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preface
Writing good, concurrent, and distributed applications is hard. Having just finished a
project that demanded a lot of low-level concurrency programming in Java, I was on
the lookout for simpler tools for the next project, which promised to be even more
challenging.

 In March 2010 I noticed a tweet by Dean Wampler that made me look into Akka:

 W00t! RT @jboner: #akka 0.7 is released: http://bit.ly/9yRGSB

After some investigation into the source code and building a prototype, we decided to
use Akka. It was immediately apparent that this new programming model would really
simplify the problems we experienced in the previous project.

 I convinced Rob Bakker to join me in a bleeding-edge technology adventure, and
together we took the leap to build our first project with Scala and Akka. We reached
out early to Jonas Bonér (creator of Akka) for help, and later found out that we were
among the first-known production users of Akka. We completed the project, and
many others followed; the benefits of using Akka were obvious every time.

 In those days, there wasn’t a lot of information available online, so I decided to
start blogging about it as well as contribute to the Akka project.

 I was completely surprised when I was asked to write this book. I asked Rob Bakker
if he wanted to write the book together. Later, we realized we needed more help, and
Rob Williams joined us. He had been building projects with Java and Akka.

 We’re happy that we could finally finish this book and write about a version of Akka
(2.4.9) that really provides a comprehensive set of tools for building distributed and
concurrent applications. We’re grateful that so many MEAP readers gave us feedback
over time. The tremendous support from Manning Publications was invaluable for us
as first-time authors.

 One thing that we all agreed on and had experienced before using Akka is that
writing distributed and concurrent applications on the JVM needed better, simpler
tools. We hope that we will convince you that Akka provides just that.

RAYMOND ROESTENBURG
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http://bit.ly/9yRGSB


acknowledgments
It took a lot of time to write this book. During that time, many people have helped us
out and we thank them for the time they contributed. To all the readers who bought
the MEAP edition of the book, thank you for all the feedback that greatly improved
this book and for your ongoing patience over the years. We hope you will enjoy the
final result and that you learned a lot during the MEAP process.

 Special thanks go out to members of the Akka core team, specifically Jonas Bonér,
Viktor Klang, Roland Kuhn, Patrik Nordwall, Björn Antonsson, Endre Varga, and
Konrad Malawski, who all provided inspiration and invaluable input.

 We also want to thank Edwin Roestenburg and CSC Traffic Management in the
Netherlands, who trusted us enough to start using Akka for mission-critical projects
and provided an incredible opportunity for us to gain our initial experience with
Akka. We also want to thank Xebia for the work hours Ray could spend on the book
and for providing an incredible workplace for furthering experience with Akka.

 We thank Manning Publications for placing their trust in us. This is our first book,
so we know this was a high-risk venture for them. We want to thank the following staff
at Manning for their excellent work: Mike Stephens, Jeff Bleiel, Ben Berg, Andy
Carroll, Kevin Sullivan, Katie Tennant, and Dottie Marsico.

 Our thanks to Doug Warren, who gave all chapters a thorough technical proof-
read. Many other reviewers provided us with helpful feedback during the writing and
development process: Andy Hicks, David Griffith, Dušan Kysel, Iain Starks, Jeremy
Pierre, Kevin Esler, Mark Janssen, Michael Schleichardt, Richard Jepps, Robin Percy,
Ron Di Frango, and William E. Wheeler.

 Last but not least, we want to thank the significant people in our lives who sup-
ported us as we worked on the book. Ray thanks his wife Chanelle, and Rob Williams
thanks his mom, Gail, and Laurie.
xii



about this book
This book introduces the Akka toolkit and explains its most important modules. We
focus on the actor programming model and the modules that support actors for
building concurrent and distributed applications. Throughout the book, we take time
to show how code can be tested, which is an important aspect of day-to-day software
development. We use the Scala programming language in all our examples.

 After the basics of coding and testing actors, we look at all the important aspects
that you will encounter when building a real-world application with Akka.

Intended audience
This book is intended for anyone who wants to learn how to build applications with
Akka. The examples are in Scala, so it’s expected that you already know some Scala or
are interested in learning some Scala as you go along. You’re expected to be familiar
with Java, as Scala runs on top of the JVM.

Roadmap
The book includes seventeen chapters.

 Chapter 1 introduces Akka actors. You’ll learn how the actor programming model
solves a couple of key issues that traditionally make scaling applications very hard.

 Chapter 2 dives directly into an example HTTP service built with Akka to show how
quickly you can get a service up and running in the cloud. It gives a sneak peek into
what you’ll learn in chapters to come.

 Chapter 3 is about unit testing actors using ScalaTest and the akka-testkit module.
 Chapter 4 explains how supervision and monitoring make it possible to build reli-

able, fault-tolerant systems out of actors.
 Chapter 5 introduces futures, extremely useful and simple tools for combining

function results asynchronously. You’ll also learn how to combine futures and actors.
 Chapter 6 is about the akka-remote module, which makes it possible to distribute

actors across a network. You’ll also learn how you can unit test distributed actor systems.
xiii



ABOUT THIS BOOKxiv
 Chapter 7 explains how the Typesafe Config Library is used to configure Akka. It
also details how you can use this library to configure your own application components.

 Chapter 8 details structural patterns for actor-based applications. You’ll learn how
to implement a couple of classic enterprise integration patterns.

 Chapter 9 explains how to use routers. Routers can be used for switching, broad-
casting, and load balancing messages between actors.

 Chapter 10 introduces the message channels that can be used to send messages
from one actor to another. You’ll learn about point-to-point and publish-subscribe
message channels for actors. You’ll also learn about dead-letter and guaranteed-
delivery channels.

 Chapter 11 discusses how to build finite state machine actors with the FSM module
and also introduces agents that can be used to share state asynchronously.

 Chapter 12 explains how to integrate with other systems. In this chapter, you’ll
learn how to integrate with various protocols using Apache Camel and how to build
an HTTP service with the akka-http module.

 Chapter 13 introduces the akka-stream module. You’ll learn how to build stream-
ing applications with Akka. This chapter details how to build a streaming HTTP service
that processes log events.

 Chapter 14 explains how to use the akka-cluster module. You’ll learn how to
dynamically scale actors in a network cluster.

 Chapter 15 introduces the akka-persistence module. In this chapter, you’ll learn
how to record and recover durable state with persistent actors and how to use the
cluster singleton and cluster sharding extensions to build a clustered shopping cart
application.

 Chapter 16 discusses key parameters of performance in actor systems and provides
tips on how to analyze performance issues.

 Chapter 17 looks ahead to two upcoming features that we think will become very
important: the akka-typed module that makes it possible to check actor messages at
compile time, and the akka-distributed-data module, which provides distributed in-
memory state in a cluster.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. The code for the examples in this book is available for download
from the publisher’s website at www.manning.com/books/akka-in-action and from
GitHub at https://github.com/RayRoestenburg/akka-in-action.

Software requirements
Scala is used in all examples, and all code is tested with Scala 2.11.8. You can find Scala
here: http://www.scala-lang.org/download/.

https://github.com/RayRoestenburg/akka-in-action
http://www.scala-lang.org/download/
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 Be sure to install the latest version of sbt (0.13.12 as of this writing); if you have an
older version of sbt installed, you might run into issues. You can find sbt here: http://
www.scala-sbt.org/download.html.

 Java 8 is required by Akka 2.4.9, so you’ll need to have it installed as well. It can be
found here: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-down-
loads-2133151.html.

Author Online
Purchase of Akka in Action includes free access to a private web forum run by Manning
Publications, where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to https://www.manning.com/books/akka-in-
action. This page provides information on how to get on the forum after you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum. 

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!
The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print. 

About the authors
RAYMOND ROESTENBURG is an experienced software craftsman, polyglot programmer,
and software architect. He is an active member of the Scala community and an Akka
committer, and he contributed to the Akka-Camel module. 

ROB BAKKER is an experienced software developer focused on concurrent backend sys-
tems and system integration. He has used Scala and Akka in production from version 0.7. 

ROB WILLIAMS is the founder of ontometrics, a practice focused on Java solutions that
include machine learning. He first used actor-based programming a decade ago and
has used it for several projects since.

About the cover illustration
The illustration of a Chinese emperor on the cover of Akka in Action is taken from
Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four
volumes), London, published between 1757 and 1772. The title page states that these
are hand-colored copperplate engravings, heightened with gum arabic. Thomas Jef-
ferys (1719–1771) was called “Geographer to King George III.” He was an English car-
tographer who was the leading map supplier of his day. He engraved and printed maps
for government and other official bodies and produced a wide range of commercial
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maps and atlases, especially of North America. His work as a mapmaker sparked an
interest in local dress customs of the lands he surveyed and mapped, an interest that is
brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late-eighteenth century, and collections such as this one were popular,
introducing both the tourist as well as the armchair traveler to the inhabitants of
other countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and the diversity by region and country, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life, or a more varied and interesting intellectual
and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jefferys’ pictures.



Introducing Akka
Up until the middle of the ’90s, just before the internet revolution, it was com-
pletely normal to build applications that would only ever run on a single computer,
a single CPU. If an application wasn’t fast enough, the standard response would be
to wait for a while for CPUs to get faster; no need to change any code. Problem
solved. Programmers around the world were having a free lunch, and life was good. 

 In 2005 Herb Sutter wrote in Dr. Dobb’s Journal about the need for a fundamental
change (link: http://www.gotw.ca/publications/concurrency-ddj.htm). In short: a
limit to increasing CPU clock speeds has been reached, and the free lunch is over. 

 If applications need to perform faster, or if they need to support more users,
they will have to be concurrent. (We’ll get to a strict definition later; for now let’s

In this chapter
 Why scaling is hard 

 Write once, scale anywhere

 Introduction to the actor programming model 

 Akka actors 

 What is Akka?
1
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2 CHAPTER 1 Introducing Akka
simply define this as not single-threaded. That’s not really correct, but it’s good enough
for the moment.) 

Scalability is the measure to which a system can adapt to a change in demand for
resources, without negatively impacting performance. Concurrency is a means to
achieve scalability: the premise is that, if needed, more CPUs can be added to servers,
which the application then automatically starts making use of. It’s the next best thing
to a free lunch. 

 Around the year 2005 when Herb Sutter wrote his excellent article, you’d find
companies running applications on clustered multiprocessor servers (often no more
than two to three, just in case one of them crashed). Support for concurrency in pro-
gramming languages was available but limited and considered black magic by many
mere mortal programmers. Herb Sutter predicted in his article that “programming
languages ... will increasingly be forced to deal well with concurrency.” 

 Let’s see what changed in the decade since! Fast-forward to today, and you find
applications running on large numbers of servers in the cloud, integrating many sys-
tems across many data centers. The ever-increasing demands of end users push the
requirements of performance and stability of the systems that you build. 

 So where are those new concurrency features? Support for concurrency in most
programming languages, especially on the JVM, has hardly changed. Although the
implementation details of concurrency APIs have definitely improved, you still have to
work with low-level constructs like threads and locks, which are notoriously difficult to
work with. 

 Next to scaling up (increasing resources; for example, CPUs on existing servers),
scaling out refers to dynamically adding more servers to a cluster. Since the ’90s, noth-
ing much has changed in how programming languages support networking, either.
Many technologies still essentially use RPC (remote procedure calls) to communicate
over the network. 

 In the meantime, advances in cloud computing services and multicore CPU archi-
tecture have made computing resources ever more abundant. 

 PaaS (Platform as a Service) offerings have simplified provisioning and deploy-
ment of very large distributed applications, once the domain of only the largest play-
ers in the IT industry. Cloud services like AWS EC2 (Amazon Web Services Elastic
Compute Cloud) and Google Compute Engine give you the ability to literally spin up
thousands of servers in minutes, while tools like Docker, Puppet, Ansible, and many
others make it easier to manage and package applications on virtual servers. 

 The number of CPU cores in devices is also ever-increasing: even mobile phones
and tablets have multiple CPU cores today. 

 But that doesn’t mean that you can afford to throw any number of resources at any
problem. In the end, everything is about cost and efficiency. So it’s all about effectively
scaling applications, or in other words, getting bang for your buck. Just as you’d never
use a sorting algorithm with exponential time complexity, it makes sense to think
about the cost of scaling. 
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You should have two expectations when scaling your application:

 The ability to handle any increase of demand with finite resources is unrealistic,
so ideally you’d want the required increase of resources to be growing slowly
when demand grows, linear or better. Figure 1.1 shows the relationship between
demand and number of required resources. 

 If resources have to be increased, ideally you’d like the complexity of the appli-
cation to stay the same or increase slowly. (Remember the good ol’ free lunch
when no added complexity was required for a faster application!) Figure 1.2
shows the relationship between number of resources and complexity.  

Both the number and complexity of resources contribute to the total cost of scaling. 
 We’re leaving a lot of factors out of this back-of-the-envelope calculation, but it’s

easy to see that both of these rates have a big impact on the total cost of scaling. 

Resources

Demand

Doomsday scenario

Linear

Ideal

Figure 1.1 Demand against resources

Complexity

Resources 

Doomsday scenario

Linear

Ideal

Figure 1.2 Complexity against resources



4 CHAPTER 1 Introducing Akka
One doomsday scenario is where you’d need to pay increasingly more for more
underutilized resources. Another nightmare scenario is where the complexity of the
application shoots through the roof when more resources are added. 

 This leads to two goals: complexity has to stay as low as possible, and resources
must be used efficiently while you scale the application. 

 Can you use the common tools of today (threads and RPC) to satisfy these two
goals? Scaling out with RPC and scaling up with low-level threading aren’t good ideas.
RPC pretends that a call over the network is no different from a local method call.
Every RPC call needs to block the current thread and wait for a response from the net-
work for the local method call abstraction to work, which can be costly. This impedes
the goal of using resources efficiently. 

 Another problem with this approach is that you need to know exactly where you
scale up or scale out. Multithreaded programming and RPC-based network program-
ming are like apples and pears: they run in different contexts, using different seman-
tics and running on different levels of abstraction. You end up hardcoding which parts
of your application are using threads for scaling up and which parts are using RPC for
scaling out. 

 Complexity increases significantly the moment you hardcode methods that work
on different levels of abstraction. Quick—what’s simpler, coding with two entangled
programming constructs (RPC and threads), or using just one programming con-
struct? This multipronged approach to scaling applications is more complicated than
necessary to flexibly adapt to changes in demand.

 Spinning up thousands of servers is simple today, but as you’ll see in this first chap-
ter, the same can’t be said for programming them. 

1.1 What is Akka?
In this book we’ll show how the Akka toolkit, an open source project built by Light-
bend, provides a simpler, single programming model—one way of coding for concur-
rent and distributed applications—the actor programming model. Actors are (fitting for
our industry) nothing new at all, in and of themselves. It’s the way that actors are pro-
vided in Akka to scale applications both up and out on the JVM that’s unique. As you’ll
see, Akka uses resources efficiently and makes it possible to keep the complexity rela-
tively low while an application scales. 

 Akka’s primary goal is to make it simpler to build applications that are deployed in
the cloud or run on devices with many cores and that efficiently leverage the full capac-
ity of the computing power available. It’s a toolkit that provides an actor programming
model, runtime, and required supporting tools for building scalable applications. 

1.2 Actors: a quick overview
First off, Akka is centered on actors. Most of the components in Akka provide support
in some way for using actors, be it for configuring actors, connecting actors to the net-
work, scheduling actors, or building a cluster out of actors. What makes Akka unique
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is how effortlessly it provides support and additional tooling for building actor-based
applications, so that you can focus on thinking and programming in actors. 

 Briefly, actors are a lot like message queues without the configuration and message
broker installation overhead. They’re like programmable message queues shrunk to
microsize—you can easily create thousands, even millions of them. They don’t “do”
anything unless they’re sent a message. 

 Messages are simple data structures that can’t be changed after they’ve been cre-
ated, or in a single word, they’re immutable. 

 Actors can receive messages one at a time and execute some behavior whenever a
message is received. Unlike queues, they can also send messages (to other actors). 

 Everything an actor does is executed asynchronously. Simply put, you can send a
message to an actor without waiting for a response. Actors aren’t like threads, but mes-
sages sent to them are pushed through on a thread at some point in time. How actors
are connected to threads is configurable, as you’ll see later; for now it’s good to know
that this is not a hardwired relationship. 

 We’ll get a lot deeper into exactly what an actor is. For now the most important
aspect of actors is that you build applications by sending and receiving messages. A
message could be processed locally on some available thread, or remotely on another
server. Exactly where the message is processed and where the actor lives are things you
can decide later, which is very different compared to hardcoding threads and RPC-
style networking. Actors make it easy to build your application out of small parts that
resemble networked services, only shrunk to microsize in footprint and administrative
overhead. 

The Reactive Manifesto
The Reactive Manifesto (http://www.reactivemanifesto.org/) is an initiative to push for
the design of systems that are more robust, more resilient, more flexible, and better
positioned to meet modern demands. The Akka team has been involved in writing the
Reactive Manifesto from the beginning, and Akka is a product of the ideas that are
expressed in this manifesto. 

In short, efficient resource usage and an opportunity for applications to automatically
scale (also called elasticity) is the driver for a big part of the manifesto: 

 Blocking I/O limits opportunities for parallelism, so nonblocking I/O is 
preferred. 

 Synchronous interaction limits opportunities for parallelism, so asynchronous
interaction is preferred. 

 Polling reduces opportunity to use fewer resources, so an event-driven style is 
preferred. 

 If one node can bring down all other nodes, that’s a waste of resources. So 
you need isolation of errors (resilience) to avoid losing all your work. 

http://www.reactivemanifesto.org/
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1.3 Two approaches to scaling: setting up our example
In the rest of this chapter, we’ll look at a business chat application and the challenges
faced when it has to scale to a large number of servers (and handle millions of simul-
taneous events). We’ll look at what we’ll call the traditional approach, a method that
you’re probably familiar with for building such an application (using threads and
locks, RPC, and the like) and compare it to Akka’s approach. 

 The traditional approach starts with a simple in-memory application, which turns
into an application that relies completely on a database for both concurrency and
mutating state. Once the application needs to be more interactive, we’ll have no
choice but to poll this database. When more network services are added, we’ll show
that the combination of working with the database and the RPC-based network
increases complexity significantly. We’ll also show that isolating failure in this applica-
tion becomes very hard as we go along. We think that you’ll recognize a lot of this. 

 We’ll then look at how the actor programming model simplifies the application,
and how Akka makes it possible to write the application once and scale it to any
demand (thereby handling concurrency issues on any scale needed). Table 1.1 high-
lights the differences between the two approaches. Some of the items will become
clear in the next sections, but it’s good to keep this overview in mind. 

Imagine that we have plans to conquer the world with a state-of-the art chat applica-
tion that will revolutionize the online collaboration space. It’s focused on business

Table 1.1 Differences between approaches

Objective Traditional method Akka method

Scaling Use a mix of threads, shared 
mutable state in a database (Cre-
ate, Insert, Update, Delete), and 
web service RPC calls for scaling.

Actors send and receive messages. 
No shared mutable state. Immuta-
ble log of events.

Providing interactive 
information

Poll for current information. Event-driven: push when the event 
occurs.

Scaling out on the network Synchronous RPC, blocking I/O. Asynchronous messaging, nonblock-
ing I/O.

Handling failures Handle all exceptions; only con-
tinue if everything works. 

Let it crash. Isolate failure, and con-
tinue without failing parts.

(continued)
 Systems need to be elastic: If there’s less demand, you want to use fewer

resources. If there’s more demand, use more resources, but never more than
required. 

Complexity is a big part of cost, so if you can’t easily test it, change it, or program it,
you’ve got a big problem. 
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users where teams can easily find each other and work together. We have tons of ideas
on how this interactive application can connect to project management tools and inte-
grate with existing communication services. 

 In good Lean Startup spirit, we start with an MVP (minimal viable product) of the
chat application to learn as much as possible from our prospective users about what
they need. If this ever takes off, we could potentially have millions of users (who
doesn’t chat, or work together in teams?). And we know that there are two forces that
can slow our progress to a grinding halt: 

 Complexity—The application becomes too complex to add any new features.
Even the simplest change takes a huge amount of effort, and it becomes harder
and harder to test properly; what will fail this time? 

 Inflexibility—The application isn’t adaptive; with every big jump in number of
users, it has to be rewritten from scratch. This rewrite takes a long time and is
complex. While we have more users than we can handle, we’re split between
keeping the existing application running and rewriting it to support more users. 

We’ve been building applications for a while and choose to build it the way we have in
the past, taking the traditional approach, using low-level threads and locks, RPC,
blocking I/O, and, first on the menu in the next section, mutating state in a database. 

1.4 Traditional scaling
We start on one server. We set out to build the first
version of the chat application, and come up with a
data model design, shown in figure 1.3. For now
we’ll just keep these objects in memory. 

 A Team is a group of Users, and many Users can
be part of some Conversation. Conversations are
collections of messages. So far, so good. 

 We flesh out the behavior of the application and
build a web-based user interface. We’re at the point
where we can show the application to prospective
users and give demos. The code is simple and easy
to manage. But so far this application only runs in
memory, so whenever it’s restarted, all Conversations are lost. It can also only run on
one server at this point. Our web app UI built with [insert shiny new JavaScript library]
is so impressive that stakeholders want to immediately go live with it, even though we
repeatedly warn that it’s just for demo purposes! Time to move to more servers and set
up a production environment. 

1.4.1 Traditional scaling and durability: 
move everything to the database

We decide to add a database to the equation. We have plans to run the web applica-
tion on two front-end web servers for availability, with a load balancer in front of it.
Figure 1.4 shows the new setup. 

User

Message

Conversation

Team

Figure 1.3 Data model design
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The code is becoming more complex because now we can’t just work with in-memory
objects anymore; how would we keep the objects consistent on the two servers? Some-
one on our team shouts “We need to go stateless!” and we remove all feature-rich objects
and replace them with database code. 

 The state of the objects doesn’t simply reside in memory on the web servers any-
more, which means the methods on the objects can’t work on the state directly;
essentially, all important logic moves to database statements. The change is shown in
figure 1.5. 

 This move to statelessness leads to the decision to replace the objects with some
database access abstraction. For the purpose of this example, it’s irrelevant which one;

Load balancer

Database server
The database might be clustered for failover.
This detail is not important for the example.

Web server Web server

Figure 1.4 Load balancer/failover

TeamDAOTeam table

DAOs convert the database representations back and forth to
the Team, User, Conversation, and Message objects.

The DAOs are now used from the web app. Team, User,
Conversation, and Message only contain data.

Team

User table User

Conversation table Conversation

Message table Message

UserDAO

ConversationDAO

MessageDAO

Figure 1.5 Data access objects
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in this case, we’re feeling a bit retro and use DAOs (data access objects, which execute
database statements). 

 A lot of things change: 

 We don’t have the same guarantees anymore that we had before when we, for
instance, called a method on the Conversation to add a Message. Before, we
were guaranteed that addMessage would never fail, since it was a simple opera-
tion on an in-memory list (barring the exceptional case that the JVM runs out of
memory). Now, the database might return an error at any addMessage call. The
insert might fail, or the database might not be available at that exact moment
because the database server crashes or because there’s a problem with the net-
work. 

 The in-memory version had a sprinkling of locks to make sure that the data
wouldn’t get corrupted by concurrent users. Now that we’re using “Database
X,” we’ll have to find out how to handle that problem, and make sure that we
don’t end up with duplicate records or other inconsistent data. We have to find
out how to do exactly that with the Database X library. Every simple method call
to an object effectively becomes a database operation, of which some have to
work in concert. Starting a Conversation, for instance, at least needs both an
insert of a row in the Conversation and the message table. 

 The in-memory version was easy to test, and unit tests ran fast. Now, we run
Database X locally for the tests, and we add some database test utilities to isolate
tests. Unit tests run a lot slower now. But we tell ourselves, “At least we’re testing
those Database X operations too,” which were not as intuitive as we expected—
very different from the previous databases we worked with. 

We probably run into performance problems when we’re porting the in-memory code
directly to database calls, since every call now has network overhead. So we design spe-
cific database structures to optimize query performance, which are specific to our
choice of database (SQL or NoSQL, it doesn’t matter). The objects are now a sad ane-
mic shadow of their former selves, merely holding data; all the interesting code has
moved to the DAOs and the components of our web application. The saddest part of
this is that we can hardly reuse any of the code that we had before; the structure of the
code has completely changed. 

 The “controllers” in our web application combine DAO methods to achieve the
changes in the data (findConversation, insertMessage, and so on). This combina-
tion of methods results in an interaction with the database that we can’t easily predict;
the controllers are free to combine the database operations in any way, as in figure 1.6.

 The figure shows one of the possible flows through the code, for adding a Message
to a Conversation. You can imagine that there are numerous variations of database
access flows through the use of the DAOs. Allowing any party to mutate or query
records at any point in time can lead to performance problems that we can’t predict,
like deadlocks and other issues. It’s exactly the kind of complexity we want to avoid. 
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The database calls are essentially RPC, and almost all standard database drivers (say,
JDBC) use blocking I/O. So we’re already in the state that we described before, using
threads and RPC together. The memory locks that are used to synchronize threads
and the database locks to protect mutation of table records are really not the same
thing, and we’ll have to take great care to combine them. We went from one to two
interwoven programming models. 

 We just did our first rewrite of the application, and it took a lot longer than
expected. 

THIS IS A DRAMATIZATION The traditional approach to build the team chat
app goes sour in a catastrophic way. Although exaggerated, you’ve probably
seen projects run into at least some of these problems (we definitely have
seen similar cases first-hand). To quote Dean Wampler from his presentation
“Reactive Design, Languages, and Paradigms” (https://deanwampler.github
.io/polyglotprogramming/papers/): 

In reality, good people can make almost any approach work, even if the approach is
suboptimal.

So is this example project impossible to complete with the traditional
approach? No, but it’s definitely suboptimal. It will be very hard to keep com-
plexity low and flexibility high while the application scales. 

1.4.2 Traditional scaling and interactive use: polling

We run in this configuration for a while and the users are increasing. The web applica-
tion servers aren’t using a lot of resources; most are spent in (de-)serialization of
requests and responses. Most of the processing time is spent in the database. The code
on the web server is mostly waiting for a response from the database driver. 

 We want to build more interactive features now that we have the basics covered.
Users are used to Facebook and Twitter and want to be notified whenever their name
is mentioned in a team conversation, so they can chime in. 

TeamDAO

Controller
findTeam(name)

findConversations(team)

insertMessage(message, conversation)

conversations

team
Controller

DatabaseConversationDAO

MessageDAO

Controller

Figure 1.6 DAO interaction

https://deanwampler.github.io/polyglotprogramming/papers/
https://deanwampler.github.io/polyglotprogramming/papers/
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 We want to build a Mentions component that parses every message that’s written
and adds the mentioned contacts to a notification table, which is polled from the web
application to notify mentioned users. 

 The web application now also polls other information more often to more quickly
reflect changes to users, because we want to give them a true interactive experience. 

 We don’t want to slow down the conversations by adding database code directly to
the application, so we add a message queue. Every message written is sent to it asyn-
chronously, and a separate process receives messages from the queue, looks up the
users, and writes a record in a notifications table. 

 The database is really getting hammered at this point. We find out that the auto-
mated polling of the database together with the Mentions component are causing
performance problems with the database. We separate out the Mentions component
as a service and give it its own database, which contains the notifications table and a
copy of the users table, kept up to date with a database synchronization job, as shown
in figure 1.7. 

 Not only has the complexity increased again, it’s becoming more difficult to add
new interactive features. Polling the database wasn’t such a great idea for this kind of
application, but there are no other real options, because all the logic is right there in
the DAOs, and Database X can’t “push” anything into the web server.

 We’ve also added more complexity to the application by adding a message queue,
which will have to be installed and configured, and code will have to get deployed.
The message queue has its own semantics and context to work in; it’s not the same as
the database RPC calls, or as the in-memory threading code. Fusing all this code
together responsibly will be, once again, more complex. 

Poll

Poll

Sync users

New
message

New
message

Chat database Mentions database 

Chat app

Mentions

Chat web server Mentions server

Queue

Figure 1.7 Service component
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1.4.3 Traditional scaling and interactive use: polling

Users start to give feedback that they would love a way to find contacts with typeahead
(the application gives suggestions while the user types part of a contact’s name) and
automatically receive suggestions for teams and current conversations based on their
recent email conversations. We build a TeamFinder object that calls out to several web
services like Google Contacts API and Microsoft Outlook.com API. We build web ser-
vice clients for these, and incorporate the finding of contacts, as in figure 1.8. 

We find out that one of the services fails often and in the worst possible way—we get
long timeouts, or traffic has slowed down to only a few bytes per minute. And because
the web services are accessed one after the other, waiting for a response, the lookup
fails after a long time even though many valid suggestions could have been made to
the user from the service that worked just fine. 

 Even worse, though we collected our database methods in DAOs and the contacts
lookup in a TeamFinder object, the controllers are calling these methods like any
other. This means that sometimes a user lookup ends up right between two database
methods, keeping connections open longer than we want, eating up database
resources. If the TeamFinder fails, everything else that’s part of the same flow in the
application fails as well. The controller will throw an exception and won’t be able to
continue. How do we safely separate the TeamFinder from the rest of the code? 

 It’s time for another rewrite, and it doesn’t look like the complexity is improving.
In fact, we’re now using four programming models: one for the in-memory threads,
one for the database operations, one for the Mentions message queue, and one for
the contacts web services. 

 How do we move from 3 servers to, say, 10, and then to 100 servers, if this should
be required? It’s obvious that this approach doesn’t scale well: we need to change
direction with every new challenge. 

 In the next section, you’ll find out if there’s a design strategy that doesn’t require
us to change direction with every new challenge. 

     One of these clients fails, stalling
      the TeamFinder component.

Google
contacts client

Google
contacts server

Outlook
contacts server

Method
call

Method
call

TeamFinder

Outlook
contacts client

Network

Network

Figure 1.8 Team finder
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1.5 Scaling with Akka
Let’s see if it’s possible to deliver on the promise to use only actors to meet the scaling
requirements of the application. Since it’s probably still unclear to you what actors
are, exactly, we’ll use objects and actors interchangeably and focus on the conceptual
difference between this approach and the traditional approach.

 Table 1.2 shows this difference in approaches. 

It would be great if we could write the application code once, and then scale it any
way we like. We want to avoid radically changing the application’s main objects; for
example, how we had to replace all logic in the in-memory objects with DAOs in sec-
tion 1.4.1.

 The first challenge we wanted to solve was to safekeep conversation data. Coding
directly to the database moved us away from one simple in-memory model. Methods
that were once simple turned into database RPC commands, leaving us with a mixed
programming model. We have to find another way to make sure that the conversa-
tions aren’t lost, while keeping things simple. 

1.5.1 Scaling with Akka and durability: sending and receiving messages

Let’s first solve the initial problem of just making Conversations durable. The appli-
cation objects must save Conversations in some way. The Conversations must at
least be recovered when the application restarts. 

Table 1.2 Actors compared to the traditional approach

Goal Traditional approach Akka approach (actors)

Make conversation data dura-
ble, even if the application 
restarts or crashes.

Rewrite code into DAOs. Use the 
database as one big shared 
mutable state, where all parties 
create, update, insert, and query 
the data.

Continue to use in-memory state. 
Changes to the state are sent as 
messages to a log. This log is 
only reread if the application 
restarts.

Provide interactive features 
(Mentions).

Poll the database. Polling uses a 
lot of resources even if there’s no 
change in the data.

Push events to interested par-
ties. The objects notify interested 
parties only when there’s a signif-
icant event, reducing overhead.

Decoupling of services; the 
Mentions and chat features 
shouldn’t be interfering with 
each other.

Add a message queue for asyn-
chronous processing.

No need to add a message 
queue; actors are asynchronous 
by definition. No extra complex-
ity; you’re familiar with sending 
and receiving messages.

Prevent failure of the total sys-
tem when critical services fail 
or behave outside of specified 
performance parameters for 
any given time.

Try to prevent any error from hap-
pening by predicting all failure 
scenarios and catching excep-
tions for these scenarios.

Messages are sent asynchro-
nously; if a message isn’t han-
dled by a crashed component, it 
has no impact on the stability of 
the other components.
www.allitebooks.com

http://www.allitebooks.org
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Figure 1.9 shows how a Conversation sends a MessageAdded to the database log for
every message that’s added in-memory. 

 The Conversation can be rebuilt from these objects stored in the database when-
ever the web server (re)-starts, as shown in figure 1.10. 

 Exactly how this all works is something we’ll discuss later. But as you can see, we
only use the database to recover the messages in the conversation. We don’t use it to
express our code in database operations. The Conversation actor sends messages to

Conversation 1

Database

Add message

MessageAdded 4

MessageAdded 3

MessageAdded 2

MessageAdded 1

Conversation 1

Figure 1.9 Persist conversations

Conversation 1

recover(MessageAdded)

MessageAdded 1

MessageAdded 2

MessageAdded 3

MessageAdded 4

Conversation 1

The messages in the Conversation are
recovered from the database by replaying
the MessageAdded events in the same
order as they occurred.

The Conversation has a
recover method that takes
all the MessageAdded events
and reconstitutes the message
from it.

Database

Figure 1.10 Recover conversations
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the log, and receives them again on startup. We don’t have to learn anything new; it’s
just sending and receiving messages. 

CHANGES KEPT AS A SEQUENCE OF EVENTS

All changes are kept as a sequence of events, in this case MessageAdded events. The
current state of the Conversation can be rebuilt by replaying the events that occurred
to the in-memory Conversation, so it can continue where it left off. This type of data-
base is often called a journal, and the technique is known as event sourcing. There’s
more to event sourcing, but for now this definition will do. 

 What’s important to note here is that the journal has become a uniform service. All
it needs to do is store all events in sequence, and make it possible to retrieve the
events in the same sequence as they were written to the journal. There are some
details that we’ll ignore for now, like serialization—if you can’t wait, go look at chapter
15 on actor persistence. 

SPREADING OUT THE DATA: SHARDING CONVERSATIONS

The next problem is that we’re still putting all our eggs in one server. The server
restarts, reads all conversations in memory, and continues to operate. The main rea-
son for going stateless in the traditional approach is that it’s hard to imagine how we
would keep the conversations consistent across many servers. And what would happen
if there were too many conversations to fit on one server? 

 A solution for this is to divide the conversations over the servers in a predictable
way or to keep track of where every conversation lives. This is called sharding or parti-
tioning. Figure 1.11 shows some conversations in shards across two servers. 

 We can keep using the simple in-memory model of Conversations if we have a
generic event-sourced journal and a way to indicate how Conversations should be
partitioned. Many details about these two capabilities will be covered in chapter 15.
For now, we’ll assume that we can simply use these services. 

Server

Conversation 1

Conversation 2

Shard

Conversation 3

Conversation 4

Shard

Server

Conversation 5

Conversation 7

Conversation 6

Shard

Figure 1.11 Sharding
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1.5.2 Scaling with Akka and interactive use: push messages

Instead of polling the database for every user of the web application, we could find
out if there’s a way to notify the user of an important change (an event) by directly
sending messages to the user’s web browser. 

 The application can also send event messages internally as a signal to execute par-
ticular tasks. Every object in the application will send an event when something inter-
esting occurs. Other objects in the application can decide if an event is interesting
and take action on it, as in figure 1.12.

The events (depicted as ellipses) decouple the system where there used to be unde-
sired coupling between the components. The Conversation only publishes that it
added a Message and continues its work. Events are sent through a publish-subscribe
mechanism, instead of the components communicating with each other directly. An
event will eventually get to the subscribers, in this case to the Mentions component.
It’s important to note that, once again, we can model the solution to this problem by
simply sending and receiving messages. 

