added
into the set. Display 15.36 illustrates two sample sets stored using this data structure.
The set round contains "peas", "ball", and "pie", whereas the set green contains
"peas" and "grass". Because the linked list is storing a reference to each object in the
set, it is possible to place an item in multiple sets by referencing it from multiple linked
lists. In Display 15.36, "peas" is in both sets because it is round and green.

Fundamental Set Operations

The fundamental operations that our set class should support are as follows:

• Add Element. Add a new item into a set.
• Contains. Determine if a target item is a member of the set.
• Union. Return a set that is the union of two sets.
• Intersection. Return a set that is the intersection of two sets.

Display 15.36 Sets Using Linked Lists

round

green

peas grass ball pie

null

null

We should also make an iterator so that every element can be retrieved from a set.
This is left as a programming project for the reader (Programming Project 15.7).
Other useful set operations include methods to retrieve the cardinality of the set and to
remove items from the set.

Code to implement sets is provided in Display 15.37. The add method is similar to
adding a node to the front of a linked list. The head variable always references the first
node in the list. The contains method is identical to the find method for a singly
linked list. We simply loop through every item in the list looking for the target.

The union method combines the elements in the calling object’s set with the
elements from the set of the input argument, otherSet. To union these sets, we first
create a new empty Set<T> object. Next, we iterate through both the calling object’s
set and otherSet’s set. All elements are added (which creates new references to the
items in the set) to the new set. The add method enforces uniqueness, so we do not
have to check for duplicate elements in the union method.

The intersection method is similar to the union method in that it also creates
a new empty Set<T> object. In this case, we populate the set with items that are
common to both the calling object’s set and otherSet’s set. This is accomplished by
iterating through every item in the calling object’s set. For each item, we invoke the
contains method for otherSet. If contains returns true, then the item is in both
sets and can be added to the new set.

A short demonstration program is shown in Display 15.38.

Display 15.37 Set<T> Class (part 1 of 3)

 1 // Uses a linked list as the internal data structure
 2 // to store items in a set.
 3 public class Set<T>
 4 {
 5 private class Node<T>
 6 {
 7 private T data;
 8 private Node<T> link;
 9 public Node()
10 {
11 data = null;
12 link = null;
13 }
14 public Node(T newData, Node<T> linkValue)
15 {
16 data = newData;
17 link = linkValue;
18 }
19 }//End of Node<T> inner class

(continued)

Sets 911

912 CHAPTER 15 Linked Data Structures

20 private Node<T> head;

21 public Set()
22 {
23 head = null;
24 }
25 /**
26 Add a new item to the set. If the item
27 is already in the set, false is returned;
28 otherwise, true is returned.
29 */

30 public boolean add(T newItem)
31 {
32 if (!contains(newItem))
33 {
34 head = new Node<T>(newItem, head);
35 return true;
36 }
37 return false;
38 }

39 public boolean contains(T item)
40 {
41 Node<T> position = head;
42 T itemAtPosition;
43 while (position != null)
44 {
45 itemAtPosition = position.data;
46 if (itemAtPosition.equals(item))
47 return true;
48 position = position.link;
49 }
50 return false; //target was not found

51 }

52 public void output()
53 {
54 Node position = head;
55 while (position != null)
56 {
57 System.out.print(position.data.toString() + " ");
58 position = position.link;
59 }
60 System.out.println();
61 }

Display 15.37 Set<T> Class (part 2 of 3)

 62 /**
 63 Returns a new set that is the union
 64 of this set and the input set.
 65 */
 66 public Set<T> union(Set<T> otherSet)
 67 {
 68 Set<T> unionSet = new Set<T>();
 69 // Copy this set to unionSet.
 70 Node<T> position = head;
 71 while (position != null)
 72 {
 73 unionSet.add(position.data);
 74 position = position.link;
 75 }
 76 // Copy otherSet items to unionSet.
 77 // The add method eliminates any duplicates.
 78 position = otherSet.head;
 79 while (position != null)
 80 {
 81 unionSet.add(position.data);
 82 position = position.link;
 83 }
 84 return unionSet;
 85 }

 86 /**
 87 Returns a new set that is the intersection
 88 of this set and the input set.
 89 */
 90 public Set<T> intersection(Set<T> otherSet)
 91 {
 92 Set<T> interSet = new Set<T>();
 93 // Copy only items in both sets.
 94 Node<T> position = head;
 95 while (position != null)
 96 {
 97 if (otherSet.contains(position.data))
 98 interSet.add(position.data);
 99 position = position.link;
100 }
101 return interSet;
102 }
103 }

Display 15.37 Set<T> Class (part 3 of 3)

The clear, size, and isEmpty methods are identical
to those in Display 15.8 for the LinkedList3 class.

Sets 913

914 CHAPTER 15 Linked Data Structures

Display 15.38 Set Class Demo (part 1 of 2)

 1 public class SetDemo
 2 {
 3 public static void main(String[] args)
 4 {
 5 // Round things
 6 Set round = new Set<String>();
 7 // Green things
 8 Set green = new Set<String>();

 9 // Add some data to both sets
10 round.add("peas");
11 round.add("ball");
12 round.add("pie");
13 round.add("grapes");

14 green.add("peas");
15 green.add("grapes");
16 green.add("garden hose");
17 green.add("grass");

18 System.out.println("Contents of set round: ");
19 round.output();
20 System.out.println("Contents of set green: ");
21 green.output();
22 System.out.println();

23 System.out.println("ball in set round? " +
24 round.contains("ball"));
25 System.out.println("ball in set green? " +
26 green.contains("ball"));
27 System.out.println("ball and peas in same set? " +
28 ((round.contains("ball") &&
29 (round.contains("peas"))) ||
30 (green.contains("ball") &&
31 (green.contains("peas")))));

32 System.out.println("pie and grass in same set? " +
33 ((round.contains("pie") &&
34 (round.contains("grass"))) ||
35 (green.contains("pie") &&
36 (green.contains("grass")))));

37 System.out.print("Union of green and round: ");
38 round.union(green).output();

39 System.out.print("Intersection of green and round: ");
40 round.intersection(green).output();
41 }
42 }

Display 15.38 Set Class Demo (part 2 of 2)

Sample Dialogue

Contents of set round:

grapes pie ball peas

Contents of set green:

grass garden hose grapes peas

ball in set round? true

ball in set green? false

ball and peas in same set? true

pie and grass in same set? false

Union of green and round: garden hose grass peas ball pie grapes

Intersection of green and round: peas grapes

Efficiency of Sets Using Linked Lists

We can analyze the efficiency of our set data structure in terms of the fundamental set
operations. Adding an item to the set always inserts a new node on the front of the
list. This requires constant, or O(1), steps. The contains method iterates through
the entire set looking for the target, which requires O(n) steps. When we invoke the
union method for sets A and B, it iterates through both sets and adds each item into a
new set. If there are n items in set A and m items in set B, then n + m add methods are
invoked. However, there is a hidden cost because the add method searches through its
entire list for any duplicates before a new item is added. Although beyond the scope
of this text, the additional cost results in O(m + n)2 steps. Finally, the intersection
method applied to sets A and B invokes the contains method of set B for each item in
set A. Because the contains method requires O(m) steps for each item in set A, then
this requires O(m) * O(n) steps, or O(mn) steps. These are inefficient methods in our
implementation of sets. A different approach to represent the set—for example, one
that used hash tables instead of a linked list—could result in an intersection method
that runs in O(n + m) steps. Nevertheless, our linked list implementation would
probably be fine for an application that uses small sets or for an application that does
not frequently invoke the intersection method, and we have the benefit of relatively
simple code that is easy to understand.

If we really need the efficiency, then we could maintain the same interface to the
Set<T> class but replace our linked list implementation with something else. If we
used the hash table implementation from Section 15.5, then the contains method

Sets 915

916 CHAPTER 15 Linked Data Structures

could run in O(1) steps instead of O(n) steps. It might seem like the intersection
method will now run in O(n) steps, but by switching to a hash table, it becomes more
difficult to iterate through the set of items. Instead of traversing a single linked list to
retrieve every item in the set, the hash table version must now iterate through the hash
table array and then for each index in the array iterate through the linked list at that
index. If the array is size N and the number of items in the hash table is n, then the
iteration time becomes O(N + n). In practice, we would expect N to be larger than n.
So although we have decreased the number of steps it takes to look up an item, we have
increased the number of steps it takes to iterate over every item. If this is troublesome,
you could overcome this problem with an implementation of Set<T> that uses both
a linked list (to facilitate iteration) and a hash table (for fast lookup). However, the
complexity of the code is significantly increased using such an approach. You are asked
to explore the hash table implementation in Programming Project 15.10.

Self-Test Exercises

23. Write a method named difference that returns the difference between two
sets. The method should return a new set that has items from the first set that
are not in the second set. For example, if setA contains {1, 2, 3, 4} and setB
contains {2, 4, 5}, then setA.difference(setB) should return the set {1, 3}.

24. What is the run time of the difference method for the previous exercise?
Give your answer using big-O notation.

15.7 Trees

I think that I shall never see a data structure as useful as a tree.

ANONYmOUS

The tree data structure is an example of a more complicated data structure made with
links. Moreover, trees are a very important and widely used data structure. So, we will
briefly outline the general techniques used to construct and manipulate trees. This
section is only a very brief introduction to trees to give you the flavor of the subject.

This section uses recursion, which is covered in Chapter 11.

Tree Properties

A tree is a data structure that is structured as shown in Display 15.39. In particular,
in a tree you can reach any node from the top (root) node by some path that follows
the links. Note that there are no cycles in a tree. If you follow the links, you eventually
get to an “end.” A definition for a tree class for this sort of tree of ints is outlined
in Display 15.39. Note that each node has two references to other nodes (two links)
coming from it. This sort of tree is called a binary tree, because each node has exactly binary tree

two link instance variables. There are other kinds of trees with different numbers of
link instance variables, but the binary tree is the most common case.

Display 15.39 A Binary Tree

20

10

null

null

30

null

null

50

null

60

null

null

40

right subtreeleft subtree

root

 1 public class IntTree
 2 {
 3 public class IntTreeNode
 4 {
 5 private int data;
 6 private IntTreeNode leftLink;
 7 private IntTreeNode rightLink;
 8 } //End of IntTreeNode inner class

 9 private IntTreeNode root;
 <The methods and other inner classes are not shown.>

10 }

root node

The instance variable named root serves a purpose similar to that of the instance
variable head in a linked list (Display 15.3). The node whose reference is in the root
instance variable is called the root node. Any node in the tree can be reached from the
root node by following the links.

Trees 917

918 CHAPTER 15 Linked Data Structures

The term tree may seem like a misnomer. The root is at the top of the tree, and the
branching structure looks more like a root branching structure than a tree branching
structure. The secret to the terminology is to turn the picture (Display 15.39) upside
down. The picture then does resemble the branching structure of a tree, and the root
node is where the tree’s root would begin. The nodes at the ends of the branches
with both link instance variables set to null are known as leaf nodes, a terminology
that may now make some sense. By analogy to an empty linked list, an empty tree is
denoted by setting the link variable root equal to null.

Note that a tree has a recursive structure. Each tree has, in effect, two subtrees whose
root nodes are the nodes pointed to by the leftLink and rightLink of the root node.
These two subtrees are circled in Display 15.39. This natural recursive structure makes
trees particularly amenable to recursive algorithms. For example, consider the task of
searching the tree in such a way that you visit each node and do something with the
data in the node (such as writing it out to the screen). There is a general plan of attack
that goes as follows:

 Preorder Processing

1. Process the data in the root node.
2. Process the left subtree.
3. Process the right subtree.

Obtain a number of variants on this search process by varying the order of these
three steps. Two more versions follow:

 Inorder Processing

1. Process the left subtree.
2. Process the data in the root node.
3. Process the right subtree.

 Postorder Processing

1. Process the left subtree.
2. Process the right subtree.
3. Process the data in the root node.

The tree in Display 15.39 has numbers that were stored in the tree in a special
way known as the Binary Search Tree Storage Rule. The rule is summarized in the
following box.

leaf node

empty tree

inorder

postorder

Binary Search
Tree Storage

Rule

Binary Search Tree Storage Rule

1. All the values in the left subtree are less than the value in the root node.

2. All the values in the right subtree are greater than or equal to the value in the root node.

3. This rule applies recursively to each of the two subtrees.

(The base case for the recursion is an empty tree, which is always considered to satisfy the rule.)

Trees 919

A tree that satisfies the Binary Search Tree Storage Rule is referred to as a binary
search tree.

Note that if a tree satisfies the Binary Search Tree Storage Rule and you output the
values using the Inorder Processing method, then the numbers will be output in order
from smallest to largest.

For trees that follow the Binary Search Tree Storage Rule and that are short and
fat rather than tall and thin, values can be very quickly retrieved from the tree using
a binary search algorithm that is similar in spirit to the binary search algorithm we
presented in Display 11.6. The topic of searching and maintaining a binary storage tree
to realize this efficiency is a large topic that goes beyond what we have room for here.
However, we give one example of a class for trees that satisfy the Binary Search Tree
Storage Rule.

binary search
tree

ExamPLE: A Binary Search Tree Class ★

Display 15.40 contains the definition of a class for a binary search tree that satisfies
the Binary Search Tree Storage Rule. For simplicity, this tree stores integers, but a
routine modification can produce a similar tree class that stores objects of any class
that implements the Comparable interface. Display 15.41 demonstrates the use of
this tree class. Note that no matter in which order the integers are inserted into the
tree, the output, which uses inorder traversal, outputs the integers in sorted order.

The methods in this class make extensive use of the recursive nature of binary
trees. If aNode is a reference to any node in the tree (including possibly the root
node), then the entire tree with root aNode can be decomposed into three parts:

1. The node aNode.
2. The left subtree with root node aNode.leftLink.
3. The right subtree with root node aNode.rightLink.

The left and right subtrees do themselves satisfy the Binary Search Tree Storage Rule,
so it is natural to use recursion to process the entire tree by doing the following:

1. Processing the left subtree with root node aNode.leftLink
2. Processing the node aNode
3. Processing the right subtree with root node aNode.rightLink

Note that we processed the root node after the left subtree (inorder traversal). This
guarantees that the numbers in the tree are output in the order smallest to largest.
The method showElementsInSubtree uses a very straightforward implementation
of this technique.

Other methods are a bit more subtle in that only one of the two subtrees needs to
be processed. For example, consider the method isInSubtree, which returns true
or false depending on whether or not the parameter item is in the tree with root
node subTreeRoot. To see if the item is anyplace in the tree, set subTreeRoot equal

(continued)

920 CHAPTER 15 Linked Data Structures

to the root of the entire tree, as we did in the method contains. However, to express
our recursive algorithm for isInSubtree, we need to allow for the possibility of
subtrees other than the entire tree.

The algorithm for isInSubtree expressed in pseudocode is as follows:

if (The root node subTreeRoot is empty.)
 return false;
else if (The node subTreeRoot contains item.)
 return true;
else if (item < subTreeRoot.data)
 return (The result of searching the tree
 with root node subTreeRoot.leftLink);
else
 //item > link.data
 return (The result of searching the tree
 with root node subTreeRoot.rightLink);

The reason this algorithm gives the correct result is that the tree satisfies the
Binary Search Tree Storage Rule, so we know that if

item < subTreeRoot.data

then item is in the left subtree (if it is anywhere in the tree), and if

item > subTreeRoot.data

then item is in the right subtree (if it is anywhere in the tree).

The method with the following heading uses techniques very much like those used
in isInSubtree:

private IntTreeNode insertInSubtree(
 int item, IntTreeNode subTreeRoot)

However, there is something new here. We want the method insertInSubtree to
insert a new node with the data item into the tree with root node subTreeRoot. But
in this case, we want to deal with subTreeRoot as a variable and not use it only as
the value of the variable subTreeRoot. For example, if subTreeRoot contains null,
then we want to change the value of subTreeRoot to a reference to a new node
containing item. However, Java parameters cannot change the value of a variable
given as an argument. (Review the discussion of parameters in Chapter 5 if this
sounds unfamiliar.) So, we must do something a little different. To change the value
of the variable subTreeRoot, we return a reference to what we want the new value to
be, and we invoke the method subTreeRoot as follows:

subTreeRoot = insertInSubtree(item, subTreeRoot);

That explains why the method insertInSubtree returns a reference to a tree
node, but we still have to explain why we know it returns a reference to the desired
(modified) subtree.

ExamPLE: (continued)

Note that the method insertInSubtree searches the tree just as the method
isInSubtree does, but it does not stop if it finds item; instead, it searches until it
reaches a leaf node—that is, a node containing null. This null is where the item
belongs in the tree, so it replaces null with a new subtree containing a single node
that contains item. You may need to think about the method insertInSubtree
a bit to see that it works correctly; allow yourself some time to study the method
insertInSubtree and be sure you are convinced that after the addition, like the
following,

subTreeRoot = insertInSubtree(item, subTreeRoot);

the tree with root node subTreeRoot still satisfies the Binary Search Tree
Storage Rule.

The rest of the definition of the class IntTree is routine.

ExamPLE: (continued)

Display 15.40 A Binary Search Tree for Integers (part 1 of 2)

 1 /**
 2 Class invariant: The tree satisfies the Binary Search Tree Storage Rule.
 3 */
 4 public class IntTree
 5 {
 6 private static class IntTreeNode
 7 {
 8 private int data;
 9 private IntTreeNode leftLink;
10 private IntTreeNode rightLink;
11
12 public IntTreeNode(int newData, IntTreeNode newLeftLink,
13 IntTreeNode newRightLink)
14 {
15 data = newData;
16 leftLink = newLeftLink;
17 rightLink = newRightLink;
18 }
19 } //End of IntTreeNode inner class

20 private IntTreeNode root;

21 public IntTree()
22 {
23 root = null;
24 }

25 public void add(int item)
26 {
27 root = insertInSubtree(item, root);
28 }

The only reason this inner
class is static is that it is
used in the static methods
insertInSubtree,
isInSubtree, and
showElementsInSubtree.

This class should have more methods.
This is just a sample of possible methods.

Trees 921

(continued)

922 CHAPTER 15 Linked Data Structures

29 public boolean contains(int item)
30 {
31 return isInSubtree(item, root);
32 }

33 public void showElements()
34 {
35 showElementsInSubtree(root);
36 }
37 /**
38 Returns the root node of a tree that is the tree with root node
39 subTreeRoot, but with a new node added that contains item.
40 */
41 private static IntTreeNode insertInSubtree(int item,
42 IntTreeNode subTreeRoot)
43 {
44 if (subTreeRoot == null)
45 return new IntTreeNode(item, null, null);
46 else if (item < subTreeRoot.data)
47 {
48 subTreeRoot.leftLink = insertInSubtree(item, subTreeRoot.

 leftLink);
49 return subTreeRoot;
50 }
51 else //item >= subTreeRoot.data
52 {
53 subTreeRoot.rightLink = insertInSubtree(item, subTreeRoot.

 rightLink);
54 return subTreeRoot;
55 }
56 }

57 private static boolean isInSubtree(int item, IntTreeNode
 subTreeRoot)

58 {
59 if (subTreeRoot == null)
60 return false;
61 else if (subTreeRoot.data == item)
62 return true;
63 else if (item < subTreeRoot.data)
64 return isInSubtree(item, subTreeRoot.leftLink);
65 else //item >= link.data
66 return isInSubtree(item, subTreeRoot.rightLink);
67 }

68 private static void showElementsInSubtree(IntTreeNode subTreeRoot)
69 { //Uses inorder traversal.
70 if (subTreeRoot != null)
71 {
72 showElementsInSubtree(subTreeRoot.leftLink);
73 System.out.print(subTreeRoot.data + " ");
74 showElementsInSubtree(subTreeRoot.rightLink);
75 } //else do nothing. Empty tree has nothing to display.
76 }
77 }

Display 15.40 A Binary Search Tree for Integers (part 2 of 2)

Display 15.41 Demonstration Program for the Binary Search Tree

 1 import java.util.Scanner;

 2 public class BinarySearchTreeDemo
 3 {
 4 public static void main(String[] args)
 5 {
 6 Scanner keyboard = new Scanner(System.in);
 7 IntTree tree = new IntTree();

 8 System.out.println("Enter a list of nonnegative integers.");
 9 System.out.println("Place a negative integer at the end.");
10 int next = keyboard.nextInt();
11 while (next >= 0)
12 {
13 tree.add(next);
14 next = keyboard.nextInt();
15 }

16 System.out.println("In sorted order:");
17 tree.showElements();
18 }
19 }

Sample Dialogue

Enter a list of nonnegative integers.

Place a negative integer at the end.

40

30

20

10

11

22

33

44

-1

In sorted order:

10 11 20 22 30 33 40 44

Trees 923

924 CHAPTER 15 Linked Data Structures

Efficiency of Binary Search Trees ★

When searching a tree that is as short as possible (all paths from root to a leaf differ
by at most one node), the search method isInSubtree, and hence also the method
contains, is about as efficient as the binary search on a sorted array (Display 11.6).
This should not be a surprise because the two algorithms are in fact very similar. In
big-O notation, the worst-case running time is O(log n), where n is the number of
nodes in the tree. This means that searching a short, fat binary tree is very efficient.
To obtain this efficiency, the tree does not need to be as short as possible so long as
it comes close to being as short as possible. As the tree becomes less short and fat and
more tall and thin, the efficiency falls off until, in the extreme case, the efficiency is the
same as that of searching a linked list with the same number of nodes.

Maintaining a tree so that it remains short and fat as nodes are added is a topic that
is beyond the scope of what we have room for in this book. (The technical term for
short and fat is balanced.) We will note only that if the numbers that are stored in the
tree arrive in random order, then with very high probability the tree will be short and
fat enough to realize the efficiency discussed in the previous paragraph.

Self-Test Exercises

25. Suppose that the code for the method showElementsInSubtree in Display 15.40
were changed so that

showElementsInSubtree(subTreeRoot.leftLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.rightLink);

 were changed to

System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.leftLink);
showElementsInSubtree(subTreeRoot.rightLink);

 Will the numbers still be output in ascending order?

26. How can you change the code for the method showElementsInSubtree in
Display 15.40 so that the numbers are output from largest to smallest instead of
from smallest to largest?

Chapter Summary

• A linked list is a data structure consisting of objects known as nodes, such that each
node contains data and also a reference to one other node so that the nodes link
together to form a list.

• Setting a link instance variable to null indicates the end of a linked list (or other
linked data structure). null is also used to indicate an empty linked list (or other
empty linked data structure).

• You can make a linked list (or other linked data structure) self-contained by making
the node class an inner class of the linked list class.

• In many situations, a clone method or copy constructor is best defined so that it
makes a deep copy.

• You can use an iterator to step through the elements of a collection, such as the
 elements in a linked list.

• Nodes in a doubly linked list have two links—one to the previous node in the list and
one to the next node. This makes some operations, such as insertion and deletion,
slightly easier.

• A stack is a data structure in which elements are removed in the reverse of the order
they were added to the stack. A queue is a data structure in which elements are
removed in the same order that they were added to the queue.

• Big-O notation specifies an upper bound for how many steps or how long a program
will take to run based on the size of the input to the program. This can be used to
analyze the efficiency of an algorithm.

• A hash table is a data structure that is used to store objects and retrieve them efficiently.
A hash function is used to map an object to a value that can then be used to index the
object.

• Linked lists can be used to implement sets, including common operations such as
union, intersection, and set membership.

• A binary tree is a branching linked data structure consisting of nodes that each have
two link instance variables. A tree has a special node called the root node. Every node
in the tree can be reached from the root node by following links.

• If values are stored in a binary tree in such a way that the Binary Search Tree
 Storage Rule is followed, then there are efficient algorithms for reaching values stored
in the tree.

Chapter Summary 925

answers to Self-Test Exercises

 1. mustard 1
 hot dogs 12

 apple pie 1

 2. This method has been added to the class LinkedList1 on the accompanying website.

 public boolean isEmpty()
 {

 return (head == null);
 }

 3. This method has been added to the class LinkedList1 on the accompanying website.

 public void clear()
 {

 head = null;
 }

 If you defined your method to remove all nodes using the deleteHeadNode
method, your method is doing wasted work.

 4. Yes. If we make the inner class Node a public inner class, it could be used outside
the definition of LinkedList2, whereas leaving it as private means it cannot be
used outside the definition of LinkedList2.

 5. It would make no difference. Within the definition of an outer class, there is full
access to the members of an inner class whatever the inner class member’s access
modifier is. To put it another way, inside the private inner class Node, the modi-
fiers private and package access are equivalent to public.

 6. Because the outer class has direct access to the instance variables of the inner class
Node, no access or mutator methods are needed for Node.

 7. It would be legal, but it would be pretty much a useless method, because you
cannot use the type Node outside of the class LinkedList2. For example, out-
side of the class LinkedList2, the following is illegal (listObject is of type
LinkedList2):

 Node v = listObject.startNode(); //Illegal

 whereas the following would be legal outside of the class LinkedList2 (although
it is hard to think of anyplace you might use it):

 Object v = listObject.startNode();

 8. public class LinkedList2

 {

 public class Entry
 {
 private String item;
 private int count;

 public Entry()

926 CHAPTER 15 Linked Data Structures

Answers to Self-Test Exercises 927

 {

 item = null;

 count = 0;

 }

 public Entry(String itemData, int countData)
 {

 item = itemData;

 count = countData;

 }

 public void setItem(String itemData)
 {

 item = itemData;

 }

 public void setCount(int countData)
 {

 count = countData;

 }

 public String getItem()
 {

 return item;

 }

 public int getCount()
 {

 return count;

 }

} // End of Entry inner class

private class Node
{

 private Entry item;

 private Node link;

 public Node()

 {

 item = null;

 link = null;

 }

 public Node(Entry newItem, Node linkValue)
 {

 item = newItem;

 link = linkValue;

 }

 } //End of Node inner class

 private Node head;

 <Other definitions from LinkedList2 go here>

 } //End of LinkedList2 class

 The rest of the definition of LinkedList2 is essentially the same as in Display 15.7,
but with the type String replaced by Entry. A complete definition is given in the
subdirectory named “Exercise 8” on the website that accompanies this text.

 9. No, T is not guaranteed to have a copy constructor. Even if T has a copy constructor,
it is illegal to use T with new like this.

10. No, you can use any descendent class of Object (which means any class type) as
the returned type, because the value returned will still be of type Object.

11. The delete method must now search through the list to find the previous node
and then change the link to bypass the current position. This is less efficient than
the code in Display 15.17 because the reference to the previous node is already set.

 public void delete()
 {

 if (position == null)

 {

 throw new IllegalStateException();
 }
 else
 {
 Node current = head;

 Node previous = null;

 while (current != null)

 {

 if (current == position)
 {
 // Found the node to delete
 // Check if we're at the head
 if (previous == null)
 {
 head = head.link;
 position = head;
 }

928 CHAPTER 15 Linked Data Structures

Answers to Self-Test Exercises 929

 else // Delete in middle of list
 {
 previous.link = position.link;

 position = position.link;
 }
 return;
 }
 previous = current; // Advance references

 current = current.link;

 }
 }
 }

12. One problem with adding after the iterator’s position is that there is no way to
add to the front of the list. It would be possible to make a special case in which the
new node were added to the front (e.g., if position is null, add the new data to
the head) if desired.

 public void addAfterHere(String newData)

 {

 if (position == null && head != null)

 {

 // At end of list; can't add here

 throw new IllegalStateException();

 }

 else if (head == null)

 // At head of empty list, add to front

 LinkedList2Iter.this.addToStart(newData);

 else

 {

 // Add after current position

 Node temp = new Node(newData, position.link);

 position.link = temp;

 }

 }

13. public void changeHere(String newData)
 {

 if (position == null)
 throw new IllegalStateException();
 else
 position.item = newData;
 }

14. When invoking i.next(), the value of the node that i is referencing is copied to
a local variable, the iterator moves to the next node in the link, and then the value
of the local variable is returned. Therefore, the value that i is referencing prior to
the invocation is returned.

15. Insertion and deletion are slightly easier with the doubly linked list because we no
longer need a separate instance variable to keep track of the previous node due to
the previous link. However, all operations require updating more links (e.g., both
the next and previous instead of just the previous).

16. Use the iterator:

 DoublyLinkedList.DoublyLinkedIterator i = list.iterator();

 i.restart();

 i.insertHere("Element At Front");

17. Pop the top of the stack and then push it back on:

 String s = stack.pop();
 Stack.push(s);

 // s contains the string on the top of the stack

18. public void addToBack(String itemName)
 {

 Node newEntry =

 new Node(itemName, null);

 if (front == null) //empty queue

 {

 back = newEntry;

 front = back;

 }

 else

 {
 back.link = newEntry;

 back = back.link;

 }

 }

19. Just note that aN + b … (a + b)N, as long as 1 … N.

20. This is mathematics, not Java. So, = will mean equals, not assignment.

First note that logaN = (logab)(logbN).

To see this first identity, just note that if you raise a to the power logaN, you get
N, and if you raise a to the power (logab)(logbN), you also get N.

If you set c = (logab), you get logaN = c (logbN).

21. The simplest hash function is to map the ID number to the range of the hash table
using the modulus operator:

hash = ID % N; // N is the hash table size

930 CHAPTER 15 Linked Data Structures

Programming Projects 931

22. public void outputHashTable()
{

 for (int i=0; i< SIZE; i++)
 {
 if (hashArray[i].size() > 0)
 hashArray[i].outputList();
 }
}

23. This code is similar to intersection, but adds elements if they are not in
 otherSet:

public Set<T> difference(Set<T> otherSet)
{
 Set<T> diffSet = new Set<T>();
 // Copy only items in this set but not otherSet
 Node<T> position = head;
 while (position != null)
 {
 if (!otherSet.contains(position.data))
 diffSet.add(position.data);
 position = position.link;
 }
 return diffSet;
}

24. As implemented in Programming Problem 15.23, the complexity is identical to the
intersection method. For every element in the set, we invoke the contains
method of otherSet. This requires O(nm) steps, where n is the number of items in
the calling object’s set and m is the number of items in otherSet’s set.

25. No.

26. Change

showElementsInSubtree(subTreeRoot.leftLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.rightLink);

to

showElementsInSubtree(subTreeRoot.rightLink);
System.out.print(subTreeRoot.data + " ");
showElementsInSubtree(subTreeRoot.leftLink);

Programming Projects

 1. In an ancient land, the beautiful princess Eve had many suitors. She decided on the
following procedure to determine which suitor she would marry. First, all of the suit-
ors would be lined up one after the other and assigned numbers. The first suitor would
be number 1, the second number 2, and so on up to the last suitor, number n. Starting
at the suitor in the first position, she would then count three suitors down the line

Solution to
Programming
Project 15.1

VideoNote

(because of the three letters in her name), and the third suitor would be eliminated
from winning her hand and removed from the line. Eve would then continue, count-
ing three more suitors, and eliminate every third suitor. When she reached the end of
the line, she would continue counting from the beginning.

For example, if there were six suitors, the elimination process would proceed
as f ollows:

123456 Initial list of suitors; start counting from 1.

12456 Suitor 3 eliminated; continue counting from 4.

1245 Suitor 6 eliminated; continue counting from 1.

125 Suitor 4 eliminated; continue counting from 5.

15 Suitor 2 eliminated; continue counting from 5.

1 Suitor 5 eliminated; 1 is the lucky winner.

 Write a program that creates a circular linked list of nodes to determine which posi-
tion you should stand in to marry the princess if there are n suitors. Your program
should simulate the elimination process by deleting the node that corresponds to
the suitor that is eliminated for each step in the process.

 2. A record contains data as well as reference to the next record. We should be
able to insert or remove data within the data records. Create a class named as
WordLinkedList that uses the LinkedList class discussed in this chapter to contain
lists of words. Create a menu-driven program that allows a user to choose from the
following list of operations:

 1. Insert word in the beginning
 2. Insert word at a given position
 3. Delete word from the beginning
 4. Delete word from a given position
 5. Display complete list
 6. Search a specific word
 7. Exit

 3. Extend the previous problem to create a list that will act as a stack. A stack is a data
structure that follows the last-in first-out order for the addition and deletion of ele-
ments. This list will contain the following items of integer type values. Modify the
method implemented in the previous problem for addition of an item in the stack
to create a push method. Also, modify the remove method for deleting items from
the stack to create a pop method. Do remember that the elements are inserted or
deleted from only one end of the stack.

 4. In reference to the previous two problems, again modify the program to make use
of the LinkedList class to implement a double-ended queue. In a double-ended
queue, insertion and deletion can be carried out at both the ends. Add methods
to add and remove elements in this double-ended queue.

 5. Complete the definition of the binary search tree class IntTree in Display 15.39
by adding the following: Make IntTree implement the Cloneable interface,
 including the definition of a clone method; add a copy constructor; add an

932 CHAPTER 15 Linked Data Structures

Programming Projects 933

equals method; add a method named sameContents as described later in this
project; add a toString method; and add a method to produce an iterator. Define
equals so that two trees are equal if (and only if) the two trees have the exact same
shape and have the same numbers in corresponding nodes. The clone method and
the copy constructor should each produce a deep copy that is equal to the original
list according to the equals method. The boolean valued method sameContents
has one parameter of type IntTree and returns true if the calling object and the
argument tree contain exactly the same numbers, and returns false otherwise.
Note that equals and sameContents are not the same. Also, write a suitable
test program.

 6. Write an addSorted method for the generic linked list from Display 15.8 such
that the method adds a new node in the correct location so that the list remains
in sorted order. Note that this will require that the type parameter T extend the
Comparable interface. Write a suitable test program.

 7. Add a remove method and an iterator for the Set class in Display 15.37. Write a
suitable test program.

 8. The hash table from Display 15.34 hashed a string to an integer and stored the
same string in the hash table. Modify the program so that instead of storing strings,
it stores Employee objects as defined in Display 7.2. Use the name instance variable
as the input to the hash function. The modification will require changes to the
linked list, because the LinkedList2 class created only linked lists of strings. For
the most generality, modify the hash table so that it uses the generic LinkedList3
class defined in Display 15.8. You will also need to add a get method that returns
the Employee object stored in the hash table that corresponds to the input name.
Test your program by adding and retrieving several names, including names that
hash to the same slot in the hash table.

 9. Displays 15.34 and 15.35 provide the beginnings of a spell-checker. Refine the pro-
gram to make it more useful. The modified program should read in a text file, parse
each word, see if it is in the hash table, and, if not, output the line number and
word of the potentially misspelled word. Discard any punctuation in the original
text file. Use the words.txt file as the basis for the hash table dictionary. This file
can be found on the book’s website. The file contains 87,314 words in the English
language. Test your spell-checker on a short text document.

10. Change the Set<T> class of Display 15.37 so that internally it uses a hash table
to store its data instead of a linked list. The headers of the public methods should
remain the same so that a program such as the demonstration in Display 15.38
should still work without requiring any changes. Add a constructor that allows the
user of the new Set<T> class to specify the size of the hash table array.

For an additional challenge, implement the set using both a hash table and a
linked list. Items added to the set should be stored using both data structures. Any
 operation requiring lookup of an item should use the hash table, and any operation
requiring iteration through the items should use the linked list.

Write a program that implements the previous maze using references to instances
of a Node class. Each node in the graph will correspond to an instance of Node.
The edges correspond to links that connect one node to another and can be
represented in Node as instance variables that reference another Node class. Start
the user in node A. The user’s goal is to reach the finish in node L. The program
should output possible moves in the north, south, east, or west direction. Sample
execution is shown next.

You are in room A of a maze of twisty little passages, all
alike. You can go east or south.
E
You are in room B of a maze of twisty little passages, all
alike. You can go west or south.
S
You are in room F of a maze of twisty little passages, all
alike. You can go north or east.
E

11. The following figure is called a graph. The circles are called nodes and the lines are
called edges. An edge connects two nodes. You can interpret the graph as a maze of
rooms and passages. The nodes can be thought of as rooms, and an edge connects one
room to another. Note that each node has at most four edges in the graph that follows.

Start
North

Finish

D

F G H

I J K L

CBA

E

934 CHAPTER 15 Linked Data Structures

16.2 Maps 957
Concrete Map Classes 960

16.3 Iterators 964
The Iterator Concept 964
The Iterator<T> Interface 964
List Iterators 968

16.1 ColleCtIons 936
Wildcards 938
The Collection Framework 938
Concrete Collection Classes 946
Differences between ArrayList<T> and

Vector<T> 956
Nonparameterized Version of the Collection

Framework ★ 956

16Collections, Maps,
and Iterators

Chapter summary 973 answers to self-test exercises 973 programming projects 974

Science is built up with facts, as a house is with stones. But a collection

of facts is no more science than a heap of stones is a house.

Ch. IX: Hypotheses in Nature, as translated by George Bruce Halsted, 1913.

Introduction
A collection is a data structure for holding elements. For example, an ArrayList<T>
object is a collection. Java has a repertoire of interfaces and classes that give a uniform
treatment of collections. An iterator is an object that cycles through all the elements in
a collection. In this chapter, we discuss collections and iterators.

Prerequisites
Sections 16.1 to 16.3 can be considered one single large topic. These three sections
require Chapters 1 through 9, Section 13.1 of Chapter 13, which covers interfaces,
Chapter 14 on generics and the ArrayList<T> class, and Chapter 15 on linked data
structures. The material on inner classes in Chapter 13 (Sections 13.2 and 13.3) is not
needed except for a brief reference in the Programming Tip entitled “Defining Your
Own Iterator Classes,” which requires Section 13.2 (but not 13.3).

None of the material in this chapter is needed to understand Swing and GUIs. So,
you may skip this and go directly to Chapter 17 if you prefer to cover Swing GUIs
before considering the material of this chapter.

16.1 Collections

Put all your eggs in one basket and
—WATCH THAT BASKET.

MARK TWAIN, Pudd’nhead Wilson, Charles L. Webster & Company, 1894.

A Java collection is a class that holds objects. This concept is made precise by
the Collection<T> interface. A Java collection is any class that implements the
Collection<T> interface. As we shall see, many of these classes can be used as
predefined data structures similar to those we defined ourselves in Chapter 15.
One example of a Java collection class, which you saw in Chapter 14, is the
ArrayList<T> class. The Collection<T> interface allows you to write code that
applies to all Java collections so that you do not have to rewrite the code for each
specific collection type. There are other interfaces and abstract classes that are in

16 Collections, Maps, and Iterators

collection

iterator

Collections 937

some sense or another produced from the Collection<T> interface. Some of these
are shown in Display 16.1. In this section, we give you an introduction to this Java
collection framework. The topic is too large to treat exhaustively in this book, so
this can only be an introductory treatment.

Collection<T>

Set<T>

Interface

List<T>

AbstractCollection<T>

AbstractList<T>

AbstractSequentialList<T>

Abstract Class

AbstractSet<T>SortedSet<T>

TreeSet<T>

Concrete Class

HashSet<T>

ArrayList<T> Vector<T>

LinkedList<T>

Im
pl

em
en

ts

Im
pl

em
en

ts

Im
pl

em
en

ts

Im
pl

em
en

ts

Display 16.1 The Collection Landscape

Collections are used along with iterators, which are discussed in Section 16.3.
Separating collections and iterators into two sections turns out to be a handy way of
organizing the material, but the two topics are intimately intertwined. In practice, you
normally use them together.

Before we discuss the Collection<T> interface, we need a brief detour to learn a bit
more about parameter type specifications.

A single line between two boxes means
the lower class or interface is derived
from (extends) the higher one.

T is a type parameter for the type of the
elements stored in the collection.

938 CHAPTER 16 Collections, Maps, and Iterators

Wildcards

Classes and interfaces in the collection framework use some parameter type
specifications that we have not seen before. For example, they allow you to say things
such as, “The argument must be a ArrayList<T>, but it can have any base type.” More
generally these new parameter type specifications use generic classes but do not fully
specify the type plugged in for the type parameter. Because they specify a wide range of
argument types, they are known as wildcards.

The easiest wildcard to understand is <?>, which says that you can use any type in
place of the type parameter. For example,

public void sampleMethod(String arg1, ArrayList<?> arg2)

is invoked with two arguments. The first argument must be of type String. The
second argument can be a ArrayList<T> with any base type.

Note that ArrayList<?> is different from ArrayList<Object>. For example, if
the type specification is ArrayList<?>, then you can plug in an argument of type
ArrayList<String> (as well as other types); you cannot plug in an argument of type
ArrayList<String> if the type specification is ArrayList<Object>.

You can place a bound on a wildcard saying the type used in place of the wildcard
must be an ancestor type or a descendent type of some class or interface. For example,
<? extends String> says that the argument plugged in can be an object of any
descendent class of the class String. The notation, restrictions, and meaning are the
same as what we described for type bounds such as <T extends String>, which we
discussed in Chapter 14.

For example,

public void
 anotherMethod(String arg1, ArrayList<? extends String> arg2)

is invoked with two arguments. The first argument must be of type String, but the
second argument can be of any ArrayList<T> object provided the base type of the
ArrayList<T> is a descendent type of String.

To specify that the wildcard type be an ancestor type of some class or interface, use
super rather than extends. For example, ArrayList<? super String> specifies
an ArrayList<T> whose base type can be any ancestor class of the class String. As it
turns out, we will have no occasion to use wildcard types involving super.

The Collection Framework

The Collection<T> interface is the highest level of Java’s framework for collection
classes. This interface describes the basic operations that all collection classes should
implement. A summary of these operations (method headings) for the Collection<T>
interface are given in Display 16.2. A more complete description can be found in
Appendix 5. Because an interface is a type, you can define methods with a parameter
of type Collection<T>. That parameter can be filled in with an argument that is an
object of any class in the collection framework (that is, any class that implements the

wildcard<?>

extends

super

Collection<T>
interface

Collections 939

Collection<T> interface). This turns out to be a very powerful tool. Let us explore the
possibilities. So far, we have seen one class that implements the Collection<T> interface,
namely the class ArrayList<T>. In addition to the methods given in Chapter 14 for the
ArrayList<T> class, the ArrayList<T> class also implements all the methods given
in Display 16.2. There are a number of different predefined classes that implement the
Collection<T> interface, and you can define your own classes to do this. If you write a
method to manipulate a parameter of type Collection<T>, it will work for all of these
classes. Also, the methods in the Collection<T> interface ensure that you can intermix
the use of different collection classes. For example, consider the method

public boolean containsAll(Collection<?> collectionOfTargets)

You can use this with two ArrayList<T> objects (the calling object and the argument)
to see if one contains all the elements of the other. The two ArrayList<T> objects
do not even have to have the same base type. Moreover, you can also use it with
an ArrayList<T> object and an object of any other class that implements the
Collection<T> interface to compare the elements in these two different kinds of
Collection<T> objects.

Display 16.2 Method Headings in the Collection<T> Interface (part 1 of 3)

The Collection<T> interface is in the java.util package.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Collection<T>
interface should have at least two constructors: a no-argument constructor that creates an empty
Collection<T> object, and a constructor with one parameter of type Collection<? extends
T> that creates a Collection<T> object with the same elements as the constructor argument.
The interface does not specify whether the copy produced by the one-argument constructor is a
shallow copy or a deep copy of its argument.

METHODS

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.
equals to determine if target is in the calling object.

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. For
an element in collectionOfTargets, this method uses element.equals to determine if
element is in the calling object.

(continued)

940 CHAPTER 16 Collections, Maps, and Iterators

public boolean equals(Object other)

This is the equals of the collection, not the equals of the elements in the collection. Overrides
the inherited method equals. Although there are no official constraints on equals for a collection,
it should be defined as we have described in Chapter 7 and also to satisfy the intuitive notion of
collections being equal.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than
Integer.MAX_VALUE elements, returns Integer.MAX_VALUE.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. If the calling object makes any
guarantees as to what order its elements are returned by its iterator, this method must return the
elements in the same order.

The array returned should be a new array so that the calling object has no references to the
returned array. (You might also want the elements in the array to be clones of the elements in the
collection. However, this is apparently not required by the interface, because library classes, such
as Vector<T>, return arrays that contain references to the elements in the collection.)

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not
be the type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The argument a is used
primarily to specify the type of the array returned. The exact details are described next.

The type of the returned array is that of a. If the elements in the calling object fit in the array a,
then a is used to hold the elements of the returned array; otherwise a new array is created with
the same type as a.

If a has more elements than the calling object, the element in a immediately following the end of
the copied elements is set to null.

If the calling object makes any guarantees as to what order its elements are returned by its iterator,
this method must return the elements in the same order. (Iterators are discussed in Section 16.3.)

public int hashCode()

Returns the hash code value for the calling object. The hash code is a numeric key that is ideally
a unique identifier for the calling object. (Hash codes are discussed in Section 15.5.)

Display 16.2 Method Headings in the Collection<T> Interface (part 2 of 3)

Collections 941

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented, but the
implementation can simply throw an UnsupportedOperationException if, for some reason,
you do not want to give them a "real" implementation. An UnsupportedOperationException
is a RunTimeException and so is not required to be caught or declared in a throws clause.

public boolean add(T element) (Optional)

Ensures that the calling object contains the specified element. Returns true if the calling object
changes as a result of the call. Returns false if the calling object does not permit duplicates and
already contains element; also returns false if the calling object does not change for any other
reason.

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if
the calling object changes as a result of the call; returns false otherwise.

public boolean remove(Object element) (Optional)

Removes a single instance of the element from the calling object, if it is present. Returns true if
the calling object contained the element; returns false otherwise.

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove.
Returns true if the calling object is changed; otherwise returns false.

public void clear() (Optional)

Removes all the elements from the calling object.

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also contained in the collection saveElements.
In other words, removes from the calling object all of its elements that are not contained in the
collection saveElements. Returns true if the calling object is changed; otherwise returns false.

Display 16.2 Method Headings in the Collection<T> Interface (part 3 of 3)

Packages
All the collection classes and interfaces discussed in this chapter are in the java.util package.

The relationships between some of the classes and interfaces that implement or
extend the Collection<T> interface are given in Display 16.1. There are two main
interfaces that extend the Collection<T> interface: the Set<T> interface and the
List<T> interface. Classes that implement the Set<T> interface do not allow an

Set<T> and
List<T>

interfaces

942 CHAPTER 16 Collections, Maps, and Iterators

element in the class to occur more than once. Classes that implement the List<T>
interface have their elements ordered on a list, so there is a zeroth element, a first
element, a second element, and so forth. A class that implements the List<T> interface
allows elements to occur more than once. The ArrayList<T> class implements the
List<T> interface.

The Set<T> interface has the same method headings as the Collection<T>
interface, but in some cases the semantics (intended meanings) are different. For
example, the semantics of adding new elements to the set do not allow duplicates. The
add methods are described in Display 16.3. A complete list of the Set<T> interface is
given in Appendix 5.

Display 16.3 Adding Elements in the Set<T> Interface

The Set<T> interface is in the java.util package.

The Set<T> interface extends the Collection<T> interface and has all the same method headings
given in Display 16.2. However, the semantics of the add methods vary as described below.

public boolean add(T element) (Optional)

If element is not already in the calling object, element is added to the calling object and true is
returned. If element is in the calling object, the calling object is unchanged and false is returned.

public boolean addAll(Collection<? extends > collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the
calling object changed as a result of the call; returns false otherwise. Thus, if collectionToAdd
is a Set<T>, then the calling object is changed to the union of itself with collectionToAdd.

The List<T> interface has more method headings than the Collection<T> interface,
and some of the methods inherited from the Collection<T> interface receive somewhat
different semantics. For example, the semantics of adding new elements to the set allow
duplicates, and rules must be made about which element should be removed when there
are duplicates. These methods, along with new method definitions, are described in
Display 16.4. A complete list of the List<T> interface is given in Appendix 5.

Display 16.4 Selected Methods in the List<T> Interface (part 1 of 3)

The List<T> interface is in the java.util package.

The List<T> interface extends the Collection<T> interface.

ADDING AND REMOVING ELEMENTS

public boolean add(T element) (Optional)

Adds element to the end of the calling object’s list. Normally returns true. Returns false if the
operation failed, but if the operation failed, something is seriously wrong and you will probably
get a run-time error anyway.

Collections 943

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Adds all of the elements in collectionToAdd to the end of the calling object’s list. The elements
are added in the order they are produced by an iterator for collectionToAdd.

public boolean remove(Object element) (Optional)

Removes the first occurrence of element from the calling object’s list, if it is present. Returns
true if the calling object contained the element; returns false otherwise.

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also in collectionToRemove. Returns true
if the calling object was changed; otherwise returns false.

NEW METHOD HEADINGS

The following methods are in the List<T> interface but were not in the Collection<T>
interface. Those that are optional are noted.

public void add(int index, T newElement) (Optional)

Inserts newElement in the calling object’s list at location index. The old elements at location
index and higher are moved to higher indices.

public boolean addAll(int index,
 Collection<? extends T> collectionToAdd) (Optional)

Inserts all of the elements in collectionToAdd to the calling object’s list starting at location
index. The old elements at location index and higher are moved to higher indices. The elements
are added in the order they are produced by an iterator for collectionToAdd.

public T get(int index)

Returns the object at position index.

public T set(int index, T newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position
is returned.

public T remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to
the left (subtracts one from their indices). Returns the element that was removed from the calling
object.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the
object target to test for equality. Returns 1 if target is not found.

Display 16.4 Selected Methods in the List<T> Interface (part 2 of 3)

(continued)

944 CHAPTER 16 Collections, Maps, and Iterators

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the
object target to test for equality. Returns 1 if target is not found.

public List<T> subList(int fromIndex, int toIndex)

Returns a view of the elements at locations fromIndex to toIndex of the calling object; the
object at fromIndex is included; the object, if any, at toIndex is not included. The view uses
references into the calling object; so, changing the view can change the calling object. The
returned object will be of type List<T> but need not be of the same type as the calling object.
Returns an empty List<T> if fromIndex equals toIndex.

ListIterator<T> listIterator()

Returns a list iterator for the calling object. (Iterators are discussed in Section 16.3.)

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by
the iterator is the one at index. (Iterators are discussed in Section 16.3.)

Display 16.4 Selected Methods in the List<T> Interface (part 3 of 3)

Collection Interfaces
The primary interfaces for collection classes are the Collection<T>, Set<T>, and
List<T> interfaces. Both the Set<T> and the List<T> interfaces are derived from the
Collection<T> interface. The Set<T> interface is for collections that do not allow repetition
of elements and do not impose an order on their elements. The List<T> interface is for
collections that do allow repetition of elements and do impose an order on their elements.

For-Each Loops
You can use a for-each loop with any of the collections discussed in this chapter.

PITFALL: Optional Operations

What is the point of an optional method heading in an interface? The whole
purpose of an interface is to specify what methods can be used with an object
of the interface type so that you can write code for an arbitrary object of the
interface type. The reasoning behind these optional methods is that they normally
would be implemented, but in unusual situations a programmer may leave them
“unsupported.” (The alternative would be to have two interfaces, one with and one
without the optional operations. Uncharacteristically, Java designers opted for a
smaller number of interfaces.) But there is still more to the story.

Collections 945

PITFALL: (continued)

The optional methods are not, strictly speaking, optional. Like the other methods
in an interface, the optional methods must have a method body so that the optional
 method heading is converted to a complete method definition. So, what is option-
al? The “optional” refers to the semantics of the method. If the method is optional,
then you may give it a trivial implementation, and you will not have shirked your
 responsibility to follow the (unenforced) semantics for the interface.

To keep these optional methods from producing unexplained failures, the interface
semantics say that if you do not give an optional method a “real” implementation,
then you should have the method body throw an UnsupportedOperationExcep-
tion. For example, the add method of the Collection<T> interface is optional and
so can be implemented as follows (provided you have good reason for this):

public boolean add(T element)
{
 throw new UnsupportedOperationException();
}

The UnsupportedOperationException class is a derived class of the RunTimeExcep-
tion class, so an UnsupportedOperationException is an unchecked exception,
meaning it need not be caught in a catch block or declared in a throws clause.

The intention is that the code for a class that implements an interface with optional
methods would be written and used in such a way that this UnsupportedOperation
Exception would only be thrown during debugging. These rules on optional meth-
ods are part of the semantics of the interface, and like all other parts of the semantics of
an interface, they depend entirely on the good will and responsibility of the program-
mer defining the class that implements the interface. ■

Optional Methods
When an interface lists a method as “optional,” you still need to implement it when defining a
class that implements the interface. However, if you do not want to give it a “real” definition,
you can simply have the method body throw an UnsupportedOperationException.

TIP: Dealing with All Those Exceptions

If you examine the Collection<T>, Set<T>, and List<T> interfaces in Appendix 5,
you will see that many of the methods are liberally sprinkled with statements that
certain exceptions are thrown. All these exception classes are unchecked exceptions,
meaning that they need not be caught in a catch block and need not be declared in
a throws clause. They are there primarily for debugging. If you are using an existing

(continued)

946 CHAPTER 16 Collections, Maps, and Iterators

Concrete Collection Classes

The abstract classes AbstractSet<T> and AbstractList<T> are there for convenience
when implementing the Set<T> and List<T> interfaces, respectively. They have almost
no methods beyond those in the interfaces they implement. Although these two abstract
classes have only a few abstract methods, the other (nonabstract) methods have fairly
useless implementations that must be overridden. When defining a derived class of
either AbstractSet<T> or AbstractList<T>, you need to define not just the abstract
methods but also all the methods you intend to use. It usually makes more sense to
simply use (or define derived classes of) the HashSet<T>, ArrayList<T>, or Vector<T>
classes, which are derived classes of AbstractSet<T> and AbstractList<T> and are
full implementations of the Set<T> and List<T> interfaces.

TIP: (continued)

collection class, you can view them as run-time error messages. If you are defining a
class as a derived class of some other collection class, then most or all of the exception
throwing will be inherited, so you need not worry too much about it. If you are
defining a collection class from scratch and want your class to implement one of the
collection interfaces, then you do need to throw suitable exceptions as specified for
the interface.

With one exception (no pun intended), all the exception classes mentioned in this chap-
ter are in the package java.lang and so do not require any import statement. The one
 exception is the NoSuchElementException , which is used with iterators in Section 16.3.
The NoSuchElementException is in the java.util package, which requires an
 import statement if your code mentions the NoSuchElementException class. ■

Abstract
Set<T>

Abstract
List<T>

Self-Test Exercises

1. Give the definition of a boolean valued static generic method named inSome.
The method inSome has two parameters of type Collection<T> and one
parameter of type T. The method returns true if the parameter of type T is in
either (or both) collections; it returns false otherwise.

2. Give the definition of a static generic method named getFirst that has one
parameter of type List<T> and a return type of T. The method returns the first
element in the list or null if the list is empty.

3. Give the definition of a static boolean valued method named noNull. The
method noNull has one parameter of type Set<?> and removes null from
the set if null is in the set; otherwise it leaves the set unchanged. The method
returns true if the set is changed and false if it is not changed.

Collections 947

The abstract class AbstractCollection<T> is a skeleton class for the Collection<T>
interface. Although it is perfectly legal, you seldom, if ever, need to define a derived class
of the AbstractCollection<T> class. Instead, you normally define a derived class of
one of the descendent classes of the AbstractCollection<T> class.

If you want a class that implements the Set<T> interface and do not need any
methods beyond those in the Set<T> interface, you can use the concrete class
HashSet<T>. So, after all is said and done, if all you need is a collection class that
does not allow elements to occur more than once, then you can use the HashSet<T>
class and need not worry about all the other classes and interfaces in Display 16.1.
The word Hash refers to the fact that the HashSet<T> class is implemented using
a hash table, which was introduced in Section 15.5. The HashSet<T>, of course,
implements all the methods in the Set<T> interface and adds no other methods
beyond constructors. A summary of the HashSet<T> constructors and other methods
is given in Display 16.5. If you want to define your own class that implements the
Set<T> interface, you are probably better off using the HashSet<T> class rather than
the AbstractSet<T> class as a base class.

Abstract
Collection<T>

HashSet<T>

Display 16.5 Methods in the HashSet<T> Class

The HashSet<T> class is in the java.util package.

The HashSet<T> class extends the AbstractSet<T> class and implements the Set<T> interface.

The HashSet<T> class implements all of the methods in the Set<T> interface (Display 16.3).
The only other methods in the HashSet<T> class are the constructors. The three constructors
that do not involve concepts beyond the scope of this book are given next.

All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any
import statement.

public HashSet()

Creates a new, empty set.

public HashSet(Collection<? extends T> c)

Creates a new set that contains all the elements of c. Throws a NullPointerException if c
is null.

public HashSet(int initialCapacity)

Creates a new, empty set with the specified capacity.

Throws an IllegalArgumentException if initialCapacity is less than zero.

The methods are the same as those described for the Set<T> interface (Display 16.3).

948 CHAPTER 16 Collections, Maps, and Iterators

It is important to note that if you intend to use the HashSet<T> class with your own
class as the parameterized type T, then your class must override the following methods:

public int hashCode();
public boolean equals(Object obj);

The hashCode() method should return a numeric key that is ideally a unique
identifier for an object in your class. See Section 15.5 for a discussion about hash codes.
It is always a good idea to override the equals() method for any class you write, but
you must override it in this scenario. Java will use the hash code to index the object and
then use the equals() method to check if an object exists in the set. If the hash code
for two different objects is identical, the objects will still be indexed correctly as long
as equals() indicates they are unique. However, the identical hash codes will cause a
collision that will decrease performance.

Display 16.6 shows a sample program that uses the HashSet<T> class. This
program is conceptually similar to the program in Display 15.38, in which sets
containing strings of round things and green things were manipulated in various

Display 16.6 HashSet<T> Class Demo (part 1 of 3)

 1 import java.util.HashSet;
 2 import java.util.Iterator;
 3 public class HashSetDemo
 4 {
 5 private static void outputSet(HashSet<String> set)
 6 {
 7 Iterator<String> i = set.iterator();
 8 while (i.hasNext())
 9 System.out.print(i.next() + " ");
10 System.out.println();
11 }

12 public static void main(String[] args)
13 {
14 HashSet<String> round = new HashSet<String>();
15 HashSet<String> green = new HashSet<String>();

16 // Add some data to each set
17 round.add("peas");
18 round.add("ball");
19 round.add("pie");
20 round.add("grapes");

21 green.add("peas");
22 green.add("grapes");
23 green.add("garden hose");
24 green.add("grass");

The outputSet
method uses an iterator
to print the contents of
a HashSet<T> object.
Iterators are described
in Section 16.3.

Using
HashMap
with a
Custom Class

VideoNote

Collections 949

25 System.out.println("Contents of set round: ");
26 outputSet(round);
27 System.out.println("\nContents of set green: ");
28 outputSet(green);

29 System.out.println("\nball in set 'round'? " +
30 round.contains("ball"));
31 System.out.println("ball in set 'green'? " +
32 green.contains("ball"));

33 System.out.println("\nball and peas in same set? "+
34 ((round.contains("ball") &&
35 (round.contains("peas"))) ||
36 (green.contains("ball") &&
37 (green.contains("peas”)))));
38 System.out.println("pie and grass in same set? "+
39 ((round.contains("pie") &&
40 (round.contains("grass"))) ||
41 (green.contains("pie") &&
42 (green.contains("grass")))));

43 // To union two sets we use the addAll method.
44 HashSet<String>setUnion = new HashSet<String>(round);
45 round.addAll(green);
46 System.out.println("\nUnion of green and round:");
47 outputSet(setUnion);

48 // To intersect two sets we use the removeAll method.
49 HashSet<String> setInter = new HashSet<String>(round);
50 setInter.removeAll(green);
51 System.out.println("\nIntersection of green and round:");
52 outputSet(setInter);
53 System.out.println();
54 }
55 }

Sample Dialogue

Contents of set round:

grapes pie ball peas

Contents of set green:

grass garden hose grapes peas

Display 16.6 HashSet<T> Class Demo (part 2 of 3)

(continued)

950 CHAPTER 16 Collections, Maps, and Iterators

ways using our own Set<T> class implemented with linked lists. However, the code
listing in Display 16.6 uses the HashSet<T> class in place of our custom Set<T> class.
Nevertheless, most of the code is identical because the Set<T> class was designed
to have an interface similar to the HashSet<T> class. Both have add and contains
methods. Functionality similar to our union and intersection methods can be
achieved by using the HashSet<T> addAll and removeAll methods. To output the
items in a HashSet<T> object, we define an outputSet method. This method uses
iterators, which are not discussed until Section 16.3, so for now you can ignore the
details of how outputSet works.

In general, it is recommended that you use the collection classes unless they do not
provide the functionality you need for your program. For example, say that you want
every item added to the set to have a reference to the set that contains it. This could
be useful if you want to determine whether two items are in the same set—you could
just follow the reference to the containing set for each item and see whether they are
the same. Without such a reference, you would have to invoke the contains method
for every set to learn whether the items are in the same set. If this were an important
feature for your program, you might want to develop your own class instead of using
one of the collection classes. If the collection classes were sufficient, the result would be
shorter code that is generally easier to develop and maintain. Moreover, the collection
classes such as HashSet<T> have been designed with efficiency and scalability in mind.

If you want a class that implements the List<T> interface and do not need any
methods beyond those in this interface, you can use the ArrayList<T> or Vector<T>
class. So, after all is said and done, if all you need is a collection class that allows
elements to occur more than once, or you need a collection that orders its elements as
on a list (that is, as in an array), or you need a class that has both of these properties,
then you can use the ArrayList<T> or Vector<T> class and need not worry about all
the other classes and interfaces in Display 16.1. The ArrayList<T> and Vector<T>
classes implement all the methods in the List<T> interface. A table of methods for the
ArrayList<T> class was given in Chapter 14 and a more complete table is given in

ball in set round? true

ball in set green? false

ball and peas in same set? True

pie and grass in same set? false

Union of green and round:

garden hose grass peas ball pie grapes

Intersection of green and round:

peas grapes

Display 16.6 HashSet<T> Class Demo (part 3 of 3)

Vector<T>

Collections 951

Display 16.7. A table of methods for the Vector<T> class is also given in Display 16.7.
A more complete list of the methods in these classes is given in Appendix 5. If you want
to define your own class that implements the List<T> interface, you would probably
be better off using either the ArrayList<T> or the Vector<T> class rather than the
AbstractList<T> class as a base class.

The abstract class AbstractSequentialList<T> is derived from the
AbstractList<T> class. Although it does override some methods inherited from
the class AbstractList<T>, it adds no completely new methods. The point of the
AbstractSequentialList<T> class is to provide for efficient implementation of
sequentially moving through the list at the expense of having inefficient implementation
of random access to elements (that is, inefficient implementation of the get
method). The LinkedList<T> class is a concrete derived class of the abstract class
AbstractSequentialList<T>. (The implementation of the LinkedList<T> class is
similar to that of the linked list classes we discussed in Chapter 15.) If you need a
List<T> with efficient random access to elements (that is, efficient implementation of

Abstract
Sequential

List<T>

LinkedList<T>

Display 16.7 Methods in the Classes ArrayList<T> and Vector<T> (part 1 of 4)

The ArrayList<T> and Vector<T> classes and the Iterator<T> and ListIterator<T>
interfaces are in the java.util package.

All the exception classes mentioned are unchecked exceptions, which means they are not
required to be caught in a catch block or declared in a throws clause. (If you have not yet
studied exceptions, you can consider the exceptions to be run-time error messages.)

NoSuchElementException is in the java.util package, which requires an import statement
if your code mentions the NoSuchElementException class. All the other exception classes
mentioned are in the package java.lang and so do not require any import statement.

CONSTRUCTORS

public ArrayList(int initialCapacity)

Creates an empty ArrayList<T> with the specified initial capacity. When the ArrayList<T>
needs to increase its capacity, the capacity doubles.

public ArrayList()

Creates an empty ArrayList<T> with an initial capacity of 10. When the ArrayList<T> needs
to increase its capacity, the capacity doubles.

public ArrayList(Collection<? extends T> c)

Creates an ArrayList<T> that contains all the elements of the collection c, in the same order.
In other words, the elements have the same index in the ArrayList<T> created as they do in
c. This is not quite a true copy constructor because it does not preserve capacity. The capacity of
the created list will be c.size(), not c.capacity.

The ArrayList<T> created is only a shallow copy of the collection argument. The ArrayList<T>
created contains references to the elements in c (not references to clones of the elements in c).

public Vector(int initialCapacity)

Creates an empty vector with the specified initial capacity. When the vector needs to increase its
capacity, the capacity doubles.

(continued)

952 CHAPTER 16 Collections, Maps, and Iterators

public Vector()

Creates an empty vector with an initial capacity of 10. When the vector needs to increase its
capacity, the capacity doubles.

public Vector(Collection<? extends T> c)

Creates a vector that contains all the elements of the collection c, in the same order. In other
words, the elements have the same index in the vector created as they do in c. This is not quite a
true copy constructor because it does not preserve capacity. The capacity of the created vector
will be c.size(), not c.capacity.

The vector created is only a shallow copy of the collection argument. The vector created contains
references to the elements in c (not references to clones of the elements in c).

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment. When the
vector needs to grow, it will add room for capacityIncrement more items.

(ArrayList<T> does not have a corresponding constructor.)

ARRAYLIKE METHODS FOR BOTH ArrayList<T> AND Vector<T>

public T set(int index, T newElement)

Sets the element at the specified index to newElement. The element previously at that position
is returned. If you draw an analogy to an array a, this is analogous to setting a[index] to the
value newElement. The index must be a value greater than or equal to zero and strictly less
than the current size of the list.

public T get(int index)

Returns the element at the specified index. This is analogous to returning a[index] for an array
a. The index must be a value greater than or equal to 0 and less than the current size of the
calling object.

METHODS TO ADD ELEMENTS FOR BOTH ArrayList<T> AND Vector<T>

public boolean add(T newElement)

Adds newElement to the end of the calling object’s list and increases its size by one. The capacity
of the calling object is increased if that is required. Returns true if the add was successful. This
method is often used as if it were a void method.

public void add(int index, T newElement)

Inserts newElement as an element in the calling object at the specified index and increases the size
of the calling object by one. Each element in the calling object with an index greater than or equal to
index is shifted upward to have an index that is one greater than the value it had previously.

The index must be a value greater than or equal to zero and less than or equal to the size of the
calling object (before this addition).

Note that you can use this method to add an element after the last current element. The capacity
of the calling object is increased if that is required.

Display 16.7 Methods in the Classes ArrayList<T> and Vector<T> (part 2 of 4)

Collections 953

public boolean addAll(Collection<? extends T> c)

Appends all the elements in c to the end of the elements in the calling object in the order that they
are enumerated by a c iterator. The behavior of this method is not guaranteed if the collection c is
the calling object or any collection including the calling object either directly or indirectly.

public boolean addAll(int index, Collection<? extends T> c)

Inserts all the elements in c into the calling object starting at position index. Elements are
inserted in the order that they are enumerated by a c iterator. Elements previously at positions
index or higher are shifted to higher numbered positions.

METHODS TO REMOVE ELEMENTS FOR BOTH ArrayList<T> AND Vector<T>

public T remove(int index)

Deletes the element at the specified index and returns the element deleted. The size of the
calling object is decreased by one. The capacity of the calling object is not changed. Each element
in the calling object with an index greater than or equal to index is decreased to have an index
that is one less than the value it had previously.

The index must be a value greater than or equal to zero and less than the size of the calling
object (before this removal).

public boolean remove(Object theElement)

Removes the first occurrence of theElement from the calling object. If theElement is found
in the calling object, then each element in the calling object with an index greater than or equal to
theElement’s index is decreased to have an index that is one less than the value it had previously.
Returns true if theElement was found (and removed). Returns false if theElement is not found in
the calling object. If the element was removed, the size is decreased by one. The capacity is not changed.

protected void removeRange(int fromIndex, int toIndex)

Removes all elements with index greater than or equal to fromIndex and strictly less than
toIndex. Be sure to note that this method is protected, not public.

public void clear()

Removes all elements from the calling object and sets its size to zero.

SEARCH METHODS FOR BOTH ArrayList<T> AND Vector<T>

public boolean isEmpty()

Returns true if the calling object is empty (that is, has size 0); otherwise returns false.

public boolean contains(Object target)

Returns true if target is an element of the calling object; otherwise returns false. Uses the
method equals of the object target to test for equality.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the
object target to test for equality. Returns 1 if target is not found.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the
object target to test for equality. Returns 1 if target is not found.

Display 16.7 Methods in the Classes ArrayList<T> and Vector<T> (part 3 of 4)

(continued)

954 CHAPTER 16 Collections, Maps, and Iterators

ITERATORS FOR BOTH ArrayList<T> AND Vector<T>

public Iterator<T> iterator()

Returns an iterator for the calling object. Iterators are discussed in Section 16.3.

public ListIterator<T> listIterator()

Returns a ListIterator<T> for the calling object. ListIterator<T> is discussed in Section 16.3.

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by
the iterator is the one at index. (Iterators are discussed in Section 16.3.)

CONVERTING TO AN ARRAY FOR BOTH ArrayList<T> AND Vector<T>

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements of the array are
indexed the same as in the calling object.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not
be the type T in Collection<T>. For example, E might be an ancestor type of T.

Returns an array containing all of the elements in the calling object. The elements of the array are
indexed the same as in the calling object.

The argument a is used primarily to specify the type of the array returned. The exact details are
described next.

The type of the returned array is that of a. If the collection fits in the array a, then a is used to hold
the elements of the returned array; otherwise a new array is created with the same type as a.

If a has more elements than the calling object, then the element in a immediately following the
end of the elements copied from the calling object is set to null.

MEMORY MANAGEMENT FOR BOTH ArrayList<T> AND Vector<T>

public int size()

Returns the number of elements in the calling object.

public int capacity()

Returns the current capacity of the calling object.

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling object to ensure that it can hold at least newCapacity
elements. Using ensureCapacity can sometimes increase efficiency, but it is not needed for
any other reason.

public void trimToSize()

Trims the capacity of the calling object to be the calling object’s current size. This is used to save storage.

MAKE A COPY FOR BOTH ArrayList<T> AND Vector<T>

public Object clone()

Returns a shallow copy of the calling object.

Display 16.7 Methods in the Classes ArrayList<T> and Vector<T> (part 4 of 4)

Collections 955

Self-Test Exercises

4. Can an object that instantiates the HashSet<T> class contain multiple copies of
some element?

5. Suppose you want to define a class that orders its elements like a List<T> but
does not allow multiple occurrences of an element like a Set<T>. Would it be
better to make it a derived class of the ArrayList<T> class or a derived class of
the HashSet<T> class?

6. You would like to use the following class as the type in a HashSet<T> collection.
What is missing and how would you fix it?

public class Customer
{
 private String name;
 private String address;
 public Customer(String newName, String newAddress)
 {
 name = newName;
 address = newAddress;
 }
 public String toString()
 {
 return name + " : " + address;
 }
}

the get method), then use the ArrayList<T> or Vector<T> class or a class derived from
one of these two classes. If you do not need efficient random access but need to efficiently
move sequentially through the list, then use the LinkedList<T> class or a class derived
from the LinkedList<T> class.

The interface SortedSet<T> and the concrete class TreeSet<T> are designed for
implementations of the Set<T> interface that provide for rapid retrieval of elements (efficient
implementation of the contains and similar methods). The implementation of the class is
similar to the binary tree class discussed in Chapter 15 but with more sophisticated ways to
do inserting that keep the tree balanced. We will not discuss the SortedSet<T> interface
or the TreeSet<T> class in this text, but you should be aware of their existence so you
know what to look for in the Java documentation should you need them.

SortedSet<T>

TreeSet<T>

956 CHAPTER 16 Collections, Maps, and Iterators

1The biggest difference between Vector<T> and ArrayList<T> classes is that Vector<T>
 objects are synchronized while ArrayList<T> objects are not. Synchronization is briefly discussed
in Chapter 19.

Differences between ArrayList<T> and Vector<T>

For most purposes, ArrayList<T> and Vector<T> are equivalent. There are only
minor differences between the classes. The methods that are in both classes are given
in Display 16.7. The class Vector<T> has more methods than ArrayList<T> does;
these methods are not given in Display 16.7. However, most of the extra methods
are little more than alternate names for methods that are in both ArrayList<T> and
Vector<T>. None of the methods in Vector<T> do anything that cannot easily be done
with an ArrayList<T>. The class ArrayList<T> is reputed to be more efficient than
Vector<T>. The biggest difference between these two classes is that ArrayList<T>
is newer than Vector<T> and was created as part of the Java collection framework,
whereas Vector<T> is an older class that was retrofitted with extra method names to
make it fit into the collection framework. You are encouraged to use ArrayList<T>
rather than Vector<T>. However, a lot of existing code uses Vector<T>, so you should
be familiar with it.1

Nonparameterized Version of the Collection Framework ★

Before version 5.0, Java did not have type parameters. So, the collection framework
consisted of ordinary classes and interfaces, such as Collection, List, ArrayList, and
so forth, all of which had no type parameters. Although this older collection framework
has been supplanted by the new, generic version, the old version’s classes and interfaces,
without type parameters, are still in the standard libraries and in a lot of older code.
There is no longer any need for the older classes and interfaces that do not have type
parameters. They can sometimes be harder to use and are less versatile than the new,
generic classes with type parameters. You should not use the older classes and interfaces
without type parameters. However, you will often see them used in older code. When
reading older code, you will not go too far wrong in thinking of Collection as
meaning Collection<Object>, ArrayList as meaning ArrayList<Object>, and so
forth. This is not, strictly speaking, correct. For example, the classes ArrayList and
ArrayList<Object> are not the same, but they are very similar.

Maps 957

map

Abstract
Map<K,V>

Hash
Map<K,V>

Map<K,V>
interface

PITFALL: Omitting the <T>

If you omit <T> or a corresponding class name, such as using ArrayList instead
of ArrayList<String>, then you may get a compiler error message. If you do get
a compiler error message, it is likely to seem bewilderingly strange. The problem
is that ArrayList and other class and interface names with <T> omitted actually
mean something. (We do not have time to stop and explain what they mean, but a
hint is given in the starred subsection “Nonparameterized Version of the Collection
Framework.”) Your only defense against this pitfall is to be very careful; if you do
get a bewildering compiler error message, look for a missing <T> or a missing
<Class_Name>.

Sometimes a compiler warning message can be helpful when you make this
mistake. If you get a warning that mentions a type case from a class name without
a <T> to a class name with a <T> or with a <Class_Name>, look for an omitted
<T> or an omitted <Class_Name>.

Finally, we should note that sometimes your code will compile and even run
 correctly if you omit the <T> from a class name in the collection framework. ■

16.2 Maps

A man has but one mother. But, a mother may have any number of sons.

Saying on a Wall Sampler.

The Java map framework is similar in character to the collection framework, except
that it deals with collections of ordered pairs. Objects in the map framework can
implement mathematical functions and relations and so can be used to construct
database classes. Think of the pair as consisting of a key K (to search for) and an
associated value V. For example, the key might be a student ID number and the value
might be an object storing information about the student (such as the name, major,
address, or phone number) associated with that ID number. Commonly used interfaces
and classes in this framework are shown in Display 16.8. In this chapter, we will focus
on the Map<K,V> interface, the AbstractMap<K,V> class, and the HashMap<K,V> class.

Because the map interface will map a key to a value, we must now specify two
types of parameters instead of one as we did with collections. The Map<K,V> interface
specifies the basic operations that all map classes should implement. A summary of
these operations is given in Display 16.9. A more detailed description is in Appendix 5.
Note that there are many similarities to the Collection<T> interface.

958 CHAPTER 16 Collections, Maps, and Iterators

Map<K,V>

Interface

SortedMap<K,V> AbstractMap<K,V>

TreeMap<K,V> HashMap<K,V>

Abstract Class

Concrete Class

Im
plem

ents

Im
plem

ents

Display 16.8 The Map Landscape

Display 16.9 Method Headings in the Map<K,V> Interface (part 1 of 3)

The Map<K,V> interface is in the java.util package.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Map<K,V> interface
should have at least two constructors: a no-argument constructor that creates an empty Map<K,V>
object, and a constructor with one Map<K,V> parameter that creates a Map<K,V> object with the
same elements as the constructor argument. The interface does not specify whether the copy
produced by the one-argument constructor is a shallow copy or a deep copy of its argument.

A single line between two boxes means
the lower class or interface is derived from
(extends) the higher one.

K and V are type parameters for the type of
the keys and elements stored in the map.

Maps 959

METHODS

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public boolean containsValue(Object value)

Returns true if the calling object contains at least one or more keys that map to an instance
of value.

public boolean containsKey(Object key)

Returns true if the calling object contains key as one of its keys.

public boolean equals(Object other)

This is the equals of the map, not the equals of the elements in the map. Overrides the
inherited method equals.

public int size()

Returns the number of (key, value) mappings in the calling object.

public int hashCode()

Returns the hash code value for the calling object.

public Set<Map.Entry<K,V>> entrySet()

Returns a set view consisting of (key, value) mappings for all entries in the map. Changes to the
map are reflected in the set and vice versa.

public Collection<V> values()

Returns a collection view consisting of all values in the map. Changes to the map are reflected in
the collection and vice versa.

public V get(Object key)

Returns the value to which the calling object maps key. If key is not in the map, then null is
returned. Note that this does not always mean that the key is not in the map because it is possible
to map a key to null. The containsKey method can be used to distinguish the two cases.

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented, but the
implementation can simply throw an UnsupportedOperationException if, for some reason, you
do not want to give the methods a “real” implementation. An UnsupportedOperationException
is a RunTimeException and so is not required to be caught or declared in a throws clause.

public V put(K key, V value) (Optional)

Associates key to value in the map. If key is associated with an existing value, then the old
value is overwritten and returned. Otherwise null is returned.

Display 16.9 Method Headings in the Map<K,V> Interface (part 2 of 3)

(continued)

960 CHAPTER 16 Collections, Maps, and Iterators

Concrete Map Classes

The abstract class AbstractMap<K,V> is convenient for implementing the Map<K,V>
interface, just as the AbstractSet<T> class served the same purpose for the Set<T>
interface. When defining a derived class of AbstractMap<K,V>, you need to define not
just the abstract methods but also all the methods you intend to use. It usually makes more
sense to use (or define derived classes of) the HashMap<K,V> or TreeMap<K,V> classes,
which are derived classes of AbstractMap<K,V> and are full implementations of the
Map<K,V> interfaces. However, if you wish to implement your own map with your own
data structures, then it would be appropriate to derive classes from AbstractMap<K,V>.

In this chapter, we will focus only on the HashMap<K,V> class, which is a concrete
implementation of the Map<K,V> interface. Internally, the class uses a hash table
similar to what we discussed in Chapter 15. Note that this class does not make any
guarantee as to the order of elements placed in the map. If you require order, then you
should use the TreeMap<K,V> class (which internally uses a tree to store its elements)
or the LinkedHashMap<K,V> class, which uses a doubly linked list to maintain order
inside a HashMap<K,V> object. The LinkedHashMap<K,V> class is derived from the
HashMap<K,V> class.

Knowing how hash tables operate is helpful in optimizing a program that uses a
HashMap. When we created a hash table in Chapter 15, we used a fixed-sized array
where each array entry referenced a linked list. A hash function mapped an input
value, such as a String, to an index in the array. If the size of the array is much smaller
than the number of elements added, then there will be lots of collisions and execution
performance will be low. On the other hand, if the size of the array is much larger than
the number of elements added, then memory will be wasted. A similar trade-off exists
with the HashMap<K,V> class. One of the constructors allows us to specify an initial
capacity and a load factor. The initial capacity specifies how many “buckets” exist in the
hash table. This would be analogous to the size of the array of the hash table. The load
factor is a number between 0 and 1. This variable specifies a percentage such that if the
number of elements added to the hash table exceeds the load factor, then the capacity of
the hash table will automatically increase. The default load factor is 0.75 and the default
initial capacity is 16. This means that the capacity will be increased (by roughly double)
once 12 elements are added to the map. This process is called rehashing; it can be time
consuming if you have a large number of elements in the map. Although the capacity
will automatically increase when necessary, your program will run more efficiently if the
capacity is initially set to the number of elements you expect will be added to the map.

public void putAll(Map<? extends K,? extends V> mapToAdd) (Optional)

Adds all mappings of mapToAdd into the calling object’s map.

public V remove (Object key) (Optional)

Removes the mapping for the specified key. If the key is not found in the map, then null is
returned; otherwise the previous value for the key is returned.