1.5.3 Scaling with Akka and failure: asynchronous decoupling

It’s preferable that users be able to continue to have Conversations even if the
Mentions component has crashed. The same goes for the TeamFinder component:
existing conversations should be able to continue. Conversations can continue to
publish events while subscribers, like the Mentions component and the TeamFinder
object, crash and restart. 

ConversationUser

Team

TeamFinderMessage

Mentions

NotifyUser

UserEnteredConversation

MessageAdded

UserMentioned TeamSuggestion

ConversationSuggestion
Figure 1.12 Events
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 The NotifyUser component could keep track of connected web browsers and
send UserMentioned messages directly to the browser when they occur, relieving the
application from polling. 

 This event-driven approach has a couple of advantages: 

 It minimizes direct dependencies between components. The conversation doesn’t
know about the Mentions object and could not care less what happens with the event. The
conversation can continue to operate when the Mentions object crashes. 

 The components of the application are loosely coupled in time. It doesn’t mat-
ter if the Mentions object gets the events a little later, as long as it gets the
events eventually. 

 The components are decoupled in terms of location. The Conversation and
Mentions object can reside on different servers; the events are just messages
that can be transmitted over the network. 

The event-driven approach solves the polling problem with the Mentions object, as
well as the direct coupling with the TeamFinder object. In chapter 5 on futures, we’ll
look at some better ways to communicate with web services than sequentially waiting
for every response. It’s important to note that, once again, we can model the solution
to this problem by simply sending and receiving messages. 

1.5.4 The Akka approach: sending and receiving messages

Let’s recap what we’ve changed so far: Conversations are now stateful in-memory
objects (actors), storing their internal state, recovering from events, partitioned across
servers, sending and receiving messages. 

 You’ve seen how communicating between objects with messages instead of calling
methods directly is a winning design strategy. 

 A core requirement is that messages are sent and received in order, one at a time
to every actor, when one event is dependent on the next, because otherwise we’d get
unexpected results. This requires that the Conversation keeps its own messages
secret from any other component. The order can never be kept if any other compo-
nent can interact with the messages. 

 It shouldn’t matter if we send a message locally on one server or remotely to
another. So we need some service that takes care of sending the messages to actors on
other servers if necessary. It will also need to keep track of where actors live and be
able to provide references so other servers can communicate with the actors. This is
one of the things that Akka does for you, as you’ll soon see. Chapter 6 discusses the
basics of distributed Akka applications, and chapter 13 discusses clustered Akka appli-
cations (in short, groups of distributed actors). 

 The Conversation doesn’t care what happens with the Mentions component, but
on the application level we need to know when the Mentions component doesn’t work
anymore to show users that it’s temporarily offline, among other things. So we need
some kind of monitoring of actors, and we need to make it possible to reboot these if
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necessary. This monitoring should work across servers as well as locally on one server,
so it will also have to use sending and receiving messages. A possible high-level struc-
ture for the application is shown in figure 1.13. 

 The supervisor watches over the components and takes action when they crash. It
can, for example, decide to continue running when the Mentions component or the
TeamFinder doesn’t work. If both Conversations and NotifyUser stop working com-
pletely, the supervisor could decide to restart completely or stop the application, since
there’s no reason to continue. A component can send a message to the supervisor
when it fails, and the supervisor can send a message to a component to stop, or try to
restart. As you’ll see, this is conceptually how Akka provides error recovery, which is
discussed in chapter 4 on fault tolerance. 

 In the next section, we’ll first talk about actors in general, and then talk about
Akka actors. 

1.6 Actors: one programming model to rule up and out
Most general-purpose programming languages are written in sequence (Scala and
Java being no exception to the rule). A concurrent programming model is required to
bridge the gap between sequential definition and parallel execution. 

 Whereas parallelization is all about executing processes simultaneously, concur-
rency concerns itself with defining processes that can function simultaneously, or can
overlap in time, but don’t necessarily need to run simultaneously. A concurrent system
is not by definition a parallel system. Concurrent processes can, for example, be exe-
cuted on one CPU through the use of time slicing, where every process gets a certain
amount of time to run on the CPU, one after another. 

 The JVM has a standard concurrent programming model (see figure 1.14), where,
roughly speaking, processes are expressed in objects and methods, which are exe-
cuted on threads. Threads might be executed on many CPUs in parallel, or using

Application

Supervisor

MentionsTeamFinderConversationsNotifyUser

OutlookContacts GoogleContactsConversationConversation

The supervisor watches
the objects and takes
actions when they crash.

Figure 1.13 High-level structure
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some sharing mechanism like time slicing on one CPU. As we discussed earlier,
threads can’t be applied directly to scaling out, only to scaling up. 

 The concurrent programming model that we’re after should function for one CPU
or many, one server or many servers. The actor model chooses the abstraction of send-
ing and receiving messages to decouple from the number of threads or the number of
servers that are being used. 

1.6.1 An asynchronous model

If we want the application to scale to many servers, there’s an important requirement
for the programming model: it will have to be asynchronous, allowing components to
continue working while others haven’t responded yet, as in the chat application (see
figure 1.15). 

 The figure shows a possible configuration of the chat application, scaled to five
servers. The supervisor has the responsibility to create and monitor the rest of the
application. The supervisor now has to communicate over the network, which might
fail, and every server could possibly crash as well. If the supervisor used synchronous

Concurrent programming model
for scale up and scale out

Parallel on many CPU cores

Executed

Parallel on many serversSingle-threaded/sequential

Executed Executed

Figure 1.14 Concurrent programming model
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Application
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NotifyUser

Mentions server

MentionsSupervisor

TeamFinder server

NetworkNetwork

Network Network

TeamFinder

OutlookContacts GoogleContacts

Conversations server

Conversations

ConversationConversation

Figure 1.15 Scaled out
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communication, waiting for every response of every component, we could get in the
problematic situation where one of the components doesn’t respond, blocking all
other calls from happening. What would happen, for instance, if the conversations
server is restarting and not responding to the network interface yet, while the supervi-
sor wants to send out messages to all components?

1.6.2 Actor operations

Actors are the primary building blocks in the actor model. All the components in the
example application are actors, shown in figure 1.16. An actor is a lightweight process
that has only four core operations: create, send, become, and supervise. All of these
operations are asynchronous. 

THE ACTOR MODEL—NOT NEW The actor model is not new and has actually
been around for quite a while; the idea was introduced in 1973 by Carl
Hewitt, Peter Bishop, and Richard Steiger. The Erlang language and its OTP
middleware libraries, developed by Ericsson around 1986, support the actor
model and have been used to build massively scalable systems with require-
ments for high availability. An example of the success of Erlang is the AXD
301 switch product, which achieves a reliability of 99.9999999%, also known
as nine nines reliability. The actor model implementation in Akka differs in a
couple of details from the Erlang implementation, but has definitely been
heavily influenced by Erlang, and shares a lot of its concepts. 

SEND

An actor can only communicate with another actor by sending it messages. This takes
encapsulation to the next level. In objects we can specify which methods can be publicly
called and which state is accessible from the outside. Actors don’t allow any access to
internal state, for example, the list of messages in a conversation. Actors can’t share
mutable state; they can’t, for instance, point to a shared list of conversation messages
and change the conversation in parallel at any point in time. 

Application

Supervisor
actor

Mentions
actor

TeamFinder
actor

Conversations
actor

NotifyUser
actor

OutlookContacts GoogleContactsConversation
actor

Conversation
actor

Figure 1.16 Components
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The Conversation actor can’t simply call a method on any other actor, since that
could lead to sharing mutable state. It has to send it a message. Sending messages is
always asynchronous, in what is called a fire and forget style. If it’s important to know
that another actor received the message, then the receiving actor should just send
back an acknowledgement message of some kind. 

 The Conversation actor doesn’t have to wait and see what happens with a message
to the Mentions actor; it can send off a message and continue its work. Asynchronous
messaging helps in the chat application to decouple the components; this was one of
the reasons why we wanted to use a message queue for the Mentions object, which is
now unnecessary. 

 The messages need to be immutable, meaning that they can’t be changed once
they’re created. This makes it impossible for two actors to change the same message
by mistake, which could result in unexpected behavior. 

WHAT, NO TYPE SAFETY? Actors can receive any message, and you can send
any message you want to an actor (it just might not process the message). This
basically means that type checking of the messages that are sent and received
is limited. That might come as a surprise, since Scala is a statically typed lan-
guage and a high level of type safety has many benefits. This flexibility is both
a cost (less is known about actors’ type correctness at runtime) and a benefit
(how would static types be enforced over a network of remote systems?). The
last word hasn’t been said on this, and the Akka team is researching how to
define a more type-safe version of actors, which we might see details of in a
next version of Akka. Stay tuned. 

So what do we do when a user wants to edit a message in a Conversation? We could
send an EditMessage message to the conversation. The EditMessage contains a modi-
fied copy of the message, instead of updating the message in place in a shared mes-
sages list. The Conversation actor receives the EditMessage and replaces the existing
message with the new copy. 

 Immutability is an absolute necessity when it comes to concurrency and is another
restriction that makes life simpler, because there are fewer moving parts to manage. 

 The order of sent messages is kept between a sending and
receiving actor. An actor receives messages one at a time. Imagine
that a user edits a message many times; it would make sense that the
user eventually sees the result of the final edit of the message. The
order of messages is only guaranteed per sending actor, so if many
users edit the same message in a conversation, the final result can
vary depending on how the messages are interleaved over time. 

CREATE

An actor can create other actors. Figure 1.17 shows how the
Supervisor actor creates a Conversations actor. As you can see,
this automatically creates a hierarchy of actors. The chat applica-
tion first creates the Supervisor actor, which in turn creates all

Supervisor
actor

Conversations
actor

Creates

Creates

Conversation
actor

Figure 1.17 Create
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other actors in the application. The Conversations actor recovers all Conversations
from the journal. It then creates a Conversation actor for every Conversation, which
in turn recovers itself from the journal.   

BECOME

State machines are a great tool for making sure that a system only executes particular
actions when it’s in a specific state. 

 Actors receive messages one at a time, which is a convenient property for imple-
menting state machines. An actor can change how it handles incoming messages by
swapping out its behavior. 

 Imagine that users want to be able to close a Conversation. The Conversation starts
out in a started state and becomes closed when a CloseConversation is received. Any
message that’s sent to the closed Conversation could be ignored. The Conversation
swaps its behavior from adding messages to itself to ignoring all messages. 

SUPERVISE

An actor needs to supervise the actors that it creates. The supervisor in the chat appli-
cation can keep track of what’s happening to the main components, as shown in fig-
ure 1.18. 

The Supervisor decides what should happen when components fail in the system. It
could, for example, decide that the chat application continues when the Mentions
component and Notify actor have crashed, since they’re not critical components.
The Supervisor gets notified with special messages that indicate which actor has
crashed, and for what reason. The Supervisor can decide to restart an actor or take
the actor out of service. 

 Any actor can be a supervisor, but only for actors that it creates itself. In figure 1.19
the TeamFinder actor supervises the two connectors for looking up contacts. In this
case it could decide to take the OutlookContacts actor out of service because it failed
too often. The TeamFinder will then continue looking up contacts from Google only. 

Supervisor
actor

Mentions
actor

TeamFinder
actor

Conversations
actor

NotifyUser
actor Figure 1.18 Supervise

TeamFinder
actor

OutlookContacts
connector actor

GoogleContacts
actor

Outlook is taken out of
service. It failed too often.

Figure 1.19 TeamFinder
supervising contacts actors
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Now that we’ve looked at the operations that an actor can perform, let’s look at how
Akka supports actors and what’s required to make them actually process messages. 

1.7 Akka actors
So far we’ve discussed the actor programming model from a conceptual perspective
and why you would want to use it. Let’s see how Akka implements the actor model and
get closer to where the rubber meets the road. We’ll look at how everything connects
together—which Akka components do what. In the next section, we’ll start with the
details of actor creation. 

1.7.1 ActorSystem

The first thing we’ll look at is how actors are created. Actors can create other actors,
but who creates the first one? See figure 1.20.

 The chat application’s first actor is the Supervisor actor. All the actors shown in
figure 1.20 are part of the same application. How do we make actors part of one big-
ger whole, one bigger picture? The answer that Akka provides for this is the Actor-
System. The first thing that every Akka application does is create an ActorSystem.
The actor system can create so called top-level actors, and it’s a common pattern to

Actors: decoupled on three axes
Another way to look at actors is how they’re decoupled, on three axes, for the pur-
pose of scaling: 

 Space/Location 
 Time
 Interface

Decoupling on exactly these three axes is important because this is exactly the flex-
ibility that’s required for scaling. Actors might run at the same time if there are enough
CPUs, or might run one after the other if not. Actors might be co-located, or far apart,
and in a failure scenario actors might receive messages that they can’t handle. 

 Space—An actor gives no guarantee and has no expectation about where
another actor is located. 

 Time—An actor gives no guarantee and has no expectation about when its
work will be done. 

 Interface—An actor has no defined interface. An actor has no expectation
about which messages other components can understand. Nothing is shared
between actors; actors never point to or use a shared piece of information
that changes in place. Information is passed in messages. 

Coupling components in location, time, and interface is the biggest impediment to
building applications that can recover from failure and scale according to demand. A
system built out of components that are coupled on all three axes can only exist on
one runtime and will fail completely if one of its components fails.
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create only one top-level actor for all actors in the application—in our case, the
Supervisor actor that monitors everything. 

 We’ve touched on the fact that we’ll need support capabilities for actors, like
remoting and a journal for durability. The ActorSystem is also the nexus for these
support capabilities. Most capabilities are provided as Akka extensions, modules that
can be configured specifically for the ActorSystem in question. A simple example of a
support capability is the scheduler, which can send messages to actors periodically.

 An ActorSystem returns an address to the created top-level actor instead of the
actor itself. This address is called an ActorRef. The ActorRef can be used to send
messages to the actor. This makes sense when you think about the fact that the actor
could be on another server. 

 Sometimes you’d like to look up an actor in the actor system. This is where Actor-
Paths come in. You could compare the hierarchy of actors to a URL path structure.
Every actor has a name. This name needs to be unique per level in the hierarchy: two
sibling actors can’t have the same name (if you don’t provide a name, Akka generates
one for you, but it’s a good idea to name all your actors). All actor references can be
located directly by an actor path, absolute or relative. 

1.7.2 ActorRef, mailbox, and actor

Messages are sent to the actor’s ActorRef. Every actor has a mailbox—it’s a lot like a
queue. Messages sent to the ActorRef will be temporarily stored in the mailbox to be
processed later, one at a time, in the order they arrived. Figure 1.21 shows the rela-
tionship between the ActorRef, the mailbox, and the actor. 

 How the actor actually processes the messages is described in the next section. 
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Conversation
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Figure 1.20 TeamChatActorSystem
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1.7.3 Dispatchers 

Actors are invoked at some point by a dispatcher. The dispatcher pushes the messages
in the mailbox through the actors, so to speak. This is shown in figure 1.22. 

 The type of dispatcher determines which threading model is used to push the mes-
sages through. Many actors can get messages pushed through on several threads, as
shown in figure 1.23. 

 Figure 1.23 shows that messages m1 through m6 are going to be pushed through by
the dispatcher on threads 1 and 2, and x4 through x9 on threads 3 and 4. This figure
shouldn’t make you think that you can or should control exactly which message will be

ActorRefm7 m6

Mailbox

m5

m4

m3

m2

m1

Do something with a message
here, one at a time.

Messages are temporarily
stored in the mailbox.

Actor
Figure 1.21 ActorRef, 
mailbox, actor
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Figure 1.22 Dispatcher pushes messages 
through mailbox
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through many actors
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pushed through on which thread. What’s important here is that you can configure the
threading model to quite some extent. All kinds of dispatchers can be configured in
some way, and you can allocate a dispatcher to an actor, a specific group of actors, or to
all actors in the system. 

 So when you send a message to an actor, all you’re really doing is leaving a message
behind in its mailbox. Eventually a dispatcher will push it through the actor. The
actor, in turn, can leave a message behind for the next actor, which will be pushed
through at some point. 

 Actors are lightweight because they run on top of dispatchers; the actors aren’t nec-
essarily directly proportional to the number of threads. Akka actors take a lot less space
than threads: around 2.7 million actors can fit in 1 GB of memory. That’s a big differ-
ence compared to 4096 threads for 1 GB of memory, which means that you can create
different types of actors more freely than you would when using threads directly. 

 There are different types of dispatchers to choose from that can be tuned to spe-
cific needs. Being able to configure and tune the dispatchers and the mailboxes that
are used throughout the application gives a lot of flexibility when performance tun-
ing. We give a couple of simple tips on performance tuning in chapter 15. 

CALLBACK HELL A lot of frameworks out there provide asynchronous pro-
gramming through callbacks. If you’ve used any of these, chances are high
you’ve been to a place that is called Callback Hell, where every callback calls
another callback, which calls another callback, and so on. 

Compare this to how the dispatcher chops up the messages in mailboxes
and pushes them through on a given thread. Actors don’t need to provide a
callback in a callback, all the way down to some sulfur pit, which is good news.
Actors simply drop off messages in mailboxes and let the dispatcher sort out
the rest. 

1.7.4 Actors and the network

How do Akka actors communicate with each other across the network? ActorRefs are
essentially addresses to actors, so all you need to change is how the addresses are
linked to actors. If the toolkit takes care of the fact that an address can be local or
remote, you can scale the solution just by configuring how the addresses are resolved. 

 Akka provides a remoting module (which we’ll discuss in chapter 6) that enables
the transparency you seek. Akka passes messages for a remote actor on to a remote
machine where the actor resides, and passes the results back across the network. 

 The only thing that has to change is how the reference to remote actors is looked
up, which can be achieved solely through configuration, as you’ll see later. The code
stays exactly the same, which means that you can often transition from scaling up to
scaling out without having to change a single line of code. 

 The flexibility of resolving an address is heavily used in Akka, as we’ll show
throughout this book. Remote actors, clustering, and even the test toolkit use this
flexibility. 
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1.8 Summary
Let’s recap what you’ve learned in this chapter. Scaling is traditionally hard to get
right. Both inflexibility and complexity quickly get out of control when scaling is
required. Akka actors take advantage of key design decisions that provide more flexi-
bility to scale. 

 Actors are a programming model for scaling up and out, where everything revolves
around sending and receiving messages. Although it’s not a silver bullet for every
problem, being able to work with one programming model reduces some of the com-
plexity of scaling. 

 Akka is centered on actors. What makes Akka unique is how effortlessly it provides
support and additional tooling for building actor-based applications, so that you can
focus on thinking and programming in actors. 

 At this point you should have an intuition that actors can give you more flexibility
at a decent level of complexity, making it far easier to scale. But there’s a lot more to
be learned and, as always, the devil is in the details. 

 But first, let’s get up and running with actors in the next chapter and build a sim-
ple HTTP server and deploy it on a PaaS (platform as a service)! 



Up and running
Our goal here is to show you how quickly you can make an Akka app that not only
does something nontrivial, but is built to do it to scale, even in its easiest, early
incarnations. We’ll clone a project from github.com that contains our example,
and then we’ll walk through the essentials that you need to know to start building
Akka apps. First we’ll look at the dependencies that you need for a minimal app,
using Lightbend’s Simple Build Tool (sbt) to create a single JAR file that can be used
to run the app. We’ll build a minimal ticket-selling app, and in its first iteration
we’ll build a minimal set of REST services. We’ll keep it as simple as possible to
focus on essential Akka features. Finally we’ll show you how easy it is to deploy this
app to the cloud and get it working on Heroku, a popular cloud provider. What will
be most remarkable is how quickly we get to this point!

 One of the most exciting things about Akka is how easy it is to get up and run-
ning, and how flexible it is, given its small footprint runtime, as you’ll soon see.
We’ll ignore some of the infrastructure details, and chapter 12 will go into more
detail on how to use Akka HTTP, but you’ll leave this chapter with enough informa-

In this chapter
 Fetching a project template

 Building a minimal Akka app for the cloud

 Deploying to Heroku
28
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tion to build serious REST interfaces of all types. You’ll see in the next chapter how we
can combine this with TDD (test-driven development).

2.1 Clone, build, and test interface
To make things easier, we’ve published the source code for the app on github.com,
along with all the code for this book. The first thing you have to do is clone the repo
to a directory of your choice.

git clone https://github.com/RayRoestenburg/akka-in-action.git

This will create a directory named akka-in-action that contains the directory chapter-up-
and-running, which contains the example project for this chapter. We expect that you’re
already familiar with Git and GitHub, among other tools. We’ll use sbt, Git, the Heroku
toolbelt, and httpie (an easy to use command-line HTTP client) in this chapter. 

NOTE Please note that Akka 2.4 requires Java 8. If you’ve installed an earlier
version of sbt, please make sure to remove it and upgrade to version 0.13.7 or
higher. It’s also useful to use sbt-extras from Paul Phillips (https://github
.com/paulp/sbt-extras), which automatically figures out which version of sbt
and Scala to use.

Let’s look at the structure of the project. sbt follows a project structure similar to
Maven. The major difference is that sbt allows for the use of Scala in the build files,
and it has an interpreter. This makes it considerably more powerful. For more infor-
mation on sbt, see the Manning Publications title SBT in Action (by Joshua Suereth and
Matthew Farwell; www.manning.com/suereth2/). Inside the chapter-up-and-running
directory, all the code for the server can be found in src/main/scala; configuration
files and other resources in src/main/resources; and the tests in src/test/scala. The
project should build right out of the box. Run the following command inside the
chapter-up-and-running directory and keep your fingers crossed:

sbt assembly

You should see sbt booting up, getting all needed dependencies, running all the tests,
and finally building one fat JAR into target/scala-2.11/goticks-assembly-1.0.jar. You
could run the server by simply running the commands in the followng listing.

java -jar target/scala-2.11/goticks-assembly-1.0.jar
RestApi bound to /0:0:0:0:0:0:0:0:5000

Listing 2.1 Clone the example project

Listing 2.2 Running the JAR

Clone Git repo with complete,
working example code

Compiles and packages the code into a single JAR

Runs the app like 
any other Java code

Output to the console: HTTP server
is started and listens on port 5000

http://www.manning.com/suereth2/
https://github.com/paulp/sbt-extras
https://github.com/paulp/sbt-extras
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ab
our 
Now that we’ve verified that the project builds correctly, it’s time to talk about what it
does. In the next section, we’ll start with the build file and then look at the resources,
and the actual code for the services. 

2.1.1 Build with sbt

Let’s first look at the build file. We’re using the simple sbt DSL (domain-specific lan-
guage) for build files in this chapter because it gives us all we need right now. As we go
forward in the book, we’ll be back to add more dependencies, but you can see that for
your future projects you’ll be able to get going quickly, and without the aid of a tem-
plate, or by cutting and pasting large build files from other projects. If you haven’t
worked with the sbt settings DSL before, it’s important to note that you need to put an
empty line between setting lines in the file (which is not required in full configuration
mode, in which case you can write Scala code as usual). The build file is located
directly under the chapter-up-and-running directory in a file called build.sbt.

enablePlugins(JavaServerAppPackaging)

name := "goticks"

version := "1.0"

organization := "com.goticks"

libraryDependencies ++= {  
  val akkaVersion       = "2.4.9"
  Seq(
    "com.typesafe.akka" %% "akka-actor"      % akkaVersion,
    "com.typesafe.akka" %% "akka-http-core"  % akkaVersion, 
    "com.typesafe.akka" %% "akka-http-experimental"  % akkaVersion, 
    "com.typesafe.akka" %% "akka-http-spray-json-experimental"  % 

akkaVersion, 
    "io.spray"          %% "spray-json"      % "1.3.1",
    "com.typesafe.akka" %% "akka-slf4j"      % akkaVersion,
    "ch.qos.logback"    %  "logback-classic" % "1.1.3",
    "com.typesafe.akka" %% "akka-testkit"    % akkaVersion   % "test",
    "org.scalatest"     %% "scalatest"       % "2.2.0"       % "test"
  )
}

In case you were wondering where the libraries are downloaded from, sbt uses a set of
predefined repositories, including a Lightbend repository that hosts the Akka librar-
ies that we use here. For those with experience in Maven, this looks decidedly more
compact. Like Maven, once we have the repository and dependency mapped, we can
easily get newer versions by just changing a single value.

 Every dependency points to a Maven artifact in the format organization % module
% version (the %% is for automatically using the right Scala version of the library).
The most important dependency here is the akka-actor module. Now that we have our

Listing 2.3 The sbt build file

Needed for deploying to Heroku 
(coming up)

Info
out
app

Tells sbt about remote 
repositories to get 
dependencies from

The
version
of Akka

we’re
using

The Akka actor
module 
dependency 
(Lightbend was 
formerly 
Typesafe; hence 
the package 
names)
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build file set up, we can compile the code, run the tests, and build the JAR file. Run
the following command in the chapter-up-and-running directory.

sbt clean compile test

If any dependencies still need to be downloaded, sbt will do that automatically. Now
that we have the build file in place, let’s take a closer look at what we’re trying to
achieve with this example in the next section. 

2.1.2 Fast-forward to the GoTicks.com REST server

Our ticket-selling service will allow customers to buy tickets to all sorts of events, con-
certs, sports games, and the like. Let’s say we’re part of a startup called GoTicks.com,
and in this first iteration we’ve been assigned to build the backend REST server for the
first version of the service. Right now we want customers to get a numbered ticket to a
show. Once all the tickets are sold for an event, the server should respond with a 404
(Not Found) HTTP status code. The first thing we’ll implement in the REST API will
have to be the addition of a new event (since all other services will require the pres-
ence of an event in the system). A new event only contains the name of the event—say
"RHCP" for the Red Hot Chili Peppers—and the total number of tickets we can sell for
the given venue.

 The requirements for the RestApi are shown in table 2.1.

Listing 2.4 Running tests

Table 2.1 REST API

Description
HTTP 

method
URL Request body Status code Response example

Create an 
event

POST /events/RHCP { "tickets" : 250} 201 Created {
    "name": "RHCP",
    "tickets": 250
}

Get all 
events

GET /events N/A 200 OK  [ { event : "RHCP", 
tickets : 249 }, { 
event : "Radiohead", 

tickets : 130 } ] 

Buy tickets POST /events/RHCP/
tickets

 { "tickets" : 2 } 201 Created  { "event" : "RHCP", 
"entries" : [ { "id" 
: 1 }, { "id" : 2 } ] 

} 

Cancel 
an event

DELETE /events/RHCP N/A 200 OK  { event : "RHCP", 
tickets : 249 }

Delete target; then compile and run tests
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Let’s build the app and run it inside sbt. Go to the chapter-up-and-running directory
and execute the following command.

sbt run

[info] Running com.goticks.Main
INFO [Slf4jLogger]: Slf4jLogger started
RestApi bound to /0:0:0:0:0:0:0:0:5000

As are most build tools, sbt is similar to make: if the code needs to be compiled, it will
be; then packaged, and so on. Unlike a lot of build tools, sbt can also deploy and run
the app locally. If you get an error, make sure that you’re not already running the
server in another console, or that some other process isn’t already using port 5000.
Let’s see if everything works by using httpie,1 a human-readable HTTP command-line
tool that makes it simple to send HTTP requests. It has support for JSON and handles
the required housekeeping in headers, among other things. First let’s see if we can
create an event with a number of tickets.

http POST localhost:5000/events/RHCP tickets:=10

HTTP/1.1 201 Created
Connection: keep-alive
Content-Length: 76
Content-Type: text/plain; charset=UTF-8
Date: Mon, 20 Apr 2015 12:13:35 GMT
Proxy-Connection: keep-alive
Server: GoTicks.com REST API

{
    "name": "RHCP",
    "tickets": 10
}

The parameter is transformed into a JSON body. Notice the parameter uses := instead
of =. This means that the parameter is a non-string field. The format of our command
is translated into { "tickets" : 10}. The whole following block is the complete HTTP
response dumped by httpie to the console. The event is now created. Let’s create
another one:

http POST localhost:5000/events/DjMadlib tickets:=15

Now let’s try out the GET request. Per the REST conventions, a GET whose URL ends
with an entity type should return a list of known instances of that entity.

Listing 2.5 Starting up the app locally with sbt

1 You can get httpie here: https://github.com/jakubroztocil/httpie

Listing 2.6 Creating an event from the command line

Tells the build tool to compile and run our app

httpie command simply 
sends POST request 
to our running server, 
with one parameter

Response from the 
server (201 Created 
indicates success)

https://github.com/jakubroztocil/httpie
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http GET localhost:5000/events
...
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 110
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Apr 2015 12:18:01 GMT
Proxy-Connection: keep-alive
Server: GoTicks.com REST API

{
"events": [

{
"name": "DjMadlib",
"tickets": 15

},
{

"name": "RHCP",
"tickets": 10

}
]

}

Notice that we see both events, and all the tickets are still available. Now let’s see if we
can buy two tickets for the RHCP event.

http POST localhost:5000/events/RHCP/tickets tickets:=2

HTTP/1.1 201 Created
Connection: keep-alive
Content-Length: 74
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Apr 2015 12:19:41 GMT
Proxy-Connection: keep-alive
Server: GoTicks.com REST API

{
"entries": [

{
"id": 1

},
{

"id": 2
}

],
"event": "RHCP"

}

Listing 2.7 Requesting a list of all events

Listing 2.8 Purchasing two tickets to RHCP

Requests a list of all 
current Event instances

Completes response 
from our HTTP server
(200 indicates success)

Sends a POST to 
request 2 tickets

Server response in the 
console (201 Created 
indicates the tickets 
have been created)

The tickets we 
purchased, as JSON
www.allitebooks.com

http://www.allitebooks.org
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The presumption here is that there are at least two Tickets left for this Event; other-
wise, we’d have gotten a 404.

 If you do the GET with path /events again, you should see the following response.

HTTP/1.1 200 OK
Content-Length: 91
Content-Type: application/json; charset=UTF-8
Date: Mon, 20 Apr 2015 12:19:42 GMT
Server: GoTicks.com REST API

[
{

"event":
"DjMadlib",
"nrOfTickets": 15

},
{

"event":
"RHCP",
"nrOfTickets": 8

}
]

As expected, there are now only 8 tickets left for RHCP. You should get a 404 after buy-
ing all tickets.

HTTP/1.1 404 Not Found
Content-Length: 83
Content-Type: text/plain
Date: Tue, 16 Apr 2013 12:42:57 GMT
Server: GoTicks.com REST API

The requested resource could not be found
but may be available again in the future.

That concludes all the API calls in the REST API. Clearly, at this point, the application
supports the basic Event CRUD cycle, from creation of the actual Event through the
sale of all the tickets until they’re sold out. This isn’t comprehensive; for instance,
we’re not accounting for events that won’t sell out, but whose tickets will need to
become unavailable once the actual event has started. Now let’s look at the details of
how we’re going to get to this result in the next section. 

2.2 Explore the actors in the app
In this section we’ll look at how the app is built. You can participate and build the
actors yourself, or just follow along from the source code on github.com. As you now

Listing 2.9 GET after two events created

Listing 2.10 Results when seats are gone

Server responds with 
404 when we’re out of 
Tickets for an Event
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know, actors can perform four operations; create, send/receive, become, and super-
vise. In this example we’ll only touch on the first two operations. First, we’ll take a
look at the overall structure: how operations will be carried out by the various collabo-
rators (actors) to provide the core functionality—creating events, issuing tickets, and
finishing events.

2.2.1 Structure of the app

The app consists of two actor classes in total. The first thing we have to do is create an
actor system that will contain all the actors. After that the actors can create each other.
Figure 2.1 shows the sequence.

The RestApi contains a number of routes to handle the HTTP requests. The routes
define how HTTP requests should be handled using a convenient DSL, which is pro-
vided by the akka-http module. We’ll discuss the routes in section 2.2.4. The RestApi
is basically an adapter for HTTP: it takes care of converting from and to JSON, and pro-
vides the required HTTP response. We’ll show later how we connect this actor to an
HTTP server. Even in this simplest example, you can see how the fulfillment of a
request spawns a number of collaborators, each with specific responsibilities. The
TicketSeller eventually keeps track of the tickets for one particular event and sells
the tickets. Figure 2.2 shows how a request for creating an Event flows through the
actor system (this was the first service we showed in table 2.1).

Actor

RestApi

Creates

Actor

BoxOffice

Creates

Actor

TicketSeller

First the actor
system is created.

The RestApi interface is the
top-level actor in our app. 

The RestApi interface creates
one BoxOffice actor. 

The BoxOffice creates
a TicketSeller per event.

ActorSystem

Figure 2.1 Actor creation sequence triggered by REST request
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The second service we discussed was the ability for a Customer to purchase a ticket
(now that we have an Event). Figure 2.3 shows what should happen when such a ticket
purchase request is received (as JSON).

 Let’s step back and start looking at the code as a whole. First up: the Main class,
which starts everything up. The Main object is a simple Scala app that you can run just
like any other Scala app. It’s similar to a Java class with a main method. Before we get
into the complete listing of the Main class, let’s look at the most important expressions
first, starting with the import statements in listing 2.11.

Actor

RestApi

HTTP JSON

{ "tickets" : 200 }

Message

CreateEvent("RHCP", 20)

Actor

BoxOffice

Creates
TicketSeller

child “RHCP”

Actor

TicketSeller

RestApi receives POST /events/RHCP
with JSON { “tickets” : 200 }

BoxOffice receives CreateEvent and
creates a child TicketSeller with name
“RHCP”, which is the name of the event

RestApi creates CreateEvent
message from JSON request and
sends it to the BoxOffice

ActorSystem

Figure 2.2 Creating an event 
from the received JSON request
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import akka.actor.{ ActorSystem , Actor, Props }
import akka.event.Logging
import akka.util.Timeout 

import akka.http.scaladsl.Http

Listing 2.11 Main class import statements

Actor

RestApi

Message

TicketRequest
("RHCP", 2)

HTTP request

{"tickets" : 2}

HTTP JSON

{
 "event" : "RHCP",
 "entries":[
  {"id" : 1},
  {"id" : 2}
 ]
}

Message

Buy(2)

Actor

BoxOffice

Actor

TicketSeller

Message

Tickets(Vector(
 Ticket(1),
 Ticket(2)
))

RestApi receives
POST /events/RHCP/tickets
request

RestApi responds
with JSON tickets

TicketSeller responds
to original sender
with the Tickets

RestApi creates
TicketRequest from
the JSON request and
sends it to the BoxOffice

The BoxOffice finds child
with name "RHCP" and
forwards the Buy message
to it. The sender of the
message as seen from the
TicketSeller is the RestApi. 

ActorSystem

Figure 2.3 Buying a ticket

Actor-related code is located 
in akka.actor package

Logging extension
Asking requires timeout

HTTP-related code is located 
in akka.http package
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import akka.http.scaladsl.Http.ServerBinding
import akka.http.scaladsl.server.Directives._
import akka.stream.ActorMaterializer

import com.typesafe.config.{ Config, ConfigFactory }

The Main class needs to create an ActorSystem first. It then creates the RestApi, gets
the HTTP extension, and binds the RestApi routes to the HTTP extension. How this is
done is shown a little later. Akka uses so-called extensions for many supporting tools, as
you’ll see in the rest of this book; Http and Logging are the first examples of these. 

 We don’t want to hardcode configuration parameters like the host and port that
the server should listen to, so we use the Typesafe Config Library to configure this (chap-
ter 7 goes into the details of using this configuration library). 

 The following listing shows the essential expressions to start the ActorSystem and
the HTTP extension, and get the RestApi routes to bind to HTTP, which is the responsi-
bility of the Main object.

object Main extends App
    with RequestTimeout {
  val config = ConfigFactory.load() 
  val host = config.getString("http.host")
  val port = config.getInt("http.port")

  implicit val system = ActorSystem() 
  implicit val ec = system.dispatcher

  val api = new RestApi(system, requestTimeout(config)).routes

  implicit val materializer = ActorMaterializer()
  val bindingFuture: Future[ServerBinding] =
    Http().bindAndHandle(api, host, port)
}

The Main object extends App like any Scala application. 
 The ActorSystem is active immediately after it has been created, starting any

thread pools as required.
Http() returns the HTTP extension. bindAndHandle binds the routes defined in

the RestApi to the HTTP server. bindAndHandle is an asynchronous method that
returns a Future before it has completed. We’ll gloss over the details of this for now
and get back to it later (in chapter 5 on futures). The Main app doesn’t exit immedi-
ately, and the ActorSystem creates non-daemon threads and keeps running (until it’s
terminated).

 The RequestTimeout trait is shown for completeness sake, which makes it possible
for the RestApi to use the configured request timeout in akka-http.

Listing 2.12 Starting the HTTP server

Imports typesafe 
configuration library

Gets the host and a port 
from the configuration

bindAndHandle is asynchronous and 
requires an implicit ExecutionContext.

RestApi 
provides the 
HTTP routes

Starts HTTP server with 
the RestAPI routes
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ent

A t
trait RequestTimeout {
import scala.concurrent.duration._
def requestTimeout(config: Config): Timeout = {

val t = config.getString("spray.can.server.request-timeout")
val d = Duration(t)
FiniteDuration(d.length, d.unit)

}
}

Getting the request timeout is extracted into a RequestTimeout trait (which you can
skip for now; don’t worry if the code isn’t immediately clear). 

 You really don’t need to understand all the details of how the HTTP extension is
making all of this possible yet because we’ll cover them in detail later. 

 The actors in the app communicate with each other through messages. The mes-
sages that an actor can receive or send back on a request are bundled together in the
actors’ companion object. The BoxOffice messages are shown next.

case class CreateEvent(name: String, tickets: Int)

case class GetEvent(name: String)

case object GetEvents

case class GetTickets(event: String, tickets: Int)

case class CancelEvent(name: String)

case class Event(name: String, tickets: Int)

case class Events(events: Vector[Event])

sealed trait EventResponse

case class EventCreated(event: Event) extends EventResponse

case object EventExists extends EventResponse

The TicketSeller sends or receives the messages shown next.

case class Add(tickets: Vector[Ticket])

case class Buy(tickets: Int)

case class Ticket(id: Int)

case class Tickets(event: String,

entries: Vector[Ticket] = Vector.empty[Ticket])

Listing 2.13 The Main object

Listing 2.14 BoxOffice messages 

Listing 2.15 TicketSeller messages 

Uses the default request 
timeout of akka-http 
server configuration

Message to create an event

Message to get an event
Message to request all events
Message to get tickets for an ev
Message to cancel the event

Message describing the event
Message to describe a list of events

Message response to CreateEvent

Message to indicate the
event was created

Message to indicate that 
the event already exists

Message to add tickets 
to the TicketSeller

Message to buy tickets 
from the TicketSeller

icket A list of tickets
for an event
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case object GetEvent

case object Cancel

As is typical of REST apps, we have an interface that revolves around the lifecycles of
the core entities: Events and Tickets. All of these messages are immutable (since they
are case classes or objects). The Actors have to be designed to get all the information
they need, and produce all that is needed if they enlist any collaborators. This lends
itself well to REST. In the next sections, we’ll look at the Actors in more detail. We’ll
start from the TicketSeller and work our way up. 

2.2.2 The actor that handles the sale: TicketSeller

The TicketSeller is created by the BoxOffice and simply keeps a list of tickets. Every
time tickets are requested, it takes the number of requested tickets off the list. The fol-
lowing listing shows the code for the TicketSeller.

class TicketSeller(event: String) extends Actor {
import TicketSeller._

var tickets = Vector.empty[Ticket]

def receive = {
case Add(newTickets) => tickets = tickets ++ newTickets
case Buy(nrOfTickets) =>

val entries = tickets.take(nrOfTickets).toVector
if(entries.size >= nrOfTickets) {

sender() ! Tickets(event, entries)
tickets = tickets.drop(nrOfTickets)

} else sender() ! Tickets(event)
case GetEvent => sender() ! Some(BoxOffice.Event(event, tickets.size))
case Cancel =>

sender() ! Some(BoxOffice.Event(event, tickets.size))
self ! PoisonPill

}
}

The TicketSeller keeps track of the available tickets using an immutable list. A muta-
ble list could have been safe as well because it’s only available within the actor and
therefore never accessed from more than one thread at any given moment.

 Still, you should prefer immutable lists. You might forget that it is mutable when
you return a part of the list or the entire list to another actor. For instance, look at the
take method that we use to get the first couple of tickets off the list. On a mutable list
(scala.collection.mutable.ListBuffer), take returns a list of the same type
(ListBuffer), which is obviously mutable.

 In the next section we’ll look at the BoxOffice actor. 

Listing 2.16 TicketSeller implementation

A message containing the 
remaining tickets for the event

A message to 
cancel the event

e list of
tickets Adds the new tickets to the

existing list of tickets when
Tickets message is received

Takes a number of tickets off the list and responds with a Tickets
message containing the tickets if there are enough tickets

available; otherwise, responds with an empty Tickets message

eturns an
event

containing
e number
of tickets
left when
etEvent is

received
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2.2.3 The BoxOffice actor

The BoxOffice needs to create a TicketSeller child for every event and delegate the
selling to the TicketSeller responsible for the requested event. The following listing
shows how the BoxOffice responds to a CreateEvent message.

def createTicketSeller(name: String) =
context.actorOf(TicketSeller.props(name), name)

def receive = {
case CreateEvent(name, tickets) =>

def create() = {
val eventTickets = createTicketSeller(name)
val newTickets = (1 to tickets).map { ticketId =>

TicketSeller.Ticket(ticketId)
}.toVector
eventTickets ! TicketSeller.Add(newTickets)
sender() ! EventCreated

}
context.child(name).fold(create())(_ => sender() ! EventExists)

The BoxOffice creates a TicketSeller for each event that doesn’t exist yet. Notice
that it uses its context instead of the actor system to create the actor; actors created with
the context of another actor are its children and subject to the parent actor’s supervi-
sion (much more about that in subsequent chapters). The BoxOffice builds up a list
of numbered tickets for the event and sends these tickets to the TicketSeller. It also
responds to the sender of the CreateEvent message that the Event has been created
(the RestApi actor is the sender here). The following listing shows how the BoxOffice
responds to the GetTickets message.

case GetTickets(event, tickets) =>
def notFound() = sender() ! TicketSeller.Tickets(event)
def buy(child: ActorRef) =

child.forward(TicketSeller.Buy(tickets))

context.child(event).fold(notFound())(buy)

The Buy message is forwarded to a TicketSeller. Forwarding makes it possible for
the BoxOffice to send messages as a proxy for the RestApi. The response of the
TicketSeller will go directly to the RestApi. 

 The next message, GetEvents, is more involved and will get you extra credit if you
get it the first time. We’re going to ask all TicketSellers for the number of tickets

Listing 2.17 BoxOffice creates TicketSellers

Listing 2.18 Getting tickets

Creates a TicketSeller using 
its context, defined in a 
separate method so it’s easy 
to override during testing

A local method that 
creates the ticket seller, 
adds the tickets to the 
ticket seller, and responds
with EventCreated

Creates and responds with EventCreated,
or responds with EventExists

Sends an empty Tickets message if 
the ticket seller couldn’t be found

Buys from
the found

TicketSeller Executes notFound or buys 
with the found TicketSeller
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they have left and combine all the results into a list of events. This gets interesting
because ask is an asynchronous operation, and at the same time we don’t want to wait
and block the BoxOffice from handling other requests.

 The following code uses a concept called futures, which will be explained further in
chapter 5, so if you feel like skipping it now that’s fine. If you’re up for a tough chal-
lenge though, let’s look at the code!

case GetEvents =>
import akka.pattern.ask
import akka.pattern.pipe

def getEvents = context.children.map { child =>
self.ask(GetEvent(child.path.name)).mapTo[Option[Event]]

}
def convertToEvents(f: Future[Iterable[Option[Event]]]) =

f.map(_.flatten).map(l=> Events(l.toVector))

pipe(convertToEvents(Future.sequence(getEvents))) to sender()

Right now we’ll skim over this example and just look at the concepts. What’s happening
here is that an ask method returns immediately with a future. A future is a value that’s
going to be available at some point in the future (hence the name). Instead of waiting
for the response value (the event containing the number of tickets left), we get a future
reference (which you could read as “use for future reference”). We never read the value
directly, but instead we define what should happen once the value becomes available.
We can even combine a list of future values into one list of values and describe what
should happen with this list once all of the asynchronous operations complete.

 The code finally sends an Events message back to the sender once all responses
have been handled, by using another pattern, pipe, which makes it easier to eventu-
ally send the values inside futures to actors.

 Don’t worry if this isn’t immediately clear; we have a whole chapter devoted to this
subject. We’re just trying to get you curious about this awesome feature—check out
chapter 5 on futures if you can’t wait to find out how these nonblocking asynchronous
operations work.

 That concludes the salient details of the BoxOffice. We have one actor left in the
app, which will be handled in the next section: the RestApi. 

Listing 2.19 Getting tickets

A local method definition for
asking all TicketSellers about 
the events they sell tickets for

ask returns a Future, a type that will eventually contain a value. getEvents returns
Iterable[Future[Option[Event]]]; sequence can turn this into a Future[Iterable[Option[Event]]].

pipe sends the value inside the Future to an actor the moment it’s complete, in this case the
sender of the GetEvents message, the RestApi.

We’re going to ask all TicketSellers. Asking GetEvent returns an Option[Event], so when
mapping over all TicketSellers we’ll end up with an Iterable[Option[Event]]. This method

flattens the Iterable[Option[Event]] into a Iterable[Event], leaving out all the empty Option
results. The Iterable is transformed into an Events message.
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2.2.4 RestApi

The RestApi uses the Akka HTTP routing DSL, which will be covered in detail in chap-
ter 12. Services interfaces, as they grow, need more sophisticated routing of requests.
Since we’re really just creating an Event and then selling the Tickets to it, our routing
requirements are few at this point. The RestApi defines a couple of classes that it uses
to convert from and to JSON, shown next.

case class EventDescription(tickets: Int) {
require(tickets > 0)

}

case class TicketRequest(tickets: Int) {
require(tickets > 0)

}

case class Error(message: String)

Let’s look at the details of doing simple request routing in the following listings. First,
the RestApi needs to handle a POST request to create an Event.

def eventRoute =
pathPrefix("events" / Segment) { event =>

pathEndOrSingleSlash {
post {

// POST /events/:event
entity(as[EventDescription]) { ed =>

          onSuccess(createEvent(event, ed.tickets)) {
               BoxOffice.EventCreated(event) => complete(Created, event)
               case BoxOffice.EventExists =>
                          val err = Error(s"$event event exists already.")
                          complete(BadRequest, err)
            }

}
} ~
get {

// GET /events/:event
onSuccess(getEvent(event)) {

_.fold(complete(NotFound))(e => complete(OK, e))
}

} ~
delete {

// DELETE /events/:event
onSuccess(cancelEvent(event)) {

_.fold(complete(NotFound))(e => complete(OK, e))
}

}
}

}

Listing 2.20 Event messages used in the RestApi

Listing 2.21 Event route definition

Message containing the initial 
number of tickets for the event

Message containing the 
required number of tickets

Messages containing an error

Creates event using 
createEvent method tha
calls BoxOffice actor

Completes
request with
201 Created
when result
is successful

Completes request 
with 400 
BadRequest if 
event could not be 
created
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The route uses a BoxOfficeApi trait, which has methods that wrap the interaction
with the BoxOffice actor so that the route DSL code stays nice and clean, shown next.

trait BoxOfficeApi {
import BoxOffice._

def createBoxOffice(): ActorRef

implicit def executionContext: ExecutionContext
implicit def requestTimeout: Timeout

lazy val boxOffice = createBoxOffice()

def createEvent(event: String, nrOfTickets: Int) =
boxOffice.ask(CreateEvent(event, nrOfTickets))

.mapTo[EventResponse]

def getEvents() =
boxOffice.ask(GetEvents).mapTo[Events]

def getEvent(event: String) =
boxOffice.ask(GetEvent(event))

.mapTo[Option[Event]]

def cancelEvent(event: String) =
boxOffice.ask(CancelEvent(event))

.mapTo[Option[Event]]

def requestTickets(event: String, tickets: Int) =
boxOffice.ask(GetTickets(event, tickets))

.mapTo[TicketSeller.Tickets]
}

The RestApi implements the createBoxOffice method to create a BoxOffice child
actor. The following code shows a snippet of the DSL that’s used to sell the tickets.

def ticketsRoute =
pathPrefix("events" / Segment / "tickets") { event =>

post {
pathEndOrSingleSlash {

// POST /events/:event/tickets
entity(as[TicketRequest]) { request =>

onSuccess(requestTickets(event, request.tickets)) { tickets =>
if(tickets.entries.isEmpty) complete(NotFound)
else complete(Created, tickets)

}
}

}
}

}

Listing 2.22 BoxOffice API to wrap all interactions with the BoxOffice actor

Listing 2.23 Ticket route definition

Unmarshalls JSON 
tickets request 
into TicketRequest 
case class

Responds with 
404 Not Found 
if the tickets 
aren’t available

Responds with 201 Created,
marshalling the tickets to a

JSON entity
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The messages are automatically converted back to JSON. You can find the details of
how this is done in chapter 12. That concludes all the actors in the first iteration of
the GoTicks.com application. If you followed along or even tried to build this yourself,
congratulations! You’ve just seen how to build your first fully asynchronous Akka actor
app with a fully functional REST API. While the app itself is rather trivial, we’ve already
made it so that the processing is fully concurrent, and the actual selling of tickets is
both scalable (because it’s already concurrent) and fault tolerant (you’ll see much
more on that). This example also showed how you can do asynchronous processing
within the synchronous request/response paradigm of the HTTP world. We hope that
you’ve found that it takes only a few lines of code to build this app. Compare that to a
more traditional toolkit or framework and we’re sure that you’re pleasantly surprised
to see how little code was needed. For a little cherry on the top, we’ll show you what
we need to do to deploy this minimal app to the cloud. We’ll get this app running on
Heroku.com in the next section. 

2.3 Into the cloud
Heroku.com is a popular cloud provider that has support for Scala applications, and
free instances that you can play with. In this section we’ll show you how easy it is to get
the GoTicks.com app up and running on Heroku. We expect that you’ve already
installed the Heroku toolbelt (see https://toolbelt.heroku.com/). If not, please refer to
the Heroku website (https://devcenter.heroku.com/articles/heroku-command) for
how to install it. You’ll also need to sign up for an account on heroku.com. Visit their
site—the signup speaks for itself. In the next section, we’ll first create an app on
heroku.com. After that we’ll deploy it and run it.

2.3.1 Create the app on Heroku

First, log in to your Heroku account and create a new Heroku app that will host our
GoTicks.com app. Execute the following commands in the chapter-up-and-running
directory.

heroku login
heroku create

Creating damp-bayou-9575... done,
stack is cedar
http://damp-bayou-9575.herokuapp.com/
|
git@heroku.com:damp-bayou-9575.git

You should see something like the response shown in the listing.
 We need to add a couple of things to our project so Heroku understands how to

build our code. First the project/plugins.sbt file.

Listing 2.24 Create the app on Heroku

https://devcenter.heroku.com/articles/heroku-command
https://toolbelt.heroku.com/
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resolvers += Classpaths.typesafeReleases

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.13.0")

addSbtPlugin("com.typesafe.sbt" % "sbt-native-
packager" % "1.0.0")

This is a pretty minor intrusion to build one fat JAR and build a native script (in the
case of Heroku, this is a Bash shell script; Heroku runs on Ubuntu Linux). We also
need a Procfile right under the chapter-up-and-running directory, which tells Heroku
that our app should be run on a web dyno—one of the types of processes Heroku runs
on its virtual dyno manifold. The Procfile is shown next.

web: target/universal/stage/bin/goticks

It specifies that Heroku should run the Bash script that the sbt-native-packager
plugin has built. Let’s first test to see if everything runs locally:

sbt clean compile stage

heroku local
23:30:11 web.1 | started with pid 19504
23:30:12 web.1 | INFO [Slf4jLogger]: Slf4jLogger started
23:30:12 web.1 | REST interface bound to /0:0:0:0:0:0:0:0:5000
23:30:12 web.1 | INFO [HttpListener]: Bound to /0.0.0.0:5000

This is all that’s required to prepare an application for deployment on Heroku. It lets
us go through the whole cycle locally so that we’re working at maximum speed while
getting our first deploy done. Once we actually deploy to Heroku, you’ll see that all
subsequent pushes to the cloud instances are accomplished directly through Git by
simply pushing the desired version of the source to our remote instance. The deploy-
ment of the app to the Heroku cloud instance is described in the next section. 

2.3.2 Deploy and run on Heroku

We’ve just verified that we could locally run the app with heroku local. We created a
new app on Heroku with heroku create. This command also added a git remote with
the name heroku to the Git configuration. All we have to do now is make sure all
changes are committed locally to the Git repository. After that, push the code to Her-
oku with the following command:

Listing 2.25 BoxOffice API to wrap all interactions with the BoxOffice actor

Listing 2.26 Heroku Procfile

Uses the Typesafe 
Releases repositoryUses

bly to
e one
R file,
ed for
ment
eroku

Uses the packager to 
create startup scripts 
for running the app 
on Heroku

Cleans target, then builds our
archive but doesn’t deploy

Tells Heroku to
grab archive 
and start up 
our app locally

Heroku manages to load 
the app; we have a PID.
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git subtree push --prefix chapter-up-and-running heroku master

----> Scala app detected
-----> Installing OpenJDK 1.6...
.... // resolving downloads, downloading dependencies
....
-----> Compiled slug size is 43.1MB
-----> Launching... done,

v1 http://damp-bayou-9575.herokuapp.com deployed to Heroku

To git@heroku.com:damp-bayou-9575.git
* [new branch] master -> master

This assumes that you committed any changes to your master branch and that the
project resides in the root of the Git repo. Heroku hooks into the Git push process
and identifies the code as a Scala app. It downloads all dependencies on the cloud,
compiles the code, and starts the application. Finally, you should see something like
the output shown in the listing.

This shows the console on creation of the app; note that Heroku figured out that our
app is a Scala app, so it installed the OpenJDK, and then compiled and launched the
source in the instance. The app is now deployed and started on Heroku. You can now
use httpie again to test the app on Heroku.

http POST damp-bayou-9575.herokuapp.com/events/RHCP tickets:=250
http POST damp-bayou-9575.herokuapp.com/events/RHCP/tickets tickets:=4

These commands should result in the same responses we saw before (see listing 2.10).
Congratulations, you just deployed your first Akka app to Heroku! With that, we con-
clude this first iteration of the GoTicks.com app. Now that the app is deployed on
Heroku, you can call it from anywhere. 

Listing 2.27 Test Heroku instance with httpie

Pushes to Heroku
to deploy

Just as before, Heroku 
now builds app, this 
time on remote instance

Finally, like any other Git push, 
success: master now on remote

Using the project akka-in-action from GitHub
Normally, you’d use git push heroku master to deploy to Heroku. When you’re using
our project akka-in-action from GitHub, this command won’t work, because the appli-
cation isn’t in the root of the Git repo. To make this work, you need to tell Heroku that
it should use a subtree, as follows:

git subtree push --prefix chapter-up-and-running heroku master

For more info see the README.md file within the chapter-up-and-running directory.
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2.4 Summary
In this chapter you’ve seen how little is necessary to build a fully functional REST ser-
vice out of actors. All interactions were asynchronous. The service performed as
expected when we tested it with the httpie command-line tool.

 We even deployed our app (via Heroku.com) into the cloud! We hope you got
excited about what a quick, out-of-the-box experience Akka offers. The GoTicks.com
app isn’t ready for production yet. There’s no persistent storage for tickets. We’ve
deployed to Heroku, but web dynos can be replaced at any time, so only storing the
tickets in memory won’t work in real life. The app is scaled up but has not scaled out
yet to multiple nodes.

 But we promise to look into those topics in later chapters, where we’ll gradually get
closer to a real-world system. In the next chapter, we’ll look at how to test actor systems.



Test-driven development
with actors
It’s amusing to think back to when TDD first appeared on the scene—the primary
objection was that tests took too long, and thus held up development. Though you
rarely hear that today, there’s a vast difference in the testing load both between dif-
ferent stacks, and through different phases (such as unit versus integration tests).
Everyone has a rapid, fluid experience on the unit side, when testing is confined to
a single component. Tests that involve collaborators are where ease and speed gen-
erally evaporate rapidly. Actors provide an interesting solution to this problem for
the following reasons:

 Actors are a more direct match for tests because they embody behavior (and
almost all TDD has at least some BDD—behavior-driven development—in it).

 Too often, regular unit tests test only the interface, or have to test the inter-
face and functionality separately.

In this chapter
 Unit testing actors synchronously

 Unit testing actors asynchronously

 Unit testing actor messaging patterns
49
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 Actors are built on messaging, which has huge advantages for testing, because
you can easily simulate behaviors by sending messages.

Before we start testing (and coding), we’ll take several of the concepts from the previ-
ous chapter and show their expression in code, introducing the Actor API for creating
actors, and then sending and receiving messages. We’ll cover important details about
how actors are actually run and some rules you have to follow to prevent problems.
After that, we’ll move on to the implementation of some common scenarios, taking a
test-driven approach to writing actors, immediately verifying that the code does what
we expect. At each step along the way, we’ll focus first on the goal that we’ll try to
achieve with the code (one of the main points of TDD). Next, we’ll write a test specifi-
cation for the Actor, which will start the development of the code (TDD/test-first
style). Then we’ll write enough code to make the test pass, and repeat. Rules that
need to be followed to prevent accidentally sharing state will be discovered as we go,
as well as some of the details of how actors work in Akka that have an impact on test
development.

3.1 Testing actors
First, we’ll work on how to test sending and receiving messages, in fire-and-forget style
(one-way) followed by request-response style (two-way) interaction. We’ll use the
ScalaTest unit-testing framework that’s also used to test Akka itself. ScalaTest is an
xUnit-style testing framework; if you’re not familiar with it and would like to know
more about it, please visit www.scalatest.org/ for more information. The ScalaTest
framework is designed for readability, so it should be easy to read and follow the test
without much introduction. On first exposure, testing Actors is more difficult than
testing normal objects for a couple of reasons: 

 Timing—Sending messages is asynchronous, so it’s difficult to know when to
assert expected values in the unit test.

 Asynchronicity—Actors are meant to be run in parallel on several threads. Multi-
threaded tests are more difficult than single-threaded tests and require concur-
rency primitives like locks, latches, and barriers to synchronize results from
various actors. This is exactly the kind of thing you want to get further away
from. Incorrect usage of just one barrier can block a unit test, which in turn
halts the execution of a full test suite.

 Statelessness—An actor hides its internal state and doesn’t allow access to this
state. Access should only be possible through the ActorRef. Calling a method
on an actor and checking its state, which is something you’d like to be able to
do when unit testing, is prevented by design.

 Collaboration/Integration—If you wanted to do an integration test of a couple of
actors, you’d need to eavesdrop on the actors to assert that the messages have
the expected values. It’s not immediately clear how this can be done. 
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Luckily, Akka provides the akka-testkit module. This module contains a number of
testing tools that makes testing actors a lot easier. The test kit module makes a couple
of different types of tests possible: 

 Single-threaded unit testing—An actor instance is normally not accessible directly.
The test kit provides a TestActorRef that allows access to the underlying actor
instance. This makes it possible to test the actor instance directly by calling the
methods that you’ve defined, or even call the receive function in a single
threaded environment, just as you’re used to when testing normal objects.

 Multithreaded unit testing—The test kit module provides the TestKit and
TestProbe classes, which make it possible to receive replies from actors, inspect
messages, and set timing bounds for particular messages to arrive. TestKit has
methods to assert expected messages. Actors are run using a normal dispatcher
in a multithreaded environment.

 Multiple JVM testing—Akka also provides tools for testing multiple JVMs, which
comes in handy when you want to test remote actor systems. Multi-JVM testing
will be discussed in chapter 6.

TestKit has TestActorRef extending the LocalActorRef class and sets the dispatcher
to a CallingThreadDispatcher that’s built for testing only. (It invokes the actors on
the calling thread instead of on a separate thread.) This provides one of the key junc-
tion points for advancing the previously listed solutions.

 Depending on your preference, you might use one of the styles more often. The
option that’s closest to actually running your code in production is the multithreaded
style, testing with the TestKit class. We’ll focus more on the multithreaded approach
to testing, since this can show problems with the code that won’t be apparent in a
single-threaded environment. (You probably won’t be surprised that we also prefer a
classical unit testing approach over mocking.)

 Before we start, we’ll have to do a little preparation so that we don’t repeat our-
selves unnecessarily. Once an actor system is created, it’s started and continues to run
until it’s stopped. In all our tests, we need to create actor systems and we have to stop
them. To make life easier, let’s build a small trait we can use for all the tests that makes
sure that the system under test is automatically stopped when the unit test ends. 

import org.scalatest.{ Suite, BeforeAndAfterAll }
import akka.testkit.TestKit

trait StopSystemAfterAll extends BeforeAndAfterAll {
this: TestKit with Suite =>
override protected def afterAll() {

super.afterAll()
system.shutdown()

}
}

Listing 3.1 Stop the system after all tests are done

Extends from the 
BeforeAndAfterAll ScalaTest 

This trait can only be used if it’s mixed 
in with a test that uses the TestKit.

Shuts down the system
provided by the TestKit after
all tests have executed
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We’ve placed this file in the directory src/test/scala/aia/testdriven, because all the
test code should be placed within the src/test/scala directory, which is the root direc-
tory of the all the test code. We’ll mixin this trait when we write our tests, so that the
system is automatically shut down after all tests are executed. The TestKit exposes a
system value, which can be accessed in the test to create actors and everything else
you would like to do with the system.

 In the next sections, we’ll use the test kit module to test some common scenarios
when working with actors, both in a single-threaded and in a multithreaded environ-
ment. There are only a few different ways for the actors to interact with each other.
We’ll explore the different options that are available and test the specific interaction
with the test kit module. 

3.2 One-way messages
Remember, we’ve left the land of “invoke a function and wait on the response,” so the
fact that our examples merely send one-way messages with tell is deliberate. Given
this fire-and-forget style, we don’t know when the message arrives at the actor, or even
if it arrives, so how do we test this? What we’d like to do is send a message to an actor,
and after sending the message, check that the actor has done the work it should’ve
done. An actor that responds to messages should do something with a message and
take some kind of action, like send a message to another actor, store some internal
state, interact with another object, or interact with I/O. If the actor’s behavior is com-
pletely invisible from the outside, we can only check if it handled the message without
any errors, and we could try to look into the state of the actor with the TestActorRef.
There are three variations that we’ll look at: 

 SilentActor—An actor’s behavior is not directly observable from the outside;
it might be an intermediate step that the actor takes to create some internal
state. We want to test that the actor at least handled the message and didn’t
throw any exceptions. We want to be sure that the actor has finished. We want
to test the internal state change.

 SendingActor—An actor sends a message to another actor (or possibly many
actors) after it’s done processing the received message. We’ll treat the actor as a
black box and inspect the message that’s sent out in response to the message it
received.

 SideEffectingActor—An actor receives a message and interacts with a normal
object in some kind of way. After we send a message to the actor, we’d like to
assert if the object was affected. 

We’ll write a test for each type of actor in this list that will illustrate the means of veri-
fying results in tests you write.
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3.2.1 SilentActor examples

Let’s start with the SilentActor. Since it’s our first test, let’s briefly go through the use
of ScalaTest.

class SilentActor01Test extends TestKit(ActorSystem("testsystem"))

with WordSpecLike

with MustMatchers

with StopSystemAfterAll {

"A Silent Actor" must {

"change state when it receives a message, single threaded" in {

//Write the test, first fail

fail("not implemented yet")

}

"change state when it receives a message, multi-threaded" in {

//Write the test, first fail

fail("not implemented yet")

}

}

}

This code is the basic skeleton that we need to start running a silent actor test. We use
the WordSpec style of testing, which is BDD, since it makes it possible to write the test as
a number of textual specifications, which will also be shown when the test is run (the
tests are the behavior specification). In the preceding code, we create a specification
for the silent actor type with a test that should, as it says, “change internal state when it
receives a message.” Right now, it always fails, since it’s not implemented yet—as is
expected in red-green-refactor style, where you first make sure the test fails (red), then
implement the code to make it pass (green), after which you might refactor the code
to make it nicer. In the following listing we define an Actor that does nothing, and will
always fail the tests.

class SilentActor extends Actor {
def receive = {

case msg =>
}

}

Listing 3.2 First test for the silent actor type

Listing 3.3 First failing implementation of the silent actor type 

Extends from TestKit and provides
an actor system for testingWordSpecLike provides easy-to-read 

DSL for testing in BDD style

MustMatchers provides 
easy-to-read assertionsMakes

sure the
ystem is
stopped
after all

tests

Write tests as textual specifications

Every “in”
describes 
specific te

Swallows any message; doesn’t 
keep any internal state
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To run all the tests at once, run the command sbt test. But it’s also possible to run
only one test. To do this, start sbt in the interactive mode and run the testOnly com-
mand. In the next example, we run the test aia.testdriven.SilentActor01Test:

sbt
...
> testOnly aia.testdriven.SilentActor01Test

Now let’s first write the test to send the silent actor a message and check that it
changes its internal state. The SilentActor actor will have to be written for this test to
pass, as well as its companion object (an object that has the same name as the actor).
The companion object contains the message protocol; that is, all the messages that
SilentActor supports, which is a nice way of grouping messages that are related to
each other, as you’ll see later. The following listing is a first pass at this.

"change internal state when it receives a message, single" in {
import SilentActor._

val silentActor = TestActorRef[SilentActor]
silentActor ! SilentMessage("whisper")
silentActor.underlyingActor.state must (contain("whisper"))

}

This is the simplest version of the typical TDD scenario: trigger something and check
for a state change. Now let’s write the SilentActor actor. The next listing shows our
first version of the actual actor implementation.

object SilentActor {
case class SilentMessage(data: String)
case class GetState(receiver: ActorRef)

}

class SilentActor extends Actor {
import SilentActor._
var internalState = Vector[String]()

def receive = {
case SilentMessage(data) =>

internalState = internalState :+ data
}

def state = internalState
}

Listing 3.4 Single-threaded test internal state

Listing 3.5 SilentActor implementation

Imports the messages

Gets the underlying actor
and asserts the stateCreates a TestActorRef for

single-threaded testing

A companion object that keeps 
related messages together

The message type that the 
SilentActor can process

State is kept in a vector; every 
message is added to this vector

State method returns 
the built-up vector
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Since the returned list is immutable, the test can’t change the list and cause problems
when asserting the expected result. It’s completely safe to set/update the internal-
State var, since the Actor is protected from multithreaded access. In general, it’s
good practice to prefer vars in combination with immutable data structures, instead of
vals in combination with mutable data structures. (This prevents accidentally sharing
mutable state if you send the internal state in some way to another actor.)

 Now let’s look at the multithreaded version of this test. As you’ll see, we’ll have to
change the code for the actor a bit as well. Just like in the single-threaded version
where we added a state method to make it possible to test the actor, we’ll have to add
some code to make the multithreaded version testable. The following listing shows
how we make this work.

"change internal state when it receives a message, multi" in {
import SilentActor._

val silentActor = system.actorOf(Props[SilentActor], "s3")
silentActor ! SilentMessage("whisper1")
silentActor ! SilentMessage("whisper2")
silentActor ! GetState(testActor)
expectMsg(Vector("whisper1", "whisper2"))

}

The multithreaded test uses the ActorSystem that’s part of the TestKit to create a
SilentActor actor.

 An actor is always created from a Props object. The Props object describes how the
actor should be created. The simplest way to create a Props is to create it with the
actor type as its type argument, in this case Props[SilentActor]. A Props created this
way will eventually create the actor using its default constructor. 

 Since we now can’t just access the actor instance when using the multithreaded
actor system, we’ll have to come up with another way to see state change. For this a
GetState message is added, which takes an ActorRef. The TestKit has a testActor,
which you can use to receive messages that you expect. The GetState method we
added is so we can have our SilentActor send its internal state there. That way we can
call the expectMsg method, which expects one message to be sent to the testActor
and asserts the message; in this case it’s a Vector with all the data fields in it.

Listing 3.6 Multithreaded test of internal state

A companion object that keeps 
related messages together

Test
system is

used to
create an

actor

Message is added to the 
companion to get state

Used to check what 
message(s) have been
sent to the testActor

Timeout settings for the expectMsg* methods
The TestKit has several versions of the expectMsg and other methods for asserting
messages. All of these methods expect a message within a certain amount of time;
otherwise, they time out and throw an exception. The timeout has a default value that
can be set in the configuration using the akka.test.single-expect-default key.
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Now all we need is the code for the silent actor that can also process GetState messages.

object SilentActor {
case class SilentMessage(data: String)
case class GetState(receiver: ActorRef)

}

class SilentActor extends Actor {
import SilentActor._
var internalState = Vector[String]()

def receive = {
case SilentMessage(data) =>

internalState = internalState :+ data
case GetState(receiver) => receiver ! internalState

}
}

The internal state is sent back to the ActorRef in the GetState message, which in this
case will be the testActor. Since the internal state is an immutable Vector, this is
completely safe. This is it for the SilentActor types: single- and multithreaded vari-
ants. Using these approaches, we can construct tests that are familiar to most pro-
grammers: state changes can be inspected and asserted upon by leveraging a few tools
in the TestKit. 

3.2.2 SendingActor example

It’s common for an actor to take an ActorRef through a props method, which it will
use at a later stage to send messages to. In this example we’ll build a SendingActor
that sorts lists of events and sends the sorted lists to a receiver actor.

Listing 3.7 SilentActor implementation 

(continued)
A dilation factor is used to calculate the actual time that should be used for the time-
out (it’s normally set to 1, which means the timeout is not dilated). Its purpose is to
provide a means of leveling machines that can have vastly different computing capa-
bilities. On a slower machine, we should be prepared to wait a bit longer (it’s common
for developers to run tests on their fast workstations, and then commit and have
slower continuous integration servers fail). Each machine can be configured with the
factor needed to achieve a successful test run (check out chapter 7 for more details
on configuration). The max timeout can also be set on the method directly, but it’s
better to just use the configured values, and change the values across tests in the
configuration if necessary.

GetState message is added 
for testing purposes

Internal state is 
sent to ActorRef in
GetState message
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  "A Sending Actor" must {
    "send a message to another actor when it has finished processing" in {
      import SendingActor._
      val props = SendingActor.props(testActor)
      val sendingActor = system.actorOf(props, "sendingActor")

      val size = 1000
      val maxInclusive = 100000

      def randomEvents() = (0 until size).map{ _ =>
        Event(Random.nextInt(maxInclusive))
      }.toVector

      val unsorted = randomEvents()
      val sortEvents = SortEvents(unsorted)
      sendingActor ! sortEvents

      expectMsgPF() {
        case SortedEvents(events) =>
          events.size must be(size)
          unsorted.sortBy(_.id) must be(events)
      }
    }
  }

A SortEvents message is sent to the SendingActor. The SortEvents message contains
events that must be sorted. The SendingActor should sort the events and send a
SortedEvents message to a receiver actor. In the test we pass in the testActor instead
of a real actor that would process the sorted events, which is easily done, since the
receiver is just an ActorRef. Since the SortEvents message contains a random vector
of events, we can’t use an expectMsg(msg); we can’t formulate an exact match for it. In
this case we use expectMsgPF, which takes a partial function just like the receive of the
actor. Here we match the message that was sent to the testActor, which should be a
SortedEvents message containing a sorted vector of Events. If we run the test now, it
will fail because we haven’t implemented the message protocol in SendingActor. Let’s
do that now.

object SendingActor {
  def props(receiver: ActorRef) =
    Props(new SendingActor(receiver))
  case class Event(id: Long)  
  case class SortEvents(unsorted: Vector[Event])
  case class SortedEvents(sorted: Vector[Event])
}

class SendingActor(receiver: ActorRef) extends Actor {
  import SendingActor._
  def receive = {
    case SortEvents(unsorted) =>
      receiver ! SortedEvents(unsorted.sortBy(_.id))

Listing 3.8 Sending actor test

Listing 3.9 SendingActor implementation

Receiver is passed to 
props method that 
creates Props; in the test 
we pass in a testActor

Randomized 
unsorted list of 
events is created

testActor should 
receive a sorted 
Vector of Events

receiver is passed through the Props to 
the constructor of the SendingActor; in
the test we pass in a testActor.