Display 16.9 Method Headings in the Map<K,V> Interface (part 3 of 3)

initial
capacity

load factor

rehashing

Maps 961

The HashMap<K,V>, of course, implements all the methods in the Map<K,V>
interface and adds no other methods beyond constructors and an implementation of
the clone() method. A summary of the HashMap<K,V> constructors and clone() is
given in Display 16.10.

As with the HashSet<T> class, if you intend to use your own class as the parameterized
type K in a HashMap<K,V> then your class must override the following methods:

public int hashCode();

public boolean equals(Object obj);

These methods are required for indexing and checking for uniqueness of the key.
See the discussion in Section 16.1 about overriding these methods and Section 15.5
about hash functions.

Display 16.10 Methods in the HashMap<K,V> Class

The HashMap<K,V> class is in the java.util package.
The HashMap<K,V> class extends the AbstractMap<K,V> class and implements the
Map<K,V> interface.
The HashMap<K,V> class implements all of the methods in the Map<K,V> interface (Display 16.9).
The only other methods in the HashMap<K,V> class are the constructors.
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.

All the exception classes mentioned are in the package java.lang and so do not require any
import statement.

public HashMap()

Creates a new, empty map with a default initial capacity of 16 and load factor of 0.75.

public HashMap(int initialCapacity)

Creates a new, empty map with a default capacity of initialCapacity and load factor of 0.75.

Throws an IllegalArgumentException if initialCapacity is negative.

public HashMap(int initialCapacity, float loadFactor)

Creates a new, empty map with the specified capacity and load factor.

Throws an IllegalArgumentException if initialCapacity is negative or loadFactor is
nonpositive.

public HashMap(Map<? extends K,? extends V> m)

Creates a new map with the same mappings as m. The initialCapacity is set to the same
size as m and the loadFactor to 0.75.

Throws a NullPointerException if m is null.

public Object clone()

Creates a shallow copy of this instance and returns it. The keys and values are not cloned.

The remainder of the methods are the same as those described for the Map<K,V> interface
(Display 16.9).

962 CHAPTER 16 Collections, Maps, and Iterators

A program that demonstrates the HashMap<K,V> class is given in Display 16.11.
This is a variant of Programming Project 15.8 from Chapter 15. In this example, the
program uses the name instance variable as the key to map to an Employee object as
defined in Display 7.2. Several sample Employee objects are created and added to the
map using the first name as the key. The user is given the opportunity to type in names
until enter is pressed on a blank line. Any name that exists in the map is retrieved, and
its information is output to the screen.

Display 16.11 HashMap<K,V> Class Demo (part 1 of 2)

 1 // This class uses the Employee class defined in Chapter 7.
 2 import java.util.HashMap;
 3 import java.util.Scanner;
 4 public class HashMapDemo
 5 {
 6 public static void main(String[] args)
 7 {
 8 // First create a hashmap with an initial size of 10 and
 9 // the default load factor
10 HashMap<String,Employee> employees =
11 new HashMap<String,Employee>(10);

12 // Add several employees objects to the map using
13 // their name as the key
14 employees.put("Joe",
15 new Employee("Joe",new Date("September", 15, 1970)));
16 employees.put("Andy",
17 new Employee("Andy",new Date("August", 22, 1971)));
18 employees.put("Greg",
19 new Employee("Greg",new Date("March", 9, 1972)));
20 employees.put("Kiki",
21 new Employee("Kiki",new Date("October", 8, 1970)));
22 employees.put("Antoinette",
23 new Employee("Antoinette",new Date("May", 2, 1959)));
24 System.out.print("Added Joe, Andy, Greg, Kiki, ");
25 System.out.println("and Antoinette to the map.");

26 // Ask the user to type a name. If found in the map,
27 // print it out.
28 Scanner keyboard = new Scanner(System.in);
29 String name = "";
30 do
31 {
32 System.out.print("\nEnter a name to look up in the map. ");
33 System.out.println("Press enter to quit.");

Maps 963

34 name = keyboard.nextLine();
35 if (employees.containsKey(name))
36 {
37 Employee e = employees.get(name);
38 System.out.println("Name found: " + e.toString());
39 }
40 else if (!name.equals(""))
41 {
42 System.out.println("Name not found.");
43 }
44 } while (!name.equals(""));
45 }
46 }

Sample Dialogue

Added Joe, Andy, Greg, Kiki, and Antoinette to the map.

Enter a name to look up in the map. Press enter to quit.
Joe
Name found: Joe September 15, 1970

Enter a name to look up in the map. Press enter to quit.
Andy
Name found: Andy August 22, 1971

Enter a name to look up in the map. Press enter to quit.
Kiki
Name found: Kiki October 8, 1970

Enter a name to look up in the map. Press enter to quit.
Myla
Name not found.

Display 16.11 HashMap<K,V> Class Demo (part 2 of 2)

Self-Test Exercises

7. Can an object that instantiates the HashMap<K,V> class contain multiple copies of
some element as a key? How about multiple copies of some element as a value?

8. Suppose that you want a HashMap<K,V> that maps a unique employee ID
number to an Employee object. Give the definition for a HashMap<K,V> variable
that defines and allocates the HashMap. Expect to have 100 employees in your
organization. If the employee ID number is an integer between 0 and 100, is a
map a good choice for a data structure to store this information?

964 CHAPTER 16 Collections, Maps, and Iterators

16.3 Iterators

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked.
“Begin at the beginning,” the King said, very gravely, “And go on till you
come to the end: then stop.”

LEWIs CARRoLL, Alice’s Adventures in Wonderland, Macmillan, 1865.

An iterator is an object that is used with a collection to provide sequential access to the
elements in the collection. In this section, we discuss iterators in general, and iterators
in the Java collection framework in particular.

The Iterator Concept

In the next subsection, we will discuss the Java Iterator interface, but before that, let
us consider the intuitive idea of an iterator. An iterator is something that allows you to
examine and possibly modify the elements in a collection in some sequential order. So,
an iterator imposes an order on the elements of a collection even if the collection, such
as the class HashSet<T>, does not impose any order on the elements it contains.

Something that is not an object—and thus not, strictly speaking, a Java Iterator—
but that satisfies the intuitive idea of an iterator is an int variable i used with an
array a. This iterator i can be made to start out at the first array as follows:

i = 0;

The iterator can give you the current element; the current element is simply a[i]. The
iterator can go to the next element and give you the next element as follows:

i++;
"Gives you a[i]"

The concept of an iterator is simple but powerful enough to be used frequently.

The Iterator<T> Interface

Java formalizes the concept of an iterator with the Iterator<T> generic interface. Any
object of any class that satisfies the Iterator<T> interface is an Iterator<T>. So,
an array index is not a Java Iterator<T>. However, the index could be an instance
variable in an object of an Iterator<T> class.

An Iterator<T> object does not stand on its own. It must be associated with some
collection object. How is the association accomplished? In Java, any class that satisfies
the Collection<T> interface must have a method, named iterator(), that returns an
Iterator<T>. For example, let us say c is an instance of the HashSet<T> collection class with
some class plugged in for T. To make things concrete, let us plug in String for T; so c is an
instance of the HashSet<String> collection class. You can obtain an iterator for c as follows:

Iterator<String> iteratorForC = c.iterator();

iterator

Iterator<T>
interface

Iterators 965

You may not know what class the iteratorForC is an instance of, but you do know
it satisfies the Iterator<String> interface, so you know it has the methods in the
Iterator<T> interface. These methods are given in Display 16.12.

Display 16.13 contains a simple demonstration of using an iterator with a
HashSet<T> object. A HashSet<T> object imposes no order on the elements in the
HashSet<T> object, but the iterator imposes an order on the elements—namely,
the order in which they are produced by next(). There are no requirements on this
ordering. If you run the program in Display 16.13 twice, the order of the elements'
output will almost certainly be the same each time. However, it would not be an error
if they are output in a different order each time the program runs.

If the collection used with an Iterator<T> imposes an order on its elements,
such as an ArrayList<T> does, then the Iterator<T> will output the elements in
that order. If you require an order with a HashSet<T> object, then you may use the
LinkedHashSet<T> class, which uses an internal doubly linked list to store the items in
the order that they are added.

Display 16.12 Methods in the Iterator<T> Interface

The Iterator<T> interface is in the java.util package.

All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.

 NoSuchElementException is in the java.util package, which requires an import statement
if your code mentions the NoSuchElementException class. All the other exception classes
mentioned are in the package java.lang and so do not require any import statement.

public T next()

Returns the next element of the collection that produced the iterator.

Throws a NoSuchElementException if there is no next element.

public boolean hasNext()

Returns true if next() has not yet returned all the elements in the collection; returns false
otherwise.

public void remove() (Optional)

Removes from the collection the last element returned by next.

This method can be called only once per call to next. If the collection is changed in any way,
other than by using remove, the behavior of the iterator is not specified (and thus should be
considered unpredictable).

Throws IllegalStateException if the next method has not yet been called, or if the
remove method has already been called after the last call to the next method.

Throws an UnsupportedOperationException if the remove operation is not supported by
this Iterator<T>.

966 CHAPTER 16 Collections, Maps, and Iterators

Display 16.13 An Iterator

 1 import java.util.HashSet;
 2 import java.util.Iterator;

 3 public class HashSetIteratorDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 HashSet<String> s = new HashSet<String>();

 8 s.add("health");
 9 s.add("love");
10 s.add("money");

11 System.out.println("The set contains:");

12 Iterator<String> i = s.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());

15 i.remove();

16 System.out.println();
17 System.out.println("The set now contains:");

18 i = s.iterator();
19 while (i.hasNext())
20 System.out.println(i.next());

21 System.out.println("End of program.");
22 }
23 }

Sample Dialogue

The set contains:
money
love
health

The set now contains:
money
love
End of program.

You cannot “reset” an iterator “to the
beginning.” To do a second iteration,
you create another iterator.

The HashSet<T> object
does not order the
elements it contains, but
the iterator imposes an
order on the elements.

Iterators 967

Iterators
An iterator is something that allows you to examine and possibly modify the elements in
a collection in some sequential order. Java formalizes this concept with the two interfaces
Iterator<T> and ListIterator<T> .

TIP: For-Each Loops as Iterators

A for-each loop is not, strictly speaking, an iterator (because, among other things,
it is not an object), but a for-each loop serves the same purpose as an iterator: It lets
you cycle through the elements in a collection. When dealing with collections, you
can often use a for-each loop in place of an iterator, and the for-each loop is usually
simpler and easier to use than an iterator. For example, in Display 16.14, we have
rewritten the program in Display 16.13 using for-each loops in place of iterators.
Note that we needed to do some extra programming with the variable last in order
to simulate i.remove(). Sometimes an iterator works best, and sometimes a for-each
loop works best. Many authorities would say that our code would be better if we had
not replaced the first iterator loop in Display 16.13 with a for-each loop. ■

Display 16.14 For-Each Loops as Iterators (part 1 of 2)

 1 import java.util.HashSet;
 2 import java.util.Iterator;

 3 public class ForEachDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 HashSet<String> s = new HashSet<String>();

 8 s.add("health");
 9 s.add("love");
10 s.add("money");

11 System.out.println("The set contains:");

12 String last = null;
13 for (String e : s)
14 {
15 last = e;
16 System.out.println(e);
17 }

(continued)

968 CHAPTER 16 Collections, Maps, and Iterators

List Iterators

The collection framework has two iterator interfaces: the Iterator<T> interface, which
you have already seen and which works with any collection class that implements the
Collection<T> interface; and the ListIterator<T> interface, which is designed to
work with collections that implement the List<T> interface. The ListIterator<T>
interface extends the Iterator<T> interface. A ListIterator<T> has all the methods
that an Iterator<T> has, plus more methods that provide two new abilities: A
ListIterator<T> can move in either direction along the list of elements in the
collection, and a ListIterator<T> has methods, such as set and add, that can be
used to change the elements in the collection. The methods for the ListIterator<T>
interface are given in Display 16.15. See Appendix 5 for a more detailed description
that includes all exceptions thrown.

The map framework does not directly support the iterable interface, but you can use
the map’s keySet(), values(), or entrySet() methods, which return iterable sets
containing the keys, values, or (key, value) mappings of the map.

18 s.remove(last);

19 System.out.println();
20 System.out.println("The set now contains:");

21 for (String e : s)
22 System.out.println(e);

23 System.out.println("End of program.");
24 }
25 } The output is the same as in Display 16.13.

Display 16.14 For-Each Loops as Iterators (part 2 of 2)

List
Iterator<T>

Display 16.15 Methods in the ListIterator<T> Interface (part 1 of 2)

The ListIterator<T> interface is in the java.util package.

The cursor position is explained in the text and in Display 16.16.

All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.

 NoSuchElementException is in the java.util package, which requires an import statement
if your code mentions the NoSuchElementException class. All the other exception classes
mentioned are in the package java.lang and so do not require any import statement.

public T next()

Returns the next element of the list that produced the iterator. More specifically, returns the
element immediately after the cursor position.

Throws a NoSuchElementException if there is no next element.

Iterators 969

public T previous()

Returns the previous element of the list that produced the iterator. More specifically, returns the
element immediately before the cursor position.

Throws a NoSuchElementException if there is no previous element.

public boolean hasNext()

Returns true if there is a suitable element for next() to return; returns false otherwise.

public boolean hasPrevious()

Returns true if there is a suitable element for previous() to return; returns false otherwise.

public int nextIndex()

Returns the index of the element that would be returned by a call to next(). Returns the list size
if the cursor position is at the end of the list.

public int previousIndex()

Returns the index that would be returned by a call to previous(). Returns 1 if the cursor
position is at the beginning of the list.

public void add(T newElement) (Optional)

Inserts newElement at the location of the iterator cursor (that is, before the value, if any, that
would be returned by next() and after the value, if any, that would be returned by previous()).

Cannot be used if there has been a call to add or remove since the last call to next() or
previous().

Throws IllegalStateException if neither next() nor previous() has been called, or if
the add or remove method has already been called after the last call to next() or previous().

public void remove() (Optional)

Removes from the collection the last element returned by next() or previous().

This method can be called only once per call to next() or previous().

Cannot be used if there has been a call to add or remove since the last call to next() or
previous().

Throws IllegalStateException if neither next() nor previous() has been called, or if
the add or remove method has already been called after the last call to next() or previous().

public void set(T newElement) (Optional)

Replaces the last element returned by next() or previous() with newElement.

Cannot be used if there has been a call to add or remove since the last call to next() or
previous().

Throws IllegalStateException if neither next() nor previous() has been called, or if
the add or remove method has been called since the last call to next() or previous().

Display 16.15 Methods in the ListIterator<T> Interface (part 2 of 2)

970 CHAPTER 16 Collections, Maps, and Iterators

The general idea of next and previous is clear, but we need to make it precise if you
are to understand the next() and previous() methods of the ListIterator<T>
interface. Every ListIterator<T> has a position marker in the list known as the
cursor. If the list has n elements, they are numbered by indices 0 through n–1,
but there are n+1 cursor positions, as indicated in Display 16.16. When next() is
invoked, the element immediately following the cursor position is returned and the
cursor is moved to the next cursor position. When previous() is invoked, the element
immediately before the cursor position is returned, and the cursor is moved back to the
preceding cursor position.

cursor

The ListIterator<T> Interface
The ListIterator<T> interface extends the Iterator<T> interface. The ListIterator<T>
interface differs from the Iterator<T> interface by adding the following abilities: A
ListIterator<T> can move in either direction along the list of elements in the collection,
and a ListIterator<T> has methods, such as set and add, that can be used to change the
elements in the collection.

PITFALL: next Can Return a Reference

If i is an iterator, then i.next() returns an element of the collection that created i,
but there are two meanings of “return an element.”

 1. The invocation i.next() could return a copy of the element in the collection
(for example, using a copy constructor or a clone method).

 2. Alternatively, i.next() could return a reference to the element in the collection.

In case (1), modifying i.next() will not change the element in the collection (pro-
vided the copy was a deep copy). In case (2), modifying i.next() will change the
element in the collection. The APIs for both the Iterator<T> and ListIterator<T>
interfaces are vague on whether you should follow policy (1) or (2), but the iterators

Display 16.16 ListIterator<T> Cursor Positions

element 0 element 1 element 2 ... element n-1

Cursor positions
The default initial cursor position is the leftmost one.

List

Iterators 971

PITFALL: (continued)

for the standard predefined collection classes, such as ArrayList<T> and HashSet<T>,
return references. So, you can modify the elements in the collection by using mutator
methods on i.next(). This is illustrated in Display 16.17. The comments we made
about i.next() also apply to i.previous().

The fact that next and previous return references to elements in the collection is
not necessarily bad news. It means you must be careful, but it also means you can cycle
through all the elements in the collection and perform some processing that might
modify the elements. For example, if the elements in the collection are records of some
sort, you can use mutator methods to update the records.

If you read the APIs for the Iterator<T> and ListIterator<T> interfaces, they
say that a ListIterator<T> can change the collection, but presumably, a plain old
Iterator<T> cannot. These API comments do not refer to whether or not a reference
is returned by i.next(). They simply refer to the fact that the ListIterator<T>
 interface has a set method, whereas the Iterator<T> interface does not. Do not
 confuse this with the point discussed in the previous paragraph. ■

Display 16.17 An Iterator Returns a Reference (part 1 of 2)

 1 import java.util.ArrayList;
 2 import java.util.Iterator;

 3 public class IteratorReferenceDemo
 4 {
 5 public static void main(String[] args)
 6 {
 7 ArrayList<Date> birthdays = new ArrayList<Date>();

 8 birthdays.add(new Date(1, 1, 1990));
 9 birthdays.add(new Date(2, 2, 1990));
10 birthdays.add(new Date(3, 3, 1990));

11 System.out.println("The list contains:");

12 Iterator<Date> i = birthdays.iterator();
13 while (i.hasNext())
14 System.out.println(i.next());

15 i = birthdays.iterator();
16 Date d = null; //To keep the compiler happy.
17 System.out.println("Changing the references.");
18 while (i.hasNext())
19 {
20 d = i.next();
21 d.setDate(4, 1, 1990);
22 }

(continued)

The class Date is defined in Display 4.13,
but you can easily guess all you need to
know about Date for this example.

972 CHAPTER 16 Collections, Maps, and Iterators

23 System.out.println("The list now contains:");

24 i = birthdays.iterator();
25 while (i.hasNext())
26 System.out.println(i.next());

27 System.out.println("April fool!");
28 }
29 }

Sample Dialogue

The list contains:
January 1, 1990
February 2, 1990
March 3, 1990
Changing the references.
The list now contains:
April 1, 1990
April 1, 1990
April 1, 1990
April fool!

Display 16.17 An Iterator Returns a Reference (part 2 of 2)

TIP: Defining Your Own Iterator Classes

There really is little need to define your own Iterator<T> or ListIterator<T>
classes. The most common and easiest way to define a collection class is to make
it a derived class of one of the library collection classes, such as ArrayList<T> or
HashSet<T>. When you do this, you automatically get the method iterator(), and
if need be, the method listIterator(), which takes care of iterators. However, if you
should need to define a collection class in some other way, then the best way to define
your iterator class or classes is to define them as inner classes of your collection class. ■

Self-Test Exercises

 9. Does a HashSet<T> object have a method to produce a ListIterator<T>?
Does an ArrayList<T> object have a method to produce a ListIterator<T>?

10. Suppose i is a ListIterator<T>. Will an invocation of i.next() followed
by i.previous() return the same element for each of the two invocations or
might they return two different elements? What about i.previous() followed
by i.next()?

Collections 973

Chapter Summary

• The main collection interfaces are Collection<T>, Set<T>, and List<T>. The
Set<T> and List<T> interfaces extend the Collection<T> interface. The
library classes that are standard to use and that implement these interfaces are
HashSet<T>, which implements the Set<T> interface, and ArrayList<T>, which
implements the List<T> interface.

• A Set<T> does not allow repeated elements and does not order its elements.
A List<T> allows repeated elements and orders its elements.

• The Map<K,V> interface is used to store a mapping between a key K and a value V.
It is commonly used to store databases in memory. The HashMap<K,V> class is a
standard library class that implements a map.

• An iterator is something that allows you to examine and possibly modify the ele-
ments in a collection in some sequential order. Java formalizes this concept with
the two interfaces Iterator<T> and ListIterator<T>.

• An Iterator<T> (with only the required methods implemented) goes through the
elements of the collection in one direction only, from the beginning to the end.
A ListIterator<T> can move through the collection list in both directions, for-
ward and back. A ListIterator<T> has a set method; the Iterator<T> interface
does not require a set method.

Answers to Self-Test Exercises

 1. public static <T> boolean inSome(T target,
 Collection<T> c1, Collection<T> c2)
 {
 return (c1.contains(target) || c2.contains(target));
 }

 2. public static <T> T getFirst(List<T> aList)
 {
 if (aList.isEmpty())
 return null;
 else
 return aList.get(0);
 }

 3. public static boolean noNull(Set<?> s)
 {
 return (s.remove(null));
 }

 4. No.

Answers to self-Test Exercises 973

974 CHAPTER 16 Collections, Maps, and Iterators974 CHAPTER 16 Collections, Maps, and Iterators

 5. It would make more sense to make it a derived class of the ArrayList<T> class.
Then the elements are ordered. You can ensure against repeated elements by
 redefining all methods that add elements so that the methods check to see if the
element is already in the class before entering it. A derived class of the HashSet<T>
class would automatically ensure that no element is repeated, but it would seem to
take a good deal of work to maintain the elements in order.

 6. The Customer class must override hashCode and equals. A simple technique
to implement hashCode when the class contains strings is to return the string’s
hashCode method. One possible implementation of these methods follows.

 public int hashCode()

 {

 return this.toString().hashCode();

 }

 public boolean equals(Object obj)

 {

 Customer other = (Customer) obj;

 return (other.toString().equals(this.toString());

 }

 7. Multiple copies of some element are not allowed as a key, but are allowed as values.

 8. The variable would be defined as
 HashMap<Integer,Employee> employeeMap =

new HashMap<Integer,Employee>(100);

 If the ID numbers are between 0 and 100, then the map will work, but a simple
array or ArrayList might be a more appropriate data structure.

 9. A HashSet<T> does not. An ArrayList<T> does.

 10. The answer to both questions is the same: They will return the same element.

Programming Projects

 1. Redo Programming Project 6.8 in Chapter 6, but this time do it for a vector of
strings to be sorted into lexicographic order.

 2. The Sieve of Erastothenes is an ancient algorithm that generates prime numbers.
Consider the list of numbers from 2 to 10 as follows:

 2 3 4 5 6 7 8 9 10

 The algorithm starts with the first prime number in the list, which is 2, and then
iterates through the remainder of the list, removing any number that is a multiple
of 2 (in this case, 4, 6, 8, and 10), leaving

 2 3 5 7 9

 We then repeat the process with the second prime number in the list, which is 3,
and then iterate through the remainder of the list, removing any number that is a
multiple of 3 (in this case 9), leaving

 2 3 5 7

 We then repeat starting with each successive prime number, but no elements are
removed because there are no multiples of 5 or 7 (a more efficient implementation
of the algorithm would stop without examining 5 or 7). The numbers that remain
in the list are all prime numbers.

 Implement this algorithm using an ArrayList of integers that is initialized to the
values from 2 to 100. Your program can iterate numerically through the ArrayList
from index 0 to index size()-1 to get the current prime number, but should use
an Iterator to scan through the remainder of the list to eliminate the multiples.
You can use the listIterator method to retrieve the iterator starting at a specified
index into the ArrayList. Output all remaining prime numbers to the console.

 3. The birthday paradox is that there is a surprisingly high probability that two or
more people in the same room happen to share the same birthday. By birthday,
we mean the same day of the year (ignoring leap years), but not the exact birthday
that includes the birth year or time of day. Write a program that approximates the
probability that 2 or more people in the same room have the same birthday, for
2 to 50 people in the room.

 The program should use simulation to approximate the answer. Over many trials
(say, 5,000), randomly assign birthdays (i.e., a number from 1–365) to everyone
in the room. Use a HashSet to store the birthdays. As the birthdays are randomly
generated, use the contains method of a HashSet to see if someone with the same
birthday is already in the room. If so, increment a counter that tracks how many
times at least two people have the same birthday and then move on to the next trial.
After the trials are over, divide the counter by the number of trials to get an estimated
probability that two or more people share the same birthday for a given room size.

 Your output should look something like the following. It will not be exactly the
same due to the random numbers:

 For 2 people, the probability of two birthdays is about 0.002

 For 3 people, the probability of two birthdays is about 0.0082

 For 4 people, the probability of two birthdays is about 0.0163

 ...

 For 49 people, the probability of two birthdays is about 0.9654

 For 50 people, the probability of two birthdays is about 0.969

 4. The text files boynames.txt and girlnames.txt, which are included in the source
code for this book, contain lists of the 1,000 most popular boy and girl names in the
United States for the year 2005, as compiled by the Social Security Administration.

 These are blank-delimited files where the most popular name is listed first, the
second most popular name is listed second, and so on to the 1,000th most popular
name, which is listed last. Each line consists of the first name followed by a blank

Programming Projects 975

Solution to
Programming
Project 16.3

VideoNote

976 CHAPTER 16 Collections, Maps, and Iterators

space followed by the number of registered births in the year using that name. For
example, the girlnames.txt file begins with

 Emily 25494

 Emma 22532

 This indicates that Emily is the most popular name with 25,494 registered nam-
ings, Emma is the second most popular with 22,532, and so on.

 Write a program that determines how many names are on both the boys’ and
the girls’ list. Use the following algorithm:

• Read each girl name as a String, ignoring the number of namings, and add it
to a HashSet object.

• Read each boy name as a String, ignoring the number of namings, and add
it to the same HashSet object. If the name is already in the HashSet, then the
add method returns false. If you count the number of false returns, then this
gives you the number of common namings.

• Add each common name to an ArrayList and output all of the common names
from this list before the program exits.

 5. Repeat the previous problem except create your own class, Name, that is added to a
HashMap instead of a HashSet. The Name class should have three private variables,
a String to store the name, an integer to store the number of namings for girls,
and an integer to store the number of namings for boys. Use the first name as the
key to the HashMap. The value to store is the Name object. Instead of ignoring the
number of namings, as in the previous project, store the number in the Name class.
Make the ArrayList a list of Name objects; each time you find a common name,
add the entire Name object to the list. Your program should then iterate through
the ArrayList and output each common name, along with the number of boy and
girl namings.

 6. In a fairyland, the beautiful daughter Laura of the King Charles decided to marry.
To help her choose from the many suitors she decided on the following procedure.
First, all of the suitors would be lined up one after the other and assigned numbers.
The first suitor would be number 1, the second number 2, and so on up to the last
suitor, number n. For our implementation let’s consider the value of n to be 56.
Starting from the first suitor, she would then count five suitors down the line and
the fifth suitor would be eliminated from winning her hand and removed from the
line. Laura would then continue, counting five more suitors, and eliminating every
fifth suitor. When she reaches the end of the line, she would reverse direction and
work her way back to the beginning. Similarly on reaching the first person in line,
she would reverse direction and make her way to the end of the line.

 For example, if there were five suitors, then the elimination process would
proceed as follows:

 12345 Initial list of suitors; start counting from 1.

 1234 Suitor 5 eliminated; bounce from end back to 1 and keep counting.

976 CHAPTER 16 Collections, Maps, and Iterators

Solution to
Programming
Project 16.5

VideoNote

last H1 977Programming Projects 977

 234 Suitor 1 eliminated; continue counting back from 2.

 24 Next, Suitor 3 is eliminated; the counting is continued.

 2 Suitor 4 is eliminated; 2 is the lucky winner.

 Write a program that uses an ArrayList or Vector to determine which position
you should stand in to marry Laura if there are n suitors. Your program should
use the Listiterator interface to traverse the list of suitors and remove a suitor.
Be sure that you iterate references the proper object while bouncing back to the
beginning of the list of suitors. The suitor at the start of the list should only be
counted once when Laura reverses the count.

 7. In social networking websites, people link to their friends to form a social network.
Write a program that uses HashMaps to store the data for such a network. Your
program should read from a file that specifies the network connections for different
usernames. The file should have the following format to specify a link:

 source_usernamefriend_username

 There should be an entry for each link, one per line. Here is a sample file for five
usernames:

iba java_guru

iba crisha

iba ducky

crisha java_guru

crisha iba

ducky java_guru

ducky iba

java_guru iba

java_guru crisha

java_guru ducky

wittless java_guru

 In this network, everyone links to java_guru as a friend. iba is friends with java_
guru, crisha, and ducky. Note that links are not bidirectional; wittless links
with java_guru but java_guru does not link with wittless.

 First, create a User class that has an instance variable to store the user’s name
and another instance variable that is of type HashSet<User>. The HashSet<User>
variable should contain references to the User objects that the current user links
to. For example, for the user iba there would be three entries, for java_guru,
crisha, and ducky. Second, create a HashMap<String,User> instance variable
in your main class that is used to map from a username to the corresponding User
object. Your program should do the following:

• Upon startup, read the data file and populate the HashMap and HashSet data
structures according to the links specified in the file.

978 CHAPTER 16 Collections, Maps, and Iterators978 CHAPTER 16 Collections, Maps, and Iterators

• Allow the user to enter a name.

• If the name exists in the map, then output all usernames that are one link away
from the user entered.

• If the name exists in the map, then output all usernames that are two links away
from the user entered. To accomplish this in a general way, you might consider
writing a recursive subroutine.

 Do not forget that your User class must override the hashCode and equals methods.

 8. You have collected a file of faculty where each faculty member is rated 1 (lowest)
to 5 (highest). The first line of the file is a number that identifies how many rating
entries are in the file. Each rating then consists of two lines: the unique ID of the
faculty followed by the numeric rating from 1 to 5. Here is a sample rating file with
three unique faculty IDs and six ratings:

8

Eve_8640

5

Kate_6721

5

Eve_8640

3

Rex_5432

4

Eve_8640

1

Kate_6721

2

Rex_5432

2

Kate_6721

1

 Write a program that reads a file in this format, calculates the average rating for
each faculty member, and outputs the average along with the number of reviews.
Here is the desired output for the sample data:
Eve_8640: 3 reviews, average of 3.0 / 5

Kate_6721: 3 reviews, average of 2.6 / 5

Rex_5432: 2 reviews, average of 3.0 / 5

 Use an ArrayList to calculate the output. Your map(s) should index from a string
representing each faculty member’s name to integers that store the number of re-
views for the faculty ID and the sum of the ratings for the faculty member.

 9. The file words.txt included on the website contains a list of 87,314 English words.
Write a program that uses this word list to implement a simple spell-checker. First,
read all of the words into a HashSet<String> object. Then, allow the user to enter
the name of a text file that contains written English. The program should output
all of the words that are not in the set as potentially misspelled words.

 10. You have a list of student ID numbers followed by the course number (separated
by a space) that each student is enrolled in. The listing is in no particular order.
For example, if student 1 is in CS100 and CS200 while student 2 is in CS105 and
MATH210, then the list might look like this:

 1 CS100

 2 MATH210

 2 CS105

 1 CS200

 Write a program that reads data in this format from the console. If the ID number
is −1, then stop inputting data. Use the HashMap class to map from an Integer
(the student ID number) to an ArrayList of type String that holds each course
that the student is enrolled in. The declaration should look like this:

 HashMap<Integer, ArrayList<String>> students =

 new HashMap<Integer, ArrayList<String>>();

 After all the data is input, iterate through the map and output the student ID
number and all courses stored in the vector for that student. The result should be
a list of courses organized by student ID number.

Programming Projects 979

This page intentionally left blank

Example: A Tricolor Built with Panels 1012
The Container Class 1016
The Model-View-Controller Pattern ★ 1020

17.4 Menus and Buttons 1021
Example: A GUI with a Menu 1021
Menu Bars, Menus, and Menu Items 1021
Nested Menus ★ 1026
The AbstractButton Class 1026
The setActionCommand Method 1029
Listeners as Inner Classes ★ 1030

17.5 text Fields and text areas 1033
Text Areas and Text Fields 1034
A Swing Calculator 1041

17.1 event-driven PrograMMing 983
Events and Listeners 983

17.2 Buttons, events, and other swing
Basics 984

Example: A Simple Window 985
Buttons 991
Action Listeners and Action Events 992
Example: A Better Version of Our First

Swing GUI 995
Labels 998
Color 999
Example: A GUI with a Label and Color 1000

17.3 containers and layout
Managers 1002

Border Layout Managers 1003
Flow Layout Managers 1006
Grid Layout Managers 1007
Panels 1011

chapter summary 1046 answers to self-test exercises 1047 Programming Projects 1053

Swing I 17

It Don’t Mean a Thing If It Ain’t Got That Swing.

SONG TITLE Duke Ellington, Brunswick Records, 1931.

Introduction
This is the first of two chapters that present the basic classes in the Swing package and
teach the basic techniques for using these classes to define GUIs. GUIs are windowing
interfaces that handle user input and output. GUI is pronounced “gooey” and stands
for graphical user interface. Entire books have been written on Swing, so we will not
be able to give you a complete description of Swing in just three chapters. However, we
will teach you enough to allow you to write a variety of windowing interfaces.

17 Swing I

Swing

GUI

AWT The AWT (Abstract Window Toolkit) package is an older package designed for
doing windowing interfaces. Swing can be viewed as an improved version of the AWT.
However, Swing did not completely replace the AWT package. Some AWT classes are
replaced by Swing classes, but other AWT classes are needed when using Swing. We
will use classes from both Swing and the AWT.

Swing GUIs are designed using a particular form of object-oriented programming
that is known as event-driven programming. Our first section begins with a brief
overview of event-driven programming.

Prerequisites
Before covering this chapter (and the two chapters on applets1 and more Swing), you
need to have read Chapters 1 through 5, Chapter 7 (inheritance), Chapter 13 (interfaces
and inner classes), and Section 8.2 of Chapter 8 (abstract classes). (Section 8.2 of
Chapter 8 does not require Section 8.1.) Except for one subsection at the end of this
chapter, you need not have read any of the other chapters that precede this chapter.

To cover the last subsection of this chapter, entitled “A Swing Calculator,” you need
to first read Chapter 9, which covers exceptions. If you have not yet read Chapter 9,
you can skip that last section.

1The chapter on applets is on the website that accompanies this book.

GUI

Windowing systems that interact with the user are often called GUIs. GUI is pronounced
“gooey” and stands for graphical user interface.

Event-Driven Programming 983

17.1 Event-Driven Programming

My duty is to obey orders.

MARY ANNA JACKSON Life and Letters of General Thomas J. Jackson (1891), Ch. 4 : The
War with Mexico—1846–1848, p. 45, Harper & Brothers, 1891.

Event-driven programming is a programming style that uses a signal-and-response
approach to programming. Signals to objects are things called events, a concept we
explain in this section.

Events and Listeners

Swing programs use events and event handlers. An event is an object that acts as a
signal to another object known as a listener. The sending of the event is called firing
the event. The object that fires the event is often a GUI component, such as a button.
The button fires the event in response to being clicked. The listener object performs
some action in response to the event. For example, the listener might place a message
on the screen in response to a particular button being clicked. A given component may
have any number of listeners, from zero to several listeners. Each listener might respond
to a different kind of event, or multiple listeners might respond to the same events.

If you have read Chapter 9 on exception handling, then you have already seen one
specialized example of event-driven programming.2 An exception object is an event.
The throwing of an exception is an example of firing an event (in this case, firing the
exception event). The listener is the catch block that catches the event.

In Swing GUIs, an event often represents some action such as clicking a mouse,
dragging the mouse, pressing a key on the keyboard, clicking the close-window button
on a window, or any other action that is expected to elicit a response. A listener object
has methods that specify what will happen when events of various kinds are received
by the listener. These methods that handle events are called event handlers. You the
programmer will define (or redefine) these event-handler methods. The relationship
between an event-firing object, such as a button, and its event-handling listener is
shown diagrammatically in Display 17.1.

Event-driven programming is very different from most programming you have seen
before now. All our previous programs consisted of a list of statements executed in
order. There were loops that repeat statements and branches that choose one of a list of
statements to execute next. However, at some level, each run of a program consists of a
list of statements performed by one agent (the computer) that executes the statements
one after the other in order.

Event-driven programming is a very different game. In event-driven programming,
you create objects that can fire events, and you create listener objects to react to the
events. For the most part, your program does not determine the order in which things
happen. The events determine that order. When an event-driven program is running,

event-driven
programming

event

listener

firing an
event

2If you have not yet covered Chapter 9 on exceptions, you can safely ignore this paragraph.

event handler

984 CHAPTER 17 Swing I

the next thing that happens depends on the next event. It is as though the listeners are
robots that interact with other objects (possibly other robots) in response to events
(signals) from these other objects. You program the robots, but the environment and
other robots determine what any particular robot will actually end up doing.

If you have never done event-driven programming before, one aspect of it may seem
strange to you: You will be writing definitions for methods that you will never invoke in
any program. This will likely feel a bit strange at first, because a method is of no value
unless it is invoked. So, somebody or something other than you, the programmer,
must be invoking these methods. That is exactly what does happen. The Swing system
automatically invokes certain methods when an event signals that the method needs to
be called.

Event-driven programming with the Swing library makes extensive use of
inheritance. The classes you define will be derived classes of some basic Swing library
classes. These derived classes will inherit methods from their base class. For many
of these inherited methods, library software will determine when these methods are
invoked, but you will override the definition of the inherited method to determine
what will happen when the method is invoked.

17.2 Buttons, Events, and Other Swing Basics

One button click is worth a thousand key strokes.

ANONYMOUS

In this section, we present enough about Swing to allow you to do some simple GUI
programs.

Display 17.1 Event Firing and an Event Listener

The component (for
example, a button) fires an
event.

This listener object invokes an event handler
method with the event as an argument.

eventcomponent listener

Buttons, Events, and Other Swing Basics 985

ExamPLE: A Simple Window

Display 17.2 contains a Swing program that produces a simple window. The window
contains nothing but a button on which is written "Click to end program." If
the user follows the instructions and clicks the button with his or her mouse, the
program ends.

The import statements give the names of the classes used and which package they
are in. What we and others call the Swing library is the package named javax.swing.
The AWT library is the package java.awt. Note that one package name contains an
"x" and one does not.

This program is a simple class definition with only a main method. The first line
in the main method creates an object of the class JFrame. That line is reproduced as
follows:

JFrame firstWindow = new JFrame();

This is an ordinary declaration of a variable named firstWindow and an
invocation of the no-argument constructor for the class JFrame. A JFrame object is a
basic window that includes a border and the usual three buttons for minimizing the
window down to an icon, changing the size of the window, and closing the window.
These buttons are shown in the upper-right corner of the window, which is typical,
but if your operating system normally places these buttons someplace else, that is
where they will likely be located in a JFrame on your computer.

The initial size of the JFrame window is set using the JFrame method setSize,
as follows:

firstWindow.setSize(WIDTH, HEIGHT);

In this case, WIDTH and HEIGHT are defined int constants. The units of measure
are pixels, so the window produced is 300 pixels by 200 pixels. (The term pixel is
defined in the box entitled “Pixel.”) As with other windows, you can change the size
of a JFrame by using your mouse to drag a corner of the JFrame window.

The buttons for minimizing the window down to an icon and for changing the
size of the window behave as they do in any of the other windows you have used. The
minimization button shrinks the window down to an icon. (To restore the window,
click the icon.) The second button changes the size of the window back and forth
from full screen to a smaller size. The close-window button can behave in different
ways depending on how it is set by your program.

The behavior of the close-window button is set with the JFrame method
setDefaultCloseOperation. The line of the program that sets the behavior of the
close-window button is reproduced next:

firstWindow.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

(continued)

986 CHAPTER 17 Swing I

In this case, the argument JFrame.DO_NOTHING_ON_CLOSE is a defined constant
named DO_NOTHING_ON_CLOSE, which is defined in the JFrame class. This sets
the close-window button so that when it is clicked, nothing happens (unless we
programmed something to happen, which we have not done). Other possible
arguments are given in Display 17.3.

The method setDefaultCloseOperation takes a single int argument; each of
the constants described in Display 17.3 is an int constant. However, do not think of
them as int values. Think of them as policies for what happens when the user clicks
the close-window button. It was convenient to name these policies by int values.
However, they could just as well have been named by char values or String values
or something else. The fact that they are int values is an incidental detail of no real
importance.

Descriptions of some of the most important methods in the class JFrame are
given in Display 17.3. Some of these methods will not be explained until later in this
chapter. A more complete list of methods for the class JFrame is given in Appendix 5.

A JFrame can have components added, such as buttons, menus, and text labels.
For example, the following line from Display 17.2 adds the JButton object named
endButton to the JFrame named firstWindow:

firstWindow.add(endButton);

The description of how the JButton named endButton is created and
programmed will be given in the two subsections entitled “Buttons” and “Action
Listeners and Action Events” a little later in this section.

We end this subsection by jumping ahead to the last line of the program, which is

firstWindow.setVisible(true);

This makes the JFrame window visible on the screen. At first glance, this may
seem strange. Why not have windows automatically become visible? Why would
you create a window if you did not want it to be visible? The answer is that you may
not want it to be visible at all times. You have certainly experienced windows that
disappear and reappear. To hide the window, which is not desirable in this example,
you would replace the argument true with false.

ExamPLE: (continued)

JFrame

An object of the class JFrame is what you think of as a window. It automatically has a
border and some basic buttons for minimizing the window and similar actions. As you
will see, a JFrame object can have buttons and many other components added to the
window and programmed for action.

Buttons, Events, and Other Swing Basics 987

Display 17.2 A First Swing Demonstration Program (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JButton;

 3 public class FirstSwingDemo
 4 {
 5 public static final int WIDTH = 300;
 6 public static final int HEIGHT = 200;

 7 public static void main(String[] args)
 8 {
 9 JFrame firstWindow = new JFrame();
10 firstWindow.setSize(WIDTH, HEIGHT);

11 firstWindow.setDefaultCloseOperation(
12 JFrame.DO_NOTHING_ON_CLOSE);

13 JButton endButton = new JButton("Click to end program.");
14 EndingListener buttonEar = new EndingListener();
15 endButton.addActionListener(buttonEar);
16 firstWindow.add(endButton);

17 firstWindow.setVisible(true);
18 }
19 }

 1 import java.awt.event.ActionListener;
 2 import java.awt.event.ActionEvent;

 3 public class EndingListener implements ActionListener
 4 {
 5 public void actionPerformed(ActionEvent e)
 6 {
 7 System.exit(0);
 8 }
 9 }

This is the file EndingListener.java.

This is the file FirstSwingDemo.java.

(continued)

This program is not typical of
the style we will use in Swing
programs.

988 CHAPTER 17 Swing I

pixel

Display 17.3 Some Methods in the Class JFrame (part 1 of 2)

The class JFrame is in the javax.swing package.

public JFrame()

Constructor that creates an object of the class JFrame.

Pixel

A pixel is the smallest unit of space on which your screen can write. With Swing, both the
size and the position of objects on the screen are measured in pixels. The more pixels you
have on a screen, the greater the screen resolution.

Resolution’s Relationship to Object Size

The relationship between resolution and size can seem confusing at first. A high-resolution
screen is a screen of better quality than a low-resolution screen, so why does an object
look smaller on a high-resolution screen and larger on a low-resolution screen? Consider
a very simple case—namely, a one-pixel “dot.” For a screen of fixed size, if there are very
many pixels (high resolution), then the one-pixel dot will be very small. If there are fewer
pixels (low resolution) for the same size screen, then each pixel must be larger because the
smaller number of pixels cover the same screen. So, if there are fewer pixels, the one-pixel
dot will be larger. Similarly, a two-pixel figure or a figure of any number of pixels will look
larger on a low-resolution (fewer pixels) screen.

Display 17.2 A First Swing Demonstration Program (part 2 of 2) (Source: Oracle Corporation)

Resulting GUI
Minimize (iconify) Change window size to full

screen

Close-window
button

Buttons, Events, and Other Swing Basics 989

public JFrame(String title)

Constructor that creates an object of the class JFrame with the title given as the argument.

public void setDefaultCloseOperation(int operation)

Sets the action that will happen by default when the user clicks the close-window button. The
argument should be one of the following defined constants:

JFrame.DO_NOTHING_ON_CLOSE: Do nothing. The JFrame does nothing, but if there are any
registered window listeners, they are invoked. (Window listeners are explained in Chapter 18.)

JFrame.HIDE_ON_CLOSE: Hide the frame after invoking any registered WindowListener
objects.

JFrame.DISPOSE_ON_CLOSE: Hide and dispose the frame after invoking any registered
window listeners. When a window is disposed, it is eliminated but the program does not end.
To end the program, use the next constant as an argument to setDefaultCloseOperation.

JFrame.EXIT_ON_CLOSE: Exit the application using the System exit method. (Do not use
this for frames in applets. Applets are discussed in Chapter 20 on the website.)

If no action is specified using the method setDefaultCloseOperation, then the default
action taken is JFrame.HIDE_ON_CLOSE.

Throws an IllegalArgumentException if the argument is not one of the values listed above.3

Throws a SecurityException if the argument is JFrame.EXIT_ON_CLOSE and the Security
Manager will not allow the caller to invoke System.exit. (You are not likely to encounter this case.)

public void setSize(int width, int height)

Sets the size of the calling frame so that it has the width and height specified. Pixels are the
units of length used.

public void setTitle(String title)

Sets the title for this frame to the argument string.

public void add(Component componentAdded)

Adds a component to the JFrame.

public void setLayout(LayoutManager manager)

Sets the layout manager. Layout managers are discussed later in this chapter in Section 17.3.

public void setJMenuBar(JMenuBar menubar)

Sets the menu bar for the calling frame. (Menus and menu bars are discussed later in this chapter
in Section 17.4.)

public void dispose()

Eliminates the calling frame and all its subcomponents. Any memory they use is released for
reuse. If there are items left (items other than the calling frame and its subcomponents), then this
does not end the program. (The method dispose is discussed in Chapter 19.)

3If you have not yet covered Chapter 9 on exceptions, you can safely ignore all references to “throwing
 exceptions.”

Display 17.3 Some Methods in the Class JFrame (part 2 of 2)

990 CHAPTER 17 Swing I

The setVisible method
Many classes of Swing objects have a setVisible method. The setVisible method
takes one argument of type boolean. If w is an object, such as a JFrame window, that can
be displayed on the screen, then the call

w.setVisible(true);

will make w visible. The call

w.setVisible(false);

will hide w.

SYNTax

Object_For_Screen.setVisible(Boolean_Expression);

ExamPLE (FROm DISPLaY 17.2)

public static void main(String[] args)
{
 JFrame firstWindow = new JFrame();
 .
 .
 .
 firstWindow.setVisible(true);
}

PITFaLL: Forgetting to Program the Close-Window Button

The following lines from Display 17.2 ensure that when the user clicks the close-
window button, nothing happens:

firstWindow.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

If you forget to program the close-window button, then the default action is as if you
had set it the following way:

firstWindow.setDefaultCloseOperation(
 JFrame.HIDE_ON_CLOSE);

In the program in Display 17.2, this would mean that if the user clicks the close-
window button, the window will hide (become invisible and inaccessible), but the
program will not end, which is a pretty bad situation. Because the window would be
hidden, there would be no way to click the "Click to end program." button. You
would need to use some operating system command that forces the program to end.
That is an operating system topic, not a Java topic, and the exact command depends
on which operating system you are using. ■

Buttons, Events, and Other Swing Basics 991

Buttons

A button object is created in the same way that any other object is created, but you
use the class JButton. For example, the following example from Display 17.2 creates
a button:

JButton endButton = new JButton("Click to end program.");

The argument to the construct, in this case, "Click to end program.", is a string
that will be written on the button when the button is displayed. If you look at the
picture of the GUI in Display 17.2, you will see that the button is labeled "Click to
end program."

We have already discussed adding components, such as buttons, to a JFrame. The
button is added to the JFrame by the following line from Display 17.2:

firstWindow.add(endButton);

In the next subsection, we explain the lines from Display 17.2 involving the method
addActionListener.

Self-Test Exercises

1. What Swing class do you normally use to define a window? Any window class
that you define would normally be an object of this class.

2. What units of measure are used in the following call to setSize that appeared
in the main method of the program in Display 17.2? In other words, 300 what?
Inches? Centimeters? Light years? And similarly, 200 what?

firstWindow.setSize(WIDTH, HEIGHT);

which is equivalent to

firstWindow.setSize(300, 200);

3. What is the method call to set the close-window button of the JFrame
someWindow so that nothing happens when the user clicks the close-window
button in someWindow?

4. What is the method call to set the close-window button of the JFrame
someWindow so that the program ends when the user clicks the close-window
button in someWindow?

5. What happens when you click the minimizing button of the JFrame shown in
Display 17.2?

6. Suppose someWindow is a JFrame and n is an int variable with some value.
Give a Java statement that will make someWindow visible if n is positive and hide
someWindow otherwise.

JButton

adding a
button

992 CHAPTER 17 Swing I

action Listeners and action Events

Clicking a button with your mouse (or activating certain other items in a GUI) creates
an object known as an event and sends the event object to another object (or objects)
known as the listener(s). This is called firing the event. The listener then performs
some action. When we say that the event is “sent” to the listener object, what we really
mean is that some method in the listener object is invoked with the event object as the
argument. This invocation happens automatically. Your Swing GUI class definition
will not normally contain an invocation of this method. However, your Swing GUI
class definition does need to do two things:

•	 First,	for	each	button,	it	needs	to	specify	what	objects	are	listeners	that	will	respond	
to events fired by that button; this is called registering the listener.

•	 Second,	it	must	define	the	methods	that	will	be	invoked	when	the	event	is	sent	to	
the listener. Note that these methods will be defined by you, but in normal circum-
stances, you will never write an invocation of these methods. The invocations will
take place automatically.

The following lines from Display 17.2 create an EndingListener object named
buttonEar and register buttonEar as a listener to receive events from the button
named endButton:

EndingListener buttonEar = new EndingListener();
endButton.addActionListener(buttonEar);

The JButton Class

An object of the class JButton is displayed in a GUI as a component that looks like a
button. Click the button with your mouse to simulate pushing it. When creating an object
of the class JButton using new, you can give a string argument to the constructor and the
string will be displayed on the button.

You can add a JButton object to a JFrame by using the method add with the JFrame as
the calling object and the JButton object as the argument. You will later see that you can
also add buttons to other GUI objects (known as “containers”) in a similar way.

A button’s action is programmed by registering a listener with the button using the method
addActionListener.

ExamPLE

JButton niceButton = new JButton("Click here");
niceButton.addActionListener(new SomeActionListenerClass());
someJFrame.add(niceButton);

registering a
listener

addAction
Listener

The Close-Window Button Is Not in the Class JButton

The buttons that you add to a GUI are all objects of the class JButton. The close-window
button and the other two accompanying buttons on a JFrame are not objects of the class
JButton. They are part of the JFrame object.

Buttons, Events, and Other Swing Basics 993

The second line says that buttonEar is registered as a listener to endButton, which
means buttonEar will receive all events fired by endButton.

Different kinds of components require different kinds of listener classes to handle
the events they fire. A button fires events known as action events, which are handled
by listeners known as action listeners.

An action listener is an object whose class implements the ActionListener
interface. For example, the class EndingListener in Display 17.2 implements the
ActionListener interface. The ActionListener interface has only one method
heading that must be implemented, namely the following:

public void actionPerformed(ActionEvent e)

In the class EndingListener in Display 17.2, the actionPerformed method is
defined as follows:

public void actionPerformed(ActionEvent e)
{
 System.exit(0);
}

If the user clicks the button endButton, it sends an action event to the action listener
for that button. But buttonEar is the action listener for the button endButton, so the
action event goes to buttonEar. When an action listener receives an action event, the
event is automatically passed as an argument to the method actionPerformed and
the method actionPerformed is invoked. If the event is called e, then the following
invocation takes place in response to endButton firing e:

buttonEar.actionPerformed(e);

In this case, the parameter e is ignored by the method actionPerformed. The method
actionPerformed simply invokes System.exit and thereby ends the program. So, if
the user clicks endButton (the one labeled "Click to end program."), the net effect
is to end the program and so the window goes away.

Note that you never write any code that says

buttonEar.actionPerformed(e);

This action does happen, but the code for this is embedded in some class definition
inside the Swing and/or AWT libraries. Somewhere the code says something like

bla.actionPerformed(e);

and somehow buttonEar gets plugged in for the parameter bla and this invocation
of actionPerformed is executed. But, all this is done for you. All you do is define the
method actionPerformed and register buttonEar as a listener for endButton.

Note that the method actionPerformed must have a parameter of type
ActionEvent, even if your definition of actionPerformed does not use this parameter.
This is because the invocations of actionPerformed were already programmed for
you and so must allow the possibility of using the ActionEvent parameter e. As you
will see, in other Swing GUIs the method actionPerformed does often use the event
e to determine which button was clicked. This first example is a special, simple case

action event

Action
Listener

action
Performed

994 CHAPTER 17 Swing I

because there is only one button. Later in this chapter, we will say more about defining
the actionPerformed method in more complicated situations.

PITFaLL: Changing the Heading for actionPerformed

When you define the method actionPerformed in an action listener, you are
implementing the method heading for actionPerformed that is specified in the
ActionListener interface. Thus, the header for the method actionPerformed is
determined for you, and you cannot change the heading. It must have exactly one
parameter, and that parameter must be of type ActionEvent, as in the following:

public void actionPerformed(ActionEvent e)

If you change the type of the parameter or if you add (or subtract) a parameter, you
will not have given a correct definition of an action listener.4 The only thing you
can change is the name of the parameter e, because it is just a placeholder. So the
following change is acceptable:

public void actionPerformed(ActionEvent theEvent)

Of course, if you make this change, then inside the body of the method
actionPerformed, you will use the identifier theEvent in place of the identifier e.

You also cannot add a throws clause to the method actionPerformed.5 If a
checked exception is thrown in the definition of actionPerformed, then it must be
caught in the method actionPerformed. (Recall that a checked exception is one that
must be either caught in a catch block or declared in a throws clause.) ■

4 Although it would be rather questionable style, you can overload the method named
actionPerformed so that you have multiple versions of the method actionPerformed, each
with a different parameter list. But only the version of actionPerformed shown here has anything
to do with making a class into an action listener.
5If you have not yet covered exception handling (Chapter 9), you can safely ignore this paragraph.

TIP: Ending a Swing Program

A GUI program is normally based on a kind of infinite loop. There may not be a Java
loop statement in a GUI program, but nonetheless the GUI program need not ever
end. The windowing system normally stays on the screen until the user indicates that
it should go away (for example, by clicking the "Click to end program." button
in Display 17.2). If the user never asks the windowing system to go away, it will never
go away. When you write a Swing GUI program, you need to use System.exit to
end the program when the user (or something else) says it is time to do so. Unlike
the kinds of programs we saw before this chapter, a Swing program will not end after
it has executed all the code in the program. A Swing program does not end until it
executes a System.exit. (In some cases, the System.exit may be in some library
code and need not be explicitly given in your code.) ■

System.exit

Buttons, Events, and Other Swing Basics 995

Self-Test Exercises

7. What kind of event is fired when you click a JButton?

8. What method heading must be implemented in a class that implements the
ActionListener interface?

9. Change the program in Display 17.2 so that the window displayed has the title
"My First Window". Hint: Consult the description of constructors in Display 17.3.

ExamPLE: A Better Version of Our First Swing GUI

Display 17.4 is a rewriting of the demonstration program in Display 17.2 that
includes a few added features. This new version produces a window that is similar to
the one produced by the program in Display 17.2. However, this new version is done
in the style you should follow in writing your own GUIs. Notice that the window is
produced by defining a class (FirstWindow) whose objects are windows of the kind
we want. The window is then displayed by a program (DemoWindow) that uses the
class FirstWindow.

Observe that FirstWindow is a derived class of the class JFrame. This is the
normal way to define a windowing interface. The base class JFrame gives some basic
window facilities, and then the derived class adds whatever additional features you
want in your window interface.

Note that the constructor in Display 17.4 starts by calling the constructor for the
parent class JFrame with the line

super();

As we noted in Chapter 7, this ensures that any initialization that is normally done
for all objects of type JFrame will in fact be done. If the base class constructor you
call has no arguments, then it will be called automatically, so we could have omitted
the invocation of super() in Display 17.4. However, if the base class constructor
needs an argument, as it may in some other situations, then you must include a call to
the base class constructor, super.

Note that almost all the initializing for the window FirstWindow in Display 17.4 is
placed in the constructor for the class. That is as it should be. The initialization, such
as setting the initial window size, should be part of the class definition and not actions
performed by objects of the class (as they were in Display 17.2). All the initializing
methods, such as setSize and setDefaultCloseOperation, are inherited from the
class JFrame. Because they are invoked in the constructor for the window, the window
itself is the calling object. In other words, a method invocation such as

setSize(WIDTH, HEIGHT);

is equivalent to

this.setSize(WIDTH, HEIGHT);

(continued)

996 CHAPTER 17 Swing I

ExamPLE: (continued)

Similarly, the method invocations

setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

and

add(endButton);

are equivalent to

this.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

and

this.add(endButton);

In the class FirstWindow (Display 17.4), we added the title "First Window Class"
to the window as follows:

setTitle("First Window Class");

You can see where the title is displayed in a JFrame by looking at the picture of the
GUI given in Display 17.4.

One thing we did differently in Display 17.4 than in Display 17.2 is use an
anonymous object in the following line:

endButton.addActionListener(new EndingListener());

The same action was performed by the following lines in Display 17.2:

EndingListener buttonEar = new EndingListener();
endButton.addActionListener(buttonEar);

In Display 17.2, we were trying to be extra clear and so we used these two steps.
However, it makes more sense to use the anonymous object new EndingListener()
because this listener object is never referenced again and so does not need a name.

The program DemoWindow in Display 17.4 simply displays an object of the class
FirstWindow on the screen.

Almost all of the initialization details for the window in Display 17.4 have been
moved to the constructor for the class FirstWindow. However, we have placed the
invocations of the method setVisible in the application program that uses the
window class FirstWindow. We could have placed an invocation of setVisible in
the constructor for FirstWindow and omitted the invocation of setVisible from the
application program DemoWindow (Display 17.4). If we had done so, we would have
produced the same results when we ran the application program. However, in normal
situations, the application program knows when the window should be displayed,
so it is normal to put the invocation of the method setVisible in the application
program. The programmer writing the class FirstWindow cannot anticipate when a
programmer who uses the window will want to make it visible (or hide it).

Buttons, Events, and Other Swing Basics 997

The class EndingListener is defined in Display 17.2.

This is the file FirstWindow.java.

This is the file DemoWindow.java.

Display 17.4 The Normal Way to Define a JFrame (Source: Oracle Corporation)

 1 import javax.swing.JFrame;
 2 import javax.swing.JButton;

 3 public class FirstWindow extends JFrame
 4 {
 5 public static final int WIDTH = 300;
 6 public static final int HEIGHT = 200;

 7 public FirstWindow()
 8 {
 9 super();
10 setSize(WIDTH, HEIGHT);

11 setTitle("First Window Class");
12 setDefaultCloseOperation(
13 JFrame.DO_NOTHING_ON_CLOSE);

14 JButton endButton = new JButton("Click to end program.");
15 endButton.addActionListener(new EndingListener());
16 add(endButton);
17 }
18 }

 1 public class DemoWindow
 2 {
 3 public static void main(String[] args)
 4 {
 5 FirstWindow w = new FirstWindow();
 6 w.setVisible(true);
 7 }
 8 }

Resulting gui

998 CHAPTER 17 Swing I

Labels

We have seen how to add a button to a JFrame. If you want to add some text to your
JFrame, use a label instead of a button. A label is an object of the class JLabel. A label
is little more than a line of text. The text for the label is given as an argument to the
JLabel constructor as follows:

JLabel greeting = new JLabel("Hello");

The label greeting can then be added to a JFrame just as a button is added. For
example, the following might appear in a constructor for a derived class of JFrame:

JLabel greeting = new JLabel("Hello");
add(greeting);

The next Programming Example, “A GUI with a Label and Color,” includes a label
in a JFrame GUI.

JFrame Classes

When we say that a class is a JFrame class, we mean the class is a descendent class of
the class JFrame. For example, the class FirstWindow in Display 17.4 is a JFrame class.
When we say an object is a JFrame, we mean that it is an object of some JFrame class.

Self-Test Exercises

10. Change the program in Display 17.4 so that the title of the JFrame is not
set by the method setTitle but is instead set by the call to the base class
constructor. Hint: Recall Self-Test Exercise 9.

11. Change the program in Display 17.4 so that there are two ways to end the GUI
program: The program can be ended by either clicking the "Click to end
program." button or clicking the close-window button.

label

JLabel

The JLabel Class

An object of the class JLabel is little more than one line of text that can be added to a JFrame
(or, as we will see, added to certain other objects).

ExamPLE (INSIDE a CONSTRUCTOR FOR a DERIVED CLaSS OF JFrAmE)

JLabel myLabel = new JLabel("Hi Mom!");
add(myLabel);

Buttons, Events, and Other Swing Basics 999

Color

You can set the color of a JFrame (or other GUI object). To set the background color
of a JFrame, use

getContentPane().setBackground(Color);

For example, the following will set the color of the JFrame named someFrame to blue:

someFrame.getContentPane().setBackground(Color.BLUE);

Alternatively, if you set the color in the constructor for the JFrame, the invocation
takes the form

getContentPane().setBackground(Color.BLUE);

which is equivalent to

this.getContentPane().setBackground(Color.BLUE);

The next Programming Example, “A GUI with a Label and Color,” shows a JFrame
object (in fact, two of them) with color.

The method invocation getContentPane() returns something called the content
pane of the JFrame. So,

getContentPane().setBackground(Color.BLUE);

actually sets the color of the content pane to blue. The content pane is the “inside” of
the JFrame, so coloring the content pane has the effect of coloring the inside of the
JFrame. However, you can think of

getContentPane().setBackground(Color);

as a peculiarly spelled method invocation that sets the color of the JFrame. (In this
book, we will not be referring to the content pane of a JFrame except when we want to
color the JFrame, so we will explain the content pane no further.)

Use getContentPane only when you give color to a JFrame. As you will see, to set
the color of some component in a JFrame, such as a button, simply use the method
setBackground with the button or other component as the calling object. You will see
examples of adding color to components in Section 17.3.

What kind of thing is a color when used in a Java Swing class? Like everything
else in Java, a color is an object—in this case, an object that is an instance of the class
Color. The class Color is in the java.awt package. (Note that the package name is
java.awt, not javax.awt.)

In a later chapter, you will see how you can define your own colors, but for now
we will use the colors that are already defined for you, such as Color.BLUE, which
is a constant named BLUE that is defined in the class Color. The constant, of course,
represents the color blue. If you set the background of a JFrame to Color.BLUE, then
the JFrame will have a blue background. The type of the constant Color.BLUE and
other such constants is Color. The list of color constants that are defined for you is
given in Display 17.5. The next Programming Example, “A GUI with a Label and
Color,” has an example of a constructor with one parameter of type Color.

getContent
Pane

set
Background

Color.BLUE

content pane

get
Content

Pane

Color

color

1000 CHAPTER 17 Swing I

Display 17.5 The Color Constants

Color.BLACK
Color.BLUE
Color.CYAN
Color.DARK_GRAY
Color.GRAY
Color.GREEN
Color.LIGHT_GRAY

Color.MAGENTA
Color.ORANGE
Color.PINK
Color.RED
Color.WHITE
Color.YELLOW

The class Color is in the java.awt package.

ExamPLE: A GUI with a Label and Color

Display 17.6 shows a class for GUIs with a label and a background color. We have
already discussed the use of color for this window. The label is used to display the text
string "Close-window button works." The label is created as follows:

JLabel aLabel = new JLabel("Close-window button works.");

The label is added to the JFrame with the method add as shown in the following line
from Display 17.6:

add(aLabel);

The GUI class ColoredWindow in Display 17.6 programs the close-window button
as follows:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This way, when the user clicks the close-window button, the program ends. Note
that if the program has more than one window, as it does in Display 17.6, and the
user clicks the close-window button in any one window of the class ColoredWindow,
then the entire program ends and all windows go away.

Note that we set the title of the JFrame by making it an argument to super rather
than an argument to setTitle. This is another common way to set the title of
a JFrame.

If you run the program DemoColoredWindow in Display 17.6, then the two
windows will be placed one on top of the other. To see both windows, you need to
use your mouse to move the top window.

Setting the Title of a JFrame

The two most common ways to set the title of a JFrame are to use the method setTitle,
as illustrated in Display 17.4, or to give the title as an argument to the base class constructor
super, as illustrated in Display 17.6.

Buttons, Events, and Other Swing Basics 1001

Display 17.6 A JFrame with Color (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JLabel;
 3 import java.awt.Color;

 4 public class ColoredWindow extends JFrame
 5 {
 6 public static final int WIDTH = 300;
 7 public static final int HEIGHT = 200;

 8 public ColoredWindow(Color theColor)
 9 {

10 super("No Charge for Color");
11 setSize(WIDTH, HEIGHT);
12 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

13 getContentPane().setBackground(theColor);

14 JLabel aLabel = new JLabel("Close-window button works.");
15 add(aLabel);
16 }
17 public ColoredWindow()
18 {
19 this(Color.BLUE);
20 }
21 }

 1 import java.awt.Color;

 2 public class DemoColoredWindow
 3 {
 4 public static void main(String[] args)
 5 {
 6 ColoredWindow w1 = new ColoredWindow();
 7 w1.setVisible(true);

 8 ColoredWindow w2 = new ColoredWindow(Color.GRAY);
 9 w2.setVisible(true);
10 }
11 }

Self-Test Exercises

12. How would you modify the class definition in Display 17.6 so that the window
produced by the no-argument constructor is magenta instead of pink?

13. Rewrite the following two lines from Display 17.6 so that the label does not
have the name aLabel or any other name. Hint: Use an anonymous object.

JLabel aLabel = new JLabel("Close-window button works.");
add(aLabel);

This is an invocation of the
other constructor.

This is the file ColoredWindow java.

(continued)

This is the file ColoredWindow java.

1002 CHAPTER 17 Swing I

Display 17.6 A JFrame with Color (part 2 of 2) (Source: Oracle Corporation)

Resulting gui

layout
manager

container
class

17.3 Containers and Layout managers

Don’t put all your eggs in one basket.

PROVERB

There are two main ways to create new classes from old classes. One way is to use
inheritance; this is known as the Is-A relationship. For example, an object of the class
ColoredWindow in Display 17.6 is a JFrame because ColoredWindow is a derived
class of the class JFrame. The second way to create a new class from an existing class
(or classes) is to have instance variables of an already existing class type; this is known
as composition or the Has-A relationship. The Swing library has already set things up so
you can easily use composition. The actual code for declaring instance variables is in the
Swing library classes, such as the class JFrame. Rather than declaring instance variables,
add components to a JFrame using the add method. This does ultimately set some
instance variables, but this is done automatically when you use the add method. In this
section, we discuss adding and arranging components in a GUI or subpart of a GUI.

Thus far, we have only added one component, either a button or a label, to a JFrame.
You can add more than one component to a JFrame. To do so, use the add method
multiple times, but the add method simply tells which components are added to the
JFrame; it does not say how they are arranged, such as side by side or one above the
other. To describe how the components are arranged, you need to use a layout manager.

In this section, we will see that there are other classes of objects besides JFrames that
can have components added with the add method and arranged by a layout manager.
All these classes are known as container classes.

You will need to use your mouse to
drag the top window or you will not see
the bottom window.

Containers and Layout Managers 1003

Border Layout managers

If you do not specify a layout, then Java will use a BorderLayout by default.
Display 17.7 contains an example of a GUI that uses a layout manager to arrange
three labels in a JFrame. The labels are arranged one below the other on three lines.

A layout manager is added to the JFrame class in Display 17.7 with the following line:

setLayout(new BorderLayout());

BorderLayout is a layout manager class, so new BorderLayout() produces a new
anonymous object of the class BorderLayout. This BorderLayout object is given the
task of arranging components (in this case, labels) that are added to the JFrame.

It may help to note that the previous invocation of setLayout is equivalent to the
following:

BorderLayout manager = new BorderLayout();
setLayout(manager);

Display 17.7 The BorderLayout Manager (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JLabel;
 3 import java.awt.BorderLayout;

 4 public class BorderLayoutJFrame extends JFrame
 5 {
 6 public static final int WIDTH = 500;
 7 public static final int HEIGHT = 400;

 8 public BorderLayoutJFrame()
 9 {
10 super("BorderLayout Demonstration");
11 setSize(WIDTH, HEIGHT);
12 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

13 setLayout(new BorderLayout());

14 JLabel label1 = new JLabel("First label");
15 add(label1, BorderLayout.NORTH);

16 JLabel label2 = new JLabel("Second label");
17 add(label2, BorderLayout.SOUTH);

18 JLabel label3 = new JLabel("Third label");
19 add(label3, BorderLayout.CENTER);
20 }
21 }

setLayout

Border
Layout

This is the file BorderLayoutJFrame.java.

(continued)

1004 CHAPTER 17 Swing I

Display 17.7 The BorderLayout Manager (part 2 of 2) (Source: Oracle Corporation)

1 public class BorderLayoutDemo
2 {
3 public static void main(String[] args)
4 {
5 BorderLayoutJFrame gui = new BorderLayoutJFrame();
6 gui.setVisible(true);
7 }
8 }

Resulting gui

A BorderLayout manager places labels (or other components) into the five
regions BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.EAST,

BorderLayout.WEST, and BorderLayout.CENTER. These five regions are arranged as
shown in Display 17.8. The outside box represents the JFrame (or other container to
which you will add things). None of the lines in the diagram will be visible unless you
do something to make them visible. We drew them in to show you where each region
is located.

This is the file BorderLayoutDemo java.

First label

Third label

Second label

Containers and Layout Managers 1005

In Display 17.7, we added labels as follows:

JLabel label1 = new JLabel("First label");
add(label1, BorderLayout.NORTH);

JLabel label2 = new JLabel("Second label");
add(label2, BorderLayout.SOUTH);

JLabel label3 = new JLabel("Third label");
add(label3, BorderLayout.CENTER);

When you use a BorderLayout manager, you give the location of the component
added as a second argument to the method add, as in the following:

add(label1, BorderLayout.NORTH);

The labels (or other components to be added) need not be added in any particular
order, because the second argument completely specifies where the label is placed.

BorderLayout.NORTH, BorderLayout.SOUTH, BorderLayout.EAST, Border

Layout.WEST, and BorderLayout.CENTER are five string constants defined in the
class BorderLayout. The values of these constants are "North", "South", "East",
"West", and "Center". Although you can use a quoted string such as "North" as
the second argument to add, it is more consistent with our general style rules to use a
defined constant such as BorderLayout.NORTH.

You need not use all five regions. For example, in Display 17.7 we did not use the
regions BorderLayout.EAST and BorderLayout.WEST. If some regions are not used,
any extra space is given to the BorderLayout.CENTER region, which is the largest region.

(The space is divided between regions as follows: Regions are allocated space in the
order first north and south, second east and west, and last center. So, in particular, if
there is nothing in the north region, then the east and west regions will extend to the
top of the space.)

Display 17.8 BorderLayout Regions

BorderLayout.NORTH

BorderLayout.CENTER

BorderLayout.
WEST

BorderLayout.SOUTH

BorderLayout.
EAST

1006 CHAPTER 17 Swing I

From this discussion, it sounds as though you can place only one item in each
region, but later in this chapter, when we discuss panels, you will see that there is a way
to group items so that more than one item can (in effect) be placed in each region.

There are some standard layout managers defined for you in the java.awt package,
and you can also define your own layout managers. However, for most purposes, the
layout managers defined in the standard libraries are all that you need, and we will not
discuss how you can create your own layout manager classes.

Flow Layout managers

The FlowLayout manager is the simplest layout manager. It arranges components
one after the other, going from left to right, in the order in which you add them to
the JFrame (or other container class) using the method add. For example, if the class
in Display 17.7 had used the FlowLayout manager instead of the BorderLayout
manager, it would have used the following code:

setLayout(new FlowLayout());

JLabel label1 = new JLabel("First label");
add(label1);

JLabel label2 = new JLabel("Second label");
add(label2);

JLabel label3 = new JLabel("Third label");
add(label3);

Layout managers
The components that you add to a container class are arranged by an object known as a
layout manager. Add a layout manager with the method setLayout, which is a method of
every container class, such as a JFrame or an object of any of the other container classes
that we will introduce later in this chapter. If you do not add a layout manager, a default
layout manager will be provided for you.

SYNTax

Container_Object.setLayout(new Layout_Manager_Class());

ExamPLE (WITHIN a CONSTRUCTOR FOR a CLaSS CaLLED BorderLayoutJFrame)

public BorderLayoutJFrame()
{
 ...
 setLayout(new BorderLayout());

 JLabel label1 = new JLabel("First label");
 add(label1, BorderLayout.NORTH);

 JLabel label2 = new JLabel("Second label");
 add(label2, BorderLayout.SOUTH);
 ...
}

Containers and Layout Managers 1007

Note that if we had used the FlowLayout manager, as in the preceding code, then the
add method would have only one argument. With a FlowLayout manager, the items
are displayed in the order they are added, so that the labels above would be displayed
all on one line as follows:

First label Second label Third label

The full program is in the files FlowLayoutJFrame.java and FlowLayoutDemo.java
on the accompanying website. You will see a number of examples of GUIs that use the
FlowLayout manager class later in this chapter.

Grid Layout managers

A GridLayout manager arranges components in a two-dimensional grid with some
number of rows and columns. With a GridLayout manager, each entry is the same
size. For example, the following says to use a GridLayout manager with aContainer,
which can be a JFrame or other container:

aContainer.setLayout(new GridLayout(2, 3));

The two numbers given as arguments to the constructor GridLayout specify the
number of rows and columns. This would produce the following sort of layout:

The lines will not be visible unless you do something special to make them so. They are
just included here to show you the region boundaries.

When using a GridLayout manager, each component is stretched so that it
completely fills its grid position.

Although you specify a number of rows and columns, the rules for the number of
rows and columns is more complicated than what we have said so far. If the values for
the number of rows and the number of columns are both nonzero, then the number of
columns will be ignored. For example, if the specification is new GridLayout(2, 3),
then some sample sizes are as follows: If you add six items, the grid will be as shown. If
you add seven or eight items, a fourth column is automatically added, and so forth. If you
add fewer than six components, there will be two rows and a reduced number of columns.

There is another way to specify that the number of columns is to be ignored. You
can do this by setting the number of columns to zero, which will allow any number of
columns. So a specification of (2, 0) is equivalent to (2, 3), and in fact is equivalent to
(2, n) for any nonnegative value of n. Similarly, you can specify that the number of rows is
to be ignored by setting the number of rows to zero, which will allow any number of rows.

When using the GridLayout class, the method add has only one argument. The items
are placed in the grid from left to right, first filling the top row, then the second row, and
so forth. You are not allowed to skip any grid position (although you will later see that you
can add something that does not show and so gives the illusion of skipping a grid position).

A sample use of the GridLayout class is given in Display 17.9.

Grid Layout

extra code
on website

1008 CHAPTER 17 Swing I

Display 17.9 The GridLayout Manager (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JLabel;
 3 import java.awt.GridLayout;

 4 public class GridLayoutJFrame extends JFrame
 5 {
 6 public static final int WIDTH = 500;
 7 public static final int HEIGHT = 400;

 8 public static void main(String[] args)
 9 {
10 GridLayoutJFrame gui = new GridLayoutJFrame(2, 3);
11 gui.setVisible(true);
12 }

13 public GridLayoutJFrame(int rows, int columns)
14 {
15 super();
16 setSize(WIDTH, HEIGHT);
17 setTitle("GridLayout Demonstration");
18 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
19 setLayout(new GridLayout(rows, columns));

20 JLabel label1 = new JLabel("First label");
21 add(label1);

22 JLabel label2 = new JLabel("Second label");
23 add(label2);

24 JLabel label3 = new JLabel("Third label");
25 add(label3);

26 JLabel label4 = new JLabel("Fourth label");
27 add(label4);

28 JLabel label5 = new JLabel("Fifth label");
29 add(label5);
30 }
31 }

Containers and Layout Managers 1009

Display 17.9 The GridLayout Manager (part 2 of 2) (Source: Oracle Corporation)

Resulting gui

Note that we have placed a demonstration main method in the class definition in
Display 17.9. This is handy, but is not typical. Normally, a Swing GUI is created
and displayed in a main method (or other method) in some class other than the class
that defines the GUI. However, it is perfectly legal and sometimes convenient to
place a main method in the GUI class definition so that it is easy to display a sample
of the GUI. Note that the main method that is given in the class itself is written in
the same way as a main method that is in some other class. In particular, you need
to construct an object of the class, as in the following line from the main method in
Display 17.9:

GridLayoutJFrame gui = new GridLayoutJFrame(2, 3);

The three layout managers we have discussed are summarized in Display 17.10.
Next we will discuss panels, which will let you realize the full potential of

layout managers.
GUI Layout

using an IDE

First label Second label Third label

Fourth label Fifth label

VideoNote

1010 CHAPTER 17 Swing I

Display 17.10 Some Layout Managers

LaYOUT maNaGER DESCRIPTION

These layout manager classes are in the java.awt package.

FlowLayout Displays components from left to right in the order in
which they are added to the container.

BorderLayout Displays the components in five areas: north, south, east,
west, and center. You specify the area a component goes
into in a second argument of the add method.

GridLayout Lays out components in a grid, with each component
stretched to fill its box in the grid.

Self-Test Exercises

14. In Display 17.7, would it be legal to replace

JLabel label1 = new JLabel("First label");
add(label1, BorderLayout.NORTH);
JLabel label2 = new JLabel("Second label");
add(label2, BorderLayout.SOUTH);
JLabel label3 = new JLabel("Third label");
add(label3, BorderLayout.CENTER);

with the following?

JLabel aLabel = new JLabel("First label");
add(aLabel, BorderLayout.NORTH);
aLabel = new JLabel("Second label");
add(aLabel, BorderLayout.SOUTH);
aLabel = new JLabel("Third label");
add(aLabel, BorderLayout.CENTER);

In other words, can we reuse the variable aLabel or must each label have its
own variable name?

15. How would you modify the class definition in Display 17.7 so that the three
labels are displayed as follows?

First label
Second label
Third label

(There may be space between each pair of lines.)

Containers and Layout Managers 1011

Self-Test Exercises (continued)

16. How would you modify the class definition in Display 17.7 so that the three
labels are displayed as follows?

First label
Second label

Third label

 (There may be space between each pair of lines.)

17. Suppose you are defining a windowing GUI class in the usual way, as a derived
class of the class JFrame, and suppose you want to specify a layout manager
for the JFrame so as to produce the following sort of layout (that is, a one-row
layout, typically having three columns):

 What should the argument to setLayout be?

18. Suppose the situation is as described in Self-Test Exercise 17, except that you
want the following sort of layout (that is, a one-column layout, typically having
three rows):

 What should the argument to setLayout be?

panel

Panels

A GUI is often organized in a hierarchical fashion, with window-like containers,
known as panels, inside of other window-like containers. A panel is an object of
the class JPanel, which is a very simple container class that does little more than
group objects. It is one of the simplest container classes, but an extremely useful one.
A JPanel object is analogous to the braces used to combine a number of simpler Java
statements into a single larger Java statement. It groups smaller objects, such as buttons
and labels, into a larger component (the JPanel). You can then put the JPanel object

1012 CHAPTER 17 Swing I

in a JFrame. Thus, one of the main functions of JPanel objects is to subdivide a
JFrame (or other container) into different areas.

For example, when you use a BorderLayout manager, you can place components
in each of the five locations BorderLayout.NORTH, BorderLayout.SOUTH,
BorderLayout.EAST, BorderLayout.WEST, and BorderLayout.CENTER. But what if
you want to put two components at the bottom of the screen in the BorderLayout.SOUTH
position? To do this, you would put the two components in a panel and then place the
panel in the BorderLayout.SOUTH position.

You can give different layout managers to a JFrame and to each panel in the JFrame.
Because you can add panels to other panels and each panel can have its own layout manager,
this enables you to produce almost any kind of overall layout of the items in your GUI.

For example, if you want to place two buttons at the bottom of your JFrame GUI,
you might add the following to the constructor of your JFrame GUI:

setLayout(new BorderLayout());

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new FlowLayout());

JButton firstButton = new JButton("One");
buttonPanel.add(firstButton);

JButton secondButton = new JButton("Two");
buttonPanel.add(secondButton);

add(buttonPanel, BorderLayout.SOUTH);

The next Programming Example makes use of panels within panels.

ExamPLE: A Tricolor Built with Panels

When first run, the GUI defined in Display 17.11 looks as shown in the first view.
The entire background is light gray, and there are three buttons at the bottom of the
GUI labeled "Blue", "White", and "Gray". If you click any one of the buttons, a
vertical stripe with the color written on the button appears. You can click the buttons
in any order. In the last three views in Display 17.11, we show what happens if you
click the buttons in left-to-right order.

The blue, white, and gray stripes are the JPanes named bluePanel, whitePanel,
and grayPanel. At first the panels are not visible because they are all light gray, so
no borders are visible. When you click a button, the corresponding panel changes
color and so is clearly visible.

Notice how the action listeners are set up. Each button registers the this
parameter as a listener, as in the following line:

blueButton.addActionListener(this);

Because this line appears inside of the constructor for the class PanelDemo, the this
parameter refers to PanelDemo, which is the entire GUI. Thus, the entire JFrame

(continued)

Containers and Layout Managers 1013

Display 17.11 Using Panels (part 1 of 4)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import java.awt.BorderLayout;
 4 import java.awt.GridLayout;
 5 import java.awt.FlowLayout;
 6 import java.awt.Color;
 7 import javax.swing.JButton;
 8 import java.awt.event.ActionListener;
 9 import java.awt.event.ActionEvent;

10 public class PanelDemo extends JFrame implements ActionListener
11 {
12 public static final int WIDTH = 300;
13 public static final int HEIGHT = 200;

14 private JPanel bluePanel;
15 private JPanel whitePanel;
16 private JPanel grayPanel;

17 public static void main(String[] args)
18 {
19 PanelDemo gui = new PanelDemo();
20 gui.setVisible(true);
21 }

(the entire GUI) is the listener, not the JPanel. So when you click one of the
buttons, it is the actionPerformed method in PanelDemo that is executed.

When a button is clicked, the actionPerformed method is invoked with the action
event fired as the argument to actionPerformed. The method actionPerformed
recovers the string written on the button with the following line:

String buttonString = e.getActionCommand();

The method actionPerformed then uses a multiway if-else statement to
determine if buttonString is "Blue", "White", or "Gray" and changes the color of
the corresponding panel accordingly. It is common for an actionPerformed method
to be based on such a multiway if-else statement, although we will see another
approach in the subsection entitled “Listeners as Inner Classes” later in this chapter.

Display 17.11 also introduces one other small but new technique. We gave
each button a color. We did this with the method setBackground, using basically
the same technique that we used in previous examples. You can give a button or
almost any other item a color using setBackground. Note that you do not use
getContentPane when adding color to any component other than a JFrame.

ExamPLE: (continued)

(continued)

In addition to being the GUI class, the
class PanelDemo is the action listener
class. An object of the class PanelDemo
is the action listener for the buttons in
that object.

We made these instance variables
because we want to refer to them in
both the constructor and the method
actionPerformed.

1014 CHAPTER 17 Swing I

Display 17.11 Using Panels (part 2 of 4)

22 public PanelDemo()
23 {
24 super("Panel Demonstration");
25 setSize(WIDTH, HEIGHT);
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 setLayout(new BorderLayout());

28 JPanel biggerPanel = new JPanel();
29 biggerPanel.setLayout(new GridLayout(1, 3));

30 bluePanel = new JPanel();
31 bluePanel.setBackground(Color.LIGHT_GRAY);
32 biggerPanel.add(bluePanel);

33 whitePanel = new JPanel();
34 whitePanel.setBackground(Color.LIGHT_GRAY);
35 biggerPanel.add(whitePanel);
36 grayPanel = new JPanel();
37 grayPanel.setBackground(Color.LIGHT_GRAY);
38 biggerPanel.add(grayPanel);

39 add(biggerPanel, BorderLayout.CENTER);

40 JPanel buttonPanel = new JPanel();
41 buttonPanel.setBackground(Color.LIGHT_GRAY);
42 buttonPanel.setLayout(new FlowLayout());

43 JButton blueButton = new JButton("Blue");
44 blueButton.setBackground(Color.BLUE);
45 blueButton.addActionListener(this);
46 buttonPanel.add(blueButton);

47 JButton whiteButton = new JButton("White");
48 whiteButton.setBackground(Color.WHITE);
49 whiteButton.addActionListener(this);
50 buttonPanel.add(whiteButton);

51 JButton grayButton = new JButton("Gray");
52 grayButton.setBackground(Color.GRAY);
53 grayButton.addActionListener(this);
54 buttonPanel.add(grayButton);

55 add(buttonPanel, BorderLayout.SOUTH);
56 }
57 public void actionPerformed(ActionEvent e)
58 {
59 String buttonString = e.getActionCommand();

60 if (buttonString.equals("Blue"))
61 bluePanel.setBackground(Color.BLUE);

An object of the class
PanelDemo is the
action listener for the
buttons in that object.

Containers and Layout Managers 1015

Display 17.11 Using Panels (part 3 of 4) (Source: Oracle Corporation)

62 else if (buttonString.equals("White"))
63 whitePanel.setBackground(Color.WHITE);
64 else if (buttonString.equals("Gray"))
65 grayPanel.setBackground(Color.GRAY);
66 else
67 System.out.println("Unexpected error.");
68 }
69 }

Resulting gUI (When first run)

Resulting gUI (After clicking Blue button)

Resulting gUI (After clicking White button)

(continued)

1016 CHAPTER 17 Swing I

Display 17.11 Using Panels (part 4 of 4) (Source: Oracle Corporation)

Resulting gUI (After clicking Gray button)

adding Color

Color a JFrame as follows:

JFrame_Object.getContentPane().setBackground(Color);

If this is inside a constructor for the JFrame, then the expression simplifies to

getContentPane().setBackground(Color);

or the equivalent

this.getContentPane().setBackground(Color);

Color a button, label, or any other component (which is not a JFrame) as follows:

Component_Object.setBackground(Color);

Note that getContentPane() is only used with a JFrame.

ExamPLE (INSIDE a CONSTRUCTOR FOR a DERIVED CLaSS OF JFrame)

getContentPane().setBackground(Color.WHITE);
JButton redButton = new JButton("Red");
redButton.setBackground(Color.RED);

The Container Class

The class called Container is in the java.awt package. Any descendent class of
the class Container can have components added to it (or, more precisely, can have
components added to objects of the class). The class JFrame is a descendent class of the

Container

Containers and Layout Managers 1017

class Container, so any descendent class of the class JFrame can serve as a container
to hold labels, buttons, panels, or other components.

Similarly, the class JPanel is a descendent of the class Container, and any object
of the class JPanel can serve as a container to hold labels, buttons, other panels, or
other components. Display 17.12 shows a portion of the hierarchy of Swing and AWT
classes. Note that the Container class is in the AWT library and not in the Swing
library. This is not a major issue, but it does mean that the import statement for the
Container class is

import java.awt.Container;

A container class is any descendent class of the class Container. The class
JComponent serves a similar role for components. Any descendent class of the class
JComponent is called a JComponent or sometimes simply a component. You can add
any JComponent object to any container class object.

The class JComponent is derived from the class Container, so you can add a
JComponent to another JComponent. Often, this will turn out to be a viable option;
occasionally it is something to avoid.6

The classes Component, Frame, and Window shown in Display 17.12 are AWT
classes that some readers may have heard of. We include them for reference value, but
we will have no need for these classes. We will eventually discuss all the other classes
shown in Display 17.12.

When you are dealing with a Swing container class, you have three kinds of objects
to deal with:

 1. The container itself, probably some sort of panel or window-like object
 2. The components you add to the container, such as labels, buttons, and panels
 3. A layout manager, which positions the components inside the container

You have seen examples of these three kinds of objects in almost every JFrame class we
have defined. Almost every complete GUI you build, and many subparts of the GUIs
you build, will be made up of these three kinds of objects.

container
class

component

6 In particular, it is legitimate and sometimes useful to add JComponents to a JButton. We do not
have space in this book to develop techniques for doing this effectively, but you may want to give it a
try. You have covered enough material to do it.

Self-Test Exercises

19. What standard Java package contains the layout manager classes discussed in
this chapter?

20. Is an object of the class JPanel a container class? Is it a component class?

21. With a GridLayout manager, you cannot leave any grid element empty, but
you can do something that will make a grid element look empty to the user.
What can you do?

(continued)

1018 CHAPTER 17 Swing I

Display 17.12 Hierarchy of Swing and AWT Classes

AWT
java.awt

Swing
javax.swing

This blue color indicates a class that is not used in this text but is
included here for reference. If you have not heard of any of these
classes, you can safely ignore them. (The class Component does
receive very brief treatment in Chapter 19.)

A line between two boxes means the lower
class is derived from (extends) the higher one.

Object

JComponent

Window

BorderLayout FlowLayout GridLayout

Container

JFrame

JPanel

JLabel JMenuBar

JMenuItem

JMenu
JButton

JTextField
JTextArea

JTextComponent

Frame

AbstractButton

Component

Concrete Class

Abstract Class

Containers and Layout Managers 1019

Self-Test Exercises (continued)

22. You are used to defining derived classes of the Swing class JFrame. You can
also define derived classes of other Swing classes. Define a derived class of
the class JPanel that is called PinkJPanel. An object of the class PinkJPanel
can be used just as we used objects of the class JPanel, but an object of the
class PinkJPanel is pink in color (unless you explicitly change its color).
The class PinkJPanel will have only one constructor—namely, the
no-argument constructor. (Hint: This is very easy.)

TIP: Code a GUI’s Look and actions Separately

You can divide the task of designing a Swing GUI into two main subtasks:
(1) designing and coding the appearance of the GUI on the screen; (2) designing
and coding the actions performed in response to button clicks and other user actions.
This dividing of one big task into two simpler tasks makes the big task easier and less
error prone.

For example, consider the program in Display 17.11. Your first version of this
program might use the following definition of the method actionPerformed:

public void actionPerformed(ActionEvent e)
{}

This version of the method actionPerformed does nothing, but your program will
run and will display a window on the screen, just as shown in Display 17.11. If you
click any of the buttons, nothing will happen, but you can use this version of your
GUI to adjust details, such as the order and location of buttons.

After you get the GUI to look the way you want it to look, you can define the
 action parts of the GUI, typically using the method actionPerformed.

If you include the phrase implements ActionListener at the start of your JFrame
definition, then you must include some definition of the method actionPerformed.
A method definition, such as

public void actionPerformed(ActionEvent e)
{}

which does nothing (or does very little) is called a stub. Using stubs is a good
programming technique in many contexts, not just in Swing programs.

Alternatively, when writing your first version of a Swing GUI like the one in
Display 17.11, you could omit the definition of the method actionPerformed
completely, provided you also omit the phrase implements ActionListener and omit
the invocations of addActionListener. ■

stub

1020 CHAPTER 17 Swing I

The model-View-Controller Pattern ★

The technique we advocated in the previous Programming Tip is an example of
a general technique known as the Model-View-Controller pattern. Display 17.13
gives a diagram of this pattern. The Model part of the pattern performs the heart of
the application. The View part is the output part; it displays a picture of the Model’s
state. The Controller is the input part; it relays commands from the user to the Model.
Each of the three interacting parts is realized as an object with responsibility for its
own tasks. In a simple task such as the JFrame in Display 17.11, you can have a single
object with different methods to realize each of the roles Model, View, and Controller.

To simplify the discussion, we have presented the Model-View-Controller pattern as if
the user interacts directly with the Controller. The Controller need not be under the direct
control of the user, but could be controlled by some other software or hardware component.
In a Swing GUI, the View and Controller parts might be separate classes or separate methods
combined into one larger class that displays a single window for all user interactions.

Model-View-
Controller

Self-Test Exercises

23. Suppose you omit the method actionPerformed from the class in Display 17.11
and make no other changes. Would the class compile? If it compiles, will it run
with no error messages?

24. Suppose you omit the method actionPerformed and the phrase implements
ActionListener from the class in Display 17.11 and make no other changes.
Would the class compile? If it compiles, will it run with no error messages?

Display 17.13 The Model-View-Controller Pattern

Model

ManipulateNotify

data1
data2

.

.

.

...

update()
...

View

...

...

Controller

menu item

Menus and Buttons 1021

ExamPLE: A GUI with a Menu

Display 17.14 contains a program that is essentially the same as the GUI in
Display 17.11 except that this GUI uses a menu instead of buttons. This GUI
has a menu bar at the top of the window. The menu bar lists the names of all the
pull-down menus. This GUI has only one pull-down menu, which is named "Add
Colors". However, there could be more pull-down menus in the same menu bar.

The user can pull down a menu by clicking its name in the menu bar. Display 17.14
contains three pictures of the GUI. The first is what you see when the GUI originally
appears. In that picture, the menu name "Add Colors" can be seen in the menu
bar, but you cannot see the menu. If you click the words "Add Colors" with your
mouse, the menu drops down, as shown in the second picture of the GUI. If you
click "Green", "White", or "Gray" on the menu, then a vertical strip of the named
color appears in the GUI.

In the next subsection, we go over the details of the program in Display 17.14.

menu

menu item

17.4 menus and Buttons

For hours and location press 1.

For a recorded message describing services press 2.

For instructions on using our website press 3.

To use our automated information system press 4.

To speak to an operator between 8 am and noon Monday through

Thursdays press 7.

PHONE ANSWERING MACHINE

In this section, we describe the basics of Swing menus. Swing menu items (menu
choices) behave essentially the same as Swing buttons. They generate action events that
are handled by action listeners, just as buttons do.

menus, menu Items, and menu Bars

When adding menus as we did in Display 17.14, use the three Swing classes JMenu,
JMenuItem, and JMenuBar. Entries on a menu are objects of the class JMenuItem.
These JMenuItems are placed in JMenus, and then the JMenus are typically placed in a
JMenuBar. Let us look at the details.

A menu is an object of the class JMenu. A choice on a menu is called a menu item
and is an object of the class JMenuItem. A menu item is identified by the string that
labels it, such as "Blue", "White", or "Gray" in the menu in Display 17.14. You can
add as many JMenuItems as you wish to a menu. The menu lists the items in the order

1022 CHAPTER 17 Swing I

Display 17.14 A GUI with a Menu (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import java.awt.GridLayout;
 4 Import java.awt.Color;
 5 import javax.swing.JMenu;
 6 import javax.swing.JMenuItem;
 7 import javax.swing.JMenuBar;
 8 import java.awt.event.ActionListener;
 9 import java.awt.event.ActionEvent;

10 public class MenuDemo extends JFrame implements ActionListener
11 {
12 public static final int WIDTH = 300;
13 public static final int HEIGHT = 200;

14 private JPanel bluePanel;
15 private JPanel whitePanel;
16 private JPanel grayPanel;

17 public static void main(String[] args)
18 {
19 MenuDemo gui = new MenuDemo();
20 gui.setVisible(true);
21 }

22 public MenuDemo()
23 {
24 super ("Menu Demonstration");
25 setSize(WIDTH, HEIGHT);
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 setLayout(new GridLayout(1, 3));

28 bluePanel = new JPanel();
29 bluePanel.setBackground(Color.LIGHT_GRAY);
30 add(bluePanel);

31 whitePanel = new JPanel();
32 whitePanel.setBackground(Color.LIGHT_GRAY);
33 add(whitePanel);
34 grayPanel = new JPanel();

Menus and Buttons 1023

35 grayPanel.setBackground(Color.LIGHT_GRAY);
36 add(grayPanel);

37 JMenu colorMenu = new JMenu("Add Colors");

38 JMenuItem blueChoice = new JMenuItem("Blue");
39 blueChoice.addActionListener(this);
40 colorMenu.add(blueChoice);

41 JMenuItem whiteChoice = new JMenuItem("White");
42 whiteChoice.addActionListener(this);
43 colorMenu.add(whiteChoice);

44 JMenuItem grayChoice = new JMenuItem("Gray");
45 grayChoice.addActionListener(this);
46 colorMenu.add(grayChoice);

47 JMenuBar bar = new JMenuBar();
48 bar.add(colorMenu);
49 setJMenuBar(bar);
50 }

51 public void actionPerformed(ActionEvent e)
52 {
53 String buttonString = e.getActionCommand();

54 if (buttonString.equals("Blue"))
55 bluePanel.setBackground(Color.BLUE);
56 else if (buttonString.equals("White"))
57 whitePanel.setBackground(Color.WHITE);
58 else if (buttonString.equals("Gray"))
59 grayPanel.setBackground(Color.GRAY);
60 else
61 System.out.println("Unexpected error.");
62 }
63 }

The definition of actionPerformed is identical to the
definition given in Display 17.11 for a similar GUI using buttons
instead of menu items.

Display 17.14 A GUI with a Menu (part 2 of 3)

(continued)

1024 CHAPTER 17 Swing I

Resulting GUI

Resulting GUI (after clicking Add Colors in the menu bar)

Resulting GUI (after choosing Blue and White on the menu)

Resulting GUI (after choosing all the colors on the menu)

Display 17.14 A GUI with a Menu (part 3 of 3) (Source: Oracle Corporation)

Menus and Buttons 1025

listeners

menu bar

extra code
on website

menus

A menu is an object of the class JMenu. A choice on a menu is an object of the class
JMenuItem. Menus are collected together in a menu bar (or menu bars). A menu bar is an
object of the class JMenuBar.

Events and listeners for menu items are handled in exactly the same way as they are
for buttons.

in which they are added. The following code, taken from the constructor in Display 17.14,
creates a new JMenu object named colorMenu and then adds a JMenuItem labeled
"Red". Other menu items are added in a similar way.

JMenu colorMenu = new JMenu("Add Colors");

JMenuItem blueChoice = new JMenuItem("Blue");
blueChoice.addActionListener(this);
colorMenu.add(blueChoice);

Note that, just as we did for buttons in Display 17.11, in Display 17.14 we registered
the this parameter as an action listener for each menu item. Defining action listeners
and registering listeners for menu items are done in the exact same way as for buttons.
In fact, the syntax is even the same. If you compare Displays 17.14 and 17.11, you will
see that the definition of the method actionPerformed is the same in both classes.

Add a JMenuItem to an object of the class JMenu using the method add in exactly
the same way that you add a component, such as a button, to a container object.
Moreover, if you look at the preceding code, you will see that you specify a string for a
JMenuItem in the same way that you specify a string to appear on a button.

A menu bar is a container for menus, typically placed near the top of a windowing
interface. Add a menu to a menu bar using the method add in the same way that you
add menu items to a menu. The following code from the constructor in Display 17.14
creates a new menu bar named bar and then adds the menu named colorMenu to this
menu bar:

JMenuBar bar = new JMenuBar();
bar.add(colorMenu);

There are two different ways to add a menu bar to a JFrame. You can use the method
setJMenuBar, as shown in the following code from the constructor in Display 17.14:

setJMenuBar(bar);

This sets an instance variable of type JMenuBar so that it names the menu bar named
bar. Saying it less formally, this adds the menu bar named bar to the JFrame and
places the menu bar at the top of the JFrame.

Alternatively, you can use the add method to add a menu bar to a JFrame (or to any
other container). You do so in the same way that you add any other component, such
as a label or a button. An example of using add to add a JMenuBar to a JFrame is given
in the file MenuAdd.java on the accompanying website.

1026 CHAPTER 17 Swing I

Nested menus ★

As shown in Display 17.12, the class JMenu is a descendent of the JMenuItem class.
So, every JMenu object is also a JMenuItem object. Thus, a JMenu can be a menu item
in another menu. This means that you can nest menus. For example, the outer menu
might give you a list of menus. You can display one of the menus on that list by clicking
the name of the desired menu. You can then choose an item from that menu by using
your mouse again. There is nothing new you need to know to create these nested
menus. Simply add menus to menus just as you add other menu items. There is an
example of nested menus in the file NestedMenus.java on the accompanying website.

The AbstractButton Class

As shown in Display 17.12, the classes JButton and JMenuItem are derived classes
of the abstract class named AbstractButton. All of the basic properties and methods
of the classes JButton and JMenuItem are inherited from the class AbstractButton.
That is why objects of the class JButton and objects of the class JMenuItem are so
similar. Some of the methods for the class AbstractButton are listed in Display 17.15.
All these methods are inherited by both the class JButton and the class JMenuItem.
(Some of these methods were inherited by the class AbstractButton from the class
JComponent, so you may sometimes see some of the methods listed as “inherited from
JComponent.”)

extra code
on website

adding menus to a JFrame
In the following, we assume that all code is inside a constructor for a (derived class of a)
JFrame. To see the following examples put together to produce a complete GUI, see the
constructor in Display 17.14.

Creating menu Items
A menu item is an object of the class JMenuItem. Create a new menu item in the usual
way, as illustrated by the following example. The string in the argument position is the
displayed text for the menu item.

JMenuItem redChoice = new JMenuItem("Red");

adding menu Item Listeners
Events and listeners for menu items are handled in the exact same way as they are
for buttons: Menu items fire action events that are received by objects of the class
ActionListener.

SYNTax

JMenu_Item_Name.addActionListener(Action_Listener);

Menus and Buttons 1027

ExamPLE

redChoice.addActionListener(this);

Creating a menu
A menu is an object of the class JMenu. Create a new menu in the usual way, as illustrated
by the following example. The string argument is the displayed text that identifies the menu.

JMenu colorMenu = new JMenu("Add Colors");

adding menu Items to a menu
Use the method add to add menu items to a menu.

SYNTax

JMenu_Name.add(JMenu_Item);

ExamPLE (colormenu IS aN OBJECT OF THE CLaSS Jmenu)

colorMenu.add(redChoice);

Creating a menu Bar

A menu bar is an object of the class JMenuBar. Create a new menu bar in the usual way, as
illustrated by the following example:

JMenuBar bar = new JMenuBar();

adding a menu to a menu Bar
Add a menu to a menu bar using the method add as follows:

SYNTax

JMenu_Bar_Name.add(JMenu_Name);

ExamPLE (bar IS aN OBJECT OF THE CLaSS Jmenubar)

bar.add(colorMenu);

adding a menu Bar to a Frame
There are two different ways to add a menu bar to a JFrame. You can use the method
add to add the menu bar to a JFrame (or to any other container). Another common way of
adding a menu bar to a JFrame is to use the method setJMenuBar as follows:

SYNTax

setJMenuBar(JMenu_Bar_Name);

ExamPLE

setJMenuBar(bar);

1028 CHAPTER 17 Swing I

Display 17.15 Some Methods in the Class AbstractButton

The abstract class AbstractButton is in the javax.swing package.

All of these methods are inherited by both of the classes JButton and JMenuItem.

public void setBackground(Color theColor)

Sets the background color of this component.

public void addActionListener(ActionListener listener)

Adds an ActionListener.

public void removeActionListener(ActionListener listener)

Removes an ActionListener.

public void setActionCommand(String actionCommand)

Sets the action command.

public String getActionCommand()

Returns the action command for this component.

public void setText(String text)

Makes text the only text on this component.

public String getText()

Returns the text written on the component, such as the text on a button or the string for a
menu item.

public void setPreferredSize(Dimension preferredSize)

Sets the preferred size of the button or label. Note that this is only a suggestion to the layout
manager. The layout manager is not required to use the preferred size. The following special
case will work for most simple situations. The int values give the width and height in pixels.

public void setPreferredSize(
new Dimension(int width, int height))

public void setMaximumSize(Dimension maximumSize)

Sets the maximum size of the button or label. Note that this is only a suggestion to the layout
manager. The layout manager is not required to respect this maximum size. The following
special case will work for most simple situations. The int values give the width and height
in pixels.

public void setMaximumSize(
new Dimension(int width, int height))

public void setMinimumSize(Dimension minimumSize)

Sets the minimum size of the button or label. Note that this is only a suggestion to the layout
manager. The layout manager is not required to respect this minimum size.

Although we do not discuss the Dimension class, the following special case is intuitively clear
and will work for most simple situations. The int values give the width and height in pixels.

public void setMinimumSize(
new Dimension(int width, int height))

Menus and Buttons 1029

The setActionCommand method

When the user clicks a button or menu item, it fires an action event that normally goes
to one or more action listeners where it becomes an argument to an actionPerformed
method. This action event includes a String instance variable that is known as the
action command for the button or menu item and that is retrieved with the accessor
method getActionCommand. The action command in the event is copied from an
instance variable in the button or menu item object. If you do nothing to change it,
the action command is the string written on the button or the menu item. The method
setActionCommand given in Display 17.15 for the class AbstractButton can be used
with any JButton or JMenuItem to change the action command for that component.
Among other things, this will allow you to have different action commands for two
buttons, two menu items, or a button and menu item even though they have the same
string written on them.

The method setActionCommand takes a String argument that becomes the new
action command for the calling button or menu item. For example, consider the
following code:

JButton nextButton = new JButton("Next");
nextButton.setActionCommand("Next Button");
JMenuItem chooseNext = new JMenuItem("Next");
chooseNext.setActionCommand("Next Menu Item");

If we had not used setActionCommand in the preceding code, then the button
nextButton and the menu item chooseNext would both have the action command
"Next" and so we would have no way to tell which of the two components nextButton
and chooseNext an action event "Next" came from. However, using the method
setActionCommand, we can give them the different action commands "Next Button"
and "Next Menu Item".

The action command for a JButton or JMenuItem is kept as the value of a private
instance variable for the JButton or JMenuItem. The method setActionCommand is
simply an ordinary mutator method that changes the value of this instance variable.

The Dimension Class
Objects of the class Dimension are used with buttons, menu items, and other objects to
specify a size. The Dimension class is in the package java.awt. The parameters in the
following constructor are pixels.

CONSTRUCTOR

Dimension(int width, int height)

ExamPLE

aButton.setPreferredSize(new Dimension(30, 50));

setAction
Command

action
command

1030 CHAPTER 17 Swing I

An alternate approach to defining action listeners is given in the next subsection.
That technique is, among other things, another way to deal with multiple buttons or
menu items that have the same thing written on them.

Listeners as Inner Classes ★

In all of our previous examples, our GUIs had only one action listener object to deal
with all action events from all buttons and menus in the GUI. The opposite extreme
also has much to recommend it. You can have a separate ActionListener class for
each button or menu item, so that each button or menu item has its own unique
action listener. There is then no need for a multiway if-else statement. The listener
knows which button or menu item was clicked because it listens to only one button or
menu item.

The approach outlined in the previous paragraph does have one down side: You
typically need to give a lot of definitions of ActionListener classes. Rather than
putting each of these classes in a separate file, it is much cleaner to make them private
inner classes. This has the added advantage of allowing the ActionListener classes to
have access to private instance variables and methods of the outer class.

In Display 17.16, we re-created the GUI in Display 17.14 using the techniques of
this subsection.

setActionCommand and getActionCommand
Every button and every menu item has a string associated with it that is known as the
action command for that button or menu item. When the button or menu item is clicked, it
fires an action event e. The following invocation returns the action command for the button
or menu item that fired e:

e.getActionCommand()

The method actionPerformed typically uses this action command string to decide which
button or menu item was clicked.

The default action command for a button or menu item is the string written on it, but
if you want, you can change the action command with an invocation of the method
setActionCommand. For example, the menu item chooseNext created by the following
code will display the string "Next" when it is a menu choice, but will have the string "Next
Menu Item" as its action command.

ExamPLE

JMenuItem chooseNext = new JMenuItem("Next");
chooseNext.setActionCommand("Next Menu Item");

Menus and Buttons 1031

Display 17.16 Listeners as Inner Classes (part 1 of 2)

<Import statements are the same as in Display 17.14.>

 1 public class InnerListenersDemo extends JFrame
 2 {
 3 public static final int WIDTH = 300;
 4 public static final int HEIGHT = 200;

 5 private JPanel bluePanel;
 6 private JPanel whitePanel;
 7 private JPanel grayPanel;

 8 private class BlueListener implements ActionListener
 9 {
10 public void actionPerformed(ActionEvent e)
11 {
12 bluePanel.setBackground(Color.BLUE);
13 }
14 } //End of BlueListener inner class

15 private class WhiteListener implements ActionListener
16 {
17 public void actionPerformed(ActionEvent e)
18 {
19 whitePanel.setBackground(Color.WHITE);
20 }
21 } //End of WhiteListener inner class
22 private class GrayListener implements ActionListener
23 {
24 public void actionPerformed(ActionEvent e)
25 {
26 grayPanel.setBackground(Color.GRAY);
27 }
28 } //End of GrayListener inner class

29 public static void main(String[] args)
30 {
31 InnerListenersDemo gui = new InnerListenersDemo();
32 gui.setVisible(true);
33 }

34 public InnerListenersDemo()
35 {
36 super("Menu Demonstration");
37 setSize(WIDTH, HEIGHT);
38 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
39 setLayout(new GridLayout(1, 3));

(continued)

The resulting GUI is the same as in
Display 17.14.

1032 CHAPTER 17 Swing I

40 bluePanel = new JPanel();
41 greenPanel.setBackground(Color.LIGHT_GRAY);
42 add(bluePanel);

43 whitePanel = new JPanel();
44 whitePanel.setBackground(Color.LIGHT_GRAY);
45 add(whitePanel);

46 grayPanel = new JPanel();
47 grayPanel.setBackground(Color.LIGHT_GRAY);
48 add(grayPanel);

49 JMenu colorMenu = new JMenu("Add Colors");

50 JMenuItem blueChoice = new JMenuItem("Blue");
51 blueChoice.addActionListener(new BlueListener());
52 colorMenu.add(blueChoice);

53 JMenuItem whiteChoice = new JMenuItem("White");
54 whiteChoice.addActionListener(new WhiteListener());
55 colorMenu.add(whiteChoice);
56 JMenuItem grayChoice = new JMenuItem("Gray");
57 grayChoice.addActionListener(new GrayListener());
58 colorMenu.add(grayChoice);

59 JMenuBar bar = new JMenuBar();
60 bar.add(colorMenu);
61 setJMenuBar(bar);
62 }

63 }

Display 17.16 Listeners as Inner Classes (part 2 of 2)

Self-Test Exercises

25. What type of event is fired when you click a JMenuItem? How does it differ
from the type of event fired when you click a JButton?

26. Write code to create a JButton with "Hello" written on it but with "Bye" as
its action command.

27. Write code to create a JMenuItem with "Hello" as its displayed text (when it is
a choice in a menu) but with "Bye" as its action command.

Text Fields and Text Areas 1033

Self-Test Exercises (continued)

28. If you want to change the action command for a JButton, use the method
setActionCommand. What method do you use to change the action command
for a JMenuItem?

29. Is the following legal in Java?

JMenu aMenu = new JMenu();
...

JMenu aSubMenu = new JMenu();
...

aMenu.add(aSubMenu);

30. How many JMenuBar objects can you have in a JFrame?

31. A JFrame has a private instance variable of type JMenuBar. What is the name
of the mutator method to change the value of this instance variable?

32. Write code to create a new menu item named aChoice that has the label "Exit".

33. Suppose you are defining a class called MenuGUI that is a derived class of the
class JFrame. Write code to add the menu item mItem to the menu m. Then
add m to the menu bar mBar, and then add the menu bar to the JFrame
MenuGUI. Assume that this all takes place inside a constructor for MenuGUI.
Also assume that everything has already been constructed with new, and that all
necessary listeners are registered. You just need to do the adding.

34. ★How can you modify the program in Display 17.16 so that when the Blue
menu item is clicked, all three colors are shown? The Gray and White choices
remain the same. (Remember the menu items may be clicked in any order, so
the Blue menu item can be the first or second item clicked.)

35. ★Rewrite the Swing GUI in Display 17.16 so that there is only one action
listener inner class. The inner class constructor will have two parameters, one
for a panel and one for a color.

17.5 Text Fields and Text areas

Write your answers in the spaces provided.

COMMON INSTRUCTION FOR AN EXAMINATION

You have undoubtedly interacted with windowing systems that provide spaces for you
to enter text information such as your name, address, and credit card number. In this
section, we show you how to add these fields for text input and text output to your
Swing GUIs.

1034 CHAPTER 17 Swing I

Display 17.17 A Text Field (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JTextField;
 3 import javax.swing.JPanel;
 4 import javax.swing.JLabel;
 5 import javax.swing.JButton;
 6 import java.awt.GridLayout;
 7 import java.awt.BorderLayout;
 8 import java.awt.FlowLayout;
 9 import java.awt.Color;
10 import java.awt.event.ActionListener;
11 import java.awt.event.ActionEvent;

12 public class TextFieldDemo extends JFrame
13 implements ActionListener
14 {
15 public static final int WIDTH = 400;
16 public static final int HEIGHT = 200;

Text Fields and Text areas

A text field is an object of the class JTextField and is displayed as a field that allows
the user to enter a single line of text. In Display 17.17, the following creates a text field
named name in which the user will be asked to enter his or her name:

private JTextField name;
...

name = new JTextField(NUMBER_OF_CHAR);

In Display 17.17, the variable name is a private instance variable. The creation of the
JTextField in the last of the previous lines takes place inside the class constructor. The
number NUMBER_OF_CHAR that is given as an argument to the JTextField constructor
specifies that the text field will have room for at least NUMBER_OF_CHAR characters to
be visible. The defined constant NUMBER_OF_CHAR is 30, so the text field is guaranteed
to have room for at least 30 characters. You can type any number of characters into a
text field but only a limited number will be visible; in this case, you know that at least
30 characters will be visible.

A Swing GUI can read the text in a text field and so receive text input; if this is
desired, it can produce output by causing text to appear in the text field. The method
getText returns the text written in the text field. For example, the following will set
a variable named inputString to whatever string is in the text field name at the time
that the getText method is invoked:

String inputString = name.getText();

The method getText is an input method, and the method setText is an output
method. The method setText can be used to display a new text string in a text field.
For example, the following will cause the text field name to change the text it displays
to the string "This is some output":

name.setText("This is some output");

text field

JTextField

Text Fields and Text Areas 1035

17 public static final int NUMBER_OF_CHAR = 30;

18 private JTextField name;

19 public static void main(String[] args)
20 {
21 TextFieldDemo gui = new TextFieldDemo();
22 gui.setVisible(true);
23 }

24 public TextFieldDemo()
25 {
26 super("Text Field Demo");
27 setSize(WIDTH, HEIGHT);
28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 setLayout(new GridLayout(2, 1));

30 JPanel namePanel = new JPanel();
31 namePanel.setLayout(new BorderLayout());
32 namePanel.setBackground(Color.WHITE);

33 name = new JTextField(NUMBER_OF_CHAR);
34 namePanel.add(name, BorderLayout.SOUTH);
35 JLabel nameLabel = new JLabel("Enter your name here:");
36 namePanel.add(nameLabel, BorderLayout.CENTER);

37 add(namePanel);
38 JPanel buttonPanel = new JPanel();
39 buttonPanel.setLayout(new FlowLayout());
40 buttonPanel.setBackground(Color.BLUE);
41 JButton actionButton = new JButton("Click me");
42 actionButton.addActionListener(this);
43 buttonPanel.add(actionButton);

44 JButton clearButton = new JButton("Clear");
45 clearButton.addActionListener(this);
46 buttonPanel.add(clearButton);

47 add(buttonPanel);
48 }

49 public void actionPerformed(ActionEvent e)
50 {
51 String actionCommand = e.getActionCommand();

52 if (actionCommand.equals("Click me"))
53 name.setText("Hello " + name.getText());
54 else if (actionCommand.equals("Clear"))
55 name.setText("");
56 else
57 name.setText("Unexpected error.");
58 }
59 } (continued)

Display 17.17 A Text Field (part 2 of 3)

This sets the text field equal to the
empty string, which makes it blank.

1036 CHAPTER 17 Swing I

The following line from the method actionPerformed in Display 17.17 uses both
getText and setText:

name.setText("Hello" + name.getText());

This line changes the string in the text field name to "Hello" followed by the old string
value in the text field. The net effect is to insert the string "Hello" in front of the string
displayed in the text field.

Resulting gui (When program is started and a name entered)

Resulting gui (After clicking the "Click me" button)

getText and setText
The classes JTextField and JTextArea both contain methods called getText and setText.
The method getText can be used to retrieve the text written in the text field or text area. The
method setText can be used to change the text written in the text field or text area.

SYNTax

Name_of_Text_Component.getText() returns the text currently displayed in the text
field or text area.

Name_of_Text_Component.setText(New_String_To_Display);

output-only

setEditable

Display 17.17 A Text Field (part 3 of 3) (Source: Oracle Corporation)

Text Fields and Text Areas 1037

text area

JTextArea

A text area is an object of the class JTextArea. A text area is the same as a text field
except that it allows multiple lines. Two parameters to the constructor for JTextArea
specify the minimum number of lines and the minimum number of characters per
line that are guaranteed to be visible. You can enter any amount of text in a text area,
but only a limited number of lines and a limited number of characters per line will be
visible. For example, the following creates a JTextArea named theText that will have
at least 5 lines and at least 20 characters per line visible:

JTextArea theText = new JTextArea(5, 20);

There is also a constructor with one additional String parameter for the string
initially displayed in the text area. For example,

JTextArea theText = new JTextArea("Enter\ntext here.", 5, 20);

Note that a string value can be multiple lines because it can contain the new-line
character '\n'.

A JTextField has a similar constructor with a String parameter, as in the
following example:

JTextField ioField =
 new JTextField("Enter numbers here.", 30);

If you look at Display 17.12, you will see that both JTextField and JTextArea
are derived classes of the abstract class JTextComponent. Most of the methods for
JTextField and JTextArea are inherited from JTextComponent and so JTextField
and JTextArea have mostly the same methods with the same meanings except for
minor redefinitions to account for having just one line or multiple lines. Display 17.18
describes some methods in the class JTextComponent. All of these methods are
inherited and have the described meaning in both JTextField and JTextArea.

You can set the line-wrapping policy for a JTextArea using the method
setLineWrap. The method takes one argument of type boolean. If the argument is
true, then at the end of a line, any additional characters for that line will appear on
the following line of the text area. If the argument is false, the extra characters will
be on the same line and will not be visible. For example, the following sets the line
wrap policy for the JTextArea object named theText so that at the end of a line, any
additional characters for that line will appear on the following line:

theText.setLineWrap(true);

You can specify that a JTextField or JTextArea cannot be written in by the user.
To do so, use the method setEditable, which is a method in both the JTextField

setLineWrap

output-only

setEditable

ExamPLES

String inputString = ioComponent.getText();
ioComponent.setText("Hello out there!");

ioComponent may be an instance of either of the classes JTextField or JTextArea.

1038 CHAPTER 17 Swing I

and JTextArea classes. If theText names an object in either of the classes JTextField
or JTextArea, then the following

theText.setEditable(false);

will set theText so that only your GUI program can change the text in the text
component theText; the user cannot change the text. After this invocation of
setEditable, if the user clicks the mouse in the text component named theText and
then types at the keyboard, the text in the text component will not change.

To reverse things and make theText so that the user can change the text in the text
component, use true in place of false, as follows:

theText.setEditable(true);

If no invocation of setEditable is made, then the default state allows the user to
change the text in the text component.

The Classes JTextField and JTextArea
The classes JTextField and JTextArea can be used to add areas for changeable text
to a GUI. An object of the class JTextField has one line that displays some specified
number of characters. An object of the class JTextArea has a size consisting of a specified
number of lines and a specified number of characters per line. More text can be typed into

Display 17.18 Some Methods in the Class JTextComponent

All these methods are inherited by the classes JTextField and JTextArea.

The abstract class JTextComponent is in the package javax.swing.text. The classes
JTextField and JTextArea are in the package javax.swing.

public String getText()

Returns the text that is displayed by this text component.

public boolean isEditable()

Returns true if the user can write in this text component. Returns false if the user is not
allowed to write in this text component.

public void setBackground(Color theColor)

Sets the background color of this text component.

public void setEditable(boolean argument)

If argument is true, then the user is allowed to write in the text component. If argument is
false, then the user is not allowed to write in the text component.

public void setText(String text)

Sets the text that is displayed by this text component to be the specified text.

Text Fields and Text Areas 1039

a JTextField or JTextArea than is specified in its size, but the extra text may not
be visible.

The number of characters per line and the number of lines are a guaranteed minimum.
More lines and especially more characters per line may be visible. (The space per line is
actually guaranteed to be Characters_Per_Line times the space for one uppercase letter M.)

SYNTax

JTextField Name_of_Text_Field = new JTextField(Characters_Per_Line);
JTextArea Name_of_Text_Area =
 new JTextArea(Number_of_Lines, Characters_Per_Line);

ExamPLES

JTextField name = new JTextField(30);
JTextArea someText = new JTextArea(10, 30);

There are also constructors that take an additional String argument that specifies an initial
string to display in the text component.

SYNTax

JTextField Name_of_Text_Field =
 new JTextField(Initial_String,Characters_Per_Line);
JTextArea Name_of_Text_Area =
 new JTextArea(Initial_String,Number_of_Lines,Characters_Per_Line);

ExamPLES

JTextField name = new JTextField("Enter name here.", 30);
JTextArea someText =
 new JTextArea("Enter story here.\nClick button.", 10, 30);

Number of Characters per Line
The number of characters per line (given as an argument to constructors for JTextField
or JTextArea) is not the number of just any characters. The number gives the number of
em spaces in the line. An em space is the space needed to hold one uppercase letter M,
which is the widest letter in the alphabet. So a line that is specified to hold 20 characters
will always be able to hold at least 20 characters and will almost always hold more than
20 characters.

Scroll Bars
Scroll bars for text areas and text fields are discussed in Chapter 18. They are a nice touch,
but until you reach Chapter 18, your GUI programs will work fine without them.

1040 CHAPTER 17 Swing I

Self-Test Exercises

36. What is the difference between an object of the class JTextArea and an object
of the class JTextField?

37. What would happen if when running the GUI in Display 17.17 you were to
enter your name and click the "Click me" button three times?

38. Rewrite the program in Display 17.17 so that it uses a text area in place of
a text field. Change the label "Enter your name here:" to "Enter your
story here:". When the user clicks the "Click me" button, your GUI
should change the string displayed in the text area to "Your story is " +
lineCount + "lines long.". The variable lineCount is a variable of type
int that your program sets equal to the number of lines currently displayed
in the text area. Use a BorderLayout manager and place your text area in the
region BorderLayout.CENTER so that there is room for it. You can assume the
user enters at least one line before clicking the "Click me" button. The last
line in the text area will have no '\n' so you may need to add one if you are
counting the number of occurrences of '\n'. Blank lines are counted.

TIP: Inputting and Outputting Numbers

When you want to input numbers using a Swing GUI, your GUI must convert input
text to numbers. For example, when you input the number 42 in a JTextField,
your program will receive the string "42", not the number 42. Your program must
convert the input string value "42" to the integer value 42. When you want to output
numbers using a GUI constructed with Swing, you must convert the numbers to a
string and then output that string. For example, if you want to output the number
40, your program would convert the integer value 40 to the string value "40". With
Swing, all input typed by the user is string input and all displayed output is string
output. The techniques for converting back and forth between strings and numbers
were given in Chapter 5 in the subsection titled “Static Methods in Wrapper Classes”
and the Programming Example entitled “Another Approach to Keyboard Input.” A
simple example of a Swing GUI with numeric input and output is given in the next
subsection. ■

TIP: Labeling a Text Field

Sometimes you want to label a text field. For example, suppose the GUI asks for a
name and a credit card number and expects the user to enter these in two text fields.
In this case, the GUI needs to label the two text fields so that the user knows in which
field to type the name and in which field to type the credit card number. You can use
an object of the class JLabel to label a text field or any other component in a Swing
GUI. Simply place the label and text field in a JPanel and treat the JPanel as a single
component. For example, we did this with the text field name in Display 17.17. ■

Text Fields and Text Areas 1041

a Swing Calculator
Designing a realistic Swing calculator is the subject of Programming Project 17.3. In
this programming example, we will develop a simplified calculator to get you started
on that Programming Project. Display 17.19 contains a GUI for a calculator that keeps
a running total of numbers. The user enters a number in the text field and then clicks
either the + or - button. The number in the text field is then added into or subtracted
from a running total that is kept in the instance variable result, and then the new
total (the new value of result) is given in the text field. If the user clicks the "Reset"
button, then the running total—that is, the value of result—is set to zero. When the
GUI is first run, the running total, that is, the value of result, is set to zero.

Most of the details are similar to things you have already seen, but one new
element is the use of exception handling. If the user enters a number in an incorrect
format, such as placing a comma in a number, then one of the methods throws a
NumberFormatException. If the user enters a number in an incorrect format, such as
2,000 with a comma instead of 2000, the method assumingCorrectNumberFormats
invokes the method stringToDouble with the alleged number string "2,000" as
an argument. Then stringToDouble calls Double.parseDouble, but Double.
parseDouble throws a NumberFormatException because no Java number string can
contain a comma. Because the invocation of Double.parseDouble takes place within
an invocation of the method stringToDouble, stringToDouble in turn throws
a NumberFormatException. The invocation of stringToDouble takes place inside
the invocation of assumingCorrectNumberFormats, so assumingCorrectNumber
Formats throws the NumberFormatException that it received from the invocation
of stringToDouble. However, the invocation of assumingCorrectNumberFormats
is inside a try block. The exception is caught in the following catch block. At this
point, the JTextField (named ioField) is set to the error message "Error: Reenter
Number.".

Notice that if a NumberFormatException is thrown, the value of the instance
variable result is not changed. A NumberFormatException can be thrown by an
invocation of stringToDouble in either of the following lines of code from the
method assumingCorrectNumberFormats:

result = result + stringToDouble(ioField.getText());

or
result = result − stringToDouble(ioField.getText());

If the exception is thrown, execution of the method stringToDouble ends immediately
and control passes to the catch block. Thus, control passes to the catch block before
the previous addition or subtraction is performed. So result is unchanged, and the
user can reenter the last number and proceed with the GUI as if that incorrect number
were never entered.

Uncaught Exceptions
In a Swing program, throwing an uncaught exception does not end the GUI, but it may leave
it in an unpredictable state. It is best to always catch any exception that is thrown even if all
that the catch block does is output an instruction to redo something, such as reentering
some input or just outputting an error message.

1042 CHAPTER 17 Swing I

Display 17.19 A Simple Calculator (part 1 of 4)

 1 import javax.swing.JFrame;
 2 import javax.swing.JTextField;
 3 import javax.swing.JPanel;
 4 import javax.swing.JLabel;
 5 import javax.swing.JButton;
 6 import java.awt.BorderLayout;
 7 import java.awt.FlowLayout;
 8 import java.awt.Color;
 9 import java.awt.event.ActionListener;
10 import java.awt.event.ActionEvent;

11 /**
12 A simplified calculator.
13 The only operations are addition and subtraction.
14 */
15 public class Calculator extends JFrame
16 implements ActionListener
17 {
18 public static final int WIDTH = 400;
19 public static final int HEIGHT = 200;
20 public static final int NUMBER_OF_DIGITS = 30;

21 private JTextField ioField;
22 private double result = 0.0;

23 public static void main(String[] args)
24 {
25 Calculator aCalculator = new Calculator();
26 aCalculator.setVisible(true);
27 }

28 public Calculator()
29 {
30 setTitle("Simplified Calculator");
31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
32 setSize(WIDTH, HEIGHT);
33 setLayout(new BorderLayout());

34 JPanel textPanel = new JPanel();
35 textPanel.setLayout(new FlowLayout());
36 ioField =
37 new JTextField("Enter numbers here.",NUMBER_OF_DIGITS);
38 ioField.setBackground(Color.WHITE);
39 textPanel.add(ioField);
40 add(textPanel, BorderLayout.NORTH);
41 JPanel buttonPanel = new JPanel();
42 buttonPanel.setBackground(Color.BLUE);
43 buttonPanel.setLayout(new FlowLayout());

Text Fields and Text Areas 1043

44 JButton addButton = new JButton("+");
45 addButton.addActionListener(this);
46 buttonPanel.add(addButton);
47 JButton subtractButton = new JButton("—");
48 subtractButton.addActionListener(this);
49 buttonPanel.add(subtractButton);
50 JButton resetButton = new JButton("Reset");
51 resetButton.addActionListener(this);
52 buttonPanel.add(resetButton);

53 add(buttonPanel, BorderLayout.CENTER);
54 }

55 public void actionPerformed(ActionEvent e)
56 {
57 try
58 {
59 assumingCorrectNumberFormats(e);
60 }
61 catch (NumberFormatException e2)
62 {
63 ioField.setText("Error: Reenter Number.");
64 }
65 }

66 //Throws NumberFormatException.
67 public void assumingCorrectNumberFormats(ActionEvent e)
68 {
69 String actionCommand = e.getActionCommand();

70 if (actionCommand.equals("+"))
71 {
72 result = result + stringToDouble(ioField.getText());
73 ioField.setText(Double.toString(result));
74 }
75 else if (actionCommand.equals("—"))
76 {
77 result = result − stringToDouble(ioField.getText());
78 ioField.setText(Double.toString(result));
79 }
80 else if (actionCommand.equals("Reset"))
81 {
82 result = 0.0;
83 ioField.setText("0.0");
84 }
85 else
86 ioField.setText("Unexpected error.");
87 }

Display 17.19 A Simple Calculator (part 2 of 4)

A NumberFormatException does not need to be declared
or caught in a catch block.

(continued)

1044 CHAPTER 17 Swing I

88 //Throws NumberFormatException.
89 private static double stringToDouble(String stringObject)
90 {
91 return Double.parseDouble(stringObject.trim());
92 }
93 }

Resulting gui (When started)

Resulting gui (After entering 2,000)

Resulting gui (After clicking +)

Display 17.19 A Simple Calculator (part 3 of 4) (Source: Oracle Corporation)

Text Fields and Text Areas 1045

Display 17.19 A Simple Calculator (part 4 of 4) (Source: Oracle Corporation)

Resulting gui (After entering 2000.0 and clicking +)

Resulting gui (After entering 42)

Resulting gui (After clicking +)

Self-Test Exercises

39. In the GUI in Display 17.19, why did we make the text field ioField an
instance variable but did not make instance variables of any of the buttons
addButton, subtractButton, or resetButton?

40. What would happen if the user running the GUI in Display 17.19 were to run
the GUI and simply click the addition button without typing anything into the
text field?

(continued)

1046 CHAPTER 17 Swing I

Self-Test Exercises (continued)

41. What would happen if the user running the GUI in Display 17.19 were to
type the number 10 into the text field and then click the addition button three
times? Explain your answer.

42. Suppose you change the main method in Display 17.19 to the following:

 public static void main(String[] args)
 {
 Calculator calculator1 = new Calculator();
 calculator1.setVisible(true);
 Calculator calculator2 = new Calculator();
 calculator2.setVisible(true);
 }

This will cause two calculator windows to be displayed. (If one is on top of the
other, you can use your mouse to move the top one.) If you add numbers in
one of these calculators, will anything change in the other calculator?

43. Suppose you change the main method in Display 17.19 as we described in
Self-Test Exercise 42. This will cause two calculator windows to be displayed.
If you click the close-window button in one of the windows, will one window
go away or will both windows go away?

Chapter Summary

• Swing GUIs (graphical user interfaces) are programmed using event-driven program-
ming. In event-driven programming, a user action, such as a button click, generates
an event, which is automatically passed to an event-handling method that performs
the appropriate action.

• There are two main techniques for designing a Swing GUI class. You can use inheri-
tance to create a derived class of one of the library classes such as JFrame or you can
build a GUI by adding components to a container class. You normally use both of
these techniques when defining a Swing GUI class.

• A windowing GUI is usually defined as a derived class of the class JFrame.

• A button is an object of the class JButton. Clicking a button fires an action event
that is handled by an action listener. An action listener is any class that implements
the ActionListener interface.

• A label is an object of the class JLabel. You can use a label to add text to a GUI.

• When adding components to an object of a container class, such as adding a but-
ton to a panel or JFrame, use the method add. The components in a container are
arranged by an object called a layout manager.

Answers to Self-Test Exercises 1047

• A panel is a container object that is used to group components inside of a larger
container. Panels are objects in the class JPanel.

• A menu item is a choice on a menu. A menu item is realized in your code as an object
of the class JMenuItem. A menu is an object of the class JMenu. A menu item is added
to a JMenu with the method add. A menu bar is an object of the class JMenuBar. A
menu is added to a JMenuBar with the method add.

• A JMenuBar can be added to a JFrame with the method setJMenuBar. It can also be
added using the method add, just as any other component can be added.

• Both buttons and menu items fire action events and so normally have one or more
action listeners registered with them to respond to the events.

answers to Self-Test Exercises

 1. The JFrame class.

 2. Sizes in Swing are measured in pixels.

 3. someWindow.setDefaultCloseOperation(
 JFrame.DO_NOTHING_ON_CLOSE);

 4. someWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 5. When you click the minimizing button, the JFrame is reduced to an icon, usually
at the bottom of your monitor screen.

 6. someWindow.setVisible(n > 0);

 The following also works but is not good style:

 if (n > 0)

 someWindow.setVisible(true);
 else

 someWindow.setVisible(false);

 7. An action event.

 8. public void actionPerformed(ActionEvent e)

 9. Change
 JFrame firstWindow = new JFrame();

 to

 JFrame firstWindow = new JFrame("My First Window");

 Alternatively, you can add the following:

 firstWindow.setTitle("My First Window");

 10. Delete

 setTitle("First Window Class");

 and replace

 super();

 with

 super("First Window Class");

 11. Change

 setDefaultCloseOperation(

 JFrame.DO_NOTHING_ON_CLOSE);

 to

 setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

12. Change the following line in the no-argument constructor in Display 17.6 from

 this(Color.PINK);

 to

 this(Color.MAGENTA);

13. add(new JLabel("Close-window button works."));

14. Yes, it is legal. It is OK to reuse a variable name such as aLabel.

15. You need to change the add statements, as in the following rewritten section
of code:

 JLabel label1 = new JLabel("First label");

 add(label1, BorderLayout.NORTH);

 JLabel label2 = new JLabel("Second label");

 add(label2, BorderLayout.CENTER);

 JLabel label3 = new JLabel("Third label");

 add(label3, BorderLayout.SOUTH);

16. You need to change the add statements, as in the following rewritten section
of code:

 JLabel label1 = new JLabel("First label");

 add(label1, BorderLayout.NORTH);

 JLabel label2 = new JLabel("Second label");

 add(label2, BorderLayout.EAST);

 JLabel label3 = new JLabel("Third label");

 add(label3, BorderLayout.SOUTH);

17. The argument should be new GridLayout(1, 3). So, the entire method
invocation is

 setLayout(new GridLayout(1, 3));

1048 CHAPTER 17 Swing I

 Alternatively, you could use new GridLayout(1, 0). It is also possible to do
something similar with a BorderLayout manager or a FlowLayout manager, but
a GridLayout manager will work nicer here.

18. The argument should be new GridLayout(0, 1). So, the entire method invocation is

 setLayout(new GridLayout(0, 1));

 Alternatively, you could use new GridLayout(3, 1), if you know there will be at
most three components added, but if more than three components are added, then
a second column will be added. It is also possible to do something similar with a
BorderLayout manager, but a GridLayout manager will work nicer here.

 19. java.awt

 20. An object of the class JPanel is both a container class and a component class.

 21. To make it look as though you have an empty grid element, add an empty panel
to the grid element.

 22. import javax.swing.JPanel;
 import java.awt.Color;

 public class PinkJPanel extends JPanel

 {

 public PinkJPanel()

 {

 setBackground(Color.PINK);

 }

 }

 The class PinkJPanel is on the website that accompanies this text.

23. It will not compile, but will give a compiler error message saying that
actionPerformed is not defined (because it claims to implement the
 Action Listener interface).

24. It will not compile, but will give compiler error messages saying that, in effect, the
invocations of addActionListener such as

 redButton.addActionListener(this);

 have arguments of an incorrect type.

25. Clicking a JMenuItem fires an action event (that is, an object of the class
ActionEvent). This is the same as with a JButton.

26. JButton b = new JButton("Hello");
 b.setActionCommand("Bye");

27. JMenuItem m = new JMenuItem("Hello");
 m.setActionCommand("Bye");

28. To change the action command for a JMenuItem, use the method setAction
Command, just as you would for a JButton.

29. Yes, it is legal.

extra code
on website

Answers to Self-Test Exercises 1049

30. As many as you want. Only one can be added with the method setJMenuBar, but
any number of others can be added to using the add method.

31. setJMenuBar

32. JMenuItem aChoice = new
 JMenuItem("Exit");

33. m.add(mItem);
 mBar.add(m);

 setJMenuBar(mBar);

 You could use the following instead of using setJMenuBar:

 add(mBar);

 This will all take place inside a constructor named MenuGUI.

34. Register all three types of listeners with blueChoice, as follows:

 blueChoice.addActionListener(new GrayListener());

 blueChoice.addActionListener(new WhiteListener());

 blueChoice.addActionListener(new BlueListener());

35. Replace the three inner classes with the following inner class:

 private class ColorListener implements ActionListener

 {
 private JPanel thePanel;

 private Color theColor;

 public ColorListener(Color c, JPanel p)

 {

 theColor = c;

 thePanel = p;

 }

 public void actionPerformed(ActionEvent e)

 {

 thePanel.setBackground(theColor);

 }

 } //End of ColorListener inner class

 Replace

 blueChoice.addActionListener(new BlueListener());

 with

 blueChoice.addActionListener(

 new ColorListener(Color.BLUE, bluePanel));

 Also make similar changes to the menu items whiteChoice and grayChoice, with
the obvious changes to colors and panels.

 This is not really preferable to what we did in Display 17.16, but it is a good exer-
cise. The complete program done this way is on the accompanying website in the
file named InnerListenersDemo2.java.

extra code
on website

1050 CHAPTER 17 Swing I

Answers to Self-Test Exercises 1051

36. A JTextField object displays only a single line. A JTextArea object can display
more than one line of text.

37. The contents of the text field would change to "Hello Hello Hello " followed
by your name.

38. This program is on the website that accompanies this text.

 import javax.swing.JFrame;

 import javax.swing.JTextArea;

 import javax.swing.JPanel;

 import javax.swing.JLabel;

 import javax.swing.JButton;

 import java.awt.GridLayout;

 import java.awt.BorderLayout;

 import java.awt.FlowLayout;

 import java.awt.Color;

 import java.awt.event.ActionListener;

 import java.awt.event.ActionEvent;

 public class TextAreaDemo extends JFrame

 implements ActionListener

 {

 public static final int WIDTH = 400;

 public static final int HEIGHT = 200;

 public static final int NUMBER_OF_LINES = 10;

 public static final int NUMBER_OF_CHAR = 30;

 private JTextArea story;

 public static void main(String[] args)

 {

 TextAreaDemo gui = new TextAreaDemo();

 gui.setVisible(true);

 }

 public TextAreaDemo()

 {

 setTitle("Text Area Demo");

 setSize(WIDTH, HEIGHT);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setLayout(new GridLayout(2, 1));

 JPanel storyPanel = new JPanel();

 storyPanel.setLayout(new BorderLayout());

 storyPanel.setBackground(Color.WHITE);

 story = new JTextArea(NUMBER_OF_LINES, NUMBER_OF_CHAR);

extra code
on website

 storyPanel.add(story, BorderLayout.CENTER);

 JLabel storyLabel = new JLabel("Enter your story here:");

 storyPanel.add(storyLabel, BorderLayout.NORTH);

 add(storyPanel);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new FlowLayout());

 buttonPanel.setBackground(Color.PINK);

 JButton actionButton = new JButton("Click me");

 actionButton.addActionListener(this);

 buttonPanel.add(actionButton);

 JButton clearButton = new JButton("Clear");

 clearButton.addActionListener(this);

 buttonPanel.add(clearButton);

 add(buttonPanel);

 }

 public void actionPerformed(ActionEvent e)

 {

 String actionCommand = e.getActionCommand();

 if (actionCommand.equals("Click me"))

 {

 int lineCount = getLineCount();

 story.setText("Your story is "

 + lineCount + " lines long.");

 }

 else if (actionCommand.equals("Clear"))

 story.setText("");

 else

 story.setText("Unexpected error.");

 }

 private int getLineCount()

 {

 String storyString = story.getText();

 int count = 0;

 for (int i = 0; i < storyString.length(); i++)

 if (storyString.charAt(i) == '\n')

 count++;

 return count + 1;//The last line has no '\n'.

 }

 }

1052 CHAPTER 17 Swing I

39. We made the text field an instance variable because we needed to refer to it in the
definition of the method actionPerformed. On the other hand, the only direct
reference we had to the buttons was in the constructor. So, we need names for the
buttons only in the constructor definition.

40. The GUI would try to add the string "Enter numbers here." as if it were a string
for a number. This will cause a NumberFormatException to be thrown and the
string "Error: Reenter Number." would be displayed in the text field.

41. Every time the user clicks the addition button, the following assignment
is executed:

 result = result + stringToDouble(ioField.getText());

 So, the number in the text field is added to the total as many times as the user
clicks the addition button. But, the value in the text field is the running total, so
the running total is added to itself. Thus, the running total is added to the total as
many times as the user clicks the addition button.

 Let us say that the user starts the GUI, types in 10, and clicks the addition button.
That adds 10 to result, so the value of result is then 0 plus 10, which is 10,
and 10 is displayed. Now the user clicks the addition button a second time. That
adds 10 to result again, so the value of result is 10 plus 10, which is 20, and 20 is
displayed. Next the user clicks the addition button a third time. This time, 20 is
in the text field, and so it is added to result, which is also 20. Thus, the value of
result is now 40, and 40 is displayed. Note that it is always the number in the
text field that is added in.

42. The two calculator windows are completely independent. Each has its own instance
variable result, which has no effect on the other’s instance variable result.

43. If you click the close-window button in either calculator window, the entire
program ends because that causes an invocation of System.exit. There is no
invocation of System.exit in Display 17.19, but the following ensures that a
System.exit that is in some library class will be invoked:

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Programming Projects

 1. Design and code a Swing GUI to translate text that is input in English into Pig
Latin. You can assume that the sentence contains no punctuation. The rules for
Pig Latin are as follows:

 a. For words that begin with consonants, move the leading consonant to the end
of the word and add “ay.” Thus, “ball” becomes “allbay”; “button” becomes
“uttonbay”; and so forth.

 b. For words that begin with vowels, add “way” to the end of the word. Thus,
“all” becomes “allway”; “one” becomes “oneway”; and so forth.

Solution to
Programming
Project 17.1

VideoNote

Programming Projects 1053

 Use a FlowLayout with a JTextArea for the source text and a separate JTextArea
for the translated text. Add a JButton with an event to perform the translation.
A sample application is shown next with the text translated to Pig Latin.

 To parse the source text, note that you can use the Scanner class on a String. For
example the following code:

 Scanner scan = new Scanner("foo bar zot");

 while (scan.hasNext())

 {

 System.out.println(scan.next());

 }

 will output

 foo

 bar

 zot

 2. Develop a simple number game using JFrame that will display a rectangular grid
of nine buttons displayed in a 3 : 3 game board. Nine random numbers will be
generated, one corresponding to each button. The numbers can be anything in the
range of 1 to 50. The buttons will be initially blank and the player will be asked to
select any three buttons. As soon as the player selects a button, the corresponding
number should be displayed at the bottom of the applet, finally displaying all three
numbers selected by the player. If one of the numbers selected is odd, the player
gets a prize of $20; if two are odd, the player gets a prize of $50; and if all three
numbers are odd, the player gets a prize of $100. Also, if any of the three selected
numbers is 50, then there will be a bumper prize of $1000. If any even number is
selected then the system should output “Better Luck Next Time!”

 3. Design and code a Swing GUI calculator. You can use Display 17.19 as a starting
point, but your calculator will be more sophisticated. Your calculator will have
two text fields that the user cannot change: One labeled "Result" will contain the
result of performing the operation, and the other labeled "Operand" will be for
the user to enter a number to be added, subtracted, and so forth from the
result. The user enters the number for the "Operand" text field by clicking buttons
labeled with the digits 0 through 9 and a decimal point, just as in a real calculator.
Allow the operations of addition, subtraction, multiplication, and division. Use a
GridLayout manager to produce a button pad that looks similar to the keyboard
on a real calculator.

 When the user clicks a button for an operation, the following occurs: the operation
is performed, the "Result" text field is updated, and the "Operand" text field is
cleared. Include a button labeled "Reset" that resets the "Result" to 0.0. Also
include a button labeled "Clear" that resets the "Operand" text field so it is blank.

 Hint: Define an exception class named DivisonByZeroException. Have your
code throw and catch a DivisonByZeroException if the user attempts to “divide
by zero.” Your code will catch the DivisonByZeroException and output a suit-
able message to the "Operand" text field. The user may then enter a new substitute

1054 CHAPTER 17 Swing I

Programming Projects 1055

number in the "Operand" text field. Because values of type double are, in effect,
approximate values, it makes no sense to test for equality with 0.0. Consider an
operand to be “equal to zero” if it is in the range -1.0e-10 to +1.0e-10.

 4. Create a class named as Driving. The constructor of this class will contain two
buttons and two labels. The buttons will be displayed with the caption ‘Yes’ and
‘No’. The first label object will contain the text ‘Are you an excellent driver?’ If the
user clicks ‘Yes’, the first label should change to ‘We need you!’ If the user clicks
‘No’, the first label should change to ‘You need to practice!’ The second label shows
how many users respond with ‘Yes’ and how many users respond with ‘No’.

 5. Redo or do for the first time the trivia game described in Programming
Projects 6.12 and 6.13, except create a GUI for the game interface. Use a layout of
your choice with the appropriate text fields, labels, and buttons to implement your
design. The game should ask only one question at a time and output the correct
answer if the player answers a question incorrectly. When all questions have been
answered, show the final score and exit the program.

 6. Create a simple text editor by using the component JTextArea that allows the user
to enter text. The program should have two buttons. The first button should save
the content of editor to a file, while the other should be to clear the contents of the
editor.

This page intentionally left blank

18.4 Colors 1098
Specifying a Drawing Color 1099
Defining Colors 1100
The JColorChooser Dialog Window 1102

18.5 Fonts and the drawString
Method 1105

The drawString Method 1105
Fonts 1108

18.1 WindoW listeners 1058
Example: A Window Listener Inner Class 1060
The dispose Method 1063
The WindowAdapter Class 1064

18.2 iCons and sCroll Bars 1066
Icons 1066
Scroll Bars 1072
Example: Components with Changing Visibility 1077

18.3 the Graphics Class 1081
Coordinate System for Graphics Objects 1081
The Method paint and the Class Graphics 1082
Drawing Ovals 1087
Drawing Arcs 1087
Rounded Rectangles ★ 1091
paintComponent for Panels 1092
Action Drawings and repaint 1092
Some More Details on Updating a GUI ★ 1098

Chapter summary 1111 answers to self-test exercises 1111 Programming Projects 1115

Swing II 18

Window listeners?

I thought windows were for looking not for listening.

Student answer on an exam

Introduction
This chapter is a continuation of Chapter 17, presenting more details about designing
regular Swing GUIs. Chapter 20 on applets is a side issue that may be read after this
chapter if you prefer.

Prerequisites
This chapter uses material from Chapter 17 (and its prerequisites).

Section 18.2 on icons and scroll bars is not used in subsequent sections and so may
be skipped or postponed.

18.1 Window Listeners

A man may see how this world goes with no eyes.
Look with thine ears… .

WILLIAM SHAKESPEARE, King Lear, 1607.

In Chapter 17, we used the method setDefaultCloseOperation to program the
close-window button in a JFrame. This allows for only a limited number of possibilities
for what happens when the close-window button is clicked. When the user clicks the
close-window button (or either of the two accompanying buttons), the JFrame fires an
event known as a window event. A JFrame can use the method setWindowListener
to register a window listener to respond to such window events. A window listener can
be programmed to respond to a window event in any way you wish. Window events
are objects of the class WindowEvent. A window listener is any class that satisfies the
WindowListener interface.

The method headings in the WindowListener interface are given in Display 18.1.
If a class implements the WindowListener interface, it must have definitions for all
seven of these method headings. If you do not need all of these methods, then you can
define the ones you do not need to have empty bodies, like this:

public void windowDeiconified(WindowEvent e)

{}

18 Swing II

window
listener

window event

Window
Listener

WindowEvent

Window Listeners 1059

Display 18.1 Methods in the WindowListener Interface

The WindowListener interface and the WindowEvent class are in the package java.awt.event.

public void windowOpened(WindowEvent e)

Invoked when a window is opened.

public void windowClosing(WindowEvent e)

Invoked when a window is in the process of being closed. Clicking the close-window button
causes an invocation of this method.

public void windowClosed(WindowEvent e)

Invoked when a window has been closed.

public void windowIconified(WindowEvent e)

Invoked when a window is iconified. When you click the minimize button in a JFrame, it is
iconified.

public void windowDeiconified(WindowEvent e)

Invoked when a window is deiconified. When you activate a minimized window, it is deiconified.

public void windowActivated(WindowEvent e)

Invoked when a window is activated. When you click in a window, it becomes the activated
window. Other actions can also activate a window.

public void windowDeactivated(WindowEvent e)

Invoked when a window is deactivated. When a window is activated, all other windows are
deactivated. Other actions can also deactivate a window.

The WindowListener Interface

When the user clicks any of the three standard JFrame buttons (for closing the window,
minimizing the window, and resizing the window), it generates a window event. Window
events are sent to window listeners. In order to be a window listener, a class must implement
the WindowListener interface. The method headings for the WindowListener interface
are given in Display 18.1.

1060 CHAPTER 18 Swing II

ExamPLE: a Window Listener Inner Class

Display 18.2 gives an example of a JFrame class with a window listener class that is
an inner class. The window listener inner class is named CheckOnExit. A window
listener class need not be an inner class, but it is frequently convenient to make a
window listener class (or other kind of listener class) an inner class.

The main JFrame in Display 18.2 simply displays a message. What is interesting
is how the window listener programs the close-window button. You can apply
the window listener used in this JFrame to any JFrame. When the close-window
button is clicked, a second, smaller window appears and asks "Are you sure you
want to exit?" If the user clicks the "Yes" button, the entire program ends,
and so both windows go away. If the user clicks the "No" button, only the smaller
window disappears; the program and the main window continue. Let us look at the
programming details.

When the close-window button in the main window is clicked, this fires a window
event. The only registered window listener is the anonymous object that is the
argument to addWindowListener. Next we repeat the relevant line of code, which is
in the constructor for WindowListenerDemo:

addWindowListener(new CheckOnExit());

This anonymous window listener object receives the window event fired when
the close-window button is clicked and then invokes the method windowClosing.
The method windowClosing creates and displays a window object of the class
ConfirmWindow, which contains the message "Are you sure you want to

exit?" as well as the two buttons labeled "Yes" and "No".
If the user clicks the "Yes" button, the action event fired by that button goes

to the actionPerformed method, which ends the program with a call to System.
exit. If the user clicks the "No" button, then the actionPerformed method invokes
the method dispose. The method dispose, discussed in the next subsection,
makes its calling object go away but does not end the program. The calling object for
dispose is the smaller window (which is an object of the class ConfirmWindow), so
this smaller window goes away but the main window remains.

Notice that even though we have registered a window listener, which says what should
happen when the close-window button is clicked, we still need to invoke the method
setDefaultCloseOperation. When the close-window button is clicked, the policy
set by setDefaultCloseOperation is always carried out in addition to any action by
window listeners. If we do not include any invocation of setDefaultCloseOperation,
then the default action is to make the window go away (but not to end the program).
We do not want our main window to go away, so we set the policy as follows:

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

This means that clicking the close-window button causes no action other
than the actions of any window listeners. If you are using a window listener to set
the action of the close-window button, you invariably want an invocation of
setDefaultCloseOperation with the argument JFrame.DO_NOTHING_ON_CLOSE.

Window Listeners 1061

Display 18.2 A Window Listener (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import java.awt.BorderLayout;
 4 import java.awt.FlowLayout;
 5 import java.awt.Color;
 6 import javax.swing.JLabel;
 7 import javax.swing.JButton;
 8 import java.awt.event.ActionListener;
 9 import java.awt.event.ActionEvent;
10 import java.awt.event.WindowListener;
11 import java.awt.event.WindowEvent;

12 public class WindowListenerDemo extends JFrame
13 {
14 public static final int WIDTH = 300; //for main window
15 public static final int HEIGHT = 200; //for main window
16 public static final int SMALL_WIDTH = 200; //for confirm window
17 public static final int SMALL_HEIGHT = 100; //for confirm window

18 private class CheckOnExit implements WindowListener
19 {
20 public void windowOpened(WindowEvent e)
21 {}

22 public void windowClosing(WindowEvent e)
23 {
24 ConfirmWindow checkers = new ConfirmWindow();
25 checkers.setVisible(true);
26 }

27 public void windowClosed(WindowEvent e)
28 {}

29 public void windowIconified(WindowEvent e)
30 {}

31 public void windowDeiconified(WindowEvent e)
32 {}

33 public void windowActivated(WindowEvent e)
34 {}

35 public void windowDeactivated(WindowEvent e)
36 {}
37 }//End of inner class CheckOnExit

38 private class ConfirmWindow extends JFrame implements
 ActionListener

39 {
40 public ConfirmWindow()
41 {
42 setSize(SMALL_WIDTH, SMALL_HEIGHT);
43 getContentPane().setBackground(Color.YELLOW);

This WindowListener
class is an inner class.

A window listener must
define all the method
headings in the WindowListener
interface, even if some are trivial
implementations.

Another inner class.

(continued)

1062 CHAPTER 18 Swing II

dispose

44 setLayout(new BorderLayout());
45 JLabel confirmLabel = new JLabel(
46 "Are you sure you want to exit?");
47 add(confirmLabel, BorderLayout.CENTER);

48 JPanel buttonPanel = new JPanel();
49 buttonPanel.setBackground(Color.ORANGE);
50 buttonPanel.setLayout(new FlowLayout());

51 JButton exitButton = new JButton("Yes");
52 exitButton.addActionListener(this);
53 buttonPanel.add(exitButton);

54 JButton cancelButton = new JButton("No");
55 cancelButton.addActionListener(this);
56 buttonPanel.add(cancelButton);

57 add(buttonPanel, BorderLayout.SOUTH);
58 }

59 public void actionPerformed(ActionEvent e)
60 {
61 String actionCommand = e.getActionCommand();

62 if (actionCommand.equals("Yes"))
63 System.exit(0);
64 else if (actionCommand.equals("No"))
65 dispose(); //Destroys only the ConfirmWindow.
66 else
67 System.out.println(
 "Unexpected Error in Confirm Window.");
68 }
69 } //End of inner class ConfirmWindow
70
71 public static void main(String[] args)
72 {
73 WindowListenerDemo demoWindow = new WindowListenerDemo();
74 demoWindow.setVisible(true);
75 }
76
77 public WindowListenerDemo()
78 {
79 setSize(WIDTH, HEIGHT);
80 setTitle("Window Listener Demonstration");
81
82 setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
83 addWindowListener(new CheckOnExit());
84
85 getContentPane().setBackground(Color.LIGHT_GRAY);
86 JLabel aLabel = new JLabel(

 "I like to be sure you are sincere.");
87 add(aLabel);
88 }
89 }

Even if you have a window listener,
you normally must still invoke
setDefaultCloseOperation.

Display 18.2 A Window Listener (part 2 of 3)

Window Listeners 1063

The dispose method

The method dispose is a method in the class JFrame that releases any resources used
by the JFrame or any of its components. So, a call to dispose eliminates the JFrame
and its components, but if the program has items that are not components of the
JFrame, then the program does not end. For example, in Display 18.2, the smaller
window of the class ConfirmWindow invokes dispose (if the user clicks the "No"
button). That causes that smaller window to go away, but the larger window remains.

dispose

The dispose method
The class JFrame has a method named dispose that will eliminate the invoking JFrame
without ending the program. When dispose is invoked, the resources consumed by
the JFrame and its components are returned for reuse, so the JFrame is gone, but the
program does not end (unless dispose eliminates all elements in the program, as in a one-
window program). The method dispose is often used in a program with multiple windows
to eliminate one window without ending the program.

SYNTax

JFrame_Object.dispose();

The JFrame_Object is often an implicit this. A complete example of using dispose can
be seen in Display 18.2.

I like to be sure you are sincere.

When you click this close-
window button, the second
window appears.

This window is an object of
the class ConfirmWindow.

Are you sure you want to exit?

Resulting GUI

Display 18.2 A Window Listener (part 3 of 3) (Source: Oracle Corporation)

1064 CHAPTER 18 Swing II

The WindowAdapter Class

In Display 18.2, we gave empty bodies to most of the method headings in the
WindowListener interface. The abstract class WindowAdapter is a way to avoid all
those empty method bodies. The class WindowAdapter does little more than provide
trivial implementations of the method headings in the WindowListener interface. So, if
you make a window listener a derived class of the class WindowAdapter, then you have
only to define the method headings in the WindowListener interface that you need.
The other method headings inherit trivial implementations from WindowAdapter.
(WindowAdapter is unusual in that it is an abstract class with no abstract methods.)

For example, in Display 18.3 we have rewritten the inner class CheckOnExit from
Display 18.2, but this time we made it a derived class of the WindowAdapter class. This
definition of CheckOnExit is much shorter and cleaner than the one in Display 18.2,
but the two implementations of CheckOnExit are equivalent. Thus, you can replace the
definition of CheckOnExit in Display 18.2 with the shorter one in Display 18.3. The file
WindowListenerDemo2 on the accompanying website contains a version of Display 18.2
with this shorter definition of CheckOnExit.

The class WindowAdapter is in the java.awt.event package and so requires an
import statement such as the following:

import java.awt.event.WindowAdapter;

You cannot always define your window listeners as derived classes of Windowdapter.
For example, suppose you want a JFrame class to be its own window listener. To
accomplish this, the class must be a derived class of JFrame and so cannot be a derived

PITFaLL: Forgetting to Invoke setDefaultCloseOperation

If you register a window listener to respond to window events from a JFrame, you
should also include an invocation of the method setDefaultCloseOperation,
typically in the JFrame constructor. This is because the default or other behavior set
by setDefaultCloseOperation takes place even if there is a window listener. If you
do not want any actions other than those provided by the window listener(s), you
should include the following in the JFrame constructor:

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

If you do not include any invocation of setDefaultCloseOperation, the default
action is the same as if you had included the invocation

setDefaultCloseOperation(JFrame.HIDE_ON_CLOSE);

which hides the JFrame when the close-window button is clicked. (The actions of any
registered window listener are also performed.) ■

extra code
on website

Window Listeners 1065

This requires the following import

If the definition of the inner class CheckOnExit in Display 18.2 were replaced with
this definition of CheckOnExit, there would be no difference in how the outer class
or any class behaves.

Display 18.3 Using WindowAdapter

 import java.awt.event.WindowAdapter;
 import java.awt.event.WindowEvent;

 1 private class CheckOnExit extends WindowAdapter
 2 {
 3 public void windowClosing(WindowEvent e)
 4 {
 5 ConfirmWindow checkers = new ConfirmWindow();
 6 checkers.setVisible(true);
 7 }
 8 } //End of inner class CheckOnExit

Self-Test Exercises

1. When you define a class and make it implement the WindowListener interface,
what methods must you define? What do you do if there is no particular action
that you want one of these methods to take?

2. The GUI in Display 18.2 has a main window. When the user clicks the
close-window button in the main window, a smaller window appears that says
"Are you sure you want to exit?" What happens if the user clicks the
close-window button in this smaller window? Explain your answer.