The SortedEvent message 
is sent to the SendingActor.

The SortedEvent message 
is sent to the receiver
after the SendingActor
has sorted it.

SortEvents and 
SortedEvents both use 
an immutable Vector.
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We once again create a companion that contains the message protocol. It also con-
tains a props method that creates the Props for the actor. In this case the actor needs
to be passed the actor reference of the receiver, so another variation of Props is used.

 Calling Props(arg) translates to calling the Props.apply method, which takes a
by-name creator parameter. By-name parameters are evaluated when they’re refer-
enced for the first time, so new SendingActor(receiver) is only executed once Akka
needs to create it. Creating the Props in the companion object has the benefit that
you can’t refer to an actor’s internals, in the case where you would need to create an
actor from an actor. Using something internal to the actor from the Props could lead
to race conditions, or it could cause serialization issues if the Props itself were used
inside a message that needs to be sent across the network. We’ll use this recom-
mended practice for creating props as we go along.

 The SendingActor sorts the unsorted Vector using the sortBy method, which cre-
ates a sorted copy of the vector, which can be safely shared. The SortedEvents is sent
along to the receiver. Once again, we take advantage of the immutable property of
case classes and of the immutable Vector data structure.

 Let’s look at some variations of the SendingActor type. Table 3.1 shows some com-
mon variations on the theme.

The MutatingCopyActor, ForwardingActor, and TransformingActor can all be tested
in the same way. We can pass in a testActor as the next actor to receive messages and
use expectMsg or expectMsgPF to inspect the messages. The FilteringActor is differ-
ent in that it addresses the question of how we can assert that some messages were not
passed through. The SequencingActor needs a similar approach. How can we assert
that we received the correct number of messages? The next test will show you how.

 Let’s write a test for the FilteringActor. The FilteringActor that we’ll build
should filter out duplicate events. It will keep a list of the last messages that it has
received, and will check each incoming message against this list to find duplicates.
(This is comparable to the typical elements of mocking frameworks that allow you to
assert on invocations, counts of invocations, and absence.)

Table 3.1 SendingActor types

Actor Description

MutatingCopyActor The actor creates a mutated copy and sends the copy to the next actor, 
which is the case described in this section.

ForwardingActor The actor forwards the message it receives; it doesn’t change it at all.

TransformingActor The actor creates a different type of message from the message that it 
receives.

FilteringActor The actor forwards some messages it receives and discards others.

SequencingActor The actor creates many messages based on one message it receives and 
sends the new messages one after the other to another actor.
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"filter out particular messages" in {
import FilteringActor._
val props = FilteringActor.props(testActor, 5)
val filter = system.actorOf(props, "filter-1")
filter ! Event(1)
filter ! Event(2)
filter ! Event(1)
filter ! Event(3)
filter ! Event(1)
filter ! Event(4)
filter ! Event(5)
filter ! Event(5)
filter ! Event(6)
val eventIds = receiveWhile() {

case Event(id) if id <= 5 => id
}
eventIds must be(List(1, 2, 3, 4, 5))
expectMsg(Event(6))

}

The test uses a receiveWhile method to collect the messages that the testActor
receives until the case statement doesn’t match. In the test, the Event(6) doesn’t
match the pattern in the case statement, which defines that all Events with an ID
less than or equal to 5 will be matched, popping us out of the while loop. The
receiveWhile method returns the collected items as they’re returned in the partial
function as a list. Now let’s write the FilteringActor that will guarantee this part of
the specification.

object FilteringActor {
def props(nextActor: ActorRef, bufferSize: Int) =

Props(new FilteringActor(nextActor, bufferSize))
case class Event(id: Long)

}

class FilteringActor(nextActor: ActorRef,
bufferSize: Int) extends Actor {

import FilteringActor._
var lastMessages = Vector[Event]()
def receive = {

case msg: Event =>
if (!lastMessages.contains(msg)) {

lastMessages = lastMessages :+ msg
nextActor ! msg
if (lastMessages.size > bufferSize) {

// discard the oldest
lastMessages = lastMessages.tail

}
}

}
}

Listing 3.10 FilteringActor test

Listing 3.11 FilteringActor implementation

Sends a couple of events, 
including duplicates

Receives messages until 
the case statement 
doesn’t match anymore

Asserts that the duplicates 
aren’t in the result

Max size for the 
buffer is passed 
into constructor

ector of
last

essages
is kept Event is sent to 

next actor if it’s not 
found in the buffer

Oldest event in the buffer
is discarded when max 
buffer size is reached
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This FilteringActor keeps a buffer of the last messages that it received in a Vector
and adds every received message to that buffer if it doesn’t already exist in the list.
Only messages that aren’t in the buffer are sent to the nextActor. The oldest message
that was received is discarded when a max bufferSize is reached to prevent the last-
Messages list from growing too large and possibly causing us to run out of space.

 The receiveWhile method can also be used for testing a SequencingActor; you
could assert that the sequence of messages that’s caused by a particular event is as
expected. Two methods for asserting messages that might come in handy when you
need to assert a number of messages are ignoreMsg and expectNoMsg. ignoreMsg
takes a partial function just like the expectMsgPF method, only instead of asserting the
message, it ignores any message that matches the pattern. This can come in handy if
you’re not interested in many messages, but only want to assert that particular mes-
sages have been sent to the testActor. expectNoMsg asserts that no message has been
sent to the testActor for a certain amount of time, which we could have also used in
between the sending of duplicate messages in the FilteringActor test. The test in the
next listing shows an example of using expectNoMsg.

"filter out particular messages using expectNoMsg" in {
import FilteringActor._
val props = FilteringActor.props(testActor, 5)
val filter = system.actorOf(props, "filter-2")
filter ! Event(1)
filter ! Event(2)
expectMsg(Event(1))
expectMsg(Event(2))
filter ! Event(1)
expectNoMsg
filter ! Event(3)
expectMsg(Event(3))
filter ! Event(1)
expectNoMsg
filter ! Event(4)
filter ! Event(5)
filter ! Event(5)
expectMsg(Event(4))
expectMsg(Event(5))
expectNoMsg()

}

Since expectNoMsg has to wait for a timeout to be sure that no message was received,
this test will run more slowly.

 As you’ve seen, TestKit provides a testActor that can receive messages, which we
can assert with expectMsg and other methods. A TestKit has only one testActor, and
since TestKit is a class that you need to extend, how would you test an actor that
sends messages to more than one actor? The answer is the TestProbe class. The
TestProbe class is much like TestKit, only you can use this class without having to

Listing 3.12 FilteringActor implementation
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extend from it. Simply create a TestProbe with TestProbe() and start using it.
TestProbe will be used often in the tests that we’ll write in this book. 

3.2.3 SideEffectingActor example

The next listing shows a very simple Greeter actor that prints a greeting according to
the message it receives. (It’s the actor-based version of a “Hello World” example.) 

import akka.actor.{ActorLogging, Actor}

case class Greeting(message: String)

class Greeter extends Actor with ActorLogging {
def receive = {

case Greeting(message) => log.info("Hello {}!", message)
}

}

The Greeter does just one thing: it receives a message and outputs it to the console.
The SideEffectingActor allows us to test scenarios such as these: where the effect of
the action isn’t directly accessible. Though many cases fit this description, this next
listing sufficiently illustrates the final means of testing for an expected result.

import Greeter01Test._

class Greeter01Test extends TestKit(testSystem)
with WordSpecLike
with StopSystemAfterAll {

"The Greeter" must {
"say Hello World! when a Greeting("World") is sent to it" in {

val dispatcherId = CallingThreadDispatcher.Id
val props = Props[Greeter].withDispatcher(dispatcherId)
val greeter = system.actorOf(props)
EventFilter.info(message = "Hello World!",

occurrences = 1).intercept {
greeter ! Greeting("World")

}
}

}
}

object Greeter01Test {
val testSystem = {

val config = ConfigFactory.parseString(
"""

akka.loggers = [akka.testkit.TestEventListener]
""")

ActorSystem("testsystem", config)
}

}

Listing 3.13 The Greeter actor

Listing 3.14 Testing HelloWorld

Prints the 
greeting it 
receives

Uses the testSystem
from the 
Greeter01Test object

Single-
threaded

environment
Intercepts the log messages 
that were logged

Creates a system with a 
configuration that attaches 
a test event listener
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The Greeter is tested by inspecting the log messages that it writes using the Actor-
Logging trait. The test kit module provides a TestEventListener that you can config-
ure to handle all events that are logged. The ConfigFactory can parse a configuration
file from a String; in this case we only override the event handlers list.

 The test is run in a single-threaded environment because we want to check that the
log event has been recorded by the TestEventListener when the Greeter is sent the
“World” Greeting. We use an EventFilter object, which can be used to filter log mes-
sages. In this case we filter out the expected message, which should only occur once.
The filter is applied when the intercept code block is executed, which is when we send
the message.

 The preceding example of testing a SideEffectingActor shows that asserting some
interactions can get complex quickly. In many situations, it’s easier to adapt the code a
bit so that it’s easier to test. Clearly, if we pass the listeners to the class under test, we
don’t have to do any configuration or filtering; we’ll simply get each message our
Actor under test produces. The following listing shows an adapted Greeter actor that
can be configured to send a message to a listener actor whenever a greeting is logged.

object Greeter02 {
def props(listener: Option[ActorRef] = None) =

Props(new Greeter02(listener))
}
class Greeter02(listener: Option[ActorRef])

extends Actor with ActorLogging {
def receive = {

case Greeting(who) =>
val message = "Hello " + who + "!"
log.info(message)
listener.foreach(_ ! message)

}
}

The Greeter02 actor is adapted so that it takes an Option[ActorRef], which is by
default set to None in the props method. After it successfully logs a message, it sends a
message to the listener if the Option is not empty. When the actor is used normally
without specifying a listener, it runs as usual. The following listing is the updated test
for this Greeter02 actor.

class Greeter02Test extends TestKit(ActorSystem("testsystem"))
with WordSpecLike
with StopSystemAfterAll {

"The Greeter" must {
"say Hello World! when a Greeting("World") is sent to it" in {

val props = Greeter02.props(Some(testActor))

Listing 3.15 Simplifying testing of the Greeter Actor with a listener 

Listing 3.16 Simpler Greeter Actor test 

Constructor takes an
optional listener; 
default set to None

Optionally sends 
to the listener

Sets the listener
to the testActor
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val greeter = system.actorOf(props, "greeter02-1")
greeter ! Greeting("World")
expectMsg("Hello World!")

}
"say something else and see what happens" in {

val props = Greeter02.props(Some(testActor))
val greeter = system.actorOf(props, "greeter02-2")
system.eventStream.subscribe(testActor, classOf[UnhandledMessage])
greeter ! "World"
expectMsg(UnhandledMessage("World", system.deadLetters, greeter))

}
}

}

As you can see, the test has been greatly simplified. We simply pass in a Some(testActor)
to the Greeter02 constructor, and assert the message that’s sent to the testActor as
usual.

 In the next section we’ll look at two-way messages, and how these can be tested. 

3.3 Two-way messages
You’ve already seen an example of two-way messages in the multithreaded test for the
SendingActor style actor, where we used a GetState message that contained an
ActorRef. We simply called the ! operator on this ActorRef to respond to the Get-
State request. As shown before, the tell method has an implicit sender reference. 

 In this test we’ll use the ImplicitSender trait. This trait changes the implicit
sender in the test to the actor reference of the test kit. The following listing shows how
the trait is mixed in. 

class EchoActorTest extends TestKit(ActorSystem("testsystem"))
with WordSpecLike
with ImplicitSender
with StopSystemAfterAll {

Two-way messages are easy to test in a black box fashion: a request should result in a
response, which you can simply assert. In the following test, we’ll test an EchoActor, an
actor that echoes any request back in a response.

"Reply with the same message it receives without ask" in {
val echo = system.actorOf(Props[EchoActor], "echo2")
echo ! "some message"
expectMsg("some message")

}

Listing 3.17 ImplicitSender 

Listing 3.18 Testing echoes

Asserts the message as usual

Sets the implicit sender to 
the TestKit its actor reference

Sends a message to the actor

Asserts the message as usual
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We just send the message, and the EchoActor will send the response back to the actor
reference of the test kit, which was set automatically as the sender by the Implicit-
Sender trait. The EchoActor stays exactly the same. It just sends a message back to the
sender. The next listing shows this.

class EchoActor extends Actor {
def receive = {

case msg =>
sender() ! msg

}
}

The EchoActor reacts exactly the same way whether the ask pattern was used or the
tell method; the preceding is the preferred way to test two-way messages. 

 Our journey in this section has taken us through actor-testing idioms that are
offered by Akka’s TestKit. They all serve the same goal: making it easy to write unit
tests that need access to results that can be asserted on. The TestKit provides meth-
ods for both single-threaded and multithreaded testing. We can even “cheat” a little
and get at the underlying actor instance during testing. Categorizing actors by how
they interact with others gives us a template for how to test the actor, which was shown
for the SilentActor, SendingActor, and SideEffectingActor types. In most cases the
easiest way to test an actor is to pass a testActor reference to it, which can be used to
assert expectations on the messages that are sent out by the actor under test. The
testActor can be used to take the place of a sender in a request-response, or it can
just act like the next actor that an actor is sending messages to. Finally, you saw that in
many cases it makes sense to prepare an actor for testing, especially if the actor is
“silent,” in which case it’s beneficial to add an optional listener to the actor. 

3.4 Summary
Test-driven development is more than a quality control mechanism; it’s a way of work-
ing. Akka was designed to support TDD. Since the bedrock of regular unit testing is to
invoke a method and get a response that can be checked for an expected result, we
had to look, in this chapter, for ways to adopt a new mindset to go along with our mes-
sage-based, asynchronous style.

 Actors also bring some new powers to the seasoned TDD programmer: 

 Actors embody behavior; tests are fundamentally a means of checking behavior.
 Message-based tests are cleaner: only immutable state goes back and forth, pre-

cluding the possibility of tests corrupting the state they’re testing.
 With an understanding of the core test actors, you can now write unit tests of

actors of all kinds.

Listing 3.19 EchoActor

Whatever is received is simply 
sent back to (implicit) sender
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This chapter was an introduction to Akka’s way of testing, and the tools that Akka pro-
vides. The real proof of their value lies in the chapters ahead as we use these to
achieve the promise of TDD: rapid development of tested, working code.

 In the next chapter we’ll look at how actor hierarchies are formed and how super-
vision strategies and lifecycle monitoring can be used to build fault-tolerant systems. 



Fault tolerance
This chapter covers Akka’s tools for making applications more resilient. The first
section describes the let-it-crash principle, including supervision, monitoring, and
actor lifecycle features. Of course, we’ll look at some examples that show how to
apply these to typical failure scenarios.

4.1 What fault tolerance is (and what it isn’t)
Let’s start with a definition of what we mean when we say a system is fault tolerant,
and why you’d write code to embrace the notion of failure. In an ideal world, a sys-
tem is always available and can guarantee that it will be successful with each under-
taken action. The only two paths to this ideal are using components that can never
fail or accounting for every possible fault by providing a recovery action, which is
also assured of success. In most architectures, what you have instead is a catch-all
mechanism that will terminate as soon as an uncaught failure arises. Even if an

In this chapter
 Building self-healing systems

 Understanding the let-it-crash principle

 Understanding the actor lifecycle

 Supervising actors

 Choosing fault recovery strategies
66
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application attempts to provide recovery strategies, testing them is hard, and being
sure that the recovery strategies themselves work adds another layer of complexity. In
the procedural world, each attempt to do something requires a return code that’s
checked against a list of possible faults. Exception handling has become a fixture of
modern languages, promising a less onerous path to providing the various required
means of recovery. But though it has succeeded in yielding code that doesn’t need to
have fault checks on every line, the propagation of faults to ready handlers hasn’t sig-
nificantly improved. 

 The idea of a system that’s free of faults sounds great in theory, but the sad fact is
that building one that’s also highly available and distributed is simply not possible for
any non-trivial system. The main reason for this is because large parts of any non-trivial
system aren’t under your control, and these parts can break. Then there’s the preva-
lent problem of responsibility: as collaborators interact, often using shared compo-
nents, it’s not clear who’s responsible for which possible faults. A good example of
potentially unavailable resources is the network: it can go away at any time or be partly
available, and if you want to continue operation, you’ll have to find some other way to
continue communicating, or maybe disable communication for a while. You might
depend on third-party services that can misbehave, fail, or simply be sporadically
unavailable. The servers your software runs on can fail or can be unavailable, or even
experience total hardware failure. You obviously can’t magically make a server reap-
pear out of its ashes or automatically fix a broken disk to guarantee writing to it. This
is why let it crash was born in the rack-and-stack world of the telcos, where failed
machines were common enough to make their availability goals impossible without a
plan that accounted for them.

 Since you can’t prevent all failures from happening, you’ll have to be prepared to
adopt a strategy, keeping the following in mind:

 Things break. The system needs to be fault tolerant so that it can stay available
and continue to run. Recoverable faults shouldn’t trigger catastrophic failures.

 In some cases, it’s acceptable if the most important features of the system stay
available as long as possible, while in the meantime failing parts are stopped
and cut off from the system so that they can’t interfere with the rest of the sys-
tem, producing unpredictable results.

 In other cases, certain components are so important that they need to have
active backups (probably on a different server or using different resources) that
can kick in when the main component fails, so that the unavailability is quickly
remedied.

 A failure in certain parts of the system shouldn’t crash the entire system, so you
need a way to isolate particular failures that you can deal with later.

Of course, the Akka toolkit doesn’t include a fault tolerance silver bullet. You’ll still
need to handle specific failures, but will be able to do it in a cleaner, more application-
specific way. The Akka features described in table 4.1 will enable you to build the fault
tolerant behavior you need.   
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“But wait a minute,” you might say, “Why can’t we just use plain old objects and excep-
tions to recover from failures?” Normally exceptions are used to back out of a series of
actions to prevent an inconsistent state instead of recovering from a failure in the
sense we’ve discussed so far. But let’s see how hard it would be to add fault recovery
using exception handling and plain old objects in the next section. 

4.1.1 Plain old objects and exceptions

Let’s look at an example of an application that receives logs from multiple threads,
“parses” interesting information out of the files into row objects, and writes these rows
into some database. Some file watcher process keeps track of added files and informs
many threads in some way to process the new files. Figure 4.1 gives an overview of the
application and highlights the part that we’ll zoom in on (“in scope”).

Table 4.1 Available fault avoidance strategies

Strategy Description

Fault containment or 
isolation

A fault should be contained within a part of the system and not escalate to a 
total crash.

Structure Isolating a faulty component means that some structure needs to exist to 
isolate it from the rest of the system; the system will need a defined struc-
ture in which active parts can be isolated.

Redundancy A backup component should be able to take over when a component fails.

Replacement If a faulty component can be isolated, you can also replace it in the struc-
ture. The other parts of the system should be able to communicate with the 
replaced component just as they did before with the failed component.

Reboot If a component gets into an incorrect state, you need the ability to get it back 
to a defined initial state. The incorrect state might be the reason for the 
fault, and it might not be possible to predict all the incorrect states the com-
ponent can get into because of dependencies out of your control.

Component lifecycle A faulty component needs to be isolated, and if it can’t recover, it should be 
terminated and removed from the system or re-initialized with a correct start-
ing state. Some defined lifecycle will need to exist to start, restart, and ter-
minate the component.

Suspend When a component fails, you’d like all calls to the component to be sus-
pended until the component is fixed or replaced, so that when it is, the new 
component can continue the work without dropping a beat. The call that was 
handled at the time of failure should also not disappear—it could be critical 
to your recovery, and further, it might contain information that’s critical to 
understanding why the component failed. You might want to retry the call 
when you’re sure that there was another reason for the fault.

Separation of concerns It would be great if the fault-recovery code could be separated from the nor-
mal processing code. Fault recovery is a cross-cutting concern in the normal 
flow. A clear separation between normal flow and recovery flow will simplify 
the work that needs to be done. Changing the way the application recovers 
from faults will be simpler if you’ve achieved this clean separation.
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If the database connection breaks, we want to be able to create a new connection to
another database and continue writing, instead of backing out. If the connection
starts to malfunction, we might want to shut it down so that no part of the application
uses it anymore. In some cases, we’ll want to just reboot the connection, hopefully to
get rid of some temporary bad state in it. Pseudo code will be used to illustrate where
the potential problem areas are. We’ll look at the case where we want to just get a new
connection to the same database using standard exception handling.

 First, we set up all objects that will be used from the threads. After setup, they’ll be
used to process the new files that the file watcher finds. We set up a database writer
that uses a connection. Figure 4.2 shows how the writer is created.

 The dependencies for the writer are passed to the constructor as you’d expect.
The database factory settings, including the different URLs, are passed in from the
thread that creates the writer. Next we set up some log processors; each gets a refer-
ence to a writer to store rows, as shown in figure 4.3.

FileWatcher LogFile Row

Watches file systems
for new files; notifies
log processors on
many threads.

LogProcessor Writer Connection

Reads a file line by line,
parses every line, and creates
a row with columns (time,
event, etc.) for every log line. 

Writes the row to
some kind of storage.
In this case we will
use a db connection.

The database
connection might
break.

In scope

Database

Figure 4.1 Process logs application

val con = DbFactory.createConnection(url) con

con

Get a new
connection.

The dbWriter directly
refers to the created
connection.

val dbWriter = new DbWriter(con) dbWriter
Create a writer
to write rows to
a database. 

Figure 4.2 Create a writer
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Figure 4.4 shows how the objects call each other in this example application.
 The flow shown in figure 4.4. gets called from many threads to simultaneously

process files found by the file watcher. Figure 4.5 shows a call stack where a DbBroken-
ConnectionException is thrown, which indicates that we should switch to another
connection. The details of every method are omitted; the diagram only shows where
an object eventually calls another object.

Instead of just throwing the exception up the stack, we’d like to recover from the
DbBrokenConnectionException and replace the broken connection with a working
one. The first problem we face is that it’s hard to add the code to recover the connec-
tion in a way that doesn’t break the design. Also, we don’t have enough information to
re-create the connection: we don’t know which lines in the file have already been pro-
cessed successfully and which line was being processed when the exception occurred.

 Making both the processed lines and the connection information available to all
objects would break our simple design and violate some basic best practices like
encapsulation, inversion of control, and single responsibility, to name a few. (Good
luck at the next code peer review with your clean coding colleagues!) We just want the
faulty component replaced. Adding recovery code directly into the exception han-
dling will entangle the functionality of processing log files with database connection
recovery logic. Even if we find a spot to re-create the connection, we’d have to be very
careful that other threads don’t get to use the faulty connection while we’re trying to
replace it with a new one, because otherwise some rows would be lost. 

val logProcessor = new logProcessor(dbWriter) The log processor
directly refers to
the writer. It does
not know about the
connection; the writer
encapsulates/hides
this detail.  

logProcessor

con

dbWriter

The dbWriter is made available
to many log processors.

Figure 4.3 Create log processors

The diagram only shows where each
object (on the left) eventually calls
another object down the call stack.
The other details of the method
are omitted.

logProcessor.process(file)Runnable

dbWriter.write(row5)logProcessor

con.write(row5)dbWriter

Figure 4.4 Call stack diagram
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Also, communicating exceptions between threads isn’t a standard feature; you’ll have
to build this yourself, which isn’t a trivial thing to do. Let’s look at the fault tolerance
requirements to see if this approach even stands a chance:

 Fault isolation—Isolation is made difficult by the fact that many threads can
throw exceptions at the same time. You’ll have to add some kind of locking
mechanism. It’s hard to really remove the faulty connection out of the chain of
objects: the application would have to be rewritten to get this to work. There’s
no standard support for cutting off the use of the connection in the future, so
this needs to be built into the objects manually with some level of indirection.

runnable.run()
FileWatcher

thread

dbWriter.write(row5)logProcessor

DbBrokenConnectionException

DbBrokenConnectionException

DbBrokenConnectionException

con.write(row5)dbWriter

logProcessor.process(file)Runnable

If we don't catch here, the 
thread dies. The exceptions
are local to a thread.

An exception is thrown that
indicates the connection is
broken in dbWriter. Exceptions
can happen simultaneously
from different threads.

If we catch here, we do not
know which rows were already
processed (rows 1 through 4). 

The dbWriter writes
using the db connection.

The exception moves up the
stack on the thread.  We don’t
have the connection details
here to re-create a dbWriter
and retry.

logProcessor handles
rows one at a time.

Many log processors are called to
process files from several threads. 

Figure 4.5 Call stack while processing log files



72 CHAPTER 4 Fault tolerance
 Structure—The structure that exists between objects is simple and direct. Every
object possibly refers to other objects forming a graph; it isn’t possible to simply
replace an object in the graph at runtime. You’ll have to create a more involved
structure yourself (again, with a level of indirection between the objects).

 Redundancy—When an exception is thrown, it goes up the call stack. You might
miss the context for making the decision of which redundant component to
use, or lose the context of which input data to continue with, as seen in the pre-
ceding example.

 Replacement—There’s no default strategy in place to replace an object in a call
stack; you’ll have to find a way to do it yourself. There are dependency injection
frameworks that provide some features for this, but if any object refers directly
to the old instance instead of through the level of indirection, you’re in trouble.
If you intend to change an object in place, you’d better make sure it works for
multithreaded access.

 Reboot—Similar to replacement, getting an object back to an initial state is not
automatically supported and takes another level of indirection that you’ll have
to build. All the dependencies of the object will have to be reintroduced as well.
If these dependencies also need to be rebooted (let’s say the log processor can
also throw some recoverable error), things can get quite complicated with
regard to ordering.

 Component lifecycle—An object only exists after it’s been constructed or it’s gar-
bage collected and removed from memory. Any other mechanism is something
you’ll have to build yourself.

 Suspend—The input data or some of its context is lost or not available when you
catch an exception and throw it up the stack. You’ll have to build something
yourself to buffer the incoming calls while the error’s unresolved. If the code is
called from many threads, you’ll need to add locks to prevent multiple excep-
tions from happening at the same time. And you’ll need to find a way to store
the associated input data to retry again later.

 Separation of concerns—The exception-handling code is interwoven with the pro-
cessing code and can’t be defined independently of the processing code.

So that’s not looking very promising: getting everything to work correctly is going to
be complex and a real pain. It looks like some fundamental features are missing for
adding fault tolerance to our application in an easy way:

 Re-creating objects and their dependencies and replacing these in the applica-
tion structure isn’t available as a first-class feature.

 Objects communicate with each other directly, so it’s hard to isolate them.
 The fault-recovery code and the functional code are tangled up with 

each other.

Luckily we have a simpler solution. You’ve already seen some of the actor features that
can help simplify these problems. Actors can be (re-)created from Props objects, are
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part of an actor system, and communicate through actor references instead of direct
references. In the next section, we’ll look at how actors provide a way to untangle the
functional code from the fault-recovery code, and how the actor lifecycle makes it pos-
sible to suspend and restart actors (without invoking the wrath of the concurrency
gods) in the course of recovering from faults. 

4.1.2 Let it crash

In the previous section, you learned that building a fault-tolerant application with
plain old objects and exception handling is quite a complex task. Let’s look at how
actors simplify this task. What should happen when an Actor processes a message and
encounters an exception? We already discussed why we don’t want to just graft recov-
ery code into the operational flow, so catching the exception inside an actor where
the business logic resides is not an option.

 Instead of using one flow to handle both normal code and recovery code, an Akka
Actor provides two separate flows: one for normal logic and one for fault recovery
logic. The normal flow consists of actors that handle normal messages; the recovery
flow consists of actors that monitor the actors in the normal flow. Actors that monitor
other actors are called supervisors. Figure 4.6 shows a supervisor monitoring an actor.

 Instead of catching exceptions in an actor, we’ll just let the actor crash. The actor
code for handling messages only contains normal processing logic and no error han-
dling or fault recovery logic, so it’s effectively not part of the recovery process, which
keeps things much clearer. The mailbox for a crashed actor is suspended until the
supervisor in the recovery flow has decided what to do with the exception. How does an
actor become a supervisor? Akka has chosen to enforce parental supervision, meaning

The normal logic flow
only concerns itself
with normal messages.

Normal logic Recovery  logic

The recovery logic flow deals
with errors and decides what to
do with the actor that crashed. 

The supervisor monitors
the actor. When the actor
crashes, the supervisor
decides what to do. 

Decide fate

Create and supervise 

The supervisor handles
the crash of an actor.

SupervisorActor

Crash

Figure 4.6 Normal and recovery flow
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that any actor that creates actors automatically becomes the supervisor of those actors.
A supervisor doesn’t “catch exceptions;” rather it decides what should happen with the
crashed actors that it supervises based on the cause of the crash. The supervisor doesn’t
try to fix the actor or its state. It simply renders a judgment on how to recover, and then
triggers the corresponding strategy. The supervisor has four options when deciding
what to do with the actor:

 Restart—The actor must be re-created from its Props. After it’s restarted (or
rebooted, if you will), the actor will continue to process messages. Since the rest
of the application uses an ActorRef to communicate with the actor, the new
actor instance will automatically get the next messages.

 Resume—The same actor instance should continue to process messages; the
crash is ignored.

 Stop—The actor must be terminated. It will no longer take part in processing
messages.

 Escalate—The supervisor doesn’t know what to do with it and escalates the prob-
lem to its parent, which is also a supervisor.

Figure 4.7 gives an example of the strategy that we could choose when we build the
log-processing application with actors. The supervisor is shown to take one of the pos-
sible actions when a particular crash occurs.

The supervisor can decide
to escalate a problem
to a higher level.

The actors in the log-processing application
do not concern themselves with fault recovery.

The LogProcessingSupervisor
creates all the actors at startup
and supervises them all. 

Escalate

CorruptFile
Exception

Resume
DbBrokenConnection 

Exception
RestartStopDiskError

LogProcessorFileWatcher DbWriter

LogProcessingSupervisor

Figure 4.7 Normal and recovery flow in the log-processing application



75What fault tolerance is (and what it isn’t)
Figure 4.7 shows a solution for making the log processing fault tolerant, at least for
the broken connection problem. When the DbBrokenConnectionException occurs,
the dbWriter actor crashes and is replaced with a re-created dbWriter actor.

 We’ll need to take some special steps to recover the failed message, which we’ll dis-
cuss in detail later when we talk about how to implement a restart. Suffice it to say that
in most cases, you don’t want to reprocess a message, because it probably caused the
error in the first place. An example of that would be the case of the logProcessor
encountering a corrupt file: reprocessing corrupt files could end up in what’s called a
poisoned mailbox—no other message will ever get processed because the corrupting
message is failing over and over again. For this reason, Akka chooses not to provide
the failing message to the mailbox again after a restart, but there’s a way to do this
yourself if you’re absolutely sure that the message didn’t cause the error, which we’ll
discuss later. The good news is that if a job is processing tens of thousands of messages,
and one is corrupt, default behavior will result in all the other messages being pro-
cessed normally; the one corrupt file won’t cause a catastrophic failure and erase all
the other work done to that point (and prevent the remainder from occurring).

 Figure 4.8 shows how a crashed dbWriter actor instance is replaced with a fresh
instance when the supervisor chooses to restart.

logProcessorActor

logProcessingSupervisor

Crashed actor instance New actor instance 

DbBrokenConnectionException

dbWriterActorRef Props

The logProcessorActor
never noticed a thing
and continues to send
messages to the
dbWriterActorRef. It is
isolated from the error.

The supervisor
decides to restart
the dbWriter at a
broken connection
exception.

The dbWriterActor is re-created
from its Props and is attached
to the ActorRef.

The crashed actor
instance is not used
anymore; next messages
will be processed by the
new dbWriterActor
instance.  

An exception is thrown
that indicates that the
connection is broken
in dbWriter. The actor
instance crashes. 

Figure 4.8 Handling the DbBrokenConnectionException with a restart
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Let’s recap the benefits of the let-it-crash approach:

 Fault isolation—A supervisor can decide to terminate an actor. The actor is
removed from the actor system.

 Structure—The actor system hierarchy of actor references makes it possible to
replace actor instances without other actors being affected.

 Redundancy —An actor can be replaced by another. In the example of the bro-
ken database connection, the fresh actor instance could connect to a different
database. The supervisor could also decide to stop the faulty actor and create
another type instead. Another option would be to route messages in a load-
balanced fashion to many actors, which will be discussed in chapter 9.

 Replacement —An actor can always be re-created from its Props. A supervisor can
decide to replace a faulty actor instance with a fresh one, without having to
know any of the details for re-creating the actor.

 Reboot —This can be done through a restart.
 Component lifecycle —An actor is an active component. It can be started, stopped,

and restarted. In the next section, we’ll go into the details of how the actor goes
through its lifecycle.

 Suspend—When an actor crashes, its mailbox is suspended until the supervisor
decides what should happen with the actor.

 Separation of concerns—The normal actor message-processing and supervision
fault recovery flows are orthogonal, and can be defined and evolve completely
independently of each other.

In the next sections, we’ll get into the coding details of the actor lifecycle and supervi-
sion strategies. 

4.2 Actor lifecycle
You’ve seen that an actor can restart to recover from a failure. But how can you cor-
rect the actor state when the actor is restarting? To answer that question, we need to
take a closer look at the actor lifecycle. An actor is automatically started by Akka when
it’s created. The actor will stay in the Started state until it’s stopped, at which point
the actor is in the Terminated state. When the actor is terminated, it can’t process
messages anymore and will be eventually garbage collected. When the actor is in a
Started state, it can be restarted to reset the internal state of the actor. As we dis-
cussed in the previous section, the actor instance is replaced by a fresh actor instance.
The restart can happen as many times as necessary. During the lifecycle of an actor,
there are three types of events:

 The actor is created and started—for simplicity we’ll refer to this as the 
start event.

 The actor is restarted on the restart event.
 The actor is stopped by the stop event.
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There are several hooks in place in the Actor trait, which are called when the events
happen to indicate a lifecycle change. You can add some custom code in these hooks
that can be used to re-create a specific state in the fresh actor instance, for example, to
process the message that failed before the restart, or to clean up some resources. In
the next sections, we’ll look at the three events and how the hooks can be used to run
custom code. The order in which the hooks occur is guaranteed, although they’re
called asynchronously by Akka. 

4.2.1 Start event

An actor is created and automatically started with
the actorOf method. Top-level actors are created
with the actorOf method on the ActorSystem. A
parent actor creates a child actor using the
actorOf on its ActorContext. Figure 4.9 shows the
process.

 After the instance is created, the actor will be
started by Akka. The preStart hook is called just
before the actor is started. To use this trigger, you
have to override the preStart method.

override def preStart(): Unit= {
println("preStart")

}

This hook can be used to set the initial state of the actor. You can also initialize the
actor through its constructor. 

4.2.2 Stop event

The next lifecycle event that we’ll discuss is
the stop event. We’ll get back to the restart
event later, because its hooks have depen-
dencies on the start and stop hooks. The
stop event indicates the end of the actor
lifecycle and occurs once, when an actor is
stopped. An actor can be stopped using
the stop method on the ActorSystem and
ActorContext objects, or by sending a
PoisonPill message to an actor. Figure 4.10
shows the process.  

Listing 4.1 preStart lifecycle hook

Do some work

actorOf

Constructor

Instance 1

preStart

Figure 4.9 Starting an actor

Stop

postStop

TerminatedInstance 2

Figure 4.10 Stopping an actor
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The postStop hook is called just before the actor is terminated. When the actor is in
the Terminated state, the actor doesn’t get any new messages to handle. The postStop
method is the counterpart of the preStart hook.

override def postStop(): Unit = {
println("postStop")

}

Normally this hook implements the opposite function of preStart, and releases
resources created in the preStart method and possibly stores the last state of the
actor somewhere outside of the actor in the case that the next actor instance needs it.
A stopped actor is disconnected from its ActorRef. After the actor is stopped, the
ActorRef is redirected to the deadLettersActorRef of the actor system, which is a
special ActorRef that receives all messages that are sent to dead actors. 

4.2.3 Restart event

During the lifecycle of an actor, it’s possible that its supervisor will decide that the
actor has to be restarted. This can happen more than once, depending on the num-
ber of errors that occur. This event is more complex than the start or stop events,
because the instance of an actor is replaced. Figure 4.11 shows the process.

When a restart occurs, the preRestart method of the crashed actor instance is called.
In this hook, the crashed actor instance is able to store its current state, just before it’s
replaced by the new actor instance.

override def preRestart(reason: Throwable, message:
Option[Any]): Unit = {

println("preRestart")
super.preRestart(reason, message)

}

Listing 4.2 postStop lifecycle hook

Listing 4.3 preRestart lifecycle hook

Do some work

Restart

Constructor

Instance 2

postRestartpreRestart

Instance 1
Figure 4.11 Restarting an actor

Exception thrown by the actor
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trying to process

Warning: call the super implementation
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Be careful when overriding this hook. The default implementation of the preRestart
method stops all the child actors of the actor and then calls the postStop hook. If you
forget to call super.preRestart, this default behavior won’t occur. Remember that
actors are (re-)created from a Props object. The Props object eventually calls the con-
structor of the actor. The actor can create child actors inside its constructor. If the
children of the crashed actor aren’t stopped, you could end up with increasingly more
child actors when the parent actor is restarted.

 It’s important to note that a restart doesn’t stop the crashed actor in the same way
as the stop methods (described earlier when discussing the stop event). As you’ll see
later, it’s possible to monitor the death of an actor. A crashed actor instance in a
restart doesn’t cause a Terminated message to be sent for the crashed actor. The fresh
actor instance, during restart, is connected to the same ActorRef the crashed actor
was using before the fault. A stopped actor is disconnected from its ActorRef and
redirected to the deadLettersActorRef as described by the stop event. What both
the stopped actor and the crashed actor have in common is that by default, the post-
Stop is called after they’ve been cut off from the actor system.

 The preRestart method can take two arguments: the reason for the restart and,
optionally, the message that was being processed when the actor crashed. The supervi-
sor can decide what should (or can) be stored to enable state restoration as part of
restarting. This can’t be done using local variables, because after restarting, a fresh
actor instance will take over processing. One solution for keeping state beyond the
death of the crashed actor is for the supervisor to send a message to the actor—the
message will go in its mailbox. (This is done by the actor sending a message to its own
ActorRef, which is available on the actor instance through the self value.) Other
options include writing to something outside of the actor, like a database or the file
system. This all depends completely on your system and the behavior of the actor.

 Which brings us back to the log-processing example, where we didn’t want to lose
the Row message in the case of a dbWriter crash. The solution in that case could be to
send the failed Row message to the self ActorRef so it would be processed by the
fresh actor instance. One issue to note with this approach is that by sending a message
back onto the mailbox, the order of the messages on the mailbox is changed. The
failed message is pushed off the top of the mailbox and will be processed later than
other messages that have been waiting in the mailbox. In the case of the dbWriter,
this isn’t an issue, but keep this in mind when using this technique.

 After the preStart hook is called, a new instance of the actor class is created and
therefore the constructor of the actor is executed, through the Props object. After
that, the postRestart hook is called on this fresh actor instance.

override def postRestart(reason: Throwable): Unit = {
println("postRestart")
super.postRestart(reason)

}

Listing 4.4 postRestart lifecycle hook
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Here too, we start with a warning. The super implementation of postRestart is called
because this will trigger the preStart function by default. The super.postRestart
can be omitted if you’re certain that you don’t want preStart to be called when
restarting; in most cases, though, this isn’t going to be the case. preStart and post-
Stop are called by default during a restart, and they’re called during the start and stop
events in the lifecycle, so it makes sense to add code there for initialization and
cleanup, respectively, killing two birds with one stone.

 The argument reason is the same as received in the preRestart method. In the
overridden hook, the actor is free to restore itself to some last known correct state, for
example, by using information stored by the preRestart function. 

4.2.4 Putting the lifecycle pieces together

When you put all the different events together, you get the full lifecycle of an actor, as
shown in figure 4.12. In this case only one restart is shown.

Putting all the lifecycle hooks together in one Actor, you can see the different events
occurring.

class LifeCycleHooks extends Actor
with ActorLogging{

System.out.println("Constructor")

override def preStart(): Unit = {
    println("preStart")
  }

override def postStop(): Unit = {
    println("postStop")
  }

override def preRestart(reason: Throwable, message: Option[Any]): Unit = {
    println("preRestart")
    super.preRestart (reason, message)
  }

override def postRestart(reason: Throwable): Unit = {

Listing 4.5 Example lifecycle hooks

actorOf StopRestart

Constructor

Instance 1

preStart postStop

Constructor

Instance 2 Terminated

postRestartpreRestart

Figure 4.12 Full lifecycle of an actor
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    println("postRestart")
    super.postRestart(reason)
  }

def receive = {
case "restart" =>

throw new IllegalStateException("force restart")
case msg: AnyRef =>

println("Receive")
sender() ! msg

}
}

In the following test, we trigger all three lifecycle events. The sleep just before the stop
makes sure that we can see the postStop happening.

val testActorRef = system.actorOf(
Props[LifeCycleHooks], "LifeCycleHooks")

testActorRef ! "restart"
testActorRef.tell("msg", testActor)
expectMsg("msg")
system.stop(testActorRef)
Thread.sleep(1000)

The result of the test is the following.

Constructor
preStart
preRestart force restart
postStop
Constructor
postRestart force restart
preStart
Receive
postStop

Every actor goes through this lifecycle; it’s started and possibly restarted several times
until the actor is stopped and terminated. The preStart, preRestart, postRestart,
and postStop hooks enable an actor to initialize and clean up state and control and
restore its state after a crash. 

4.2.5 Monitoring the lifecycle

The lifecycle of an actor can be monitored. The lifecycle ends when the actor is ter-
minated. An actor is terminated if the supervisor decides to stop the actor, if the stop
method is used to stop the actor, or if a PoisonPill message is sent to the actor,
which indirectly causes the stop method to be called. Since the default implementa-
tion of the preRestart method stops all the actor’s children with the stop methods,
these children are also terminated in the case of a restart. The crashed actor instance

Listing 4.6 Testing lifecycle triggers

Listing 4.7 Output test lifecycle hooks
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Restart actor

Stop actor

Starts event

Restarts event

Stops event
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in a restart isn’t terminated in this sense. It’s removed from the actor system, but not
by using the stop method, directly or indirectly. This is because the ActorRef will
continue to live on after the restart; the actor instance hasn’t been terminated, but
replaced by a new one. The ActorContext provides a watch method to monitor the
death of an actor and an unwatch to de-register as monitor. Once an actor calls the
watch method on an actor reference, it becomes the monitor of that actor reference.
A Terminated message is sent to the monitor actor when the monitored actor is ter-
minated. The Terminated message only contains the ActorRef of the actor that died.
The fact that the crashed actor instance in a restart isn’t terminated in the same way
as when an actor is stopped now makes sense, because otherwise you’d receive many
terminated messages whenever an actor restarts, which would make it impossible to
differentiate the final death of an actor from a temporary restart. The following
example shows a DbWatcher actor that watches the lifecycle of a dbWriterActorRef.

class DbWatcher(dbWriter: ActorRef) extends Actor with ActorLogging {

context.watch(dbWriter)

def receive = {

case Terminated(actorRef) =>

log.warning("Actor {} terminated", actorRef)

}

}

As opposed to supervision, which is only possible from parent to child actors, monitor-
ing can be done by any actor. As long as the actor has access to the ActorRef of the
actor that needs to be monitored, it can simply call context.watch(actorRef), after
which it will receive a Terminated message when the actor is terminated. Monitoring
and supervision can be combined as well, and can be powerful, as you’ll see in the
next section.

 We haven’t discussed yet how a supervisor actually decides the fate of an actor—
whether the child should be terminated, restarted, or stopped. This will be the main
topic of the next section, where we’ll get into the details of supervision. In the next
section, we’ll first look at how the supervisor hierarchy is built up, followed by the
strategies that a supervisor can use. 

4.3 Supervision
In this section we’ll look at the details of supervision. We’ll take the log-processing
example application and show you different types of supervision strategies. We’ll focus
on the supervisor hierarchy under the /user actor path, which will also be referred to
as the user space. This is where all application actors live. First we’ll discuss various ways
to define a hierarchy of supervisors for an application and what the benefits and draw-
backs are of each. Then we’ll look at how supervisor strategies can be customized per
supervisor. 

Listing 4.8 Watching the lifecycle of a dbWriter

atches
the

fecycle
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Writer

actorRef of terminated actor is 
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4.3.1 Supervisor hierarchy

The supervisor hierarchy is simply a function of the act of actors creating each other:
every actor that creates another is the supervisor of the created child actor.

 The supervision hierarchy is fixed for the lifetime of a child actor. Once the child
is created by the parent, it will fall under the supervision of that parent as long as it
lives; there’s no such thing as adoption in Akka. The only way for the supervisor par-
ent to cease its responsibilities is by terminating the child actor. So it’s important to
choose the right supervision hierarchy from the start in your application, especially if
you don’t plan to terminate parts of the hierarchy to replace them with completely dif-
ferent subtrees of actors.

 The most dangerous actors (actors that are most likely to crash) should be as low
down the hierarchy as possible. Faults that occur far down the hierarchy can be
handled or escalated by more supervisors than a fault that occurs high up in the hier-
archy. When a fault occurs in the top level of the actor system, it could restart all the
top-level actors or even shut down the actor system.

 Let’s look at the supervisor hierarchy of the log-processing application as we
intended in the previous section, illustrated in figure 4.7, in section 4.1.2.

 In this setup, the LogProcessingSupervisor creates all the actors in the applica-
tion. We connect the actors directly to each other using ActorRefs. Every actor knows
the ActorRef of the next actor it sends messages to. The ActorRefs need to stay alive
and always need to refer to a next actor instance. If an actor instance were to be
stopped, the ActorRef would refer to the system’s deadLetters, which would break
the application. A restart will need to be used in all cases in the supervisor because of
this, so that the same ActorRef can be reused at all times, because it stays valid.

 The benefit of this approach is that the actors talk to each other directly and the
LogProcessingSupervisor only supervises and creates instances. The drawback is
that we can only use restart, because otherwise messages will be sent to the dead-
Letters and get lost. Also, stopping the FileWatcher on a DiskError doesn’t cause
the LogProcessor or DbWriter to be stopped, since they aren’t children in the hierar-
chy of the FileWatcher. For instance, we would need to stop the DbWriter and create
a new one in the case that we would want to change the database URL, for example, if
we know that the database node has completely failed due to a DbNodeDownException.
The original Props are used on Restart to create the DbWriter, which will always refer
to the same database URL. So in that case we need a different solution.

 Figure 4.13 shows a different approach. The LogProcessingSupervisor doesn’t
create all the actors; the FileWatcher creates a LogProcessor, and the LogProcessor
in turn creates a DbWriter. 

 The normal and recovery flows are still defined separately in a supervision strategy
and a receive method, even though the FileWatcher and LogProcessor now create
and supervise actors as well as handle the normal message flow. 
www.allitebooks.com

http://www.allitebooks.org
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The benefit of this approach is that the LogProcessor can now watch the DbWriter,
decide to stop it when it throws a DbNodeException, and re-create a fresh DbWriter
with an alternative URL to a completely different database node, once it receives the
Terminated message.

 The LogProcessingSupervisor now also does not have to do the supervision for
the entire application, it just supervises and monitors the FileWatchers. If the Log-
ProcessingSupervisor would monitor both FileWatchers and DbWriters, you
would have to differentiate between a terminated FileWatcher and a DbWriter, lead-
ing to less isolated code for dealing with issues of subcomponents. The source code
on GitHub has a few more examples of different supervision styles. The following
example shows how the hierarchy shown in figure 4.13 is built up in an application. In
the next section, we’ll look at the supervisors and the strategies they use in detail.

object LogProcessingApp extends App {
  val sources = Vector("file:///source1/", "file:///source2/")
  val system = ActorSystem("logprocessing")
  val databaseUrls = Vector(
    "http://mydatabase1", 
    "http://mydatabase2",

Listing 4.9 Building the supervisor hierarchy

The LogProcessor also
watches the DbWriter
and replaces it once it
is terminated due to a
DbNodeDownException. 

CorruptFile-
Exception

Resume

Restart

Stop

Stop

DiskError

LogProcessor

FileWatcher

LogProcessingSupervisor

DbNodeDown-
Exception,

logprocessor

DbBrokenConnection-
Exception

DbWriter

Figure 4.13 Every actor creates and supervises child actors.
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      "http://mydatabase3"
    )  

    system.actorOf(
      LogProcessingSupervisor.props(sources, databaseUrls), 
      LogProcessingSupervisor.name
    )
  }

The preceding code shows how the log-processing application is built up. Only one
top-level actor, the LogProcessingSupervisor, is created using system.actorOf—all
other actors are created further down the line. In the next section, we’ll revisit each
actor and you’ll see how they exactly create their children.

 Now that you know a bit more about how to structure the supervision hierarchy of
an application, let’s look in the next section at the different supervisor strategies that
are available. 

4.3.2 Predefined strategies

The top-level actors in an application are created under the /user path and supervised
by the user guardian. The default supervision strategy for the user guardian is to restart
its children on any Exception, except when it receives internal exceptions that indicate
that the actor was killed or failed during initialization, at which point it will stop the
actor in question. This strategy is known as the default strategy. Every actor has a default
supervisor strategy, which can be overridden by implementing the supervisor-
Strategy method. There are two predefined strategies available in the Supervisor-
Strategy object: the defaultStrategy and the stoppingStrategy. As the name
implies, the default strategy is default for all actors; if you don’t override the strategy,
an actor will always use the default. The default strategy is defined as follows in the
SupervisorStrategy object.

final val defaultStrategy: SupervisorStrategy = {
def defaultDecider: Decider = {

case _: ActorInitializationException => Stop
case _: ActorKilledException => Stop
case _: Exception => Restart

}
OneForOneStrategy()(defaultDecider)

}

The preceding code uses the OneForOneStrategy, which we haven’t discussed yet.
Akka allows you to make a decision about the fate of the child actors in two ways: all
children share the same fate and the same recovery is applied to the lot, or a decision
is rendered and the remedy is applied only to the crashed actor. In some cases you
might want to stop only the child actor that failed. In other cases you might want to

Listing 4.10 Default supervisor strategy
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stop all child actors if one of them fails, maybe because they all depend on a particular
resource. If an exception is thrown that indicates that the shared resource has failed
completely, it might be better to immediately stop all child actors together instead of
waiting for this to happen individually for every child. The OneForOneStrategy deter-
mines that child actors won’t share the same fate: only the crashed child will be
decided upon by the Decider. The other option is to use an AllForOneStrategy,
which uses the same decision for all child actors even if only one crashed. The next
section will describe the OneForOneStrategy and AllForOneStrategy in more detail.
The following example shows the definition of the stoppingStrategy, which is
defined in the SupervisorStrategy object. 

final val stoppingStrategy: SupervisorStrategy = {
def stoppingDecider: Decider = {

case _: Exception => Stop
}
OneForOneStrategy()(stoppingDecider)

}

The stopping strategy will stop any child that crashes on any Exception. These built-in
strategies are nothing out of the ordinary. They’re defined in the same way you could
define a supervisor strategy yourself. So what happens if an Error is thrown, like a
ThreadDeath or an OutOfMemoryError, by an actor that’s supervised using the preced-
ing stoppingStrategy? Any Throwable that isn’t handled by the supervisor strategy
will be escalated to the parent of the supervisor. If a fatal error reaches all the way up
to the user guardian, the user guardian won’t handle it, since the user guardian uses
the default strategy. In that case, an uncaught exception handler in the actor system
causes the actor system to shut down. In most cases it’s good practice not to handle
fatal errors in supervisors, but instead gracefully shut down the actor system, since a
fatal error can’t be recovered from. 

4.3.3 Custom strategies

Each application will have to craft strategies for each case that requires fault toler-
ance. As you’ve seen in the previous sections, there are four different types of actions
a supervisor can take to resolve a crashed actor. These are the building blocks we’ll
use. In this section, we’ll return to the log processing and build the specific strategies
it requires from these elements:

 Resume the child, ignore errors, and keep processing with the same actor
instance.

 Restart the child, remove the crashed actor instance, and replace it with a fresh
actor instance.

 Stop the child and terminate the child permanently.
 Escalate the failure and let the parent actor decide what action needs to be taken.

Listing 4.11 Stopping supervisor strategy

Decides to stop on any Exception
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First we’ll look at the exceptions that can occur in the log-processing application. To
simplify the example, a couple of custom exceptions are defined.

@SerialVersionUID(1L)
class DiskError(msg: String)

extends Error(msg) with Serializable

@SerialVersionUID(1L)
class CorruptedFileException(msg: String, val file: File)

extends Exception(msg) with Serializable

@SerialVersionUID(1L)
class DbNodeDownException(msg: String)
  extends Exception(msg) with Serializable

The messages that the actors send to each other in the log-processing application are
kept together in the companion object of the respective actor.

object LogProcessor {
  def props(databaseUrls: Vector[String]) = 
    Props(new LogProcessor(databaseUrls))
  def name = s"log_processor_${UUID.randomUUID.toString}"
  // represents a new log file
  case class LogFile(file: File) 
}

First let’s start at the bottom of the hierarchy and look at the database writer that can
crash on a DbBrokenConnectionException. When this exception happens, the
dbWriter should be restarted.

  object DbWriter  {
    def props(databaseUrl: String) =
      Props(new DbWriter(databaseUrl))
    def name(databaseUrl: String) =
      s"""db-writer-${databaseUrl.split("/").last}"""

    case class Line(time: Long, message: String, messageType: String)
  }

  class DbWriter(databaseUrl: String) extends Actor {
    val connection = new DbCon(databaseUrl)

    import DbWriter._
    def receive = {

Listing 4.12 Exceptions in the log-processing application 

Listing 4.13 LogProcessor companion object
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      case Line(time, message, messageType) =>
        connection.write(Map('time -> time,
          'message -> message,
          'messageType -> messageType))
    }

    override def postStop(): Unit = {
      connection.close()
    }
  }

The DbWriter is supervised by the LogProcessor.

class LogProcessor(databaseUrls: Vector[String])
    extends Actor with ActorLogging with LogParsing {
  require(databaseUrls.nonEmpty)

  val initialDatabaseUrl = databaseUrls.head
  var alternateDatabases = databaseUrls.tail

  override def supervisorStrategy = OneForOneStrategy() {
    case _: DbBrokenConnectionException => Restart
    case _: DbNodeDownException => Stop
  }

  var dbWriter = context.actorOf(
    DbWriter.props(initialDatabaseUrl), 
    DbWriter.name(initialDatabaseUrl)
  )
  context.watch(dbWriter)

  import LogProcessor._

  def receive = {
    case LogFile(file) =>
      val lines: Vector[DbWriter.Line] = parse(file)
      lines.foreach(dbWriter ! _)
    case Terminated(_) => 
      if(alternateDatabases.nonEmpty) {
        val newDatabaseUrl = alternateDatabases.head  
        alternateDatabases = alternateDatabases.tail    
        dbWriter = context.actorOf(
          DbWriter.props(newDatabaseUrl), 
          DbWriter.name(newDatabaseUrl)
        )      
        context.watch(dbWriter)
      } else {
        log.error("All Db nodes broken, stopping.")
        self ! PoisonPill
      }
  }
}

Listing 4.15 LogProcessor supervises and monitors DbWriter
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If the database connection is broken, the database writer will be re-created from
the Props object. The DbWriter creates a new connection in its constructor from a
databaseUrl.

 The dbWriter is replaced if the DbNodeDownException is detected. The LogProcessor
stops itself through a PoisonPill if all alternatives have been exhausted. The line that
was being processed when the DbBrokenConnectionException crashed the actor is
lost. We’ll look at a solution for this later in this section. The next actor up the hierar-
chy in the logs application is the LogProcessor.

 The LogProcessor crashes when a corrupt file is detected. In that case we don’t
want to process the file any further; thus, we ignore it. The FileWatcher resumes the
crashed actor.

class FileWatcher(source: String,
                  databaseUrls: Vector[String])
    extends Actor with ActorLogging with FileWatchingAbilities {
  register(source)

  override def supervisorStrategy = OneForOneStrategy() {
    case _: CorruptedFileException => Resume
  }

  val logProcessor = context.actorOf(
    LogProcessor.props(databaseUrls), 
    LogProcessor.name
  )   
  context.watch(logProcessor)

  import FileWatcher._

  def receive = {
    case NewFile(file, _) => 
      logProcessor ! LogProcessor.LogFile(file)
    case SourceAbandoned(uri) if uri == source =>
      log.info(s"$uri abandoned, stopping file watcher.")
      self ! PoisonPill
    case Terminated(`logProcessor`) => 
      log.info(s"Log processor terminated, stopping file watcher.")
      self ! PoisonPill 
  }
}

We’ll not get into the details of the file-watching API; it’s hypothetically provided in a
FileWatchingAbilities trait. The FileWatcher doesn’t take any dangerous actions
and will continue to run until the file-watching API notifies the FileWatcher that the
source of files is abandoned. The LogProcessingSupervisor monitors the File-

Listing 4.16 FileWatcher supervises LogProcessor

Registers on 
a source URI
in file-watchi
API

Resume if a corrupt 
file is detected

Create and watch 
LogProcessor

Sent by file-watching 
API when new file is 
encountered

FileWatcher kills itself when source
has been abandoned, indicating to

file-watching API not to expect
more new files from sourceFileWatcher should stop when LogProcessor

stops because database alternatives have 
been exhausted in DbWriter



90 CHAPTER 4 Fault tolerance

W
Fi

Te
m

rece
file
Watchers for termination, and it also handles the DiskError that could’ve happened
at any point lower in the supervisor hierarchy. Since the DiskError isn’t defined lower
down the hierarchy, it will automatically be escalated. This is an unrecoverable error,
so the FileWatchingSupervisor decides to stop all the actors in the hierarchy when
this occurs. An AllForOneStrategy is used so that if any of the file watchers crashes
with a DiskError, all file watchers are stopped.

  object LogProcessingSupervisor {
    def props(sources: Vector[String], databaseUrls: Vector[String]) =
      Props(new LogProcessingSupervisor(sources, databaseUrls))
    def name = "file-watcher-supervisor" 
  }

  class LogProcessingSupervisor(
    sources: Vector[String], 
    databaseUrls: Vector[String]
  ) extends Actor with ActorLogging {

    var fileWatchers: Vector[ActorRef] = sources.map { source =>
      val fileWatcher = context.actorOf(
        Props(new FileWatcher(source, databaseUrls))
      )
      context.watch(fileWatcher) 
      fileWatcher
    }

    override def supervisorStrategy = AllForOneStrategy() {
      case _: DiskError => Stop
    }

    def receive = {
      case Terminated(fileWatcher) =>
        fileWatchers = fileWatchers.filterNot(_ == fileWatcher)
        if (fileWatchers.isEmpty) {
          log.info("Shutting down, all file watchers have failed.")
          context.system.terminate()
        }
    }
  }

The OneForOneStrategy and AllForOneStrategy will continue indefinitely by
default. Both strategies have default values for the constructor arguments maxNrOf-
Retries and withinTimeRange. In some cases you might like the strategy to stop after
a number of retries or when a certain amount of time has passed. Simply set these
arguments to the desired values. Once configured with the constraints, the fault is
escalated if the crash is not solved within the time range specified or within a maxi-
mum number of retries. The following code gives an example of an impatient data-
base supervisor strategy.

Listing 4.17 LogProcessingSupervisor

atch every
leWatcher

Stop a 
FileWatcher on
DiskError. The 
LogProcessor
and DbWriter
created further
down the 
hierarchy are 
also 
automatically 
stopped.

rminated
essage is
ived for a
 watcher.

When all file watchers are 
terminated, terminate the actor
system so that the application
terminates.



91Summary

 
 

override def supervisorStrategy = OneForOneStrategy(
maxNrOfRetries = 5,
withinTimeRange = 60 seconds) {

case _: DbBrokenConnectionException => Restart
}

NOTE It’s important to note that there’s no delay between restarts; the actor
will be restarted as fast as possible. If you require some form of delay between
restarts, Akka provides a special BackOffSupervisor actor that you can pass
the Props of your own actor to. This BackOfSupervisor creates the actor
from the Props and supervises it, and does use a delay mechanism to prevent
fast restarts.

This mechanism can be used to prevent an actor from continuously restarting without
any effect. When you use this functionality, you would probably combine this with the
watch functionality to implement a strategy when the supervised actor has terminated;
for example, try to create the actor again after a while. 

4.4 Summary
Fault tolerance is one of the most exciting aspects of Akka, and it’s a critical compo-
nent in the toolkit’s approach to concurrency. The philosophy of “let it crash” is not a
doctrine of ignoring the possible malfunctions that might occur, or the toolkit swoop-
ing in and healing any faults. It’s somewhat the opposite: the programmer needs to
anticipate recovery requirements, but the tools to deliver them without meeting a cat-
astrophic end (or having to write a ton of code) are unparalleled. In the course of
making our example log processor fault tolerant, you saw that

 Supervision means you have a clean separation of recovery code.
 The fact that the actor model is built on messages means that even when an

actor goes away, you can still continue to function.
 You can resume, abandon, restart; the choice is yours, given the requirements

in each case.
 You can even escalate through the hierarchy of supervisors.

Again, Akka’s philosophy shines through here: pull the actual operational needs of
the application up into the code, but do it in a structured way, with support from the
toolkit. The result is that sophisticated fault tolerance that would be difficult to
achieve can be built and tested while the code is being written, without a tremendous
amount of extra effort.

 Now that you know how Akka can help you implement functionality in a concur-
rent system by using actors and how to deal with errors within these actors, you can
start building an application. In the next section we’ll build several different types of
actor-based applications, and will look at how to provide services like configuration,
logging, and deployment.

Listing 4.18 Impatient database supervisor strategy

Escalates the issue if the 
problem hasn’t been
resolved within 60 seconds
or it has failed to be solved
within five restarts



Futures
In this chapter we’ll introduce futures. In short, futures are extremely useful and sim-
ple tools for combining functions asynchronously. The Akka toolkit initially pro-
vided its own future implementation. At the same time, several other libraries also
had a future type, like the Twitter Finagle and scalaz libraries. Having proven its use-
fulness, the scala.concurrent package was redesigned through the Scala Improvement
Process (SIP-14) to include Future as a common foundation in the standard Scala
library. The Future type has been included in the standard library since Scala 2.10.

 Like actors, futures are important asynchronous building blocks that create an
opportunity for parallel execution. Both actors and futures are great tools best used
for different use cases. It’s a question of the right tool for the right job. We’ll start
with describing the type of use case that futures are best suited for, and work
through some examples in section 5.1, “Use cases for futures.” Whereas actors pro-
vide a mechanism to build a system out of concurrent objects, futures provide a
mechanism to build a system out of asynchronous functions. 

In this chapter
 Using futures

 Composing futures

 Recovering from errors inside futures

 Combining futures and actors
92
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 A future makes it possible to process the result of a function without ever waiting
in the current thread for the result. Exactly how you can achieve this will become clear
in section 5.2. We’ll focus on showing you examples of how to best use futures instead
of diving into the abstraction details that make the Future[T] type possible. Futures
are composable with other futures, which in short means that they can be freely com-
bined in many ways. You’ll learn how to compose flows of asynchronous web service
calls in section 5.4 and how to handle errors in section 5.3. 

 You don’t have to choose between futures or actors; they can be used together.
Akka provides common actor and future patterns that make it easy to work with both,
which is detailed in section 5.5. 

5.1 Use cases for futures
In the chapters so far, you’ve learned a lot about actors. 

 To contrast the best use cases for futures, we’ll briefly think about use cases that
can be implemented with actors, but not without unwanted complexity. Futures will
make these use cases a lot simpler to implement. Actors are great for processing many
messages, capturing state, and reacting with different behavior based on the state
they’re in and the messages they receive. They’re resilient objects that can live on for a
long time even when problems occur, using monitoring and supervision. 

 Futures are the tool to use when you would rather use functions and don’t want or
need to keep any state to do the job. 

 A future is a placeholder for a function result (a success or failure) that will be avail-
able at some point in the future. It’s effectively an asynchronous result handle. It gives
you a way to point at a result that will eventually become available. Figure 5.1 shows
the concept.

 A future is a read-only placeholder. It can’t be changed from the outside. A future
will contain a successful result or a failure once the function is completed. After com-
pletion, the result inside the future can’t change and can be read many times; it will

Input Success or failure

Future

Asynchronously
executed 

Function

The placeholder for
the result is available
immediately.

The result of the function
will be available at some
point in the future. 

Figure 5.1 A placeholder for an 
asynchronous function result
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always give the same result. Having a placeholder for the result makes it easier to com-
bine many functions that are executed asynchronously. You can simply say what
should be done with it once it’s there, as you’ll see in the next sections. For example,
it gives you a way to call a web service without blocking the current thread. 

THIS IS NOT POJF (PLAIN OLD JAVA FUTURE) To prevent any confusion, if you’re
familiar with the java.util.concurrent.Future class in Java 7, you might
think that the scala.concurrent.Future discussed in this chapter is just a
Scala wrapper around this Java class. This is not the case. The java.util
.concurrent.Future class requires polling and only provides a way to get to
the result with a blocking get method, whereas the Scala future makes it pos-
sible to combine function results without blocking or polling, as you’ll learn
in this chapter. The CompletableFuture<T> introduced in Java 8 (after
Future[T] was already available in Scala) is more comparable. 

To understand this better, we’ll look at another use case for the ticket system. We’d
like to create a web page with extra information about the event and the venue. The
ticket would simply link to this web page so that customers can access it from their
mobile device, for instance. We might want to show a weather forecast for the venue
when it’s an open-air event, route planning to the event around the time of the event
(should I take public transport or drive by car?), where to park, or suggestions for sim-
ilar future events that the customer might be interested in. 

 Futures are especially handy for pipelining, where one function provides the input
for a next function, fanning out to many functions in parallel, later to combine the
results of these functions. The TicketInfo service will find related information for an
event based on the ticket number. Any service that provides a part of the information
might be down, and we don’t want to block on every service request while aggregating
the information. Rest assured that we’ll start off with simple examples. Figure 5.2
shows the goal we’ll work towards in this chapter. 

Get artist
calendar

Future
[TicketInfo]

(ticketNr,
location)

Get event

Get weather
infoX

Get weather
infoY

Get public
transport info

Find similar
artists

Get traffic
info

Combine

Combine

Combine

Get artist
calendar

Get artist
calendar

Figure 5.2 TicketInfoService flow
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If services don’t respond in time or fail, their information should not be shown. To be
able to show the route to the event, we’ll first need to find the event using the ticket
number, which is shown in figure 5.3. 

 In this case getEvent and getTraffic are both functions that do asynchronous web
service calls, executed one after the other. The getTrafficInfo web service call takes
an Event argument. getTrafficInfo is called the moment the event becomes avail-
able in the Future[Event] result. This is very different from calling the getEvent
method and polling and waiting for the event on the current thread. We simply define
a flow, and the getTrafficInfo function will be called eventually, without polling or
waiting on a thread. The functions execute as soon as they can. The current thread
doesn’t have to wait for the execution of the web service calls. Limiting waiting threads
is obviously a good thing because they should instead be doing something useful. 

 Figure 5.4 shows a simple example where calling services asynchronously is ideal. It
shows a mobile device calling the TicketInfo service, which aggregates information
from a weather and traffic service.

 Not having to wait for the weather service before calling the traffic service
decreases the latency of the mobile device request. The more services need to be
called, the more dramatic the effect on latency will be since the responses can be pro-
cessed in parallel. Figure 5.5 shows another use case. In this case we’d like the fastest
result of two competing weather services.

 Maybe weather service X is malfunctioning and times out on the request. In that
case you wouldn’t want to wait for this timeout, but rather use the fast response of
weather service Y, which is working as expected. 

ticketNr Future[Event] Future[RouteToEvent]getEvent getTrafficInfo

Figure 5.3 Chain asynchronous functions

Mobile device

Weather service

Traffic service

TicketInfo service

Synchronous calls (one after the other) from
the TicketInfo service to the weather and traffic
service takes a minimum of X = 6 seconds. 

Asynchronous calls to both services
take a minimum of X = 4 seconds.
Both services can respond in parallel. 

X secs?

4 secs

2 secs

Figure 5.4 Aggregating results, sync versus async
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It’s not as if these scenarios are impossible to execute with actors. It’s just that we’d
have to do a lot of work for such a simple use case. Take the example of aggregating
weather and traffic information. Actors have to be created, messages defined, and
receive functions implemented as part of an ActorSystem. We’d have to think about
how to handle timeouts, when to stop the actors, and how to create new actors for
every web page request and combine the responses. Figure 5.6 shows how actors could
be used to do this. 

Mobile device

Weather service X

Weather service Y

TicketInfo service

The fastest result is returned to the
mobile device when the first result is
immediately sent back and the slower
response is ignored. 

min(X,Y)
secs?

X secs

Y secs

Figure 5.5 Respond with the 
fastest result

Check timeout.

Store traffic and weather
responses for the request.

Message

TicketInfo
request

Message

TicketInfo
response

Create TicketInfo actor and send request.

Create child actors and send request; correlate
request with responses.

Store the responses of the child actors.

Send scheduled timeout message to TicketInfo actor
in case one of the child actors does not respond. 

Send back aggregated information response at timeout
or when both responses have been received.

Stop TicketInfo actor and child actors after
sending; only do this once per request.  

Actor

TicketInfo

Actor

WeatherClient

Actor

TrafficClient

Figure 5.6 Combine web 
service requests with actors
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We need two separate actors for the weather and traffic web service calls so that they
can be called in parallel. How the web service calls are combined will need to be
coded in the TicketInfoActor for every specific case. That’s a lot of work for just call-
ing two web services and combining the results. Note however that actors are a better
choice when fine-grained control over state is required, or when actions need to be
monitored or possibly retried. 

 So although actors are a great tool, they’re not the “be all and end all” on our
quest to never block again. In this case a tool specifically made for combining func-
tion results would be a lot simpler. 

 There are some variations on the preceding use case where futures are the best tool
for the job. In general the use cases have one or more of the following characteristics: 

 You don’t want to block (wait on the current thread) to handle the result of a
function.

 Calling a function once-off and handling the result at some point in the future.
 Combining many once-off functions and combining the results.
 Calling many competing functions and only using some of the results, for

instance only the fastest response.
 Calling a function and returning a default result when the function throws an

exception so the flow can continue.
 Pipelining these kind of functions, where one function depends on one or

more results of other functions.