3. If you want a Swing program to end completely, you can invoke the method
System.exit. What if you want a JFrame window to go away, but you do not
want the program to end? What method can you have the JFrame invoke?

4. Rewrite the class in Display 18.2 so that the class is its own window listener.
Hint: The constructor will contain

addWindowListener(this);

class of any other class such as WindowAdapter. In such cases, you make the class a
derived class of JFrame and have it implement the WindowListener interface. See
Self-Test Exercise 4 for an example.

1066 CHAPTER 18 Swing II

icon

ImageIcon

18.2 Icons and Scroll Bars

I ♥ ICONS.

ANONyMOuS

Icons

JLabels, JButtons, and JMenuItems can have icons. An icon is simply a small
picture, although it is not required to be small. The label, button, or menu item may
have just a string displayed on it, just an icon, or both (or nothing at all). An icon is an
instance of the ImageIcon class and is based on a digital picture file. The picture file
can be in almost any standard format, such as .gif, .jpg, or .tiff.

The class ImageIcon is used to convert a picture file to a Swing icon. For example,
if you have a picture in a file named duke_waving.gif, the following will produce an
icon named dukeWavingIcon for the picture duke_waving.gif:

ImageIcon dukeIcon = new ImageIcon("duke_waving.gif");

The file duke_waving.gif should be in the same directory as the class in which this
code appears. Alternatively, you can use a complete or relative pathname to specify the
picture file. Note that the picture file is given as a value of type String that names
the picture file. The file duke_waving.gif and other picture files we will use in this
chapter are all provided on the website that accompanies this text.

You can add an icon to a label with the method setIcon, as follows:

JLabel dukeLabel = new JLabel("Mood check");
dukeLabel.setIcon(dukeIcon);

Alternatively, you give the icon as an argument to the JLabel constructor,
as follows:

JLabel dukeLabel = new JLabel(dukeIcon);

You can leave the label as created and it will have an icon but no text, or you can add
text with the method setText, as follows:

dukeLabel.setText("Mood check");

Icons and text may be added to JButtons and JMenuItems in the same way as they
are added to a JLabel. For example, the following is taken from Display 18.4, which is
a demonstration of the use of icons:

JButton happyButton = new JButton("Happy");
ImageIcon happyIcon = new ImageIcon("smiley.gif");
happyButton.setIcon(happyIcon);

setIcon

setText

Icons and Scroll Bars 1067

Display 18.4 Using Icons (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import javax.swing.JTextField;
 4 import javax.swing.ImageIcon;
 5 import java.awt.BorderLayout;
 6 import java.awt.FlowLayout;
 7 import java.awt.Color;
 8 import javax.swing.JLabel;
 9 import javax.swing.JButton;
10 import java.awt.event.ActionListener;
11 import java.awt.event.ActionEvent;

12 public class IconDemo extends JFrame implements ActionListener
13 {
14 public static final int WIDTH = 500;
15 public static final int HEIGHT = 200;
16 public static final int TEXT_FIELD_SIZE = 30;

17 private JTextField message;
18 public static void main(String[] args)
19 {
20 IconDemo iconGui = new IconDemo();
21 iconGui.setVisible(true);
22 }

23 public IconDemo()
24 {
25 super("Icon Demonstration");
26 setSize(WIDTH, HEIGHT);
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

28 setBackground(Color.WHITE);
29 setLayout(new BorderLayout());

30 JLabel dukeLabel = new JLabel("Mood check");
31 ImageIcon dukeIcon = new ImageIcon("duke_waving.gif");
32 dukeLabel.setIcon(dukeIcon);
33 add(dukeLabel, BorderLayout.NORTH);

34 JPanel buttonPanel = new JPanel();
35 buttonPanel.setLayout(new FlowLayout());
36 JButton happyButton = new JButton("Happy");
37 ImageIcon happyIcon = new ImageIcon("smiley.gif");
38 happyButton.setIcon(happyIcon);
39 happyButton.addActionListener(this);
40 buttonPanel.add(happyButton);
41 JButton sadButton = new JButton("Sad");
42 ImageIcon sadIcon = new ImageIcon("sad.gif");
43 sadButton.setIcon(sadIcon);
44 sadButton.addActionListener(this);

(continued)

1068 CHAPTER 18 Swing II

You can produce a button or menu item with (just) an icon on it by giving the
ImageIcon object as an argument to the JButton or JMenuItem constructor. For example,

ImageIcon happyIcon = new ImageIcon("smiley.gif");
JButton smileButton = new JButton(happyIcon);
JMenuItem happyChoice = new JMenuItem(happyIcon);

If you create a button or menu item in this way and do not add text with the method
setText, you should use setActionCommand to explicitly give the button or menu
item an action command, because there is no string on the button or menu item.

45 buttonPanel.add(sadButton);
46 add(buttonPanel, BorderLayout.SOUTH);

47 message = new JTextField(TEXT_FIELD_SIZE);
48 add(message, BorderLayout.CENTER);
49 }

50 public void actionPerformed(ActionEvent e)
51 {
52 String actionCommand = e.getActionCommand();
53 if (actionCommand.equals("Happy"))
54 message.setText(
55 "Smile and the world smiles with you!");
56 else if (actionCommand.equals("Sad"))
57 message.setText(
58 "Cheer up. It can't be that bad.");
59 else
60 message.setText("Unexpected Error.");
61 }
62 }

Resulting GUI1

View after clicking the "Sad" button.

button with
only an icon

1Java, Duke, and all Java-based trademarks and logos are trademarks or registered trademarks of
 Oracle, Inc. in the United States and other countries.

Display 18.4 Using Icons (part 2 of 2) (Source: Oracle Corporation)

Icons and Scroll Bars 1069

All of the classes JButton, JMenuItem, and JLabel have constructors that let you
specify text and an icon to appear on the button, menu item, or label. The constructor
can specify no text or icon, text only, an icon only, or both text and an icon. When you
specify both text and an icon, the text is the first argument and the icon is the second
argument; also, the constructor for a JLabel requires a third argument, as described in
Display 18.5. If you omit either text or an icon (or both) from the constructor, you can
add them later with the methods setText and setIcon. Some of these methods for
the classes JButton, JMenuItem, and Jlabel are given in Display 18.5.

Display 18.5 Some Methods in the Classes JButton, JMenuItem, and JLabel (part 1 of 2)

 public JButton()
 public JMenuItem()
 public JLabel()

 Creates a button, menu item, or label with no text or icon on it. (Typically, you will later use
setText and/or setIcon with the button, menu item, or label.)

 public JButton(String text)
 public JMenuItem(String text)
 public JLabel(String text)

 Creates a button, menu item, or label with the text on it.

 public JButton(ImageIcon picture)
 public JMenuItem(ImageIcon picture)
 public JLabel(ImageIcon picture)

 Creates a button, menu item, or label with the icon picture on it and no text.

Icons and the Class ImageIcon

An icon is simply a small picture, although it is not really required to be small. The class
ImageIcon is used to convert a picture file to a Swing icon.

SYNTax

ImageIcon Name_Of_ImageIcon =
new ImageIcon(Picture_File_Name);

The Picture_File_Name is a string giving either a relative or absolute pathname to the picture
file. (So if the picture file is in the same directory as your program, you need give only the
name of the picture file.)

ExamPLE

ImageIcon happyIcon =
 new ImageIcon("smiley.gif");

(continued)

1070 CHAPTER 18 Swing II

 public JButton(String text, ImageIcon picture)
 public JMenuItem(String text, ImageIcon picture)
 public JLabel(
 String text, ImageIcon picture, int horizontalAlignment)

 Creates a button, menu item, or label with both the text and the icon picture
on it. horizontalAlignment is one of the constants SwingConstants.LEFT,
SwingConstants.CENTER, SwingConstants.RIGHT, SwingConstants.LEADING, or
SwingConstants.TRAILING.

 The interface SwingConstants is in the javax.swing package.

 public void setText(String text)

 Makes text the only text on the button, menu item, or label.

 public void setIcon(ImageIcon picture)

 Makes picture the only icon on the button, menu item, or label.

 public void setMargin(Insets margin)

 JButton and JMenuItem have the method setMargin, but JLabel does not.

 The method setMargin sets the size of the margin around the text and icon in the button or
menu item. The following special case will work for most simple situations. The int values give
the number of pixels from the edge of the button or menu item to the text and/or icon.

 public void setMargin(new Insets(
 int top, int left, int bottom, int right))

 The class Insets is in the java.awt package. (We will not be discussing any other uses for
the class Insets.)

 public void setVerticalTextPosition(int textPosition)

 Sets the vertical position of the text relative to the icon. The textPosition should be one of
the constants SwingConstants.TOP, SwingConstants.CENTER (the default position), or
SwingConstants.BOTTOM.

 The interface SwingConstants is in the javax.swing package.

 public void setHorizontalTextPosition(int textPosition)

 Sets the horizontal position of the text relative to the icon. The textPosition should be one
of the constants SwingConstants.RIGHT, SwingConstants.LEFT, SwingConstants.
CENTER, SwingConstants.LEADING, or SwingConstants.TRAILING.

 The interface SwingConstants is in the javax.swing package.

Display 18.5 Some Methods in the Classes JButton, JMenuItem, and JLabel (part 2 of 2)

Icons and Scroll Bars 1071

The Insets Class

Objects of the class Insets are used to specify the size of the margin in a button or menu
item. The Insets class is in the package java.awt. The parameters in the following
constructors are in pixels.

CoNSTruCTor

public Insets(int top, int left, int bottom, int right)

ExamPLES

aButton.setMargin(new Insets(10, 20, 10, 20));

setIcon and setText

The method setIcon can be used to add an icon to a JButton, JMenuItem, or JLabel.
The argument to setIcon must be an ImageIcon object.

SYNTax

Component.setIcon(ImageIcon_Object);

The Component can be a JButton, JMenuItem, or JLabel.

ExamPLE

JLabel helloLabel = new JLabel("Hello");
ImageIcon dukeIcon = new ImageIcon("duke_waving.gif");
helloLabel.setIcon(dukeIcon);

The method setText can be used to add text to a JButton, JMenuItem, or JLabel.

SYNTax

Component.setText(Text_String);

The Component can be a JButton, JMenuItem, or JLabel.

ExamPLE

ImageIcon dukeIcon = new ImageIcon("duke_waving.gif");
JLabel helloLabel = new JLabel(dukeIcon);
helloLabel.setText("Hello");

The two examples are equivalent.

1072 CHAPTER 18 Swing II

Scroll Bars

When you create a text area, you specify the number of lines that are visible and the
number of characters per line, as in the following example:

JTextArea memoDisplay = new JTextArea(15, 30);

The text area memoDisplay will have room for 15 lines of text, and each line will
have room for at least 30 characters. The user can enter more text, but only a limited
amount of text will be visible. It would be better not to have a firm limit on the number
of lines or the number of characters per line that the user can see in some convenient
way. The way to accomplish this is to add scroll bars to the text area, although, as you
will see, the Java code looks more like adding the text area to the scroll bars rather than
the other way around.

When using scroll bars, the text is viewed through a view port that shows only
part of the text at a time. You can view a different part of the text by using the scroll
bars that are placed along the side and bottom of the view port. It is as if the text were
written on an unbounded sheet of paper, but the paper is covered by another piece of
paper with a rectangular cutout that lets you see only a portion of the text. The cutout
is the view port. This is illustrated in Display 18.6. You use the scroll bars to move the
view port so that different portions of the text can be seen through the cutout view
port. (You may prefer to think of the view port as fixed and the text as moving. These
two ways of thinking are equivalent.) Swing allows you to add scroll bars to your text
areas by using the class JScrollPane.

An object of the class JScrollPane is essentially a view port with scroll bars. When
you create a JScrollPane, you give the text area as an argument to the JScrollPane
constructor. For example, if memoDisplay is an object of the class JTextArea (as
created in the line of code at the start of this subsection), you can place memoDisplay
in a JScrollPane as follows:

JScrollPane scrolledText = new JScrollPane(memoDisplay);

Self-Test Exercises

5. Write code to create a button that has on it both the text "Magic Button" and
the picture in the file wizard.gif.

6. Write code to add the picture in the file wizard.gif to the JPanel named
picturePanel. Assume that picturePanel has a FlowLayout manager.

7. Suppose you want to create a button that has the picture in the file wizard.gif
on it and no text. Suppose further that you want the button to have the action
command "Kazam". How would you create the button and set up the action
command?

view port

JScrollPane

Icons and Scroll Bars 1073

Display 18.6 View Port for a Text Area

Display 18.7 Some Methods in the Class JScrollPane (part 1 of 2)

The JScrollPane class is in the javax.swing package.

 public JScrollPane(Component objectToBeScrolled)

Creates a new JScrollPane for the objectToBeScrolled. Note that the objectToBeScrolled
need not be a JTextArea, although that is the only type of argument considered in this book.

 public void setHorizontalScrollBarPolicy(int policy)

Sets the policy for showing the horizontal scroll bar. The policy should be one of the following:

 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER
 JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

The phrase AS_NEEDED means the scroll bar is shown only when it is needed. This is explained
more fully in the text. The meanings of the other policy constants are obvious from their names.

(As indicated, these constants are defined in the class JScrollPane. You should not need to
even be aware of the fact that they have int values. Think of them as policies, not as int values.)

 public void setVerticalScrollBarPolicy(int policy)

(continued)

When using scroll bars, the text is viewed through a view
port that shows only part of the text at a time. You can
view a different part of the text by using the scroll bars
that are placed along the sides of the view port. It is as if
the text were written on an unbounded sheet of paper,
but the paper is covered by another piece of paper with a
rectangular cutout that lets you see a portion of the text.
The cutout is the view port. This is illustrated in Display
18.4. You then use the scroll bars to move the view port
so that different portions of the text can be seen through
the cut-out view port. (You may prefer to think of the
view port as fixed and the text as moving. These two
ways of thinking are equivalent.) Swing allows you to
add scroll bars to your text areas by using the class
JScrollPane .
An object of the class JScrollPane is essentially a view
port with scroll bars. When you create a JScrollPane ,

Text area

View port

1074 CHAPTER 18 Swing II

The JScrollPane can then be added to a container, such as a JPanel or JFrame, as
follows:

textPanel.add(scrolledText);

This is illustrated by the program in Display 18.8.
Note the following two lines in the constructor definition in Display 18.8:

scrolledText.setHorizontalScrollBarPolicy(
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
scrolledText.setVerticalScrollBarPolicy(
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

Despite the imposing length of these two method invocations, they perform a very
simple task. The first merely specifies that the horizontal scroll bar will always be
present. The second specifies that the vertical scroll bar will always be present.

If you omit the invocation of the two methods setHorizontalScrollBarPolicy
and setVerticalScrollBarPolicy, the scroll bars will be visible only when you
need them. In other words, if you omit these two method invocations and all the text
fits in the view port, then no scroll bars will be visible. When you add enough text to
need scroll bars, the needed scroll bars will appear automatically.

Display 18.7 summarizes what we have said about the class JScrollPane. We are
interested in using JScrollPane only with text areas. However, as we note in Display 18.7,
JScrollPane can be used with almost any sort of component.

Sets the policy for showing the vertical scroll bar. The policy should be one of the following:

 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
 JScrollPane.VERTICAL_SCROLLBAR_NEVER
 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED

The phrase AS_NEEDED means the scroll bar is shown only when it is needed. This is explained
more fully in the text. The meanings of the other policy constants are obvious from their names.
(As indicated, these constants are defined in the class JScrollPane. You should not need to
even be aware of the fact that they have int values. Think of them as policies, not as int values.)

Display 18.7 Some Methods in the Class JScrollPane (part 2 of 2)

setting scroll
bar policies

Display 18.8 A Text Area with Scroll Bars (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JTextArea;
 3 import javax.swing.JPanel;
 4 import javax.swing.JLabel;
 5 import javax.swing.JButton;
 6 import javax.swing.JScrollPane;
 7 import java.awt.BorderLayout;
 8 import java.awt.FlowLayout;
 9 import java.awt.Color;
10 import java.awt.event.ActionListener;
11 import java.awt.event.ActionEvent;

Icons and Scroll Bars 1075

12 public class ScrollBarDemo extends JFrame
13 implements ActionListener
14 {
15 public static final int WIDTH = 600;
16 public static final int HEIGHT = 400;
17 public static final int LINES = 15;
18 public static final int CHAR_PER_LINE = 30;

19 private JTextArea memoDisplay;
20 private String memo1;
21 private String memo2;

22 public static void main(String[] args)
23 {
24 ScrollBarDemo gui = new ScrollBarDemo();
25 gui.setVisible(true);
26 }

27 public ScrollBarDemo()
28 {
29 super("Scroll Bars Demo");
30 setSize(WIDTH, HEIGHT);
31 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
32 JPanel buttonPanel = new JPanel();
33 buttonPanel.setBackground(Color.LIGHT_GRAY);
34 buttonPanel.setLayout(new FlowLayout());
35 JButton memo1Button = new JButton("Save Memo 1");
36 memo1Button.addActionListener(this);
37 buttonPanel.add(memo1Button);

38 JButton memo2Button = new JButton("Save Memo 2");
39 memo2Button.addActionListener(this);
40 buttonPanel.add(memo2Button);

41 JButton clearButton = new JButton("Clear");
42 clearButton.addActionListener(this);
43 buttonPanel.add(clearButton);

44 JButton get1Button = new JButton("Get Memo 1");
45 get1Button.addActionListener(this);
46 buttonPanel.add(get1Button);

47 JButton get2Button = new JButton("Get Memo 2");
48 get2Button.addActionListener(this);
49 buttonPanel.add(get2Button);

50 add(buttonPanel, BorderLayout.SOUTH);

51 JPanel textPanel = new JPanel();
52 textPanel.setBackground(Color.BLUE);

Display 18.8 A Text Area with Scroll Bars (part 2 of 3)

(continued)

1076 CHAPTER 18 Swing II

53 memoDisplay = new JTextArea(LINES, CHAR_PER_LINE);
54 memoDisplay.setBackground(Color.WHITE);

55 JScrollPane scrolledText = new JScrollPane(memoDisplay);
56 scrolledText.setHorizontalScrollBarPolicy(
57 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
58 scrolledText.setVerticalScrollBarPolicy(
59 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);

60 textPanel.add(scrolledText);

61 add(textPanel, BorderLayout.CENTER);
62 }
63 public void actionPerformed(ActionEvent e)
64 {
65 String actionCommand = e.getActionCommand();

66 if (actionCommand.equals("Save Memo 1"))
67 memo1 = memoDisplay.getText();
68 else if (actionCommand.equals("Save Memo 2"))
69 memo2 = memoDisplay.getText();
70 else if (actionCommand.equals("Clear"))
71 memoDisplay.setText("");
72 else if (actionCommand.equals("Get Memo 1"))
73 memoDisplay.setText(memo1);
74 else if (actionCommand.equals("Get Memo 2"))
75 memoDisplay.setText(memo2);
76 else
77 memoDisplay.setText("Error in memo interface");
78 }
79 }

Resulting GUI

Display 18.8 A Text Area with Scroll Bars (part 3 of 3) (Source: Oracle Corporation)

Icons and Scroll Bars 1077

Scroll Bars

The class JScrollPane is used to add scroll bars to a JTextArea (and certain
other components). The JTextArea object is given as an argument to the constructor
that creates the JScrollPane. The JScrollPane class is in the javax.swing
package.

SYNTax

JScrollPane Identifier = new JScrollPane(Text_Area_Object);

ExamPLES

JTextArea memoDisplay = new JTextArea(LINES, CHAR_PER_LINE);
JScrollPane scrolledText = new JScrollPane(memoDisplay);
textPanel.add(scrolledText);

Self-Test Exercises

8. When setting up a JScrollPane, do you have to invoke both of the methods
setHorizontalScrollBarPolicy and setVerticalScrollBarPolicy?

9. In Display 18.7, we listed the constructor for JScrollPane as follows:

public JScrollPane(Component objectToBeScrolled)

This indicates that the argument to the constructor must be of type Component.
But we used the constructor with an argument of type JTextArea. Isn’t this
some sort of type violation?

ExamPLE: Components with Changing Visibility

The GUI in Display 18.9 has labels that change from visible to invisible and back
again. Because the labels contain nothing but an icon each, it appears as if the icons
also change roles from visible to invisible and back again. When the GUI is first run,
the label with Duke not waving is shown. When the "Wave" button is clicked, the
label with Duke not waving disappears and the label with Duke waving appears.
When the button labeled "Stop" is clicked, the label with Duke waving disappears
and the label with Duke not waving returns. Note that you can make a component
invisible without making the entire GUI invisible.

(continued)

1078 CHAPTER 18 Swing II

Display 18.9 Labels with Changing Visibility (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.ImageIcon;
 3 import javax.swing.JPanel;
 4 import javax.swing.JLabel;
 5 import javax.swing.JButton;
 6 import java.awt.BorderLayout;
 7 import java.awt.FlowLayout;
 8 import java.awt.Color;
 9 import java.awt.event.ActionListener;
10 import java.awt.event.ActionEvent;

11 public class VisibilityDemo extends JFrame
12 implements ActionListener
13 {
14 public static final int WIDTH = 300;
15 public static final int HEIGHT = 200;
16 private JLabel wavingLabel;
17 private JLabel standingLabel;

In this GUI, a label becomes visible or invisible when a button is clicked. For
example, the following code from the method actionPerformed in Display 18.9
determines what happens when the button with the text "Wave" on it is clicked:

if (actionCommand.equals("Wave"))
{

 wavingLabel.setVisible(true);
 standingLabel.setVisible(false);
}

We used the setVisible method on the labels containing the icons rather than
directly on the icons because the class ImageIcon does not have the setVisible
method.

The two statements

wavingLabel.setVisible(true);
standingLabel.setVisible(false);

make wavingLabel visible and standingLabel invisible.

ExamPLE: (continued)

Icons and Scroll Bars 1079

18 public static void main(String[] args)
19 {
20 VisibilityDemo demoGui = new VisibilityDemo();
21 demoGui.setVisible(true);
22 }

23 public VisibilityDemo()
24 {
25 setSize(WIDTH, HEIGHT);
26 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
27 setTitle("Visibility Demonstration");

28 setLayout(new BorderLayout());

29 JPanel picturePanel = new JPanel();
30 picturePanel.setBackground(Color.WHITE);
31 picturePanel.setLayout(new FlowLayout());

32 ImageIcon dukeStandingIcon =
33 new ImageIcon("duke_standing.gif");
34 standingLabel = new JLabel(dukeStandingIcon);
35 standingLabel.setVisible(true);
36 picturePanel.add(standingLabel);

37 ImageIcon dukeWavingIcon = new ImageIcon("duke_waving.gif");
38 wavingLabel = new JLabel(dukeWavingIcon);
39 wavingLabel.setVisible(false);
40 picturePanel.add(wavingLabel);

41 add(picturePanel, BorderLayout.CENTER);

42 JPanel buttonPanel = new JPanel();
43 buttonPanel.setBackground(Color.LIGHT_GRAY);
44 buttonPanel.setLayout(new FlowLayout());

45 JButton waveButton = new JButton("Wave");
46 waveButton.addActionListener(this);
47 buttonPanel.add(waveButton);

48 JButton stopButton = new JButton("Stop");
49 stopButton.addActionListener(this);
50 buttonPanel.add(stopButton);
51 add(buttonPanel, BorderLayout.SOUTH);
52 }

Display 18.9 Labels with Changing Visibility (part 2 of 3)

(continued)

1080 CHAPTER 18 Swing II

53 public void actionPerformed(ActionEvent e)
54 {
55 String actionCommand = e.getActionCommand();
56 if (actionCommand.equals("Wave"))
57 {
58 wavingLabel.setVisible(true);
59 standingLabel.setVisible(false);
60 }
61 else if (actionCommand.equals("Stop"))
62 {
63 standingLabel.setVisible(true);
64 wavingLabel.setVisible(false);
65 }
66 else
67 System.out.println("Unanticipated error.");
68 }
69 }

Resulting GUI (After clicking Stop button)

Resulting GUI (After clicking Wave button)

Display 18.9 Labels with Changing Visibility (part 3 of 3) (Source: Oracle Corporation)

The Graphics Class 1081

18.3 The Graphics Class

Drawing is my life!

THE GRAPHICS CLASS

In this section, we show you how to produce drawings for your GUIs using the
Graphics class.

Coordinate System for Graphics objects

When drawing objects on the screen, Java uses the coordinate system shown in
Display 18.10. The origin point (0, 0) is the upper-left corner of the screen area used
for drawing (usually a JFrame or JPanel). The x-coordinate, or horizontal coordinate,
is positive and increasing to the right. The y-coordinate, or vertical coordinate, is
positive and increasing in the downward direction. The point (x, y) is located x pixels
in from the left edge of the screen and down y pixels from the top of the screen. All
coordinates are normally positive. Units as well as sizes of figures are in pixels. When
placing a rectangle on the screen, Java often uses a coordinate such as (200, 150) to
specify where the rectangle is located.

Note that, when specifying the location of a rectangle or other figure, the coordinates
do not indicate the center of the rectangle, but instead indicate the location of the
upper-left corner of the rectangle. In Display 18.10, the X marks the location of the
point (200, 150) and the rectangle shown is at location (200, 150).

When placing a figure other than a rectangle on the screen, Java encloses the
figure in an imaginary tightly fitting rectangle, sometimes called a bounding box,
and positions the upper-left corner of the imaginary rectangle. For example, in
Display 18.10, the oval displayed is located at point (200, 150).

origin

(x, y)

bounding
box

(0, 0)

(200, 150)

Positive x-direction

Positive y-direction

Display 18.10 Screen Coordinate System

1082 CHAPTER 18 Swing II

The method paint and the Class Graphics

Almost all Swing and Swing-related components and containers have a method named
paint. The method paint draws the component or container on the screen. Up
until now, we have had no need to redefine this method or to even mention it. It is
defined for you and is called automatically when the figure is displayed on the screen.
However, to draw geometric figures, such as circles and boxes, you need to redefine the
method paint. It is this method that draws the figures.

Display 18.11 shows a GUI program that displays a JFrame with a rather primitive
face drawn inside of it. The mouth and eyes are just straight line segments. We will
soon see how to get round eyes and a smile (and more), but the basic technique can be
seen more clearly in this simple figure. The code for drawing the face is given in the
method paint.

paint

Display 18.11 Drawing a Very Simple Face (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import java.awt.Graphics;
 3 import java.awt.Color;
 4 public class Face extends JFrame

 5 {
 6 public static final int WINDOW_WIDTH = 400;
 7 public static final int WINDOW_HEIGHT = 400;

 8 public static final int FACE_DIAMETER = 200;
 9 public static final int X_FACE = 100;
10 public static final int Y_FACE = 100;

11 public static final int EYE_WIDTH = 20;
12 public static final int X_RIGHT_EYE = X_FACE + 55;
13 public static final int Y_RIGHT_EYE = Y_FACE + 60;
14 public static final int X_LEFT_EYE = X_FACE + 130;
15 public static final int Y_LEFT_EYE = Y_FACE + 60;

16 public static final int MOUTH_WIDTH = 100;
17 public static final int X_MOUTH = X_FACE + 50;
18 public static final int Y_MOUTH = Y_FACE + 150;

19 public static void main(String[] args)
20 {
21 Face drawing = new Face();
22 drawing.setVisible(true);
23 }
24 public Face()
25 {

Walkthrough of a
Simple Drawing
Program

VideoNote

The Graphics Class 1083

26 super("First Graphics Demo");
27 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 getContentPane().setBackground(Color.white);
30 }

31 public void paint(Graphics g)

32 {
33 super.paint(g);
34 g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
35 //Draw Eyes:
36 g.drawLine(X_RIGHT_EYE, Y_RIGHT_EYE,
37 X_RIGHT_EYE + EYE_WIDTH,Y_RIGHT_EYE);
38 g.drawLine(X_LEFT_EYE, Y_LEFT_EYE,
39 X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE);
40 //Draw Mouth:
41 g.drawLine(X_MOUTH, Y_MOUTH, X_MOUTH + MOUTH_WIDTH, Y_MOUTH);
42 }

43 }

Resulting GUI

(X_FACE, Y_FACE)

FACE_DIAMETER

(X_MOUTH,Y_MOUTH)

The dashed box is not
shown on the screen. It
is there to help you
understand the
relationship between
the paint method
code and the resulting
drawing.

Display 18.11 Drawing a Very Simple Face (part 2 of 2)

The method paint is called automatically, and you normally should not invoke it
in your code. If you do not redefine it, the method paint for a JFrame object simply
draws a frame border, title, and other standard features, and then asks the components
to all invoke their paint methods. If we do not redefine the method paint, then the

1084 CHAPTER 18 Swing II

JFrame would have a border and title but would contain nothing. The code in the
redefinition of paint explains how to draw the face. Let us look at the details.

Notice that the method paint has a parameter g of type Graphics. Graphics
is an abstract class in the java.awt package. Every container and component that
can be drawn on the screen has an associated Graphics object. (To be precise, every
JComponent has an associated Graphics object.) This associated Graphics object
has data specifying what area of the screen the component or container covers. In
particular, the Graphics object for a JFrame specifies that the drawing takes place
inside the borders of the JFrame object. (Because Graphics is an abstract class, every
Graphics object is an instance of some concrete descendent class of the Graphics
class, but we usually do not care about which descendent class. All we normally need to
know is that it is of type Graphics.)

The Graphics class, and so any Graphics object g, has all the methods that we will
use to draw figures, such as circles, lines, and boxes, on the screen. Almost the entire
definition of the paint method in Display 18.11 consists of invocations of various
drawing methods with the parameter g as the calling object.

When the paint method in Display 18.11 is (automatically) invoked, the parameter
g will be replaced by the Graphics object associated with the JFrame, so the figures
drawn will be inside the JFrame. Let us look at the code in this method paint.

Notice the first line in the definition of paint in Display 18.11:

super.paint(g);

Recall that super is a name for the parent class of a derived class. The class in
Display 18.11 is derived from the class JFrame, so super.paint is the paint
method for the class JFrame. Whenever you redefine the method paint, you
should start with this invocation of super.paint. This ensures that your definition
of paint will do all the things the standard paint method does, such as draw the
title and border for the JFrame. (This lesson applies even if the class is derived from
some class other than JFrame.)

The following invocation from the method paint draws the circle forming the head:

g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

The last two arguments give the width and height of the enclosing rectangle, shown in
red. The fact that these two arguments are equal is what makes it a circle instead of a
typical oval. The first two arguments give x- and y-coordinates for the position of the
circle. Note that a figure is positioned by giving the position of the upper-left corner of
an enclosing rectangle.

The only other drawing statements in the method paint are invocations of
g.drawLine. The method g.drawLine draws a straight line between two points with
x- and y-coordinates (x1, y1) and (x2, y2), where the argument positions for the four
coordinate numbers are indicated as follows:

g.drawLine(x1, y1, x2, y2)

For example, the invocation that draws the mouth is as follows:

g.drawLine(X_MOUTH, Y_MOUTH, X_MOUTH + MOUTH_WIDTH, Y_MOUTH);

Graphics

drawOval

drawLine

The Graphics Class 1085

Because both y-coordinates (Y_MOUTH) are the same, the line is horizontal. The line
for the mouth begins at coordinates (X_MOUTH, Y_MOUTH) and extends to the right for
MOUTH_WIDTH pixels.

The Graphics Class
Every container and component that can be drawn on the screen has an associated
Graphics object. This associated Graphics object has data specifying what area of the
screen the component or container covers. In particular, the Graphics object for a JFrame
specifies that the drawing takes place inside the borders of the JFrame object.

When an object g of the class Graphics is used as the calling object for a drawing method,
the drawing takes place inside the area of the screen specified by g. For example, if g is
the Graphics object for a JFrame, the drawing takes place inside the borders of the
JFrame object.

Some of the commonly used methods of the class Graphics are given in Display 18.12.

Graphics is an abstract class in the java.awt package.

Some of the commonly used methods of the class Graphics are given in Display 18.12.
Note that most methods come in pairs, one whose name starts with draw and one whose
name starts with fill, such as drawOval and fillOval. The one that starts with draw
will draw the outline of the specified figure. The one that starts with fill will draw a solid
figure obtained by filling the inside of the specified figure. In the next few subsections, we
discuss some of these methods.

Display 18.12 Some Methods in the Class Graphics (part 1 of 3)

Graphics is an abstract class in the java.awt package.

Although many of these methods are abstract, we always use them with objects of a concrete
descendent class of Graphics, even though we usually do not know the name of that
concrete class.

 public abstract void drawLine(int x1, int y1, int x2, int y2)

Draws a line between points (x1, y1) and (x2, y2).

 public abstract void drawRect(int x, int y,
 int width, int height)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner of the
rectangle.

 public abstract void fillRect(int x, int y,
 int width, int height)

Fills the specified rectangle. (x, y) is the location of the upper-left corner of the rectangle.

(continued)

1086 CHAPTER 18 Swing II

 public void draw3DRect(int x, int y, int width,
 int height, boolean raised)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner. The
rectangle is highlighted to look like it has thickness. If raised is true, the highlight makes the
rectangle appear to stand out from the background. If raised is false, the highlight makes
the rectangle appear to be sunken into the background.

 public void fill3DRect(int x, int y, int width,
 int height, boolean raised)

Fills the rectangle specified by

 draw3DRec(x, y, width, height, raised)

 public abstract void drawRoundRect (int x, int y,
 int width, int height, int arcWidth, int arcHeight)

Draws the outline of the specified round-cornered rectangle. (x, y) is the location of the upper-left
corner of the enclosing regular rectangle. arcWidth and arcHeight specify the shape of the
round corners. See the text for details.

 public abstract void fillRoundRect(int x, int y,
 int width, int height, int arcWidth, int arcHeight)

Fills the rounded rectangle specified by

 drawRoundRec(x, y, width, height, arcWidth, arcHeight)

 public abstract void drawOval(int x, int y,
 int width, int height)

Draws the outline of the oval with the smallest enclosing rectangle that has the specified width
and height. The (imagined) rectangle has its upper-left corner located at (x, y).

 public abstract void fillOval (int x, int y,
 int width, int height)

Fills the oval specified by

 drawOval(x, y, width, height)

 public abstract void drawArc(int x, int y,
 int width, int height,
 int startAngle, int arcSweep)

Draws part of an oval that just fits into an invisible rectangle described by the first four arguments.
The portion of the oval drawn is given by the last two arguments. See the text for details.

Display 18.12 Some Methods in the Class Graphics (part 2 of 3)

The Graphics Class 1087

 public abstract void fillArc(int x, int y,
 int width, int height,
 int startAngle, int arcSweep)

Fills the partial oval specified by

 drawArc(x, y, width, height, startAngle, arcSweep)

Drawing ovals

An oval is drawn by the method drawOval. The arguments specify the location,
width, and height of the smallest rectangle that encloses the oval. For example, the
following line draws an oval:

g.drawOval(100, 50, 300, 200);

This draws an oval that just fits into an invisible rectangle whose upper-left corner is
at coordinates (100, 50) and that has a width of 300 pixels and a height of 200 pixels.
Note that the point that is used to place the oval on the screen is not the center of the
oval or anything like the center, but is something like the upper-left corner of the oval.

Note that a circle is a special case of an oval in which the width and height of the
rectangle are equal. For example, the following line from the definition of paint in
Display 18.11 draws a circle for the outline of the face:

g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

Because the enclosing rectangle has the same width and height, this produces a circle.
Some of the methods you can use to draw simple figures are shown in Display 18.12.

A similar table is given in Appendix 5.

Drawing arcs

Arcs, such as the smile on the happy face in Display 18.13, are described by giving an
oval and then specifying what portion of the oval will be used for the arc. For example,
the following statement from Display 18.13 draws the smile on the happy face:

g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);

which is equivalent to

g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT, 180, 180);

Display 18.12 Some Methods in the Class Graphics (part 3 of 3)

drawOval

drawArc

1088 CHAPTER 18 Swing II

The arguments MOUTH_WIDTH and MOUTH_HEIGHT determine the size of an invisible
rectangle. The arguments X_MOUTH and Y_MOUTH determine the location of the
rectangle. The upper-left corner of the rectangle is located at the point (X_MOUTH,
Y_MOUTH). Inside this invisible rectangle, envision an invisible oval that just fits inside
the invisible rectangle. The last two arguments specify the portion of this invisible oval
that is made visible.

Display 18.14 illustrates how these last two arguments specify an arc of the invisible
oval to be made visible. The next-to-last argument specifies a start angle in degrees.
The last argument specifies how many degrees of the oval's arc will be made visible. If
the last argument is 360 (degrees), then the full oval is made visible.

Display 18.13 Drawing a Happy Face (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import java.awt.Graphics;
 3 import java.awt.Color;

 4 public class HappyFace extends JFrame
 5 {
 6 public static final int WINDOW_WIDTH = 400;
 7 public static final int WINDOW_HEIGHT = 400;

 8 public static final int FACE_DIAMETER = 200;
 9 public static final int X_FACE = 100;
10 public static final int Y_FACE = 100;

11 public static final int EYE_WIDTH = 20;
12 public static final int EYE_HEIGHT = 10;
13 public static final int X_RIGHT_EYE = X_FACE + 55;
14 public static final int Y_RIGHT_EYE = Y_FACE + 60;
15 public static final int X_LEFT_EYE = X_FACE + 130;
16 public static final int Y_LEFT_EYE = Y_FACE + 60;

17 public static final int MOUTH_WIDTH = 100;
18 public static final int MOUTH_HEIGHT = 50;
19 public static final int X_MOUTH = X_FACE + 50;
20 public static final int Y_MOUTH = Y_FACE + 100;
21 public static final int MOUTH_START_ANGLE = 180;
22 public static final int MOUTH_ARC_SWEEP = 180;
23 public static void main(String[] args)
24 {
25 HappyFace drawing = new HappyFace();
26 drawing.setVisible(true);
27 }

The Graphics Class 1089

28 public HappyFace()
29 {
30 super("Graphics Demonstration 2");
31 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
32 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
33 getContentPane().setBackground(Color.white);
34 }
35 public void paint(Graphics g)
36 {
37 super.paint(g);
38 g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
39 //Draw Eyes:
40 g.fillOval(X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
41 g.fillOval(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);
42 //Draw Mouth:
43 g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
44 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);
45 }
46 }

Resulting GUI

Display 18.13 Drawing a Happy Face (part 2 of 2) (Source: Oracle Corporation)

1090 CHAPTER 18 Swing II

g.drawArc(x, y, width, height, 0, 90);

Start at
0 degrees

Sweep through 90 degrees

Display 18.14 Specifying an Arc

g.drawArc(x, y, width, height, 0, −90);

Negative direction

Start at
0 degrees

g.drawArc(x, y, width, height, 0, 360);

0 degrees

Positive direction

height

width(x, y)

g.drawArc(x, y, width, height, 180, 90);

Start at
180 degrees

Sweep through 90 degrees

The Graphics Class 1091

The angles are numbered with zero degrees, as shown in Display 18.14. In the
first figure, the start angle is zero degrees. The counterclockwise direction is positive.
So a start angle of 90 degrees would start at the top of the oval. A start angle of
−90 degrees would start at the bottom of the oval. For example, the smile on the
happy face in Display 18.13 has a start angle of 180 degrees, so it starts on the left
end of the invisible oval. The last argument is also 180, so the arc is made visible
through a counterclockwise direction of 180 degrees, or halfway around the oval in the
counterclockwise direction.

Self-Test Exercises

10. Give an invocation of a method to draw a horizontal line from point (30, 40)
to point (100, 60). The calling object of type Graphics is named g.

11. Give an invocation of a method to draw a horizontal line of length 100 starting
at position (30, 40) and extending to the right. The calling object of type
Graphics is named g.

12. Give an invocation of a method that draws a vertical line of length 100 starting
at position (30, 40) and extending downward. Use graphicsObject (of type
Graphic) as the calling object.

13. Give an invocation of a method to draw a solid rectangle of width 100 and
height 50 with the upper-left corner at position (20, 30). The calling object of
type Graphics is named graphicsObject.

14. Give an invocation of a method to draw a solid rectangle of width 100 and
height 50 with the upper-right corner at position (200, 300). The calling object
of type Graphics is named g.

15. Give an invocation of a method to draw a circle of diameter 100 with the
center at position (300, 400). The calling object of type Graphics is named g.

16. Give an invocation of a method to draw a circle of radius 100 with the center
at position (300, 400). The calling object of type Graphics is named g.

rounded rectangles ★

A rounded rectangle is a rectangle whose corners have been replaced by arcs so that
the corners are rounded. For example, suppose g is of type Graphics and consider
what would be drawn by the following:

g.drawRoundRect(x, y, width, height, arcWidth, arcHeight)

The arguments x, y, width, and height determine a regular rectangle in the usual way.
The upper-left corner is at the point (x, y). The rectangle has the specified width and

rounded
rectangle

1092 CHAPTER 18 Swing II

height. The last two arguments, arcWidth and arcHeight, specify the arcs that will
be used for the corners so as to produce a rounded rectangle. Each corner is replaced
with a quarter of an oval that is arcWidth pixels wide and arcHeight pixels high.
This is illustrated in Display 18.15. To obtain corners that are arcs of circles, just make
arcWidth and arcHeight equal.

paintComponent for Panels

You can draw figures on a JPanel and place the JPanel in a JFrame. When defining
a JPanel class that contains a graphics drawing, use the method paintComponent
instead of the method paint, but otherwise the details are similar to what we have
seen for JFrames. JFrames use the method paint. However, JPanels—and in fact
all JComponents—use the method paintComponent. A very simple example of using
paintComponent with a JPanel is given in Display 18.16.

If you look back at Display 17.12 in Chapter 17, you will see that a JPanel is a
JComponent, but a JFrame is not a JComponent. A JFrame is only a Component. This
is why they use different methods to paint the screen.

action Drawings and repaint

The program in Display 18.17 is similar to the program in Display 18.13. It draws a
happy face similar to the happy face given in Display 18.13, but with one difference:
There is a button at the bottom of the GUI that says Click for a Wink. When you
click that button, the left eye winks. (Remember the left eye is on your right.) Let us
see the details.

g.drawRoundRect(x, y, width, height, arcWidth, arcHeight);
produces:

height

width

arcWidth

arcHeight

(x, y)

Display 18.15 A Rounded Rectangle

The Graphics Class 1093

Display 18.16 paintComponent Demonstration (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import java.awt.GridLayout;
 4 import java.awt.Graphics;
 5 import java.awt.Color;

 6 public class PaintComponentDemo extends JFrame
 7 {
 8 public static final int FRAME_WIDTH = 400;
 9 public static final int FRAME_HEIGHT = 400;

10 private class FancyPanel extends JPanel
11 {
12 public void paintComponent(Graphics g)
13 {
14 super.paintComponent(g);
15 setBackground(Color.YELLOW);
16 g.drawOval(FRAME_WIDTH/4, FRAME_HEIGHT/8,
17 FRAME_WIDTH/2, FRAME_HEIGHT/6);
18 }
19 }

20 public static void main(String[] args)
21 {
22 PaintComponentDemo w = new PaintComponentDemo();
23 w.setVisible(true);
24 }
25 public PaintComponentDemo()
26 {
27 setSize(FRAME_WIDTH, FRAME_HEIGHT);
28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 setTitle("The Oval Is in a Panel");
30 setLayout(new GridLayout(2, 1));
31 FancyPanel p = new FancyPanel();
32 add(p);
33 JPanel whitePanel = new JPanel();
34 whitePanel.setBackground(Color.WHITE);
35 add(whitePanel);
36 }
37 }

(continued)

1094 CHAPTER 18 Swing II

The program in Display 18.17 has a private instance variable wink of type boolean.
When the value of wink is false, the paint method draws an ordinary happy face.
When the value of wink is true, the paint method draws the face the same except that
the left eye is just a straight line, which looks like the eye is closed. The variable wink is
initialized to false.

When the button labeled Click for a Wink is clicked, this sends an action event
to the method actionPerformed. The method actionPerformed then changes the
value of the variable wink to true and invokes the method repaint. This use of the
method repaint is new, so let us discuss it a bit.

Every JFrame (in fact, every Component and every Container) has a method
named repaint. The method repaint will repaint the screen so that any changes
to the graphics being displayed will show on the screen. If you omit the invocation
of repaint from the method actionPerformed, then the variable wink will change
to true, but the screen will not change. Without an invocation of repaint, the face
will not change, because the method paint must be called again with the new value of
wink before the change takes effect. The method repaint does a few standard things
and, most importantly, will also invoke the method paint, which redraws the screen.
Be sure to note that you should invoke repaint and not paint.

Now we explain why, when wink has the value true, the method paint draws the
face with the left eye changed. The relevant part of the code is the following, which
draws the left eye:

if (wink)

 g.drawLine(X_LEFT_EYE, Y_LEFT_EYE,
 X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE);
else
 g.fillOval(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);

Resulting GUI

Display 18.16 paintComponent Demonstration (part 2 of 2) (Source: Oracle Corporation)

repaint

The Graphics Class 1095

Display 18.17 An Action Drawing (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JButton;
 3 import java.awt.event.ActionListener;
 4 import java.awt.event.ActionEvent;
 5 import java.awt.BorderLayout;
 6 import java.awt.Graphics;
 7 import java.awt.Color;

 8 public class ActionFace extends JFrame
 9 {
10 public static final int WINDOW_WIDTH = 400;
11 public static final int WINDOW_HEIGHT = 400;

12 public static final int FACE_DIAMETER = 200;
13 public static final int X_FACE = 100;
14 public static final int Y_FACE = 100;

15 public static final int EYE_WIDTH = 20;
16 public static final int EYE_HEIGHT = 10;
17 public static final int X_RIGHT_EYE = X_FACE + 55;
18 public static final int Y_RIGHT_EYE = Y_FACE + 60;
19 public static final int X_LEFT_EYE = X_FACE + 130;
20 public static final int Y_LEFT_EYE = Y_FACE + 60;

21 public static final int MOUTH_WIDTH = 100;
22 public static final int MOUTH_HEIGHT = 50;
23 public static final int X_MOUTH = X_FACE + 50;
24 public static final int Y_MOUTH = Y_FACE + 100;
25 public static final int MOUTH_START_ANGLE = 180;
26 public static final int MOUTH_ARC_SWEEP = 180;

27 private boolean wink;

28 private class WinkAction implements ActionListener
29 {
30 public void actionPerformed(ActionEvent e)
31 {
32 wink = true;
33 repaint();
34 }
35 } // End of WinkAction inner class

(continued)

1096 CHAPTER 18 Swing II

36 public static void main(String[] args)
37 {
38 ActionFace drawing = new ActionFace();
39 drawing.setVisible(true);
40 }

41 public ActionFace()
42 {
43 setSize(WINDOW_WIDTH, WINDOW_HEIGHT);
44 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
45 setTitle("Hello There!");
46 setLayout(new BorderLayout());
47 getContentPane().setBackground(Color.white);

48 JButton winkButton = new JButton("Click for a Wink.");
49 winkButton.addActionListener(new WinkAction());
50 add(winkButton, BorderLayout.SOUTH);
51 wink = false;
52 }

53 public void paint(Graphics g)
54 {
55 super.paint(g);
56 g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
57 //Draw Right Eye:
58 g.fillOval(X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
59 //Draw Left Eye:
60 if (wink)
61 g.drawLine(X_LEFT_EYE, Y_LEFT_EYE,
62 X_LEFT_EYE + EYE_WIDTH, Y_LEFT_EYE);
63 else
64 g.fillOval(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);

65 //Draw Mouth:
66 g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
67 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);
68 }

69 }

Display 18.17 An Action Drawing (part 2 of 3)

The Graphics Class 1097

Resulting GUI (After clicking the button)

Resulting GUI (When started)

Display 18.17 An Action Drawing (part 3 of 3) (Source: Oracle Corporation)

If wink has the value true, then the eye is drawn as a line, which looks like a closed
eye. If wink has the value false, then the eye is drawn as an oval, which looks like an
open eye.

1098 CHAPTER 18 Swing II

Some more Details on updating a GuI ★

Most of the changes to a GUI windowing system that we have seen are updated
automatically so that they are visible on the screen. This is done by an object known
as the repaint manager. The repaint manager works automatically, and you need
not even be aware of its presence. However, there are a few updates that the repaint
manager will not do for you. You have already learned that you need an invocation of
repaint when your GUI changes the figure drawn in the JFrame as in Display 18.17.

Two other updating methods that you will often see when looking at Swing code
are validate and pack.

Every container class has the method validate, which has no arguments. An invocation
of validate causes the container to lay out its components again. An invocation of
validate is a kind of “update” action that makes changes in the components actually
happen on the screen. Many simple changes that are made to a Swing GUI, such as
changing color or changing the text in a text field, happen automatically. Other changes,
such as some kinds of addition of components or changes in visibility, may require an
invocation of validate or some other “update” method. Sometimes it is difficult to
decide whether an invocation of validate is necessary. When in doubt, include an
invocation of validate. Although invoking validate when it is not needed can make
your program a little less efficient, it will have no other ill effects on your GUI.

The method pack causes the window to be resized, usually to a smaller size, but
more precisely to an approximation of a size known as the preferred size. (Yes, you can
change the preferred size, but we do not have room to cover all of the Swing library in
these few chapters.)

We do not have enough space in this book to go into all the details of how a GUI
is updated on the screen, but these few remarks may make some code you find in more
advanced books a little less puzzling.

18.4 Colors

One colored picture is worth a thousand black and white pictures.

ANONyMOuS

In this section, we tell you how to specify colors for the figures you draw with the graphics
methods. We also show you how to define your own colors using the class Color.

The repaint and paint methods
When you change the graphic’s contents in a window and want to update the window so
that the new contents show on the screen, do not call paint; call repaint. The repaint
method takes care of some overhead and then calls the paint method. Normally, you do
not define repaint. As long as you define the paint method correctly, the repaint
method should work correctly. Note that you often define paint, but you normally do not
call it. On the other hand, normally you do not define repaint, but you do sometimes call it.

repaint
manager

validate

pack

Colors 1099

Specifying a Drawing Color

When drawing figures with methods such as drawLine inside of the definition of
the paint method, you can think of your drawing as being done with a pen that can
change colors. The method setColor will change the color of the pen.

For example, consider the happy face that is drawn by the GUI in Display 18.13. If
you change the definition of the paint method to the version shown in Display 18.18,
the eyes will be blue and the mouth will be red. (The file HappyFaceColor.java on
the accompanying website contains a version of the changed program. It consists of the
program in Display 18.13 with the definition of the paint method replaced by the one in
Display 18.18 and with the class name changed from HappyFace to HappyFaceColor.)

setColor

extra
code on
website

The setColor method
When you are doing drawings with an object of the class Graphics, you can set the color
of the drawing with an invocation of setColor. The color specified can later be changed
with another invocation of setColor, so a single drawing can have multiple colors.

SYNTax

 Graphics_Object.setColor(Color_Object);

ExamPLE

 g.setColor(Color.BLUE);

Display 18.18 Adding Color

 1 public void paint(Graphics g)
 2 {
 3 super.paint(g);
 4 //Default is equivalent to: g.setColor(Color.black);
 5 g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
 6 //Draw Eyes:
 7 g.setColor(Color.BLUE);
 8 g.fillOval(X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
 9 g.fillOval(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);
10 //Draw Mouth:
11 g.setColor(Color.RED);
12 g.drawArc(X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
13 MOUTH_START_ANGLE, MOUTH_ARC_SWEEP);
14 }
If you replace the method paint in Display 18.13 with this version of paint, then the happy face will have
blue eyes and red lips.

1100 CHAPTER 18 Swing II

Defining Colors

Display 17.5 in Chapter 17 lists the standard colors in the class Color, which are
defined for you. If that table does not have the colors you want, you can use the class
Color to define your own colors. To understand how this is done, you need to first
know a few basic facts about colors. By mixing red, green, and blue light in varying
amounts, the human eye can be given the sensation of viewing any color the eye is
capable of seeing. This is what an ordinary television set does to produce all the colors
it displays. The television mixes red, green, and blue light and shines these lights on the
screen in differing amounts. This is often called the RGB color system, for obvious
reasons. Because a computer monitor is basically the same thing as a television set,
colors for computer monitors can be produced in the same way. The Java Color class
mixes amounts of red, green, and blue to produce any new color you might want.

When specifying the amount of each of the colors red, green, and blue, you can use
either integers in the range 0 to 255 (inclusive) or float values in the range 0.0 to 1.0
(inclusive). For example, brown is formed by mixing red and green. So, the following
defines a color called brown that will look like a shade of brown:

Color brown = new Color(200, 150, 0);

This color brown will have a 200.0/255 fraction of the maximum amount of red
possible, a 150.0/255 fraction of the maximum amount of green possible, and no
blue. If you want to use fractions to express the color, you can. The following is an
equivalent way of defining the same color brown:

Color brown =
new Color((float)(200.0/255), (float)(150.0/255), (float)0.0);

You need the type casts (float) because the constructors for the class Color accept
only arguments of type int or float, and numbers such as 200.0/255 and 0.0 are
considered to be of type double, not of type float.

Some constructors for the class Color and some of the commonly used methods for
the class Color are summarized in Display 18.19.

RGB color
system

Color
constructors

rGB Colors

The class Color uses the RGB method of creating colors. That means that every color is a
combination of the three colors red, green, and blue.

Display 18.19 Some Methods in the Class Color (part 1 of 2)

The class Color is in the java.awt package.

 public Color(int r, int g, int b)

Constructor that creates a new Color with the specified RGB values. The parameters r, g, and b
must each be in the range 0 to 255 (inclusive).

Colors 1101

 public Color(float r, float g, float b)

Constructor that creates a new Color with the specified RGB values. The parameters r, g, and b
must each be in the range 0.0 to 1.0 (inclusive).

 public int getRed()

Returns the red component of the calling object. The returned value is in the range 0 to 255
(inclusive).

 public int getGreen()

Returns the green component of the calling object. The returned value is in the range 0 to 255
(inclusive).

 public int getBlue()

Returns the blue component of the calling object. The returned value is in the range 0 to 255
(inclusive).

 public Color brighter()

Returns a brighter version of the calling object color.

 public Color darker()

Returns a darker version of the calling object color.

 public boolean equals(Object c)

Returns true if c is equal to the calling object color; otherwise, returns false.

Display 18.19 Some Methods in the Class Color (part 2 of 2)

PITFaLL: using doubles to Define a Color

Suppose you want to make a color that is made of half the possible amount of red,
half the possible amount of blue, and no green. The following seems reasonable:

Color purple = new Color(0.5, 0.0, 0.5);

However, this will produce a compiler error. The numbers 0.5 and 0.0 are considered
to be of type double, and this constructor requires arguments of type float (or of
type int). So, an explicit type cast is required, as follows:

Color purple = new Color((float)0.5, (float)0.0, (float)0.5);

Java does allow the following method of specifying that a number is of type float,
which can be simpler than the previous line of code:

Color purple = new Color(0.5f, 0.0f, 0.5f);

(continued)

1102 CHAPTER 18 Swing II

The JColorChooser Dialog Window

The class JColorChooser can be used to produce a dialog window that allows you
to choose a color by looking at color samples or by choosing RGB values. The static
method showDialog in the class JColorChooser produces a window that allows the
user to choose a color. A sample program using this method is given in Display 18.20.
The statement that launches the JColorChooser dialog window is the following:

sampleColor =
 JColorChooser.showDialog(this, "JColorChooser", sampleColor);

When this statement is executed, the window shown in the second GUI picture in
Display 18.20 is displayed for the user to choose a color. Once the user has chosen a color
and clicked the OK button, the window goes away and the chosen color is returned as
the value of the JColorChooser.showDialog method invocation. So, in this example,
the Color object returned is assigned to the variable sampleColor. If the user clicks the
Cancel button, then the method invocation returns null rather than a color.

The method JColorChooser.showDialog takes three arguments. The first
argument is the parent component, which is the component from which it was
launched. In most simple cases, it is likely to be this, as it is in our example. The
second argument is a title for the color chooser window. The third argument is the
initial color for the color chooser window. The window shows the user samples of what
the color he or she chooses will look like. The user can choose colors repeatedly, and
each will be displayed in turn until the user clicks the OK button. The color displayed
when the color chooser window first appears is that third argument.

The color chooser window has three tabs at the top labeled Swatches, HSB, and
RGB. This gives the user three different ways to choose colors. If the Swatches tab is
clicked, the window displays color samples for the user to choose from. This is the

An even easier way to avoid these problems is to simply use int arguments, as in
the following:

purple = new Color(127, 0, 127);

(You may feel that the values of 127 should be replaced by 128, but that is a minor
point. You are not likely to even notice the difference in color between, say, 127 red
and 128 red.)

In any final code produced, these float numbers should normally be replaced by
defined constants, such as

public static final float RED_VALUE = (float)0.5;
public static final float GREEN_VALUE = (float)0.0;
public static final float BLUE_VALUE = (float)0.5;

Note that even though the defined constants are specified to be of type float, you
still need a type cast. ■

PITFaLL: (continued)

Colors 1103

(continued)

Display 18.20 JColorChooser Dialog (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import javax.swing.JButton;
 4 import javax.swing.JColorChooser;
 5 import java.awt.event.ActionListener;
 6 import java.awt.event.ActionEvent;
 7 import java.awt.BorderLayout;
 8 import java.awt.FlowLayout;
 9 import java.awt.Color;

10 public class JColorChooserDemo extends JFrame
11 implements ActionListener
12 {
13 public static final int WIDTH = 400;
14 public static final int HEIGHT = 200;

15 private Color sampleColor = Color.LIGHT_GRAY;

16 public static void main(String[] args)
17 {
18 JColorChooserDemo gui = new JColorChooserDemo();
19 gui.setVisible(true);
20 }

21 public JColorChooserDemo()
22 {
23 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24 getContentPane().setBackground(sampleColor);
25 setLayout(new BorderLayout());
26 setTitle("JColorChooser Demo");
27 setSize(WIDTH, HEIGHT);
28 JPanel buttonPanel = new JPanel();
29 buttonPanel.setBackground(Color.WHITE);
30 buttonPanel.setLayout(new FlowLayout());
31 JButton chooseButton = new JButton("Choose a Color");
32 chooseButton.addActionListener(this);
33 buttonPanel.add(chooseButton);
34 add(buttonPanel, BorderLayout.SOUTH);
35 }

1104 CHAPTER 18 Swing II

36 public void actionPerformed(ActionEvent e)
37 {
38 if (e.getActionCommand().equals("Choose a Color"))
39 {
40 sampleColor =
41 JColorChooser.showDialog(this,

"JColorChooser", sampleColor);
42 if (sampleColor != null)//If a color was chosen
43 getContentPane().setBackground(sampleColor);
44 }
45 else
46 System.out.println("Unanticipated Error");
47 }
48 }

Resulting GUI (Three views of one GUI)

Start view

Display 18.20 JColorChooser Dialog (part 2 of 2) (Source: Oracle Corporation)

After clicking
Choose a Color

After clicking the RGB tab

Fonts and the drawString Method 1105

way the window first comes up. So, if the user clicks no tab, it is the same as clicking
the Swatches tab. The RGB tab allows the user to choose a color by specifying the red,
green, and blue values. The HSB tab gives the user a chance to choose colors in a way we
will not discuss. To really understand the JColorChooser dialog window, you need to
run the program in Display 18.20 to see it in action.

Self-Test Exercises

17. How would you change the method paint in Display 18.18 so that the happy
face has one blue eye (the right eye) and one green eye (the left eye)?

18. How would you change the method paint in Display 18.18 so that the happy
face not only has blue eyes and a red mouth, but also has brown skin?

18.5 Fonts and the drawString method

It is not of so much consequence what you say,
as how you say it.

ALEXANDER SMITH, Dreamthorp. On the Writing of Essays, Strahan, 1863.

Java has facilities to add text to drawings and to modify the font of the text. We will show
you enough to allow you to do most things you might want to do with text and fonts.

The drawString method

Display 18.21 contains a demonstration program for the method drawString. When
the program is run, the GUI displays the text "Push the button." When the user
clicks the button, the string is changed to "Thank you. I needed that." The text is
written with the method drawString.

The method drawString is similar to the drawing methods in the class Graphics,
but it displays text rather than a drawing. For example, the following line from
Display 18.21 writes the string stored in the variable theText starting at the x- and
y-coordinates X_START and Y_START:

g.drawString(theText, X_START, Y_START);

The string is written in the current font. A default font is used if no font is specified.
The details about fonts are discussed in the next subsection.

1106 CHAPTER 18 Swing II

Display 18.21 Using drawString (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import javax.swing.JButton;
 4 import java.awt.event.ActionListener;
 5 import java.awt.event.ActionEvent;
 6 import java.awt.BorderLayout;
 7 import java.awt.Graphics;
 8 import java.awt.Color;
 9 import java.awt.Font;

10 public class DrawStringDemo extends JFrame
11 implements ActionListener
12 {
13 public static final int WIDTH = 350;
14 public static final int HEIGHT = 200;
15 public static final int X_START = 20;
16 public static final int Y_START = 100;
17 public static final int POINT_SIZE = 24;

18 private String theText = "Push the button.";
19 private Color penColor = Color.BLACK;
20 private Font fontObject =
21 new Font("SansSerif", Font.PLAIN, POINT_SIZE);

22 public static void main(String[] args)
23 {
24 DrawStringDemo gui = new DrawStringDemo();
25 gui.setVisible(true);
26 }

27 public DrawStringDemo()
28 {
29 setSize(WIDTH, HEIGHT);
30 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
31 setTitle("drawString Demonstration");

32 getContentPane().setBackground(Color.WHITE);
33 setLayout(new BorderLayout());

34 JPanel buttonPanel = new JPanel();
35 buttonPanel.setBackground(Color.GRAY);
36 buttonPanel.setLayout(new BorderLayout());
37 JButton theButton = new JButton("The Button");
38 theButton.addActionListener(this);

39 buttonPanel.add(theButton, BorderLayout.CENTER);

40 add(buttonPanel, BorderLayout.SOUTH);
41 }

Fonts and the drawString Method 1107

Resulting GUI (After clicking the button)

Display 18.21 Using drawString (part 2 of 2) (Source: Oracle Corporation)

42 public void paint(Graphics g)
43 {
44 super.paint(g);
45 g.setFont(fontObject);
46 g.setColor(penColor);
47 g.drawString(theText, X_START, Y_START);
48 }

49 public void actionPerformed(ActionEvent e)
50 {
51 penColor = Color.RED;
52 fontObject =
53 new Font("Serif", Font.BOLD|Font.ITALIC, POINT_SIZE);
54 theText = "Thank you. I needed that.";

55 repaint();
56 }
57 }

Resulting GUI (Start view)

1108 CHAPTER 18 Swing II

Font

Fonts

The program in Display 18.21 illustrates how the font for the method drawString is set.
That program sets the font with the following line in the definition of the method paint:

g.setFont(fontObject);

In this program, fontObject is a private instance variable of type Font.Font is a class
in the java.awt package. Objects of the class Font represent fonts.

In Display 18.21, the variable fontObject is set using a constructor for the class
Font. The initial font is set as part of the instance variable declaration in the following
lines taken from Display 18.21:

private Font fontObject =
 new Font("SansSerif", Font.PLAIN, POINT_SIZE);

The constructor for the class Font creates a font in a given style and size. The first
argument, in this case "SansSerif", is a string that gives the name of the font (that is,
the basic style). Some typical font names are "Times", "Courier", and "Helvetica".
You may use any font currently available on your system. Java guarantees that you
will have at least the three fonts "Monospaced", "SansSerif", and "Serif". To see
what these fonts look like on your system, run the program FontDisplay.java on the
accompanying website. It will produce the window shown in Display 18.22.

Most font names have no real meaning. The names just sounded right to the creator.
However, the terms “Serif,” “Sans Serif,” and “Monospaced” do mean something,

extra code
on website

Fonts may look somewhat different on your system.

Display 18.22 Result of Running FontDisplay.java (Source: Oracle Corporation)

setFont

Fonts and the drawString Method 1109

which may help you keep the names of the three guaranteed fonts clear in your mind.
Serifs are those small lines that sometimes finish off the ends of the lines in letters. For
example, S has serifs (at the two ends of the curved line), but S does not have serifs.
The "Serif" font will always have these decorative little lines. Sans means without, so
the "SansSerif" font will not have these decorative little lines. As you might guess,
"Monospaced" means that all the characters have equal width.

Fonts can be given style modifiers, such as bold or italic, and they can come in
different sizes. The second and third arguments to the constructor for Font specify
the style modifications and size for the font, as in the following, which occurs in the
actionPerformed method in Display 18.21:

new Font("Serif", Font.BOLD|Font.ITALIC, POINT_SIZE);

The second argument specifies style modifications. Note that you can specify
multiple style modifications by connecting them with the symbol | as in Font.
BOLD|Font.ITALIC.2 The last argument specifies the size of the letters in the version
of the font created.

Character sizes are specified in units known as points, so the size of a particular
version of a font is called a point size. One point is 1/72 of an inch, but measurements
of font sizes are not as precise as might be ideal; two different fonts of the same point
size may be slightly different in size.

The method setFont sets the font for the Graphics object, which is named g in
Display 18.21. The font remains in effect until it is changed. If you do not specify any
font, then a default font is used.

There is no simple way to change the properties of the current font, such as making
it italic. Every change in a font normally requires that you define a new Font object
and use it as an argument to setFont.

Display 18.23 gives some useful details about constructors, methods, and constants
that are members of, or are related to, the class Font.

2The symbol | produces a “bitwise or of the numbers,” but that detail need not concern you. You need
not even know what is meant by a “bitwise or of the numbers.” Just think of | as a special way to con-
nect style specifications.

point size

The drawString method

The drawString method writes the text given by the String at the point (X, Y) of the
Graphics_Object. The text is written in the current font, color, and font size.

SYNTax

 Graphics_Object.drawString(String, X, Y);

ExamPLE
 g.drawString("I love you madly.", X_START, Y_START);

1110 CHAPTER 18 Swing II

Display 18.23 Some Methods and Constants for the Class Font

The class Font is in the java.awt package.

CONSTRUCTOR FOR THE CLASS Font

 public Font(String fontName, int styleModifications, int size)

Constructor that creates a version of the font named by fontName with the specified
styleModifications and size.

CONSTANTS IN THE CLASS Font

 Font.BOLD

Specifies bold style.

 Font.ITALIC

Specifies italic style.

 Font.PLAIN

Specifies plain style—that is, not bold and not italic.

NAMES OF FONTS (These three are guaranteed by Java.
Your system will probably have others as well as these.)

 "Monospaced"

See Display 18.22 for a sample.

 "SansSerif"

See Display 18.22 for a sample.

 "Serif"

See Display 18.22 for a sample.

METHOD THAT USES Font

 public abstract void setFont(Font fontObject)

This method is in the class Graphics. Sets the current font of the calling Graphics object to
fontObject.

Self-Test Exercises

19. Suppose g is an object of type Graphics. Write a line of code that will set the
font for g to Sans Serif bold of size 14 points.

20. Suppose g is an object of type Graphics. Write a line of code that will set the
font for g to Sans Serif bold and italic of size 14 points.

Fonts and the drawString Method 1111

Chapter Summary

• You can define a window listener class by having it implement the WindowListener
interface.

• An icon is an object of the class ImageIcon and is created from a digital picture. You
can add icons to JButtons, JLabels, and JMenuItems.

• You can use the class JScrollPane to add scroll bars to a text area.

• You can draw figures such as lines, ovals, and rectangles using methods in the
class Graphics.

• You can use the method setColor to specify the color of each figure or text drawn
with the method of the class Graphics.

• You can define your own colors using the class Color.

• Colors are defined using the RGB (red/green/blue) system.

• You can use the method drawString of the class Graphics to add text to a JFrame
or JPanel.

• You can use the method setFont to set the font, style modifiers, and point size for
text written with the drawString method of the Graphics class.

answers to Self-Test Exercises

 1. All the methods in Display 18.1. If there is no particular action that you want the
method to perform, you can give the method an empty body.

 2. The smaller window goes away but the larger window stays. This is the default
 action for the close-window button and we did not change it for the smaller
 window.

 3. dispose

 4. The import statements are the same as in Display 18.2. The rest of the definition follows.
This definition is in the file WindowListenerDemo3 on the accompanying website.

 public class WindowListenerDemo3 extends JFrame
 implements WindowListener
 {

 public static final int WIDTH = 300; //for main window
 public static final int HEIGHT = 200; //for main window
 public static final int SMALL_WIDTH = 200;
 //for confirm window
 public static final int SMALL_HEIGHT = 100;
 //for confirm window

 private class ConfirmWindow extends JFrame
 implements ActionListener

extra code
on website

Answers to Self-Test Exercises 1111

 {

 public ConfirmWindow()

 {

 setSize(SMALL_WIDTH, SMALL_HEIGHT);

 getContentPane().setBackground(Color.YELLOW);

 setLayout(new BorderLayout());

 JLabel confirmLabel = new JLabel(

 "Are you sure you want to exit?");

 add(confirmLabel, BorderLayout.CENTER);

 JPanel buttonPanel = new JPanel();

 buttonPanel.setBackground(Color.ORANGE);

 buttonPanel.setLayout(new FlowLayout());

 JButton exitButton = new JButton("Yes");

 exitButton.addActionListener(this);

 buttonPanel.add(exitButton);

 JButton cancelButton = new JButton("No");

 cancelButton.addActionListener(this);

 buttonPanel.add(cancelButton);

 add(buttonPanel, BorderLayout.SOUTH);

 }

 public void actionPerformed(ActionEvent e)

 {

 String actionCommand = e.getActionCommand();

 if (actionCommand.equals("Yes"))

 System.exit(0);

 else if (actionCommand.equals("No"))

 dispose();//Destroys only the ConfirmWindow.

 else

 System.out.println(

 "Unexpected Error in Confirm Window.");

 }

 } //End of inner class ConfirmWindow

 public static void main(String[] args)

 {

 WindowListenerDemo3 demoWindow =

 new WindowListenerDemo3();

 demoWindow.setVisible(true);

 }

1112 CHAPTER 18 Swing II

 public WindowListenerDemo3()

 {

 setSize(WIDTH, HEIGHT);

 setTitle("Window Listener Demonstration");

 setDefaultCloseOperation(

 JFrame.DO_NOTHING_ON_CLOSE);

 addWindowListener(this);

 getContentPane().setBackground(Color.LIGHT_GRAY);

 JLabel aLabel =

 new JLabel("I like to be sure you are sincere.");

 add(aLabel);

 }

 //The following are now methods of the class

WindowListenerDemo3:

 public void windowOpened(WindowEvent e)

 {}

 public void windowClosing(WindowEvent e)

 {

 ConfirmWindow checkers = new ConfirmWindow();

 checkers.setVisible(true);

 }

 public void windowClosed(WindowEvent e)

 {}

 public void windowIconified(WindowEvent e)

 {}

 public void windowDeiconified(WindowEvent e)

 {}

 public void windowActivated(WindowEvent e)

 {}

 public void windowDeactivated(WindowEvent e)

 {}

 }

 5. JButton magicButton = new JButton("Magic Button");
ImageIcon wizardIcon = new ImageIcon("wizard.gif");

magicButton.setIcon(wizardIcon);

Answers to Self-Test Exercises 1113

 There are a number of other ways to accomplish the same thing. Here are two of
a number of valid alternatives:

 JButton magicButton = new JButton("Magic Button");

 magicButton.setIcon(new ImageIcon("wizard.gif"));

 ImageIcon wizardIcon = new ImageIcon("wizard.gif");

 JButton magicButton =

 new JButton("Magic Button", wizardIcon);

 6. ImageIcon wizardIcon = new ImageIcon("wizard.gif");
 JLabel wizardPicture = new JLabel(wizardIcon);

 picturePanel.add(wizardPicture);

 There are a number of other ways to accomplish the same thing. Here is one valid
alternative:

 picturePanel.add(new JLabel(

 new ImageIcon("wizard.gif")));

 7. ImageIcon wizardIcon = new ImageIcon("wizard.gif");
 JButton magicButton = new JButton(wizardIcon);

 magicButton.setActionCommand("Kazam");

 There are a number of other ways to accomplish the same thing. Here is one valid
alternative:

 JButton magicButton =

 new JButton(new ImageIcon("wizard.gif"));

 magicButton.setActionCommand("Kazam");

 8. No. You can invoke none, one, or both methods.

 9. No. The class JTextArea is a descendent class of the class Component. So, every
JTextArea is also a Component.

10. g.drawLine(30, 40, 100, 60);

11. g.drawLine(30, 40, 130, 40);

12. graphicsObject.drawLine(30, 40, 30, 140);

13. graphicsObject.fillRect(20, 30, 100, 50);

14. g.fillRect(200, 300, 100, 50);

15. g.drawOval(250, 350, 100, 100);

16. g.drawOval(200, 300, 200, 200);

17. Insert g.setColor(Color.GREEN) as indicated next:
 //Draw Eyes:

 g.setColor(Color.BLUE);

 g.fillOval(X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);

 g.setColor(Color.GREEN);

 g.fillOval(X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);

1114 CHAPTER 18 Swing II

Programming Projects 1115

18. Replace the following line in the paint method

 g.drawOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

 with

 Color brown =

 new Color(200, 150, 0);

 g.setColor(brown);

 g.fillOval(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

 Note that there is no predefined color constant Color.BROWN, so you need to
define a color for brown. You may prefer some other arguments instead of (200,
150, 0) so that you get a shade of brown that is more to your liking.

19. g.setFont(new Font("SansSerif", Font.BOLD, 14));

20. g.setFont(new Font("SansSerif", Font.BOLD|Font.ITALIC, 14));

Programming Projects

 1. A Sierpinski Gasket or Triangle is a type of fractal named after the Polish
 mathematician Waclaw Sierpinski who described some of its interesting properties
in 1916. It is a nice example of how an orderly structure can be created as a result
of random, chaotic behavior.

 One way to create the fractal is to start with an equilateral triangle. Let us say that
the corners are labeled X, Y, and Z.

 1. Set current equal to point X.

 2. Repeat many times (you can try 10,000).

 a. Randomly pick target as one of the three X, Y, or Z.

 b. Calculate the point halfway between current and target.

 c. Set current to this halfway point.

 d. Draw a pixel at location current. One way to do this is to fill or draw a tiny
rectangle at this coordinate.

 Write a program that draws a Sierpinski Gasket. You can pick the coordinates for
the corners of the triangle. It may seem like you should get a random mess of dots
but instead you get a very orderly picture!

 To draw a single pixel at coordinate (X,Y), use the drawLine method where the
start and endpoints are both (X,Y).

 2. The file named humphrey-img.txt contained with the website for this book holds
raw image data3 of a Martian rock called “Humphrey” that was taken by the Mars
Exploration Rover Spirit. The format of this text file is as follows:

 First line: single number indicating the height and width of the image (in this
case, 461).

 Lines 2–462: A row of 461 numbers each separated by a space. Each number
 represents a pixel in grayscale and ranges from 0 to 255 where 0 is black and 255
is white.

 For example, the following data describes a 3 * 3 square where every pixel is white
except for a black line along the diagonal from the upper-left corner to the bottom-
right corner:

 3

 0 255 255

 255 0 255

 255 255 0

 a) Write a program to read in the data from the file and display it in a JFrame
window. To draw a single pixel at coordinate (X,Y), use the drawLine method
where the start and endpoints are both (X,Y). For speed, the contents of the
file should be read into an array once and the array data used in the paint()
method to draw the image.

 b) In this particular image, only about 2/3 of the shades of gray are used. For
example, if the image consists entirely of shades in the range from 150–160,
then the entire image would appear to be almost the same shade of gray. One
method to enhance such an image is to scale the shade of each pixel to the
entire range from 0 to 255. Pixels that were originally at value 150 would be
drawn with the value 0, pixels that were originally 151 would be drawn with
the value 25, and so on up to pixels of the shade 160, which would be drawn
with the value 255. This technique spaces out the shading so the details are
easier to see.

 To compute the new shade for a pixel at coordinate (i, j), do the following:

 NewShade1i, j2 =
255 * 1OriginalShade1i, j2 - MinOriginalShade2

1MaxOriginalShade - MinOriginalShade2
 MinOriginalShade is the smallest scale of gray in the original image and

 MaxOriginalShade is the largest scale of gray in the original image.

 Modify your program so that the image is drawn using the scaling technique
 described above. The brightness and details in the resulting image should be a
little bit easier to distinguish.

 3. Write a GUI program that uses the methods in the Graphics class to draw three
faces—happy, frowny, scary—when three corresponding buttons labeled ‘Happy’,
‘Frowny’, ‘Scary’ are clicked.

3The original raw image data has been cropped and converted to a textual format for purposes of
this project.

1116 CHAPTER 18 Swing II

Programming Projects 1117

 4. Write a “skeleton” GUI program that implements the WindowListener inter-
face. Write code for each of the methods in Display 18.1 that simply prints out
a message identifying which event occurred. Print the message out in a text field.
Note that your program will not end when the close-window button is clicked (but
will instead simply send a message to the text field saying that the windowClosing
method has been invoked). Include a button labeled Exit that the user can click
to end the program.

 5. Enhance the face drawing in Display 18.17 in the following ways: Add color so the
eyes are blue and the mouth is red. When the face winks, the line that represents
a closed eye is black, not blue. Add a nose and a brown handlebar mustache. Add
buttons labeled "Smile" and "Frown". When the "Frown" button is clicked, the
face shows a frown (upside down smile); when the "Smile" button is clicked, the
face shows a smile. When the user clicks the close-window button, a window pops
up to ask if the user is sure he or she wants to exit, as in Display 18.2.

 6. Create a swing program to make use of FontDemo class. The program will display
text in at least three different fonts such as SansSerif, Arial, and Serif. Allow the
user to enter a sentence in aTextField. Add a Preview button to display the text
in different fonts, point size and style (bold or italics).

 7. The MouseListener interface allows you to retrieve mouse events. A program
implements this interface in a manner similar to the WindowListener interface.
For example, the following program creates a JFrame and outputs the X and Y
coordinates of any mouse clicks within the JFrame. The MouseListener interface
requires the implementing class to define the mouseClicked, mouseEntered,
mousePressed, mouseReleased, and mouseExited methods. In the example,
only the mouseClicked method has been completed.

 import javax.swing.JFrame;

 import java.awt.event.MouseListener;

 import java.awt.event.MouseEvent;

 public class MouseDemo extends JFrame implements MouseListener

 {

 public void mouseClicked (MouseEvent e)

 {

 System.out.println(e.getX() + " " + e.getY());

 }

 public void mouseEntered (MouseEvent e) {}

 public void mousePressed (MouseEvent e) {}

 public void mouseReleased (MouseEvent e) {}

 public void mouseExited (MouseEvent e) {}

Solution to
Programming
Project 18.7

VideoNote

 public MouseDemo()

 {

 super();

 setSize(600,400);

 setTitle("Mouse Demo");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 addMouseListener(this); // Add listener for this object

 }

 public static void main(String[] args)

 {

 MouseDemo m = new MouseDemo();

 m.setVisible(true);

 }

 }

 Modify this program to create a simple drawing program. When the mouse button
is clicked, a solid circle with a radius of three pixels should be drawn in the JFrame
centered at the mouse coordinates. Draw the circle in the color of your choice.
Make sure that the drawing is correctly redrawn if the JFrame is minimized and
then displayed again.

 8. Write a program that graphically displays a vertical bar chart to display the analysis
of your last five months’ mobile bill. The first input is an array of String that rep-
resents month name. The second input is an array of double that represents billing
amount. The Y axis will represent Billing Amount and the X axis will represent
Month. Display the following data using the bar chart.

Month Billing Amount

January 230.5

February 310.7

March 370.0

April 245.9

May 117.1

1118 CHAPTER 18 Swing II

19.4 Java and database
ConneCtions 1145

Relational Databases 1145
Java DB and JDBC 1146
SQL 1147

19.5 Web Programming With Java
server Pages 1158

Applets, Servlets, and Java Server Pages 1158
Oracle GlassFish Enterprise Server 1160
HTML Forms—the Common Gateway Interface 1161
JSP Declarations, Expressions, Scriptlets,

and Directives 1163

19.6 introduCtion to FunCtional
Programming in Java 8 1172

19.7 introduCtion to JavaFx 1180

19.1 multithreading 1120
Example: A Nonresponsive GUI 1121
Thread.sleep 1121
The getGraphics Method 1125
Fixing a Nonresponsive Program Using Threads 1126
Example: A Multithreaded Program 1126
The Class Thread 1127
The Runnable Interface ★ 1130
Race Conditions and Thread Synchronization ★ 1133

19.2 netWorking With stream
soCkets 1138

Sockets 1138
Sockets and Threading 1142
The URL Class 1143

19.3 Javabeans 1143
The Component Model 1144
The JavaBeans Model 1144

19Java Never Ends

Chapter summary 1193 answers to self-test exercises 1194 Programming Projects 1196

And thick and fast they came at last,

And more, and more, and more—

LEWIS CARROLL, Through the Looking-Glass, Macmillan, 1871.

Introduction
Of course there is only a finite amount of Java, but when you consider all the standard
libraries and other accompanying software, the amount of power and the amount to
learn seem to be endless. In this chapter, we give you a brief introduction to seven topics
to give you a flavor of some of the directions you can take in extending your knowledge
of Java. The seven topics are multithreading, networking with stream sockets, JavaBeans,
the interaction of Java with database systems, Web programming with Java Server Pages,
functional programming, and JavaFX.

Prerequisites
You really should cover most of the book before covering this chapter. However,
Section 19.1 requires only Chapters 17 and 18 and their prerequisites. Section 19.2
requires Chapters 1 through 5, 9, and 10. Sections 19.3 and 19.4 require only
Chapters 1 through 6. Section 19.5 requires an understanding of HTML, which
is given in Chapter 20. Chapter 20 is distributed as a file on the website included
in this book. Aside from references to Section 19.1 in Section 19.2, all sections are
independent of each other and may be read in any order.

19.1 Multithreading

“Can you do two things at once?”
“I have trouble doing one thing at once.”

AnOnymOuS

A thread is a separate computation process. In Java, you can have programs with
multiple threads. You can think of the threads as computations that execute in
parallel. On a computer with enough processors, the threads might indeed execute
in parallel. However, in most normal computing situations, the threads do not really
do this. Instead, the computer switches resources between threads so that each thread
in turn does a little bit of computing. To the user, this looks like the processes are
executing in parallel.

You have already experienced threads. Modern operating systems allow you to run
more than one program at the same time. For example, rather than waiting for your virus

19 Java never Ends

thread

multithreading 1121

scanning program to finish its computation, you can go on to, say, read your e-mail while
the virus scanning program is still executing. The operating system is using threads to
make this happen. There may or may not be some work being done in parallel depending
on your computer and operating system. Most likely, the two computation threads are
simply sharing computer resources so that they take turns using the computer’s resources.
When reading your e-mail, you may or may not notice that response is slower because
resources are being shared with the virus scanning program. Your e-mail reading program
is indeed slowed down, but because humans are so much slower than computers, any
apparent slowdown is likely to be unnoticed.

Thread.sleep

In Display 19.1, the following method invocation produces a 1/10 of a second pause
after drawing each of the circles:

doNothing(PAUSE);

which is equivalent to

doNothing(100);

The method doNothing is a private helping method that does nothing except call the
method Thread.sleep and take care of catching any thrown exception. So, the pause
is really created by the method invocation

Thread.sleep(100);

This is a static method in the class Thread that pauses whatever thread includes the
invocation. It pauses for the number of milliseconds (thousandths of a second) given
as an argument. So, this pauses the computation of the program in Display 19.1 for
100 milliseconds or 1/10 of a second.

Thread.sleep

ExaMPlE: A Nonresponsive GUI

Display 19.1 contains a very simple action GUI. When the "Start" button is
clicked, the GUI draws circles one after the other until a large portion of the window
is filled with circles. There is 1/10 of a second pause between the drawing of each
circle, so, you can see the circles appear one after the other. If you are interested in
Java programming, this can be pretty exciting for the first few circles, but it quickly
becomes boring. You are likely to want to end the program early, but if you click the
close-window button, nothing will happen until the program is finished drawing all
its little circles. We will use threads to fix this problem, but first let us understand
this program, which does not really use threads in any essential way, despite the
occurrence of the word Thread in the program. We explain this Swing program in
the next few subsections.

1122 CHAPTER 19 Java never Ends

“Wait a minute,” you may think, “the program in Display 19.1 was not supposed
to use threads in any essential way.” That is basically true, but every Java program uses
threads in some way. If there is only one stream of computation, as in Display 19.1,
then that is treated as a single thread by Java. So, threads are always used by Java, but
not in an interesting way until more than one thread is used.

You can safely think of the invocation of

Thread.sleep(milliseconds);

as a pause in the computation that lasts (approximately) the number of milliseconds
given as the argument. (If this invocation is in a thread of a multithreaded program,
then the pause, like anything else in the thread, applies only to the thread in which
it occurs.)

The method Thread.sleep can sometimes be handy even if you do not do any
multithreaded programming. The class Thread is in the package java.lang and so
requires no import statement.

Display 19.1 Nonresponsive GUI (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import javax.swing.JButton;
 4 import java.awt.BorderLayout;
 5 import java.awt.FlowLayout;
 6 import java.awt.Graphics;
 7 import java.awt.event.ActionListener;
 8 import java.awt.event.ActionEvent;

 9 /**
10 Packs a section of the frame window with circles, one at a time.
11 */
12 public class FillDemo extends JFrame implements ActionListener
13 {
14 public static final int WIDTH = 300;
15 public static final int HEIGHT = 200;
16 public static final int FILL_WIDTH = 300;
17 public static final int FILL_HEIGHT = 100;
18 public static final int CIRCLE_SIZE = 10;
19 public static final int PAUSE = 100; //milliseconds

20 private JPanel box;

21 public static void main(String[] args)
22 {
23 FillDemo gui = new FillDemo();
24 gui.setVisible(true);
25 }

multithreading 1123

26 public FillDemo()
27 {
28 setSize(WIDTH, HEIGHT);
29 setTitle("FillDemo");
30 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
31 setLayout(new BorderLayout());
32 box = new JPanel();
33 add(box, "Center");

34 JPanel buttonPanel = new JPanel();
35 buttonPanel.setLayout(new FlowLayout());
36 JButton startButton = new JButton("Start");
37 startButton.addActionListener(this);
38 buttonPanel.add(startButton);
39 add(buttonPanel, "South");
40 }

41 public void actionPerformed(ActionEvent e)
42 {
43 fill();
44 }

45 public void fill()
46 {
47 Graphics g = box.getGraphics();

48 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
49 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)
50 {
51 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
52 doNothing(PAUSE);
53 }
54 }

55 public void doNothing(int milliseconds)
56 {
57 try
58 {
59 Thread.sleep(milliseconds);
60 }
61 catch(InterruptedException e)
62 {
63 System.out.println("Unexpected interrupt");
64 System.exit(0);
65 }
66 }
67 }

Display 19.1 Nonresponsive GUI (part 2 of 3)

Nothing else can happen until
actionPerformed returns, which
does not happen until fill returns.

Everything stops for
100 milliseconds
(1/10 of a second).

(continued)

1124 CHAPTER 19 Java never Ends

If you click the close-window button
while the circles are being drawn,
the window will not close until all
the circles are drawn.

Display 19.1 Nonresponsive GUI (part 3 of 3) (Source: Oracle Corporation)

The method Thread.sleep can throw an InterruptedException, which is a
checked exception—that is, it must be either caught in a catch block or declared in a
throws clause. We do not discuss InterruptedException in this book, leaving it for
more advanced books on multithreaded programming, but it has to do with one thread
interrupting another thread. We will simply note that an InterruptedException
may be thrown by Thread.sleep and so must be accounted for—in our case, by a
simple catch block. The class InterruptedException is in the java.lang package
and so requires no import statement.

multithreading 1125

Thread.sleep

Thread.sleep is a static method in the class Thread that pauses the thread that includes
the invocation. It pauses for the number of milliseconds (thousandths of a second) given as
an argument.

The method Thread.sleep may throw an InterruptedException, which is a checked
exception and so must be either caught in a catch block or declared in a throws clause.

The classes Thread and InterruptedException are both in the package java.lang,
so neither requires any import statement.

Note that Thread.sleep can be invoked in an ordinary (single thread) program of the kind
we have seen before this chapter. It will insert a pause in the single thread of that program.

SYNTax

Thread.sleep(Number_Of_Milliseconds);

ExaMPlE

try
{
 Thread.sleep(100); //Pause of 1/10 of a second
}
catch(InterruptedException e)
{
 System.out.println("Unexpected interrupt");
}

The getGraphics Method

The other new method in Display 19.1 is the getGraphics method, which is used in
the following line from the method fill:

Graphics g = box.getGraphics();

The getGraphics method is almost self-explanatory. As we already noted
in Chapter 18, almost every item displayed on the screen (more precisely, every
JComponent) has an associated Graphics object. The method getGraphics
is an accessor method that returns the associated Graphics object (of the calling
object for getGraphics)—in this case, the Graphics object associated with the panel
box. This gives us a Graphics object that can draw circles (or anything else) in the
panel box.

We still need to say a bit more about why the program in Display 19.1 makes you
wait before it will respond to the close-window button, but otherwise this concludes
our explanation of Display 19.1. The rest of the code consists of standard things we
have seen before.

getGraphics

1126 CHAPTER 19 Java never Ends

Fixing a Nonresponsive Program Using Threads

Now that we have discussed the new items in the program in Display 19.1, we are
ready to explain why it is nonresponsive and to show you how to use threads to write a
responsive version of that program.

Recall that when you run the program in Display 19.1, it draws circles one after
the other to fill a portion of the frame. Although there is only a 1/10 of a second pause
between drawing each circle, it can still seem like it takes a long time to finish. So, you
are likely to want to abort the program and close the window early. But, if you click
the close-window button, the window will not close until the GUI is finished drawing
all the circles.

Here is why the close-window button is nonresponsive: The method fill, which
draws the circles, is invoked in the body of the method actionPerformed. So, the
method actionPerformed does not end until after the method fill ends. And, until
the method actionPerformed ends, the GUI cannot go on to do the next thing,
which is probably to respond to the close-window button.

Here is how we fixed the problem: We have the method actionPerformed create
a new (independent) thread to draw the circles. Once actionPerformed does this,
the new thread is an independent process that proceeds on its own. The method
actionPerformed has nothing more to do with this new thread; the work of
actionPerformed is ended. So, the main thread (the one with actionPerformed) is
ready to move on to the next thing, which will probably be to respond promptly to a
click of the close-window button. At the same time, the new thread draws the circles.
So, the circles are drawn, but at the same time a click of the close-window button will
end the program. The program that implements this multithreaded solution is given in
the next Programming Example.

ExaMPlE: A Multithreaded Program

Display 19.2 contains a program that uses a main thread and a second thread to
implement the technique discussed in the previous subsection. The general approach
was outlined in the previous subsection, but we need to explain the Java code details.
We do that in the next few subsections.

getGraphics

Every JComponent has an associated Graphics object. The method getGraphics is an
accessor method that returns the associated Graphics object of its calling object.

SYNTax

Component.getGraphics();

ExaMPlE (see Display 19.1 for context)

Graphics g = box.getGraphics();

multithreading 1127

The Class Thread

In Java, a thread is an object of the class Thread. The normal way to program a thread
is to define a class that is a derived class of the class Thread. An object of this derived
class will be a thread that follows the programming given in the definition of the
derived (thread) class.

Where do you do the programming of a thread? The class Thread has a method
named run. The definition of the method run is the code for the thread. When the
thread is executed, the method run is executed. Of course, the method defined in the
class Thread and inherited by any derived class of Thread does not do what you want
your thread to do. So, when you define a derived class of Thread, you override the
definition of the method run to do what you want the thread to do.

In Display 19.2, the inner class Packer is a derived class of the class Thread. The
method run for the class Packer is defined to be exactly the same as the method fill
in our previous, unresponsive GUI (Display 19.1). So, an object of the class Packer
is a thread that will do what fill does, namely draw the circles to fill up a portion of
the window.

The method actionPerformed in Display 19.2 differs from the method
actionPerformed in our older, nonresponsive program (Display 19.1) in that the
invocation of the method fill is replaced with the following:

Packer packerThread = new Packer();
packerThread.start();

This creates a new, independent thread named packerThread and starts it
processing. Whatever packerThread does, it does as an independent thread. The main
thread can then allow actionPerformed to end, and the main thread will be ready to
respond to any click of the close-window button.

Thread

run()

start()

Display 19.2 Threaded Version of FillDemo (part 1 of 3)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import javax.swing.JButton;
 4 import java.awt.BorderLayout;
 5 import java.awt.FlowLayout;
 6 import java.awt.Graphics;
 7 import java.awt.event.ActionListener;
 8 import java.awt.event.ActionEvent;

 9 public class ThreadedFillDemo extends JFrame implements ActionListener
10 {
11 public static final int WIDTH = 300;
12 public static final int HEIGHT = 200;
13 public static final int FILL_WIDTH = 300;
14 public static final int FILL_HEIGHT = 100;
15 public static final int CIRCLE_SIZE = 10;
16 public static final int PAUSE = 100; //milliseconds

The GUI produced is identical to
the GUI produced by Display 19.1
except that in this version the close-
window button works even while the
circles are being drawn, so you can
end the GUI early if you get bored.

(continued)

1128 CHAPTER 19 Java never Ends

17 private JPanel box;

18 public static void main(String[] args)
19 {
20 ThreadedFillDemo gui = new ThreadedFillDemo();
21 gui.setVisible(true);
22 }

23 public ThreadedFillDemo()
24 {
25 setSize(WIDTH, HEIGHT);
26 setTitle("Threaded Fill Demo");
27 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

28 setLayout(new BorderLayout());

29 box = new JPanel();
30 add(box, "Center");

31 JPanel buttonPanel = new JPanel();
32 buttonPanel.setLayout(new FlowLayout());
33 JButton startButton = new JButton("Start");
34 startButton.addActionListener(this);
35 buttonPanel.add(startButton);
36 add(buttonPanel, "South");
37 }

38 public void actionPerformed(ActionEvent e)
39 {
40 Packer packerThread = new Packer();
41 packerThread.start();
42 }

43 private class Packer extends Thread
44 {
45 public void run()
46 {
47 Graphics g = box.getGraphics();
48 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
49 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)
50 {
51 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
52 doNothing(PAUSE);
53 }
54 }

Display 19.2 Threaded Version of FillDemo (part 2 of 3)

You need a thread object,
even if there are no instance
variables in the class
definition of Packer.

run is inherited from Thread but needs
to be overridden. This definition of run is
identical to that of fill in Display 19.1.

start “starts” the thread and calls run.

multithreading 1129

We need only to discuss the method start, and we will be through with our
explanation. The method start initiates the computation (process) of the calling
thread. It performs some overhead associated with starting a thread, and then it invokes
the run method for the thread. As we have already seen, the run method of the class
Packer in Display 19.2 draws the circles we want, so the invocation

packerThread.start();

does this as well, because it calls run. Note that you do not invoke run directly. Instead,
you invoke start, which does some other needed things and then invokes run.

This ends our explanation of the multithreaded program in Display 19.2, but
there is still one, perhaps puzzling, thing about the class Packer that we should
explain. The definition of the class Packer includes no instance variables. So, why
do we need to bother with an object of the class Packer? Why not simply make all
the methods static and call them with the class name Packer? The answer is that the
only way to get a new thread is to create a new Thread object. The things inherited
from the class Thread are what the object needs to be a thread. Static methods do not
a thread make. In fact, not only will static methods not work, the compiler will not
even allow you to define run to be static. This is because run is inherited from Thread
as a nonstatic method; this cannot be changed to static when overriding a method
definition. The compiler will not let you even try to do this without creating an object
of the class Packer.

55 public void doNothing(int milliseconds)
56 {
57 try
58 {
59 Thread.sleep(milliseconds);
60 }
61 catch(InterruptedException e)
62 {
63 System.out.println("Unexpected interrupt");
64 System.exit(0);
65 }
66 }
67 } //End Packer inner class

68 }

Display 19.2 Threaded Version of FillDemo (part 3 of 3)

run()

1130 CHAPTER 19 Java never Ends

The Runnable Interface ★

There are times when you would rather not make a thread class a derived class of the
class Thread. The alternative to making your class a derived class of the class Thread is
to have your class instead implement the Runnable interface. The Runnable interface
has only one method heading:

public void run()

A class that implements the Runnable interface must still be run from an instance of
the class Thread. This is usually done by passing the Runnable object as an argument
to the thread constructor. The following is an outline of one way to do this:

public class ClassToRun extends SomeClass implements Runnable
{

 public void run()
 {
 //Fill this just as you would if ClassToRun
 //were derived from Thread.
 }

 public void startThread()
 {
 Thread theThread = new Thread(this);
 theThread.start();
 }

}

The previous method startThread is not compulsory, but it is one way to produce
a thread that will in turn run the run method of an object of the class ClassToRun.
In Display 19.3, we have rewritten the program in Display 19.2 using the Runnable
interface. The program behaves exactly the same as the one in Display 19.2.

The Thread Class
A thread is an object of the class Thread. The normal way to program a thread is to define
a class that is a derived class of the class Thread. An object of this derived class will be a
thread that follows the programming given in the definition of the derived (thread) class’s
method named run.

Any thread class inherits the method start from the class Thread. An invocation of
start by an object of a thread class will start the thread and invoke the method run for
that thread.

See Display 19.2 for an example.

multithreading 1131

Display 19.3 The Runnable Interface (part 1 of 2)

 1 import javax.swing.JFrame;
 2 import javax.swing.JPanel;
 3 import javax.swing.JButton;
 4 import java.awt.BorderLayout;
 5 import java.awt.FlowLayout;
 6 import java.awt.Graphics;
 7 import java.awt.event.ActionListener;
 8 import java.awt.event.ActionEvent;

 9 public class ThreadedFillDemo2 extends JFrame
10 implements ActionListener, Runnable
11 {
12 public static final int WIDTH = 300;
13 public static final int HEIGHT = 200;
14 public static final int FILL_WIDTH = 300;
15 public static final int FILL_HEIGHT = 100;
16 public static final int CIRCLE_SIZE = 10;
17 public static final int PAUSE = 100; //milliseconds
18 private JPanel box;

19 public static void main(String[] args)
20 {
21 ThreadedFillDemo2 gui = new ThreadedFillDemo2();
22 gui.setVisible(true);
23 }

24 public ThreadedFillDemo2()
25 {
26 setSize(WIDTH, HEIGHT);
27 setTitle("Threaded Fill Demo");
28 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

29 setLayout(new BorderLayout());

30 box = new JPanel();
31 add(box, "Center");

32 JPanel buttonPanel = new JPanel();
33 buttonPanel.setLayout(new FlowLayout());

34 JButton startButton = new JButton("Start");
35 startButton.addActionListener(this);
36 buttonPanel.add(startButton);
37 add(buttonPanel, "South");
38 }

(continued)

1132 CHAPTER 19 Java never Ends

39 public void actionPerformed(ActionEvent e)
40 {
41 startThread();
42 }

43 public void run()
44 {
45 Graphics g = box.getGraphics();
46 for (int y = 0; y < FILL_HEIGHT; y = y + CIRCLE_SIZE)
47 for (int x = 0; x < FILL_WIDTH; x = x + CIRCLE_SIZE)
48 {
49 g.fillOval(x, y, CIRCLE_SIZE, CIRCLE_SIZE);
50 doNothing(PAUSE);
51 }
52 }

53 public void startThread()
54 {
55 Thread theThread = new Thread(this);
56 theThread.start();
57 }

58 public void doNothing(int milliseconds)
59 {
60 try
61 {
62 Thread.sleep(milliseconds);
63 }
64 catch (InterruptedException e)
65 {
66 System.out.println("Unexpected interrupt");
67 System.exit(0);
68 }
69 }
70 }

Display 19.3 The Runnable Interface (part 2 of 2)

Self-Test Exercises

1. Because sleep is a static method, how can it possibly know what thread it needs
to pause?

2. Where was polymorphism used in the program in Display 19.2? (Hint: We are
looking for an answer involving the class Packer.)

multithreading 1133

Race Conditions and Thread Synchronization ★

When multiple threads change a shared variable, it is sometimes possible that the
variable will end up with the wrong (and often unpredictable) value. This is called a
race condition because the final value depends on the sequence in which the threads
access the shared value.

For example, consider two threads where each thread runs the following code:

int local;
local = sharedVariable;
local++;
sharedVariable = local;

The intent is for each thread to increment sharedVariable by one, so if there are
two threads, then sharedVariable should be incremented by two. However, consider
the case where sharedVariable is 0. The first thread runs and executes the first two
statements, so its variable local is set to 0. Now there is a context switch to the second
thread. The second thread executes all four statements, so its variable local is set to 0
and incremented, and sharedVariable is set to 1. Now we return to the first thread
and it continues where it left off, which is the third statement. The variable local is 0
so it is incremented to 1 and then the value 1 is copied into sharedVariable. The end
result after both threads are done is that sharedVariable has the value 1, and we lost
the value written by thread two!

You might think that this problem could be avoided by replacing our code with a
single statement such as

sharedVariable++;

Unfortunately, this will not solve our problem because the statement is not
guaranteed to be an “atomic” action and there could still be a context switch to another
thread “in the middle” of executing the statement.

To demonstrate this problem, consider the Counter class shown in Display 19.4.
This simple class merely stores a variable that increments a counter. It uses the
somewhat roundabout way to increment the counter on purpose to increase the
likelihood of a race condition.

The way we will demonstrate the race condition is to do the following:

1. Create a single instance of the Counter class.
2. Create an array of many threads (30,000 in the example) where each thread

references the single instance of the Counter class.
3. Each thread runs and invokes the increment() method.
4. Wait for each thread to finish and then output the value of the counter. If

there are no race conditions, then its value should be 30,000. If there are race
conditions, then the value will be less than 30,000.

We create many threads to increase the likelihood that the race condition occurs.
With only a few threads, it is not likely that there will be a switch to another thread
inside the increment() method at the right point to cause a problem.

race condition

1134 CHAPTER 19 Java never Ends

The only new tool that we need for our demonstration program is a way to wait
for all the threads to finish. If we do not wait, then our program might output the
counter before all the threads have had a chance to increment the value. We can wait
by invoking the join() method for every thread we create. This method waits for the
thread to complete. The join() method throws InterruptedException. This is a
checked exception so we must use the try/catch mechanism.

The class RaceConditionTest in Display 19.5 illustrates the race condition. You
may have to run the program several times before you get a value less than 30,000.
Problems as a result of race conditions are often rare occurrences. This makes them
extremely hard to find and debug!

Display 19.4 The Counter Class

 1 public class Counter
 2 {
 3 private int counter;
 4 public Counter()
 5 {
 6 counter = 0;
 7 }
 8 public int value()
 9 {
10 return counter;
11 }
12 public void increment()
13 {
14 int local;
15 local = counter;
16 local++;
17 counter = local;
18 }
19 }

VideoNote

Walkthrough
of a Program
with Race
Conditions

Display 19.5 The RaceConditionTest Class (part 1 of 2)

 1 public class RaceConditionTest extends Thread
 2 {
 3 private Counter countObject;

 4 public RaceConditionTest(Counter ctr)
 5 {
 6 countObject = ctr;
 7 }

Stores a reference to a
single Counter object

multithreading 1135

 8 public void run()
 9 {
10 countObject.increment();
11 }

12 public static void main(String[] args)
13 {
14 int i;
15 Counter masterCounter = new Counter();
16 RaceConditionTest[] threads = new RaceConditionTest[30000];

17 System.out.println("The counter is " + masterCounter.value());
18 for (i = 0; i < threads.length; i++)
19 {
20 threads[i] = new RaceConditionTest(masterCounter);
21 threads[i].start();
22 }

23 // Wait for the threads to finish
24 for (i = 0; i < threads.length; i++)
25 {
26 try
27 {
28 threads[i].join();
29 }
30 catch (InterruptedException e)
31 {
32 System.out.println(e.getMessage());
33 }
34 }
35 System.out.println("The counter is " + masterCounter.value());
37 }
38 }

Sample Dialogue (output will vary)

The counter is 0
The counter is 29998

Invokes the code in Display 19.4
where the race condition occurs

The single instance of the Counter object
Array of 30,000 threads

Gives each thread a reference to
the single Counter object and
starts each thread

Waits for the thread to complete

Display 19.5 The RaceConditionTest Class (part 2 of 2)

So how do we fix this problem? The solution is to make each thread wait so only
one thread can run the code in increment() at a time. This section of code is called
a critical region. Java allows you to add the keyword synchronized around a critical
region to enforce the requirement that only one thread is allowed to execute in this
region at a time. All other threads will wait until the thread inside the region is finished.

critical region

synchronized

1136 CHAPTER 19 Java never Ends

In this particular case, we can add the keyword synchronized to either the method
or around the specific code. If we add synchronized to the increment() method in
the Counter class, then it looks like this:

public synchronized void increment()
{
 int local;
 local = counter;
 local++;
 counter = local;
}

If we add synchronized inside the code, then we can write

public void increment()
{
 int local;
 synchronized (this)
 {
 local = counter;
 local++;
 counter = local;
 }
}

Either version will result in a counter whose final value is always 30,000. There are many
other issues involved in thread management, such as concurrency and synchronization.
These concepts are often covered in more detail in an operating systems or parallel
programming course.

Self-Test Exercises

3. In the run() method of Display 19.5, make the thread sleep a random amount
of time between one and five milliseconds. You should see an increase in the
number of problems caused by race conditions. Can you explain why?

4. Here is some code that synchronizes thread access to a shared variable. How
come it is not guaranteed to output 30,000 every time it is run?

public class Counter
{
 private int counter;
 public Counter()
 {
 counter = 0;
 }

multithreading 1137

Self-Test Exercises (continued)

 public int value()
 {
 return counter;
 }
 public synchronized void increment()
 {
 counter++;
 }
}
public class RaceConditionTest extends Thread
{
 private Counter countObject;
 public RaceConditionTest(Counter ctr)
 {
 countObject = ctr;
 }
 public void run()
 {
 countObject.increment();
 }
 public static void main(String[] args)
 {
 int i;
 Counter masterCounter = new Counter();
 RaceConditionTest[] threads = new RaceConditionTest[30000];
 System.out.println("The counter is " + masterCounter.

value());
 for (i = 0; i < threads.length; i++)
 {
 threads[i] = new RaceConditionTest(masterCounter);
 threads[i].start();
 }
 System.out.println("The counter is " + masterCounter.

value());
 }
}

1138 CHAPTER 19 Java never Ends

19.2 Networking with Stream Sockets

Since in order to speak, one must first listen, learn to speak by listening.

RumI DAyLIgHT A Daybook of Spiritual Guidance, Shambhala, 1999,

trans. Camille Helminski, 1999.

When computers want to communicate with each other over a network, each computer
must speak the same “language.” In other words, the computers need to communicate
using the same protocol. One of the most common protocols today is TCP, or the
Transmission Control Protocol. For example, the HTTP protocol used to transmit
Web pages is based on TCP. TCP is a stream-based protocol in which a stream of data
is transmitted from the sender to the receiver. TCP is considered a reliable protocol
because it guarantees that data from the sender is received in the same order in which it
was sent. An analogy to TCP is the telephone system. A connection is made when the
phone is dialed and the participants communicate by speaking back and forth. In TCP,
the receiver must first be listening for a connection, the sender initiates the connection,
and then the sender and receiver can transmit data. The program that is waiting for a
connection is called the server and the program that initiates the connection is called
the client.

An alternate protocol is UDP, or the User Datagram Protocol. In UDP, packets of
data are transmitted but no guarantee is made regarding the order in which the packets
are received. An analogy to UDP is the postal system. Letters that are sent might be
received in an unpredictable order, or lost entirely with no notification. Although Java
provides support for UDP, we will only introduce TCP in this section.

Sockets

Network programming is implemented in Java using sockets. A socket describes one
end of the connection between two programs over the network. A socket consists
of an address that identifies the remote computer and a port for both the local and
remote computer. The port is assigned an integer value between 0 and 65,535 that is
used to identify which program should handle data received from the network. Two
applications may not bind to the same port. Typically, ports 0 to 1,024 are reserved for
use by well-known services implemented by your operating system.

The process of client/server communication is shown in Display 19.6. First, the
server waits for a connection by listening on a specific port. When a client connects to
this port, a new socket is created that identifies the remote computer, the remote port,
and the local port. A similar socket is created on the client. Once the sockets are created
on both the client and the server, data can be transmitted using streams in a manner
very similar to the way we implemented file I/O in Chapter 10.

Display 19.7 shows how to create a simple server that listens on port 7654 for a
connection. Once it receives a connection, a new socket is returned by the accept()
method. From this socket, we create a BufferedReader, just as if we were reading
from a text file described in Chapter 10. Data is transmitted to the socket using a
DataOutputStream, which is similar to a FileOutputStream. The ServerSocket

server

client

User
Datagram

Protocol
(UDP)

sockets

port

Transmission
Control

Protocol
(TCP)

Networking
with Streams

VideoNote

networking with Stream Sockets 1139

Display 19.6 Client/Server Network Communication through Sockets

Server
program

port 0
port 1
...
port 7654
...
port 65535

Server Computer

1. The server listens and waits for a connection on port 7654.

2. The client connects to the server on port 7654. It uses a local port that is assigned
 automatically, in this case, port 20314.

Server
program

port 0
port 1
...
port 7654
...
port 65535

Server Computer

Client
program

port 0
port 1
...
port 20314
...
port 65535

Client Computer

The server program can now
communicate over a socket bound
locally to port 7654 and remotely
to the client’s address at port 20314.

The client program can now
communicate over a socket bound
locally to port 20314 and remotely
to the server’s address at port 7654.

Network

and Socket classes are in the java.net package, while the BufferedReader and
DataOutputStream classes are in the java.io package. Once the streams are created,
the server expects the client to send a name. The server waits for the name with a
call to readLine() on the BufferedReader object and then sends back the name
concatenated with the current date and time. Finally, the server closes the streams
and sockets.

Display 19.6 shows how to create a client that connects to our date and time server.
First, we create a socket with the name of the computer running the server along with
the corresponding port of 7654. If the server program and client program are running
on the same computer, then you can use localhost as the name of the machine. Your
computer understands that any attempt to connect across a network to the machine
named localhost really corresponds to a connection with itself. Otherwise, the
hostname should be set to the name of the computer (e.g., my.server.com). After a
connection is made, the client creates stream objects, sends its name, waits for a reply,
and prints the reply.

localhost

1140 CHAPTER 19 Java never Ends

Display 19.7 Date and Time Server (part 1 of 2)

 1 import java.util.Date;
 2 import java.net.ServerSocket;
 3 import java.net.Socket;
 4 import java.io.DataOutputStream;
 5 import java.io.BufferedReader;
 6 import java.io.InputStreamReader;
 7 import java.io.IOException;

 8 public class DateServer
 9 {
10 public static void main(String[] args)
11 {
12 Date now = new Date();

13 try
14 {
15 System.out.println("Waiting for a connection on port 7654.");
16 ServerSocket serverSock = new ServerSocket(7654);
17 Socket connectionSock = serverSock.accept();

18 BufferedReader clientInput = new BufferedReader(
19 new InputStreamReader(connectionSock.getInputStream()));
20 DataOutputStream clientOutput = new DataOutputStream(
21 connectionSock.getOutputStream());

22 System.out.println("Connection made, waiting for client " +
23 "to send their name.");
24 String clientText = clientInput.readLine();
25 String replyText = "Welcome, " + clientText +
26 ", Today is " + now.toString() + "\n";
27 clientOutput.writeBytes(replyText);
28 System.out.println("Sent: " + replyText);

29 clientOutput.close();
30 clientInput.close();
31 connectionSock.close();
32 serverSock.close();
33 }
34 catch (IOException e)
35 {
 System.out.println(e.getMessage());
36 }
37 }
38 }

networking with Stream Sockets 1141

Sample Dialogue

Waiting for a connection on port 7654.
Connection made, waiting for client to send their name.
Sent: Welcome, Dusty Rhodes, Today is Sun Mar 1 12:18:21 AKDT 2015

Display 19.7 Date and Time Server (part 2 of 2)

Display 19.8 Date and Time Client (part 1 of 2)

 1 import java.net.Socket;
 2 import java.io.DataOutputStream;
 3 import java.io.BufferedReader;
 4 import java.io.InputStreamReader;
 5 import java.io.IOException;

 6 public class DateClient
 7 {
 8 public static void main(String[] args)
 9 {
10 try
11 {
12 String hostname = "localhost";
13 int port = 7654;

14 System.out.println("Connecting to server on port " + port);
15 Socket connectionSock = new Socket(hostname, port);

16 BufferedReader serverInput = new BufferedReader(
17 new InputStreamReader(connectionSock.getInputStream()));
18 DataOutputStream serverOutput = new DataOutputStream(
19 connectionSock.getOutputStream());

20 System.out.println("Connection made, sending name.");
21 serverOutput.writeBytes("Dusty Rhodes\n");

22 System.out.println("Waiting for reply.");
23 String serverData = serverInput.readLine();
24 System.out.println("Received: " + serverData);

25 serverOutput.close();
26 serverInput.close();
27 connectionSock.close();
28 }

localhost refers to the same, or local,
machine that the client is running on.
Change this string to the appropriate
hostname (e.g., my.server.com) if the
server is running on a remote machine.

(continued)

Output when the client program in Display 19.8 connects to the server program

1142 CHAPTER 19 Java never Ends

29 catch (IOException e)
30 {
31 System.out.println(e.getMessage());
32 }
33 }
34 }

Sample Dialogue

Connecting to server on port 7654
Connection made, sending name.
Waiting for reply.
Received: Welcome, Dusty Rhodes, Today is Sun Mar 1 12:18:21 AKDT 2015

Output when client program connects to the server program in Display 19.7

Note that the socket and stream objects throw checked exceptions. This means that
their exceptions must be caught or declared in a throws block.

Sockets and Threading

If you run the program in Display 19.7, then you will notice that the server waits,
or blocks, at the serverSock.accept() call until a client connects to it. Both the
client and server also block at the readLine() call if data from the socket is not yet
available. In a client with a GUI, you would notice this as a nonresponsive program
while it is waiting for data. For the server, this behavior makes it difficult to handle
connections with more than one client. After a connection is made with the first
client, the server will become nonresponsive to the client’s requests while it waits for a
second client.

The solution to this problem is to use threads. One thread will listen for new
connections while another thread handles an existing connection. Section 19.1
describes how to create threads and make a GUI program responsive. On the server,
the accept() call is typically placed in a loop and a new thread is created to handle
each client connection:

while (true)
{
 Socket connectionSock = serverSock.accept();
 ClientHandler handler = new ClientHandler(connectionSock);
 Thread theThread = new Thread(handler);
 theThread.start();
}

In this code, ClientHandler is a class that implements Runnable. The constructor
keeps a reference to the socket in an instance variable, and the run() method would
handle all communications. A complete implementation of a threaded server is left as
Programming Projects 19.7 and 19.8.

blocking

Display 19.8 Date and Time Client (part 2 of 2)

JavaBeans 1143

The URL Class

Java’s URL class will retrieve the HTML from a website into a stream while eliminating
several details involved in creating a socket. The URL class also illustrates the flexibility
of streams and the power of polymorphism. Code that reads from the keyboard or
from a file can be used almost verbatim to read from a website; all we need to do is
change the source of the stream that is connected to the Scanner object. To use the
URL class, import java.net.URL, create a URL object, and then use the stream when
creating a Scanner object. From that point on, reading from the Scanner will read
data from the URL specified in the URL object. The following code listing will output
the HTML of www.wikipedia.org:

URL website = new
 URL("http://www.wikipedia.org");
Scanner inputStream = new Scanner(
 new InputStreamReader(
 website.openStream()));

while (inputStream.hasNextLine())
{
 String s = inputStream.nextLine();
 System.out.println(s);
}
inputStream.close();

JavaBeans

Self-Test Exercises

5. What is the purpose of a port in the context of a socket?

6. Consider a threaded server that is expected to have up to 100 clients connected
to it at one time. Why might this server require a large amount of resources such
as memory, disk space, or processor time?

19.3 JavaBeans

Insert tab A into slot B.

AnOnymOuS

JavaBeans refers to a framework that facilitates software building by connecting
software components from diverse sources. Some of the components might be standard
existing pieces of software. Some might be designed for the particular application.
Typically, the various components were designed and coded by different teams. If the
components are all designed within the JavaBeans framework, it simplifies the process
of integrating the components and means that the components produced can more
easily be reused for future software projects. JavaBeans have been widely used. For
example, the AWT and Swing packages were built within the JavaBeans framework.

http://www.wikipedia.org
http://www.wikipedia.org

1144 CHAPTER 19 Java never Ends

The Component Model

You are most likely to have heard the word component when shopping for a home
entertainment system. The individual pieces, such as a receiver/amplifier, DVD player,
speakers, and so forth, are called components. Connect the components to produce a working
system, but do not connect them in just any way. You must connect them following the
interface rules for each component. The speaker wire must connect to the correct plug, and
there had better be a plug for it to connect to. You may think it is obvious that a receiver/
amplifier needs to have connections for speakers; it is obvious if the receiver/amplifier design
is going to be used to make many identical units for use by many different people. However,
if you are only making one receiver/amplifier for one home entertainment system, you
might just “open the box” and connect the wire inside. Software systems, unfortunately,
are often constructed using the “open the box” approach. The component model says that
components should always have well-defined connections for other components—which in
our case will be other software components, not speakers—but the idea is the same.

The JavaBeans Model

A component model specifies how components interact with one another. In the case
of JavaBeans, the software components (classes) are required to provide at least the
following interface services or abilities:

1. Rules to Ensure Consistency in Writing Interfaces:
For example, the rules say, among other things, that the name of an accessor method
must begin with get and that the name of a mutator method must start with set.
This same rule has always been a style rule for us in this book, but it was a “should
do.” In the JavaBeans framework, it becomes a “must do.” Of course, there are other
rules as well. This is just a sample rule.

2. An Event Handling Model:
This is essentially the event-handling model we presented for the AWT and Swing.
(Remember the AWT and Swing were done within the JavaBeans framework.)

3. Persistence:
This means that an object has an identity that extends beyond one session. For
example, a JFrame of the kind we have seen so far may be used; when you are
finished using it, it goes away. The next time you use it, it starts out completely
new, born again just as it started before. Persistence means the JFrame or other
component can retain information about its former use; its state is saved, for
example, in a database someplace.

4. Introspection:
This is an enhancement of simple accessor and mutator methods. It includes facilities
to find out what access to a component is available as well as providing access.

5. Builder Support:
These are primarily IDEs (Integrated Development Environments) designed to
connect JavaBean components to produce a final application. Some examples are the
open source NetBeans, the Eclipse Foundation’s Eclipse, and JetBrain’s IntelliJ IDEA.

event
handling

persistence

introspection

Java and Database Connections 1145

19.4 Java and Database Connections

It is a capital mistake to theorize before one has data.

SIR ARTHuR COnAn DOyLE (Sherlock Holmes), Scandal in Bohemia, 1891.

As an example of how Java has been extended to interact with other software systems,
in this section, we will briefly describe how Java interacts with database management
systems. This introduction is just enough for you to construct and manipulate
databases at a fairly basic level. The intent of this section is to introduce some
common database manipulations to let you know what kinds of things are available to
you for database programming in Java.

Relational Databases

A database is a structured collection of data, and the software that manages a database
is known as a database management system (DBMS). A DBMS is especially useful
when dealing with a large amount of data, because it simplifies the data creation,
storage, and retrieval from the perspective of an application. Consequently, a database
system is almost universally employed with any large-scale application that requires the
storage of information. For example, applications that manage financial transactions,
employee records, products, or customer data will typically use a database.

The most common database model used today is the relational database, which
was defined by Edgar Codd at the IBM Almaden Research Center in 1970. A relational
database refers to a collection of relations, which are more commonly referred to as
tables. A table consists of records that comprise the rows of the table. The fields for

What Is a JavaBean?
A JavaBean (often called a JavaBean component or simply a Bean) is a reusable software
component (Java class or classes) that satisfies the requirements of the JavaBeans framework
and that can be manipulated in an IDE designed for building applications out of Beans.

What are Enterprise JavaBeans?
The Enterprise JavaBean framework extends the JavaBeans framework to more readily
accommodate business applications.

database
management

system
(DBMS)

relational
database

Self-Test Exercises

7. What is meant by persistence?

8. What event-handling model is used with JavaBeans?

1146 CHAPTER 19 Java never Ends

each record comprise the columns of the table. Tables may be related to one another
through their fields, hence the term relational database.

Java DB and JDBC

In this section, we will give examples based on Oracle’s relational database management
system called Java DB. Java DB is a version of the open source database known
as Apache Derby. It is packaged with version 6 or higher of the Java Software
Development Kit (SDK). Depending on what version of the Java SDK that is installed
on your system, you may not have the complete Derby package (e.g., one that includes
documentation and source code examples), so you may wish to download it from
Oracle’s Web page. Alternately, other database systems (such as Oracle, SQL Server, or
MySQL) will also work with Java, but they will require appropriate drivers and minor
changes to the source code. These changes are primarily in the specification of the
connection string.

Installing Derby may require some additional configuration of your system. It will
require setting several environment variables in your operating system. The DERBY_
INSTALL variable should be set to the pathname of the folder that contains the installed
Derby files, the CLASSPATH variable should include derby.jar, which is in the lib
folder of the main Derby folder, and your PATH variable should contain the bin folder
of the main Derby folder. See the documentation that comes with the Derby software
for more detailed instructions.

Derby runs in one of two modes: network server mode or embedded mode. In
network server mode, the Derby server program stores and processes the data while a
client program connects to the server using sockets. Queries, commands, and results are
transmitted between the client and server over sockets. This mode allows the database
server to run on one machine, while database clients run on separate machines. In
embedded mode, the classes for the Derby engine are embedded in your program
and executed in the same thread as your application. In this section, we will only use
embedded mode, but only minor changes are required to create a program that runs
under server mode.

Application programs typically access databases through several layers of abstraction.
The lowest level is the database engine, which handles tasks such as indexing, storing,
and retrieving data from the disk drive. In our case, these tasks are performed by the
Derby engine. A set of higher-level classes provides a connection to Derby along with
a consistent interface so that few code changes are necessary at higher levels if the
underlying database provider is changed. Java Database Connectivity (JDBC) is a
common API used to access databases. JDBC is included in version 5 or higher of
the Java SDK. Various Microsoft and Oracle database systems are among the many
commercially available database systems that are compatible with JDBC, along with
Derby. Typically, you need to download and install a JDBC driver for your database
system. Conceptually, JDBC is simple: Establish a connection to a database system
(either on your computer or over the Internet) and execute database commands, and
do this all within your Java code.

Finally, applications send commands and queries to JDBC using strings formatted
in SQL. SQL is a standard for database access that has been adopted by virtually all SQL

Java DB

Apache Derby

Java and Database Connections 1147

relational database vendors. The initials SQL stand for Structured Query Language.
Display 19.9 illustrates the relationships among these components for an embedded
Derby database.

SQl

SQL is pronounced either by saying the letters or by saying the word “sequel.” SQL is a
language for formulating queries for a relational database. SQL is not part of Java, but
JDBC allows you to embed SQL commands in your Java code.

SQL works with relational databases. As an example, suppose we were organizing a
catalog of books and authors. A relational database can be thought of as a collection of
named tables with rows and columns, such as those shown in Display 19.10. In this
case, we have created a table with author information (author name, unique author ID,
and URL), a table with book information (title and ISBN), and a table that identifies
which author has written which book (unique author ID and ISBN).

In this brief introduction, we will not go into the details of the constraints on
tables. However, to see that there are some constraints, note that in the three tables in
Display 19.10, no relationship is repeated. If we had one entry for each book with all
the information—title, author, ISBN number,1 and author’s URL—then there would
be two entries giving Dan Simmons’ URL, because he has two books in our database.

To manipulate the database, we issue SQL commands, also known as SQL queries,
to the database. The following is a sample SQL command:

SELECT Titles.Title, Titles.ISBN, BooksAuthors.Author_ID
FROM Titles, BooksAuthors
WHERE Titles.ISBN = BooksAuthors.ISBN

Display 19.9 Relationships between JDBC, Embedded Derby, and SQL

Java Application

JDBC

Embedded Derby
Data
Files

1. Application constructs SQL
query and sends it to JDBC

2. Database engine
processes the query

3. Result
of the
SQL query
returned
by JDBC
to the
application

1The ISBN number is a unique identification number assigned to (almost) every book published.

1148 CHAPTER 19 Java never Ends

Display 19.10 Relational Database Tables

Names
AUTHOR AUTHOR_ID URL
Adams, Douglas 1 http:// ...
Simmons, Dan 2 http:// ...
Stephenson, Neal 3 http:// ...

Titles
TITLE ISBN
Snow Crash 0-553-38095-8
Endymion 0-553-57294-6
The Hitchhikers Guide to the Galaxy 0-671-46149-4
The Rise of Endymion 0-553-57298-9

BooksAuthors
ISBN AUTHOR_ID
0-553-38095-8 3
0-553-57294-6 2
0-671-46149-4 1
0-553-57298-9 2

Display 19.11 Result of SQL Command in Text

Result
TITLE ISBN AUTHOR_ID
Snow Crash 0-553-38095-8 3
Endymion 0-553-57294-6 2
The Hitchhikers Guide to the Galaxy 0-671-46149-4 1
The Rise of Endymion 0-553-57298-9 2

This will produce the table shown in Display 19.11. That table contains all titles
with matching ISBN number and author ID. The ISBN number is the bridge that
connects the tables Titles and BooksAuthors.

As a more detailed example, let us connect to an embedded Derby database and
issue the SQL commands to create a new table, insert a new row (record) into the table,
select rows, and modify rows. Note that this is not a comprehensive list of commands
but rather a small subset of SQL.

First, our Java program must import the SQL libraries java.sql.Connection,
java.sql.DriverManager, java.sql.SQLException, and java.sql.Statement.
When processing results, we will also need to import java.sql.ResultSet. Next we
must load the database drivers:

String driver = "org.apache.derby.jdbc.EmbeddedDriver";
Class.forName(driver).newInstance();

Java and Database Connections 1149

This code throws three checked exceptions that must be caught: ClassNotFound
Exception, InstantiationException, and IllegalAccessException. For simplicity,
we catch only the superclass Exception in the code shown in Display 19.12.

Once the database drivers are loaded, we can connect to the database. This is done
by passing a connection string to the DriverManager.getConnection method. The
connection string specifies the protocol, database name, and other parameters, such as
whether or not a new database should be created. For example, to connect to and create
a database named BookDatabase using Derby, we would use

Connection conn = null;
conn = DriverManager.getConnection(
 "jdbc:derby:BookDatabase; create = true");

This creates a subdirectory named BookDatabase in the active working directory that
will contain the database, files. You could specify a pathname in front of BookDatabase
if you want to create the database somewhere else on the file system. If you ever wish
to delete the database, then simply delete the BookDatabase directory. Note that if
the database already exists, then the attribute create=true will not delete the existing
database but will instead connect to the existing database.

Additional parameters are specified in the command string by separating them with
semicolons. For example, if the database requires a username and password, then the
connection string would look like this:

conn = DriverManager.getConnection
 ("jdbc:derby:BookDatabase;create=true;user=username;" +
 "password = pass");

When we are finished accessing the database, invoke the close() method to close
the connection. The DriverManager.getConnection() method requires that
SQLException be caught, so this code should be placed inside an appropriate try/
catch block.

SQL commands or queries can be issued to JDBC once the database connection
is established. First, a Statement object must be constructed and then invoked by
calling the execute or executeQuery method with a SQL string as its argument.
The execute method can be used to execute any SQL statement, but it is generally
used for SQL commands where return values are not needed or ignored (e.g., creating
a new table or deleting a row). It returns true if the command results in a set of data
and false if there is no result or an update count. The executeQuery method is used
with a SQL query that is expected to return some rows from the database. It returns a
ResultSet object that contains the data produced by the query. These methods throw
SQLException if there is a database error. Display 19.12 illustrates how to create a
new table and insert three rows using the CREATE TABLE and INSERT commands. The
result is identical to the names table in Display 19.10. Note that the program should
only be run once. If you attempt to run it a second time, the program will throw an
exception when executing the CREATE TABLE command, because it is invalid to create
a new table that matches an existing name.

connection
string

1150 CHAPTER 19 Java never Ends

Common SQl Statements
SQL Statements are constructed as strings and passed to JDBC. The syntax and examples
for the CREATE TABLE,INSERT,UPDATE, and SELECT statements follow.

SYNTax
CREATE TABLE Create a new table named

newtable with fields field1,
field2, etc. Data types are
similar to Java and include:
int, bigint, float,
double, and var(size) which
is equivalent to a String of
maximum length size.

CREATE TABLE newtable
(field1 datatype, field2
datatype, ...)

INSERT Insert a new row into the table
tableName where field1
has the value field1Value,
field2 has the value
field2Value, etc. The data
types for the values must match
those for the corresponding
fields when the table was
created. String values should be
enclosed in single quotes.

INSERT INTO tableName
VALUES (field1Value,
field2Value, ...)

UPDATE Change the specified fields to
the new values for any rows that
match the WHERE clause. Op is a
comparison operator such as =,
<> (not equal to), <, >, etc.

UPDATE tableNameSET field1 =
newValue, field2 = newValue,
...WHERE fieldName Op
someValue

SELECT Retrieve the specified fields
for the rows that match the
WHERE clause. The * may be
used to retrieve all fields. Omit
the WHERE clause to retrieve all
rows from the table.

SELECT field1, field2 FROM
tableName WHERE fieldname Op
someValue

ExaMPlE

CREATE TABLE names(author varchar(50), author_id int, url
 varchar(80))
INSERT INTO names VALUES ('Adams, Douglas', 1, 'http://
 www.douglasadams.com')
UPDATE names SET url = 'http://www.douglasadams.com/dna/bio.html'
 WHERE author_id = 1
SELECT author, author_id, url FROM names
SELECT author, author_id, url FROM names WHERE author_id > 1

http://www.douglasadams.com
http://www.douglasadams.com
http://www.douglasadams.com/dna/bio.html

Java and Database Connections 1151

Display 19.12 Creating a Derby Embedded Database and Table (part 1 of 2)

 1 import java.sql.Connection;
 2 import java.sql.DriverManager;
 3 import java.sql.SQLException;
 4 import java.sql.Statement;

 5 public class CreateDB
 6 {
 7 private static final String driver =
 "org.apache.derby.jdbc.EmbeddedDriver";
 8 private static final String protocol = "jdbc:derby:";
 9 public static void main(String[] args)
10 {
11 try

12 {
13 Class.forName(driver).newInstance();
14 System.out.println("Loaded the embedded driver.");
15 }
16 catch (Exception err)

17 {
18 System.err.println("Unable to load the embedded driver.");
19 err.printStackTrace(System.err);
20 System.exit(0);
21 }

22 String dbName = "BookDatabase";
23 Connection conn = null;
24 try
25 {

26 System.out.println(
 "Connecting to and creating the database...");

27 conn = DriverManager.getConnection(protocol + dbName +
 ";create=true");
28 System.out.println("Database created.");

29 Statement s = conn.createStatement();

30 s.execute("CREATE TABLE names" +

31 "(author varchar(50), author_id " +
 "int, url varchar(80))");
32 System.out.println("Created 'names' table.");

33 System.out.println("Inserting authors.");
34 s.execute("INSERT INTO names " +

35 "VALUES ('Adams, Douglas', 1," +
 "'http://www.douglasadams.com')");

Load the embedded Derby driver.

Create a statement object
to run SQL statements.

Must catch ClassNotFoundException,
InstantiationException, Illegal
AccessException

Create a table called
“names” with three
fields, 50 characters
for an author and an
integer author ID,
and 80 characters
for a URL, then insert
sample data.

(continued)

http://www.douglasadams.com

1152 CHAPTER 19 Java never Ends

Display 19.13 shows how to retrieve rows from an existing database and table
using the SELECT statement. The syntax of the SELECT statement is given in the box
“Common SQL Statements.” The desired fields must be specified or an * placed after
the SELECT statement to retrieve all fields. After specifying the name of the table, an
optional WHERE clause may be inserted that contains conditions that must be met,
much like the Boolean condition you might place after an if statement. If the WHERE
clause is left off, then all rows from the table will be retrieved. Otherwise, only those
rows that match the conditions of the WHERE clause are returned.

A SELECT statement can be executed by invoking the executeQuery() method of
a Statement object. The return value is an object of type ResultSet. The ResultSet
object maintains a cursor to each matching row in the database. Initially, the cursor
is positioned before the first row. The next() method is used to advance the
cursor to the next row. If there is no next row, then false is returned. Otherwise,
true is returned. Typically, a while loop is used to iterate over all rows in the set
by looping until the next() method returns false. Note that iteration is forward

36 s.execute("INSERT INTO names " +
37 "VALUES ('Simmons, Dan', 2, 'http://www.dansimmons.com')");
38 s.execute("INSERT INTO names " +

39 "VALUES ('Stephenson, Neal', 3, " +
 "'http://www.nealstephenson.com')");
40 System.out.println("Authors inserted.");
41 conn.close();
42 }
43 catch (SQLException err)
44 {
45 System.err.println("SQL error.");
46 err.printStackTrace(System.err);
47 System.exit(0);
48 }
49 }
50 }

Sample Dialogue

Loaded the embedded driver.
Connecting to and creating the database.
Database created.
Created 'names' table.
Inserting authors.
Authors inserted.

Display 19.12 Creating a Derby Embedded Database and Table (part 2 of 2)

http://www.dansimmons.com
http://www.nealstephenson.com

Java and Database Connections 1153

only, similar to reading data from an input stream. Once the cursor is positioned over
a row, we can use one of following methods to retrieve data from a specific column in
the current row:

intVal = resultSet.getInt("name of int field");
lngVal = resultSet.getLong("name of bigint field");
strVal = resultSet.getString("name of varchar field");
dblVal = resultSet.getDouble("name of double field");
fltVal = resultSet.getFloat("name of float field");

The program in Display 19.13 can run once the database is created with the
program given in Display 19.12. It retrieves and outputs all rows in the table by
executing a SELECT query with no WHERE clause and then retrieves and outputs only
those rows with any author_id greater than 1. Invoke the close() method to free
resources when finished using a ResultSet object.

Finally, we can change the contents of an existing row using the SQL UPDATE
command. In the UPDATE command, we specify the table, field(s) to change, new
value(s), and a WHERE clause to indicate which rows should be changed. If the WHERE
clause is omitted, then every row in the table is updated. The syntax is described in the
box “Common SQL Statements.” Display 19.14 shows an example where the URL field
is changed to a new value entered by the user. The URL field is only changed for the row
that matches the author_id entered by the user.

Display 19.13 Retrieving Rows with the SELECT Statement (part 1 of 3)

 1 import java.sql.Connection;
 2 import java.sql.DriverManager;
 3 import java.sql.ResultSet;
 4 import java.sql.SQLException;
 5 import java.sql.Statement;

 6 public class ReadDB
 7 {

 8 private static final String driver =
 "org.apache.derby.jdbc.EmbeddedDriver";
 9 private static final String protocol = "jdbc:derby:";

10 /*
11 Outputs the author, ID, and URL of the current
12 author in the ResultSet
13 */
14 public static void displayNameRow(ResultSet rs) throws SQLException

15 {
16 int id = rs.getInt("author_id");
17 String author = rs.getString("author");
18 String url = rs.getString("url");

The database must be created (Display 19.12)
before running the program.

The accessor methods
throw the checked exception
SQLException.

(continued)

1154 CHAPTER 19 Java never Ends

19 System.out.println("ID = " + id + ", Author = "
20 + author + ", URL = " + url);
21 }

22 public static void main(String[] args)
23 {
24 try
25 {
26 Class.forName(driver).newInstance();
27 System.out.println("Loaded the embedded driver.");
28 }
29 catch (Exception err)
30 {
31 System.err.println("Unable to load the embedded driver.");
32 err.printStackTrace(System.err);
33 System.exit(0);
34 }

35 String dbName = "BookDatabase";
36 Connection conn = null;
37 try
38 {
39 System.out.println("Connecting to the database...");
40 conn = DriverManager.getConnection(protocol + dbName);

41 System.out.println("Connected.");

42 Statement s = conn.createStatement();

43 ResultSet rs = null;
44 System.out.println("All rows:");
45 rs = s.executeQuery("SELECT author, author_id, url FROM names");
46 while(rs.next())
47 {
48 displayNameRow(rs);
49 }
50 rs.close();

51 System.out.println();
52 System.out.println("All rows with an ID > 1:");
53 rs = s.executeQuery("SELECT author, author_id, url " +
54 "FROM names WHERE author_id > 1");
55 while(rs.next())
56 {
57 displayNameRow(rs);
58 }

The text “create=true;”
has been left off the connection
string to connect to an existing
database.

Display 19.13 Retrieving Rows with the SELECT Statement (part 2 of 3)

Java and Database Connections 1155

59 rs.close();
60 conn.close();
61 }
62 catch (SQLException err)
63 {
64 System.err.println("SQL error.");
65 err.printStackTrace(System.err);
66 System.exit(0);
67 }
68 }
69 }

Sample Dialogue

Loaded the embedded driver.
Connecting to the database.
Connected.
All rows:
ID = 1, Author = Adams, Douglas, URL = http://www.douglasadams.com
ID = 2, Author = Simmons, Dan, URL = http://www.dansimmons.com
ID = 3, Author = Stephenson, Neal, URL = http://www.nealstephenson.com

All rows with an ID > 1:
ID = 2, Author = Simmons, Dan, URL = http://www.dansimmons.com
ID = 3, Author = Stephenson, Neal, URL = http://www.nealstephenson.com

Display 19.13 Retrieving Rows with the SELECT Statement (part 3 of 3)

Display 19.14 Updating Rows with the UPDATE Statement (part 1 of 3)

 1 import java.sql.Connection;
 2 import java.sql.DriverManager;
 3 import java.sql.ResultSet;
 4 import java.sql.SQLException;
 5 import java.sql.Statement;
 6 import java.util.Scanner;

 7 public class UpdateDB
 8 {

 9 private static final String driver =
 "org.apache.derby.jdbc.EmbeddedDriver";
10 private static final String protocol = "jdbc:derby:";

The database must be created
(Display 19.12) before running
this program. Use the program
in Display 19.13 to view the
changes made by this program.

(continued)

http://www.douglasadams.com
http://www.dansimmons.com
http://www.nealstephenson.com
http://www.dansimmons.com
http://www.nealstephenson.com

1156 CHAPTER 19 Java never Ends

11 public static void main(String[] args)
12 {
13 try
14 {
15 Class.forName(driver).newInstance();
16 System.out.println("Loaded the embedded driver.");
17 }
18 catch (Exception err)
19 {
20 System.err.println("Unable to load the embedded driver.");
21 err.printStackTrace(System.err);
22 System.exit(0);
23 }
24 String dbName = "BookDatabase";
25 Connection conn = null;
26 try
27 {
28 System.out.println("Connecting to the database...");
29 conn = DriverManager.getConnection(protocol + dbName);
30 System.out.println("Connected.");

31 System.out.println(
 "Enter the ID number of the author to change:");
32 Scanner scan = new Scanner(System.in);
33 int id = scan.nextInt();
34 scan.nextLine();
35 System.out.println("Enter the new URL for this author.");
36 String newURL = scan.nextLine();

37 Statement s = conn.createStatement();
38 s.execute("UPDATE names " +

39 "SET URL = '" + newURL + "' WHERE author_id = " +
id);

40 System.out.println("URL changed to " + newURL);
41 conn.close();
42 }
43 catch (SQLException err)
44 {
45 System.err.println("SQL error.");
46 err.printStackTrace(System.err);
47 System.exit(0);
48 }
49 }
50 }

Display 19.14 Updating Rows with the UPDATE Statement (part 2 of 3)

Skips the newline left after nextInt()

Java and Database Connections 1157

There is much more to SQL and JDBC than what we have discussed here. However,
this section should give you a good idea about how to integrate SQL into a Java
application and provide a starting point to learn more.

Sample Dialogue

Loaded the embedded driver.
Connecting to the database...
Connected.
Enter the ID number of the author to change:
2
Enter the new URL for this author:
http://www.dansimmons.com/about/bio.htm
URL changed to http://www.dansimmons.com/about/bio.htm

Display 19.14 Updating Rows with the UPDATE Statement (part 3 of 3)

Self-Test Exercises

 9. Give the SQL SELECT command to produce a table of book titles
with corresponding author and author ID from the table Result in
Display 19.11 and one of the tables in Display 19.10. Follow the example
of the SQL command in the text used to produce the Result table.

10. What is a connection string?

11. What is the difference between the execute() and executeQuery()
methods of the JDBC Statement class?

12. Give the SQL statement to create the BooksAuthors table shown in
Display 19.10.

13. Give the SQL statement to insert the four entries shown in Display 19.10
into the BooksAuthors table.

http://www.dansimmons.com/about/bio.htm
http://www.dansimmons.com/about/bio.htm

1158 CHAPTER 19 Java never Ends

19.5 Web Programming with Java Server Pages

Everything is connected… no one thing can change by itself.

PAuL HAWKEn

Up to this point, we have used Java to create stand-alone applications. However,
Java is also used to create interactive websites. In this section, we briefly introduce
ways that Java can be used on the Web with an emphasis on Java Server Pages. This
section requires a basic understanding of HTML. An introduction to HTML is given
in Chapter 20, which is included on the website with this book. This section is not
a complete enough introduction to allow you to immediately start writing Java Web
applications. The intent is to introduce the major concepts behind Java Server Pages so
you can learn what kinds of things are possible should you wish to learn more with a
book or other resource dedicated to the topic.

applets, Servlets, and Java Server Pages

When you instruct your Web browser to view a page from a Web server on the Internet,
your Web browser requests the page from the Web server, the Web server processes the
request (which may involve reading the requested page from a file on the hard drive),
and then the Web server sends the requested page to your Web browser. Your Web
browser formats, or renders, the received data to fit on your computer screen. This
interaction is a specific case of the client/server model described in Section 19.2. Your
Web browser is the client program, your computer is the client computer, the remote
website is the server computer (e.g., http://www.remotesite.com), and the Web server
software running on the remote website is the server program.

In the context of a Web application, the client/server model is important because
Java code can run in two places: on the client or on the server. There are trade-offs to
both approaches. Server-based programs have easy access to information that resides on
the server, such as customer orders or inventory data. Because all of the computation is
done on the server and results are transmitted to the client as HTML, a client does not
need a powerful computer to run a server-based program. On the other hand, a client-
based program may require a more powerful client computer, because all computation
is performed locally. However, richer interaction is possible, because the client program
has access to local resources, such as the graphics display (e.g., perhaps using Swing) or
the operating system. Many systems today are constructed using code that runs on
both the client and the server to reap the benefit of both approaches.

Web applications built with Java include Java applets, Java servlets, and Java
Server Pages (JSP). Java applets run on the client computer and are discussed in
Chapter 20. JavaScript, which is a different language than Java despite its similar
name, also runs on the client computer as part of the Web browser. Java servlets and
Java Server Pages run on the server. In this chapter, we focus primarily on Java Server
Pages, which are a dynamic version of Java servlets. Servlets must be compiled before
they can run, just like a normal Java program. In contrast, JSP code is embedded with

Java applet

Java servlet

Java Server
Pages

http://www.remotesite.com

Web Programming with Java Server Pages 1159

the corresponding HTML and is compiled “on the fly” into a servlet when the page
is requested. This flexibility can make it easier to develop Web applications using JSP
than with Java servlets. Displays 19.15, 19.16, and 19.17 illustrate the differences for a
website that runs an applet, servlet, or JSP.

Web Browser Web Server

Internet

retupmoC revreSretupmoC tneilC

1

2

Servlet
Engine

3

The client’s Web browser sends a request to the server for a Web
page that runs a Java servlet.

1

The Web server instructs the servlet engine to execute the requested
servlet, which consists of running precompiled Java code. The
servlet outputs HTML that is returned to the Web server.

2

The Web server sends the servlet’s HTML to the client’s Web browser
to be displayed.

3

Request

HTML HTML

Web Browser Web Server

Internet
retupmoC revreSretupmoC tneilC

Java VM

Request

HTML + Applet

1

2

The client’s Web browser sends a request to the server for a
Web page with a Java applet.

The server sends the HTML for the Web page and applet class
files to the client.

The client runs the applet using the Java Virtual Machine and
displays its output in the Web browser.

1

2

3

3

Display 19.15 Running a Java Applet

Display 19.16 Running a Java Servlet

1160 CHAPTER 19 Java never Ends

Oracle GlassFish Enterprise Server

JSP requires a Web server with a JSP servlet engine. In this section, we will use
the Oracle GlassFish Enterprise Server, previously known as the Sun Java System
Application Server. It is distributed by Oracle as part of the Java Enterprise Edition
SDK. However, you may use any Web server that supports Java servlets and JSP.
Another popular choice is the open source Apache Tomcat server. Follow the
installation instructions that come with the server that you select.

The GlassFish server will ask you to select an administrator username and password
during the installation procedure. It will also ask you for a location on the hard drive to
place the server files. We will refer to the pathname you select as <glassfish_home>.
On a Windows machine, this may default to C:\Sun\SDK. After the installation is
complete, start the GlassFish Web service. If the installation is successful, then you
should be able to see the administrator’s page by opening http://localhost:4848
in your Web browser. The default URL for accessing applications is http:
//localhost:8080. Substitute localhost with the name of the machine if you are
using a remote server.

At this point, you can test your server by creating or copying an HTML file into
<glassfish_home>\domains\domain1\docroot and opening it with your Web
browser. For example, if you create an HTML file named test.html in this directory,
then you should be able to access it with your Web browser by navigating to http:
//localhost:8080/test.html. If you cannot read the page, check your configuration
settings. To run JSP programs, your Web browser must open the page through the
GlassFish Web server and not directly load the page from the HTML file on the disk drive.

Web Browser Web Server

Internet

retupmoC revreSretupmoC tneilC

JSP Servlet
Engine

Request

HTML HTML

1

2

The client’s Web browser sends a request to the server for a Web page
that contains JSP code.

The JSP servlet engine dynamically compiles the JSP source code into
a Java servlet if a current, compiled servlet doesn’t exist.
The servlet runs and outputs HTML that is returned to the Web server.

The Web server sends the servlet’s HTML to the client’s Web browser
to be displayed.

1

2

3

3

Display 19.17 Running a Java Server Page (JSP) Program

Web Programming with Java Server Pages 1161

HTMl Forms—the Common Gateway Interface

The HTML form is a common mechanism for users to input data to Web applications.
If you have ever visited a Web page in which you enter data using textboxes and buttons,
then you have used an HTML form. In this section, we introduce just a handful of tags
that can be used in an HTML form and then show how submitted data can be processed
by a JSP program. The information you enter into an HTML form is transmitted to the
Web server using a protocol called the Common Gateway Interface (CGI). The server
processes the information using a program such as a Java servlet and then returns the
results back to the user.

An HTML form is created with the <form>tag. The syntax is as follows:

<FORM ACTION="Path_To_CGI_Program" METHOD="GET or POST">
 Form_Elements
</FORM>

The ACTION string identifies the program that will process the form input. In our
case, this will consist of a JSP program. The METHOD string specifies how data will be
sent to the server and is either GET or POST. GET means that the data will be sent as part
of the URL while POST means that the data will be sent as part of the data and will not
be visible in the URL.

Elements that can be inserted inside the form include selection lists, textboxes,
checkboxes, radio buttons, and several other common GUI widgets. In this section,
we will only introduce textboxes and submission buttons. A textbox has the
following syntax:

<INPUT TYPE="TEXT" NAME="Textbox_Name" VALUE="Default_Text"
SIZE="Length_In._Characters"
MAXLENGTH="Maximum_Number_Of_Allowable_Characters">

All of the attributes are optional except for the input type. However, the name of
the textbox will be required to retrieve the textbox’s value from JSP. If you would like
a default value to be entered in the textbox, you can put it in the VALUE field or leave it
blank for no text. The SIZE field controls the length of the textbox while MAXLENGTH
limits the number of characters that may be entered.

The submission button has the following syntax:

<INPUT TYPE="SUBMIT" NAME="Name" VALUE="Button_Text">

The NAME field can be used to identify the submission button in case there are
multiple submission buttons and you wish to identify which one was clicked. VALUE
determines what text is placed in the button’s label.

A sample form with two text fields and a submission button is shown in
Display 19.18. The form, when opened in a Web browser, is shown in Display 19.19.
It asks the user to enter an Author ID and a new URL with the intent of changing the
URL to the submitted value for the specified Author ID. Because we have not created
a JSP program that processes the form, the Web browser will display an error message
if the Submit button is clicked. We will write the JSP program in the next subsection.

HTML form

Common
Gateway
Interface

1162 CHAPTER 19 Java never Ends

Display 19.18 An HTML Form Document

<html>
<head>
<title>Change Author's URL</title>
</head>

<body>
<h1>Change Author's URL</h1>
<p>
Enter the ID of the author you would like to change
along with the new URL.
</p>

<form ACTION = "EditURL.jsp" METHOD = POST>

Author ID:
<input TYPE = "TEXT" NAME = "AuthorID"
 VALUE = "" SIZE = "4" MAXLENGTH = "4">

New URL:
<input TYPE = "TEXT" NAME = "URL"
 VALUE = "http://" SIZE = "40" MAXLENGTH = "200">

<p>
INPUT TYPE="SUBMIT" VALUE="Submit">

</p>
</form>

</body>
</html>

Invokes the JSP program
named EditURL.jsp. If this
program does not exist, you
will see an error message
upon clicking the Submit
button. EditURL.jsp is
given in the next subsection.

Creates a textbox named URL that
by default contains "http://",
displays 40 characters at
once, and accepts at most
200 characters

Creates a Submit button

Display 19.19 Browser View of Display 19.18

Creates a textbox
named AuthorID that
is empty, displays four
characters at once,
and accepts at most,
four characters

Web Programming with Java Server Pages 1163

JSP Declarations, Expressions, Scriptlets, and Directives

A JSP Web page is created the same way you make an HTML file, except JSP code
is added along with the HTML code. Additionally, instead of naming the file with
an extension of .HTM or .HTML, the extension is .JSP. The file should be placed in
the root folder of your Web server so it can be accessed by and processed through the
Web server.

The JSP elements we will briefly discuss are declarations, expressions, scriptlets,
and directives. All of these elements are identified by their own tags. The declarations
tag allows us to define variables and methods. The variables and methods are accessible
from any scriptlets and expressions on the same page. Variable declarations are
compiled as instance variables for a class that corresponds to the JSP page. Declarations
are defined with the syntax

<%!
 Declarations
%>

For example, the following defines an instance variable named count and a method
named incrementCount that increments the count variable:

<%!
 private int count = 0;

 private void incrementCount()
 {
 count++;
 }
%>

We can access variables defined in declarations with an expression. The syntax to embed
an expression is as follows:

<%=
 Expression
%>

Expressions are embedded directly into the HTML. The Web browser will display the
value of the expression in place of the tag. For example, we can output the value of the
count variable in bold type with the following piece of HTML:

The value of count is <%= count %>

Blocks of Java code can be embedded in a scriptlet. The syntax for a scriptlet is
as follows:

<%
 Java code
%>

If you wish to output HTML within a scriptlet, then this is done using out.println(),
which is used in the same manner as System.out.println(). The variable out is
already defined for us and is of type javax.servlet.jsp.JspWriter. Also note that

JSP elements

declaration

expression

scriptlet

1164 CHAPTER 19 Java never Ends

System.out.println() will output to the console, which is useful for debugging
purposes, while out.println() will output to the browser. The following scriptlet
invokes the incrementCount() method and then outputs the value in count:

<%
 out.println("The counter's value is " + count + "
");
 incrementCount();
%>

Display 19.20 is a JSP page with a declaration, expression, and scriptlet that output
text inside a header tag from levels 1 to 6. The identifier LASTLEVEL is declared as the
last heading level that is to be displayed. LASTLEVEL is modified by static final,
because it is intended as a constant. A loop inside the scriptlet outputs sample text for
each level. The HTML that is generated by the JSP page is shown in Display 19.21,
and the browser view is shown in Display 19.22.

Display 19.20 JSP Code to Display Heading Levels

 1 <html>
 2 <title>
 3 Displaying Heading Tags with JSP
 4 </title>

 5 <body>
 6 <%!
 7 private static final int LASTLEVEL = 6;
 8 %>

 9 <p>
10 This page uses JSP to display Heading Tags from
11 Level 1 to Level <%= LASTLEVEL %>
12 </p>

13 <%
14 int i;
15 for (i = 1; i <= LASTLEVEL; i++)
16 {
17 out.println("<H" + i + ">" +
18 "This text is in Heading Level " + i +
19 "</H" + i + ">");
20 }
21 %>

22 </body>
23 </html>

JSP declaration

JSP expression that evaluates
to the value 6

JSP scriptlet that contains
a block of Java code

Web Programming with Java Server Pages 1165

Display 19.21 HTML Generated by JSP in Display 19.20

<html>
<title>
Displaying Heading Tags with JSP
</title>

<body>

<p>
This page uses JSP to display Heading Tags from
Level 1 to Level 6
</p>

<H1>This text is in Heading Level 1</H1>
<H2>This text is in Heading Level 2</H2>
<H3>This text is in Heading Level 3</H3>
<H4>This text is in Heading Level 4</H4>
<H5>This text is in Heading Level 5</H5>
<H6>This text is in Heading Level 6</H6>

</body>
</html>

Display 19.22 Browser View of Display 19.21

1166 CHAPTER 19 Java never Ends

To make a JSP page more interactive, we can read and process the data entered in
an HTML form. One way to read these values is to call the request.getParameter
method. This method takes a String parameter as input that identifies the name of
an HTML form element and returns the value entered by the user for that element on
the form. For example, if there is a textbox named AuthorID, then we can retrieve the
value entered in that textbox with the following scriptlet code:

String value = request.getParameter("AuthorID");

If the user leaves the field blank, then getParameter returns an empty string. A simple
example is given in Display 19.23. This JSP program echoes back the data entered by
the user in Display 19.18. The name of the JSP file must match the value supplied for
the ACTION tag of the form. In this case, the name is EditURL.jsp.

Display 19.23 Echoing Values Submitted by a Browser Viewing Display 19.18

<html>
<title>Edit URL: Echo submitted values</title>
<body>
<h2>Edit URL>/h2>

<p>
This version of EditURL.jsp simply echoes back to the
user the values that were entered in the textboxes.
</p>

<%
 String url = request.getParameter("URL");
 String stringID = request.getParameter("AuthorID");
 int author_id = Integer.parseInt(stringID);
 out.println("The submitted author ID is: " + author_id);
 out.println("
");
 out.println("The submitted URL is: " + url);
%>
</body>
</html>

Sample Dialogue

Author ID:
2
New URL:
http://www.dansimmons.com/about/bio.htm

Edit URL

This version of EditURL.jsp simply echoes back to the user the
values that were entered in the textboxes.

The submitted author ID is: 2
The submitted URL is:
http://www.dansimmons.com/about/bio.htm

This program should be saved as
EditURL.jsp and must match
the value in the ACTION field of
the HTML form tag.

The getParameter
method calls return as
Strings the values entered
by the user in the URL and
AuthorID textboxes
from Display 19.18.

Submitted on the Web browser when viewing Display 19.18

Web browser display after clicking Submit

http://www.dansimmons.com/about/bio.htm
http://www.dansimmons.com/about/bio.htm

Web Programming with Java Server Pages 1167

Refer to Display 19.12 for an
explanation of the database
code in this scriptlet.

Finally, let us introduce one more JSP tag, the directive. In general terms, directives
instruct the compiler how to process a JSP program. Examples include the definition
of our own tags, including the source code of other files, and importing packages. The
syntax for directives is as follows:

<%@
 Directives
%>

In this introduction, we will cover only the page import directive. The purpose of this
directive is the same as the normal Java import statement, but the syntax is slightly
different. First, we identify the directive and then specify the packages to import inside
a string. Multiple packages are separated by a comma, e.g.,

<%@
 page import="java.util.*,java.sql.*"
%>

A JSP program that uses Derby to create an embedded database is shown in
Display 19.24. The page import directive is used to import the necessary SQL packages.
The program in Display 19.24 is almost identical to the stand-alone program in
Display 19.12, except all of the code has been moved into a scriptlet. If the JSP
program is in a file named CreateDB.jsp, then it would be invoked by navigating to
http://localhost:8080/CreateDB.jsp. The database files on a GlassFish server will
be created in <glassfish_home>\domains\domain1\config if you do not specify a
pathname. If you run the program more than once, then it will throw an exception the
second time, because the database table names already exists and cannot be created again.
If you wish to start over with a new database, then you can delete the BookDatabase
directory in the <glassfish_home>\domains\domain1\config directory.

directive

page import

Display 19.24 JSP Program to Create a Derby Database and Table (part 1 of 3)

 1 <%@ page import="java.sql.*" %>
 2 <html>
 3 <title>Create New Database</title>
 4 <body>
 5 <H2>Create New Database</h2>

 6 <p>
 7 This program creates a new Derby database named 'BookDatabase'
 8 and puts sample data into the 'person' table.
 9 </p>

10 <%
11 String driver = "org.apache.derby.jdbc.EmbeddedDriver";
12 String protocol = "jdbc:derby:";

Directive to import the Java
SQL packages

(continued)

http://localhost:8080/CreateDB.jsp

1168 CHAPTER 19 Java never Ends

13 try
14 {
15 Class.forName(driver).newInstance();
16 out.println("Loaded the embedded driver.
");
17 }
18 catch (Exception err)
19 {
20 out.println(

 "Unable to load the embedded driver.</body></html>");
21 return;
22 }

23 String dbName = "BookDatabase";
24 Connection conn = null;
25 try
26 {
27 out.println(

 "Connecting to and creating the database...
");
28 conn = DriverManager.getConnection(protocol + dbName +
 ";create=true");
29 out.println("Connected.
");

30 Statement s = conn.createStatement();

31 s.execute("CREATE TABLE names" +
32 "(author varchar(50), author_id int, url varchar(80))");
33 out.println("Created 'names' table.
");

34 out.println("Inserting authors.
");
35 s.execute("INSERT INTO names " +
36 "VALUES ('Adams, Douglas', 1, 'http://www.douglasadams.com')");

37 s.execute("INSERT INTO names " +
38 "VALUES ('Simmons, Dan', 2, 'http://www.dansimmons.com')");
39 s.execute("INSERT INTO names " +
40 "VALUES ('Stephenson, Neal', 3," +
 "'http://www.nealstephenson.com')");
41 out.println("Authors inserted.
");

42 conn.close();
43 }
44 catch (Exception err)
45 {
46 out.println("SQL error.
");
47 }
48 %>
49 </body>
50 </html>

A return statement will
terminate the JSP program.

Display 19.24 JSP Program to Create a Derby Database and Table (part 2 of 3)

http://www.douglasadams.com
http://www.dansimmons.com
http://www.nealstephenson.com

Web Programming with Java Server Pages 1169

In this second part, to complete our example, let us modify the EditURL.jsp program
from Display 19.23 to make it change the contents of the database instead of echoing
back values submitted by the HTML form. Our new program will require running the
program in Display 19.24 once in order to create and initialize the database. Once this is
done, you can open the HTML form in Display 19.18 in a Web browser, which prompts
the user to submit a new URL for an author ID, and then the new URL will be updated
in the database by the program in Display 19.25. The program in Display 19.25 is a
combination of Display 19.14 (updating a Derby database) and Display 19.23 (echoing
values submitted by a Web browser). Instead of prompting the user to input an author
ID and new URL from the console as in Display 19.14, these values are submitted to the
JSP program by the HTML form in Display 19.18. The JSP program then updates the
database to the submitted values in the same manner as the program in Display 19.14.