In the next sections we’re going to look at the details of implementing the Ticket-
Info service with futures. We’ll start with just calling one web service asynchronously. 

5.2 In the future nobody blocks
It’s time to build the TicketInfoService and we’re not explicitly going to sit on any
thread waiting idly by. We’re going to start with the TicketInfo service and try to exe-
cute the two steps in figure 5.7 so that we can provide traffic information about the
route to the event. 

 The first step is to get the event for the ticket number. The big difference between
calling a function synchronously and calling it asynchronously is the flow in which you
define your program. Listing 5.1 shows an example of a synchronous web service call to
get the event for the ticket number.

ticketNr Future[Event] Future[RouteToEvent]getEvent getTrafficInfo

Figure 5.7 Get traffic information about the event
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val request = EventRequest(ticketNr)
val response: EventResponse = callEventService(request)
val event: Event = response.event

Listing 5.1 shows three lines of code executed on some thread. The flow is simple: a
function is called and its return value is immediately accessible on the same thread.
The program obviously can’t continue on the same thread before the value is accessi-
ble. Scala expressions are strict (evaluated immediately), so every line in the code has
to “produce a complete value.” 

 Let’s see what we need to do to change this synchronous web service call into an
asynchronous one. In the preceding case, the callEventService is a blocking call to a
web service; it needs to wait on a thread for the response. We’ll first wrap the call-
EventService into a code block and execute it on a separate thread. The following
listing shows the change in the code.

val request = EventRequest(ticketNr)

val futureEvent: Future[Event] = Future {
val response = callEventService(request)
response.event

}
...

Future { ... }  is shorthand for a call to the apply method on the Future object
with the code block as its only argument, Future.apply(codeblock). It’s a helper
function to (immediately) execute the “code block” on another thread. (This is possi-
ble because the code block argument is passed by name, more on that later) The code
block that returns an Event is only evaluated once. 

 In case you’re new to Scala, the last expression in a block is automatically the
return value. The Future.apply method returns a Future of whatever type the code
block evaluates to, in this case a Future[Event]. 

 The type of the futureEvent value is explicitly type annotated for this example but
can be omitted because of type inference in Scala. Throughout this chapter we’ll add
type annotations so it’s easier to follow along.

Listing 5.1 Synchronous call

Listing 5.2 Asynchronous call

Creates the request

Blocks main thread until the
response is completed

ds the
t value

Runs on thread X

Calls code block on another
thread (thread Y)uns on

read Y
Event in the response can be accessed 
on thread Y, but not from thread X

We can refer to futureEvent from thread X, 
pass it to some other function, for instance, 
but we can’t directly read the response.event.
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FUTURE APPLY FUNCTION ARGUMENTS The code block provided to the
Future.apply method is passed by name. A pass-by-name argument only gets
evaluated the first time it’s referenced inside the function. In the case of the
Future, it’s evaluated on another thread. The code block in listing 5.2 refers
to the request value from the other thread (we called it thread X in the
example). Referring to a value like this is called closing over a value, in this case
closing over the request, which is how we bridge between the main thread
and the other thread and pass the request to the web service call.

Great, the web service is now called on a separate thread, and we could handle the
response right there. Let’s see how we can chain the call to callTrafficService to
get the traffic information for the event in listing 5.3. As a first step we’ll print the
route to the event to the console.

futureEvent.foreach { event =>
val trafficRequest = TrafficRequest(

destination = event.location,
arrivalTime = event.time

  )
val trafficResponse = callTrafficService(trafficRequest)
println(trafficResponse.route)

}

The preceding listing uses the foreach method on Future, which calls the code block
with the event result when it becomes available. The code block is only called when
the callEventService is successful. 

 In this case we expect to use the Route later on as well, so it would be better if we
could return a Future[Route]. The foreach method returns Unit, so we’ll have to use
something else. The next listing shows how this is done with the map method. 

val futureRoute: Future[Route] = futureEvent.map { event =>
val trafficRequest = TrafficRequest(

destination = event.location,
arrivalTime = event.time

  )
val trafficResponse = callTrafficService(trafficRequest)
trafficResponse.route

}

Both foreach and map should be familiar to you from using the scala.collections
library and standard types like Option and List. Conceptually the Future.map

Listing 5.3 Handling the event result

Listing 5.4 Chaining the event result

Asynchronously processes
the event result when it 
becomes available

Calls the traffic service synchronously
with a request based on the event,

returning a TrafficResponse

rints the
route to
 console

Handles the event and returns a Future[Route]

Still calling the 
callTrafficService 
synchronously, 
which directly 
returns a 
responseReturns the value to the map function,

which turns it into a Future[Route]
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method is similar to, for example, Option.map. Where the Option.map method calls a
code block if it contains some value and returns a new Option[T] value, the
Future.map method eventually calls a code block when it contains a successful result
and returns a new Future[T] value—in this case, a Future[Route] because the last
line in the code block returns a Route value. Once again the type of futureRoute is
explicitly defined, which can be omitted. The following code shows how you can chain
both web service calls directly.   

val request = EventRequest(ticketNr)

val futureRoute: Future[Route] = Future {
callEventService(request).event

}.map { event =>
val trafficRequest = TrafficRequest(

 destination = event.location,
arrivalTime = event.time

  )
callTrafficService(trafficRequest).route

}

If we refactor into a getEvent method that takes a ticketNr and a getRoute method
that takes an event argument, the code in the following listing would chain the two
calls. The methods getEvent and getRoute respectively return a Future[Event] and
Future[Route]. 

val futureRoute: Future[route] = getEvent(ticketNr).flatMap { event =>
getRoute(event)

}

The preceding listing shows that we now use flatMap to compose getEvent and get-
Route. If we used map we would end up with Future[Future[Route]]. With flatMap
you need to return a Future[T], which is returned as the result. (This is once again
similar to Option.flatMap, for instance.) 

 The callEventService and callTrafficService methods in the previous exam-
ples were blocking calls to show the transition from a synchronous to an asynchronous
call. To really benefit from the asynchronous style, the preceding getEvent and get-
Route should be implemented with a nonblocking I/O API and return futures directly
to minimize the amount of blocking threads. The akka-http module provides an asyn-
chronous HTTP client. In the next sections, you can assume that the web service calls
are implemented with akka-http. 

 A detail that has been omitted so far is that you need to provide an implicit
ExecutionContext to use futures. If you don’t provide this, your code won’t compile.
The following code shows how you can import an implicit value for the global execu-
tion context.

Listing 5.5 getRoute method with Future[Route] result

Listing 5.6 Refactored version

Chains on the Future[Event]

Returns the route

We need to use flatMap; otherwise, futureRoute
would be a Future[Future[Route]].
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import scala.concurrent.Implicits.global

The ExecutionContext is an abstraction for executing tasks on some thread pool
implementation. If you’re familiar with the java.util.concurrent package, it can be
compared to a java.util.concurrent.Executor interface with extras. 

 The import shown in listing 5.7 puts the global execution context in implicit scope so
that the future can use it to execute the code block on some thread. 

 In section 5.5, “Combining futures with actors,” you’ll see that the dispatcher of an
actor system can be used as an ExecutionContext as well, which is a better choice
than the global execution context since you can’t know what other processes might
use the global execution context. 

 The next section will explain the Promise[T] type. If you can simply use APIs that
return Future, then you probably won’t run into Promise[T] very often. This means
you can come back to this short section once you do and skip some of the details, mov-
ing right along to the next section if you prefer, which will show how you can recover
from error results. 

5.2.1 Promises are promises

If a future is only for reading, what’s doing the writing? You guessed it, it’s the
Promise[T]. If you look closely at the source code of Future[T] and its default imple-
mentation, you’ll see that internally it’s made up of two sides, the read-only future
side and the write-only promise side. They’re like two sides of the same coin. 

 There’s a lot of tricky indirection in the source code of Promise and Future, which
is left as an exercise to the reader who really wants to know the low-level details. 

 It’s easiest to see how a promise works by looking at an example. You can use
Promise[T] to wrap an existing multithreaded callback-style API into an API that
returns Future[T]. In this case we’ll look at a small block of code for sending records
to Apache Kafka. Without getting into too much detail, a Kafka cluster makes it possi-
ble to write records to an append-only log. A log is partitioned and replicated across a
number of servers called brokers for scalability and failover reasons. Most importantly
for this example, a KafkaProducer can send records asynchronously to the Kafka bro-
kers. The KafkaProducer has a send method that takes a callback argument. The call-
back will be called once the record has been successfully sent to the cluster. The
following listing shows how you can use a promise to wrap this callback-style method
and return a future instead. 

def sendToKafka(record: ProducerRecord): Future[RecordMetadata] = {
val promise: Promise[[RecordMetadata] = Promise[RecordMetadata]()

Listing 5.7 Handling the event result

Listing 5.8 Using Promise to create a Future API

Uses the global ExecutionContext

Creates a Promise of the expected
result type, RecordMetadata
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val future: Future[RecordMetadata] = promise.future

val callback = new Callback() {

def onCompletion(metadata: RecordMetadata, e: Exception): Unit = {

if (e != null) promise.failure(e)

else promise.success(metadata)

}

}

producer.send(record, callback)

future

}

The code is type annotated again for clarity. A promise can only be completed once.
promise.success(metadata) and promise.failure(e) are shorthand for promise
.complete(Success(metadata)) and promise.complete(Failure(e)), respectively.
An IllegalStateException is thrown if the promise has already been completed and
you try to complete it again. 

 In this simple example we didn’t have to do much, other than getting a reference
to the future and completing the promise. In more complex usage scenarios, you’ll
need to make sure that every other data structure you need can be safely used in a
multithreaded context. The source code for Promise and Future is a great source of
inspiration for this. 

 Now that you know how a promise can be used to wrap a callback API, we’ll go a lit-
tle deeper down the rabbit hole for those who are interested in how the promise and
future work internally. It’s not essential to know this, so feel free to skip ahead to the
next section. Figure 5.8 shows how the Future.apply method creates a promise and
returns a future on thread X. 

 We’re leaving out some details here, but the figure shows in broad lines how
Future.apply creates a Runnable subclass. The Runnable holds on to a promise so
that it can use it once it’s run on another thread. The same promise is returned as a
future from Future.apply. Again, we’re leaving out some indirection, but essentially
DefaultPromise[T] extends both Future[T] and Promise[T], so it can “act like
both types.” 

 What is essential here is that both the Runnable and the client of the Future.apply
get a reference to the same value, DefaultPromise. DefaultPromise is built to be used
from several threads at the same time, so this is safe. Figure 5.9 shows what happens
when PromiseCompletingRunnable is run on another thread, which we’ll call thread Y. 

 The PromiseCompletingRunnable completes the promise just like we did in the
Kafka example, which causes all registered callbacks to be called with the end result
of the body. Once again a lot of detail is left out here. Callbacks are only called
once, callbacks are run themselves on an executor, and the implementation of
Future and Promise makes sure that all of this happens correctly using low-level

This is the Kafka callback
that’s used to indicate that
sending has completed. It’s

called once after sending the
record has completed on

another thread.

Gets a reference to the
Future[RecordMetadata]

that we can pass on

Returns the future to 
the user of the 
sendToKafka method

Does the actual 
sending, passing 
in the callback

s a failure
e promise
there’s an

error.

Writes a
ccess to
promise
herwise
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concurrent programming techniques. Looking further into these details is left as an
exercise to the reader. 

 As promised, the next section will show you how you can recover from error results. 

On thread X

Creates

Creates

Future.apply(body)

DefaultPromise

Returns itself as a
Future[T] to Future.apply

Future[T]

PromiseCompletingRunnable(body)

Body is passed by name.

Body is again passed by name.

The Runnable is scheduled to be run
on a separate thread using the implicit
ExecutionContext. It evaluates the body
when it is run.

DefaultPromise extends both
Promise[T] and Future[T].

Figure 5.8 Creating the promise and future

On thread Y

Scheduled on executor
service to run on thread Y

Using combinators like foreach or map essentially
adds a callback to a list of callbacks in the promise.

Calls promise.complete,
which eventually evaluates body

DefaultPromise.complete

Calls the registered callbacks
with the evaluated value

'Callbacks'

PromiseCompletingRunnable.run

Figure 5.9 Completing the promise
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5.3 Futuristic errors
The future results in the previous section were expected to always succeed. Let’s look
at what happens if an Exception is thrown in the code block. To illustrate, we’re
going to immediately throw an Exception. We’ll foreach on the future and print the
result. Start up a Scala REPL session on the command line and follow along with the
next listing.

scala> :paste
// Entering paste mode (ctrl-D to finish)

import scala.concurrent._
import ExecutionContext.Implicits.global

val futureFail = Future { throw new Exception("error!")}
futureFail.foreach(value => println(value))

// Exiting paste mode, now interpreting.

futureFail: scala.concurrent.Future[Nothing] =
scala.concurrent.impl.Promise$DefaultPromise@193cd8e1

scala>

The Exception is thrown in some thread. The first thing you notice is that you don’t
see a stack trace in the console, which you would’ve seen if the exception were thrown
in the main REPL thread. The foreach block didn’t get executed. This is because the
future isn’t completed with a successful value. One of the ways to get to the exception
is to use the onComplete method. This method also takes a code block like foreach
and map, but in this case it provides a scala.util.Try argument. The Try can be a
Success or a Failure. The following REPL session shows how it can be used to print
the exception. 

scala> :paste
// Entering paste mode (ctrl-D to finish)

import scala.util._
import scala.concurrent._
import ExecutionContext.Implicits.global

val futureFail = Future { throw new Exception("error!")}
futureFail.onComplete {

case Success(value) => println(value)
case Failure(e) => println(e)

}

// Exiting paste mode, now interpreting.

java.lang.Exception: error!

Listing 5.9 Throwing an exception from the future

Listing 5.10 Using onComplete to handle success and failure

Tries to print the 
value once the future 
has completed

Nothing gets printed 
since exception
occurred

Imports statement for Try, 
Success, and Failure

The block is given 
a try value. Try 
supports pattern
matching, so we can
just give onComplete 
a partial function
that matches on 
Success or Failure.

ints the
ccessful

value

ints the
on-fatal
ception Exception is printed
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The onComplete method makes it possible to handle the success or failure result. Take
note in this example that the onComplete callback is executed even if the future has
already finished, which is quite possible in this case since an exception is directly
thrown in the future block. This is true for all functions that are registered on a future. 

FATAL AND NON-FATAL EXCEPTIONS Fatal exceptions are never handled by a
future. If you would create a Future { new OutOfMemoryError("arghh") }, you
would find out that the future isn’t created at all; the OOME (OutOfMemory-
Error) is thrown straight through. There’s a scala.util.control.NonFatal
extractor that gets applied inside the future logic, which is there for a good
reason. It would be a terrible idea to be able to ignore important fatal errors or
render them invisible. Fatal exceptions are VirtualMachineError, Thread-
Death, InterruptedException, LinkageError, and ControlThrowable (cur-
rently, just look in the source code of scala.util.control.NonFatal). Most
of these should be familiar; ControlThrowable is a marker for exceptions that
shouldn’t normally be caught. 

The onComplete method returns Unit, so we can’t chain to a next function. Similarly
there’s an onFailure method that makes it possible to match exceptions. onFailure
also returns Unit, so we can’t use it for further chaining. The following listing shows
the use of onFailure. 

futureFail.onFailure {

case e => println(e)

}

We’ll need to be able to continue accumulating information in the TicketInfo service
when exceptions occur. The TicketInfo service aggregates information about the
event and should be able to leave out parts of the information if the required service
throws an exception. Figure 5.10 shows how the information around the event will be
accumulated in a TicketInfo class for a part of the flow of the TicketInfo service. 

Listing 5.11 Using onFailure to match on all non-fatal exceptions

Called when the function has failed
Matches on all non-fatal exception types

ticketNr Future[TicketInfo] Future[TicketInfo]getEvent getTraffic

ticketNr
event
Empty route

Every step adds information to the TicketInfo contained
in the Future. The route is initially empty. (Bold means
the element has been added to the TicketInfo value.) 

ticketNr
event
routeToEvent

TicketInfoTicketInfo

Figure 5.10 Accumulate 
information about the event 
in TicketInfo
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The getEvent and getTraffic methods are modified to return Future[TicketInfo],
which will be used to accumulate information further down the chain. The Ticket-
Info class is a simple case class that contains optional values for the service results. The
following listing shows the TicketInfo case class. In the next sections we’ll add more
information to this class, like a weather forecast and suggestions for other events. 

case class TicketInfo(ticketNr:String,
event:Option[Event]=None,
route:Option[Route]=None)

It’s important to note that you should always use immutable data structures when
working with futures. Otherwise, it would be possible to share mutable state between
futures that possibly use the same objects. We’re safe here since we’re using case
classes and Options, which are immutable. When a service call fails, the chain should
continue with the TicketInfo that it had accumulated so far. Figure 5.11 shows how a
failed GetTraffic call should be handled. 

The recover method can be used to achieve this. This method makes it possible to
define what result must be returned when exceptions occur. The following listing
shows how it can be used to return the input TicketInfo when a TrafficService-
Exception is thrown.

Listing 5.12 TicketInfo case class

All extra information about 
the ticketNr is optional and 
empty by default

Future[TicketInfo] Future[TicketInfo]getEvent getTraffic

TicketInfo

ticketNr
event
Empty route

The recover method will replace
the failed Future with a TicketInfo
with an empty route inside
a new Future.

The GetTraffic call should
just return a TicketInfo
with an empty route in
it when it fails. 

TicketInfo

ticketNr
event
Empty route

recover

Figure 5.11 Ignore failed service response
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val futureStep1: Future[TicketInfo] = getEvent(ticketNr)

val futureStep2: Future[TicketInfo] = futureStep1.flatMap { ticketInfo =>
getTraffic(ticketInfo).recover {

case _: TrafficServiceException => ticketInfo
}

}

The recover method defines that it must return the original ticketInfo as the future
result when a TrafficServiceException occurs. The getTraffic method normally
creates a copy of the TicketInfo value with the route added to it. In this example we
use flatMap instead of map on the future returned by getEvent. In the code block
passed to map, you need to return a TicketInfo value, which will be wrapped in a new
Future. With flatMap you need to return a Future[TicketInfo] directly. Since
getTraffic already returns a Future[TicketInfo], it’s better to use flatMap. 

 Similarly there’s a recoverWith method where the code block must return a
Future[TicketInfo] instead of a TicketInfo. Be aware that the code block passed to
the recover method call is executed synchronously after the error has been returned,
so it’s best to keep the recover block simple. 

 In the preceding code there’s still a problem left. What will happen if the first
getEvent call fails? The code block in the flatMap call won’t be called because
futureStep1 has failed, so there’s no value to chain the next call on. futureStep2 will
equal futureStep1, a failed future result. If we want to return an empty TicketInfo
containing only the ticketNr, we must recover for the first step as well, which is shown
in the following listing. 

val futureStep1: Future[TicketInfo] = getEvent(ticketNr)

val futureStep2: Future[TicketInfo] = futureStep1.flatMap { ticketInfo =>
getTraffic(ticketInfo).recover {

case _:TrafficServiceException => ticketInfo
}

}.recover {
case e => TicketInfo(ticketNr)

}

The code block in the flatMap call won’t be executed when futureStep1 fails. The
flatMap will simply return a failed future result. The last recover call in the preced-
ing listing turns this failed Future into a Future[TicketInfo]. Now that you’ve
learned how you can recover from errors in a chain of futures, we’ll look at more ways
to combine futures for the TicketInfo service. 

Listing 5.13 Using recover to continue with an alternative future result

Listing 5.14 Using recover to return an empty TicketInfo if getEvent failed

Gets event; returns 
a Future[TicketInfo]

recover with a Future containing
the initial TicketInfo value

getTraffic returns a 
Future[TicketInfo]

flatMap is used so we
can directly return a

Future[TicketInfo]
instead of a

TicketInfo value from
code block

Returns an empty TicketInfo 
which only contains the 
ticketNr in case getEvent failed
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5.4 Combining futures
In the previous sections, you were introduced to map and flatMap to chain asynchro-
nous functions with futures. In this section we’ll look at more ways to combine asyn-
chronous functions with futures. Both the Future[T] trait and the Future object
provide combinator methods like flatMap and map to combine futures. These combinator
methods are similar to flatMap, map, and others found in the Scala Collections API. They
make it possible to create pipelines of transformations from one immutable collection
to the next, solving a problem step by step. In this section we’ll only scratch the surface
of the possibilities of combining futures in a functional style. If you’d like to know
more about functional programming in Scala, we recommend Functional Programming
in Scala by Paul Chiusano and Rúnar Bjarnason (Manning Publications, 2014). 

 The TicketInfo service needs to combine several web service calls to provide the
additional information. We’ll use the combinator methods to add information to the
TicketInfo step by step, using functions that take a TicketInfo and return a
Future[TicketInfo]. At every step, a copy of the TicketInfo case class is made,
which is passed on to the next function, eventually building a complete TicketInfo
value. The TicketInfo case class, as well as the other case classes that are used in the
service, has been updated and is shown in the following listing. 

case class TicketInfo(ticketNr:String,
userLocation:Location,
event:Option[Event]=None,
travelAdvice:Option[TravelAdvice]=None,
weather:Option[Weather]=None,
suggestions:Seq[Event]=Seq())

case class Event(name:String,location:Location,
time:DateTime)

case class Weather(temperature:Int, precipitation:Boolean)

case class RouteByCar(route:String,
timeToLeave:DateTime,
origin:Location,
destination:Location,
estimatedDuration:Duration,
trafficJamTime:Duration)

case class TravelAdvice(routeByCar:Option[RouteByCar]=None,
publicTransportAdvice: Option[PublicTransportAdvice]=None)

case class PublicTransportAdvice(advice:String,
timeToLeave:DateTime,
origin:Location, destination:Location,
estimatedDuration:Duration)

case class Location(lat:Double, lon:Double)

case class Artist(name:String, calendarUri:String)

Listing 5.15 Improved TicketInfo class

TicketInfo case class 
collects travel advice, 
weather, and event 
suggestions

To keep example simple, 
the route is just a string

To keep example 
simple, the advice 
is just a string
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All items are optional except the ticket number and the location of the user. Every
step in the flow will add some information by copying the argument TicketInfo and
modifying properties in the new TicketInfo value, passing it to the next function.
The associated information will be left empty if a service call can’t be completed, as
we’ve shown in the section on futuristic errors. Figure 5.12 shows the flow of asynchro-
nous web service calls and the combinators that we’ll use in this example.

The combinators are shown as diamonds in the figure. We’ll look at every combinator
in more detail. The flow starts with a ticketNr and a GPS location of the user of the
TicketInfo service and eventually completes a TicketInfo future result. The fastest
response from the weather services is used. Public transport and car route informa-
tion are combined in a TravelAdvice. At the same time, similar artists are retrieved
and the calendar for each Artist is requested. This results in suggestions for similar
events. All futures are eventually combined into a Future[TicketInfo]. Eventually
this final Future[TicketInfo] will have an onComplete callback that completes the
HTTP request with a response back to the client, which we’ll omit in these examples. 

 We’ll start with combining the weather services. The TicketInfo service needs to
call out to many weather services in parallel and use the quickest response. Figure 5.13
shows the combinators used in the flow. 

Call artist
calendar

Call artist
calendar

Call artist
calendar

Future
[TicketInfo]

(ticketNr,
location)

first
Completed

Of

zip

fold

traverse
artists

Get event

Call 
Weather X

Call 
Weather Y

Call public
transport

Call similar
artists

Call traffic

Figure 5.12 TicketInfoService flow

Future
[TicketInfo]

map

callWeatherX
Service

callWeatherY
Service

first
Completed

of

Future
[Weather]

Figure 5.13 Weather service flow
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Both weather services return a Future[Weather], which needs to be turned into a
Future[TicketInfo] for the next step. If one of the weather services is unresponsive,
we can still inform the client about the weather with the response of the other service.
The following listing shows how the Future.firstCompletedOf method is used in the
TicketInfoService flow to respond to the first completed service. 

def getWeather(ticketInfo: TicketInfo): Future[TicketInfo] = {

val futureWeatherX: Future[Option[Weather]] =
callWeatherXService(ticketInfo).recover(withNone)

val futureWeatherY: Future[Option[Weather]] =
callWeatherYService(ticketInfo).recover(withNone)

val futures: List[Future[Option[Weather]]] =
List(futureWeatherX, futureWeatherY)

val fastestResponse: Future[Option[Weather]] =
Future.firstCompletedOf(futures)

fastestResponse.map { weatherResponse =>
ticketInfo.copy(weather = weatherResponse)

}
}

The first two futures are created for the weather service requests. The Future.first-
CompletedOf function creates a new Future out of the two provided weather service
future results. It’s important to note that firstCompletedOf returns the first completed
future. A future is completed with a successful value or a failure. With the preceding
code, the ticketInfo service won’t be able to add weather information when, for
example, the WeatherX service fails faster than the WeatherY service can return a cor-
rect result. For now, this will do since we’ll assume that an unresponsive service or a
poorly performing service will respond slower than a correctly functioning service.
Instead of firstCompletedOf, we could use find. find takes some futures and a pred-
icate function to find a matching future and returns a Future[Option[T]]. The next
listing shows how find can be used to get the first successful future result. 

val futures: List[Future[Option[Weather]]] =
List(futureWeatherX, futureWeatherY)

val fastestSuccessfulResponse: Future[Option[Weather]] =
Future.find(futures)(maybeWeather => !maybeWeather.isEmpty)

.map(_.flatten)

Listing 5.16 Using firstCompletedOf to get the fastest response

Listing 5.17  Using find to get the first successful result

Error recovery is 
extracted out into a 
withNone function
(omitted here). It 
simply recovers with 
a None value.

ompleted
Weather]. Copy weather response into 

a new ticketInfo. Return the 
copy as the result of the 
map code block.

Map code block transforms the completed 
Weather value into TicketInfo, resulting in
a Future[TicketInfo].

First non-empty 
result is a match.

Result needs to be flattened, since find takes a 
TraversableOnce[Future[T]] and returns Future[Option[T]], 
and in this case T is actually Option[T]. (The futures value is 
List[Future[Option[Weather]]], not List[Future[Weather]].)
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] 
The public transport and car route service need to be processed in parallel and com-
bined into a TravelAdvice when both results are available. Figure 5.14 shows the
combinators used in the flow to add the travel advice. 

getTraffic and getPublicTransport return two different types inside a future,
RouteByCar and PublicTransportAdvice, respectively. These two values are first put
together in a tuple value. The tuple is then mapped into a TravelAdvice value. The
TravelAdvice class is shown in the following listing. 

case class TravelAdvice(
  routeByCar:Option[RouteByCar] = None,

publicTransportAdvice: Option[PublicTransportAdvice] = None
)

Based on this information, the user can decide to travel by car or by public transport.
The following listing shows how the zip combinator can be used for this. 

def getTravelAdvice(info:TicketInfo,
event:Event): Future[TicketInfo] = {

val futureR: Future[Option[RouteByCar]] = callTraffic(
    info.userLocation,

event.location,
event.time

  ).recover(withNone)

val futureP: Future[Option[PublicTransporAdvice]] =
callPublicTransport(info.userLocation,

event.location,
event.time

    ).recover(withNone)

futureR.zip(futureP)
.map {

case(routeByCar, publicTransportAdvice) =>
val travelAdvice = TravelAdvice

(routeByCar,
publicTransportAdvice)

info.copy(travelAdvice = Some(travelAdvice))
}

}

Listing 5.18 TravelAdvice class

Listing 5.19 Using zip and map to combine route and public transport advice

Future
[(RouteByCar,

PublicTransportAdvice)]

Future
[TravelAdvice]

getTraffic-

getPublic
Transport

mapzip

Figure 5.14 Travel advice flow

Zip Future[RouteByCar] and 
Future[PublicTransportAdvice
into Future[(RouteByCar, 
PublicTransportAdvice)].

Transform the future 
route and public 
transport advice into a 
Future[TicketInfo].
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The preceding code first zips the future public transport and route by car together into
a new Future that contains both results inside a tuple value. It then maps over the
combined future and turns the result into a Future[TicketInfo], so it can be chained
further down the line. You can use a for comprehension instead of using the map method.
This can sometimes lead to more-readable code. The following listing shows how it can
be used; it does exactly the same thing as zip and map in the previous listing.

for(
  (route, advice) <- futureRoute.zip(futurePublicTransport);

travelAdvice = TravelAdvice(route, advice)
) yield info.copy(travelAdvice = Some(travelAdvice))

If you’re not familiar with for comprehensions, you could think of them as iterating
over a collection. In the case of a future, we “iterate” over a collection that eventually
contains one value or nothing (in the case of an exception). 

 The next part of the flow we’ll look at is the suggestion of similar events. Two web
services are used, including a similar artist service that returns information about art-
ists similar to the one performing at the event. The artist information is used to call a
specific calendar service per artist to request the next planned event close to the event
location, which will be suggested to the user. The following listing shows how the sug-
gestions are built up. 

def getSuggestions(event: Event): Future[Seq[Event]] = {

val futureArtists: Future[Seq[Artists]] = callSimilarArtistsService(event)

for(
    artists <- futureArtists

events <- getPlannedEvents(event, artists)
) yield events

}

The preceding example is more involved. The code is split up over a couple of meth-
ods for clarity, although this can obviously be inlined. The getPlannedEvents is
only executed once the artists are available. The getPlannedEvents uses the Future
.sequence method to build a Future[Seq[Event]] out of a Seq[Future[Event]]. In

Listing 5.20 Using a for-comprehension to combine route and public transport advice

Listing 5.21 Using for-comprehension and traverse to map

Future created by the zip method evaluates at some point
into a routeByCar and publicTransportAdvice tuple

for-comprehension yields a TicketInfo, which is returned
as a Future[TicketInfo] from the for-comprehension,

similar to how the map method does this

Returns a
Future[Seq[Events]],

a future list of
planned events for

every artist.

“artists” evaluates at
some point to a

Seq[Artist].“events” evaluates at some point 
to a Seq[Events], a planned event 
for every called artist. for-comprehension

returns the Seq[Event] as 
a Future[Seq[Event]].

rns a
q[Art
uture
imilar
rtists.



113Combining futures
other words, it combines many futures into one single future that contains a list of the
results. The code for getPlannedEvents is shown in the following listing. 

def getPlannedEvents(event: Event,
artists: Seq[Artist]): Future[Seq[Event]] = {

val events: Seq[Future[Event]] = artists.map { artist=>
callArtistCalendarService(artist, event.location)

}
Future.sequence(events)

}

The sequence method is a simpler version of the traverse method. The following
example shows how getPlannedEvent looks when we use traverse instead. 

def getPlannedEventsWithTraverse(
event: Event,
artists: Seq[Artist]

): Future[Seq[Event]] = {
Future.traverse(artists) { artist =>

callArtistCalendarService(artist, event.location)
}

}

Using sequence, we first had to create a Seq[Future[Event]] so we could transform it
into a Future[Seq[Event]]. With traverse, we can do the same but without the inter-
mediate step of first creating a Seq[Future[Event]]. 

 It’s time for the last step in the TicketInfoService flow. The TicketInfo value
that contains the Weather information needs to be combined with the TicketInfo
containing the TravelAdvice. We’ll use the fold method to combine two TicketInfo
values into one. The following listing shows how it’s used.

val ticketInfos = Seq(infoWithTravelAdvice, infoWithWeather)

val infoWithTravelAndWeather: Future[TicketInfo] =
Future.fold(ticketInfos)(info) {

(acc, elem) =>

Listing 5.22 Combining future arrays using sequence

Listing 5.23 Combining again, this time with traverse

Listing 5.24 Combining one more time, with fold

Returns a
Future[Seq[Event]], a list

of planned events, one
for every similar artist.

Maps over the Seq[Artists]. For
every artist, calls the calendar
service. “events” value is a 
Seq[Future[Event]]. 

Turns the Seq[Future[Event]] into a 
Future[Seq[Event]]. Eventually returns a list of 
events when the results of all asynchronous 
callArtistCalendarService calls are completed.

traverse takes a code block, which is
required to return a Future. It allows you

to traverse a collection and at the same
time create the future results.

Creates a list of the
TicketInfo containing

travel advice
and the TicketInfo

containing weather

fold is called with the list and
the accumulator is initialized
with the ticketInfo that only
contains event information.

fold returns result of previously executed 
code block in the accumulator (acc) value. 
It passes every element to the code block, 
in this case every TicketInfo value.
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val (travelAdvice, weather) = (elem.travelAdvice, elem.weather)

acc.copy(

        travelAdvice = travelAdvice.orElse(acc.travelAdvice),

weather = weather.orElse(acc.weather)

      )

The fold method works just like fold on data structures like Seq[T] and List[T],
which you’re probably familiar with. It’s often used instead of traditional for loops to
build up some data structure through iterating over a collection. fold takes a collec-
tion, an initial value, and a code block. The code block is fired for every element in
the collection. The block takes two arguments: a value to accumulate state in and the
element in the collection that is next. In the preceding case, the initial TicketInfo
value is used as the initial value. At every iteration of the code block, a copy of the
TicketInfo is returned that contains more information, based on the elements in the
ticketInfo’s list. 

 The complete flow is shown in the following listing.

def getTicketInfo(ticketNr:String,
location:Location):Future[TicketInfo] = {

val emptyTicketInfo = TicketInfo(ticketNr, location)
val eventInfo = getEvent(ticketNr, location)

.recover(withPrevious(emptyTicketInfo))

  eventInfo.flatMap { info =>

 val infoWithWeather = getWeather(info)

 val infoWithTravelAdvice = info.event.map { event =>
 getTravelAdvice(info, event)

 }.getOrElse(eventInfo)

 val suggestedEvents = info.event.map { event =>
  getSuggestions(event)
 }.getOrElse(Future.successful(Seq()))

 val ticketInfos = Seq(infoWithTravelAdvice, infoWithWeather)

 val infoWithTravelAndWeather = Future.fold(ticketInfos)(info) { (acc, elem) =>
    val (travelAdvice, weather) = (elem.travelAdvice, elem.weather)

    acc.copy(travelAdvice = travelAdvice.orElse (acc.travelAdvice),
weather = weather.orElse(acc.weather))

    }

for(info <- infoWithTravelAndWeather;
suggestions <- suggestedEvents

) yield info.copy(suggestions = suggestions)

Listing 5.25 Complete TicketInfoService flow

Copies the travelAdvice or the weather into
the accumulated TicketInfo, whichever is

filled. Copy is returned as next value of acc
for the next invocation of the code block.

Extracts optional travelAdvice and 
weather properties out of ticketInfo

Calls getEvent, 
which returns a 
Future[TicketInfo]

Creates a TicketInfo 
with Weather
information

Creates a TicketInfo 
with TravelAdvice 
information

future
list of
ested
vents.

Combines weather
and travel into one 
TicketInfo

Eventually adds the 
suggestions as well



115Combining futures with actors
}
}

// error recovery functions to minimize copy/paste
type Recovery[T] = PartialFunction[Throwable,T]

// recover with None
def withNone[T]:Recovery[Option[T]] = {

case e => None
}

// recover with empty sequence
def withEmptySeq[T]:Recovery[Seq[T]] = {

case e => Seq()
}

// recover with the ticketInfo that was built in the previous step
def withPrevious(previous:TicketInfo):Recovery[TicketInfo] = {

case e => previous
}

That concludes the TicketInfoService example using futures. As you’ve seen,
futures can be combined in many ways, and the combinator methods make it easy to
transform and sequence asynchronous function results. The entire TicketInfo-
Service flow doesn’t make one blocking call. If the calls to the hypothetical web ser-
vices would be implemented with an asynchronous HTTP client like the spray-client
library, the amount of blocking threads would be kept to a minimum for I/O as well.
At the time of writing this book, an increasing number of asynchronous client librar-
ies in Scala for I/O, but also for database access, have been written that provide future
results.

 In the next section we’ll look at how futures can be combined with actors. 

5.5 Combining futures with actors
In chapter 2 we used akka-http for our first REST service. That chapter already showed
that the ask method returns a future. The following example was given.

class BoxOffice(implicit timeout: Timeout) extends Actor {

// ... skipping code

case GetEvent(event) =>
def notFound() = sender() ! None
def getEvent(child: ActorRef) = child forward TicketSeller.GetEvent
context.child(event).fold(notFound())(getEvent)

case GetEvents =>
import akka.pattern.ask
import akka.pattern.pipe

Listing 5.26 Collecting event information

Error recovery 
methods used in the 
TicketInfoService flow

Timeout needs to be 
defined for ask. If ask 
doesn’t complete 
within the timeout, 
the future will contain
a timeout exception.

Import ask pattern, 
which adds the ask 
method to ActorRef

Import pipe pattern, which adds 
the pipe method to ActorRef
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Iterate
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GetEve
every 
def getEvents: Iterable[Future[Option[Event]]] = context.children.map {
child =>
self.ask(GetEvent(child.path.name)).mapTo[Option[Event]]

}
def convertToEvents(f: Future[Iterable[Option[Event]]]): Future[Events] =

f.map(_.flatten).map(l=> Events(l.toVector))

pipe(
convertToEvents(Future.sequence(getEvents))

) to sender()

There’s a lot going on here, but this example should be a lot clearer now than it was in
chapter 2. To reiterate, the example shows how the BoxOffice actor can collect the
number of tickets that every ticket seller has left. 

 This example shows a couple of important details. First of all, we pipe the result to
the sender. This is a smart thing to do because the sender is part of the actor context,
which can differ at every message the actor receives. The future callback can close over
the values it needs to use. The sender could have a completely different value at the
time the callback is invoked. Piping to the sender removes the need to refer to the
sender() from inside the future callback. 

 Be aware when using futures from actors that the ActorContext provides a current
view of the Actor. And since actors are stateful, it’s important to make sure that the val-
ues that you close over aren’t mutable from another thread. The easiest way to prevent
this problem is to use immutable data structures and pipe the future to an actor, as
shown in the example. Another is to “capture” the current value of sender() in a value. 

5.6 Summary
This chapter gave an introduction to futures. You’ve learned how to use futures to cre-
ate a flow out of asynchronous functions. The goal has been to minimize explicitly
blocking and waiting on threads, maximize resource usage, and minimize unneces-
sary latency. 

 A future is a placeholder for a function result that will eventually be available. It’s
a great tool for combining functions into asynchronous flows. Futures make it possi-
ble to define transformations from one result to the next. Since futures are all about

 over
 child
s; ask
nt on
child.

Local method definition for asking GetEvent on self,
meaning the BoxOffice. The ask method returns a
Future result. Because Actors can send back any

message, the returned Future is not typed. We use the
mapTo method to convert the Future[Any] to a

Future[Option[Event]]. The mapTo will complete with a
failed Future if the actor responds with a different

message than an Option[Event].

This local definition flattens an iterable collection
of options into a list with only results in it (the

None cases are discarded). It then transforms the
Iterable[Event] into an Events value.

Going from the inside out, getEvents is turned 
from Iterable [Future[Option[Event]]] into 
Future[Iterable[Option[Event]]] by 
Future.sequence. 
Future[Iterable[Option[Event]]] is turned into 
Future[Events] by convertToEvents.

Future is piped to the sender. No need 
to close over the future callback.
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function results, it’s no surprise that a functional approach needs to be taken to com-
bine these results. 

 The combinator methods for futures provide a “transformational style” similar to
the combinators found in the Scala collections library. Functions are executed in par-
allel and, where needed, in sequence, eventually providing a meaningful result. A
future can contain a successful value or a failure. Luckily, failures can be recovered
with a replacement value to continue the flow. 

 The value contained in a future should be immutable to ensure that no accidental
mutable state is shared. Futures can be used from actors, but you need to avoid refer-
encing mutable actor state from a future. The sender reference of an actor needs to
be captured into a value before it can be safely used, for instance. Futures are used in
the Actor API as the response of an ask method. Future results can also be provided to
an actor with the pipe pattern. 

 Now that you know about futures, we’ll go back to actors in the next chapter. This
time we’ll scale the GoTicks.com app with remote actors. 



Your first distributed
Akka app
So far we’ve only looked at building an Akka actor system on one node. This chapter
will serve as an introduction to scaling out Akka applications. You’ll build your first
distributed Akka app right here. We’ll take the GoTicks.com app from chapter 2
and scale it out.

 We’ll start off with some common terminology and a quick look at the different
approaches Akka takes to scale out. You’ll be introduced to the akka-remote mod-
ule and how it provides an elegant solution for communicating between actors
across the network. We’ll scale the GoTicks.com app out to two nodes: a frontend
and a backend server. You’ll find out how you can unit test the app using the multi-
JVM test kit.

In this chapter
 Introducing scaling out

 Distributing the GoTicks.com app

 Distributing actors with the remote module

 Testing distributed actor systems
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 This chapter will just get you acquainted with scaling out your apps; later chapters
will round out your knowledge. For example, in chapter 9 we’ll use routers to distrib-
ute the load over several actors that can be remote actors, and chapter 13 will intro-
duce you to clustering. Chapter 13 will dive into the details of scaling out once you’re
more familiar with how to build a real-world Akka application.

6.1 Scaling out
You might have hoped that this was going to be a chapter about a silver bullet to make
any application scale out to thousands of machines, but here’s the truth: distributed
computing is hard. Notoriously hard. Don’t stop reading! Akka will at least give you
some really nice tools that make your life in distributed computing a little easier. Once
again, Akka doesn’t promise a free lunch, but just as actors simplify concurrent pro-
gramming, you’ll see that they also simplify the move to truly distributed computing.
We’ll bring back our GoTicks.com project and make it distributed.

 Most network technologies use a blocking remote procedure call (RPC)–style of
interaction for communicating with objects across the network, which tries to mask
the difference between calling an object locally or remotely. The idea is that a local
programming model is simplest, so let the programmer just work in that way, and then
transparently make it possible to remote some of the calls when and where required.
This style of communication works for point-to-point connections between servers,
but it isn’t a good solution for large-scale networks, as you’ll see in the next section.
Akka takes a different approach when it comes to scaling out applications across the
network. It gives us the best of both approaches: we have relative transparency of
remoting collaborators, but we don’t have to change our actor code—you’ll see the
top layer looks the same.

 Before we dive in, we’ll look at examples of network topologies and some common
terminology in the following section, just in case you’re not too familiar with these. If
you’re already an expert in the field, you might want to skip right to section 6.2. 

6.1.1 Common network terminology

When we refer to a node in this chapter, we mean a running application that communi-
cates across the network. It’s a connection point in a network topology. It’s part of a
distributed system. Many nodes can run on one server, or they can run on separate
servers. Figure 6.1 shows some common network topologies.   

 A node has a specific role in the distributed system. It has a specific responsibility to
execute particular tasks. A node could, for example, take part in a distributed data-
base, or it could be one of many web servers that fulfill frontend web requests.

 A node uses a specific network transport protocol to communicate with other nodes.
Examples of transport protocols are TCP/IP and UDP. Messages between the nodes are
sent over the transport protocol and need to be encoded and decoded into network-
specific protocol data units. The protocol data units contain a stored representation of
the messages as byte arrays. Messages need to be translated to and from bytes, respec-



120 CHAPTER 6 Your first distributed Akka app
tively known as serialization and deserialization. Akka provides a serialization module for
this purpose, which we’ll briefly touch on in this chapter. 

 When nodes are part of the same distributed system, they share a group membership.
This membership can be static or dynamic (or even a mix of both). In a static member-
ship, the number of nodes and the role of every node are fixed and can’t change dur-
ing the lifetime of the network. A dynamic membership allows for nodes to take on
different roles and for nodes to join and leave the network.

 The static membership is obviously the simplest of the two. All servers hold a refer-
ence to the other nodes’ network addresses at startup. But it’s also less resilient; a node
can’t simply be replaced by another node running on a different network address.

 The dynamic membership is more flexible and makes it possible for a group of
nodes to grow and shrink as required. It enables dealing with failed nodes in the net-
work, possibly automatically replacing them. It’s also far more complex than the static
membership. When a dynamic membership is properly implemented, it needs to pro-
vide a mechanism to dynamically join and leave the group, detect and deal with net-
work failures, identify unreachable/failed nodes in the network, and provide some
kind of discovery mechanism through which new nodes can find an existing group on
the network, since the network addresses aren’t statically defined. 

 Now that we’ve briefly looked at network topologies and common terminology, the
next section will look at why Akka uses a distributed programming model for building
both local and distributed systems. 
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Figure 6.1 Common network topologies
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6.1.2 Reasons for a distributed programming model

Our ultimate goal is to scale to many nodes, and often the starting point is a local app
on one node: your laptop. What changes when we want to make the step to one of the
distributed topologies discussed in the previous section? Can’t we abstract away the
fact that all these nodes run on one “virtual node” and let some clever tool work out
all the details so we don’t have to change the code running on the laptop at all? The
short answer is no.1 We can’t simply abstract the differences between a local and dis-
tributed environment. Luckily, you don’t have to take our word for it. According to
the paper A Note on Distributed Computing,2 there are four important areas in which
local programming differs from distributed programming that can’t be ignored. The
four areas are latency, memory access, partial failure, and concurrency. The following
list briefly summarizes the differences in the four areas:

 Latency—Having the network in between collaborators means far more time for
each message—an approximate time for an L1 cache reference is 0.5 nanosec-
onds, a fetch from main memory takes 100 nanoseconds, and sending a packet
from the Netherlands to California takes around 150 milliseconds—as well as
delays due to traffic, re-sent packets, intermittent connections, and so on. 

 Partial failure—Knowing if all parts of a distributed system are still functioning is
a hard problem to solve when parts of the system are not always visible, disap-
pear, and even reappear.

 Memory access—Getting a reference to an object in memory in a local system
can’t intermittently fail, which can be the case for getting a reference to an
object in a distributed setting.

 Concurrency—There’s no one “owner” of everything, and the preceding factors
mean the plan to interleave operations can go awry.

Using a local programming model in a distributed environment fails at scale because
of these differences. Akka provides the exact opposite: a distributed programming
model for both a distributed and a local environment. The previously mentioned
paper refers to this choice and states that distributed programming would be simpler
this way, but also states that it could make local programming unnecessarily hard—as
hard as distributed programming.

 But times have changed. Almost two decades later, we have to deal with many CPU
cores. And increasingly more tasks simply need to be distributed in the cloud. Enforc-
ing a distributed programming model for local systems has the advantage that it sim-
plifies concurrent programming, as you’ve seen in the previous chapters. We’ve
already gotten used to asynchronous interactions, expect partial failures (even
embrace it), and we use a shared-nothing approach to concurrency, which both simpli-
fies programming for many CPU cores and prepares us for a distributed environment.

1 Software suppliers that still sell you this idea will obviously disagree!
2 Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, Sun Microsystems, Inc., 1994.
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 We’ll show you that this choice provides a solid foundation for building both local
and distributed applications that are fit for the challenges of today. Akka provides a sim-
ple API for asynchronous programming as well as the tools you need to test your applica-
tions locally and remotely. Now that you understand the reasoning behind a distributed
programming model for both local and distributed systems, in the following sections
we’ll look at how we can scale out the GoTicks.com App that we built in chapter 2. 

6.2 Scaling out with remoting
Since this is an introduction to scaling out, we’ll use the relatively simple example
GoTicks.com app from chapter 2. In the next sections, we’ll change the app so it runs
on more than one node. Although the GoTicks.com app is an oversimplified exam-
ple, it will give you a feel for the changes you need to make to an app that hasn’t made
any accommodations for scaling.

 We’ll define a static membership between two nodes using a client-server network
topology, since it’s the easiest path from local to distributed. The roles for the two
nodes in this setup are frontend and backend. The REST interface will run on a front-
end node. The BoxOffice and all TicketSellers will run on a backend node. Both
nodes have a static reference to each other’s network addresses. Figure 6.2 shows the
change that we’ll make.

HTTP routes

RestApi

Actor

BoxOffice

Actor

TicketSeller

Single node

Single-node ActorSystem

HTTP routes

RestApi

Actor

TicketSeller

Frontend node

Frontend ActorSystem

Actor

BoxOffice

Backend node

Backend ActorSystem

Figure 6.2 From single node 
to client-server
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We’ll use the akka-remote module to make this change. The BoxOffice actor creates
TicketSeller actors when new Events are created in the local version of the app. In
the client-server topology, this will have to be done as well. As you’ll see, the akka-
remote module makes it possible to create and deploy actors remotely. The frontend
will look up the BoxOffice actor on a backend node on its known address, which cre-
ates the TicketSeller actors. We’ll also look at a variation of this where the frontend
remotely deploys a BoxOffice actor on the backend node.

 In the next section, we’ll get our hands dirty with remoting. We’ll start with look-
ing at the changes that need to be made to the sbt build file, and then look at the
changes we have to make to the rest of the code. 

6.2.1 Making the GoTicks.com app distributed

The chapter-remoting folder in the akka-in-action directory contains a modified ver-
sion of the example from chapter 2. You can follow along by making the changes on top
of the chapter 2 sample as described here. The first thing we need to do is add the
dependencies for akka-remote and the akka-multinode-testkit in the sbt build file.

"com.typesafe.akka" %% "akka-remote" % akkaVersion,
"com.typesafe.akka" %% "akka-multi-node-testkit" % akkaVersion % "test",

These dependencies are pulled in automatically when you start sbt, or you can run
sbt update to explicitly pull in the dependencies. Now that you have the dependen-
cies updated and ready to go, let’s look at the changes that we need to make for con-
necting frontend and backend. The actors on the frontend and backend will need to
get a reference to their collaborator, which is the topic of the next section. 

6.2.2 Remote REPL action

Akka provides two ways to get a reference to an actor on a remote node. One is to look
up the actor by its path; the other is to create the actor, get its reference, and deploy it
remotely. We’ll start with the former option.

 The REPL console is a great interactive tool for quickly exploring new Scala classes.
Let’s get two actor systems up in two REPL sessions using the sbt console. The first ses-
sion contains the backend actor system, and the second session the frontend actor sys-
tem. To create the backend session, start a terminal in the chapter-remoting folder
using sbt console. We need to enable remoting, so the first thing we need to do is
provide some configuration. Normally an application.conf configuration file in your
src/main/resources folder would contain this information, but in the case of a REPL

Listing 6.1 Build file changes for distributed GoTicks

Dependency on akka-
remote module

Dependency on multi-node test kit for
testing distributed actor systems
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En
session, we can just load it from a String. Listing 6.2 contains the REPL commands to
execute using the :paste command.

scala> :paste
// Entering paste mode (ctrl-D to finish)

val conf = """
akka {

actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {

enabled-transports = ["akka.remote.netty.tcp"]
netty.tcp {

hostname = "0.0.0.0"
port = 2551

}
}

}
"""

// Exiting paste mode, now interpreting.
...

scala>

We’ll load this configuration string into an ActorSystem. Most notably it defines a spe-
cific ActorRefProvider for remoting, which bootstraps the akka-remote module. As
the name suggests, it also takes care of providing your code with ActorRefs to remote
actors. The following listing first imports the required config and actor packages, and
then loads the config into an actor system.

scala> import com.typesafe.config._
import com.typesafe.config._

scala> import akka.actor._
import akka.actor._

scala> val config = ConfigFactory.parseString(conf)
config: com.typesafe.config.Config = ....

scala> val backend = ActorSystem("backend", config)
[Remoting] Starting remoting
.....
[Remoting] Remoting now listens on addresses:
[akka.tcp://backend@0.0.0.0:2551]
backend: akka.actor.ActorSystem = akka://backend

If you’ve been typing along, you just started your first remote-enabled ActorSystem
from a REPL; it’s that simple! Depending on your perspective, that’s five lines of code
to bootstrap and start a server.

Listing 6.2 REPL commands for loading up remoting

Listing 6.3 Remoting config

Selects the remote 
ActorRef provider to 
bootstrap remoting

Configuration section
for remoting

ables the
TCP

transport Settings for the TCP 
transport, host, and 
port to listen on

To end paste command, 
enter Ctrl-D.

Parses the String into 
a Config object

Creates the ActorSystem
with the parsed Config 
object
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 The backend ActorSystem is created with the config object, which enables remot-
ing. If you forget to pass the config to the ActorSystem, you’ll end up with an Actor-
System that runs, but isn’t enabled for remoting because the default application.conf
that’s packaged with Akka doesn’t bootstrap remoting. The Remoting module now lis-
tens on all interfaces (0.0.0.0) on port 2551 for the backend actor system. Let’s add a
simple actor that just prints whatever it receives to the console so we can see that
everything works. 

scala> :paste
// Entering paste mode (ctrl-D to finish)

class Simple extends Actor {
def receive = {

case m => println(s"received $m!")
}

}

// Exiting paste mode, now interpreting.

defined class Simple

scala> backend.actorOf(Props[Simple], "simple")
res0: akka.actor.ActorRef = Actor[akka://backend/user/simple#485913869]

The Simple actor is now running in the backend actor system. It’s important to note
that the Simple actor is created with the name "simple". This will make it possible to
find it by name when we connect to the actor system over the network. Time to start up
another terminal: fire up sbt console, and create another remoting-enabled actor sys-
tem, the frontend. We’ll use the same commands as before, except for the fact that we
want to make sure that the frontend actor system runs on a different TCP port.

scala> :paste
// Entering paste mode (ctrl-D to finish)

val conf = """
akka {

actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {

enabled-transports = ["akka.remote.netty.tcp"]
netty.tcp {

hostname = "0.0.0.0"
port = 2552

}
}

}
"""

Listing 6.4 Create and start a backend Actor that prints incoming messages

Listing 6.5 Creating the frontend actor system

Creates the Simple actor in
the backend actor system
with the name “simple”

Runs the frontend on a different 
port than the backend so they can
both run on the same machine



126 CHAPTER 6 Your first distributed Akka app
import com.typesafe.config._

import akka.actor._

val config = ConfigFactory.parseString(conf)

val frontend= ActorSystem("frontend", config)
// Exiting paste mode, now interpreting.

...
[INFO] ... Remoting now listens on addresses:

[akka.tcp://frontend@0.0.0.0:2552]
...
frontend: akka.actor.ActorSystem = akka://frontend

scala>

The configuration is loaded into the frontend actor system. The frontend actor system
is now also running, and remoting has started. Let’s get a reference to the Simple
actor on the backend actor system from the frontend side. First we’ll construct an
actor path. Figure 6.3 shows how the path is built up.

Actor names

The ActorSystem is
named “backend”

ActorSystem:
“backend”

Guardian actor:
“user”

Simple actor:
“simple”

akka.tcp protocol The backend node uses the akka.tcp protocol

Protocol

akka.tcp://backend@127.0.0.1:2551/user/simple

Top-level actorPortActor system

Server Guardian

The guardian actor is
always called “user”

The simple actor

Remote actor paths

akka.tcp://backend@127.0.0.1:2551

akka.tcp://backend@127.0.0.1:2551/user

akka.tcp://backend@127.0.0.1:2551/user/simple

Figure 6.3 Remote actor paths
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We can construct the path as a String and use the actorSelection method on the
frontend actor system to find it.

scala> :paste
// Entering paste mode (ctrl-D to finish)
val path = "akka.tcp://backend@0.0.0.0:2551/user/simple"
val simple = frontend.actorSelection(path)
// Exiting paste mode, now interpreting.
path: String = akka.tcp://backend@0.0.0.0:2551/user/simple
simple: akka.actor.ActorSelection = ActorSelection[
Anchor(akka.tcp://backend@0.0.0.0:2551/), Path(/user/simple)]

Think of the actorSelection method as a query in the actor hierarchy. In this case
the query is an exact path to a remote actor. The ActorSelection is an object that
represents all the actors that have been found in the actor system with the actor-
Selection method. The ActorSelection can be used to send a message to all actors
that match the query. We don’t need the exact ActorRef of the Simple actor for now;
we only want to try and send a message to it, so the ActorSelection will do. Since the
backend actor system is already running in the other console, you should be able to
do the following:

scala> simple ! "Hello Remote World!"

scala>

When you switch to the terminal where you started the backend actor system, you
should see the following printed message:

scala> received Hello Remote World!!

The REPL console shows you that the message was sent from the frontend to the back-
end. Being able to interactively explore remoting systems using a REPL console is pure
gold in our opinion, so you can expect more of it in other chapters.

 Under the covers, the “Hello Remote World!” message was serialized, sent to a TCP
socket, received by the remoting module, deserialized, and forwarded to the Simple
actor running on the backend.

NOTE Although Java serialization is easy to use in the REPL example here, it
should never be used in any real distributed application. Java serialization
doesn’t support schema evolution; a minor code change can stop systems
from communicating. It’s slow compared to other options, and various secu-
rity problems have been identified if objects are deserialized from an
untrusted source. Akka will log a warning if you do choose to use it. 

You probably noticed that we didn’t write any special code for serialization, so why did
it work? It’s because we sent a simple String ("Hello Remote World!"). Akka uses
Java serialization by default for any message that needs to be sent across the wire.

Listing 6.6 Using actorSelection

Path to remote 
Simple Actor

Selects actor
with an 
ActorSelection
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Other serializers are also available, and you can write your own custom serializer as
well, which is a topic we’ll deal with in part 3. The Akka remote message protocol has a
field that contains the name of the serializer that was used for the message so that the
receiving remote module can deserialize the payload bytes. The class that’s used to
represent a message needs to be Serializable, and it needs to be available on the
classpath on both sides. Luckily “standard” case classes and case objects are serializ-
able3 by default, and are used as messages in the GoTicks.com app. 

 Now that you’ve seen how you can look up a remote actor and send a message to it
in the REPL, let’s look at how we can apply it in the GoTicks.com app in the next section. 

6.2.3 Remote lookup

Instead of directly creating a BoxOffice actor in the RestApi actor, we’ll look it up on
the backend node. Figure 6.4 shows what we’re going to try to achieve.

3 Serializable is a marker interface and guarantees nothing. You need to verify that it works if you use non-
standard constructs.
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In the previous version of the code, the RestApi directly created a child BoxOffice actor:

val boxOffice = context.actorOf(Props[BoxOffice], "boxOffice")

This call made the boxOffice a direct child of the RestApi. To make the app a bit
more flexible, and to make it possible to run it both in a single node and in a client
server, we’ll add specific Main objects to run the app in a couple of different modes,
which will be shown in this chapter. Every Main class creates or references the Box-
Office in a slightly different way. The code from chapter 2 has been refactored a little
to make running the different scenarios easier. This trait is shown in the next listing,
as well as the change we need to make to the RestApi code.

 A SingleNodeMain, a FrontendMain, and a BackendMain are created to start the
app in single-node mode or to start a frontend and backend separately. The next list-
ing shows the interesting code (as snippets) of the three main classes.

object SingleNodeMain extends App
    with Startup {  
  

  val api = new RestApi() {
     

    def createBoxOffice: ActorRef = system.actorOf(BoxOffice.props, 
BoxOffice.name)  

  }

  startup(api.routes)
}

object FrontendMain extends App
    with Startup { 
  

  val api = new RestApi() {  

    def createPath(): String =

    def createBoxOffice: ActorRef = {
      val path = createPath()
      system.actorOf(Props(new RemoteLookupProxy(path)), "lookupBoxOffice")
    }
  }

  startup(api.routes)
}

Listing 6.7 Highlights from the core actors

Snippet from
SingleNodeMain

Startup of HTTP server; binding routes
has been moved to a Startup trait.

.. code omitted reading config 
and creating actor system

Creating an anonymous
class from the RestApi

trait, setting up how the
BoxOffice must be created

Creates 
BoxOffice 
as before

.. code
omitted

Startup of HTTP server; binding routes has 
been moved to a Startup trait.

Creating an anonymous class from the RestApi trait, 
setting up how the BoxOffice must be created

Snippet from FrontendMain

.. code omitted creating path 
to the remote actor

.. code omitted reading config 
and creating actor system

.. code omitted reading config 
and creating actor system

Lookup the BoxOffice on
the remote node
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.. code 
readin

and 
actor
object BackendMain extends App with RequestTimeout {
   

  system.actorOf(BoxOffice.props, BoxOffice.name)
}

All main classes load their configuration from a specific configuration file; the
SingleNodeMain, FrontendMain, and BackendMain load from the files singlenode
.conf, frontend.conf, and backend.conf, respectively. The singlenode.conf file is a
copy of the application.conf from chapter 2. The backend.conf file needs the remote
configuration just like our REPL example and logging configuration. The following
listing shows the content of backend.conf.

akka {
loglevel = DEBUG
stdout-loglevel = WARNING
event-handlers = ["akka.event.slf4j.Slf4jLogger"]

actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {

enabled-transports = ["akka.remote.netty.tcp"]
netty.tcp {

hostname = "0.0.0.0"
port = 2551

}
}

}

More details about the logging configuration can be found in chapter 7, “Configura-
tion, logging, and deployment.”

 The frontend.conf file will be a mix of singlenode.conf, backend.conf, and
an extra config section for looking up the box office actor. The RemoteBoxOffice-
Creator loads these extra configuration properties.

akka {
  loglevel = DEBUG
  stdout-loglevel = DEBUG
  loggers = ["akka.event.slf4j.Slf4jLogger"]

  actor {
    provider = "akka.remote.RemoteActorRefProvider"
  }

  remote {
    enabled-transports = ["akka.remote.netty.tcp"]
    netty.tcp {

Listing 6.8 backend.conf containing the backend configuration

Listing 6.9 frontend.conf containing the frontend configuration

Snippet fromBackendMain

Creates a top-level boxoffice 
actor on backend

omitted
g config
creating
 system
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B

      hostname = "0.0.0.0"
      port = 2552
    }
  }

  http {
    server {
      server-header = "GoTicks.com REST API"
    }
  }
}

http {
  host = "0.0.0.0"
  host = ${?HOST}
  port = 5000
  port = ${?PORT}
}

backend {
  host = "0.0.0.0"
  port = 2551
  protocol = "akka.tcp"
  system = "backend"
  actor = "user/boxOffice"
}

The frontend needs the new the backend configuration to be able to connect to the
remote BoxOffice. Getting an ActorSelection to the remote actor was fine in the
REPL console, just to try out sending a message, when we were certain that the back-
end was present. In this case we’d like to work with an ActorRef instead, since the
single-node version used one. We create a new actor RemoteLookupProxy, which is
responsible for the lookup of the remote BoxOffice and forwarding the messages.
The FrontendMain object creates the RemoteLookupProxy actor to look up the Box-
Office actor.

    def createPath(): String = { 
      val config = ConfigFactory.load("frontend").getConfig("backend") 
      val host = config.getString("host")
      val port = config.getInt("port")
      val protocol = config.getString("protocol")
      val systemName = config.getString("system")
      val actorName = config.getString("actor")
      s"$protocol://$systemName@$host:$port/$actorName"
    }

    def createBoxOffice: ActorRef = {
      val path = createPath()
      system.actorOf(Props(new RemoteLookupProxy(path)), "lookupBoxOffice")
    } 

Listing 6.10 Looking up the remote BoxOffice

Creates
path to
oxOffice Loads frontend.conf

configuration and
gets backend config

section properties
to build the path

Returns an Actor that looks up box office 
actor. The Actor is constructed with one 
argument: the path to the remote BoxOffice.
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The FrontendMain object creates a separate RemoteLookupProxy actor to look up the
boxOffice. In previous versions of Akka, you could use the actorFor method to
directly get an ActorRef to the remote actor. This method has been deprecated,
because the returned ActorRef didn’t behave exactly the same way as a local ActorRef
in the case that the related actor died. An ActorRef returned by actorFor could point
to a newly spawned remote actor instance, while this was never the case in a local con-
text. At the time, remote actors couldn’t be watched for termination like local actors,
which was another reason to deprecate this method.

 This brings us to the reason for the RemoteLookupProxy actor:

 The backend actor system might not have started up yet, or it could have
crashed, or it could have been restarted.

 The boxOffice actor itself could also have crashed and restarted.
 Ideally, we would start the backend node before the frontend, so the frontend

could do the lookup once at startup.

The RemoteLookupProxy actor will take care of these scenarios. Figure 6.5 shows how
the RemoteLookupProxy sits between the RestApi and the BoxOffice. It transparently
forwards messages for the RestApi.

HTTP routes
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Proxy

HTTP routes

TicketSeller
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Backend node

Frontend ActorSystem

Backend ActorSystem

The RemoteLookupProxy
actor forwards to the remote
BoxOffice actor and handles
connection errors with the
backend by watching the
BoxOffice actor.

HTTP routes

BoxOffice

HTTP routes

RestApi

Figure 6.5 RemoteLookupProxy actor
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The RemoteLookupProxy actor is a state machine that can only be in one of two states
we’ve defined: identify or active (see listing 6.12). It uses the become method to switch
its receive method to identify or active. The RemoteLookupProxy tries to get a valid
ActorRef to the BoxOffice when it doesn’t have one yet in the identify state, or it for-
wards all messages sent to a valid ActorRef to the BoxOffice in the active state. If the
RemoteLookupProxy detects that the BoxOffice has been terminated, it tries to get a
valid ActorRef again when it receives no messages for a while. We’ll use remote
DeathWatch for this. It sounds like something new, but from the perspective of API
usage it’s exactly the same thing as normal actor monitoring/watching.

import scala.concurrent.duration._

class RemoteLookupProxy(path:String) extends Actor with ActorLogging {
context.setReceiveTimeout(3 seconds)
sendIdentifyRequest()

def sendIdentifyRequest(): Unit = {
val selection = context.actorSelection(path)
selection ! Identify(path)

}

def receive = identify

def identify: Receive = {
case ActorIdentity(`path`, Some(actor)) =>

context.setReceiveTimeout(Duration.Undefined)
log.info("switching to active state")
context.become(active(actor))
context.watch(actor)

case ActorIdentity(`path`, None) =>
log.error(s"Remote actor with path $path is not available.")

case ReceiveTimeout =>
sendIdentifyRequest()

case msg:Any =>
log.error(s"Ignoring message $msg, not ready yet.")

}

def active(actor: ActorRef): Receive = {
case Terminated(actorRef) =>

log.info("Actor $actorRef terminated.")
context.become(identify)
log.info("switching to identify state")

Listing 6.11 Remote lookup
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available; backe
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context.setReceiveTimeout(3 seconds)
sendIdentifyRequest()

case msg: Any => actor forward msg
}

As you can see, the monitoring API, which was described in chapter 4, is exactly the
same for local and remote actors. Simply watching an ActorRef will ensure that the
actor gets notified of termination of an actor, regardless of whether it’s remote or
local. Akka uses a sophisticated protocol to statistically detect that a node is unreach-
able. We’ll look at this protocol in more detail in chapter 14. The ActorRef to the
BoxOffice is retrieved using a special Identify message that’s sent to the Actor-
Selection. The remote module of the backend ActorSystem responds with an
ActorIdentity message that contains a correlationId and an optional ActorRef to
the remote actor. In the pattern match of the ActorIdentity, we use backticks around
the variable path. This means that the correlationId of the ActorIdentify must be
equal to the value of path. When we forget those backticks, we define a new variable
path, which contains the value of the correlationId of the message. 

 That concludes the changes we had to make to the GoTicks.com app to move from
a single node to a frontend and backend node. Apart from being able to communi-
cate remotely, the frontend and backend can boot separately, and the frontend will
look up the BoxOffice and can communicate with it when it’s available, and can take
action when it’s not.

 The last thing you could do is actually run the FrontendMain and BackendMain
classes. We’ll start up two terminals and use sbt run to run a Main class in the project.
You should get the following output in the terminals:

[info] ...
[info] ... (sbt messages)
[info] ...

Multiple main classes detected, select one to run:

[1] com.goticks.SingleNodeMain
[2] com.goticks.FrontendMain
[3] com.goticks.BackendMain

Enter number:

Select FrontendMain in one terminal and BackendMain in another. See what happens
if you kill the sbt process that runs the BackendMain and restart it again. You can test
if the app works with the same httpie commands as before; for example, http PUT
localhost:5000/events event=RHCP nrOfTickets:=10 to create an event with 10
tickets, and http GET localhost:5000/ticket/RHCP to get a ticket to the event. If you
try to kill the backend process and start it up again, you’ll see in the console that the
RemoteLookupProxy class switches from active to identify and back. You’ll also notice
that Akka reports errors about the remote connection to the other node. If you’re not
interested in logging these remote lifecycle events, you can switch the logging off by
adding the following to the remote config section:

Forwards all other
messages when remote 
actor is active
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remote {
log-remote-lifecycle-events = off

}

The remote lifecycle events are logged by default. This makes it easier to find prob-
lems when you start out with the remote module and, for example, make a minor mis-
take in the actor path syntax. You can subscribe to the remote lifecycle events using
the actor system’s eventStream, which is described in chapter 10 on channels. Since
remote actors can be watched like any local actor, there’s no need to act on these
events individually for the sake of connection management.

 Let’s review the changes:

 A FrontendMain object was added to look up the BoxOffice on the backend.
 The FrontendMain object adds a RemoteLookupProxy actor in between the

RestApi and the BoxOffice. It forwards all messages it receives to the BoxOffice.
It identifies the ActorRef to the BoxOffice and remotely monitors it.

As said in the beginning of this section, Akka provides two ways to get an ActorRef to
a remote actor. In the next section, we’ll look at the second option, namely, remote
deployment. 

6.2.4 Remote deployment

Remote deployment can be done programmatically or through configuration. We’ll
start with the preferred approach: configuration. Of course, this is preferred because
changes to the cluster settings can be made without rebuilding the app. The standard
SingleNodeMain object creates the boxOffice as a top-level actor:

val boxOffice = system.actorOf(Props[BoxOffice],"boxOffice")

The local path to this actor would be /boxOffice, omitting the user guardian actor.
When we use configured remote deployment, all we have to do is tell the frontend
actor system that when an actor is created with the path /boxOffice, the actor
shouldn’t be created locally, but remotely. This is done with the piece of configuration
in the next listing.

actor {
provider = "akka.remote.RemoteActorRefProvider"

deployment {
/boxOffice {

remote = "akka.tcp://backend@0.0.0.0:2552"
}

}
}

Listing 6.12 Configuration of the RemoteActorRefProvider

Actor with this path will 
be deployed remotely

Remote address where the actor should be deployed. The IP
address or host name has to match exactly with the interface

the remote backend actor system is listening on.
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Remote deployment can also be done programmatically, which is shown for complete-
ness’ sake. In most cases it’s better to configure the remote deployment of actors
through the configuration system (using properties), but in some cases, for example,
if you’re referencing different nodes by CNAMES (which are themselves configu-
rable), you might do the configuration in code. Fully dynamic remote deployment
makes more sense when using the akka-cluster module because it’s built specifically to
support dynamic membership. An example of programmatic remote deployment is
shown in the following listing. 

val uri = "akka.tcp://backend@0.0.0.0:2552"
val backendAddress = AddressFromURIString(uri)

val props = Props[BoxOffice].withDeploy(
  Deploy(scope = RemoteScope(backendAddress))
)

context.actorOf(props, "boxOffice")

The preceding code creates and deploys the BoxOffice remotely to the backend as
well. The Props configuration object specifies a remote scope for deployment.