Sample Dialogue

Create New Database

This program creates a new Derby database named 'BookDatabase'
and puts sample data into the 'names' table.

Loaded the embedded driver.

Connecting to and creating the database...

Connected.

Created 'names' table.

Inserting authors.

Authors inserted.

Display 19.24 JSP Program to Create a Derby Database and Table (part 3 of 3)

Display 19.25 JSP Program to Update Database Entries Submitted by a Browser Viewing
Display 19.18 (part 1 of 3)

 1 <%@ page import="java.sql.*" %>
 2 <html>
 3 <title>Edit URL: Update new URL in a database</title>
 4 <body>
 5 <h2>Edit URL</h2>

 6 <p>
 7 This version of EditURL.jsp updates the URL field
 8 of a Derby database to the submitted value for the
 9 row with a matching Author ID.
10 </p>

11 <%
12 String newURL = request.getParameter("URL");
13 String stringID = request.getParameter("AuthorID");
14 int author_id = Integer.parseInt(stringID);

(continued)

This program should be
saved as EditURL.jsp
and must match the
value in the ACTION field
of the HTML form tag.

The getParameter method
calls return as Strings the
values entered by the user in
the URL and AuthorID
textboxes from Display 19.18.

1170 CHAPTER 19 Java never Ends

15 String driver = "org.apache.derby.jdbc.EmbeddedDriver";
16 String protocol = "jdbc:derby:";
17 try
18 {
19 Class.forName(driver).newInstance();
20 out.println("Loaded the embedded driver.
");
21 }
22 catch (Exception err)
23 {
24 out.println("Unable to load the embedded driver.</body></html>");
25 return;
26 }

27 String dbName = "BookDatabase";
28 Connection conn = null;
29 try
30 {
31 out.println("Connecting to and creating the database...
");
32 conn = DriverManager.getConnection(protocol + dbName +
 ";create=true");
33 out.println("Connected.
");

34 Statement s = conn.createStatement();
35 s.execute("UPDATE names " +
36 "SET URL = '" + newURL + "' WHERE author_id = " + author_id);
37 out.println("
URL changed to " + newURL +
38 "for Author ID = " + author_id + "
");

39 out.println("
Displaying all rows:
");
40 ResultSet rs = null;
41 rs = s.executeQuery("SELECT author, author_id, url FROM names");
42 out.println("");
43 while(rs.next())
44 {
45 int id = rs.getInt("author_id");
46 String author = rs.getString("author");
47 String url = rs.getString("url");
48 out.println("ID = " + id + ", Author = "
49 + author + ", URL = " + url + "");
50 }
51 out.println("");
52 rs.close();

53 conn.close();
54 }
55 catch (Exception err)
56 {
57 out.println("SQL error.
");
58 }

Refer to Displays 19.13 and 19.14 for
an explanation of the database code in
this scriptlet.

The URL in the database is changed to the
submitted value if the Author IDs match.

This loop outputs all rows in the database
inside a numbered list.

Display 19.25 JSP Program to Update Database Entries Submitted by a Browser Viewing
Display 19.18 (part 2 of 3)

Web Programming with Java Server Pages 1171

Although we have covered enough JSP to write fairly sophisticated programs, there
is much more that we have not discussed. For example, beans can be used as a
convenient way to encapsulate data submitted from a HTML form. Additionally,
we have not covered sessions, tag libraries, security, and numerous other topics
that are important in the construction of JSP pages. In particular, the technique of
generating SQL read and write queries based on user-entered values is not secure—a
malicious user could enter values that potentially run arbitrary SQL statements.
A more secure solution is to use a precompiled SQL statement that is supported by the
java.sql.PreparedStatement class. Refer to a textbook dedicated to JSP or database
programming to learn more.

59 %>
60 </body>
61 </html>

Sample Dialogue

Author ID:

2

New URL:

http://www.dansimmons.com/about/bio.htm

Edit URL

This version of EditURL.jsp updates the URL field of a Derby database to
the submitted value for the row with a matching Author ID.

Loaded the embedded driver.

Connecting to and creating the database...

Connected.

URL changed to http://www.dansimmons.com/about/bio.htm for Author ID = 2

Displaying all rows:

1. ID = 1, Author = Adams, Douglas, URL = http://www.douglasadams.com

2. ID = 2, Author = Simmons, Dan, URL = http://www.dansimmons.com/about/
bio.htm

3. ID = 3, Author = Stephenson, Neal, URL = http://www.nealstephenson.com

Submitted on the Web browser when viewing Display 19.18

Web browser display after clicking Submit

Display 19.25 JSP Program to Update Database Entries Submitted by a Browser Viewing
Display 19.18 (part 3 of 3)

http://www.dansimmons.com/about/bio.htm
http://www.dansimmons.com/about/bio.htm
http://www.douglasadams.com
http://www.dansimmons.com/about/bio.htm
http://www.nealstephenson.com
http://www.dansimmons.com/about/bio.htm

1172 CHAPTER 19 Java never Ends

Self-Test Exercises

14. What is a major difference between a website implemented with a Java applet
and a website implemented with Java Server Pages?

15. Give the HTML to create a form with two elements: a textbox named
FirstName that holds a maximum of 50 characters, and a Submit button. The
form should submit its data to a JSP program called ProcessName.jsp using
the POST method.

16. Identify the following JSP tags: <% %>, <%@ %>, <%! %>, <%= %>

17. Write a JSP scriptlet that handles the form created in Self-Test Exercise 13 and
outputs the name in a bold heading font.

19.6 Introduction to Functional Programming
in Java 8

Java 8 is the current version of Java that was released in March 2014. While there are
many new features in Java 8, the core addition is functional programming with lambda
expressions. In this section we describe the benefits of functional programming and
give a few examples of the programming style. Most of the features in Java 8 are more
appropriate for an advanced Java text, but the concepts apply to material we have
discussed, particularly when we are working with collections.

A lambda expression is a nameless function. In functional programming, a function
is the same thing as a method. Related concepts include closures, anonymous functions,
and function literals. As a nameless function, a lambda expression is essentially a little
chunk of code that you can pass around as data but have it be treated like a function
with parameters. Lambda expressions provide a neat way to implement a class that
normally has only one function and to modify methods on the spot rather than go
through the work of defining a method to perform a specialized task. Additionally,
lambda expressions help Java parallelize itself to run more efficiently on multicore or
parallel machines. For example, normally we will process elements in an ArrayList by
creating a for loop that accesses each element one by one. This is considered external
access to the loop. In contrast, with lambda expressions we can internally iterate
through the ArrayList by providing a function that tells Java how to process each
element. The Java Virtual Machine can then parallelize the operating by farming out
computations on the elements to different processors.

The format to define a lambda expression looks like this:

parameters -> body

The arrow separates the parameters from the body. In many cases the body is short and
just a single line of code. If it were longer, then a traditional method may make more

Functional
Programming
Example

VideoNote

Introduction to Functional Programming in Java 8 1173

sense. Here is a lambda expression with a function that takes no parameters and returns
the number 68:

() -> { return 68; }

Here is a lambda expression that returns the sum of two integers x and y:

(int x, int y) -> { return (x+y); }

In many cases Java can infer the type of the parameters, in which case we can leave
the data type off. We can also simply provide an expression on the right side and it
automatically becomes the return value without adding the keyword return. The
following is equivalent to the previous example:

(x, y) -> x+y

As an example to motivate the use of lambda functions, consider the case where we
want a class to implement the Runnable interface. If you recall from Section 19.1,
the Runnable interface has only one method to implement, the run() method.
Unlike in Section 19.1, in our simple example we won’t be using threads, so we can
directly invoke the run() method rather than the start() method of a thread. The
following code illustrates the traditional way we would create an object that
implements Runnable:

public class OldStyleRunnable implements
 Runnable
{
 public void run()
 {
 System.out.println
 ("Running in a class!");
 }
}

public class NotLambda1
{
 public static void main(String[]args)
 {
 OldStyleRunnable r0 = new
 OldStyleRunnable();
 r0.run(); // Not running in a thread
 }
}

Sample Dialogue

 Running in a class!

1174 CHAPTER 19 Java never Ends

This is fine for one object, but what if we wanted multiple objects and we wanted
different code in the run() method for each? Then we would have to explicitly create
a separate class for each object. An alternative is to use an anonymous class in which we
declare and instantiate the class in a single statement:

public class NotLambda2
{
 public static void main(String[] args)
 {
 // Anonymous class that overrides
 // the run() method. Anonymous classes are described in

Chapter 13.
 Runnable r = new Runnable()
 {
 public void run()
 {System.out.println
 ("In an anonymous class!");
 }
 };
 r.run();
 }
}

Sample Dialogue

 In an anonymous class!

This is an improvement over the first version because we can now create unique
Runnable objects with the run() method of our choice without the need to assign a
name to each derived Runnable class. However, lambda functions allow us to assign a
function to a Runnable object in a single line:

public class LambdaRunnable
{
 public static void main(String[]args)
 {
 Runnable r =
 () -> System.out.println
 ("In a lambda expression!");
 r.run();
 }
}

Sample Dialogue

 In a lambda expression!

Introduction to Functional Programming in Java 8 1175

The lambda format is the simplest of all and lets us directly insert the method where
needed. The same concept applies to implementing an actionListener for a GUI
component. For example, instead of this old style code that uses an anonymous class:

button.addActionListener(new ActionListener()
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("You clicked me!");
 }
});

we can now use the much shorter and easier to read

button.addActionListener
 (e -> System.out.println
 ("You clicked me!"));

Java’s lambda expressions are particularly useful when applied to collections. Three
common operations that we typically perform are to filter, map, or reduce the collection.
In this section we give a short example of each.

Let’s start with the concept of a filter. Consider the following code, which creates a
list of doubles:

ArrayList<Double> nums = new ArrayList<>();
nums.add(3.5);
nums.add(56.3);
nums.add(81.1);
nums.add(4.8);

If we want to output only the values in the array that are greater than 50, then in
traditional Java style (external processing) we would make a loop with an if statement:

for (int i = 0; i < nums.size(); i++)
 if (nums.get(i) > 50)
 System.out.println(nums.get(i));

Using Java 8’s lambda expressions, we can do the same thing by creating a stream of
the elements in the ArrayList and then filtering them. This is accomplished through
a sequence of function calls:

nums.stream().filter((Double val) -> val >
50).forEach((Double val) ->
System.out.println(val));

1176 CHAPTER 19 Java never Ends

For readability purposes it is common to put each function call on a separate line:

nums.stream()
 .filter((Double val) -> val > 50)
 .forEach((Double val) ->
System.out.println(val));

The stream() method creates a stream that generates a list that we can iterate once.
Not to be confused with data streams, this new type of stream can be accessed in
parallel or sequentially. In our case we are using only sequential streams. Once the
stream is generated, we invoke filter and the forEach. Inside filter we specify a
lambda expression. Each element in the ArrayList is filtered according to the lambda
expression. In this case, the variable val is an element in the ArrayList that is being
processed and the function says to filter only those elements with values greater than
50. Next, the forEach iterates through the filtered elements and outputs each one via
println. In our example, this would output 56.3 and 81.1.

We can simplify the code a little bit more by leaving out the data type because Java
is able to infer it from the context. The resulting code becomes

nums.stream()
 .filter(val -> val > 50)
 .forEach(val -> System.out.println(val));

The new format is quite different from the traditional method but the style is more
concise, can be more easily parallelized, and in general requires less code than the old
technique.

Next, consider the concept of a map. A map takes elements in the collection and
transforms them in some way. First, consider a simple mapping where we would like to
add 100 to every element in the ArrayList. We can do so as follows:

nums.stream()
 .map(val -> (val + 100))
 .forEach(val -> System.out.println(val));

This will output 100 added to each value (i.e., 103.5, 156.3, 181.1, 104.8). Note that
each function is invoked in sequence. If we add our previous filter to the beginning,
then we would get only 156.3 and 181.1:

nums.stream()
 .filter(val -> val > 50)
 .map(val -> (val + 100))
 .forEach(val -> System.out.println(val));

Finally, consider the concept of collecting. Collecting means that we process all
of our elements in some way and collect the final result. The result is often a single
value. Examples include summing, averaging, finding the minimum, and finding the

Introduction to Functional Programming in Java 8 1177

maximum of a set of data. The following code shows how we could compute the sum
of all elements in our ArrayList:

double d = nums.stream()
 .mapToDouble(v -> v)
 .sum();
System.out.println("The sum is " + d);

The mapToDouble function takes each element and maps it as a double (a bit
redundant here, since we are starting with doubles) and then accumulates all the
elements into a sum. As you might surmise, there are also the methods mapToInt(),
mapToLong(), and so on as well as methods to compute min(), max(), average(),
and other values.

More customization is possible using the reduce function. In our case we’ll use the
version that takes as input a seed value and a binary function. Consider a collection
with values v1, v2, and v3. If we start with a seed value s, then reduce will first apply
the binary function to s and v1, producing r1. The binary function is then applied to
r1 and v2, producing r2. Then the binary function applies to r2 and v3, producing r3,
which is returned as the final value. The following code computes the sum of all values
using reduce:

d = nums.stream()
 .reduce(0.0, (v1, v2) -> v1 + v2);
System.out.println("The sum is " + d);

In this case, 0.0 is the seed value and the second parameter is the function that specifies
how to accumulate the sum of the values. For the first step, v1 corresponds to 0.0 and
v2 corresponds to 3.5. This produces the intermediate sum of 3.5. In the second step,
v1 corresponds to 3.5 and v2 corresponds to 56.3, producing 59.8. In the third step,
v1 corresponds to 59.8 and v2 to 81.1, and so on until the sum is reached.

For an additional example, consider the following list of names:

ArrayList<String> names = new ArrayList<>();
names.add("Paco");
names.add("Enrique");
names.add("Bob");

If we want to compute the average length of all the names, then we can map the length
to an integer:

d = names.stream()
 .mapToInt(name -> name.length())
 .average()
 .getAsDouble();
System.out.println("The average is " + d)

In this case we map each name to an int using the length() method, compute the
average, and get the value as a double.

1178 CHAPTER 19 Java never Ends

For the final example, say that we want to get the largest name. We can use the
reduction technique:

String s = names.stream()
 .reduce("", (n1, n2) ->
 {
 if (n1.length() > n2.length())
 return n1;
 else
 return n2;
 }
);
System.out.println("longest Name: " + s);

We use a block in this case, where the function compares the length of the strings and
returns the largest one. This is one case where we would commonly use the ? operator
to shorten the code:

String s = names.stream()
 .reduce("", (n1, n2) ->
 (n1.length() > n2.length()) ? n1 : n2);
System.out.println("longest Name: " + s);

These examples should give you an idea of what Java lambda expressions look like
and what they can do. While there is definitely a learning curve, lambda expressions
allow you to write code that is more concise while enabling parallel processing. Java 8’s
new syntax supports both functional programming and object-oriented programming
in a way that reaps the benefits of both styles.

Self-Test Exercises

18. Rewrite the program below so that it uses lambda functions to implement the
action listeners.

import javax.swing.JButton;
import javax.swing.JFrame;
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ButtonDemo extends JFrame implements
ActionListener
{
 public ButtonDemo()
 {

Introduction to Functional Programming in Java 8 1179

Self-Test Exercises (continued)

 setSize(250, 100);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setTitle("Button Demo");
 Container contentPane = getContentPane();
 contentPane.setBackground(Color.BLUE);
 contentPane.setLayout(new FlowLayout());

 JButton stopButton = new JButton("Red");
 stopButton.addActionListener(this);
 contentPane.add(stopButton);

 JButton goButton = new JButton("Green");
 goButton.addActionListener(this);
 contentPane.add(goButton);
 }

 public void actionPerformed(ActionEvent e)
 {
 Container contentPane = getContentPane();

 if (e.getActionCommand().equals("Red"))
 contentPane.setBackground(Color.RED);
 else if (e.getActionCommand().equals("Green"))
 contentPane.setBackground(Color.GREEN);
 else
 System.out.println("Error.");
 }

 public static void main(String[] args)
 {
 ButtonDemo buttonGui = new ButtonDemo();
 buttonGui.setVisible(true);
 }
}

19. What is the output of the following code?

ArrayList<Integer> nums = new ArrayList<>();
nums.add(3);
nums.add(5);
nums.add(1);
nums.stream()
 .filter(val -> val > 1)
 .forEach(val -> System.out.println(val));

1180 CHAPTER 19 Java never Ends

19.7 Introduction to JavaFx

JavaFX is a set of packages that allow Java programmers to create rich graphics and
media applications. Potential applications include GUI interfaces, 2-D and 3-D games,
animations, visual effects, touch-enabled applications, and multimedia applications. At
the time of this writing, JavaFX 8 is the latest version. JavaFX has several advantages
over other graphical libraries, including hardware-accelerated graphics and a high-
performance media engine. The platform includes built-in UI controls and supports
XML-based markup for the design and layout of UI components and Cascading Style
Sheets for presentation. This separates the controlling code from the UI while simplifying
the UI design. Most IDEs assist with many of these details in the construction of a
JavaFX application. At some point JavaFX will replace Swing as the standard library
for creating graphical interfaces. However, both JavaFX and Swing are expected to be
included in Java distributions in the foreseeable future.

A JavaFX application uses the metaphor of a stage and scenes, just like the stage and
scenes in a theater. The Stage class is a top-level JavaFX container and in our examples
will correspond to an OS window. Every Stage has an associated Scene object. The
Scene object contains a set of nodes called a scene graph. These nodes describe a scene
of the application, just as the script, actors, and props describe a scene in a play or movie.
In JavaFX the scene graph is a hierarchical set of nodes where the root node is at the top of
the tree. Underneath the root node we can create subtrees consisting of layout components
(e.g., panels), UI controls (e.g., buttons or textfields), shapes, or charts. Nodes have
properties that include items such as the text, size, position, and color; they can be styled
with Cascading Style Sheets (CSS), generate events, and be associated with visual effects.

The class structure and scene graph for a simple “Hello world” JavaFX application are
shown in Display 19.26. In this example the Stage contains a Scene that is composed of
an HBox layout pane that simply arranges nodes in a horizontal row. Inside the HBox are
two labels. One label displays “Hello” and the second label displays “World.”

Display 19.26 Class Structure and Scene Graph for a Simple JavaFX Application

Stage(window): javafx.stage

Scene: javafx.scene

root: javafx.scene.layout.HBox

label1:
javafx.scene.
control.Label

label1:
javafx.scene.
control.Label

Introduction to JavaFX 1181

Code that implements the JavaFX program in Display 19.26 is shown in Display
19.27. The JavaFX program must extend Application. The entry point is the start
method, which is invoked through the launch method. The JavaFX panes are similar in
principle to the Swing layout classes. Other JavaFX layout panes include BorderPane,
which is like Swing’s BorderLayout, HBox for horizontal layout of nodes and VBox for
vertical layout of nodes; StackPane to place nodes within a single stack on top of
previous nodes; FlowPane, which is like Swing’s FlowLayout; TilePane, which is like a
tiled FlowPane; GridPane, which is like Swing’s GridLayout; and AnchorPane, which
allows nodes to be anchored to edges of the pane.

Display 19.27 Simple JavaFX Application (Source: Oracle Corporation)

 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Label;
 4 import javafx.scene.layout.HBox;
 5 import javafx.stage.Stage;

 6 public class JavaFXHelloWorld extends Application
 7 {
 8 public void start(Stage primaryStage)
 9 {
10 Label label1 = new Label();
11 Label label2 = new Label();
12 label1.setText("Hello");
13 label2.setText(" World");
14
15 HBox root = new HBox();
16 root.getChildren().add(label1);
17 root.getChildren().add(label2);
18
19 Scene scene = new Scene(root, 300, 50);
20
21 primaryStage.setTitle("JavaFX Example");
22 primaryStage.setScene(scene);
23 primaryStage.show();
24 }
25
26 public static void main(String[] args) {
27 launch(args);
28 }
29 }

Sample Dialogue

1182 CHAPTER 19 Java never Ends

The programs in Displays 19.28 and 19.29 demonstrate how JavaFX allows us to
achieve impressive visual effects with a minimal amount of code through a declarative
rather than a procedural programming model. In a declarative program we specify
what the program should do rather than the individual steps needed to achieve
the end result. Display 19.28 draws a green circle on a black background. The
program uses the AnchorPane layout with no anchors; we demonstrate anchoring
in Display 19.32.

Display 19.28 JavaFX Circle Demonstration (part 1 of 2)

 1 import javafx.application.Application;

 2 import javafx.scene.Group;

 3 import javafx.scene.Scene;

 4 import javafx.scene.paint.Color;

 5 import javafx.scene.shape.Circle;

 6 import javafx.stage.Stage;

 7 import javafx.scene.layout.AnchorPane;

 8

 9 public class JavaFXCircle extends Application

10 {

11 public void start(Stage stage)

12 {

13 Circle c = new Circle(250,50,50);

14 c.setFill(Color.GREEN);

15

16 AnchorPane root = new AnchorPane();

17 root.getChildren().add(c);

18

19 Scene scene = new Scene(root, 500, 300,

 Color.BLACK);

20

21 stage.setTitle("JavaFX Circle Demo");

22 stage.setScene(scene);

23 stage.show();

24 }

25

26 public static void main(String[] args)

27 {

28 launch(args);

29 }

30 }

Introduction to JavaFX 1183

Sample Dialogue

Display 19.28 JavaFX Circle Demonstration (part 2 of 2) (Source: Oracle Corporation)

What if you wanted to animate the circle up and down while changing colors? As
shown in Section 19.1, this is not trivial. We need to set up a thread with a timer and
redraw the circle inside the timer. JavaFX lets us do this easily by attaching transitions
to the circle node. In Display 19.29 we have attached a fill transition from green to
blue and a translation transition in the vertical dimension to the y-coordinate 200
starting from coordinate (250, 50). JavaFX includes many other transitions, such as
changing the scale, fade effect, and rotation. The parallel transition tells JavaFX to
apply all of the transitions in parallel rather than sequentially. This is an example of
declarative programming; we are telling JavaFX the desired end result and then the
library handles the sequential details to implement the instructions.

Display 19.29 JavaFX Animated Circle Demonstration (part 1 of 2)

 1 import javafx.application.Application;

 2 import javafx.scene.Group;

 3 import javafx.scene.Scene;

 4 import javafx.scene.paint.Color;

 5 import javafx.scene.shape.Circle;

 6 import javafx.stage.Stage;

 7 import javafx.scene.layout.AnchorPane;

 8 import javafx.animation.FillTransition;

 9 import javafx.animation.Timeline;

10 import javafx.animation.ParallelTransition;

11 import javafx.animation.TranslateTransition;

12 import javafx.util.Duration;

13

14 public class JavaFXCircleAnimate extends

 Application
(continued)

1184 CHAPTER 19 Java never Ends

15 {

16 public void start(Stage stage)

17 {

18 Circle c = new Circle(250,50,50);

19 c.setFill(Color.GREEN);

20

21 AnchorPane root = new AnchorPane();

22 root.getChildren().add(c);

23

24 FillTransition fill = new

 FillTransition(Duration.millis(500));

25 fill.setToValue(Color.BLUE); // To Blue

26

27 TranslateTransition translate = new

28 TranslateTransition(

 Duration.millis(500));

29 translate.setToY(200); // Move to Y=200

30

31 // Run the fill and translate

 //transitions in parallel

32 ParallelTransition transition = new

 ParallelTransition(c,

33 fill, translate);

34 transition.setCycleCount(

 Timeline.INDEFINITE);

35 transition.setAutoReverse(true);

36 transition.play();

37

38 Scene scene = new Scene(

 root, 500, 300, Color.BLACK);

39

40 stage.setTitle("JavaFX Circle Demo");

41 stage.setScene(scene);

42 stage.show();

43 }

44

45 public static void main(String[] args)

46 {

47 launch(args);

48 }

49 }

Display 19.29 JavaFX Animated Circle Demonstration (part 2 of 2)

Introduction to JavaFX 1185

Upon running the program in Display 19.29 you will see the circle move vertically
from top to bottom while changing colors from green to blue. Note that the program is
responsive! JavaFX handles threading so that the application does not lock up like the
program in Display 19.1. If you add other UI controls like buttons or textboxes to the
scene, then they will be active while the circle is animated.

JavaFX allows the programmer to attach event handlers to UI controls in a manner
similar to Swing. Display 19.30 shows how to attach an event handler to a button.
When the button is clicked, the value entered in the text field is read into an integer,
incremented by one, and output into the label. The program uses a VBox pane, which
vertically stacks each node that is added to the scene.

Display 19.30 JavaFX Event Demonstration (part 1 of 2)

 1 import javafx.application.Application;

 2 import javafx.event.ActionEvent;

 3 import javafx.event.EventHandler;

 4 import javafx.scene.Scene;

 5 import javafx.scene.control.Button;

 6 import javafx.scene.control.Label;

 7 import javafx.scene.control.TextField;

 8 import javafx.scene.layout.VBox;

 9 import javafx.scene.text.Font;

10 import javafx.stage.Stage;

11

12 public class JavaFXEvent extends Application

13 {

14 public void start(Stage primaryStage)

15 {

16 TextField txt = new TextField();

17 txt.setText("0");

18 txt.setFont(new Font(20));

19

20 Label lbl = new Label();

21 lbl.setFont(new Font(25));

22

23 Button btn = new Button();

24 btn.setFont(new Font(20));

25 btn.setText("Click to add one");

26 btn.setOnAction(new

 EventHandler<ActionEvent>()

27 {

28 public void handle(ActionEvent event)

(continued)

1186 CHAPTER 19 Java never Ends

29 {

30 int val = Integer.parseInt

 (txt.getText());

31 val++;

32 lbl.setText

 (Integer.toString(val));

33 }

34 });

35

36 VBox root = new VBox(); // Vertical layout

37 root.getChildren().add(txt);

38 root.getChildren().add(btn);

39 root.getChildren().add(lbl);

40

41 Scene scene = new Scene(root, 350, 200);

42 primaryStage.setTitle

 ("JavaFX Event Handler Demo");

43 primaryStage.setScene(scene);

44 primaryStage.show();

45 }

46

47 public static void main(String[] args)

48 {launch(args);

49 }

50 }

Display 19.30 JavaFX Event Demonstration (part 2 of 2) (Source: Oracle Corporation)

Sample Dialogue (after entering 25 and clicking the button)

Introduction to JavaFX 1187

If you have read Section 19.6 on functional programming, then you can simplify
the event handling code by using the following lambda expression:

btn.setOnAction(e ->
{
 int val = Integer.parseInt
 (txt.getText());
 val++;
 lbl.setText
 (Integer.toString(val));;
});

Building complex interfaces can be tedious and difficult to visualize when directly
coding the layout panes. To assist with UI development Oracle has released the JavaFX
Scene Builder. If you are using an IDE, then the Scene Builder may already be installed
on your system. The Scene Builder can be downloaded for free from http://www.
oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html. Consult
your IDE’s documentation if configuration is needed to integrate the JavaFX Scene
Builder. At the time of this writing, the latest version of the Scene Builder is 2.0.

The Scene Builder allows the programmer or UI designer to graphically construct
the interface and quickly test the layout of UI controls. When using the Scene Builder,
a JavaFX application will typically be split up into at least three separate files, each
handling a different aspect of the program:

•	 FXML	file.	This	is	an	XML	file	created	by	the	Scene	Builder	that	describes	the	layout	of	
nodes in the scene. A sample FXML file similar to the program in Display 19.30 follows.
Although you could manually create the file, it is normally generated by the Scene Builder.

<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.text.*?>
<?import javafx.scene.control.*?>
<?import java.lang.*?>
<?import javafx.scene.layout.*?>

<VBox maxHeight="-Infinity" maxWidth="-Infinity" minHeight=
"-Infinity" minWidth="-Infinity" prefHeight="200.0"
prefWidth="350.0" xmlns="http://javafx.com/javafx/8"
xmlns:fx="http://javafx.com/fxml/1">
 <children>
 <TextField fx:id="txt" text="0">

 </TextField>
 <Button fx:id="btn"
 mnemonicParsing="false"
 text="Click to add one">

 </Button>

http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
http://javafx.com/javafx/8
http://javafx.com/fxml/1
http://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html

1188 CHAPTER 19 Java never Ends

 <Label fx:id="lbl" text="23">

 </Label>
 </children>
</VBox>

•	 Application	file.	This	 is	 the	JavaFX	source	code	that	contains	 the	start method.
When used with an FXML file, the start method merely loads the FXML file
using the FXMLLoader class.

•	 Controller	file.	This	file	contains	a	class	that	implements	javaFX.fxml.Initializable
and contains event handlers that respond to UI controls.

If you are using an IDE that includes the Scene Builder, then consult your
IDE’s documentation on how to create a new JavaFX FXML Application project.
Otherwise, you can directly launch the Scene Builder application after downloading
and installing it. Display 19.31 shows the Scene Builder after dragging an AnchorPane
from the “Containers” section to the middle of the window, followed by dragging a
TextField, Button, and Label from the “Controls” section. You can select a control
by either clicking it on the form or selecting it by name under “Hierarchy” within the

Display 19.31 UI Design with Scene Builder 2.0 (Source: Oracle Corporation)

Introduction to JavaFX 1189

“Document” section on the bottom left. The latter is useful for “invisible” controls
such as a label with no text. Once a control is selected, you can edit properties, such as
the text or font size, in the “Properties” section in the “Inspector” window on the right.
In Display 19.31 the text and font properties have been changed in a similar manner as
the program in Display 19.30.

Since we are using an AnchorPane, we can anchor the sides of a control to the
edges of the pane. This is useful if the window is resized. For example, if we want the
button to fit the entire width of the window when it is resized, then we would anchor
the left and right edges. This is illustrated in Display 19.32. The button has been
selected, and under the “Layout” section of the “Inspector,” anchors have been set on
the left and right sides. You can see test the result using the “Preview” command from
the main menu.

Display 19.32 Anchoring a Button Using Scene Builder 2.0 (Source: Oracle Corporation)

Sample Dialogue

1190 CHAPTER 19 Java never Ends

To load a saved FXML file created by the Scene Builder we use the FXMLLoader
class. Display 19.33 shows how to load a FXML file named JavaFXApp.FXML. Since the
layout details are in the FXML file, very little coding is needed in the application class.

Next we need a Controller class to respond to events. A class named
JavaFXAppController.java is shown in Display 19.34; it implements the same
button handler as the program in Display 19.30. This class implements Initializable
and must have an initialize method that can be used to initialize the controller.

To link variables defined in the JavaFXAppController class to UI controls created
in the Scene Builder, place the @FXML annotation before the variable definition. This
injects the necessary values from the FXML loader.

Display 19.33 JavaFX Application Class for JavaFXApp.fxml

 1 import javafx.application.Application;

 2 import javafx.fxml.FXMLLoader;

 3 import javafx.scene.Parent;

 4 import javafx.scene.Scene;

 5 import javafx.stage.Stage;

 6

 7 public class JavaFXApp extends Application

 8 {

 9 public void start(Stage stage)

 throws Exception

10 {

11 Parent root = FXMLLoader.load

12 (getClass().

 getResource("JavaFXApp.fxml"));

13 Scene scene = new Scene(root);

14 stage.setScene(scene);

15 stage.show();

16 }

17 public static void main(String[] args) {

18 launch(args);

19 }

20 }

Display 19.34 JavaFX Controller Class for JavaFXApp.fxml (part 1 of 2)

 1 import java.net.URL;

 2 import java.util.ResourceBundle;

 3 import javafx.event.ActionEvent;

 4 import javafx.fxml.FXML;

 5 import javafx.fxml.Initializable;

 6 import javafx.scene.control.TextField;

Introduction to JavaFX 1191

 7 import javafx.scene.control.Label;

 8 import javafx.scene.control.Button;

 9

10 public class JavaFXAppController implements

 Initializable

11 {

12 // The @FXML annotation looks up the

13 // corresponding ID in the FXML file so

14 // these variables map to the controls in

15 // the UI

16 @FXML

17 private Label lblNumber;

18 @FXML

19 private Button btnClick;

20 @FXML

21 private TextField txtNumber;

22

23 @FXML

24 private void handleButtonAction

 (ActionEvent event)

25 {

26 int val = Integer.parseInt

27 (txtNumber.getText());

28 val++;

29 lblNumber.setText

30 (Integer.toString(val));

31 }

32 public void initialize

 (URL url, ResourceBundle rb)

33 {

34 // Required by Initializable interface

35 // Called to initialize a controller after

36 // the root element has been processed

37 }

38 }

Display 19.34 JavaFX Controller Class for JavaFXApp.fxml (part 2 of 2)

Finally, we need to link the controller to the FXML file. Back in the Scene Builder,
select the Java file containing the controller in the “Controller” section located at
the bottom left side of the Scene Builder. In our example, the controller is named
JavaFXController.java.

Next, select each UI control that has a corresponding variable defined in the controller.
To link the controls, select the variable name from the “Code” section of the “Inspector”

1192 CHAPTER 19 Java never Ends

on the right. You can also select a method for an event handler. For example, on line 17
of Display 19.34 we named the label variable lblNumber. In the Scene Builder the same
name should be entered in the fx:id field for the label on the form.

Display 19.35 depicts the process to link the controller of Display 19.34 to the
FXML file constructed by the Scene Builder. Once the linkages are made, the Java
programs can be compiled and the main application run to produce output such as
that shown in the Sample Dialogue of Display 19.35.

Display 19.35 Linking the Controller in the Scene Builder (Source: Oracle Corporation)

1. Set controller class from the menu on
 bottom left.

2. Select each UI control and then from
 the Inspector/Code section on the
 right, set fx:id to the corresponding
 name in the controller, and set the
 method to handle an event.

Sample Dialogue (after compiling and running JavaFXApp)

Chapter Summary 1193

In this section we have presented only a small taste of what JavaFX can do. JavaFX
provides a structure and APIs for visual effects, animation, graphics, media, and the
construction of graphical user interfaces. In addition, JavaFX supports declarative
programming, separates controlling code from display code through FXML, and
offers a Scene Builder application to assist with the construction of complex user
interfaces. For additional reading about JavaFX, visit the Oracle JavaFX overview page
at http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.
html and the JavaFX documentation website at http://docs.oracle.com/javase/8/javase-
clienttechnologies.htm.

Self-Test Exercises

20. What is the purpose of the FXML file in a JavaFX application?

21. What purpose does the @FXML annotation serve in a controller class?

Chapter Summary

• A thread is a separate computation process. A Java program can have multiple threads.

• Use the class Thread to produce multiple threads.

• The static method Thread.sleep inserts a pause into the thread in which it is invoked.

• A thread’s join() method is used to wait for threads to finish. The synchronized
keyword restricts a critical region of code to a single thread only.

• A socket refers to an endpoint that connects two programs over a network.

• TCP refers to a reliable, streaming protocol for network communication. It ensures
that data is received in the same order it was sent.

• JavaBeans refers to a framework for producing Java components that are easy to
combine with other JavaBean components to produce new applications.

• A relational database organizes data in related tables. Records are stored as rows in a
table. The fields for each record are stored as columns in a table.

• Java DB or Derby is a database that runs in client/server or embedded mode.

• JDBC allows you to insert SQL commands into your Java code to access and
 manipulate databases.

• The SQL SELECT, UPDATE, CREATE TABLE, and INSERT commands allow data to
be retrieved, modified, created, or inserted into a database.

• Java Server Pages (JSP) refers to a framework that allows a programmer to create
 Web-based Java applications that run on the server. JSP requires a Web server capable
of compiling and running Java servlets and JSP.

http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

1194 CHAPTER 19 Java never Ends

• HTML forms are a common mechanism to input user-specified data into a
JSP application.

• Java code is added to a JSP page through directive, expression, declaration, and scriptlet tags.

• Java 8’s lambda functions simplify event handling and provide a new way to efficiently
and succinetly manage collections.

• JavaFX uses a set of nodes in a scene graph to create rich graphics and media applications.

answers to Self-Test Exercises

 1. The invocation of Thread.sleep takes place inside a thread. Every action in Java
takes place inside some thread. Any action performed by a method invocation in a spe-
cific thread takes place in that thread. Even if it does not know where it is, a method’s
action takes place where the method invocation is; if you are lost and yell out, you
might not know where you are but the yell would still be wherever it is you are.

 2. The class Packer inherits the method start from the base class Thread and is
not overridden. The method start invokes the method run, but when start is
invoked by an object of the class Packer, it is the definition of run that is given in
the class Packer that is used, not the definition of run given in the definition of
Thread. That is exactly what is meant by late binding or polymorphism.

 3. In this program, the code that runs in each thread is fairly short. As a result, there
is a good chance that each thread runs to completion before the next thread begins.
The sleep method forces a thread to suspend and another thread to begin. This
increases the likelihood that there will be contention for the shared variable and a
race condition.

 4. The code synchronizes access to the shared variable but the main method does not
wait for all threads to finish before printing out the value of the shared variable.
Thus, it is possible that main will output a premature value of counter if main
completes before any one of the threads that it creates. To correct this problem,
invoke the join() method on each thread before outputting counter as illustrated
in Display 19.5.

 5. A port is used to identify which program should receive data from the network.
One program only may be bound to a specific port.

 6. Each client connection may run in its own thread, requiring a large amount of
memory, disk space, or processor time.

 7. Persistence means that a component’s state can be saved so that the next time it is
used it remembers what state it was in.

 8. The same one that is used for Swing and AWT.

 9. SELECT Result.Title, Names.Author, Result.Author_ID
FROM Result, Names
WHERE Result.Author_ID = Names.Author_ID

10. A connection string is used to connect to (and possibly create) a database via
JDBC. The protocol, database name, and other parameters (such as the username,
password, or flag to create a new database) are specified in the connection string.

Answers to Self-Test Exercises 1195

11. The execute method can be used to execute any SQL statement, but it is generally
used for SQL commands where return values are not needed. It returns a Boolean
value. The executeQuery method returns a ResultSet object that contains the
rows matching a query.

12. CREATE TABLE BooksAuthors (ISBN varchar(15), author_id int)

13. INSERT INTO BooksAuthors VALUES('0-553-38095-8',3)
INSERT INTO BooksAuthors VALUES('0-553-57294-6',2)
INSERT INTO BooksAuthors VALUES('0-671-46149-4',1)
INSERT INTO BooksAuthors VALUES('0-553-57928-9',2)

14. A Java applet is downloaded and executed on the client, while a JSP program is
written alongside HTML and runs on the server.

15. <html>
<head>
<title>Submit Firstname</title>
</head>

<body>
<form ACTION = "ProcessName.jsp" METHOD = POST>
First Name:
<input TYPE = "TEXT" NAME = "FirstName" VALUE = "" MAXLENGTH = "50">
<input TYPE="SUBMIT" VALUE="Submit">
</form>
</body>
</html>

16. <% %> is a scriptlet, <%@ %> is a directive, <%! %> is a declaration, <%= %> is an
expression.

17. <%
String firstName = request.getParameter("FirstName");
out.println("<h1>" + firstName + "</h1>");
%>

18. // We no longer need to implement ActionListener
// since we implement it in the lambda function

public class ButtonDemo2 extends JFrame

{

 public ButtonDemo2()

 {

 setSize(250, 100);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setTitle("Button Demo");

 Container contentPane = getContentPane();

 contentPane.setBackground(Color.BLUE);

 contentPane.setLayout(new FlowLayout());

 JButton stopButton = new JButton("Red");

 stopButton.addActionListener(

 e -> contentPane.setBackground(Color.RED));

 contentPane.add(stopButton);

1196 CHAPTER 19 Java never Ends

 Button goButton = new JButton("Green");

 goButton.addActionListener(

 e -> contentPane.setBackground(Color.GREEN));

 contentPane.add(goButton);

 }

 public static void main(String[] args)

 {

 ButtonDemo2 buttonGui = new ButtonDemo2();

 buttonGui.setVisible(true);

 }

}

19. 3
5

20. The FXML file describes the layout of the nodes in the scene. In our example, the
FXML file describes which GUI controls are part of the application, their visual
properties, and how the controls are arranged (e.g. stacked horizontally, vertically,
etc.) Separate files contain the Java start method and event handlers.

21. The @FXML annotation links a variable in the controller class to a control in the
FXML file. The variable in the controller class will be linked to the control in the
FXML file with the same fx:id as the variable name.

Programming Projects

 1. Write a GUI program that uses the methods in the Graphics class together with
threads to draw a ball within a rectangular box. The ball should move inside the
box and as it strikes the wall of the box it should bounce back. The application
should be responsive and exit immediately if the user decides to close the window.

 2. Create a program to simulate the movement of a bicycle wheel. A wheel consists of
a rim represented by a circle and several spokes represented by line from the centre
of circle to its parameters. The wheel should move from one end of the frame to
the other end on the click of start button. Use a thread for the rotation.

 3. Write a program to simulate a buzzer. The program should make use of the Thread
class. Create a class named Buzzer that extends the Thread class. Create an in-
terface named MonitorTime which contains a method setBuzzerTime(). Your
Buzzer class should implement this interface. Override setBuzzerTime() method
to set the buzzer time delay in milliseconds and the number of times the buzzer
should be repeated. Also, include methods blowBuzzer to start the buzzer.

 4. Modify the GUI in Display 19.2 so that the circles are alternately red, white, and
blue, and so that they fill the area from bottom to top instead of top to bottom.

 5. Produce a GUI similar to the one in Display 19.2 except that instead of filling
an area with circles, it launches a ball (which is just a circle), and the ball bounces

Solution to
Programming
Project 19.3

VideoNote

Programming Projects 1197

around inside a rectangle. You can create the illusion of a moving ball by repeatedly
erasing the ball and redrawing it at a location a little farther along its path. Look
up the method setXORMode in the class Graphics. It will take care of the erasing.

 6. This project shows how to create a simple Web server. Create a server program that
listens on port 8000. When a client connects to the server, the program should
send the following data to the client:

"HTTP/1.0 200 OK\n\n" + body

 where body is the String "<HTML><TITLE>Java Server</TITLE>This web
page was sent by our simple Java Server</HTML>". If you know
HTML, feel free to insert your own content. The header line identifies the message
as part of the HTTP protocol that is used to transmit Web pages.

 When the server is running, you should be able to start a Web browser and
navigate to your machine on port 8000 and view the message. For example, if the
server is running on your local machine, you could point your Web browser to
http://localhost:8000 and the message in body should be displayed.

 7. Modify the server from Programming Project 19.6 so that the content for body
is read from a file on the local hard drive instead of hard-coded into the program.
This file should contain the HTML string from Programming Project 19.6. In
 addition, modify the server so that a new thread is created for each connection.
Test the server by starting up two or more Web browsers and navigate to your site.
Each browser should display the message.

 8. Create a threaded chat server and a corresponding chat client. Using the port of
your choice, create a server that starts a new thread for every client that connects to
it. Every message that the server receives from a client should be broadcast back to
all other clients. The chat client should allow the user to type in a string of text and
have it sent to the server upon pressing enter. Use threads on the client so messages
can be retrieved from the server and displayed even while the user is typing. Test
your server by connecting to it with multiple clients and verifying that messages
are transmitted back and forth.

 9. The program in Display 19.12 creates a database with the Names table
from Display 19.10. Modify this program so it also creates the Titles and
BooksAuthors tables with identical data entries as shown in Display 19.10.
Next, create a separate program that prompts the user to input the name of an
author and then outputs all book titles written by that author.

10. Create an HTML form that prompts the user to enter a height in feet. When the
form is submitted, a JSP web page should run that displays the height converted
to inches. The height in inches is Foot * 12 Inches.

11. Create an HTML form that serves as a random baby name generator. The form
should prompt the user to enter a last name. When the form is submitted, a JSP
Web page should run that randomly picks the first name of a boy and the first
name of a girl and then outputs the random first names coupled with the entered
last name. For example, if the last name entered is “Savitch” and if the JSP program

Solution to
Programming
Project 19.11

VideoNote

http://localhost:8000

1198 CHAPTER 19 Java never Ends

randomly selects “Emma” as the girl name and “Homer” as the boy name, then the
output would be

If your baby is a boy, consider the name Homer Savitch.
If your baby is a girl, consider the name Emma Savitch.

 The boy and girl names should be randomly selected from the files boynames.txt
and girlnames.txt that are included in the source code on the website for this book.

 These files contain the 1,000 most popular boy and girl names in the United States
for the year 2003 as compiled by the Social Security Administration.

12. Recreate Programming Project 19.9 as JSP pages instead of as a stand-alone
 application. One JSP page should create the database, tables, and populate the
tables with data. Create an HTML form that allows the user to enter the name of
an author. The form should invoke another JSP page that displays all titles written
by the specified author that are stored in the database.

13. This program simulates what might happen if two people who share the same bank
account happen to make a simultaneous deposit or withdrawal and the bank does
not account for race conditions by recreating the situation described in Displays 19.4
and 19.5 with a simple BankAccount class. The BankAccount class should store
an account balance and have methods to retrieve the balance, make a deposit, and
make a withdrawal. Do not worry about negative balances.

 Next, create an array of thousands of threads where each thread has a reference
to the same BankAccount object. In the run() method, even numbered threads
deposit one dollar and odd numbered threads withdraw one dollar. If you create
an even number of threads, then after all threads are done the account balance
should be zero. See if you can find a number of threads so that you consistently end
up with a balance that is not zero. If you want to increase the likelihood of a race
condition, then make each thread sleep a short random number of milliseconds in
the run() method.

 Add the synchronized keyword to fix the problem and ensure a balance of zero
after all the threads are done.

14. Write a GUI application using JavaFX with a button and a textarea. When the
button is clicked, the HTML from www.pearsonhighered.com/savitch should be
retrieved using the URL class and output into the textarea. Use Java 8’s functional
programming paradigm to implement the action listener for the button.

http://www.pearsonhighered.com/savitch

abstract final public

assert finally return

boolean float short

break for static

byte goto strictfp

case if super

catch implements switch

char import synchronized

class instanceof this

const int throw

continue interface throws

default long transient

do native true

double new try

else null void

enum package volatile

extends private while

false protected

1Keywords

This page intentionally left blank

PRECEDENCE ASSOCIATIVITY

From highest at top to lowest at bottom. Operators in the same group
have equal precedence.

Dot operator, array indexing, and method invocation: .,[],() Left to right

++ (postfix, as in x++), -- (postfix) Right to left

The unary operators: +, -, ++ (prefix, as in ++x), -- (prefix),
!, ~ (bitwise complement)1

Right to left

new and type casts (Type) Right to left

The binary operators *, /, % Left to right

The binary operators +, - Left to right

The binary operators <<, >>, >>> (shift operators)1 Left to right

The binary operators <, >, <=, >=, instanceof Left to right

The binary operators ==, != Left to right

The binary operator & Left to right

The binary operator ^ (exclusive or)1 Left to right

The binary operator | Left to right

The binary operator && Left to right

The binary operator || Left to right

The ternary operator (conditional operator) ?: Right to left

The assignment operators =, *=, /=, %=, +=, -=, &=, |=, ^=, <<=, >>=, >>>= Right to left

1 Not discussed in this book.

2Precedence and Associativity Rules

This page intentionally left blank

The characters shown here form the ASCII character set, which is the subset of the
Unicode character set that is commonly used by English speakers. The numbering
is the same whether the characters are considered to be members of the Unicode
character set or of the ASCII character set. Character number 32 is the blank. Printable
characters only are shown.

32 56 8 80 P 104 h

33 ! 57 9 81 Q 105 i

34 " 58 : 82 R 106 j

35 # 59 ; 83 S 107 k

36 $ 60 < 84 T 108 l

37 % 61 = 85 U 109 m

38 & 62 > 86 V 110 n

39 ' 63 ? 87 W 111 o

40 (64 @ 88 X 112 p

41) 65 A 89 Y 113 q

42 * 66 B 90 Z 114 r

43 + 67 C 91 [115 s

44 , 68 D 92 \ 116 t

45 - 69 E 93] 117 u

46 . 70 F 94 ^ 118 v

47 / 71 G 95 - 119 w

48 0 72 H 96 ` 120 x

49 1 73 I 97 a 121 y

50 2 74 J 98 b 122 z

51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 |

53 5 77 M 101 e 125 }

54 6 78 N 102 f 126 ~

55 7 79 O 103 g

ASCII Character Set 3

This page intentionally left blank

4Format Specifications for printf

SYNTAX

System.out.printf(Format_String, Output_1,Output_2, …, Output_Last);

Format_String is a string including one format specifier for each Output argument.
Format_String is output with each format specifier replaced by its corresponding
Output argument in the format given by the Output argument’s format specifier.

Display A4.1 Format Specifiers for System.out.printf

CONVERSION
CHARACTER TYPE OF OUTPUT EXAMPLES

d Decimal (ordinary) integer. %5d
%d

f Fixed-point (everyday notation) floating-point. %6.2f
%f

e E-notation floating point. %8.3e
%e

g General floating point. (Java decides whether to use
E-notation or not.)

%8.3g
%g

s String. %12s
%s

c Character. %2c
%c

b Boolean. The corresponding Output argument is a Boolean
expression. Outputs true or false.

%6b
%b

n Denotes a line break. This does not correspond to an Output
argument. It is approximately equivalent to \n.

%n

A number of the form N.M in a format specifier specifies a field width of N spaces
with M digits after the decimal point. If one number N is given only, it specifies a field
width; if there is a decimal point in the output, then the number of digits after the
decimal point is determined by Java.

When the value output does not fill the field width specified, then blanks are added
in front of the value output. The output is then said to be right justified. If you add a
hyphen (-) after the %, then any extra blank space is placed after the value output and
the output is said to be left justified. For example, %8.2f is right justified and %-8.2f
is left justified.

This page intentionally left blank

This appendix summarizes most of the library classes used in this book. This appendix
includes some methods, and even some classes, that are not discussed in the text.
The lists of class methods and other class members contain the most commonly
used members and the members used in this book, but they are not complete lists of
methods for the classes given here.

If a class or interface is derived from another class or interface, respectively, then in
some cases, the table for the derived class or interface lists only new methods and does
not list all the inherited methods.

Abstract Button

Package: javax.swing
The classes JButton and JMenuItem are also in this package.
All these methods are inherited by the classes JButton and JMenuItem.
AbstractButton is an abstract class.
Ancestor classes:

 Object
 |
 +––Component
 |
 +––Container
 |
 +––JComponent
 |
 +AbstractButton
 |
 +––JButton +––JMenuItem

public void addActionListener(ActionListener listener)

Adds an ActionListener.

public String getActionCommand()

Returns the action command for this component.

public String getText()

Returns the text written on the component, such as the text on a button or the string for a menu item.

public void removeActionListener(ActionListener listener)

Removes an ActionListener.

public void setActionCommand(String actionCommand)

Sets the action command.

Summary of Classes and Interfaces 5

1208 APPENDIX 5 Summary of Classes and Interfaces

public void setBackground(Color theColor)

Sets the background color of this component.

public void setMaximumSize(Dimension maximumSize)

Sets the maximum size of the button or label. Note that this is only a suggestion to the layout
 manager. The layout manager is not required to respect this maximum size. The following special
case will work for most simple situations. The int values give the width and height in pixels.

public void setMaximumSize(
 new Dimension(int width, int height))

public void setMinimumSize(Dimension minimumSize)

Sets the minimum size of the button or label. Note that this is only a suggestion to the layout
 manager. The layout manager is not required to respect this minimum size.
Although we do not discuss the Dimension class, the following special case is intuitively clear
and will work for most simple situations. The int values give the width and height in pixels.

public void setMinimumSize(
 new Dimension(int width, int height))

public void setPreferredSize(Dimension preferredSize)

Sets the preferred size of the button or label. Note that this is only a suggestion to the layout
 manager. The layout manager is not required to use the preferred size. The following special case
will work for most simple situations. The int values give the width and height in pixels.

public void setPreferredSize(
 new Dimension(int width, int height))

public void setText(String text)

Makes text the only text on this component.

ArrayList<T>

Package: java.util

Ancestor classes:

 Object
 |
 +––AbstractCollection<T>
 |
 +––AbstractList<T>
 |
 +––ArrayList<T>

All the exception classes mentioned are unchecked exceptions, which means they are not
 required to be caught in a catch block or declared in a throws clause.
NoSuchElementException is in the java.util package, which requires an import statement
if your code mentions the NoSuchElementException class. All the other exception classes
 mentioned are in the package java.lang and so do not require any import statement.

Summary of Classes and Interfaces 1209

CONSTRUCTORS

public ArrayList(int initialCapacity)

Creates an empty ArrayList<T> with the specified initial capacity. When the ArrayList<T>
needs to increase its capacity, the capacity doubles.
Throws an IllegalArgumentException if initialCapacity is negative.

public ArrayList()

Creates an empty ArrayList<T> with an initial capacity of 10. When the ArrayList<T>
needs to increase its capacity, the capacity doubles.

public ArrayList(Collection<? extends <T> c)

Creates an ArrayList<T> that contains all the elements of the collection c in the same order
as they have in c. In other words, the elements have the same index in the ArrayList<T>
 created as they do in c. This is not quite a true copy constructor because it does not preserve
capacity. The capacity of the created ArrayList<T> will be c.size(), not c.capacity.
The ArrayList<T> created is only a shallow copy of the collection argument. The
ArrayList<T> created contains references to the elements in c (not references to clones of
the elements in c).

Throws:

NullPointerException if c is null.

ARRAYLIKE METHODS

public T set(int index, T newElement)

Sets the element at the specified index to newElement. The element previously at that position
is returned. If you draw an analogy to an array a, this is analogous to setting a [index] to the
value newElement. The index must be a value greater than or equal to 0 and strictly less than
the current size of the list.

Throws:

IndexOutOfBoundsException if the index is not in this range.

public T get(int index)

Returns the element at the specified index. This is analogous to returning a[index] for an
array a. The index must be a value greater than or equal to 0 and less than the current size of
the calling object.

Throws:

IndexOutOfBoundsException if the index is not in the required range.

1210 APPENDIX 5 Summary of Classes and Interfaces

METHODS TO ADD ELEMENTS

public boolean add(T newElement)

Adds newElement to the end of the calling object’s list and increases its size by one. The
 capacity of the calling object is increased if that is required. Returns true if the add was
 successful. This method is often used as if it were a void method.

public void add(int index, T newElement)

Inserts newElement as an element in the calling object at the specified index and increases the
size of the calling object by one. Each element in the calling object with an index greater than or
equal to index is shifted upward to have an index that is one greater than it had previously.
The index must be a value greater than or equal to 0 and less than or equal to the size of the
 calling object (before this addition).
Note that you can use this method to add an element after the last current element. The capacity
of the calling object is increased if that is required.

Throws:

IndexOutOfBoundsException if the index is not in the prescribed range.

public boolean addAll(Collection<? extends T> c)

Appends all the elements in c to the end of the elements in the calling object in the order
that they are enumerated by a c iterator. The behavior of this method is not guaranteed if the
 collection c is the calling object or any collection including the calling object either directly
or indirectly.

Throws:

NullPointerException if c is null.

public boolean addAll(int index, Collection<? extends T> c)

Inserts all the elements in c into the calling object starting at position index. Elements are
inserted in the order that they are enumerated by a c iterator. Elements previously at positions
index or higher are shifted to higher numbered positions.

Throws:

IndexOutOfBoundsException if index is not both greater than or equal to zero and less
than size().
NullPointerException if c is null.

METHODS TO REMOVE ELEMENTS

public T remove(int index)

Deletes the element at the specified index and returns the element deleted. The size of the
 calling object is decreased by one. The capacity of the calling object is not changed. Each
 element in the calling object with an index greater than or equal to index is decreased to have
an index that is one less than the value it had previously.
The index must be a value greater than or equal to 0 and less than the size of the calling object
(before this removal).

Throws:

IndexOutOfBoundsException if the index is not in the prescribed range.

Summary of Classes and Interfaces 1211

public boolean remove(Object theElement)

Removes the first occurrence of theElement from the calling object. If theElement is
found in the calling object, then each element in the calling object with an index greater than
or equal to theElement‘s index is decreased to have an index that is one less than the value
it had previously. Returns true if theElement was found (and removed). Returns false
if theElement was not found in the calling object. If the element was removed, the size is
 decreased by one. The capacity is not changed.

protected void removeRange(int fromIndex, int toIndex)

Removes all elements with index greater than or equal to fromIndex and strictly less than
toIndex. Be sure to note that this method is protected, not public.

public void clear()

Removes all elements from the calling object and sets its size to zero.

SEARCH METHODS

public boolean isEmpty()

Returns true if the calling object is empty (that is, has size 0); otherwise returns false.

public boolean contains(Object target)

Returns true if target is an element of the calling object; otherwise returns false. Uses the
method equals of the object target to test for equality.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the
object target to test for equality. Returns −1 if target is not found.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the
object target to test for equality. Returns −1 if target is not found.

ITERATORS

public Iterator<T> iterator()

Returns an iterator for the calling object. Iterators are discussed in Section 16.3.

public ListIterator<T> listIterator()

Returns a ListIterator<T> for the calling object. ListIterator<T> is discussed in
Section 16.3.

1212 APPENDIX 5 Summary of Classes and Interfaces

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by
the iterator is the one at index. (Iterators are discussed in Section 16.3.)

Throws:

IndexOutOfBoundsException if index does not satisfy:
0 <= index <= size()

CONVERTING TO AN ARRAY

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements of the array are
indexed the same as in the calling object.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not
be the type T in Collection<T>. For example, E might be an ancestor type of T.
Returns an array containing all of the elements in the calling object. The elements of the array are
indexed the same as in the calling object.
The argument a is used primarily to specify the type of the array returned. The exact details are
as follows:
The type of the returned array is that of a. If the collection fits in the array a, then a is used to
hold the elements of the returned array; otherwise a new array is created with the same type
as a.
If a has more elements than the calling object, then the element in a immediately following the
end of the elements copied from the calling object are set to null.

Throws:

ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.
NullPointerException if a is null.

MEMORY MANAGEMENT

public int size()

Returns the number of elements in the calling object.

public int capacity()

Returns the current capacity of the calling object.

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling object to ensure that it can hold at least newCapacity
 elements. Using ensureCapacity can sometimes increase efficiency, but its use is not needed
for any other reason.

Summary of Classes and Interfaces 1213

public void trimToSize()

Trims the capacity of the calling object to be the calling object’s current size. This is used to
save storage.

MAKE A COPY

public Object clone()

Returns a shallow copy of the calling object.

Boolean

This is a wrapper class for boolean. See Section 5.1 in Chapter 5.

BufferedReader

Package: java.io
The FileReader class is also in this package.
Ancestor classes:

 Object
 |
 +––Reader
 |
 +––BufferedReader

public BufferedReader(Reader readerObject)

This is the only constructor you are likely to need. There is no constructor that accepts a file
name as an argument. If you want to create a stream using a file name, use

new BufferedReader(new FileReader(File_Name))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.
If you want to create a stream using an object of the class File, use

new BufferedReader(new FileReader(File_Object))

When used in this way, the FileReader constructor, and thus the BufferedReader constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.

public void close() throws IOException

Closes the stream’s connection to a file.

public int read() throws IOException

Reads a single character from the input stream and returns that character as an int value. If the
read goes beyond the end of the file, then −1 is returned. Note that the value is returned as an
int. To obtain a char, you must perform a type cast on the value returned. The end of a file is
signaled by returning −1. (All of the “real” characters return a positive integer.)

1214 APPENDIX 5 Summary of Classes and Interfaces

public String readLine() throws IOException

Reads a line of input from the input stream and returns that line. If the read goes beyond the end
of the file, null is returned. (Note that an EOFException is not thrown at the end of a file. The
end of a file is signaled by returning null.)

public long skip(long n) throws IOException

Skips n characters.

Byte

This is a wrapper class for byte. See Section 5.1 in Chapter 5.

Character

Package: java.lang
Ancestor classes:

 Object
 |
 +––Character

Implemented interfaces: Comparable, Serializable
The Character class is marked final, which means it cannot be used as a base class to
derive other classes.

public static boolean isDigit(char argument)

Returns true if its argument is a digit; otherwise returns false.

EXAMPLES

Character.isDigit('5') returns true. Character.isDigit('A') and Character.
isDigit('%') both return false.

public static boolean isLetter(char argument)

Returns true if its argument is a letter; otherwise returns false.

EXAMPLES

Character.isLetter('A') returns true. Character.isLetter('%') and Character.
isLetter('5') both return false.

public static boolean isLetterOrDigit(char argument)

Returns true if its argument is a letter or a digit; otherwise returns false.

EXAMPLES

Character.isLetterOrDigit('A') and Character.isLetterOrDigit('5') both
return true. Character.isLetterOrDigit('&') returns false.

Summary of Classes and Interfaces 1215

public static boolean isLowerCase(char argument)

Returns true if its argument is a lowercase letter; otherwise returns false.

EXAMPLES

Character.isLowerCase('a') returns true. Character.isLowerCase('A') and
 Character.isLowerCase('%') both return false.

public static boolean isUpperCase(char argument)

Returns true if its argument is an uppercase letter; otherwise returns false.

EXAMPLES

Character.isUpperCase('A') returns true. Character.isUpperCase('a') and
 Character.isUpperCase('%') both return false.

public static boolean isWhitespace(char argument)

Returns true if its argument is a whitespace character; otherwise returns false. Whitespace
characters are those that print as whitespace, such as the space character (blank character), the
tab character ('\t'), and the new-line character ('\n').

EXAMPLES

Character.isWhitespace(' ') returns true. Character.isWhitespace('A') returns
false.

public static char toLowerCase(char argument)

Returns the lowercase version of its argument. If the argument is not a letter, it is returned
unchanged.

EXAMPLE

Character.toLowerCase('a') and Character.toLowerCase('A') both return 'a'.

public static char toUpperCase(char argument)

Returns the uppercase version of its argument. If the argument is not a letter, it is returned
 unchanged.

EXAMPLE

Character.toUpperCase('a') and Character.toUpperCase('A') both return 'A'.

1216 APPENDIX 5 Summary of Classes and Interfaces

Collection<T> Interface

Package: java.util
Ancestor interfaces: none
All the exception classes mentioned are unchecked exceptions, which means they are not
required to be caught in a catch block or declared in a throws clause.
All the exception classes mentioned are in the package java.lang and so do not require any
import statement.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Collection<T>
interface should have at least two constructors: a no-argument constructor that creates an
empty Collection<T> object, and a constructor with one parameter of type Collection<?
extends T> that creates a Collection<T> object with the same elements as the constructor
argument. The interface does not specify whether the copy produced by the one-argument
constructor is a shallow copy or a deep copy of its argument.

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.
equals to determine if target is in the calling object.

Throws:

ClassCastException if the type of target is incompatible with the calling object (optional).
NullPointerException if target is null and the calling object does not support null
 elements (optional).

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. For
 element in collectionOfTargets, this method uses element.equals to determine if
 element is in the calling object.

Throws:

ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).
NullPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).
NullPointerException if collectionOfTargets is null.

public boolean equals(Object other)

This is the equals of the collection, not the equals of the elements in the collection. Overrides
the inherited method equals. Although there are no official constraints on equals for a
 collection, it should be defined as we have described in Chapter 7 and also satisfy the intuitive
notion of collections being equal.

Summary of Classes and Interfaces 1217

public int hashCode()

Returns the hash code value for the calling object. Hash codes are discussed in Chapter 15.

public boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. If the calling object makes
any guarantees as to what order its elements are returned by its iterator, this method must return
the elements in the same order.
The array returned should be a new array so that the calling object has no references to the
returned array. (You might also want the elements in the array to be clones of the elements in the
collection. However, this is apparently not required by the interface, because library classes, such
as Vector<T>, return arrays that contain references to the elements in the collection.)

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not
be the type T in Collection<T>. For example, E might be an ancestor type of T.
Returns an array containing all of the elements in the calling object. The argument a is used
primarily to specify the type of the array returned. The exact details are as follows:
The type of the returned array is that of a. If the elements in the calling object fit in the array a,
then a is used to hold the elements of the returned array; otherwise a new array is created with
the same type as a.
If a has more elements than the calling object, the element in a immediately following the end of
the copied elements is set to null.
If the calling object makes any guarantees as to what order its elements are returned by its iterator,
this method must return the elements in the same order. (Iterators are discussed in Section 16.3.)

Throws:

ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.
NullPointerException if a is null.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than
 Integer.MAX_VALUE elements, returns Integer.MAX_VALUE.

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented,
but the implementation can simply throw an UnsupportedOperationException
if for some reason you do not want to give them a “real” implementation. An
UnsupportedOperationException is a RunTimeException and so is not required to be
caught or declared in a throws clause.

1218 APPENDIX 5 Summary of Classes and Interfaces

public boolean add(T element) (Optional)

Ensures that the calling object contains the specified element. Returns true if the calling
object changed as a result of the call. Returns false if the calling object does not permit
duplicates and already contains element; also returns false if the calling object does not
change for any other reason.

Throws:

UnsupportedOperationException if this method is not supported by the class that
implements this interface.
ClassCastException if the class of element prevents it from being added to the calling object.
NullPointerException if element is null and the calling object does not support null
elements. IllegalArgumentException if some other aspect of element prevents it from
being added to the calling object.

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true
if the calling object changed as a result of the call; returns false otherwise. If the calling object
changes during this operation, its behavior is unspecified; in particular, it behavior is unspecified if
collectionToAdd is the calling object.

Throws:

UnsupportedOperationException if this method is not supported by the class that
implements this interface.
ClassCastException if the class of an element of collectionToAdd prevents it from being
added to the calling object.
NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.
IllegalArgumentException if some aspect of an element of collectionToAdd prevents it
from being added to the calling object.

public void clear() (Optional)

Removes all the elements from the calling object.

Throws:

UnsupportedOperationException if this method is not supported by the class that
implements this interface.

public boolean remove(Object element) (Optional)

Removes a single instance of element from the calling object, if it is present. Returns true if
the calling object contained element; returns false otherwise.

Throws:

UnsupportedOperationException if this method is not supported by the class that
implements this interface.
ClassCastException if the type of element is incompatible with the calling object (optional).
NullPointerException if element is null and the calling object does not support null
 elements (optional).

Summary of Classes and Interfaces 1219

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove.
 Returns true if the calling object was changed; otherwise returns false.

Throws:

UnsupportedOperationException if this method is not supported by the class that
implements this interface.
ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling collection (optional).
NullPointerException if collectionToRemove contains one or more null elements and
the calling object does not support null elements (optional).
NullPointerException if collectionToRemove is null.

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also contained in the collection
saveElements. In other words, removes from the calling object all of its elements that are not
contained in the collection saveElements. Returns true if the calling object was changed;
otherwise returns false.

Throws:

ClassCastException if the types of one or more elements in saveElements are
incompatible with the calling object (optional).
NullPointerException if saveElements contains one or more null elements and the
calling object does not support null elements (optional).
NullPointerException if saveElements is null.

Color

Package: java.awt
Ancestor classes:

 Object
 |
 +––Color

CONSTRUCTORS

public Color(float r, float g, float b)

Constructor that creates a new Color with the specified RGB values. The parameters r, g, and b
must each be in the range 0.0 to 1.0 (inclusive).

public Color(int r, int g, int b)

Constructor that creates a new Color with the specified RGB values. The parameters r, g, and b
must each be in the range 0 to 255 (inclusive).

1220 APPENDIX 5 Summary of Classes and Interfaces

METHODS

public Color brighter()

Returns a brighter version of the calling object color.

public Color darker()

Returns a darker version of the calling object color.

public boolean equals(Object c)

Returns true if c is equal to the calling object color; otherwise returns false.

public int getBlue()

Returns the blue component of the calling object. The returned value is in the range 0 to 255
(inclusive).

public int getGreen()

Returns the green component of the calling object. The returned value is in the range 0 to 255
(inclusive).

public int getRed()

Returns the red component of the calling object. The returned value is in the range 0 to 255
(inclusive).

CONSTANTS

Color.BLACK Color.MAGENTA
Color.BLUE Color.ORANGE
Color.CYAN Color.PINK
Color.DARK_GRAY Color.RED
Color.GRAY Color.WHITE
Color.GREEN Color.YELLOW
Color.LIGHT_GRAY

Comparable Interface

Package: java.lang
Ancestor interfaces: none
The Comparable interface has only one method heading that must be implemented.

public int compareTo(Object other)

The method compareTo should return a negative number if the calling object “comes before”
the parameter other, a zero if the calling object “equals” the parameter other, and a positive
number if the calling object “comes after” the parameter other.
The “comes before” ordering that underlies compareTo should be a total ordering. Most normal
ordering, such as less-than on numbers and lexicographic ordering on strings, are total orderings.

Summary of Classes and Interfaces 1221

Double

This is a wrapper class for double. See Section 5.1 in Chapter 5.

File

Package: java.io
Ancestor classes:

 Object
 |
 +––File

Many of these methods throw a SecurityException if a security manager exists and is
unhappy with the method invocation. This is not likely to be a concern for readers of this book,
and we have not noted this in the method descriptions.
The class SecurityException is an unchecked exception class, which means you need not
catch it or declare it in a throws clause.

public File(String fileName)

Constructor. fileName can be either a full or a relative pathname (which includes the case of a
simple file name). fileName is referred to as the abstract pathname.

Throws:

NullPointerException if the pathname fileName is null.

public boolean canRead()

Tests whether the program can read from the file. Returns true if the file named by the abstract
pathname exists and is readable by the program; otherwise returns false.

public boolean canWrite()

Tests whether the program can write to the file. Returns true if the file named by the abstract
pathname exists and is writable by the program; otherwise returns false.

public boolean createNewFile()

Creates a new empty file named by the abstract pathname, provided that a file of that name
does not already exist. Returns true if successful; returns false otherwise.

Throws:

IOException if an I/O error occurs.

public boolean delete()

Tries to delete the file or directory named by the abstract pathname. A directory must be empty
to be removed. Returns true if it was able to delete the file or directory. Returns false if it was
unable to delete the file or directory.

public boolean exists()

Tests whether there is a file with the abstract pathname.

1222 APPENDIX 5 Summary of Classes and Interfaces

public String getName()

Returns the last name in the abstract pathname (that is, the simple file name). Returns the empty
string if the abstract pathname is the empty string.

public String getPath()

Returns the abstract pathname as a String value.

public boolean isDirectory()

Returns true if a directory (folder) exists that is named by the abstract pathname; otherwise
returns false.

public boolean isFile()

Returns true if a file exists that is named by the abstract pathname and the file is a normal file;
otherwise returns false. The meaning of normal is system dependent. Any file created by a
Java program is guaranteed to be normal.

public long length()

Returns the length in bytes of the file named by the abstract pathname. If the file does not exist
or the abstract pathname names a directory, then the value returned is not specified and may
be anything.

public boolean mkdir()

Makes a directory named by the abstract pathname. Will not create parent directories. See
mkdirs. Returns true if successful; otherwise returns false.

public boolean mkdirs()

Makes a directory named by the abstract pathname. Will create any necessary but nonexistent
 parent directories. Returns true if successful; otherwise returns false. Note that if it fails, then
some of the parent directories may have been created.

public boolean renameTo(File newName)

Renames the file represented by the abstract pathname to newName. Returns true if
 successful; otherwise returns false. newName can be a relative or absolute pathname. This may
require moving the file. Whether or not the file can be moved is system dependent.

Throws:

NullPointerException if parameter newName is null.

public boolean setReadOnly()

Sets the file represented by the abstract pathname to be read only. Returns true if successful;
otherwise returns false.

Summary of Classes and Interfaces 1223

Float

This is a wrapper class for float. See Section 5.1 in Chapter 5.

Font

Package: java.awt
Ancestor classes:

 Object
 |
 +––Font

CONSTRUCTOR

public Font(String fontName, int styleModifications, int size)

Constructor that creates a version of the font named by fontName with the specified
styleModifications and size.

CONSTANTS

Font.BOLD

Specifies bold style.

Font.ITALIC

Specifies italic style.

Font.PLAIN

Specifies plain style—that is, not bold and not italic.

NAMES OF Fonts
(These three are guaranteed by Java. Your system will probably have others as well as these.)

"Monospaced"

See Chapter 18 for a sample.

"SansSerif"

See Chapter 18 for a sample.

"Serif"

See Chapter 18 for a sample.

METHOD THAT USES Font

public abstract void setFont(Font fontObject)

This method is in the class Graphics. Sets the current font of the calling Graphics object
to fontObject.

1224 APPENDIX 5 Summary of Classes and Interfaces

Graphics

Package: java.awt
Ancestor classes:

 Object
 |
 +––Graphics

Graphics is an abstract class.
Although many of these methods are abstract, we always use them with objects of a concrete
descendent class of Graphics, even though we usually do not know the name of that
concrete class.

public abstract void drawRect(int x, int y,
 int width, int height)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner of
the rectangle.

public abstract void fillRect(int x, int y,
 int width, int height)

Fills the specified rectangle. (x, y) is the location of the upper-left corner of the rectangle.

public void draw3DRect(int x, int y, int width,
 int height, boolean raised)

Draws the outline of the specified rectangle. (x, y) is the location of the upper-left corner.The
rectangle is highlighted to look like it has thickness. If raised is true, the highlight makes
the rectangle appear to stand out from the background. If raised is false, the highlight makes
the rectangle appear to be sunken into the background.

public void fill3DRect(int x, int y, int width,
 int height, boolean raised)

Fills the rectangle specified by

draw3DRec(x, y,width, height, raised)

public abstract void drawArc(int x, int y,
 int width, int height,
 int startAngle, int arcSweep)

Draws part of an oval that just fits into an invisible rectangle described by the first four
arguments. The portion of the oval drawn is given by the last two arguments. See Chapter 18
for details.

public abstract void drawLine(int x1, int y1, int x2, int y2)

Draws a line between points (x1, y1) and (x2, y2).

public abstract void drawOval(int x, int y,
 int width, int height)

Draws the outline of the oval with the smallest enclosing rectangle that has the specified width
and height. The (imagined) rectangle has its upper-left corner located at (x, y).

Summary of Classes and Interfaces 1225

public void drawPolygon(int[]x, int[] y, int points)

Draws a polygon through the point
(x[0], y[0]), (x[1], y[1]), ..., (x[points – 1], y[points – 1]).
Always draws a closed polygon. If the first and last points are not equal, it draws a line from the
last to the first point.

public void drawPolyline(int[] x, int[] y, int points)

Draws a polygon through the point
(x[0], y[0]), (x[1], y[1]), ..., (x[points – 1], y[points – 1]).
If the first and last points are not equal, the polygon will not be closed.

public abstract void drawRoundRect(int x, int y,
 int width, int height, int arcWidth, int arcHeight)

Draws the outline of the specified round-cornered rectangle. (x, y) is the location of the
upper-left corner of the enclosing regular rectangle. arcWidth and arcHeight specify the
shape of the round corners. See Chapter 18 for details.

public abstract void drawString(String text, int x, int y)

Draws the text given by the specified string, using this graphics object’s current font and
color. The baseline of the leftmost character is at position (x, y) in this graphics object’s
coordinate system.

public abstract void fillArc(int x, int y,
 int width, int height,
 int startAngle, int arcSweep)

Fills the partial oval specified by

drawArc(x, y, width, height, startAngle, arcSweep)

public abstract void fillOval(int x, int y,
 int width, int height)

Fills the oval specified by

drawOval(x, y, width, height)

public void fillPolygon(int[] x, int[] y, int points)

Fills (with color) the polygon specified by

drawPolygon(x,y,points)

public abstract void fillRoundRect(int x, int y,
 int width, int height, int arcWidth, int arcHeight)

Fills the round rectangle specified by

drawRoundRec(x, y, width, height,arcWidth, arcHeight)

public abstract void setFont(Font fontObject)

Sets the current font of the calling Graphics object to fontObject.

1226 APPENDIX 5 Summary of Classes and Interfaces

HashMap<K,V> Class

Package: java.util
Ancestor classes:

 Object
 |
 +––AbstractMap<K,V>
 |
 +––HashMap<K,V>

Implements interfaces: Map<K,V>, Cloneable, Serializable
The HashMap<K,V> class implements all of the methods in the Map<K,V> interface. The only
other methods in the HashMap<K,V> class are the constructors.
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause. All the exception classes mentioned are in the package
java.lang and so do not require any import statement. The class K must implement the
equals and hashCode methods.

public HashMap()

Creates a new, empty map with a default initial capacity of 16 and load factor of 0.75. The
capacity is the number of slots in the hash table. The load factor is the percentage of capacity
before the size of the table is automatically increased.

public HashMap(int initialCapacity)

Creates a new, empty map with a default capacity of initialCapacity and load factor of 0.75.

Throws:

IllegalArgumentException if the initial capacity is negative.

public HashMap(int initialCapacity, float loadFactor)

Creates a new, empty map with the specified capacity and load factor.

Throws:

IllegalArgumentException if the initial capacity or the load factor is negative.

public HashMap(Map<? extends K,? extends V> m)

Creates a new map with the same mappings as m. The initialCapacity is set to the same
size as m and the loadFactor to 0.75.

Throws:

NullPointerException if m is null.

public Object clone()

Creates a shallow copy of this instance and returns it. The keys and values are not cloned.
The remainder of the methods are the same as those described for the Map<K,V> interface.

Summary of Classes and Interfaces 1227

HashSet<T>

Package: java.util
Ancestor classes:

 Object
 |
 +––AbstractCollection<T>
 |
 +––AbstractSet<T>
 |
 +––HashSet<T>

Implements interfaces: Cloneable, Collection<T>, Serializable, Set<T>
The HashSet<T> class implements all of the methods in the Set<T> interface. The only other
methods in the HashSet<T> class are the constructors. The class T must implement the
equals and hashCode methods.The two constructors that do not involve concepts beyond the
scope of this book are given as follows:
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.
All the exception classes mentioned are in the package java.lang and so do not require any
import statement.

public HashSet()

Creates a new, empty set.

public HashSet(Collection<? extends T> c)

Creates a new set that contains all the elements of c.

Throws:

NullPointerException if c is null.

public HashSet(int initialCapacity)

Creates a new, empty set with the specified capacity.

Throws:

IllegalArgumentException if initialCapacity is less than zero.

The methods are the same as those described for the Set<T> interface.

Integer

This is a wrapper class for int. See Section 5.1 in Chapter 5.

1228 APPENDIX 5 Summary of Classes and Interfaces

Iterator<T> Interface

Package: java.util
Ancestor interfaces: none
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.
NoSuchElementException is in the java.util package, which requires an import
statement if your code mentions the NoSuchElementException class. All the other exception
classes mentioned are in the package java.lang and so do not require any import statements.

public boolean hasNext()

Returns true if next() has not yet returned all the elements in the collection; returns
false otherwise.

public T next()

Returns the next element of the collection that produced the iterator.

Throws:

NoSuchElementException if there is no next element.

public void remove() (Optional)

Removes from the collection the last element returned by next.
This method can be called only once per call to next.

Throws:

IllegalStateException if the next method has not yet been called, or the remove method
has already been called after the last call to the next method.
UnsupportedOperationException if the remove operation is not supported by this
Iterator.

JButton

See AbstractButton.

JFrame

Package: javax.swing
Ancestor classes:

 Object
 |
 +––Component
 |
 +––Container
 |
 +––Window
 |
 +––Frame
 |
 +––JFrame

Summary of Classes and Interfaces 1229

public JFrame()

Constructor that creates an object of the class JFrame.

public JFrame(String title)

Constructor that creates an object of the class JFrame with the title given as the argument.

public Component add(Component componentAdded)

Adds componentAdded to the JFrame. Typically used as a void method.

public Container getContentPane()

Returns the content pane of the calling JFrame object. Container is a class in the package
java.awt.

To set the color of a JFrame, use

getContentPane().setBackground(Color c)

If you use setBackground without the getContentPane(), you will not get any error
messages, but you will probably not see the color.

public void setDefaultCloseOperation(int operation)

Sets the action that will happen by default when the user clicks the close-window button.
The argument should be one of the following defined constants:

JFrame.DO_NOTHING_ON_CLOSE: Do nothing. The JFrame does nothing, but if there are any
registered window listeners, they are invoked. (Window listeners are explained in Chapter 18.)
 JFrame.HIDE_ON_CLOSE: Hide the frame after invoking any registered WindowListener
objects.
JFrame.DISPOSE_ON_CLOSE: Hide and dispose the frame after invoking any registered win-
dow listeners. When a window is disposed, it is eliminated but the program does not end. To
end the programs, use the next constant as an argument to setDefaultCloseOperation.
JFrame.EXIT_ON_CLOSE: Exit the application using the System exit method. (Do not
use this for frames in applets. Applets are discussed on the accompanying website.)

If no action is specified using the method setDefaultCloseOperation, then the default
action taken is JFrame.HIDE_ON_CLOSE.

Throws:

IllegalArgumentException if the argument is not one of the values listed previously.
SecurityException if the argument is JFrame.EXIT_ON_CLOSE and the Security Manager
will not allow the caller to invoke System.exit. (You are not likely to encounter this case.)

public void setLayout(LayoutManager manager)

Makes manager the layout manager for the JFrame.

public void setSize(int width, int height)

Sets the size of the calling frame so that it has the width and height specified. Pixels are the
units of length used.

1230 APPENDIX 5 Summary of Classes and Interfaces

public void setTitle(String title)

Sets the title for this frame to the argument string.

public void dispose()

Eliminates the calling frame and all its subcomponents. Any memory they use is released for
reuse. If there are items left (items other than the calling frame and its subcomponents), then
this does not end the program. (The method dispose is discussed in Chapter 18.)

public void setJMenuBar(JMenuBar menubar)

Sets the menu bar for the calling frame.

JMenuItem

See AbstractButton.

JPanel

Package: javax.swing
Ancestor classes:

 Object
 |
 +––Component
 |
 +––Container
 |
 +––JComponent
 |
 +––JPanel

public JPanel()

Constructor that creates an object of the class JPanel.

public JPanel(LayoutManager manager)

Constructor that creates an object of the class JPanel with the given layout manager.

public Component add(Component componentAdded)

Adds componentAdded to the JPanel. Typically used as a void method.

public void setBackground(Color c)

Sets the color of the JPanel.

public void setLayout(LayoutManager manager)

Makes manager the layout manager for the JPanel.

Summary of Classes and Interfaces 1231

JScrollPane

Package: javax.swing
Ancestor classes:

 Object
 |
 +––Component
 |
 +––Container
 |
 +––JComponent
 |
 +––JScrollPane

public JScrollPane(Component objectToBeScrolled)

Creates a new JScrollPane for the objectToBeScrolled. Note that the
objectToBeScrolled need not be a JTextArea, although that is the only type of argument
considered in this book.

public void setHorizontalScrollBarPolicy(int policy)

Sets the policy for showing the horizontal scroll bar. The policy should be one of
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

The phrase AS_NEEDED means the scroll bar is shown only when it is needed. This is
explained more fully in Chapter 17. The meanings of the other policy constants are obvious from
their names.
(As indicated, these constants are defined in the class JScrollPane. You should not need
to even be aware of the fact that they have int values. Think of them as policies, not as
int values.)

public void setVerticalScrollBarPolicy(int policy)

Sets the policy for showing the vertical scroll bar. The policy should be one of
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED

The phrase AS_NEEDED means the scroll bar is shown only when it is needed. This is
explained more fully in Chapter 18. The meanings of the other policy constants are obvious from
their names.
(As indicated, these constants are defined in the class JScrollPane. You should not need
to even be aware of the fact that they have int values. Think of them as policies, not as
int values.)

1232 APPENDIX 5 Summary of Classes and Interfaces

JTextArea

See JTextComponent.

JTextComponent

Package: javax.swing.text
The classes JTextField and JTextArea are in the package javax.swing.
All these methods are inherited by the classes JTextField and JTextArea.
Ancestor classes:

 Object
 |
 +––Component
 |
 +––Container
 |
 +––JComponent
 |
 +––JTextComponent
 | \
 +––JTextField +––JTextArea

public String getText()

Returns the text that is displayed by this text component.

public boolean isEditable()

Returns true if the user can write in this text component. Returns false if the user is not
allowed to write in this text component.

public void setBackground(Color theColor)

Sets the background color of this text component.

public void setEditable(boolean argument)

If argument is true, then the user is allowed to write in the text component. If argument is
false, then the user is not allowed to write in the text component.

public void setText(String text)

Sets the text that is displayed by this text component to be the specified text.

JTextField

See JTextComponent.

Summary of Classes and Interfaces 1233

List<T> Interface

Package: java.util
Ancestor interfaces: Collection<T>, Iterable<T>
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.
All the exception classes mentioned are in the package java.lang and so do not require any
 import statement.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the List<T>
interface should have at least two constructors: a no-argument constructor that creates an empty
List<T> object, and a constructor with one parameter of type Collection<? extends T>
that creates a List<T> object with the same elements as the constructor argument. If the
argument imposes an ordering on its elements, then the List<T> created should preserve
this ordering.

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals
to determine if target is in the calling object.

Throws:

ClassCastException if the type of target is incompatible with the calling object (optional).
NullPointerException if target is null and the calling object does not support null
 elements (optional).

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets.
For element in collectionOfTargets, uses element.equals to determine if element is
in the calling object. The elements need not be in the same order or have the same multiplicity in
 collectionOfTargets and in the calling object.

public boolean equals(Object other)

If the argument is a List, returns true if the calling object and the argument contain exactly
the same elements in exactly the same order; otherwise returns false. If the argument is not a
List, false is returned.

public int hashCode()

Returns the hash code value for the calling object. Hash codes are discussed in Chapter 15.

boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

1234 APPENDIX 5 Summary of Classes and Interfaces

Iterator<T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. The elements in the returned
array are in the same order as in the calling object. A new array must be returned so that the
calling object has no references to the returned array.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need not
be the type T in Collection<T>. For example, E might be an ancestor type of T.
Returns an array containing all of the elements in the calling object. The elements in the
returned array are in the same order as in the calling object. The argument a is used primarily
to specify the type of the array returned. The exact details are described in the table for the
Collection<T> interface.

Throws:

ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.
NullPointerException if a is null.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than
Integer.MAX_VALUE elements, returns Integer.MAX_VALUE.

OPTIONAL METHODS

As with the Collection<T> interface, the following methods are optional, which
means they still must be implemented, but the implementation can simply throw an
UnsupportedOperationException if for some reason you do not want to give them a “real”
implementation. An UnsupportedOperationException is a RunTimeException and so is
not required to be caught or declared in a throws clause.

public boolean add(T element) (Optional)

Adds element to the end of the calling object’s list. Normally returns true. Returns false if the
operation failed, but if the operation failed, something is seriously wrong and you will probably
get a run-time error anyway.

Throws:

UnsupportedOperationException if the add method is not supported by the calling object.
ClassCastException if the class of element prevents it from being added to the calling object.
NullPointerException if element is null and the calling object does not support null
elements.
IllegalArgumentException if some aspect of element prevents it from being added to the
calling object.

Summary of Classes and Interfaces 1235

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Adds all of the elements in collectionToAdd to the end of the calling object’s list. The
elements are added in the order they are produced by an iterator for collectionToAdd.

Throws:
UnsupportedOperationException if the addAll method is not supported by the calling object.
ClassCastException if the class of an element in collectionToAdd prevents it from being
added to the calling object.
NullPointerException if collectionToAdd contains one or more null elements and the
calling object does not support null elements, or if collectionToAdd is null.
IllegalArgumentException if some aspect of an element in collectionToAdd prevents
it from being added to the calling object.

public void clear() (Optional)

Removes all the elements from the calling object.

Throws:
UnsupportedOperationException if the clear method is not supported by the calling object.

public boolean remove(Object element) (Optional)

Removes the first occurrence of element from the calling object’s list, if it is present. Returns
true if the calling object contained the element; returns false otherwise.

Throws:

ClassCastException if the type of element is incompatible with the calling object (optional).
NullPointerException if element is null and the calling object does not support null
elements (optional).
UnsupportedOperationException if the remove method is not supported by the
calling object.

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also in collectionToRemove. Returns true
if the calling object was changed; otherwise returns false.

Throws:

UnsupportedOperationException if the removeAll method is not supported by the
calling object.
ClassCastException if the types of one or more elements in the calling object are
incompatible with collectionToRemove (optional).
NullPointerException if the calling object contains one or more null elements and
collectionToRemove does not support null elements (optional).
NullPointerException if collectionToRemove is null.

1236 APPENDIX 5 Summary of Classes and Interfaces

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also in the collection saveElements. In other
words, removes from the calling object all of its elements that are not contained in the collection
saveElements. Returns true if the calling object was changed; otherwise returns false.

Throws:

UnsupportedOperationException if the retainAll method is not supported by the calling
object.
ClassCastException if the types of one or more elements in the calling object are
incompatible with saveElements (optional).
NullPointerException if the calling object contains one or more null elements and
saveElements does not support null elements (optional).
NullPointerException if the collection saveElements is null.

NEW METHOD HEADINGS

The following methods are in the List<T> interface but were not in the Collection<T>
 interface. Those that are optional are noted.

public void add(int index, T newElement) (Optional)

Inserts newElement in the calling object’s list at location index. The old elements at location
index and higher are moved to higher indices.

Throws:

IndexOutOfBoundsException if the index is not in the range:
0 <= index <= size().
UnsupportedOperationException if this add method is not supported by the calling object.
ClassCastException if the class of newElement prevents it from being added to
the calling object.
NullPointerException if newElement is null and the calling object does not support
null elements.
IllegalArgumentException if some aspect of newElement prevents it from being added to
the calling object.

public boolean addAll(int index,
 Collection<? extends T> collectionToAdd) (Optional)

Inserts all of the elements in collectionToAdd to the calling object’s list starting at location
index. The old elements at location index and higher are moved to higher indices. The
elements are added in the order they are produced by an iterator for collectionToAdd.
Returns true if successful; otherwise returns false.

Throws:

IndexOutOfBoundsException if the index is not in the range:
0 <= index <= size().
UnsupportedOperationException if the addAll method is not supported by the
calling object.
ClassCastException if the class of one of the elements of collectionToAdd prevents it
from being added to the calling object.
NullPointerException if collectionToAdd contains one or more null elements and the
 calling object does not support null elements, or if collectionToAdd is null.
IllegalArgumentException if some aspect of one of the elements of collectionToAdd
prevents it from being added to the calling object.

Summary of Classes and Interfaces 1237

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the
object target to test for equality. Returns −1 if target is not found.

Throws:
ClassCastException if the type of target is incompatible with the calling object (optional).
NullPointerException if target is null and the calling object does not support null
elements (optional).

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the
object target to test for equality. Returns −1 if target is not found.

Throws:

ClassCastException if the type of target is incompatible with the calling object (optional).
NullPointerException if target is null and the calling object does not support null
 elements (optional).

public List<T> subList(int fromIndex, int toIndex)

Returns a view of the elements at locations fromIndex to toIndex of the calling object; the
object at fromIndex is included; the object, if any, at toIndex is not included. The view uses
references into the calling object; so, changing the view can change the calling object. The
returned object will be of type List<T> but need not be of the same type as the calling object.
Returns an empty List<T> if fromIndex equals toIndex.

Throws:

IndexOutOfBoundsException if fromIndex and toIndex do not satisfy:
0 <= fromIndex <= toIndex <= size().

ListIterator<T> listIterator()

Returns a list iterator for the calling object. (Iterators are discussed in Section 16.3.)

ListIterator<T> listIterator(int index)

Returns a list iterator for the calling object starting at index. The first element to be returned by
the iterator is the one at index. (Iterators are discussed in Section 16.3.)

Throws:

IndexOutOfBoundsException if index does not satisfy:
0 <= index <= size()

public T get(int index)

Returns the object at position index.
Throws an IndexOutOfBoundsException if the index is not in the range:
0 <= index < size().

1238 APPENDIX 5 Summary of Classes and Interfaces

public T remove(int index) (Optional)

Removes the element at position index in the calling object. Shifts any subsequent elements to the
left (subtracts one from their indices). Returns the element that was removed from the calling object.

Throws:

UnsupportedOperationException if the remove method is not supported by the
calling object.
IndexOutOfBoundsException if index does not satisfy:
0 <= index < size()

public T set(int index, T newElement) (Optional)

Sets the element at the specified index to newElement. The element previously at that position
is returned.

Throws:

IndexOutOfBoundsException if the index is not in the range:
0 <= index < size().
UnsupportedOperationException if the set method is not supported by the calling object.
ClassCastException if the class of newElement prevents it from being added to
the calling object.
NullPointerException if newElement is null and the calling object does not support
null elements.
IllegalArgumentException if some aspect of newElement prevents it from being added to
the calling object.

ListIterator<T> Interface

Package: java.util
Ancestor interfaces: Iterator<T>
The cursor position is explained in Chapter 16.
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.
NoSuchElementException is in the java.util package, which requires an import statement
if your code mentions the NoSuchElementException class. All the other exception classes
 mentioned are in the package java.lang and so do not require any import statements.

public void add(T newElement) (Optional)

Inserts newElement at the location of the iterator cursor (that is, before the value, if any,
that would be returned by next() and after the value, if any, that would be returned by
previous()). Cannot be used if there has been a call to add or remove since the last call to
next() or previous().

Throws:

IllegalStateException if neither next() nor previous() has been called, or the add or
remove method has already been called after the last call to next() or previous().
UnsupportedOperationException if the remove operation is not supported by this Iterator.
ClassCastException if the class of newElement prevents it from being added.
IllegalArgumentException if some property other than the class of newElement prevents
it from being added.

Summary of Classes and Interfaces 1239

public boolean hasNext()

Returns true if there is a suitable element for next() to return; returns false otherwise.

public boolean hasPrevious()

Returns true if there is a suitable element for previous() to return; returns false otherwise.

public int nextIndex()

Returns the index of the element that would be returned by a call to next(). Returns the list size
if the cursor position is at the end of the list.

public T next()

Returns the next element of the list that produced the iterator. More specifically, returns the
 element immediately after the cursor position.

Throws:

NoSuchElementException if there is no next element.

public T previous()

Returns the previous element of the list that produced the iterator. More specifically, returns the
 element immediately before the cursor position.

Throws:

NoSuchElementException if there is no previous element.

public int previousIndex()

Returns the index that would be returned by a call to previous(). Returns −1 if the cursor
position is at the beginning of the list.

public void remove() (Optional)

Removes from the collection the last element returned by next() or previous().
 This method can be called only once per call to next() or previous().
Cannot be used if there has been a call to add or remove since the last call to next()
or previous().

Throws:

IllegalStateException if neither next() nor previous() has been called, or the add or
 remove method has already been called after the last call to next() or previous().
UnsupportedOperationException if the remove operation is not supported by
this Iterator.

1240 APPENDIX 5 Summary of Classes and Interfaces

public void set(T newElement) (Optional)

Replaces the last element returned by next() or previous() with newElement.
Cannot be used if there has been a call to add or remove since the last call to next()
or previous().

Throws:

UnsupportedOperationException if the set operation is not supported by this Iterator.
IllegalStateException if neither next() nor previous() has been called, or the add or
remove method has been called since the last call to next() or previous().
ClassCastException if the class of newElement prevents it from being added.
IllegalArgumentException if some property other than the class of newElement prevents
it from being added.

Long

This is a wrapper class for long. See Section 5.1 in Chapter 5.

Math

Package: java.lang

 Object
 |
 +––Math

The Math class is marked final, which means it cannot be used as a base class to derive
other classes.

public static double abs(double argument)

public static float abs(float argument)

public static long abs(long argument)

public static int abs(int argument)

Returns the absolute value of the argument. (The method name abs is overloaded to produce
four similar methods.)

EXAMPLES

Math.abs(−6) and Math.abs(6) both return 6. Math.abs(−5.5) and Math.abs(5.5)
both return 5.5.

public static double ceil(double argument)

Returns the smallest whole number greater than or equal to the argument.

EXAMPLE

Math.ceil(3.2) and Math.ceil(3.9) both return 4.0.

public static double floor(double argument)

Returns the largest whole number less than or equal to the argument.

EXAMPLE

Math.floor (3.2) and Math.floor (3.9) both return 3.0.

Summary of Classes and Interfaces 1241

public static double max(double n1, double n2)

public static float max(float n1, float n2)

public static long max(long n1, long n2)

public static int max(int n1, int n2)

Returns the maximum of the arguments n1 and n2. (The method name max is overloaded to
 produce four similar methods.)

EXAMPLE

Math.max(3, 2) returns 3.

public static double min(double n1, double n2)

public static float min(float n1, float n2)

public static long min(long n1, long n2)

public static int min(int n1, int n2)

Returns the minimum of the arguments n1 and n2. (The method name min is overloaded to
 produce four similar methods.)

EXAMPLE

Math.min(3, 2) returns 2.

public static double pow(double base, double exponent)

Returns base to the power exponent.

EXAMPLE

Math.pow(2.0,3.0) returns 8.0.

public static double random()

Returns a random number greater than or equal to 0.0 and less than 1.0.

EXAMPLE

Math.random() returns 0.5505562535943004 (example value only; will return a pseudo-
random number that is less than 1 and greater than or equal to 0 the next time the statement
is executed).

public static long round(double argument)

public static int round(float argument)

Rounds its argument.

EXAMPLES

Math.round(3.2) returns 3. Math.round(3.6) returns 4.

public static double sqrt(double argument)

Returns the square root of its argument.

EXAMPLE

Math.sqrt(4) returns 2.0.

1242 APPENDIX 5 Summary of Classes and Interfaces

Map<K,V> Interface

Package: java.util
Ancestor interfaces: none
All the exception classes mentioned are unchecked exceptions, which means they are not
required to be caught in a catch block or declared in a throws clause. No import statement is
required because these exception classes are in the package java.lang.

CONSTRUCTORS

Although not officially required by the interface, any class that implements the Map<K,V>
interface should have at least two constructors: a no-argument constructor that creates an empty
Map<K,V> object, and a constructor with one Map<K,V> parameter that creates a Map<K,V>
object with the same elements as the constructor argument. The interface does not specify
whether the copy produced by the one-argument constructor is a shallow copy or a deep copy of
its argument.

METHODS

public boolean containsKey(Object key)

Returns true if the calling object contains key as one of its keys.

Throws:

ClassCastException if the type of key is incompatible with the type for this map (optional).
NullPointerException if the key is null and this map does not permit null keys (optional).

public boolean containsValue(Object value)

Returns true if the calling object contains one or more keys that map to an instance of value.

Throws:

ClassCastException if the type of value is incompatible with the type for this map (optional).
NullPointerException if the value is null and this map does not permit null
values (optional).

public Set<Map.Entry<K,V>> entrySet()

Returns a set view consisting of (key, value) mappings for all entries in the map. Changes to the
map are reflected in the set and vice-versa.

public boolean equals(Object other)

This is the equals of the map, not the equals of the elements in the map. Overrides the
inherited method equals.

public V get(Object key)

Returns the value onto which the calling object maps key. If key is not in the map, then null
is returned. Note that this does not always mean that the key is not in the map, because it
is possible to map a key to null. The containsKey method can be used to distinguish the
two cases.

Throws:

ClassCastException if the type of key is incompatible with the type for this map (optional).
NullPointerException if the key is null and this map does not permit null keys (optional).

Summary of Classes and Interfaces 1243

public int hashCode()

Returns the hash code value for the calling object. The hash code of a map is defined to be the
sum of the hashCodes of each entry in the map’s entrySet view.

public boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

public int size()

Returns the number of (key, value) mappings in the calling object.

public Collection<V> values()

Returns a collection view consisting of all values in the map. Changes to the map are reflected in
the collection and vice-versa.

OPTIONAL METHODS

The following methods are optional, which means they still must be implemented, but the
implementation can simply throw an UnsupportedOperationException if, for some reason,
you do not want to give them a “real” implementation. An UnsupportedOperationException
is a RunTimeException and so is not required to be caught or declared in a throws clause.

public V put(K key, V value) (Optional)

Associates key to value in the map. If key was associated with an existing value, then the old
value is overwritten and returned. Otherwise null is returned.

Throws:

ClassCastException if the type of key or value is incompatible with the type for this
map (optional).
NullPointerException if the key or value is null and this map does not permit null keys
or values (optional).
IllegalArgumentException if some aspect of the key or value prevents it from being stored
in this map (optional).
UnsupportedOperationException if the put operation is not supported by this
map (optional).

public void putAll(Map<? extends K,? extends V> mapToAdd) (Optional)

Adds all mappings of mapToAdd into the calling object’s map.

Throws:

ClassCastException if any type of key or value of mapToAdd is incompatible with the
type for this map (optional).
NullPointerException if mapToAdd is null or any key or value of mapToAdd is null and
this map does not permit null keys or values (optional).
IllegalArgumentException if some aspect of the key or value from mapToAdd prevents it
from being stored in this map (optional).
UnsupportedOperationException if the putAll operation is not supported by this
map (optional).

1244 APPENDIX 5 Summary of Classes and Interfaces

public V remove(Object key) (Optional)

Removes the mapping for the specified key. If the key is not found in the map, then null is
 returned, otherwise the previous value for the key is returned.

Throws:

ClassCastException if the type of key is incompatible with the type for this map (optional).
NullPointerException if the key is null and this map does not permit null keys (optional).
UnsupportedOperationException if the remove operation is not supported by this
map (optional).

ObjectInputStream

Package: java.io
The FileInputStream class is also in this package.
Ancestor classes:

 Object
 |
 +––InputStream
 |
 +––ObjectInputStream

public ObjectInputStream(InputStream streamObject)

There is no constructor that takes a file name as an argument. If you want to create a stream
using a file name, use

new ObjectInputStream(new FileInputStream(File_Name))

Alternatively, you can use an object of the class File in place of the File_Name, as follows:

new ObjectInputStream(new FileInputStream(File_Object))

The constructor for FileInputStream may throw a FileNotFoundException, which is a
kind of IOException. If the FileInputStream constructor succeeds, then the constructor for
ObjectInputStream may throw a different IOException.

public void close()throws IOException

Closes the stream’s connection to a file.

public boolean readBoolean()throws IOException

Reads a boolean value from the input stream and returns that boolean value. If readBoolean
tries to read a value from the file and that value was not written using the method
writeBoolean of the class ObjectOutputStream (or written in some equivalent way), then
problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

Summary of Classes and Interfaces 1245

public char readChar()throws IOException

Reads a char value from the input stream and returns that char value. If readChar tries to
read a value from the file and that value was not written using the method writeChar of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public double readDouble()throws IOException

Reads a double value from the input stream and returns that double value. If readDouble
tries to read a value from the file and that value was not written using the method writeDouble
of the class ObjectOutputStream (or written in some equivalent way), then problems
will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public float readFloat()throws IOException

Reads a float value from the input stream and returns that float value. If readFloat tries to
read a value from the file and that value was not written using the method writeFloat of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public int readInt()throws IOException

Reads an int value from the input stream and returns that int value. If readInt tries to read
a value from the file and that value was not written using the method writeInt of the class
ObjectOutputStream (or written in some equivalent way), then problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public long readLong()throws IOException

Reads a long value from the input stream and returns that long value. If readLong tries to
read a value from the file and that value was not written using the method writeLong of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

Object readObject()throws ClassNotFoundException, IOException

Reads an object from the input stream. The object read should have been written using
writeObject of the class ObjectOutputStream.

Throws:

ClassNotFoundException if the class of a serialized object cannot be found.
If an attempt is made to read beyond the end of the file, an EOFException is thrown.
May throw various other IOExceptions.

1246 APPENDIX 5 Summary of Classes and Interfaces

public int readShort()throws IOException

Reads a short value from the input stream and returns that short value. If readInt tries to
read a value from the file and that value was not written using the method writeShort of the
class ObjectOutputStream (or written in some equivalent way), then problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public String readUTF()throws IOException

Reads a String value from the input stream and returns that String value. If readUTF tries
to read a value from the file and that value was not written using the method writeUTF of
the class ObjectOutputStream (or written in some equivalent way), then problems will occur.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public int skipBytes(int n) throws IOException

Skips n bytes.

ObjectOutputStream

Package: java.io
The FileOutputStream class is also in this package.
Ancestor classes:

 Object
 |
 +––OutputStream
 |
 +––ObjectOutputStream

public ObjectOutputStream(OutputStream streamObject)

There is no constructor that takes a file name as an argument. If you want to create a stream
using a file name, use

new ObjectOutputStream(new FileOutputStream(File_Name))

This creates a blank file. If there already is a file named File_Name, then the old contents of the
file are lost.
If you want to create a stream using an object of the class File, use

new ObjectOutputStream(new FileOutputStream(File_Object))

The constructor for FileOutputStream may throw a FileNotFoundException, which is a
kind of IOException. If the FileOutputStream constructor succeeds, then the constructor
for ObjectOutputStream may throw a different IOException.

public void close()throws IOException

Closes the stream’s connection to a file. This method calls flush before closing the file.

Summary of Classes and Interfaces 1247

public void flush()throws IOException

Flushes the output stream. This forces an actual physical write to the file of any data that
has been buffered and not yet physically written to the file. Normally, you should not need to
invoke flush.

public void writeBoolean(boolean b) throws IOException

Writes the boolean value b to the output stream.

public void writeChar(int n) throws IOException

Writes the char value n to the output stream. Note that it expects its argument to be an int
value. However, if you simply use the char value, then Java will automatically type cast it to an
int value. The following are equivalent:

outputStream.writeChar((int)'A');

and

outputStream.writeChar('A');

public void writeDouble(double x) throws IOException

Writes the double value x to the output stream.

public void writeFloat(float x) throws IOException

Writes the float value x to the output stream.

public void writeInt(int n) throws IOException

Writes the int value n to the output stream.

public void writeLong(long n) throws IOException

Writes the long value n to the output stream.

public void writeObject(Object anObject) throws IOException

Writes its argument to the output stream. The object argument should be an object of a
serializable class, a concept discussed in Chapter 10.

Throws:

Various IOExceptions.

public void writeShort(short n) throws IOException

Writes the short value n to the output stream.

public void writeUTF(String aString) throws IOException

Writes the String value aString to the output stream. UTF refers to a particular method of
 encoding the string. To read the string back from the file, you should use the method readUTF of
the class ObjectInputStream.

1248 APPENDIX 5 Summary of Classes and Interfaces

PrintWriter

Package: java.io
The FileOutputStream class is also in this package.
Ancestor classes:

 Object
 |
 +––Writer
 |
 +––PrintWriter

public PrintWriter(OutputStream streamObject)

This is the only constructor you are likely to need. There is no constructor that accepts a file
name as an argument. If you want to create a stream using a file name, use

new PrintWriter (new FileOutputStream(File_Name))

When the constructor is used in this way, a blank file is created. If there already was a file named
File_Name, then the old contents of the file are lost. If you want instead to append new text to
the end of the old file contents, use

new PrintWriter(new FileOutputStream (File_Name, true))

(For an explanation of the argument true, see Chapter 10.)
When used in either of these ways, the FileOutputStream constructor, and so the PrintWriter
constructor invocation, can throw a FileNotFoundException, which is a kind of IOException.
If you want to create a stream using an object of the class File, you can use a File object in
place of the File_Name.

public void close()

Closes the stream’s connection to a file. This method calls flush before closing the file.

public void flush()

Flushes the output stream. This forces an actual physical write to the file of any data that has
been buffered and not yet physically written to the file. Normally, you should not need to
 invoke flush.

public final void print(Argument)

Same as println, except that this method does not end the line, and so the next output will be
on the same line.

public final void println(Argument)

The Argument can be a string, character, integer, floating-point number, boolean value, or any
combination of these, connected with + signs. The Argument can also be any object, although
it will not work as desired unless the object has a properly defined toString() method. The
Argument is output to the file connected to the stream. After the Argument has been output, the
line ends, and so the next output is sent to the next line.

Summary of Classes and Interfaces 1249

Random

Package: java.util
Ancestor classes:

 Object
 |
 +––Random

public Random()

Creates a new random number generator.

public Random(long seed)

Creates a new random number generator with the specified seed value.

public int nextInt(int n)

Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the
value n (exclusive).

public double nextDouble(double n)

Returns a pseudorandom, uniformly distributed double value between 0 (inclusive) and
1 (exclusive).

RandomAccessFile

Package: java.io

 Object
 |
 +––RandomAccessFile

public RandomAccessFile(String fileName, String mode)

public RandomAccessFile(File fileObject, String mode)

Opens the file, does not delete data already in the file, but does position the file pointer at the
first (zeroth) location.
The mode must be one of the following:
"r" Open for reading only.
"rw" Open for reading and writing.
"rws" Same as "rw", and also requires that every update to the file’s content or metadata be
written synchronously to the underlying storage device.
"rwd" Same as "rw", and also requires that every update to the file’s content be written
 synchronously to the underlying storage device.
"rws" and "rwd" are not covered in this book .

public void close()throws IOException

Closes the stream’s connection to a file.

1250 APPENDIX 5 Summary of Classes and Interfaces

public void setLength(long newLength) throws IOException

Sets the length of this file.
If the present length of the file as returned by the length method is greater than the
newLength argument, then the file will be truncated. In this case, if the file pointer location as
returned by the getFilePointer method is greater than newLength, then after this method
returns, the file pointer location will be equal to newLength.
If the present length of the file as returned by the length method is smaller than newLength,
then the file will be extended. In this case, the contents of the extended portion of the file are
not defined.

public long getFilePointer()throws IOException

Returns the current location of the file pointer. Locations are numbered starting with 0.

public long length()throws IOException

Returns the length of the file.

public int read()throws IOException

Reads a byte of data from the file and returns it as an integer in the range 0 to 255.

public int read(byte[] a) throws IOException

Reads up to a.length bytes of data from the file into the array of bytes. Returns the total
 number of bytes read or -1 if the end of the file is reached.

public final boolean readBoolean()throws IOException

Reads a boolean value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final byte readByte()throws IOException

Reads a byte value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final char readChar()throws IOException

Reads a char value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final double readDouble()throws IOException

Reads a double value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final float readFloat()throws IOException

Reads a float value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

Summary of Classes and Interfaces 1251

public final int readInt()throws IOException

Reads an int value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final long readLong()throws IOException

Reads a long value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final short readShort()throws IOException

Reads a short value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public final String readUTF()throws IOException

Reads a String value from the file and returns that value.

If an attempt is made to read beyond the end of the file, an EOFException is thrown.

public void seek(long location) throws IOException

Moves the file pointer to the specified location.

public void write(byte[] a) throws IOException

Writes a.length bytes from the specified byte array to the file.

public void write(int b) throws IOException

Writes the specified byte to the file.

public final void writeBoolean(boolean b) throws IOException

Writes the boolean b to the file.

public final void writeByte(byte b) throws IOException

Writes the byte b to the file.

public final void writeChar(char c) throws IOException

Writes the char c to the file.

public final void writeDouble(double d) throws IOException

Writes the double d to the file.

public final void writeFloat(float f) throws IOException

Writes the float f to the file.

public final void writeInt(int n) throws IOException

Writes the int n to the file.

1252 APPENDIX 5 Summary of Classes and Interfaces

public final void writeLong(long n) throws IOException

Writes the long n to the file.

public final void writeShort(short n) throws IOException

Writes the short n to the file.

public final void writeUTF(String s) throws IOException

Writes the String s to the file.

Scanner

Package: java.util
Ancestor classes:

 Object
 |
 +––Scanner

The Scanner class can be used to obtain input from files as well as from the keyboard. Values to
be read should be separated by whitespace characters, such as blanks and/or new lines. When
reading values, these whitespace characters are skipped. (It is possible to change the separators
from whitespace to something else, but whitespace is the default.)

public Scanner(InputStream streamObject)

There is no constructor that accepts a file name as an argument. If you want to create a stream
using a file name, you can use

new Scanner(new FileInputStream(File_Name))

When used in this way, the FileInputStream constructor, and thus the Scanner constructor
invocation, can throw a FileNotFoundException, which is a kind of IOException.
To create a stream connected to the keyboard, use

new Scanner(System.in)

public Scanner(File fileObject)

If you want to create a stream using a file name, you can use

new Scanner(new File(File_Name))

public int nextInt()

Returns the next token as an int, provided the next token is a well-formed string representation
of an int.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of an int.
IllegalStateException if the Scanner stream is closed.

Summary of Classes and Interfaces 1253

public boolean hasNextInt()

Returns true if the next token is a well-formed string representation of an int; otherwise
returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public long nextLong()

Returns the next token as a long, provided the next token is a well-formed string representation
of a long.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of
a long.
IllegalStateException if the Scanner stream is closed.

public boolean hasNextLong()

Returns true if the next token is a well-formed string representation of a long; otherwise
returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public byte nextByte()

Returns the next token as a byte, provided the next token is a well-formed string representation
of a byte.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of a byte.
IllegalStateException if the Scanner stream is closed.

public boolean hasNextByte()

Returns true if the next token is a well-formed string representation of a byte; otherwise
returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public short nextShort()

Returns the next token as a short, provided the next token is a well-formed string representa-
tion of a short.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of a short.
IllegalStateException if the Scanner stream is closed.

1254 APPENDIX 5 Summary of Classes and Interfaces

public boolean hasNextShort()

Returns true if the next token is a well-formed string representation of a short; otherwise
returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public double nextDouble()

Returns the next token as a double, provided the next token is a well-formed string representation
of a double.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of
a double.
IllegalStateException if the Scanner stream is closed.

public boolean hasNextDouble()

Returns true if the next token is a well-formed string representation of a double; otherwise
returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public float nextFloat()

Returns the next token as a float, provided the next token is a well-formed string representation
of a float.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of
a float.
IllegalStateException if the Scanner stream is closed.

public boolean hasNextFloat()

Returns true if the next token is a well-formed string representation of a float; otherwise
returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public String next()

Returns the next token.

Throws:

NoSuchElementException if there are no more tokens.
IllegalStateException if the Scanner stream is closed.

Summary of Classes and Interfaces 1255

public boolean hasNext()

Returns true if there is another token. May wait for a next token to enter the stream.

Throws:

IllegalStateException if the Scanner stream is closed.

public boolean nextBoolean()

Returns the next token as a boolean value, provided the next token is a well-formed string
representation of a boolean.

Throws:

NoSuchElementException if there are no more tokens.
InputMismatchException if the next token is not a well-formed string representation of a
boolean value.
IllegalStateException if the Scanner stream is closed.

public boolean hasNextBoolean()

Returns true if the next token is a well-formed string representation of a boolean value;
 otherwise returns false.

Throws:

IllegalStateException if the Scanner stream is closed.

public String nextLine()

Returns the rest of the current input line. Note that the line terminator '\n' is read and
 discarded; it is not included in the string returned.

Throws:

NoSuchElementException if there are no more lines.
IllegalStateException if the Scanner stream is closed.

public boolean hasNextLine()

Returns true if there is a next line. May wait for a next line to enter the stream.

Throws:

IllegalStateException if the Scanner stream is closed.

public Scanner useDelimiter(String newDelimiter);

Changes the delimiter for input so that newDelimiter will be the only delimiter that separates
words or numbers. See the subsection “Other Input Delimiters” in Chapter 2 for the details. (You
can use this method to set the delimiters to a more complex pattern than just a single string, but
we are not covering that.)

Returns the calling object, but we have always used it as a void method.

1256 APPENDIX 5 Summary of Classes and Interfaces

Serializable Interface

See Section 10.4 in Chapter 10.

Set<T> Interface

Package: java.util
Ancestor interfaces: Collection <T>
All the exception classes mentioned are the kind that are not required to be caught in a catch
block or declared in a throws clause.
All the exception classes mentioned are in the package java.lang and so do not require any
import statement.

CONSTRUCTORS

public boolean contains(Object target)

Returns true if the calling object contains at least one instance of target. Uses target.equals
to determine if target is in the calling object.

Throws:

ClassCastException if the type of target is incompatible with the calling object (optional).
NullPointerException if target is null and the calling object does not support null
elements (optional).

public boolean containsAll(Collection<?> collectionOfTargets)

Returns true if the calling object contains all of the elements in collectionOfTargets. For
element in collectionOfTargets, this method uses element.equals to determine if
element is in the calling object. If collectionOfTargets is itself a Set <T>, this is a test to
see if collectionOfTargets is a subset of the calling object.

Throws:

ClassCastException if the types of one or more elements in collectionOfTargets are
incompatible with the calling object (optional).
NullPointerException if collectionOfTargets contains one or more null elements
and the calling object does not support null elements (optional).
NullPointerException if collectionOfTargets is null.

public boolean equals(Object other)

If the argument is a Set <T>, returns true if the calling object and the argument contain exactly the
same elements; otherwise returns false. If the argument is not a Set <T>, false is returned.

public int hashCode()

Returns the hash code value for the calling object. Neither hash codes nor this method are
 discussed in this book . This entry is only here to make the definition of the Set <T> interface
complete. You can safely ignore this entry until you go on to study hash codes in a more advanced
book. In the meantime, if you need to implement this method, have it throw an
UnsupportedOperationException.

public boolean isEmpty()

Returns true if the calling object is empty; otherwise returns false.

Summary of Classes and Interfaces 1257

Iterator <T> iterator()

Returns an iterator for the calling object. (Iterators are discussed in Section 16.3.)

public Object[] toArray()

Returns an array containing all of the elements in the calling object. A new array should be
 returned so that the calling object has no references to the returned array.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need
not be the type T in Collection <T>. For example, E might be an ancestor type of T.
Returns an array containing all of the elements in the calling object. The argument a is used
primarily to specify the type of the array returned. The exact details are described in the table for
the Collection <T> interface.

Throws:

ArrayStoreException if the type of a is not an ancestor type of the type of every element in
the calling object.
NullPointerException if a is null.

public int size()

Returns the number of elements in the calling object. If the calling object contains more than
Integer.MAX_VALUE elements, returns Integer.MAX_VALUE.

ADDING AND REMOVING ELEMENTS

Although many are optional, the following methods are almost always implemented for classes
that implement the Set <T> interface.

public boolean add(T element) (Optional)

If element is not already in the calling object, element is added to the calling object and true is
returned. If element is in the calling object, the calling object is unchanged and false is returned.

Throws:

UnsupportedOperationException if the add method is not supported by the set.
ClassCastException if the class of element prevents it from being added to the set.
NullPointerException if element is null and the set does not support null elements.
IllegalArgumentException if some other aspect of element prevents it from being added
to this set.

public boolean addAll(Collection<? extends T> collectionToAdd) (Optional)

Ensures that the calling object contains all the elements in collectionToAdd. Returns true if the
calling object changed as a result of the call; returns false otherwise. Thus, if collectionToAdd is
a Set <T>, then the calling object is changed to the union of itself with collectionToAdd.

Throws:

UnsupportedOperationException if the addAll method is not supported by the set.
ClassCastException if the class of some element of collectionToAdd prevents it from
being added to the calling object.
NullPointerException if collectionToAdd contains one or more null elements and the
 calling object does not support null elements, or if collectionToAdd is null.
IllegalArgumentException if some aspect of some element of collectionToAdd
 prevents it from being added to the calling object.

1258 APPENDIX 5 Summary of Classes and Interfaces

public void clear()

Removes all the elements from the calling object.

Throws:

UnsupportedOperationException if the clear method is not supported by the
calling object.

public boolean remove(Object element)

Removes the element from the calling object, if it is present. Returns true if the calling object
contained the element; returns false otherwise.

Throws:

ClassCastException if the type of element is incompatible with the calling object (optional).
NullPointerException if element is null and the calling object does not support null
elements (optional).
UnsupportedOperationException if the remove method is not supported by the calling object.

public boolean removeAll(Collection<?> collectionToRemove) (Optional)

Removes all the calling object’s elements that are also contained in collectionToRemove.
Returns true if the calling object was changed; otherwise returns false.

Throws:

UnsupportedOperationException if the removeAll method is not supported by the
calling object.
ClassCastException if the types of one or more elements in collectionToRemove are
incompatible with the calling object (optional).
NullPointerException if the calling object contains a null element and
collectionToRemove does not support null elements (optional).
NullPointerException if collectionToRemove is null.

public boolean retainAll(Collection<?> saveElements) (Optional)

Retains only the elements in the calling object that are also contained in the collection
 saveElements. In other words, removes from the calling object all of its elements that are not
contained in the collection saveElements. Returns true if the calling object was changed;
otherwise returns false. If the argument is itself a Set <T>, this changes the calling object to
the intersection of itself with the argument.

Throws:

UnsupportedOperationException if the retainAll method is not supported by the
calling object.
ClassCastException if the types of one or more elements in the calling object are
 incompatible with saveElements (optional).
NullPointerException if saveElements contains a null element and the calling object
does not support null elements (optional).
NullPointerException if saveElements is null.

Summary of Classes and Interfaces 1259

Short

Wrapper class for short. See Section 5.1 in Chapter 5.

String

Package: java.lang
String is marked final and so you cannot use it as a base class to derive another class.
Implements interfaces: CharSequence, Comparable, Serializable
Ancestor classes:

 Object
 |
 +––String

CONSTRUCTORS

public String()

Creates a String object that represents an empty character sequence. Note that this is a pretty
useless constructor because String objects are immutable.

public String(BufferedString buffer)

Creates a new String object that contains the same sequence of characters that is currently
contained in the BufferedString argument. This is a deep copy; subsequent modification of
the BufferedString object does not affect the newly created string.

Throws:

NullPointerException if buffer is null.

public String(char[] value, int offset, int count)

Creates a new String that contains characters from a subarray of the character array argument.
The offset argument is the index of the first character of the subarray, and the count argu-
ment specifies the length of the subarray. The contents of the subarray are copied. This is a deep
copy; subsequent modifications of the character array do not affect the newly created string.

Throws:

IndexOutOfBoundsException if the elements specified by offset and count are not all
within the bounds of the value array.
NullPointerException if value is null.

public String(String original)

Creates a new String object so that it represents the same sequence of characters as
the argument. Unless an explicit copy of original is needed, use of this constructor is
 unnecessary because String objects are immutable.

Throws:

NullPointerException if original is null.

1260 APPENDIX 5 Summary of Classes and Interfaces

METHODS

public char charAt(int position)

Returns the character in the calling object string at the position. Positions are counted 0, 1, 2, etc.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1) returns 'e'.

Throws:

IndexOutOfBoundsException if position is negative or not less than the length of the
 calling object string.

public int compareTo(String aString)

Compares the calling object string and the string argument to see which comes first in the
 lexicographic ordering. Lexicographic order is the same as alphabetical order but with the
 characters ordered as in Appendix 3. Note that in Appendix 3 all the uppercase letters are in
 regular alphabetical order and all the lowercase letters are in alphabetical order, but all the
 uppercase letters precede all the lowercase letters. So, lexicographic ordering is the same as
alphabetical ordering when either both strings are all uppercase letters or both strings are all
 lowercase letters. If the calling string is first, it returns a negative value. If the two strings are
equal, it returns zero. If the argument is first, it returns a positive number.

EXAMPLE

After program executes String entry = "adventure";
entry.compareTo("zoo") returns a negative number,
entry.compareTo("adventure") returns 0, and
entry.compareTo("above") returns a positive number.

Throws:

NullPointerException if aString is null.

public int compareToIgnoreCase(String aString)

Compares the calling object string and the string argument to see which comes first in the
 lexicographic ordering, treating upper- and lowercase letters as being the same. (To be precise,
all uppercase letters are treated as if they were their lowercase versions in doing the comparison.)
Thus, if both strings consist entirely of letters, the comparison is for ordinary alphabetical order.
If the calling string is first, it returns a negative value. If the two strings are equal, ignoring cases,
it returns zero. If the argument is first, it returns a positive number.

EXAMPLE

After program executes String entry = "adventure";
entry.compareToIgnoreCase("Zoo") returns a negative number,
entry.compareToIgnoreCase("Adventure") returns 0, and
"Zoo".compareToIgnoreCase(entry) returns a positive number.

Throws:

NullPointerException if aString is null.

Summary of Classes and Interfaces 1261

public boolean contentEquals(StringBuffer stringBufferObject)

Returns true if and only if this String represents the same sequence of characters as the
StringBuffer argument.

Throws:

NullPointerException if stringBufferObject is null.

public boolean equals(String otherString)

Returns true if the calling object string and the otherString are equal. Otherwise
returns false.

EXAMPLE

After program executes String greeting = "Hello";
greeting.equals("Hello") returns true
greeting.equals("Good-Bye") returns false
greeting.equals("hello") returns false
Note that case matters: "Hello" and "hello" are not equal because one starts with an
 uppercase letter and the other starts with a lowercase letter.

public boolean equalsIgnoreCase(String otherString)

Returns true if the calling object string and the otherString are equal, considering upper- and
lowercase versions of a letter to be the same. Otherwise returns false.

EXAMPLE

After program executes String name = "mary";
name.equalsIgnoreCase("Mary") returns true.

public int indexOf(String aString)

Returns the index (position) of the first occurrence of the string aString in the calling object
string. Positions are counted 0, 1, 2, etc. Returns −1 if aString is not found.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.indexOf("Mary") returns 3, and
greeting.indexOf("Sally") returns −1.

Throws:

NullPointerException if aString is null.

1262 APPENDIX 5 Summary of Classes and Interfaces

public int indexOf(String aString, int start)

Returns the index (position) of the first occurrence of the string aString in the calling object
string that occurs at or after position start. Positions are counted 0, 1, 2, etc. Returns −1 if
aString is not found.

EXAMPLE

After program executes String name = "Mary, Mary quite contrary";
name.indexOf("Mary", 1) returns 6.
The same value is returned if 1 is replaced by any number up to and including 6.
name.indexOf("Mary", 0) returns 0.
name.indexOf("Mary", 8) returns −1.

Throws:

NullPointerException if aString is null.

public int lastIndexOf(String aString)

Returns the index (position) of the last occurrence of the string aString in the calling object
string. Positions are counted 0, 1, 2, etc. Returns −1 if aString is not found.

EXAMPLE

After program executes String name = "Mary, Mary, Mary quite so";
greeting.indexOf("Mary") returns 0, and
name.lastIndexOf("Mary") returns 12.

Throws:

NullPointerException if aString is null.

public int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.length() returns 6.

public String substring(int start)

Returns the substring of the calling object string starting from start through to the end of the
calling object. Positions are counted 0, 1, 2, etc. Be sure to notice that the character at position
start is included in the value returned.

EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2) returns "cdefG".

Throws:

IndexOutOfBoundsException if start is negative or larger than the length of the
calling object.

Summary of Classes and Interfaces 1263

public String substring(int start, int end)

Returns the substring of the calling object string starting from position start through, but
not including, position end of the calling object. Positions are counted 0, 1, 2, etc. Be sure to
notice that the character at position start is included in the value returned, but the character at
 position end is not included.

EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2, 5) returns "cde".

Throws:

IndexOutOfBoundsException if the start is negative, or end is larger than the length of
this String object, or start is larger than end.

public String toLowerCase()

Returns a string with the same characters as the calling object string, but with all letter charac-
ters converted to lowercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toLowerCase() returns "hi mary!".

public String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter charac-
ters converted to uppercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() returns "HI MARY!".

public String trim()

Returns a string with the same characters as the calling object string, but with leading and trail-
ing whitespace removed. Whitespace characters are the characters that print as whitespace on
paper, such as the blank (space) character, the tab character, and the new-line character '\n'.

EXAMPLE

After program executes String pause = " Hmm ";
pause.trim() returns "Hmm".

StringBuffer

Package: java.lang
StringBuffer is marked final and so you cannot use it as a base class to derive
another class.
Ancestor classes:

 Object
 |
 +––StringBuffer

1264 APPENDIX 5 Summary of Classes and Interfaces

CONSTRUCTORS

public StringBuffer()

Creates a StringBuffer object with no characters in it and an initial capacity of 16 characters.

public StringBuffer(int capacity)

Constructs a StringBuffer object with no characters in it and an initial capacity specified by
the argument.

Throws:

NegativeArraySizeException if length is less than 0. NegativeArraySizeException
is a derived class of RuntimeException, and so is an unchecked exception, which means it is
not required to be caught or declared in a throws clause.

public StringBuffer(String ordinaryString)

Constructs a string buffer so that it represents the same sequence of characters as the
 ordinaryString argument; in other words, the initial content of the string buffer is a copy of
ordinaryString. The initial capacity of the string buffer is 16 plus the length of ordinaryString.

Throws:

NullPointerException if ordinaryString is null.

METHODS

public StringBuffer append(char[] charArray, int offset, int length)

Appends the string representation of the characters in charArray starting at
charArray[offset] and extending for a total of length characters. Note that the calling object
is changed and a reference to the changed calling object is returned.

Throws:

ArrayIndexOutOfBoundsException if offset and length are not consistent with the
range of charArray.

public StringBuffer append(char c)

Appends the character argument to the StringBuffer calling object and returns this longer
string.

public StringBuffer append(char[] charArray)

Appends the string representation of the char array argument to this string buffer. Note that the
calling object is changed and a reference to the changed calling object is returned.

public StringBuffer append(double d)

Appends the string representation of the double argument to the StringBuffer calling object
and returns this longer string.

public StringBuffer append(float d)

Appends the string representation of the float argument to the StringBuffer calling object
and returns this longer string.

Summary of Classes and Interfaces 1265

public StringBuffer append(int n)

Appends the string representation of the int argument to the StringBuffer calling object and
returns this longer string.

public StringBuffer append(long n)

Appends the string representation of the long argument to the StringBuffer calling object
and returns this longer string.

public StringBuffer append(String ordinaryString)

Appends the String argument to the StringBuffer calling object and returns this longer string.
If ordinaryString is null, then the four characters "null" are appended to this string buffer.
Note that the calling object is hanged and a reference to the changed calling object is returned.

public StringBuffer append(StringBuffer bufferedString)

Appends the StringBuffer argument to the StringBuffer calling object and returns this longer
string. If bufferedString is null, then the four characters "null" are appended to this string
 buffer. Note that the calling object is changed and a reference to the changed calling object is returned.

public int capacity()

Returns the current capacity of the calling object. The capacity is the amount of storage currently
available for characters. The capacity will automatically be increased if necessary.

public char charAt(int position)

Returns the character in the calling object string at position. Positions are counted 0, 1, 2, etc.

Throws:

IndexOutOfBoundsException if position is negative or not less than the length of the
 calling object.

contentEquals

There is no such method for the class StringBuffer, but see the method contentEquals for
the class String.

public StringBuffer delete(int start, int end)

Removes the characters in a substring of the calling object. The substring to remove begins at
the specified start and extends to the character at index end − 1 or to the end of the calling
object if no such character exists. If start is equal to end, no changes are made. Note that the
calling object is changed and a reference to the changed calling object is returned.

Throws:

StringIndexOutOfBoundsException if start is negative, greater than length(),
or greater than end. StringIndexOutOfBoundsException is a derived class of
RuntimeException, and so is an unchecked exception, which means it is not required to
be caught or declared in a throws clause.

public void ensureCapacity(int minimumCapacity)

Ensures that the capacity of the calling object is at least equal to minimumCapacity. If the current
capacity of the calling object is less than minimumCapacity, then the capacity is increased.
The new capacity is the larger of: minimumCapacity and twice the old capacity, plus 2.
If the minimumCapacity is nonpositive, this method takes no action and simply returns.

1266 APPENDIX 5 Summary of Classes and Interfaces

Start public boolean equals(Object otherObject)

Warning: This is the method inherited from Object. It is not overridden for the class
StringBuffer and does not work as you might expect. Normally, it should not be used.

public int indexOf(String aString)

Returns the index (position) of the first occurrence of the string aString in the calling object.
Positions are counted 0, 1, 2, etc. Returns −1 if aString is not found. Note that the argument is
of type String, not StringBuffer.

Throws:

NullPointerException if aString is null.

public int indexOf(String aString, int start)

Returns the index (position) of the first occurrence of the string aString in the calling object
that occurs at or after position start. Positions are counted 0, 1, 2, etc. Returns −1 if aString
is not found. Note that the argument is of type String, not StringBuffer.

Throws:

NullPointerException if aString is null.

public int lastIndexOf(String aString)

Returns the index (position) of the last occurrence of the string aString in the calling object
string. Positions are counted 0, 1, 2, etc. Returns −1 if aString is not found. Note that the
 argument is of type String, not StringBuffer.

Throws:

NullPointerException if aString is null.

public int length()

Returns the length of the calling object as a value of type int.

public StringBuffer replace(int start, int end, String ordinaryString)

Replaces the characters in a substring of the calling object with characters in the ordinaryString.
The substring begins at the specified start and extends to the character at index end −1 or to the
end of the calling object if no such character exists. First the characters in the substring are removed
and then the specified ordinaryString is inserted at start. (The calling object will be length-
ened to accommodate the ordinaryString if necessary.) Note that the calling object is changed
and a reference to the changed calling object is returned.

Throws:

StringIndexOutOfBoundsException if start is negative, greater than length(), or greater
than end. StringIndexOutOfBoundsException is a derived class of RuntimeException,
and so is an unchecked exception, which means it is not required to be caught or declared in a
throws clause.

Summary of Classes and Interfaces 1267

public void setLength(int newLength)

Sets the length of the calling object. The calling object is altered to represent a new character
sequence whose length is specified by the argument. For every nonnegative index k less than
newLength, the character at index k in the new character sequence is the same as the charac-
ter at index k in the old sequence. If the newLength argument is less than the current length of
the string buffer, the string buffer is truncated to contain exactly the number of characters given
by the newLength argument.
If the newLength argument is greater than the current length, sufficient null characters ('\u0000')
are appended to the string buffer so that length becomes the newLength argument.

Throws:

IndexOutOfBoundsException if newLength is negative.

public String substring(int start)

Returns the substring of the calling object starting from start through to the end of the calling object.
Positions are counted 0, 1, 2, etc. Be sure to notice that the character at position start is included in
the value returned. Note that the substring is returned as a value of type String, not StringBuffer.

Throws:

StringIndexOutOfBoundsException if start is negative or larger than the length of the
calling object. StringIndexOutOfBoundsException is a derived class of RuntimeException,
and so is an unchecked exception, which means it is not required to be caught or declared in a
throws clause.

public String substring(int start, int end)

Returns the substring of the calling object starting from position start through, but not including,
position end of the calling object. Positions are counted 0, 1, 2, etc. Be sure to notice that the char-
acter at position start is included in the value returned, but the character at position end is not
included. Also note that the substring is returned as a value of type String, not StringBuffer.

Throws:

StringIndexOutOfBoundsException if start is negative, or end is larger than the length
of this calling object, or start is larger than end. StringIndexOutOfBoundsException is a
derived class of RuntimeException, and so is an unchecked exception, which means it is not
required to be caught or declared in a throws clause.

public String toString()

Creates a new String object that contains the same character sequence calling object and
returns that String object. Subsequent changes to the calling object do not affect the contents
of the String returned.

StringTokenizer

StringTokenizer is a legacy class that is retained for compatibility purposes.

Package: java.util.
Ancestor classes:

 Object
 |
 +––StringTokenizer

1268 APPENDIX 5 Summary of Classes and Interfaces

public StringTokenizer(String theString)

Constructor for a tokenizer that will use whitespace characters as separators when finding
tokens in theString.

public StringTokenizer(String theString, String delimiters)

Constructor for a tokenizer that will use the characters in the string delimiters as separators
when finding tokens in theString.

public StringTokenizer(String theString, String delimiters,
 boolean r eturnDelimiters)

Creates a tokenizer similar to StringTokenizer(String theString, String delimiters),
but with the following differences: If returnDelimiters is true, the delimiters are also returned by
nextToken; each delimiter is returned as a one-character String. If returnDelimiters is false,
the delimiters are not returned by nextToken. Thus, if returnDelimiters is false, the tokenizer
created is the same as with StringTokenizer(String theString, String delimiters).

public int countTokens()

Returns the number of tokens remaining to be returned by nextToken.

public boolean hasMoreElements()

Same as hasMoreTokens.

public boolean hasMoreTokens()

Tests whether there are more tokens available from this tokenizer’s string. When used in
 conjunction with nextToken, it returns true as long as nextToken has not yet returned all the
tokens in the string; returns false otherwise.

public String nextToken()

Returns the next token from this tokenizer’s string.

Throws:

NoSuchElementException if there are no more tokens to return. NoSuchElementException
is one of the exceptions that need not be declared in a throws clause or caught in a catch block.

Vector<T>

This class was retrofitted in Java v1.2 to implement the List interface. Unlike the new collection
implementations. Vector is synchronized. If a thread-safe implementation is not needed then it
is recommended to use ArrayList instead of Vector.

Package: java.util
Ancestor classes:

 Object
 |
 +––AbstractCollection<T>
 |
 +––AbstractList<T>
 |
 +––Vector<T>

Summary of Classes and Interfaces 1269

CONSTRUCTORS

public Vector()

Creates an empty vector with an initial capacity of 10. When the vector needs to increase its
capacity, the capacity doubles.

public Vector(Collection<? extends T> c)

Creates a vector that contains all the elements of the collection c in the same order as they have
in c. If c is a vector, the capacity of the created vector will be c.size(), not c.capacity.

Throws:

NullPointerException if c is null.

public Vector(int initialCapacity)

Creates an empty vector with the specified initial capacity. When the vector needs to increase its
capacity, the capacity doubles.

public Vector(int initialCapacity, int capacityIncrement)

Constructs an empty vector with the specified initial capacity and capacity increment. When the
vector needs to grow, it will add room for capacityIncrement more items.

ARRAYLIKE METHODS

public T get(int index)

Returns the element at the specified index. This is analogous to returning a[index] for an array a.

Throws:

ArrayIndexOutOfBoundsException if the index is not greater than or equal to 0 and less
than the current size of the vector.

public T set(int index, T newElement)

Sets the element at the specified index to newElement. The element previously at that position
is returned. If you draw an analogy between the vector and an array a, this is analogous to setting
a[index] to the value newElement.

Throws:

ArrayIndexOutOfBoundsException if the index is not greater than or equal to 0 and
strictly less than the current size of the vector.

METHODS TO ADD ELEMENTS

public void add(int index, T newElement)

Inserts newElement as an element in the calling vector at the specified index. Each element in
the vector with an index greater or equal to index is shifted upward to have an index that is one
greater than the value it had previously.
Note that you can use this method to add an element after the last current element. The capacity
of the vector is increased if this is required.

Throws:

ArrayIndexOutOfBoundsException if the index is not greater than or equal to 0 and less
than or equal to the current size of the vector.

1270 APPENDIX 5 Summary of Classes and Interfaces

public boolean add(T newElement)

Adds newElement to the end of the calling vector and increases its size by one. The capacity of the
vector is increased if this is required. Returns true if successful. Normally used as a void method.

METHODS TO REMOVE ELEMENTS

public void clear()

Removes all elements from the calling vector and sets its size to zero.

public T remove(int index)

Deletes the element at the specified index and returns the element deleted. Each element in the
vector with an index greater than or equal to index is decreased to have an index that is one
less than the value it had previously.

Throws:

ArrayIndexOutOfBoundsException if the index is not greater than or equal to 0 and less
than the current size of the vector.

public boolean remove(Object theElement)

Removes the first occurrence of theElement from the calling vector. If theElement is
found in the vector, then each element in the vector with an index greater than or equal to
theElement’s index is decreased to have an index that is 1 less than the value it had previ-
ously. Returns true if theElement was found (and removed). Returns false if theElement
was not found in the calling vector.

SEARCH METHODS

public boolean contains(Object target)

Returns true if target is an element of the calling vector; otherwise returns false.

public int indexOf(Object target)

Returns the index of the first element that is equal to target. Uses the method equals of the
object target to test for equality. Returns −1 if target is not found.

public int indexOf(Object target, int startIndex)

Returns the index of the first element that is equal to target, but considers only indices that
are greater than or equal to startIndex. Uses the method equals of the object target to
test for equality. Returns − 1 if target is not found.

public boolean isEmpty()

Returns true if the calling vector is empty (that is, has size 0); otherwise returns false.

public int lastIndexOf(Object target)

Returns the index of the last element that is equal to target. Uses the method equals of the
object target to test for equality. Returns −1 if target is not found.

Summary of Classes and Interfaces 1271

public T firstElement()

Returns the first element of the calling vector.

Throws:

NoSuchElementException if the vector is empty.

public T lastElement()

Returns the last element of the calling vector.

Throws:

NoSuchElementException if the vector is empty.

ITERATORS

public Iterator <T> iterator()

Returns an iterator for the calling vector. (Iterators are discussed in Chapter 16.)

ListIterator <T> listIterator()

Returns a list iterator for the calling vector. (Iterators are discussed in Chapter 16.)

ListIterator <T> listIterator(int index)

Returns a list iterator for the calling vector starting at index. The first element to be returned by
the iterator is the one at index. (Iterators are discussed in Chapter 16.)

CONVERTING TO AN ARRAY

public Object[] toArray()

Returns an array containing all of the elements in the vector. The elements of the array are indexed
the same as in the vector.

public <E> E[] toArray(E[] a)

Note that the type parameter E is not the same as T. So, E can be any reference type; it need
not be the type T in Collection <T>. For example, E might be an ancestor type of T.
Returns an array containing all of the elements in the calling object. The elements in the returned
array are in the same order as in the calling object. The argument a is used primarily to specify the
type of the array returned. The exact details are described in the table for the Collection <T>.

Throws:

ArrayStoreException if the base type of a is not an ancestor class of all the elements in
the vector.
NullPointerException if a is null.

MEMORY MANAGEMENT

public int capacity()

Returns the current capacity of the calling vector.

1272 APPENDIX 5 Summary of Classes and Interfaces

public void ensureCapacity(int newCapacity)

Increases the capacity of the calling vector to ensure that it can hold at least newCapacity
 elements. Using ensureCapacity can sometimes increase efficiency, but its use is not needed
for any other reason.

public void setSize(int newSize)

Sets the size of the calling vector to newSize. If newSize is greater than the current size, the
new elements receive the value null. If newSize is less than the current size, all elements at
index newSize and greater are discarded.

Throws:

ArrayIndexOutOfBoundsException if newSize is negative.

public int size()

Returns the number of elements in the calling vector.

public void trimToSize()

Trims the capacity of the calling vector to be the vector’s current size. This is used to save storage.

MAKE A COPY

public Object clone()

Returns a clone of the calling vector. The clone is an identical copy of the calling vector.

OLDER METHODS

These are methods that are not part of the newer collection framework, but are retained for
 backward compatibility. You should use the previously described newer methods instead. But,
you may find these used in older code.

public void addElement(T newElement)

Same as add.

public void insertElementAt(T newElement, int index)

Same as add.

public T elementAt(int index)

Same as get.

public void removeAllElements()

Same as clear.

public boolean removeElement(Object theElement)

Same as remove.

Summary of Classes and Interfaces 1273

public void removeElementAt(int index)

Same as remove but does not return the element removed.

public void setElementAt(T newElement, int index)

Same as set with the arguments reversed but does not return the element replaced.

WindowListener Interface

Package: java.awt.event
The WindowEvent class is also in this package.
Extends the EventListener interface.

public void windowActivated(WindowEvent e)

Invoked when a window is activated. When you click in a window, it becomes the activated
w indow. Other actions can also activate a window.

public void windowClosed(WindowEvent e)

Invoked when a window has been closed.

public void windowClosing(WindowEvent e)

Invoked when a window is in the process of being closed. Clicking the close-window button
causes an invocation of this method.

public void windowDeactivated(WindowEvent e)

Invoked when a window is deactivated. When a window is activated, all other windows are
 deactivated. Other actions can also deactivate a window.

public void windowDeiconified(WindowEvent e)

Invoked when a window is deiconified. When you activate a minimized window, it is deiconified.

public void windowIconified(WindowEvent e)

Invoked when a window is iconified. When you click the minimize button in a JFrame, it is iconified.

public void windowOpened(WindowEvent e)

Invoked when a window has been opened.

This page intentionally left blank

1275

Index

Note: key terms are in bold.

Symbols
(sharp), 727
% (modulo, remainder) operator,

55, 58–59
%n (line break), 97
&& (and) operator, 151, 156
' (quote), 55
() (parentheses), 56–58, 133,

157–163
-- (decrement) operator, 62–64
$ (dollar sign), 45, 46
* (asterisk), 49
* (conditional) operator, 144–145
* (multiplication), 55
/* symbol, 81–82
*/ symbol, 81–82
... (ellipsis), 414, 727
@ tags, 363–364
[] (square brackets), 380, 382
{} (braces), 37, 134, 135, 219
|| (or) operator, 151–152, 156
~ (tilde), 727
+ (concatenation) operator, 66–67
+ (plus) operator, 55, 237
++ (increment) operator, 62–64
= (assignment operator), 39,

48–50, 146, 159
with arrays, 392–394
with class type variables, 323
= (equal sign), 39, 48
== (equality) operator, 146–148,

182, 236
with arrays, 392–394
with enumerated types, 427
with variables of class type,

327–328
/ (division) operator, 55, 58, 60
. (dot), 39
/ (forward slash), 642
; (semicolons), in for statements,

175–176
- (subtraction), 55
, (commas), in for statements,

173–174

A
abbreviations, 81
abs method, 305
AbstractButton class, 1026,

1028, 1207–1208
abstract classes, 516, 541–548

interfaces, implementing, 751,
752

AbstractCollection<T> class,
947

abstraction, 239. See also
information hiding

AbstractList<T> class, 946
AbstractMap<K,V> class,

957–958, 960
abstract methods, 542, 544–545
abstract names, 645
abstract path names, 647
AbstractSequential-List<T>

class, 951
AbstractSet<T> class, 946
Abstract Window Toolkit

(AWT), 982, 1017–1018
accept method, 1138
access

ArrayList class, 799–800
arrays, 379–382
default, 488, 489
friendly, 488, 489
inner/outer classes, 771
packages, 487–492
permissions, overriding,

472–473
private members, 247–248
random access to binary files,

668–674
to redefined base method,

493–495
static variables, 300

access modifiers, 487–492
accessor methods, 242–248,

347–349, 408
for array instance variable,

416–419
with exception classes, 578–580

action command, 1029–1030

action drawings, 1092, 1094–1098
action events, 992–998
ActionListener interface, 993,

994, 1030–1032
action listeners, 992–998, 1025
actionPerformed method,

993–994, 1013, 1019,
1036, 1127

activation records, 695–696
actual parameters, 227. See also

arguments
Adaptor (Adapter) pattern,

731–732
addActionListener

button., 1175
method, 992, 1028

addAll method, 941, 942, 943,
953

adding
to ArrayList class, 800–802
colors, 1016, 1099
menus, to JFrame, 1026–1027
nodes, 848–849, 879–883,

885–888
add method, 800–801, 804, 911,

941, 942, 943, 952, 969,
1002

addresses, 317
memory, 323, 389, 392–393

addToStart method, 848
ADT (abstract data type), 239
algorithms, 166–169

binary search, 704–715
selection sort, 420–423
sorting, 733–740

Allman style, 135
alphabetical order, 148–149
ancestor classes, 470
and (&&) operator, 151, 156
anonymous classes, 782–784
anonymous objects, 330–331
Apache Derby, 1145–1147,

1151–1152, 1167–1169
Apache Tomcat, 1160
API (application programming

interface), 239, 362

appending, to a file, 623–625
applets, 36–37, 1158–1159
applet viewer, 36–37
applications, 36. See also

programs
sample, 37–40

arcs, drawing, 1087–1091
areas (text), 1033–1046
scroll bars, 1039, 1072–1077
view port, 1072, 1073
arg array, 413
args identifier, 397–398
arguments, 39, 68, 69, 221,

223–225, 227
array, 390–392, 395–396
automatic type conversion,

254–256
constructor, 264
copy constructors, 345–351
correspondence, 223
indexed variables as, 390
length of arrays, 379, 385
no-argument constructors,

267–268, 270, 315, 336
null as, 341
wrapper classes, 315

arithmetic expressions, 55–56
evaluating, 153

arithmetic if, 144–145
arithmetic if operators. See

conditional operators
arithmetic operators, 55–56
ArrayIndexOutOf

BoundsException, 384,
604

ArrayList, 796–814, 1175–1176
ArrayList<T> class, 939,

950–956, 1208–1213
ArrayList class, 796–814

accessing, 799–800
adding to, 800–802
base type, 798
capacity, 798, 812
creating and naming objects,

799
example, 809–812
for-each loop, 806–809
methods, 803–806, 812–813
nonparameterized, 814
using, 798–803

arrays
accessing, 379–382
arguments, 390–392, 395–396
base type, 379, 390
in binary files, 666–668
creating, 379–382, 432
declaring, 380, 431, 432
enumerated types, 424–431
equality testing, 394, 396–397
for-each loops with, 408–412
indexed variables, 432
indices, 384, 432
initializing, 385
instance variables, 416–419,

434
introduction to, 378–387
length (size), 379, 385
length instance variable,

382–383
for loops with, 384, 434
for main method, 397–398
methods that return, 399–400,

435–441
multidimensional, 431–442
as objects, 388–389
out of bounds, 384
parameters, 390–392, 395,

398
partially filled, 401–410
privacy leaks with, 416–418
programming with, 400–431
ragged, 435
references and, 388–400
sorting, 420–423
vs. strings, 387
two-dimensional, 432–434
use of = and == with, 392–394

array type, 389
indexed variables, 392
names, 400
arrows, in inheritance diagrams,

728–729
ASCII

character set, 53, 75–76, 654,
905–906, 1203

files, 615. See also text files
assertion checks, 189–191
AssertionError class, 603–604
assertions, 189
assert statement, 189

assignment operator (=), 39,
48–50, 146, 159

with arrays, 392–394
with class type variables, 323

assignment statements, 48–52
Boolean expressions, 154
compatibility, 52–54
with primitive types, 49

associativity rules, 57, 157–163,
1201

@author, 363
-author option, 365
automatic boxing, 310–312,

822–823
automatic garbage collection, 849
automatic type conversion, 254–256
automatic unboxing, 311
AWT (Abstract Window

Toolkit), 982, 1017
classes, 1018

B
back, of list, 895
background color, 999
backslash (\), 74–75, 642
BadNumberException, 578–580
BankAccount class, 771–774
bars

menu, 1025, 1027
scroll, 1039, 1072–1077

base cases, 692, 698
base classes, 460, 464, 467, 470,

480
instance variables, 468, 476,

485–486
private methods, 486–487
super constructor, 474–476

base types, 379, 798, 806
Big- O notation, 901–903
binary files, 615–616, 649–674

array objects in, 666–668
binary I/O of objects, 662–666
checking for end of, 660–662
closing, 654, 658
opening, 652–653, 656
random access to, 668–674
reading from, 655–659
UTF and, 654–655
writing to, 650–654

binary operators, 159

1276 Index

 Index 1277

binary search, 704–715
binary search tree, 919–924
Binary Search Tree Storage Rule,

918–919
binary trees, 916–917
binding, 160, 517–518
bits, 318
block comments, 81–82
blocks, 219–220, 557, 559,

562–563, 569–570,
601–602, 622, 1142

catch, 557–559, 569–570
multiple catch, 583–587
nested, 601
try-catch, 65, 557–559, 601

body
of loops, 164
of method, 213

Boolean class, 313, 1213–1214
Boolean expressions, 132, 145–164
associatively rules, 157–163

building, 151–152
evaluating, 152–164
if-else statements, 132–139
lexicographic and alphabetical

order, 148–149
loops and, 164–166
precedence rules, 157–163
simple, 145–148

boolean types, 48, 53, 55, 132,
154–155, 231–234

methods that return, 231–234
returned by mutator methods,

248
boolean variables, 154–155
BorderLayout class, 1003–1006,

1010, 1012
border layout managers, 1003–

1006
bottom-up testing, 237
bounding boxes, 1081
bounds

multiple, 827
type parameter, 825–828,

866–867
boxing, 309, 310–312, 822–823
braces {}, 37, 134, 135, 219
branching mechanisms, 132–145

compound statements,
134–135

conditional operator, 144–145
if-else statements, 132–136
if statements, 133, 134, 136
multiway if-else statements,

136–139
nested statements, 136
switch statement, 139–144

break statement, 140, 143,
180–181

brighter method, 1101
BufferedReader class, 625,

1138–1139
methods, 637–638
reading numbers with, 639
reading text file using, 635–639
testing for end of file with,

639–641
buffers, 621
bug, 44
buttons, 991–992

AbstractButton class, 1026,
1028

addActionListener, 1175
close-window, 990, 992
with icons, 1068
setActionCommand method,

1029–1030
Byte class, 1214–1215
byte-code, 35, 41–42
bytes, 317, 318
byte type, 48, 53, 56

C
calculator, Swing, 1041–1046
call-by-reference parameter

mechanism, 324
call-by-value parameter

mechanism, 224, 225
calling, 39

methods, 39, 68
objects, 68
recursive methods, 688–691

canRead method, 648
canWrite method, 648
capacity, 798, 812
capacity method, 954
case labels, 140
case reserved word, 140
case-sensitivity, 46
Catch_Block_Parameter, 570

catch blocks, 557–559, 569–570
multiple, 583–587
nested, 601
parameters, 558–559

Catch or Declare Rule, 591, 592,
594

exception to, 593–594
ceil method, 306, 307
censor method, 415–416
c format specifier, 95, 96
chaining, hash tables with,

904–916
Character class, 313–316, 334
character sets

ASCII, 75–76
Unicode, 75–77

characters per line, 1039
charAt method, 71
char type, 48, 53, 54
checked exceptions, 594
child classes, 470. See also derived

classes
class diagrams, 727–728
classes, 35–36, 42, 67–69

abstract, 516, 541–548, 751
AbstractButton, 1026, 1028,

1207–1208
AbstractCollection<T>, 947
AbstractList<T>, 946
AbstractMap<K,V>, 957–958,

960
AbstractSequential List<T>,

951
AbstractSet<T>, 946
accessor methods, 242–248
ancestor, 470
anonymous, 782–784
ArrayList, 796–814
ArrayList<T>, 939, 950–956,

1208–1213
AssertionError, 603–604
BankAccount, 771–774
base, 460, 464, 467, 470, 480
Boolean, 313, 1213–1214
BorderLayout, 1003–1006,

1010, 1012
BufferedReader, 625
Byte, 1214–1215
Character, 313, 334
child, 470

1278 Index

classes (continued)
collection, 408–411, 806,

936–957
Color, 1100–1101, 1219–1220
commenting, 362–364
compiling, 42–43, 360–361
concrete, 545, 946–955,

960–963
constructors, 258–279,

474–477
container, 1002, 1017
Container, 1016–1017
Counter, 1134
creating, 1002
DataOutputStream, 650
Date, 342–343
DateClient, 1141–1142
DateServer, 1140–1141
definitions, 206–238, 270
derived, 460–473, 477–480,

594–595
descendent, 470
Dimension, 1029
DivisionByZero Exception,

572–576, 591
Double, 1221
encapsulation, 239–250
EndingListener, 993
Error, 593
errors, 594
Exception, 564–565, 570–571,

824–825
exceptions, 569–583
File, 631, 645–649, 1221–

1222
FileInputStream, 121
FileNotFoundException, 121
FileOutputStream, 617
FileReader, 637
final modifier, 519
Float, 1223
FlowLayout, 1006–1007, 1010
Font, 1108, 1109, 1110, 1223
generic, 814–832. See also

generics
Graphics, 1081–1098,

1224–1225
GridLayout, 1007–1010
HashMap<K,V>, 957–958,

960–963, 1226

HashSet<T>, 947–950, 1227
HashTable, 906–907
helping, 770–775
hierarchy, 461
ImageIcon, 1066, 1069
immutable, 351–354
implementation, 362
importing, 102–104
information hiding, 239–250
inner, 748

anonymous, 782–784
.class file, 775
inheritance and, 781
listeners ad, 1030–1032
nested, 781
node, 852–855
public, 777–781
static, 776–777
uses of, 770–776
window listener, 1060

Insets, 1071
instance of, 206, 207
instance variables, 209–212
Integer, 309, 310, 1227
interactions, 728
interface, 362
IOException, 619
iterators, 874–879. See also

iterators
JButton, 991–992, 1069–1070
JColorChooser, 1102–1105
JFrame, 986, 988–990,

995–998, 1016–1017,
1228–1230

JLabel, 998, 1005, 1069–1070
JMenu, 1021, 1025
JMenuBar, 1021, 1025
JMenuItem, 1021, 1025,

1069–1070, 1230
JPanel, 1011–1016, 1017, 1092
JScrollPanel, 1072–1077,

1231
JTextArea, 1037–1039
JTextComponent, 1038, 1232
JTextField, 1034–1037,

1038–1039
LinkedHashMap<K,V>, 960
LinkedList, 840
LinkedList<T>, 951, 955
Locale, 102, 103

Long, 1240
Math, 305–309, 356, 1240–

1241
MergeSort, 737
methods. See methods
mutable, 351–354
mutator methods, 242–248
name clashes, 361
naming conventions, 46, 68
NumberFormat, 99–102, 103
Object, 496–497
ObjectInputStream, 649–650,

655–659, 1244–1246
ObjectOutputStream,

649–654, 1246–1247
objects, 68, 206–209
outer, 770, 771, 779–780
overloading, 250–258
packages, 354–366
Packer, 1127, 1129
parameterized, 814
parameters. See parameters
parent, 470
Person, 336–341, 344,

345–347
vs. primitive types, 68
PrintWriter, 615–623, 1248
Queue, 896–898
RaceConditionTest, 1134–

1135
Random, 192–193, 1249
RandomAccessFile, 668–674,

1249–1252
RuntimeException, 593
Scanner, 108–120, 625–630,

1252–1255
SelectionSort, 422–423
serializable, 663–666
ServerSocket, 1138–1139
Set<T>, 950
Short, 1259
Stack, 893–895
String, 65–77, 356, 1259–

1263
StringBuffer, 75,

1263–1267
StringTokenizer, 274–279,

331–332, 481–484,
1267–1268

subclasses, 464, 467, 480

 Index 1279

superclasses, 464, 467, 480
System, 181
Thread, 1127–1130
Throwable, 593
TreeSet<T>, 955
UML, 727–730
Vector, 813–814
Vector<T>, 950–956,

1268–1273
WindowAdapter, 1064–1065
WindowEvent, 1058
wrapper, 309–316, 356

classes, loaders, 42
.class files, 43
for inner class, 775
class instance variables, 665
class invariant, 336–341
ClassNotFoundException, 1149
class path

not including current directory
in, 360

specifying, when compiling,
360–361

-classpath option, 365
CLASSPATH variable, 356–361
class types

arrays with, 390
mixing, in same file, 666
parameters of, 225, 229,

323–329
variables of, 316–317,

318–323, 327–328
clause (throws), 589–592,

594–595
clear method, 804, 941, 953
clients, 1138
client/server model, 1138–1139,

1158
Cloneable interface, 765–769,

870, 873
clone method, 347, 350, 497,

536–541, 765–768, 805,
954

copy constructors, 538–541,
862–873

HashMap<K,V> class, 961
shallow copies, 812–813

close method, 621–622, 652,
669

close-window button, 990, 992

closing
binary files, 654, 658
text files, 621–622

code, 35, 42
incremental development,

188–189
legacy, 98
review, 188–189

collecting, 1176–1178
Collection<T> interface,

936–941, 947, 1216–1219
collections, 408–411, 806,

936–957
concrete classes, 946–955
exceptions, 945–946
for-each loops, 944
framework, 938–946
interfaces, 944
iterators and, 937
nonparameterized, 956
optional operations, 944–945
overview of, 936–937
wildcards, 938

collisions, 904
Color class, 1100–1101,

1219–1220
color constructors, 1100
colors

adding, 1016, 1099
constants, 1000
defining, 1100–1102
JColorChooser dialog window,

1102–1105
RGB color system, 1100
setting, 999–1002
specifying, 1099
Swing, 1098–1105

commands
action, 1029–1030
run, 42
SQL, 1146–1157

commas, in for statements,
173–174

comments, 79, 81–82
block, 81–82
for javadoc, 362–364
line, 81, 82
when to add, 82

Common Gateway Interface
(CGI), 1161–1162

Comparable interface, 739,
755–761, 826, 1220

compare method, 739
compareToIgnoreCase method,

73, 149
compareTo method, 73, 148, 427,

739, 755, 826
comparing, strings, 150, 193
comparison operators, 146
compiler, 35, 40

Just-In-Time (JIT), 41
compiler errors, 146, 240, 957
compiling, 40–42

classes, 42–43, 360–361
-Xlint option, 817

complete evaluation, 156
component model, 1143–1144
components, 1017

with changing visibility,
1077–1080

composition, 493
compound statements, 134–135,

219–220
concatenation (+) operator,

66–67
concatenation, of strings, 66–67
concrete classes, 545

collections, 946–955
maps, 960–963

conditional (*) operator,
144–145

connections
databases, 1145–1157
networks. See networking

connection strings, 1149
console I/O, 90

file input, 121–124
screen output, 90–108
using Scanner class, 108–120

constants, 53–55
color, 1000
defined, in interfaces,

761–765
inconsistent, 762–763
location, 102
Math class, 307
naming, 78–80
null, 329–330, 341
static import of, 335
String, 65–66

1280 Index

constructors, 258–279
arguments, 264
color, 1100
copy, 345–351, 862–873
default, 268
definitions, 258–266
exception classes, 572–573
nested, 642–643
no-argument, 267–268, 270,

315, 336
StringTokenizer class,

274–279
super, 474–476, 495, 577
this, 266–267, 476–477
use of, 265–266
using, 273–274
variable initialization, 269
wrapper classes, 315

Container class, 1016–1017
container classes, 1002, 1017
Container-Iterator pattern,

731
containers, 731
containsAll method, 939
containsKey method, 959
contains method, 804, 911,

915–916, 939, 953
containsValue method, 959
content pane, 999
continue statement,

180–181
controlling expressions, 140
conversion characters, 95
coordinate system, for graphics

objects, 1081
copy constructors, 345–351,

536, 538–541
clone method, 862–873

copyOf method, 862, 865
Counter class, 1134
countTokens method, 277
covariant return types,

471–472
createNewFile method, 648
CREATE TABLE statements,

1149, 1150
critical region, 1135
currency format, 99–102
current directory, 360, 361
cursor, 970

D
database management system

(DBMS), 1145
databases

Apache Derby, 1145–1146,
1151–1152, 1167–1169

connections, 1145–1157
Java DB, 1145–1146
JDBC, 1146
relational, 1145, 1148
tables, 1145, 1148
updating, 1169–1163

DataClass, 767–768
DataOutputStream class, 650,

1138
data structures. See linked data

structures
data types, 317
Date class, 342–343
date classes, 232–234, 241,

243–246
DateClient class, 1141–1142
DateServer class, 1140–1141
debugging, 44, 182–191

assertion checks, 189–191
collections, 945–946
examples, 184–188
general techniques, 183–184
loop bugs, 182
preventive coding, 188–189
tracing variables, 182–183

DecimalFormat class, 104–108
decimal points, 54
decimals, formatting, 104–108
declarations, 1163
declaring, 47, 590–592

arrays, 380, 431, 432
variables, 47, 220

decrement operator (--), 62–64
deep copy, 353, 416, 536

clone method, 867–872
default access, 488, 489
default constructors, 268
default package, 359–360, 490
default section, 140
defined constants, in interfaces,

761–765
defining

classes, 206–238, 270
equals method, 497–503

exception classes, 572–578
iterators, 874–879, 972
JFrame class, 995–998
methods, 210, 212–218

deleteHeadNode method,
848–849

delete method, 648
deletion, of nodes, 879–883,

885–888
delimiters

choosing, 276
input, 119–120

@deprecated, 363, 364
deprecated methods, 364
derived classes, 460–470, 480

constructors, 474–476
generic, 830–832
instance variables, 476,

485–486
objects, 477–479
overriding methods, 471–473
package access, 487–492
protected access, 487–492
redefined methods, 493–494
throws clause in, 594–595

derived interfaces, 751–752
descendent classes, 470
d format specifier, 95
diagrams

class, UML, 727–728
inheritance, 728–730

Dimension class, 1029
directives, 1163, 1167
directories, 43
current, 360, 361
package, 356–359
dispose method, 989, 1063
division

floating-point numbers, 59
integer, 58–60
whole numbers, 60

DivisionByZeroException class,
572–576, 591

doNothing method, 1121
-d option, 365
dot (.), 39
Double class, 1221
Double.parseDouble method,

331–333
double quotes, 55

 Index 1281

double type, 48, 54, 55, 56
doubly linked lists, 884–893
do-while statements, 164–166,

167
downcasting, 529–535
draw3DRect method, 1086
drawArc method, 1086, 1087–

1091
drawing

action, 1092, 1094–1098
arcs, 1087–1091
in JPanel, 1092
objects, 1081–1098
ovals, 1087
paint method, 1082–1085

drawLine method, 1084–1085
drawOval method, 1084, 1086,

1087
drawRect method, 1085
drawRoundRect method, 1086
drawString method, 1105–1107,

1109
driver programs, 237
dynamic binding. See also late

binding
dynamic binding, 517–518

E
early binding, 517
echo input, 116
E constant, 307
e format specifier, 95
elements, of array, 379
ellipsis (…), 414, 727
empty lists, 846, 847
empty statements, 175–176
empty strings, 116
empty trees, 918
em spaces, 1039
encapsulation, 239–250, 362,

484–492
endButton, 992–993
EndingListener class, 993
end-of-line character, 112,

115–116
enhanced for loops, 411. See also

for-each loops
EnhancedStringTokenizer class,

481–484
e notation, 54, 106

ensureCapacity method, 805,
954

Enterprise JavaBeans, 1144
entrySet method, 959
enumerated types, 424–431

methods, 426–429
in switch statements, 429–431

environment variable, 356–357
EOFException, 660–662
equalArrays method, 394
equality (==) operator, 146–148,

182, 236
with arrays, 392–394
with class type variables,

327–328
with enumerated types, 427

equality testing, 182, 327–328
arrays, 394, 396–397

equal sign (=), 39, 48
equalsIgnoreCase method, 70,

146, 147
equals method, 70, 146–148,

233–237, 247, 328, 341,
426–427, 496, 805, 959

Collection<T>interface, 940
Color class, 1101
defining, 497–503
linked lists, 860–861
overriding, 948

error classes, 593, 594
error messages, redirecting,

644–645
errors

compiler, 146, 240, 957
debugging, 182–191
logic, 44
loop, 182
null pointer exception, 330,

390
off-by-one, 182
out of bounds, 384
round-off, 59
run-time, 44
stack overflow, 696
syntax, 44

escape character, 74–75, 642
escape sequences, 74–75, 112
evaluating

arithmetic expressions, 153
Boolean expressions, 152–164

evaluation
complete, 156
short-circuit, 156

event-driven programming, 599,
982–984

event handlers, 983
event handling model, 1144
events, 983–984

action, 992–998
firing, 599, 983, 984, 992
window, 1058

Exception class, 564–565,
570–571, 824–825

exception classes, 569–583
accessor methods, 578–580
constructors, 572–573
defining, 572–578
from standard packages,

570–572
exception handlers, 558
exception handling

basics of, 556–587
as event-driven programming,

599
example, 564–569
exception classes, 569–583
loops, 560–561
in methods, 588–600
programming techniques for,

601–604
with Scanner class, 559–560
try-catch mechanism,

557–559
exception objects, 577
exceptions

ArrayIndexOutOf

BoundsException, 604
BadNumberException, 578–580
checked, 594
ClassNotFoundException,

1149
collections, 945–946
copy constructors and, 863
declaring, 590–592
EOFException, 660–662
as events, 983
FileNotFoundException, 617,

619, 626, 638
IllegalAccessException,

1149

1282 Index

IllegalArgumentException,
429, 989

IllegalStateException, 965,
969

InstantiationException, 1149
InterruptedException, 1124
IOException, 619, 638
in methods, 588–600
multiple, 583–587
NegativeNumber Exception,

586
NoSuchElementException,

946, 968
NullPointerException, 863
predefined, 570–572
rethrowing, 603
SecurityException, 989
SQLException, 1149
throwing, 556, 557, 562–565
uncaught, 594, 1041
unchecked, 594, 634
UnsupportedOperation

Exception class, 945, 965
when to use, 595–599

execute method, 1149
executeQuery method, 1149,

1152
exists method, 647
exit statement, 181
explicit memory management,

880
exponents, 54
expressions

arithmetic, 55–58
Boolean, 132, 145–164
JSP, 1163
precedence rules with, 56–58

extends phrase, 464, 938

F
false value, 48, 53, 55, 132,

152–155
f format specifier, 95
fields, 207
field width, 94
File class, 631, 645–649,

1221–1222
methods, 647–649
programming with, 645–647

FileInputStream class, 121
file I/O

of array object, 666–668
binary, of objects, 662–666
binary files, 649–674
File class, 645–649
introduction to, 121–124,

614–616
nested constructors, 642–643
random access to binary files,

668–674
text files, 121–124, 615–645

FileNotFoundException class,
121, 617, 619, 626, 638

FileOutputStream class, 617
file pointer, 668
FileReader class, 637
files

ASCII, 615
binary, 615–616, 649–674

array objects in, 666–668
binary I/O of objects,

662–666
checking for end of,

660–662
closing, 654, 658
opening, 652–653, 656
random access to, 668–674
reading from, 655–659
UTF and, 654–655
writing to, 650–654

locations, 211
names, 211, 617, 619, 641–642
opening, 616–617
output, 622–623
text, 615–616

appending, 623–625
closing, 621–622
opening, 618
path names, 641–642
reading, 625–628, 635–639
testing for end of, 628–630,

639–641
writing to, 615–623

fill3DRect method, 1086
fillArc method, 1087
fillOval method, 1086
fillRect method, 1085
fillRoundRect method, 1086
finally block, 601–602

final modifier, 300, 471, 519
firing the event, 599, 983, 984,

992
Float class, 1223
floating-point notation, 54
floating-point numbers, 47, 48,

54, 55, 56
comparing, 182
division of, 59
round-off errors in, 59
float type, 48, 55
floor method, 306, 307
FlowLayout manager, 1006–1007,

1010
flow of control

Boolean expressions, 145–164
branching mechanism, 132–145
debugging, 182–191
loops, 164–181
random number generation,

191–194
flush method, 621
folders, 43
follows method, 750, 754
Font class, 1108, 1109, 1110,

1223
fonts

point size, 1109
serifs, 1109
Swing, 1105–1110

for-each loops, 408–412, 428,
806–809, 944

as iterators, 967–968
formal parameters. See

parameters
format method, 100–101,

104–106
format specifiers, 94–95
format strings, 96
formatting

decimals, 104–108
money, 97, 99–102, 103
output, 93–99

forms, HTML, 1161–1162, 1166
for statements, 170–176

with arrays, 384, 434
comma in, 173–174
declaring variables in, 220
extra semicolon in, 175–176

friendly access, 488, 489

exceptions (continued)

 Index 1283

front, of list, 895
full path names, 641–642
fully qualified class names, 361
functional programming, Java8,

1172–1178
functions, 899

hash, 904

G
garbage collection, 880

automatic, 849
generics, 796, 814

basics of, 811–121
bounds for type parameters,

825–828
class definition, 823
Exception class, 824–825
inheritance with, 830–832
instantiation, 815, 822
interfaces, 828
linked lists, 855–860,

867–872
methods, 828–829
ordered pairs, 817–820,

822–823
getActionCommand method, 1028,

1030
getBlue method, 1101
getClass method, 499–502
getContentPane method, 999
getFilePointer method, 669
getGraphics method, 1125–1126
getInsideArray method, 418
getMessage method, 563,

576–578
get method, 804, 952, 959
getName method, 648
getPath method, 648
getRed method, 1101
getText method, 1028, 1034,

1036–1037, 1038
g format specifier, 95
GlassFish Enterprise Server, 1160
global variables, 219
Gosling, James, 34
graphical user interfaces (GUIs),

982
adding and arranging

components in, 1002–1019
calculator, 1041–1046

components with changing
visibility, 1077–1080

designing, 1019
ending, 994
with labels and color, 1000–1002
with menu, 1021–1025
nonresponsive, 1121–1124,

1126
panels, 1011–1016
programs, 594, 732
updating, 1098

Graphics class, 1081–1098,
1224–1225

arcs, drawing, 1087–1091
coordinate system, 1081
methods, 1082–1087
ovals, drawing, 1087
repaint method, 1094–1098
rounded rectangles, 1091–1092

Graphics object, 1084
greater than (>), 146
greater than or equal to, 146
GridLayout managers, 1007–1010

H
handlers

event, 983
exception, 558

handling
events, 1144
exceptions. See exception

handling
“has a” relationship, 493, 1002
hashCode method, 940, 948, 959
hash functions, 904

for strings, 905–908
HashMap<K,V> class, 957–958,

960–963, 1226
hash maps. See hash tables
HashSet<T>class, 947–950, 1227
HashSet method, 947
HashTable class, 906–907
hash tables

constructing, 904–905
efficiency of, 908–909
HashMap<K,V> class, 960–961
linked data structures, 904–916

hasMoreTokens method, 276, 277
hasNextBoolean method, 633
hasNextByte method, 632

hasNextDouble method, 633
hasNextFloat method, 633
hasNextInt method, 628, 630,

631
hasNextLine method, 628–630,

634
hasNextLong method, 632
hasNext method, 633, 879, 965,

969
hasNextShort method, 632
hasPrevious method, 969
heading levels, 1164–1165
headings, 210
head nodes, 840
head variable, 911
helping classes, 770–775
higher precedence, 57, 157
high-level languages, 40
HotJava, 35
HTML, 362, 1158
HTML forms, 1161–1162, 1166

I
icons

button, 1068
changing visibility, 1077–1080
Swing, 1066–1072
using, 1067–1068

identifiers, 45–46
naming conventions, 80–81

if-else statements, 132–133
compound, 134–135
multiple alternatives, 135
multiway, 136–139
nested, 136
placement of braces in, 135

if statements, 133, 134, 136
IllegalAccessException, 1149
IllegalArgument Exception,

429, 989
IllegalStateException, 965,

969
ImageIcon class, 1066, 1069
immutable classes, 351–354
immutable objects, 75, 352
implementation, 362
importing

classes, 102–104
packages, 102–104

import method, 104, 108

1284 Index

import statements, 90, 103–104,
798

packages and, 355–356
static, 333–335

inconsistent interfaces, 762–763
incremental development,

188–189
increment method, 1133, 1136
increment operator (++), 62–64
indentation, 82–83
nested statements, 136
indexed variables, 379, 380, 389,

390, 432
as arguments, 390–391

indexes, 73–74
array, 384, 432

indexOf method, 72, 805, 943,
953

inequalities, strings of, 152
i.next method, 970–971
infinite loops, 176–177, 182,

660
infinite recursion, 693
information hiding, 239–250,

362
inheritance, 1002

derived classes, 461–470
encapsulation, 484–492
with generic classes, 830–832
inner classes and, 781
instance variables, 485–486
overriding method definition,

471
overview of, 460–484
private methods, 486–487
programming with, 493–503
static variables, 493
in Swing, 984

inheritance diagrams, 728–730
initial capacity, 960
initialization

arrays, 385
automatic, 385
default, 300
instance variables, 258, 264,

336
variables, 50–51, 269–274,

300
inner classes, 748

access privileges, 771

anonymous, 782–784
.class file, 775
helping classes, 770–775
inheritance and, 781
listeners as, 1030–1032
nested, 781
node, 852–855
public, 777–781
reasons to use, 784
static, 776–777
uses of, 770–776
window listener, 1060

inorder processing, 918
input. See also file I/O

delimiters, 119–120
echo, 116
file, 121–124
numbers, 1040
prompt, 116
text file, 121–124
using Scanner class, 108–120
using StringTokenizer class,

274–279, 331–332
InputMismatchException,

559–561
input streams, 614–615
INSERT statements, 1150
Insets class, 1071
instanceof operator, 499–501,

533
instances, 206, 207
instance variables, 50, 207,

209–212, 219, 269–274
accessor methods for, 416–419
base class, 468, 476, 485–486
class, 665
initializing, 258, 264, 336
interfaces and, 762
length, 382–383, 389, 434
privacy leaks with, 416–418
private, 240, 416–418,

485–486
protected and package access,

487–492
resetting values, 265

instantiation, generic classes, 815,
822

InstantiationException, 1149
int, 39
Integer class, 309, 310, 1227

integers, 53
binary search tree for, 921–922
division of, 58–60

Integrated Development
Environment (IDE), 42,
182

interfaces, 362
abstract classes, 751, 752
ActionListener, 993, 994,

1030–1032
Cloneable, 765–769
Collection<T>, 936–937, 947,

1216–1219
Comparable, 755–761, 826,

1220
defined constants in, 761–765
derived, 751–752
extending, 751–752
generic, 828
implementing, 749–751
inconsistent, 762–763
introduction to, 748–751
Iterator, 879
Iterator<T>, 964–967, 1228
List<T>, 941–944, 950,

1233–1238
ListIterator<T>, 968–970,

1238–1240
Map<K,V>, 1242–1244
NumberCarrier, 783–784
Ordered, 749, 754
Runnable, 1130–1132
semantics, 753–754
Serializable, 765, 1256
Set<T>, 941–942, 944, 947,

950, 1256–1258
SortedSet<T>, 955
WindowListener, 1273

intermediate language, 35
interpreters, 41
InterruptedException, 1124
intersection method, 911
introspection, 1144
int type, 48, 53, 54, 55–56
intValue method, 310
invocation, 39
constructors, 264
methods, 68, 69, 70, 210–211,

213, 266, 295–296
IOException class, 619, 638

 Index 1285

“is a” relationship, 478, 493,
1002

isDigit method, 314
isDirectory method, 648
isEditable method, 1038
isEmpty method, 939, 953, 959
isFile method, 648
isLetter method, 314
isLetterOrDigit method, 314
isLowerCase method, 314
isUpperCase method, 314
isWhitespace method, 314
iteration, 164

vs. recursion, 696–697
iterative version, 696–697,

710–711
Iterator<T>interface, 964–967,

1228
Iterator interface, 879
iterator method, 940, 954
iterators, 410, 731, 873–883, 936

collections and, 937
defining, 874–879, 972
doubly linked list with,

889–892
for-each loops as, 967–968
Iterator<T>interface,

964–967
list, 968–970
nodes, adding and deleting,

879–883
overview of, 964
references, returning, 970–972

J
Java

introduction to, 34–45
naming of, 36
origins of, 34–35

Java applets, 1158–1159
Java application programs

compiling, 42–43
running, 43
sample, 37–40
styles, 78–83

java.awt class, 1084
JavaBeans, 1143–1145
Java byte-code, 35
javac command, 42–43
java command, 43

Java Database Connectivity
(JDBC), 1146, 1147

Java DB, 1145–1146
javadoc program, 81–82, 354

commenting classes for,
362–364

introduction to, 362
options, 365
running, 364–366

Java8, 1172–1178
.java files, 42
JavaFX, 1180–1193
java.io package, 616
java.lang package, 104, 334, 356
Java Server Pages (JSP),

1158–1164
applets, 1158–1159
declarations, 1163
directives, 1163, 1167
expressions, 1163
HTML forms, 1161–1162,

1166
Oracle GlassFish Enterpise

Server, 1160
scriptlets, 1163–1164
servlets, 1158–1159

Java servlets, 1158–1159
Java Software Development Kit

(SDK), 1145–1146
java.text, 102–103
java.util package, 102, 103,

108–109, 277, 941
Java Virtual Machine (JVM),

41–42
JButton class, 991–992,

1069–1070
JColorChooser class, 1102–1105
JDBC (Java Database

Connectivity), 1146, 1147
JDK, 42
JFrame class, 986, 1016–1017,

1228–1230
color, adding, 1016
color, setting, 999–1002
content pane, 999
defining, 995–998
dispose method, 1063
menus, adding, 1026–1027
methods, 988–990
title, setting, 1000

JLabel class, 998, 1005,
1069–1070

JMenuBar class, 1021, 1025
JMenu class, 1021, 1025
JMenuItem class, 1021, 1025,

1069–1070, 1230
join method, 733, 1134
JPanel class, 1011–1016, 1017,

1092
JScrollPane class, 1072–1077,

1231
JTextArea class, 1037–1039
JTextComponent class, 1038, 1232
JTextField class, 1034–1037,

1038–1039
Just-In-Time (JIT), 41
JVM (Java Virtual Machine),

41–42

K
Kernighan & Ritchie (K&R) style,

135
keyboard input. See also file I/O;

input
using Scanner class, 108–120
using StringTokenizer class,

274–279, 331–332
keys, hash table, 904
keywords, 46, 1199

L
labels

with changing visibility,
1077–1080

icon, 1066
statement, 180–181
Swing, 998, 1000–1002, 1005
text field, 1040

lamda expressions, 1172–1173
largest and smallest values, 312
lastIndexOf method, 72, 805,

944, 953
last-in/first-out (LIFO), 695,

895
late binding, 517–518, 531

example, 520–527
final modifier and, 519
static methods and, 528–529,

530
with toString, 527–528

1286 Index

layout managers, 1002–1011
border, 1003–1006, 1012
flow, 1006–1007
grid, 1007–1010

lazy evaluation, 156
leaf nodes, 918
leaks. See privacy leaks
left justified output, 96
legacy code, 98
length, of array, 379, 385
length instance variable,

382–383, 389, 434
length method, 70, 669
less than (<), 146
less than or equal to, 146
lexicographic ordering, 148–149
LIFO. See last-in/first-out (LIFO)
line, characters per, 1039
linear running time, 903
line breaks, 96–97
line comments, 81, 82
line terminator ‘BACKSLASHn’,

112, 115–116
linked data structures

Big- O notation, 901–903
copy constructors and clone

method, 862–873
doubly linked lists, 884–893
hash tables, 904–916
introduction to, 840–841
iterators, 873–883
linked lists, 840, 842–861,

903–904
queues, 895–898
running times, 898–903
sets, 909–916
stacks, 893–895
trees, 916–924

LinkedHashMap<K,V> class, 960
LinkedList<T>class, 951, 955
LinkedList class, 840
linked lists, 784, 840–861

copy constructor and clone
method for, 863–865

with deep copy clone method,
867–872

doubly, 884–893
efficiency of, 903–904
empty, 846, 847
end of, 847

equals method, 860–861
example, 842, 850
generic, 855–860
inner classes, 852–855
with iterator, 874–879
nodes, adding and deleting,

879–883, 885–888
nodes, adding and removing,

848–849
privacy leaks, 851
sets using, 910–911, 915–916
traversing, 846–848
variations on, 884–904
working with, 846–851

-link option, 365
links, 840, 841
List<T> interface, 941–944, 950,

1233–1238
listeners, 983–984

action, 992–998, 1025
as inner classes, 1030–1032
menu item, 1026–1027
registering, 992
window, 1058–1065

ListIterator<T> interface,
968–970, 1238–1240

listIterator method, 944,
954

lists
empty, 846, 847
iterators, 968–970
linked. See linked lists

literals, 53–55. See also constants
loaders, classes, 42
load factor, 960
Locale class, 102, 103
localhost method, 1139
local variables, 50, 218–219

initializing, 269
parameters as, 225–227

location constants, 102
logic errors, 44
Long class, 1240
long type, 48
loops, 164–181

with arrays, 384
body of, 164
break statement, 180–181
continue statement, 180–181
debugging, 182

do-while statement, 164–166,
167

for exception handling,
560–561

exit statement, 181
for-each, 408–412, 428, 944,

967–968
infinite, 176–177, 182, 660
iteration, 164
nested, 177
repeating, 175
sentinel values, 169
for statement, 170–176, 220,

384
while statement, 164–166,

167, 176
low-level languages, 40

M
machine language, 40
main memory, 317
main method, 36, 37, 43,

218–219, 225, 296–299
arguments for, 397–398
GUI programs, 1009

mantissa, 106
Map<K,V> interface, 957–960,

1242–1244
maps, 957–963

concrete classes, 960–963
masks, 230
Math class, 305–309, 356,

1240–1241
Math.random method, 193
max method, 305, 412–413
members, 207
memory

address, 323, 389, 392–393
explicit management, 880
location, 317
main, 317
secondary, 317
variables and, 317–320

menu bars, 1025, 1027
menu items, 1021, 1025–1027
menus

adding, to JFrame, 1026–1027
menu bars, 1025, 1027
menu items, 1021, 1025–1027
nested, 1026

 Index 1287

setActionCommand method,
1029–1030

Swing, 1021–1033
merge sort, 734, 735–736, 737
MergeSort class, 737
messages, sending, 39, 68
method calls, 68
recursive, 688–691
method headings, inconsistent,

763
methods, 35–36, 39, 69,

206–207, 529
abs, 305
abstract, 542, 544–545
accept, 1138
accessor, 242–248, 347–349,

408
actionPerformed, 993–994,

1013, 1019, 1036, 1127
add, 800–801, 804, 911, 941,

942, 943, 952, 969, 1002
addActionListener, 1028
addAll, 941, 942, 943, 953
addToStart, 848
arguments, 341
ArrayList class, 803–806
body, 210, 213
brighter, 1101
canRead, 648
canWrite, 648
capacity, 954
ceil, 306, 307
censor, 415–416
charAt, 71
clear, 804, 941, 953
clone, 350, 497, 536–541,

805, 812–813, 961
close, 621–622, 652, 669
Collection<T> interface,

939–941
compare, 739
compareTo, 73, 148, 427, 739,

755, 826
compareToIgnoreCase, 73, 149
constructors, 258–279
contains, 804, 911, 915–916,

939, 953
containsAll, 939
containsKey, 959
containsValue, 959

copyOf, 862, 865
countTokens, 277
createNewFile, 648
defining, 210, 212–218
delete, 648
deleteHeadNode, 848–849
deprecated, 364
dispose, 989, 1063
doNothing, 1121
Double.parseDouble, 331–333
d raw3DRect, 1086
drawArc, 1086, 1087–1091
drawLine, 1084–1085
drawOval, 1084, 1086, 1087
drawRect, 1085
drawRoundRect, 1086
drawString, 1105–1107, 1109
ensureCapacity, 805, 954
entrySet, 959
with enumerated types,

426–429
equalArrays, 394
equals, 70, 146–148,

233–237, 247, 328, 341,
426, 427, 496–503, 805,
940, 948, 959, 1101

equalsIgnoreCase, 70, 146,
147

execute, 1149
executeQuery, 1149, 1152
exists, 647
File class, 647–649
fill3DRect, 1086
fillArc, 1087
fillOval, 1086
fillRect, 1085
fillRoundRect, 1086
floor, 306, 307
flush, 621
follows, 754
format, 100–101, 104–106
generic, 828–829
get, 804, 952, 959
getActionCommand, 1028, 1030
getBlue, 1101
getClass, 499–502
getContentPane, 999
getFilePointer, 669
getGraphics, 1125–1126
getInsideArray, 418

getMessage, 563, 576–577,
578

getName, 648
getPath, 648
getRed, 1101
getText, 1028, 1034,

1036–1037, 1038
hashCode, 940, 948, 959
HashSet, 947
hasMoreTokens, 276, 277
hasNext, 633, 879, 965, 969
hasNextBoolean, 633
hasNextByte, 632
hasNextDouble, 633
hasNextFloat, 633
hasNextInt, 631
hasNextLine, 634
hasNextLong, 632
hasNextShort, 632
hasPrevious, 969
import, 104, 108
increment, 1133, 1136
indexOf, 72, 805, 943, 953
inherited, 468, 471
intersection, 911
intValue, 310
invoking, 39, 68, 69, 70,

210–211, 213, 266,
295–296

isDigit, 314
isDirectory, 648
isEditable, 1038
isEmpty, 939, 953, 959
isFile, 648
isLetter, 314
isLetterOrDigit, 314
isLowerCase, 314
isUpperCase, 314
isWhitespace, 314
iterator, 954
join, 733, 1134
lastIndexOf, 72, 805, 944,

953
late binding, 517–518
length, 70, 669
listIterator, 944, 954
local variables, 218–219
main, 218–219, 225, 296–299
Math, 305–309
Math.random, 193

1288 Index

max, 305, 412–413
min, 305
mkdir, 648
mkdirs, 649
multidimensional arrays,

435–441
mutator, 242–248, 349–350,

352
next, 112, 113, 633, 965, 968,

970, 971
nextBoolean, 114, 633
nextByte, 113, 632
nextDouble, 110–112, 113, 632
nextFloat, 113, 633
nextIndex, 969
nextInt, 110, 113, 212, 631
nextLine, 112, 114, 115–116,

634
nextLong, 113
nextShort, 113, 632
nextToken, 276, 277
optional, 944–945
ordinal, 427
out.println, 1163
overloading, 250–258
overriding, 471

changing access permission,
472–473

changing return type, 471–472
invoking old version, 494
vs. overloading, 473–474
pack, 1098

paint, 1082–1085, 1098
paintComponent, 1092,

1093–1094
parameters, 220–228
parseDouble, 312–313
parseInt, 313
postconditions, 249–250
pow, 305
power, 698–701, 703
precedes, 248, 751, 754
preconditions, 249–250
previous, 969, 970, 971
previousIndex, 969
print, 91–92, 616, 619–620
printf, 93–99, 620, 1205
println, 90–92, 212, 236,

425, 527–528, 616, 619

private, 486–487, 544
protected, 487
public, 240
put, 959
putAll, 960
random, 306
read, 638, 670
readBoolean, 657, 671
readByte, 670
readChar, 657, 671
readDouble, 657, 671
readFloat, 657, 671
readInt, 657, 671
readLine, 635, 637, 639
readLong, 657, 671
readObject, 658, 666
readShort, 657, 670
readUTF, 658, 671
recursive, 237, 684, 697–702
redefined, 493–494
remove, 804, 941, 943, 953,

960, 965, 969
removeActionListener, 1028
removeAll, 941
removeRange, 804, 953
renameTo, 648
repaint, 1092, 1094–1098
retainAll, 941
returned values, 69
round, 306
run, 1127, 1129
Scanner class, 113–114, 631–634
search, 708–710
set, 270, 273–274, 803, 952,

969
setActionCommand, 1028,

1029–1030, 1068
setBackground, 1038
setColor, 1099
setDate, 265
setDefaultClose Operation,

989, 1064
setEditable, 1037–1038
setFont, 1108, 1109, 1110
setHorizontal

ScrollBarPolicy, 1073
setIcon, 1066, 1070, 1071
setJMenuBar, 989
setLayout, 989, 1003, 1006
setLength, 669, 671

setLineWrap, 1037
setMargin, 1070
setMaximumSize, 1028
setMinimumSize, 1028
setPreferredSize, 1028
setSize, 989
setText, 1028, 1034,

1036–1037, 1066, 1068,
1070, 1071

setTitle, 989
setVertical ScrollBarPolicy,

1073–1074
setVertical TextPosition,

1070
setVisible, 990, 1078
setWindowListener, 1058
size, 801–802, 805, 940, 954,

959
skipBytes, 658
sort, 420–421
split, 733, 739–740
sqrt, 306
start, 1129
startThread, 1130
static, 293–299, 312–316,

528–529, 530
String class, 68–74
stringToDouble, 1041
sublist, 944
substring, 71–72
System.out.println,

1163–1164
testing, 237–238
that return arrays, 399–400,

435–441
that return a value, 212–215
that return Boolean values,

231–234
Thread.sleep, 1121–1122,

1124–1125
throwing exceptions in,

588–600
toArray, 805, 940, 954
toLowerCase, 71, 313
toString, 233–237, 330, 426,

493, 496, 527–528, 531
toUpperCase, 71, 313
trim, 71, 313
trimToSize, 805, 954
useDelimiter, 114, 634

methods (continued)

 Index 1289

validate, 1098
valueOf, 427, 429
values, 427, 428–429, 959
with variable number of

parameters, 412–418
void, 212–216, 225, 685–697,

704
windowActivated, 1059
windowClosed, 1059
windowClosing, 1059
windowDeconified, 1059
windowIconified, 1059
windowOpened, 1059
write, 669
writeBoolean, 670
writeByte, 670
writeChar, 654, 670
writeDouble, 651, 670
writeFloat, 652, 670
writeInt, 651, 653, 670
writeLong, 651, 670
writeObject, 652, 666
writeOutput, 229, 236
writeShort, 651, 670
writeUTF, 652, 654–655, 670

method signature, 250, 253, 256
min method, 305
mixing types, 55–56
mkdir method, 648
mkdirs method, 649
Model-View-Controller pattern,

732–733, 1020
modifiers

final, 519
protected, 488
public/private, 240–241, 418,

488
modifying, access permissions,

472–473
modulo (%) operator, 55, 58–59
money

formatting, 97, 99–102
outputting, 103

moneyFormatter object, 99–102
multidimensional arrays, 431–442

parameters and returned values,
435–441

multithreading, 1120–1137
getGraphics method,

1125–1126

race conditions, 1133–1137
Runnable interface,

1130–1132
Thread class, 1127–1130
Thread.sleep method,

1121–1122, 1124–1125
thread synchronization,

1133–1137
multiway if-else statements,

136–139
mutable classes, 351–354
mutable objects, 352, 353
mutator methods, 242–248,

349–350, 352

N
names. See also identifiers

abstract, 645
array type, 400
clashes, 361
package, 356–359
path, 641–642
naming conventions, 46, 68
constants, 78–80
files, 211, 619
spelling conventions, 80–81

Naughton, Patrick, 35
NegativeNumberException, 586
nested constructors, 642–643
nested inner classes, 781
nested loops, 177
nested menus, 1026
nested statements, 136
Netscape, 35
networking, with stream sockets,

1138–1143
\n (new line) character, 74
new operator, 207–209, 264–265,

330–331
nextBoolean method, 114, 633
nextByte method, 113, 632
nextDouble method, 110–112,

113, 632
nextFloat method, 113, 633
nextIndex method, 969
nextInt method, 110, 113, 212,

631
nextLine method, 112, 114,

115–116, 634
nextLong method, 113

next method, 112, 113, 633, 965,
968, 970, 971

nextShort method, 113, 632
nextToken method, 276, 277
no-argument (no-arg)

constructor, 267–268,
270, 315, 336, 577, 578

Node<T>class, 860
Node class, 843, 860
nodes, 840, 841

adding and deleting, 848–849,
879–883, 885–888

head node, 840
inner classes, 852–855
leaf, 918
root node, 917
tree, 917–918

nonstatic methods, invoking, with
static method, 295–296

NoSuchElementException, 946,
968

notation
Big -O, 901–903
e, 54, 106

not equal to, 146
null constant, 329–330, 341, 847
NullPointerException, 330,

390, 863
null statements, 175–176
NumberCarrier interface,

783–784
NumberFormat class, 99–102, 103
numbers. See also integers

E-notation, 106
floating-point. See floatingpoint

numbers
inputting and outputting, 1040
naming, 78–80
percentages, 106
pseudorandom, 191
random, 191–194, 309
reading, 639
vertical, 685–688
whole, 60

numerical analysis, 59

O
Object class, 496–497
clone method, 536–541, 865–866
object code, 42

1290 Index

ObjectInputStream class, 649–650,
655–659, 1244–1246

object-oriented programming
(OOP), 35–36, 206, 460,
516, 726

ObjectOutputStream class,
649–650, 651–652,
653–654, 1246–1247

object program, 42
objects, 35–36, 39, 68, 69, 206–207

anonymous, 330–331
ArrayList, 799
binary I/O of, 662–666
calling, 68
copying, 345–351, 353
creating, 207–209, 264–265
derived classes, 477–479
drawing, 1081–1098
exception, 577
graphics, 1081–1098
Graphics, 1084
immutable, 75, 352
members of, 207
method definitions and, 531
mutable, 352, 353
private members of, 247–248
resetting values, 265
sending messages to, 39
String, 65–66

objects, arrays as, 388–389
off-by-one errors, 182
OOP. See object-oriented

programming (OOP)
opening files, 618, 652–653, 656
operations, 900

optional, 944–945
sets, 910–911

operators
and, 151, 156
arithmetic, 55–56
assignment, 39, 48–50, 323,

392–394
binary, 159
binding, 160
comparison, 146
concatenation, 66–67
conditional, 144–145
decrement, 62–64
equality, 146–148, 182, 236,

392–394, 427

increment, 62–64
instanceof, 499–501, 533
new, 207–209, 264–265,

330–331
or, 151–152, 156
overloading, 257
plus, 237
precedence, 157–163
remainder, 58–59

options
javadoc, 365
-Xlint, 817

or (||) operator, 151–152, 156
Oracle Corporation, 35
Oracle GlassFish Enterpise Server,

1160
Ordered interface, 749, 754
ordered pairs, 817–820, 822–823
ordinal method, 427
origin, 1081
outer classes, 770, 771, 779–780
out of bounds, 384
out.println method, 1163
output. See also file I/O

buffered, 621–622
formatting, 93–99
money formats, 99–102, 103
numbers, 1040
redirecting, 643–645
screen, 90–108

output files, overwriting, 622–623
outputList method, 848
output streams, 614–615,

643–645
outputStream variable, 616–617
ovals, drawing, 1087
overloading, 250–258, 412

automatic type conversion and,
254–256

constructors, 264
operators, 257
vs. overriding, 473–474
rules for, 250–253

overriding
access permission, 472–473
equals method, 948
invoking old version, 494
method definition, 471
vs. overloading, 473–474
return type, 471–472

P
packages, 90, 102, 108, 354–366

access, 487–492
default, 359–360, 490
directories, 356–359
importing, 102–104
import statements, 355–356
java.lang, 356
name clashes, 361
names, 356–359

Packer class, 1127, 1129
pack method, 1098
page import directive, 1167
paintComponent method, 1092,

1093–1094
paint method, 1082–1085, 1098
pair programming, 189
panels, 1011–1016

paintComponent method, 1092
@param, 363, 364
parameterized classes, 814. See

also generics
parameter lists, 213
parameters, 220–231

arguments, 221, 223–225, 227
array, 390–392, 395–396, 398
catch block, 558–559
of class type, 225, 229,

323–329
as local variables, 225–227
methods with variable number

of, 412–416, 417–418
multidimensional arrays,

435–441
of a primitive type, 220–228,

325, 326–327
terminology, 227
this, 229–231, 266–267
type, 815–816, 820–821,

823–824
parent classes, 470. See also base

classes
parentheses (), 56–58, 133

precedence rules and, 157–163
parseDouble method, 312–313
parseInt method, 313
partially filled arrays, 401–410
path names, 356–357, 641–642
PATH variable, 292, 354–355,

357

 Index 1291

patterns, 104–106
Adaptor (Adapter), 731–732
Container-Iterator, 731
formalism, 740
introduction to, 726, 731
Model-View-Controller,

732–733, 1020
sorting, 733–740

Payne, Jonathan, 35
percentages, 106
persistence, 1144
Person class, 336–341, 344,

345–347
PI constant, 307–308
pixels, 988
point, 1109
pointers, 320
point size, 1109
polymorphism

clone method, 536–541
downcasting and upcasting,

529–535
final modifier, 519
introduction to, 516
late binding, 517–518,

520–528
pop, 893
ports, 1138
positions, 73
position variable, 847–848, 879,

880
postconditions, 249–250
postorder processing, 918
power method, 698–701, 703
pow method, 305
precedence rules, 1201

arithmetic expressions, 56–58
Boolean expressions, 157–163

precedes method, 248, 750, 751,
754

preconditions, 249–250
predefined words, 46
preorder processing, 918
preventive coding, 188–189
previousIndex method, 969
previous method, 969, 970, 971
previous variable, 879
primitive types, 48, 68

assignment compatibility,
52–53, 54

assignment statements with, 49
largest and smallest values of,

312
mixing, 55–56
parameters of, 220–228, 325,

326–327
type parameters and, 821
variables of, 316–317, 318,

320
printf method, 93–99, 620,

1205
println method, 38, 39, 90, 212,

236, 387, 425, 527–528,
616, 619

vs. print, 91–92
print method, 91–92, 616,

619–620
PrintWriter class, 615–623,

1248
privacy leaks, 347–350, 354,

765–766
arrays, 416–418
linked lists, 851

private instance variables,
416–418

private members, access to,
247–248

private methods, 486–487, 544
private modifier, 239, 240–241,

418, 488
-private option, 365
programming

with arrays, 400–431
event-driven, 599, 982,

983–984
with File class, 645–647
functional, 1172–1178
with inheritance, 493–503
object-oriented, 35–36, 206,

460, 516, 726
pair, 189
web, 1158–1164

programming languages
high-level languages, 40
intermediate language, 35
low-level languages, 40
machine language, 40
object-oriented, 35–36
semantics, 44
syntax, 44

programs
comments, 81–82
compiling, 42–43
driver, 237
indenting, 82–83
javadoc, 81–82, 354, 362–366
running, 43
running times, 898–903
styles, 78–83
Swing. See Swing

protected access, 487–492
protected method, 487
protected modifier, 488
protocols, 1138
pseudocode, 166–169, 726–727
pseudorandom numbers, 191
public, 207, 212
public inner classes, 777–781
PubliclyCloneable interface,

866, 870–871
public modifier, 240–241, 488
public static final, 80
push, 893
putAll method, 960
put method, 959

Q
quadratic running time, 903
Queue class, 896–898
queues, 884, 895–898
quick sorts, 734, 736–739
quoted strings, 65
quotes, 55

R
race conditions, 1133–1137
RaceConditionTest class,

1134–1135
ragged arrays, 435
random access, to binary files,

668–674
RandomAccessFile class,

668–674, 1249–1252
Random class, 192–193, 1249
random method, 306
random numbers, generating,

191–194, 309
Random object, 192–193
readBoolean method, 657, 671
readByte method, 670

1292 Index

readChar method, 657, 671
readDouble method, 657, 671
readFloat method, 657, 671
reading

files, 625–628, 635–639,
655–659

numbers, 639
text files, 121–124

readInt method, 657, 671
readLine method, 635, 637, 639
readLong method, 657, 671
read method, 638, 670
readObject. readShort method,

657, 670
readUTF method, 658, 671
rectangles, rounded, 1091–1092
recursion

binary search, 704–715
calls, tracing, 688–691
design techniques, 703–715
infinite, 693
introduction to, 684–685
vs. iteration, 696–697
methods, returning values,

697–702
stacks, 694–696
tail, 712
void method, 685–697, 704

recursive methods, 237, 684
redefined methods, base, access to,

493–495
references, 318–323

arrays and, 388–400
holding, 320
iterators returning, 970–972
to mutable objects, 353
use of, 335–354

reference types, 320
registering, listeners, 992
rehashing, 960
relational databases, 1145, 1148
relative path names, 641–642
removeActionListener method,

1028
removeAll method, 941
remove method, 804, 941, 943,

953, 960, 965, 969
removeRange method, 804, 953
renameTo method, 648
repaint manager, 1098

repaint method, 1092, 1094–1098
reserved words, 46
resolution, 988
retainAll method, 941
rethrowing exceptions, 603
retrieving a high score, 596–599
@return, 363
returned values, 69
multidimensional arrays, 435–441
return statements, 213–214, 215,

234
return type

changing, of overridden
method, 471–472

covariant, 471–472
RGB (red, green, blue) color

system, 1100
right justified output, 96
root nodes, 917
rounded rectangles, 1091–1092
round method, 306
rules

associatively, 57, 157–163, 173
Boolean expressions, 157–163
Catch or Declare, 591, 592, 594
expressions, 56–58
overloading, 250–253
precedence, 56–58, 157–163
spelling conventions, 80–81

run command, 42
run method, 1127, 1129
Runnable interface, 1130–1132
running, Java programs, 43
running times, 898–903
run-time errors, 44
RuntimeException class, 593

S
Scanner class, 559–560,

1252–1255
console input, 108–120
keyboard input, 114–115
methods, 113–114, 631–634
reading text file using, 625–628
testing for end of file with,

628–630
text file input, 121–124

Scene Builder, 1187–1192
scene graph, 1180
scientific notation, 54

screen coordinate system, 1081
screen output, 90–108
scriptlets, 1163–1164
scroll bars, 1039, 1072–1077
SDK, 42
search method, 708–710
secondary memory, 317
SecurityException, 989
@see, 363
SelectionSort class, 422–423
selection sorts, 420–423, 740
SELECT statements, 1150,

1152–1155
self-documenting, 82
semantics, 44

interface, 753–754
semicolons (;), in for statements,

175–176
sending a message, 39, 68
sentinel values, 169
separator characters, 276–277
Serializable interface, 662–666,

765, 1256
serifs, 1109
server, 1138
ServerSocket class, 1138–1139
servlets, 1158–1159
Set<T> interface, 911–907,

915–916, 941–942, 944,
947, 950, 1256–1258

setActionCommand method, 1028,
1029–1030, 1068

setBackground method, 1038
setColor method, 1099
setDate method, 265
setDefaultClose Operation

method, 985, 989, 986,
1064

setEditable method, 1037–1038
setFont method, 1108, 1109, 1110
setHorizontal ScrollBarPolicy

method, 1073
setIcon method, 1066, 1070,

1071
setJMenuBar method, 989
setLayout method, 989, 1003,

1006
setLength method, 669, 671
setLineWrap method, 1037
setMargin method, 1070

 Index 1293

setMaximumSize method, 1028
set method, 270, 273–274, 803,

952, 969
setMinimumSize method, 1028
setPreferredSize method, 1028
sets, 909–916

efficiency of, 915–916
fundamental operations,

910–911
linked lists, 910–911

setSize method, 989
setText method, 1028, 1034,

1036–1037, 1066, 1068,
1070, 1071

setTitle method, 989
setVertical ScrollBarPolicy

method, 1073–1074
setVerticalTextPosition

method, 1070
setVisible method, 990, 1078
setWindowListener method,

1058
s format specifier, 95, 96
shallow copy, 353, 812–813
short-circuit evaluation, 156
Short class, 1259
short type, 48, 53, 56
side effects, 161–163
signature, method, 250, 253, 256
single quotes, 55
size

of array, 379, 385
resolution and, 988

size method, 801–802, 805, 940,
954, 959

skipBytes method, 658
Socket class, 1139
sockets, 1138–1143
threading and, 1142
SortedSet<T>interface, 955
sorting

arrays, 420–423
quick sort, 734, 736–739

sorting pattern, 733–740
efficiency of, 739–740
restrictions on, 739

sort method, 420–421
source code, 42
source program, 42
spelling conventions, 80–81

split method, 733, 739–740
splitting value, 734
splitting value, 736
SQL (Structured Query

Language), 1146–1157
SQLException, 1149
sqrt method, 306
square brackets [], 380, 382
Stack class, 893–895
stack frames, 695–696
stack overflow, 696
stacks, 694–696, 884, 893–895
start method, 1129
startThread method, 1130
statements

assignment, 48–54, 154
break, 140, 143, 180–181
compound, 134–135,

219–220
continue, 180–181
CREATE TABLE, 1149, 1150
do-while, 164–167
empty, 175–176
exit, 181
for, 170–176, 220, 384, 434
if, 133, 134, 136
if-else, 132–139
import, 90, 103–104,

333–335, 355–366, 798
INSERT, 1150
multiway, 136–139
nested, 136
null, 175–176
return, 213–215, 234
SELECT, 1150, 1152–1155
SQL, 1150
static import, 333–335
switch, 139–144, 180,

429–431
throw, 562–563, 569–570, 572
UPDATE, 1150, 1153,

1155–1157
while, 164–167, 176

static import statements,
333–335

static inner classes, 776–777
static keyword, 293
static methods, 293–299
late binding and, 528–529, 530
in wrapper classes, 312–316

static variables, 50, 219,
300–304, 493

stopping cases, 692, 698,
705–706

streams, 614–615, 625
sockets, networking with,

1138–1143
StringBuffer class, 75, 1263–

1267
String class, 48, 65–77, 356,

1259–1263
classes, 67–69
concatenation, 66–67
constants and variables, 65–66
escape sequences, 74–75
indexes, 73–74
methods, 68–74, 313
processing, 75, 76
Unicode character set, 75–77

strings
vs. arrays, 387
comparing, 150, 193
decomposing, 274–279
empty, 116
format, 96
hash functions for, 905–908
patterns, 104–106
processing, 312–316, 415–416,

417–418
using == with, 147–148, 236

strings, of inequalities, 152
stringToDouble method, 1041
StringTokenizer class, 274–279,

331–332, 481–484,
1267–1268

String variables, 426, 617
Structured Query Language. See

SQL (Structured Query
Language)

stubs, 238, 1019
subclasses, 464, 467, 480. See also

derived classes
subdirectories, 359
sublist method, 944
subscripted variables, 379
substring method, 71–72
Sun Microsystems, 34, 35
superclasses, 464, 467, 480
super constructor, 474–476, 495,

577, 938

1294 Index

super.paint, 1084
super relationships, 493–494
Swing, 982

action events, 992–998
action listeners, 992–998, 1025
buttons, 991–992, 1026
calculator, 1041–1046
class hierarchy, 1018
close-window button, 990, 992
colors, 999–1002, 1016,

1098–1105
Container class, 1016–1017
drawString method, 1105–

1107, 1109
ending, 994
event-driven programming,

983–984
fonts, 1105–1110
Graphics class, 1081–1098
icons, 1066–1072
labels, 998, 1000–1002, 1005
layout managers, 1002–1011
menus, 1021–1033
Model-View-Controller

pattern, 1020
numbers, 1040
overview of, 984–1002
panels, 1011–1016
scroll bars, 1072–1077
text fields and areas,

1033–1046
updating, 1098
window listeners, 1058–1065
windows, 985–986

switch statements, 139–144, 180
enumerated types in,

429–431
// symbol, 81
synchronized keyword,

1135–1136
syntactic variables, 47
syntax, 44
syntax errors, 44
System class, 181
System.err, 643–644
System.exit, 994
System.in, 615, 643–644
System.out, 90, 615, 643–644
System.out.print, 92, 616
System.out.printf, 93–99, 414

System.out.println, 38–39,
236, 616, 1163–1164

screen output, 90–93

T
<T>, omitting, 957
tables, 1145, 1148

hash. See hash tables
truth, 153–154

tail recursion, 712
tails, 895
ternary operator, 144–145
testing

bottom-up, 237
methods, 237–238

text
areas, 1033–1046

scroll bars, 1039, 1072–1077
view port, 1072, 1073

fields, 1040
files, 615–616, 1033–1046

appending, 623–625
vs. binary files, 615–616
closing, 621–622
input, 121–124
opening, 618, 626
path names, 641–642
reading, 121–124, 625–628,

635–639
testing for end of, 628–630,

639–641
writing to, 615–623

this constructor, 476–477
this parameter, 229–231,

266–267, 1025
Thread class, 1127–1130
threads, 1120–1121, 1126, 1130.

See also multithreading
sockets and, 1142

Thread.sleep method, 1121–
1122, 1124–1125

thread synchronization, 1133–
1137

Throwable class, 593
throwing an exception, 556, 596
@throws, 363
throws clause, 589–592, 594

in derived classes, 594–595
throw statements, 562–563,

569–570, 572

tilde (~), 727
time-space tradeoff, 909
toArray method, 805, 940, 954
tokens, 275–277
toLowerCase method, 71, 313
toString method, 233–237, 330,

426, 493, 496, 529, 531
late binding with, 527–528
text file output and, 624

toUpperCase method, 71, 313
tracing variables, 182–183
Transmission Control Protocol

(TCP), 1138
TreeMap<K,V> class, 960
trees, 916–924

binary, 916–917
binary search, 919–924
empty, 918
properties, 916–919

TreeSet<T>class, 955
trim method, 71, 313
trimToSize method, 805, 812,

954
true, 48, 53, 55, 132, 152–155
truth tables, 153–154
try blocks, 557, 559, 562–563,

569–570, 622
try-catch-finally mechanism,

601–602
try-catch mechanism, 557–559

nested, 601
try-throw-catch mechanism,

569–570
two-dimensional arrays, 432–434
type casting, 53, 61–62, 223
type coercion, 62
type inference, 798, 816
type mismatch, 52–53
type parameters, 815–816,

820–821, 823–824
bound, 825–828, 866–867
bounds for, 825–828
collections, 956
multiple, 823–824

U
UML. See Unified Modeling

Language (UML)
unboxing, 310–312
uncaught exceptions, 594, 1041

 Index 1295

unchecked exceptions, 594, 634
Unicode, 53, 75–77, 654
Unified Modeling Language

(UML)
class diagrams, 727–728
class hierarchy, 730
class interactions, 728
history of, 727
inheritance diagrams, 728–730
introduction to, 726–727

uninitialized variables, 50
UNIX, 358, 642
UnorderedPair class, 830–831
Unsupported Operation

Exception class, 945, 965
upcasting, 529–535
UPDATE statements, 1150, 1153,

1155–1157
useDelimiter method, 114, 634
User Datagram Protocol (UDP),

1138
UTF coding, 654–655

V
v++ versus ++v, 63
validate method, 1098
valueOf method, 427, 429
values method, 427, 428–429,

959
vararg specification, 414, 415
variables, 47–48

of array type, 388
assignment compatibility,

52–53, 54
within blocks, 219–220
boolean, 154–155
CLASSPATH, 356–359,

360–361
of class type, 316–323,

327–328
declaring, 47, 220
environment, 356–357
global, 219

indexed, 379, 380, 389, 390, 432
initializing, 50–51, 269–274,

300
instance. See instance variables
int, 39
local, 50, 218–219, 225–227,

269
masks, 230
memory and, 317–320
naming conventions, 46
PATH, 354–355, 357
primitive types, 48, 316–318,

320
static, 50, 219, 300–304, 493
String, 65–66, 426
subscripted, 379
syntactic, 47
tracing, 182–183
uninitialized, 50

Vector<T> class, 950–956,
1268–1273

Vector class, 813–814
@version, 363
-version option, 365
vertical numbers, 685–688
view ports, 1072, 1073
visibility, components with

changing, 1077–1080
void method, 212, 213, 214, 215,

216, 225, 704
recursive, 685–697

W
web programming, with Java

Server Pages, 1158–1164
while statements, 164–167, 176
whitespace, 110, 113, 119, 276
whole numbers, 60
wildcards, 938
windowActivated method, 1059
WindowAdapter class, 1064–1065
windowClosed method, 1059
windowClosing method, 1059

windowDeconified method, 1059
WindowEvent class, 1058
window events, 1058
windowIconified method, 1059
Windowing interface, 36–37
WindowListener interface,

1058–1059, 1273
window listeners, 1058–1065
dispose method, 1063
inner class, 1060
WindowAdapter class, 1064–1065
windowOpened method, 1059
windows

close-window button, 990, 992
disposed, 989
Swing, 985–986

words, 112
worst-case running time, 899–901
wrapper classes, 309–312, 356

no-argument constructors and,
315

static methods in, 312–316
writeBoolean method, 670
writeByte method, 670
writeChar method, 654, 670
writeDouble method, 651, 670
writeFloat method, 652, 670
writeInt method, 651, 653, 670
writeLong method, 651, 670
write method, 669
writeObject method, 652, 666
writeOutput method, 229, 236
writeShort method, 651, 670
writeUTF method, 652, 654–655,

670

X
x-coordinate, 1081
-Xlint option, 817

Y
y-coordinate, 1081

	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgments
	Brief Contents
	Contents
	Chapter 1 Getting Started��������������������������������
	1.1 INTRODUCTION TO JAVA�������������������������������
	Origins of the Java Language�����������������������������������
	Objects and Methods��������������������������
	Applets��������������
	A Sample Java Application Program��
	Byte-Code and the Java Virtual Machine���
	Class Loader�������������������
	Compiling a Java Program or Class��
	Running a Java Program�����������������������������
	TIP: Error Messages��������������������������

	1.2 EXPRESSIONS AND ASSIGNMENT STATEMENTS��
	Identifiers������������������
	Variables����������������
	Assignment Statements����������������������������
	TIP: Initialize Variables��������������������������������
	More Assignment Statements���������������������������������
	Assignment Compatibility�������������������������������
	Constants����������������
	Arithmetic Operators and Expressions���
	Parentheses and Precedence Rules���������������������������������������
	Integer and Floating-Point Division��
	PITFALL: Round-Off Errors in Floating-Point Numbers��
	PITFALL: Division with Whole Numbers���
	Type Casting�������������������
	Increment and Decrement Operators��

	1.3 THE CLASS STRING���������������������������
	String Constants and Variables�������������������������������������
	Concatenation of Strings�������������������������������
	Classes��������������
	String Methods���������������������
	Escape Sequences�����������������������
	String Processing������������������������
	The Unicode Character Set��������������������������������

	1.4 PROGRAM STYLE������������������������
	Naming Constants�����������������������
	Java Spelling Conventions��������������������������������
	Comments���������������
	Indenting����������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 2 Console Input and Output���
	2.1 SCREEN OUTPUT������������������������
	System.out.println�������������������������
	TIP: Different Approaches to Formatting Output���
	Formatting Output with printf������������������������������������
	TIP: Formatting Monetary Amounts with printf���
	TIP: Legacy Code�����������������������
	Money Formats Using NumberFormat���������������������������������������
	Importing Packages and Classes�������������������������������������
	The DecimalFormat Class������������������������������

	2.2 CONSOLE INPUT USING THE SCANNER CLASS��
	The Scanner Class������������������������
	PITFALL: Dealing with the Line Terminator, '\n'��
	The Empty String�����������������������
	TIP: Prompt for Input����������������������������
	TIP: Echo Input����������������������
	Example: Self-Service Checkout�������������������������������������
	Other Input Delimiters�����������������������������

	2.3 INTRODUCTION TO FILE INPUT�������������������������������������
	The Scanner Class for Text File Input��
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 3 Flow of Control��������������������������������
	3.1 BRANCHING MECHANISM������������������������������
	if-else Statements�������������������������
	Omitting the else������������������������
	Compound Statements��������������������������
	TIP: Placing of Braces�����������������������������
	Nested Statements������������������������
	Multiway if-else Statement���������������������������������
	Example: State Income Tax��������������������������������
	The switch Statement���������������������������
	PITFALL: Forgetting a break in a switch Statement��
	The Conditional Operator�������������������������������

	3.2 BOOLEAN EXPRESSIONS������������������������������
	Simple Boolean Expressions���������������������������������
	PITFALL: Using = in Place of ==��������������������������������������
	PITFALL: Using == with Strings�������������������������������������
	Lexicographic and Alphabetic Order���
	Building Boolean Expressions�����������������������������������
	PITFALL: Strings of Inequalities���������������������������������������
	Evaluating Boolean Expressions�������������������������������������
	TIP: Naming Boolean Variables������������������������������������
	Short-Circuit and Complete Evaluation��
	Precedence and Associativity Rules���

	3.3 LOOPS����������������
	while Statement and do-while Statement���
	Algorithms and Pseudocode��������������������������������
	Example: Averaging a List of Scores��
	The for Statement������������������������
	The Comma in for Statements����������������������������������
	TIP: Repeat N Times Loops��������������������������������
	PITFALL: Extra Semicolon in a for Statement��
	PITFALL: Infinite Loops������������������������������
	Nested Loops�������������������
	The break and continue Statements��
	The exit Statement�������������������������

	3.4 DEBUGGING��������������������
	Loop Bugs����������������
	Tracing Variables������������������������
	General Debugging Techniques�����������������������������������
	Example: Debugging an Input Validation Loop��
	Preventive Coding������������������������
	Assertion Checks�����������������������

	3.5 RANDOM NUMBER GENERATION�����������������������������������
	The Random Object������������������������
	The Math.random() Method�������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 4 Defining Classes I�����������������������������������
	4.1 CLASS DEFINITIONS����������������������������
	Instance Variables and Methods�������������������������������������
	More about Methods�������������������������
	TIP: Any Method Can Be Used as a void Method���
	Local Variables����������������������
	Blocks�������������
	TIP: Declaring Variables in a for Statement��
	Parameters of a Primitive Type�������������������������������������
	PITFALL: Use of the Terms “Parameter” and “Argument”���
	Simple Cases with Class Parameters���
	The this Parameter�������������������������
	Methods That Return a Boolean Value��
	The Methods equals and toString��������������������������������������
	Recursive Methods������������������������
	TIP: Testing Methods���������������������������

	4.2 INFORMATION HIDING AND ENCAPSULATION���
	public and private Modifiers�����������������������������������
	Example: Yet Another Date Class��������������������������������������
	Accessor and Mutator Methods�����������������������������������
	TIP: A Class Has Access to Private Members of All Objects of the Class���
	TIP: Mutator Methods Can Return a Boolean Value��
	Preconditions and Postconditions���������������������������������������

	4.3 OVERLOADING����������������������
	Rules for Overloading����������������������������
	PITFALL: Overloading and Automatic Type Conversion���
	PITFALL: You Cannot Overload Based on the Type Returned��

	4.4 CONSTRUCTORS�����������������������
	Constructor Definitions������������������������������
	TIP: You Can Invoke Another Method in a Constructor��
	TIP: A Constructor Has a this Parameter��
	TIP: Include a No-Argument Constructor���
	Example: The Final Date Class������������������������������������
	Default Variable Initializations���������������������������������������
	An Alternative Way to Initialize Instance Variables��
	Example: A Pet Record Class����������������������������������
	The StringTokenizer Class��������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 5 Defining Classes II������������������������������������
	5.1 STATIC METHODS AND STATIC VARIABLES��
	Static Methods���������������������
	PITFALL: Invoking a Nonstatic Method Within a Static Method��
	TIP: You Can Put a main in Any Class���
	Static Variables�����������������������
	The Math Class���������������������
	Wrapper Classes����������������������
	Automatic Boxing and Unboxing������������������������������������
	Static Methods in Wrapper Classes��
	PITFALL: A Wrapper Class Does Not Have a No-Argument Constructor���

	5.2 REFERENCES AND CLASS PARAMETERS��
	Variables and Memory���������������������������
	References�����������������
	Class Parameters�����������������������
	PITFALL: Use of = and == with Variables of a Class Type��
	The Constant null������������������������
	PITFALL: Null Pointer Exception��������������������������������������
	The new Operator and Anonymous Objects���
	Example: Another Approach to Keyboard Input��
	TIP: Use Static Imports������������������������������

	5.3 USING AND MISUSING REFERENCES��
	Example: A Person Class������������������������������
	PITFALL: null Can Be an Argument to a Method���
	Copy Constructors������������������������
	PITFALL: Privacy Leaks�����������������������������
	Mutable and Immutable Classes������������������������������������
	Tip: Deep Copy versus Shallow Copy���
	TIP: Assume Your Coworkers Are Malicious���

	5.4 PACKAGES AND JAVADOC�������������������������������
	Packages and import Statements�������������������������������������
	The Package java.lang����������������������������
	Package Names and Directories������������������������������������
	PITFALL: Subdirectories Are Not Automatically Imported���
	The Default Package��������������������������
	PITFALL: Not Including the Current Directory in Your Class Path��
	Specifying a Class Path When You Compile���
	Name Clashes�������������������
	Introduction to javadoc������������������������������
	Commenting Classes for javadoc�������������������������������������
	Running javadoc����������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 6 Arrays�����������������������
	6.1 INTRODUCTION TO ARRAYS���������������������������������
	Creating and Accessing Arrays������������������������������������
	The length Instance Variable�����������������������������������
	TIP: Use for Loops with Arrays�������������������������������������
	PITFALL: Array Indices Always Start with Zero��
	PITFALL: Array Index Out of Bounds���
	Initializing Arrays��������������������������
	PITFALL: An Array of Characters Is Not a String��

	6.2 ARRAYS AND REFERENCES��������������������������������
	Arrays Are Objects�������������������������
	PITFALL: Arrays with a Class Base Type���
	Array Parameters�����������������������
	PITFALL: Use of = and == with Arrays���
	Arguments for the Method main������������������������������������
	Methods that Return an Array�����������������������������������

	6.3 PROGRAMMING WITH ARRAYS����������������������������������
	Partially Filled Arrays������������������������������
	Example: A Class for Partially Filled Arrays���
	TIP: Accessor Methods Need Not Simply Return Instance Variables��
	The “for-each” Loop��������������������������
	Methods with a Variable Number of Parameters���
	Example: A String Processing Example���
	Privacy Leaks with Array Instance Variables��
	Example: Sorting an Array��������������������������������
	Enumerated Types�����������������������
	TIP: Enumerated Types in switch Statements���

	6.4 MULTIDIMENSIONAL ARRAYS����������������������������������
	Multidimensional Array Basics������������������������������������
	Using the length Instance Variable���
	Ragged Arrays��������������������
	Multidimensional Array Parameters and Returned Values��
	Example: A Grade Book Class����������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 7 Inheritance����������������������������
	7.1 INHERITANCE BASICS�����������������������������
	Derived Classes����������������������
	Overriding a Method Definition�������������������������������������
	Changing the Return Type of an Overridden Method���
	Changing the Access Permission of an Overridden Method���
	PITFALL: Overriding versus Overloading���
	The super Constructor����������������������������
	The this Constructor���������������������������
	TIP: An Object of a Derived Class Has More than One Type���
	PITFALL: The Terms Subclass and Superclass���
	Example: An Enhanced StringTokenizer Class���

	7.2 ENCAPSULATION AND INHERITANCE��
	PITFALL: Use of Private Instance Variables from the Base Class���
	PITFALL: Private Methods Are Effectively Not Inherited���
	Protected and Package Access�����������������������������������
	PITFALL: Forgetting about the Default Package��
	PITFALL: A Restriction on Protected Access���

	7.3 PROGRAMMING WITH INHERITANCE���������������������������������������
	TIP: Static Variables Are Inherited��
	TIP: “is a” versus “has a”���������������������������������
	Access to a Redefined Base Method��
	PITFALL: You Cannot Use Multiple supers��
	The Class Object�����������������������
	The Right Way to Define equals�������������������������������������
	TIP: getClass versus instanceof��������������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 8 Polymorphism and Abstract Classes��
	8.1 POLYMORPHISM�����������������������
	Late Binding�������������������
	The final Modifier�������������������������
	Example: Sales Records�����������������������������
	Late Binding with toString���������������������������������
	PITFALL: No Late Binding for Static Methods��
	Downcasting and Upcasting��������������������������������
	PITFALL: Downcasting���������������������������
	TIP: Checking to See Whether Downcasting Is Legitimate���
	A First Look at the clone Method���������������������������������������
	PITFALL: Sometimes the clone Method Return Type Is Object��
	PITFALL: Limitations of Copy Constructors��

	8.2 ABSTRACT CLASSES���������������������������
	Abstract Classes�����������������������
	PITFALL: You Cannot Create Instances of an Abstract Class��
	TIP: An Abstract Class Is a Type���������������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 9 Exception Handling�����������������������������������
	9.1 EXCEPTION HANDLING BASICS������������������������������������
	try-catch Mechanism��������������������������
	Exception Handling with the Scanner Class��
	TIP: Exception Controlled Loops��������������������������������������
	Throwing Exceptions��������������������������
	EXAMPLE: A Toy Example of Exception Handling���
	Exception Classes������������������������
	Exception Classes from Standard Packages���
	Defining Exception Classes���������������������������������
	TIP: Preserve getMessage�������������������������������
	TIP: An Exception Class Can Carry a Message of Any Type��
	Multiple catch Blocks����������������������������
	PITFALL: Catch the More Specific Exception First���

	9.2 THROWING EXCEPTIONS IN METHODS���
	Throwing an Exception in a Method��
	Declaring Exceptions in a throws Clause��
	Exceptions to the Catch or Declare Rule��
	throws Clause in Derived Classes���������������������������������������
	When to Use Exceptions�����������������������������
	Example: Retrieving a High Score���������������������������������������
	Event-Driven Programming�������������������������������

	9.3 MORE PROGRAMMING TECHNIQUES FOR EXCEPTION HANDLING���
	PITFALL: Nested try-catch Blocks���������������������������������������
	The finally Block������������������������
	Rethrowing an Exception������������������������������
	The AssertionError Class�������������������������������
	ArrayIndexOutOfBoundsException�������������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 10 File I/O��������������������������
	10.1 INTRODUCTION TO FILE I/O������������������������������������
	Streams��������������
	Text Files and Binary Files����������������������������������

	10.2 TEXT FILES����������������������
	Writing to a Text File�����������������������������
	PITFALL: A try Block Is a Block��������������������������������������
	PITFALL: Overwriting an Output File��
	Appending to a Text File�������������������������������
	TIP: toString Helps with Text File Output��
	Reading from a Text File�������������������������������
	Reading a Text File Using Scanner��
	Testing for the End of a Text File with Scanner��
	Reading a Text File Using BufferedReader���
	TIP: Reading Numbers with BufferedReader���
	Testing for the End of a Text File with BufferedReader���
	Path Names�����������������
	Nested Constructor Invocations�������������������������������������
	System.in, System.out, and System.err��

	10.3 THE FILE CLASS��������������������������
	Programming with the File Class��������������������������������������

	10.4 BINARY FILES������������������������
	Writing Simple Data to a Binary File���
	UTF and writeUTF�����������������������
	Reading Simple Data from a Binary File���
	Checking for the End of a Binary File��
	PITFALL: Checking for the End of a File in the Wrong Way���
	Binary I/O of Objects����������������������������
	The Serializable Interface���������������������������������
	PITFALL: Mixing Class Types in the Same File���
	Array Objects in Binary Files������������������������������������

	10.5 RANDOM ACCESS TO BINARY FILES���
	Reading and Writing to the Same File���
	PITFALL: RandomAccessFile Need Not Start Empty���
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 11 Recursion���������������������������
	11.1 RECURSIVE VOID METHODS����������������������������������
	Example: Vertical Numbers��������������������������������
	Tracing a Recursive Call�������������������������������
	A Closer Look at Recursion���������������������������������
	PITFALL: Infinite Recursion����������������������������������
	Stacks for Recursion���������������������������
	PITFALL: Stack Overflow������������������������������
	Recursion versus Iteration���������������������������������

	11.2 RECURSIVE METHODS THAT RETURN A VALUE���
	General Form for a Recursive Method That Returns a Value���
	Example: Another Powers Method�������������������������������������

	11.3 THINKING RECURSIVELY��������������������������������
	Recursive Design Techniques����������������������������������
	Binary Search��������������������
	Efficiency of Binary Search����������������������������������
	Example: Finding a File������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 12 UML and Patterns����������������������������������
	12.1 UML���������������
	History of UML���������������������
	UML Class Diagrams�������������������������
	Class Interactions�������������������������
	Inheritance Diagrams���������������������������
	More UML���������������

	12.2 PATTERNS��������������������
	Adaptor Pattern����������������������
	The Model-View-Controller Pattern��
	EXAMPLE: A Sorting Pattern���������������������������������
	Restrictions on the Sorting Pattern��
	Efficiency of the Sorting Pattern��
	TIP: Pragmatics and Patterns�����������������������������������
	Pattern Formalism������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 13 Interfaces and Inner Classes��
	13.1 INTERFACES����������������������
	Interfaces�����������������
	Abstract Classes Implementing Interfaces���
	Derived Interfaces�������������������������
	PITFALL: Interface Semantics Are Not Enforced��
	The Comparable Interface�������������������������������
	Example: Using the Comparable Interface��
	Defined Constants in Interfaces��������������������������������������
	PITFALL: Inconsistent Interfaces���������������������������������������
	The Serializable Interface���������������������������������
	The Cloneable Interface������������������������������

	13.2 SIMPLE USES OF INNER CLASSES��
	Helping Classes����������������������
	TIP: Inner and Outer Classes Have Access to Each Other’s Private Members���
	Example: A Bank Account Class������������������������������������
	The .class File for an Inner Class���
	PITFALL: Other Uses of Inner Classes���

	13.3 MORE ABOUT INNER CLASSES������������������������������������
	Static Inner Classes���������������������������
	Public Inner Classes���������������������������
	TIP: Referring to a Method of the Outer Class��
	Nesting Inner Classes����������������������������
	Inner Classes and Inheritance������������������������������������
	Anonymous Classes������������������������
	TIP: Why Use Inner Classes?����������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 14 Generics and the ArrayList Class��
	14.1 THE ARRAYLIST CLASS�������������������������������
	Using the ArrayList Class��������������������������������
	TIP: Summary of Adding to an ArrayList���
	Methods in the Class ArrayList�������������������������������������
	The “for-each” Loop��������������������������
	Example: Golf Scores���������������������������
	TIP: Use trimToSize to Save Memory���
	PITFALL: The clone Method Makes a Shallow Copy���
	The Vector Class�����������������������
	Parameterized Classes and Generics���
	PITFALL: Nonparameterized ArrayList and Vector Classes���

	14.2 GENERICS��������������������
	Generic Basics���������������������
	TIP: Compile with the -Xlint Option��
	Example: A Generic Class for Ordered Pairs���
	PITFALL: A Generic Constructor Name Has No Type Parameter��
	PITFALL: You Cannot Plug in a Primitive Type for a Type Parameter��
	PITFALL: A Type Parameter Cannot Be Used Everywhere a Type Name Can Be Used��
	PITFALL: An Instantiation of a Generic Class Cannot be an Array Base Type��
	TIP: A Class Definition Can Have More Than One Type Parameter��
	PITFALL: A Generic Class Cannot Be an Exception Class��
	Bounds for Type Parameters���������������������������������
	TIP: Generic Interfaces������������������������������
	Generic Methods����������������������
	Inheritance with Generic Classes���������������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 15 Linked Data Structures��
	15.1 JAVA LINKED LISTS�����������������������������
	Example: A Simple Linked List Class��
	Working with Linked Lists��������������������������������
	PITFALL: Privacy Leaks�����������������������������
	Node Inner Classes�������������������������
	Example: A Generic Linked List�������������������������������������
	PITFALL: Using Node Instead of Node<T>���
	The equals Method for Linked Lists���

	15.2 COPY CONSTRUCTORS AND THE CLONE METHOD��
	Simple Copy Constructors and clone Methods���
	Exceptions�����������������
	PITFALL: The clone Method Is Protected in object���
	TIP: Use a Type Parameter Bound for a Better clone���
	Example: A Linked List with a Deep Copy clone Method���
	TIP: Cloning Is an “All or Nothing” Affair���

	15.3 ITERATORS���������������������
	Defining an Iterator Class���������������������������������
	Adding and Deleting Nodes��������������������������������

	15.4 VARIATIONS ON A LINKED LIST���������������������������������������
	Doubly Linked List�������������������������
	The Stack Data Structure�������������������������������
	The Queue Data Structure�������������������������������
	Running Times and Big-O Notation���������������������������������������
	Efficiency of Linked Lists���������������������������������

	15.5 HASH TABLES WITH CHAINING�������������������������������������
	A Hash Function for Strings����������������������������������
	Efficiency of Hash Tables��������������������������������

	15.6 SETS����������������
	Fundamental Set Operations���������������������������������
	Efficiency of Sets Using Linked Lists��

	15.7 TREES�����������������
	Tree Properties����������������������
	Example: A Binary Search Tree Class��
	Efficiency of Binary Search Trees��
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 16 Collections, Maps and Iterators���
	16.1 COLLECTIONS�����������������������
	Wildcards����������������
	The Collection Framework�������������������������������
	PITFALL: Optional Operations�����������������������������������
	TIP: Dealing with All Those Exceptions���
	Concrete Collection Classes����������������������������������
	Differences between ArrayList<T> and Vector<T>���
	Nonparameterized Version of the Collection Framework���
	PITFALL: Omitting the <T>��������������������������������

	16.2 MAPS����������������
	Concrete Map Classes���������������������������

	16.3 ITERATORS���������������������
	The Iterator Concept���������������������������
	The Iterator<T> Interface��������������������������������
	TIP: For-Each Loops as Iterators���������������������������������������
	List Iterators���������������������
	PITFALL: next Can Return a Reference���
	TIP: Defining Your Own Iterator Classes��
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 17 Swing I�������������������������
	17.1 EVENT-DRIVEN PROGRAMMING������������������������������������
	Events and Listeners���������������������������

	17.2 BUTTONS, EVENTS, AND OTHER SWING BASICS���
	Example: A Simple Window�������������������������������
	PITFALL: Forgetting to Program the Close-Window Button���
	Buttons��������������
	Action Listeners and Action Events���
	PITFALL: Changing the Heading for actionPerformed��
	TIP: Ending a Swing Program����������������������������������
	Example: A Better Version of Our First Swing GUI���
	Labels�������������
	Color������������
	Example: A GUI with a Label and Color��

	17.3 CONTAINERS AND LAYOUT MANAGERS��
	Border Layout Managers�����������������������������
	Flow Layout Managers���������������������������
	Grid Layout Managers���������������������������
	Panels�������������
	Example: A Tricolor Built with Panels��
	The Container Class��������������������������
	TIP: Code a GUI’s Look and Actions Separately��
	The Model-View-Controller Pattern��

	17.4 MENUS AND BUTTONS�����������������������������
	Example: A GUI with a Menu���������������������������������
	Menus, Menu Items, and Menu Bars���������������������������������������
	Nested Menus�������������������
	The AbstractButton Class�������������������������������
	The setActionCommand Method����������������������������������
	Listeners as Inner Classes���������������������������������

	17.5 TEXT FIELDS AND TEXT AREAS��������������������������������������
	Text Areas and Text Fields���������������������������������
	TIP: Labeling a Text Field���������������������������������
	TIP: Inputting and Outputting Numbers��
	A Swing Calculator�������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 18 Swing II��������������������������
	18.1 WINDOW LISTENERS����������������������������
	Example: A Window Listener Inner Class���
	The dispose Method�������������������������
	PITFALL: Forgetting to Invoke setDefaultCloseOperation���
	The WindowAdapter Class������������������������������

	18.2 ICONS AND SCROLL BARS���������������������������������
	Icons������������
	Scroll Bars������������������
	Example: Components with Changing Visibility���

	18.3 THE GRAPHICS CLASS������������������������������
	Coordinate System for Graphics Objects���
	The Method paint and the Class Graphics��
	Drawing Ovals��������������������
	Drawing Arcs�������������������
	Rounded Rectangles�������������������������
	paintComponent for Panels��������������������������������
	Action Drawings and repaint����������������������������������
	Some More Details on Updating a GUI��

	18.4 COLORS������������������
	Specifying a Drawing Color���������������������������������
	Defining Colors����������������������
	PITFALL: Using doubles to Define a Color���
	The JColorChooser Dialog Window��������������������������������������

	18.5 Fonts and the drawString Method���
	The drawString Method����������������������������
	Fonts������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Chapter 19 Java Never Ends���������������������������������
	19.1 MULTITHREADING��������������������������
	Example: A Nonresponsive GUI�����������������������������������
	Thread.sleep�������������������
	The getGraphics Method�����������������������������
	Fixing a Nonresponsive Program Using Threads���
	Example: A Multithreaded Program���������������������������������������
	The Class Thread�����������������������
	The Runnable Interface�����������������������������
	Race Conditions and Thread Synchronization���

	19.2 NETWORKING WITH STREAM SOCKETS��
	Sockets��������������
	Sockets and Threading����������������������������
	The URL Class��������������������

	19.3 JAVA BEANS����������������������
	The Component Model��������������������������
	The JavaBeans Model��������������������������

	19.4 JAVA AND DATABASE CONNECTIONS���
	Relational Databases���������������������������
	Java DB and JDBC�����������������������
	SQL����������

	19.5 WEB PROGRAMMING WITH JAVA SERVER PAGES��
	Applets, Servlets, and Java Server Pages���
	Oracle GlassFish Enterprise Server���
	HTML Forms—the Common Gateway Interface��
	JSP Declarations, Expressions, Scriptlets, and Directives��

	19.6 INTRODUCTION TO FUNCTIONAL PROGRAMMING IN JAVA 8��
	19.7 INTRODUCTION TO JAVA FX�����������������������������������
	Chapter Summary����������������������
	Answers to Self-Test Exercises�������������������������������������
	Programming Projects���������������������������

	Appendix 1 Keywords��������������������������
	Appendix 2 Precedence and Associativity Rules��
	Appendix 3 ASCII Character Set�������������������������������������
	Appendix 4 Format Specifications for printf��
	Appendix 5 Summary of Classes and Interfaces���
	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

		2015-12-16T17:09:19+0000
	Preflight Ticket Signature