 It’s important to note that remote deployment doesn’t require that Akka automat-
ically deploy the actual class file(s) for the BoxOffice actor into the remote actor sys-
tem in some way; the code for the BoxOffice needs to already be present on the
remote actor system for this to work, and the remote actor system needs to be run-
ning. If the remote backend actor system crashes and restarts, the ActorRef won’t
automatically point to the new remote actor instance. Since the actor is going to be
deployed remotely, it can’t already be started by the backend actor system as we did in
the BackendMain. Because of this a couple of changes have to be made. We start with
new Main classes for starting the backend (BackendRemoteDeployMain) and the front-
end (FrontendRemoteDeployMain).

// the main class to start the backend node.
object BackendRemoteDeployMain extends App {
  val config = ConfigFactory.load("backend")
  val system = ActorSystem("backend", config) 
}

object FrontendRemoteDeployMain extends App
    with Startup {
  val config = ConfigFactory.load("frontend-remote-deploy") 
  implicit val system = ActorSystem("frontend", config) 

  val api = new RestApi() {
    implicit val requestTimeout = configuredRequestTimeout(config)
    implicit def executionContext = system.dispatcher

Listing 6.13 Programmatic remote deploy configuration

Listing 6.14 Main objects for starting the backend and the frontend

Creates an address to the 
backend from the URI

Creates a Props with a 
remote deployment scope

Not creating the boxOffice 
actor anymore

The main class to start 
the frontend node.
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  def createBoxOffice: ActorRef = 
    system.actorOf(
      BoxOffice.props, 
      BoxOffice.name
    ) 
  }

  startup(api.routes)
}

When you run these Main classes with two terminals like before and create some
events with httpie, you’ll see something similar to the following message in the con-
sole of the frontend actor system:

// very long message, formatted in a couple of lines to fit.
INFO [frontend-remote]: Received new event Event(RHCP,10), sending to
Actor[akka.tcp://backend@0.0.0.0:2552/remote/akka.tcp/

frontend@0.0.0.0:2551/user/boxOffice#-1230704641]

This shows that the frontend actor system is actually sending a message to the remote
deployed boxOffice. The actor path is different than you’d expect. It keeps track of
where the actor was deployed from. The remote daemon that listens for the backend
actor system uses this information to communicate back to the frontend actor system.

 What we’ve worked up so far works, but there’s one problem with this approach. If
the backend actor system isn’t started when the frontend tries to deploy the remote
actor, the deployment obviously fails, but what is maybe not so obvious is that the
ActorRef is still created. Even if the backend actor system is started later, the created
ActorRef doesn’t work. This is the correct behavior, since it’s not the same actor
instance—as distinguished from the prior failure cases we saw, where only the actor
itself is restarted, in which case the ref will still point to the recreated actor.

 If we want to do something when the remote backend crashes or the remote box-
Office actor crashes, we’ll have to make some more changes. We’ll have to watch the
boxOfficeActorRef like we did before and take actions when this happens. Since the
RestApi has a val reference to the boxOffice, we’ll need to once again put an actor in
between the way we did with the RemoteLookupProxy actor. This in-between actor will
be called RemoteBoxOfficeForwarder.

 The configuration needs to be changed slightly because the boxOffice now has
the path /forwarder/boxOffice because of the RemoteBoxOfficeForwarder in
between. Instead of the /boxOffice path in the deployment section, it should now
read as /forwarder/boxOffice.

 The following listing shows the RemoteBoxOfficeForwarder that will watch the
remote deployed actor.

object RemoteBoxOfficeForwarder {
  def props(implicit timeout: Timeout) = {
    Props(new RemoteBoxOfficeForwarder)
  }

Listing 6.15 Watch mechanisms for remote actors

Creating the boxOffice, 
automatically uses the 
configuration
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  def name = "forwarder"
}

class RemoteBoxOfficeForwarder(implicit timeout: Timeout) 
    extends Actor with ActorLogging {
  context.setReceiveTimeout(3 seconds)

  deployAndWatch() 

  def deployAndWatch(): Unit = {
    val actor = context.actorOf(BoxOffice.props, BoxOffice.name)
    context.watch(actor)
    log.info("switching to maybe active state")
    context.become(maybeActive(actor))
    context.setReceiveTimeout(Duration.Undefined)
  }

  def receive = deploying

  def deploying: Receive = {
    case ReceiveTimeout =>
      deployAndWatch()

    case msg: Any =>
      log.error(s"Ignoring message $msg, remote actor is not ready yet.")
  }

  def maybeActive(actor: ActorRef): Receive = {
    case Terminated(actorRef) =>
      log.info("Actor $actorRef terminated.")
      log.info("switching to deploying state")
      context.become(deploying)
      context.setReceiveTimeout(3 seconds)
      deployAndWatch()

    case msg: Any => actor forward msg
  }
}

The preceding RemoteBoxOfficeForwarder looks very similar to the RemoteLookup-
Proxy class in the previous section, in that it’s also a state machine. In this case it’s in
one of two states: deploying or maybeActive. Without doing an actor selection
lookup, we can’t be sure that the remote actor is actually deployed. The exercise to
add remote lookup with actorSelection to the RemoteBoxOfficeForwarder is left to
the reader; for now the maybeActive state will do. 

 The Main class for the frontend needs to be adapted to create the RemoteBox-
OfficeForwarder:

object FrontendRemoteDeployWatchMain extends App
    with Startup {
  val config = ConfigFactory.load("frontend-remote-deploy") 
  implicit val system = ActorSystem("frontend", config) 

  val api = new RestApi() {
    val log = Logging(system.eventStream, "frontend-remote-watch")
    implicit val requestTimeout = configuredRequestTimeout(config)
    implicit def executionContext = system.dispatcher

Remotely deploys and 
watches the BoxOffice

Switches to “maybe 
active” once the actor is 
deployed. We can’t be 
sure without using lookup 
if the actor is deployed.

Deployed BoxOffice is 
terminated so it’s certain that 
a retry deployment is needed
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    def createBoxOffice: ActorRef = { 
      system.actorOf(
        RemoteBoxOfficeForwarder.props, 
        RemoteBoxOfficeForwarder.name
      )
    }
  }

  startup(api.routes)
}

We have created a new Main class FrontendRemoteDeployWatchMain that contains
these changes.

 Running the FrontendRemoteDeployWatchMain and the BackendRemoteDeploy-
Main on two sbt console terminals shows how the remote deployed actor is watched
and how it’s redeployed when the backend process is killed and restarted again, or
when the frontend is started before the backend.

 In case you just read over the previous paragraph and though “meh,” read that
paragraph again. The app is automatically redeploying an actor when the node it runs
on reappears and continues to function. This is cool stuff and we’ve only scratched
the surface!

 That concludes this section on remote deployment. We’ve looked at both remote
lookup and remote deployment, and what’s required to do this in a resilient way. Even
in the situation where you only have two servers, it’s a major benefit to have resilience
built in from the start. In both lookup and deployment examples, the nodes are free
to start up in any order. The remote deployment example could have been done
purely by changing the deployment configuration, but we would’ve ended up with a
too-naive solution that didn’t take node or actor crashes into consideration and would
have required a specific startup order.

 In the next section, we’ll look at the multi-JVM sbt plugin and the akka-multi-
node-testkit, which makes it possible to test the frontend and backend nodes in the
GoTicks app. 

6.2.5 Multi-JVM testing

Testing actors using remote actors will be more complex, now that we’re making the
application distributed, because the actors depend on other actors running on different
nodes. Ideally we want to make a test that’s able to start different nodes and run the test
using these different nodes. Figure 6.6 shows an example of testing our REST frontend.

 As you see, we need two different JVMs: one for the frontend and the test code, and
a server site where the BoxOffice is deployed. And maybe more important: this test
needs coordination between the two JVMs. Deploying the frontend needs a remote
reference to the BoxOffice and can only start when the BoxOffice is started. The sbt
multi-JVM plugin will take care of both.

Creates a forwarder that watches 
and deploys the remote BoxOffice
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The sbt multi-JVM plugin makes it possible to run tests across multiple JVMs. The
plugin needs to be registered with sbt in the project/plugins.sbt file:

resolvers += Classpaths.typesafeResolver

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.13.0")

addSbtPlugin("com.typesafe.sbt" % "sbt-start-script" % "0.10.0")

addSbtPlugin("com.typesafe.sbt" % "sbt-multi-jvm" % "0.3.11")

We also have to add another sbt build file to use it. The multi-JVM plugin only sup-
ports the scala DSL version of sbt project files, so we need to add a GoTicksBuild.scala
file in the chapter-remoting/project folder. sbt merges the build.sbt file and the fol-
lowing file automatically, which means that the dependencies don’t have to be dupli-
cated in the following listing.

import sbt._
import Keys._
import com.typesafe.sbt.SbtMultiJvm
import com.typesafe.sbt.SbtMultiJvm.MultiJvmKeys.{ MultiJvm }

object GoTicksBuild extends Build {

Listing 6.16 Multi-JVM configuration
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Deploy
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Create response
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Check response
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Figure 6.6 Testing example using remote actors
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lazy val buildSettings = Defaults.defaultSettings ++
multiJvmSettings ++
Seq(

                      crossPaths := false
                        )

lazy val goticks = Project(
id = "goticks",
base = file("."),
settings = buildSettings ++ Project.defaultSettings

) configs(MultiJvm)

lazy val multiJvmSettings = SbtMultiJvm.multiJvmSettings ++
Seq(

  compile in MultiJvm <<=
  (compile in MultiJvm) triggeredBy (compile in Test),
 parallelExecution in Test := false,
 executeTests in Test <<=
 ((executeTests in Test), (executeTests in MultiJvm)) map {
 case ((_, testResults), (_, multiJvmResults)) =>
 val results = testResults ++ multiJvmResults
 (Tests.overall(results.values), results)
  }
  )
}

If you’re not an sbt expert, don’t worry about the details of this build file. The preced-
ing basically configures the multi-JVM plugin and makes sure that multi-JVM tests are
executed along with the normal unit tests. SBT in Action (www.manning.com/
suereth2/) does a great job at explaining the details of sbt, if you’d like to know more
about it.

 All the test code for multi-JVM tests need to be added to the src/multi-jvm/scala
folder by default. Now that our project is set up correctly for multi-JVM tests, we can
start with a unit test for the frontend and backend of the GoTicks.com app. First, a
MultiNodeConfig needs to be defined that describes the roles of the nodes that are
tested. We create the object class ClientServerConfig, which defines the multi-node
config for the client server (frontend and backend) configuration. The following list-
ing shows this new object class.

object ClientServerConfig extends MultiNodeConfig {
val frontend = role("frontend")
val backend = role("backend")

}

Two roles have been defined, the frontend and the backend, as you would expect. The
roles will be used to identify the node for unit testing and to run specific code on each
node for testing purposes. Before we start to write a test, we need to write some infra-
structure code to hook up the test into scalatest.

Listing 6.17 Describing the roles of the nodes tested

Makes sure o
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import akka.remote.testkit.MultiNodeSpecCallbacks
import org.scalatest.{BeforeAndAfterAll, WordSpec}
import org.scalatest.matchers.MustMatchers

trait STMultiNodeSpec extends MultiNodeSpecCallbacks
with WordSpec with MustMatchers with BeforeAndAfterAll {

override def beforeAll() = multiNodeSpecBeforeAll()

override def afterAll() = multiNodeSpecAfterAll()
}

This trait is used to start up and shut down the multi-node test, and you can reuse it for
all your multi-node tests. It’s mixed into the unit test specification, which defines the
actual test. In our example we create a test called ClientServerSpec, which is shown
next. It’s quite a bit of code, so let’s break it down. The first thing we need to do is cre-
ate a MultiNodeSpec that mixes in the STMultiNodeSpec we just defined. Two versions
of the ClientServerSpec will need to run on two separate JVMs. The code in the fol-
lowing listing shows how two ClientServerSpec classes are defined for this purpose.

class ClientServerSpecMultiJvmFrontend extends ClientServerSpec
class ClientServerSpecMultiJvmBackend extends ClientServerSpec

class ClientServerSpec extends MultiNodeSpec(ClientServerConfig)
with STMultiNodeSpec with ImplicitSender {

def initialParticipants = roles.size

The ClientServerSpec uses the STMultiNodeSpec and also an ImplicitSender trait.
The ImplicitSender trait sets the testActor as the default sender for all messages,
which makes it possible to just call expectMsg and other assertion functions without
having to set the testActor as the sender of messages every time. The code in the
next listing shows how we get the address of the backend node.

import ClientServerConfig._

val backendNode = node(backend)

Listing 6.18 STMultiNodeSpec hooks up into scalatest

Listing 6.19 Spec classes for multi-node tests

Listing 6.20 Getting the address of the backend node
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value in the test.)



143Scaling out with remoting
The backend and frontend role nodes run on a random port by default. The Test-
RemoteBoxOfficeCreator replaces the RemoteBoxOfficeCreator in the test, since it
creates a path from a configured host, port, and actor name in the frontend.conf file.
Instead, we want to use the address of the backend role node during testing and look
up a reference to the boxOffice actor on that node. The preceding listing achieves
this. The following listing shows tests of our distributed architecture.

"A Client Server configured app" must {

  "wait for all nodes to enter a barrier" in {
    enterBarrier("startup")
  }

  "be able to create an event and sell a ticket" in {
    runOn(backend) {
      system.actorOf(BoxOffice.props(Timeout(1 second)), "boxOffice")
      enterBarrier("deployed")
    }

    runOn(frontend) {
      enterBarrier("deployed")

      val path = node(backend) / "user" / "boxOffice"
      val actorSelection = system.actorSelection(path)

      actorSelection.tell(Identify(path), testActor)

      val actorRef = expectMsgPF() {
        case ActorIdentity(`path`, Some(ref)) => ref
      }

      import BoxOffice._

      actorRef ! CreateEvent("RHCP", 20000)

      expectMsg(EventCreated(Event("RHCP", 20000)))

      actorRef ! GetTickets("RHCP", 1)

      expectMsg(Tickets("RHCP", Vector(Ticket(1))))
    }

    enterBarrier("finished")
  }
}

There’s quite a lot going on here. The unit test can be broken into three pieces. First,
it waits for all nodes to start by using the enterBarrier("startup") call, which exe-

Listing 6.21 Testing the distributed architecture
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cutes on both nodes. Second, the unit test continues to specify what code should be
run on the frontend node and the backend node. The frontend node waits for the
backend node to signal that it is deployed and executes a test. Finally, the unit test
waits for all nodes to finish by using the enterBarrier("finished")

 The backend node only starts the boxOffice, so it can be used from the frontend
node. Since we would have to add HTTP client requests if we used the real RestApi,
we’ll just go to the BoxOffice directly.

 After that we can finally test the interactions between the frontend and the back-
end node. We can use the same methods that we used in chapter 3 for expecting mes-
sages. This multi-JVM test can be run by executing the multi-jvm:test command in
sbt; give it a try.

 Figure 6.7 shows how the test actually flows. Note that the coordination of the vari-
ous collaborators, and their runtimes, is made pretty much automatic by the multi-
JVM test kit. Doing this with your own hand-hewn code would be a lot of work.

The chapter-remoting project also has a unit test for a single-node version of the app,
and apart from some of the infrastructure setup, the test is basically the same. The
example multi-JVM test here just shows how an app that was initially built for a single
node can be adapted to run on two nodes. The big difference between the single-
node and the client server setup is how the actor reference to the remote system is
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Figure 6.7 Multi-JVM 
test flow
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found; is it looked up or deployed remotely? Having a remote lookup in between the
RestApi and the boxOffice gave us some flexibility and the ability to survive crashes.
It gave an interesting problem to solve in the example unit test: how do we wait for the
remote ActorRef to the boxOffice to become available? The actorSelection and
identity message mechanism were the answer for this.

 This concludes our first look at the multi-node-testkit module. You’ll see more
of it in the chapters to come. The preceding test shows an example of how the
GoTicks.com app can be unit tested in a distributed environment. In this case it runs
on two JVMs on a single machine. As you’ll see later in chapter 13, multi-node-
testkit can also be used to run unit tests on several servers. 

6.3 Summary
Do you remember the reason we gave at the beginning of the chapter for why we
couldn’t just flip a switch and have our app work in a distributed fashion (using remot-
ing)? It was because we have circumstances that we need to account for in the network
world that our local-only app is able to completely ignore. As you would expect, much
of what we ended up having to actually do in this chapter boiled down to just account-
ing for those new circumstances, and as predicted, Akka made it easy.

 Despite the fact that we had to make some changes, we also found a lot of constancy: 

 We benefited from the fact that an ActorRef behaves the same whether the
actor is local or remote.

 The monitoring API for death watch of distributed systems is exactly the same as
for local systems.

 Despite the fact that collaborators were now separated by the network, by simply
using forwarding (in the RemoteLookupProxy and RemoteBoxOffice-

Forwarder), we transparently allowed the RestApi and BoxOffice to communi-
cate with each other.

This is important because taking our app to the next level doesn’t require that we
either unlearn what we’ve learned or learn a whole new load of stuff; the basic opera-
tions remain largely the same, which is the hallmark of a well-designed toolkit.

 You also learned some new things: 

 REPL provides an easy, interactive means of getting your stuff going in the dis-
tributed topology of your choice.

 The multi-node-testkit module makes it incredibly easy to test distributed
actor systems, no matter if they’re built with akka-remote, akka-cluster, or even
both. (Akka is rather unique in providing proper unit testing tools for a distrib-
uted environment.)

We’ve intentionally not dealt with the fact that messages will get lost in the Remote-
LookupProxy and RemoteBoxOfficeForwarder when the backend node isn’t available.
In upcoming chapters, you’ll see 
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 How a reliable proxy can be used for messaging between peer nodes (chapter
10, “Message channels”)

 How to fix GoTicks.com to deal with the fact that the state of the Ticket-
Sellers is lost when a backend node crashes (chapter 14, “Actor Persistence”)

 How state can be replicated across a cluster (chapter 14, “Actor Persistence”)

But these solutions aren’t needed for the basic understanding of Akka and will be cov-
ered in the later chapters of the book. Before you get simple applications running,
you need some utility functions to create an actual application like the configuration,
logging, and deployment of an application. This will be covered in the next chapter.



Configuration, logging,
and deployment
Thus far, we’ve focused on creating actors and working with the actor system. To
create an application that can actually be run, we’ll need several other things to be
bundled with it before it’s ready for deployment. First, we’ll dive into how Akka sup-
ports configuration, and then we’ll look at logging, including how you can use your
own logging framework. Last, we’ll go through a deployment example.

7.1 Configuration
Akka uses the Typesafe Config Library, which sports a state-of-the-art set of capabil-
ities. The typical features are there: the ability to define properties in different
ways and then reference them in the code (job one of configuration is to grant

In this chapter
 Using the configuration library

 Logging application-level events and debug 
messages

 Packaging and deployment of Akka-based 
applications
147
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runtime flexibility by making it possible to use variables outside the code). There’s
also a sophisticated means of merging multiple configuration files based on simple
conventions that determine how overrides will occur. One of the most important
requirements of a configuration system is providing a means of targeting multiple
environments (such as development, testing, production), without having to explode
the bundle. You’ll see how that’s done, as well.

7.1.1 Trying out Akka configuration

Like other Akka libraries, the Typesafe Config Library takes pains to minimize the
dependencies that are needed; it has no dependencies on other libraries. We’ll start
with a quick tour of how to use the configuration library.

 The library uses a hierarchy of properties. Figure 7.1 shows a possible configura-
tion of an application defining four properties using a self-defined hierarchy. We’ve
grouped all our properties within the MyAppl node and also grouped the database
properties.

The ConfigFactory is used to get the configuration. This is often called within the
Main class of your application. The library also supports the ability to specify which
configuration file is used, and in the next sections, we’ll look at the configuration files
in more detail, but for now we’ll start by using the default one.

val config = ConfigFactory.load()

When using the default, the library will try to find the configuration file. Since the
library supports a number of different configuration formats, it looks for different
files, in the following order:

 application.properties—This file should contain the configuration properties in
the Java property file format.

 application.json—This file should contain the configuration properties in the
JSON style.

 application.conf —This file should contain the configuration properties in the
HOCON format. This is a format based on JSON but is easier to read. More
details on HOCON or the Typesafe Config Library can be found at
https://github.com/typesafehub/config.

Listing 7.1 Getting configuration 

version = 10

name = "My application"

database
connect="jdbc:mysql://localhost/mydata"

user="me"

MyAppl

Figure 7.1 Configuration 
example

https://github.com/typesafehub/config
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It’s possible to use all the different files at the same time. We use application.conf in
the following listing.

MyAppl {
version = 10
description = "My application"
database {

connect="jdbc:mysql://localhost/mydata"
user="me"

}
}

For simple applications, this file will often suffice. The format looks somewhat like
JSON. The primary advantages are that it’s more readable and it’s easy to see how
properties are being grouped. JDBC is a perfect example of properties most apps will
need that are better grouped together. In the dependency injection world, you would
group items like this by controlling the injection of the properties into objects (such
as DataSource). This is a simpler approach. Let’s look at how we can make use of
these properties, now that we’ve defined them.

 There are several methods to get the values as different types, and the period (.) is
used as the separator in the path of the property. Not only are the basic types sup-
ported, but it’s also possible to get lists of these types.

val applicationVersion = config.getInt("MyAppl.version")
val databaseConnectString = config.getString("MyAppl.database.connect")

Sometimes, an object doesn’t need much configuration. What if you have a class
DBaseConnection that’s creating the database connection? This class needs only the
connect string and the user property. When you pass the full configuration to the
DBaseConnection class, it needs to know the full path of the property. But when you
want to reuse DBaseConnection within another application, a problem arises. The
start of the path is MyAppl ; another application probably has a different configuration
root. Therefore, the path to the property has changed. This can be solved by using the
functionality of getting a subtree as your configuration.

val databaseCfg = configuration.getConfig("MyAppl.database")

Listing 7.2 application.conf

Listing 7.3 Getting properties 

Listing 7.4 Getting a configuration subtree 

Nesting is done by simply 
grouping with {}.

We can use connect string from inside
database braces {} from prior listing

First get subtree by name, which is
used in application-specific code
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val databaseConnectString = databaseCfg.getString("connect")

Using this approach, instead of configuration, you give the databaseCfg to DBase-
Connection, and now DBaseConnection doesn’t need the full path of the property,
only the last part—the name of the property. This means DBaseConnection can be
reused without introducing path problems.

 It’s also possible to perform substitutions when you have a property that’s used
multiple times in your configuration, for example, the host name of the database con-
nect string.

hostname="localhost"
MyAppl {

version = 10
description = "My application"
database {

connect="jdbc:mysql://${hostname}/mydata"
user="me"

}
}

Config file variables are often used for things like the application name, or for version
numbers, since repeating them in many places in the file could potentially be danger-
ous. It’s also possible to use system properties or environment variables in the substitu-
tions as well.

hostname=${?HOST_NAME}
MyAppl {

version = 10
description = "My application"
database {

connect="jdbc:mysql://${hostname}/mydata"
user="me"

}
}

But the problem with these properties is that you never know for sure that these prop-
erties exit. To account for this, you can make use of the possibility that redefinition of
a property overrules the previous definition. And the substitution of a system property
or environment variable definition simply vanishes if there’s no value for the specified
property HOST_NAME. The following listing shows how to do this.

Listing 7.5 Substitution

Listing 7.6 System property or environment variable substitution 

Then reference property as relative to subtree
root, which will be used within DBaseConnection

Simple variable definition, no types 
needed (note quotes though)

Familiar ${} 
substitution syntax

Question mark ? signifies 
getting the value from an
environment variable
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hostname="localhost"
hostname=${?HOST_NAME}
MyAppl {

version = 10
description = "My application"
database {

connect="jdbc:mysql://${hostname}/mydata"
user="me"

  }
}

It’s pretty easy to see what’s going on here. Defaults are important in configuration
because you want to force the user to do as little configuration as possible. Further-
more, it’s often the case that apps should run with no configuration until they really
need to be pushed into a production environment; development usage can often be
done with nothing but defaults. 

7.1.2 Using defaults

Let’s continue with our simple JDBC configuration. It’s generally safe to assume that
developers will be connecting to a database instance on their own machine, refer-
enced as localhost. As soon as someone wants to see a demo, we’ll be scrambling to
get the app working on an instance somewhere that will no doubt have different
names, and the database will likely be on another machine. The laziest thing we could
do is just make a copy of the whole config file and give it a different name, and then
have some logic in the app that says “use this file in this environment, and this one in
another.” The problem with this is that now we have all our configuration in two
places. It makes more sense to just override the two or three values that are going to
be different in the new target environment. The defaulting mechanism will allow us to
do that easily. The configuration library contains a fallback mechanism; the defaults
are placed into a configuration object, which is then handed over to the configurator
as the fallback configuration source. Figure 7.2 shows a simple example of this.

Listing 7.7 System property or environment variable substitution with default

Define usual simple way first

If there’s an env var, 
override; otherwise, leave it 
with value you just assigned

Preventing null properties
The defaulting mechanism prevents cases where the values are different depending
on where they’re being used. In view of this principle, when a configuration property
is read, the value should always be set. If the framework were to allow the property
to be empty, again the code would behave differently based on how (and where) con-
figuration was done. Therefore, if you try to get a config value from the configuration
that isn’t set, an exception is thrown.
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This fallback structure grants us a lot of flexibility. But for it to provide the defaults we
need, we have to know how to configure them. They’re configured in the file reference
.conf and placed in the root of the JAR file; the idea is that every library contains its own
defaults. The configuration library will find all the reference.conf files and integrate
these settings into the configuration fallback structure. This way all the needed prop-
erties of a library will always have a default and the princi-
ple of always getting some value back will be preserved.
(Later, you’ll see that you can explicitly stipulate defaults
programmatically, as well.)

 We already mentioned that the configuration library
supports multiple formats. There’s nothing stopping you
from using multiple formats in a single application. Each
file can be used as the fallback of another file. And to sup-
port the possibility of overruling properties with system
properties, the higher-ranking configuration contains
these. The structure is always the same, so the relation-
ships between defaults and overrides is likewise always the
same. Figure 7.3 shows the files the config library uses to
build the complete tree, in priority order.

 Most applications will use only one of these applica-
tion file types. But if you want to provide a set of applica-
tion defaults and then override some of them, as we want

1. getString(
  "MyAppl.database.connect")

2. Config can’t find
    requested property
    and tries the fallback
    configuration

MyAppl
version = 10

name = "My application"

version = 1

name = ""

database
connect="jdbc:mysql://localhost/mydata"

user="me"

MyAppl

Figure 7.2 Configuration fallback

System properties

application.conf

application.json

application.properties

reference.conf

Figure 7.3 Priority of the 
configuration fallback 
structure. Highest priority 
at the top, which overrides 
definitions in lower files.



153Configuration
to do with our JDBC settings, you can do that. When following this guide, realize that
the upper configurations shown in figure 7.3 will overrule the values defined in the
lower configurations.

 By default, the file application.{conf,json,properties} is used to read the configura-
tion. There are two ways to change the name of the configuration file. The first option
is to use an overloaded load function on the ConfigFactory. When loading the con-
figuration, the name of the base should be supplied.

val config = ConfigFactory.load("myapp")

This way it doesn’t try to load application.{conf,json,properties}, but rather
myapp.{conf,json,properties}. (This is required if you need to have multiple configura-
tions in a single JVM.)

 Another option is to use Java system properties. Sometimes, this is the easiest thing
because you can just create a Bash script and set a property, and the app will pick it up
and start using it (better than exploding JARs or WARs to monkey with the files inside).
The following list explains the three system properties that can be used to control
which configuration file should be read:

 config.resource specifies a resource name—not a base name; for example,
application.conf, not application.

 config.file specifies a file system path; again, it should include the extension.
 config.url specifies a URL.

System properties can be used for the name of the configuration file, when you’re
using the load method without arguments. Setting system properties is as easy as add-
ing the -D option; for example -Dconfig.file="config/myapp.conf" when using the
configuration file config/myapp.conf. When using one of these properties, the default
behavior of searching for the different .conf, .json, and .properties is skipped. 

7.1.3 Akka configuration

Okay, you’ve seen how we can use the configuration library for our application’s prop-
erties, but what do you need to do when you want to change some of Akka’s configura-
tion options? How is Akka using this library? It’s possible to have multiple
ActorSystems that have their own configuration. When no configuration is present at
creation, the actor system will create the configuration using the defaults, as shown in
the next listing.

val system = ActorSystem("mySystem")

Listing 7.8 Changing configuration file 

Listing 7.9 Default configuration 

Simply ask factory to load new name

ConfigFactory.load() is used internally 
to create a default config for the config 
argument that is omitted here.
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But it’s also possible (and useful) to supply the configuration while creating an Actor-
System. The following listing shows a simple way of accomplishing this.

val configuration = ConfigFactory.load("myapp")
val systemA = ActorSystem("mysystem",configuration)

The configuration is within your application; it can be found in the settings of the
ActorSystem. This can be accessed within every actor. In the next listing we get the
property MyAppl.name.

val mySystem = ActorSystem("myAppl")
val config = mySystem.settings.config
val applicationDescription = config.getString("MyAppl.name")

By this point, you’ve seen how you can use the configuration system for your own
properties, and how to use the same system to configure the ActorSystem that’s the
backbone of Akka. The presumption in these first two sections has been that you have
but one Akka app on a given system that’s hosting you. In the next section, we’ll dis-
cuss configuring systems that share a single instance. 

7.1.4 Multiple systems

Depending on your requirements, it may be necessary to have different configurations,
say, for multiple subsystems, on a single instance (or machine). Akka supports this in
several ways. Let’s start by looking at cases where you’re using several JVMs, but they run
in the same environment using the same files. We already described the first option: the
use of system properties. When starting a new process, a different configuration file is
used. But usually a lot of the configuration is the same for all the subsystems, and only
a small part differs. This problem can be solved by using the include option.

 Let’s look at an example. Let’s say we have a baseConfig file like the one in the
next listing.

MyAppl {
version = 10
description = "My application"

}

Listing 7.10 Using specified configuration

Listing 7.11 Access to the configuration from the running app

Listing 7.12 baseConfig.conf

First load configuration, 
providing name

Then pass it to 
ActorSystem
constructor

Once ActorSystem is constructed, 
we can get config just by 
referencing it using this path.

Then we just get a property
as we would ordinarily.
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For this example, we start with this simple configuration root, which would most likely
have one shared and one differing property; the version number is likely to be the
same across subsystems, but we’ll probably want different names and descriptions for
each subsystem.

include "baseConfig"
MyAppl {

description = "Sub Application"
}

Because the include is before the rest of the configuration, the value of description
in the configuration is overridden just as it was in a single file. This way, you can have
one basic configuration and only the differences required in the specific configura-
tion files for each subsystem.

 But what if the subsystems are running in the same JVM? Then you can’t use the
system properties to read other configuration files. How should you do the configura-
tion then? We’ve already discussed what’s needed for this case: you can use an applica-
tion name when loading the configuration. You can also use the include method to
group all the configuration that’s the same. The only drawback is the possible number
of configuration files. If that’s a concern, there’s another solution that leverages the
ability to merge configuration trees using the fallback mechanism.

 We start by combining the two configurations into one.

MyAppl {
version = 10
description = "My application"

}

subApplA {
MyAppl {

description = "Sub application"
}

}

The trick we’re using is that we take a subtree within subApplA of the configuration
and put that in front of the configuration chain. This is called lifting a configuration,
because the configuration path is shortened. Figure 7.4 shows how this is done.

 When we request the property MyAppl.description using config.getString
("MyAppl.description"), we get the result "Sub application" because the descrip-
tion configuration value was set in the configuration at the highest level (at subApplA
.MyAppl.description). And when we ask for MyAppl.version, we get the value 10

Listing 7.13 subAppl.conf

Listing 7.14 combined.conf 

Simply name config file we want 
to include (no extension)

Then provide new description

By lifting this, we get shared 
property (version) and 
override description
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because the version configuration value wasn’t defined in the higher configuration
(inside subApplA.MyAppl), so the normal fallback mechanism is used to provide the
configuration value. Listing 7.15 shows how we load the configuration to have both
the lift and the fallback. Note that the fallback is chained programmatically here (not
relying on the file conventions we covered earlier).

val configuration = ConfigFactory.load("combined")
val subApplACfg = configuration.getConfig("subApplA")

val config = subApplACfg.withFallback(configuration)

Configuration is a crucial part of delivering applications; though it starts out with
meager requirements that are usually easily met, invariably demands appear that can
complicate matters, and often the configuration layer of an application becomes very
tangled and complex. The Typesafe Config Library provides a number of powerful
tools to prevent this from happening: 

 Easy defaulting based on convention (with overrides)
 Sophisticated defaulting that allows you to require the least amount of configu-

ration necessary
 Several syntax options: traditional, Java, JSON, and HOCON

We haven’t come near to exhausting this topic, but we’ve shown you enough that you
can deal with a pretty broad range of typical requirements that will come up as you

Listing 7.15 Lift example with fallback

Fallback

MyAppl {
 version = 10
 description = "My application"
}
subApplA {
 MyAppl {
  description = "Sub application"
 }
}

MyAppl {
 version = 10
 description = "My application"
}
subApplA {
 MyAppl {
  description = "Sub application"
 }
}

MyAppl {
 description = "Sub application"
}

Lift the subtree
subApplA.MyAppl.

subApplA.MyAppl is lifted
and put in front of the
original configuration.

Figure 7.4
Lifting a configuration section

Select subtree 
subApplA

Add configuration
as fallback
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start to deploy Akka solutions. In the next section, we tackle logging, which is critical,
but developers tend to have strong opinions and they tend to want to use what they’re
comfortable with. We’ll address how Akka allows this, through configuration. 

7.2 Logging
Another function each application needs is to be able to write messages to a log file.
Because everyone has their own preferences regarding which logging library to use, the
Akka toolkit has a logging adapter that supports all kinds of logging frameworks and
also minimizes the dependencies on other libraries. As was the case with configuration,
there are two sides to logging: how you use the log for your application-level logging
needs, and how you can control what Akka puts into the logs (which is a critical part of
debugging). We’ll cut the same path, starting with how logging with Akka works.

7.2.1 Logging in an Akka application

Just as you would in normal Java or Scala code, you’ll have to create a logger instance
inside any actor that needs to put messages into the log.

class MyActor extends Actor {
val log = Logging(context.system, this)
...

}

The first thing that’s notable is that the ActorSystem is needed. This is done so there’s
a separation of the logging from the framework. The logging adapter uses the system
eventStream to send the log messages to the eventHandler. The eventStream is the
publish-subscribe mechanism of Akka (described later). The eventHandler receives
these message and uses the preferred logging framework to log the message. This way
all the actors can log and only one actor has a dependency on the specific logging
framework implementation. Which eventHandler is used can be configured. Another
advantage is that logging means I/O, and I/O is always slow, and in a concurrent envi-
ronment, this can be even worse because you have to wait until another thread is done
writing its log messages. So in a high-performance application, you don’t want to wait
until the logging is done. Using the Akka logging, the actors don’t have to wait to do
logging. The following listing shows the configuration required for the default logger
to be created.

akka {
# Event handlers to register at boot time
# (Logging$DefaultLogger logs to STDOUT)
loggers = ["akka.event.Logging$DefaultLogger"]
# Options: ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

}

Listing 7.16 Creating a logging adapter

Listing 7.17 Configuring eventHandler
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An 
This eventHandler doesn’t use a log framework, but logs all the received messages to
STDOUT. The Akka toolkit has two implementations of this logging eventHandler.
The first—the default logger to STDOUT—has already been mentioned. The second
implementation is using SLF4J. This can be found in akka-slf4j.jar. To use this handler,
add the following configuration to your application.conf.

akka {
loggers = ["akka.event.slf4j.Slf4jLogger"]
# Options: ERROR, WARNING, INFO, DEBUG
loglevel = "DEBUG"

}

But when STDOUT and SLF4J aren’t sufficient, you can create your own eventHandler.
You need to create an actor that handles several messages. Here’s an example of such
a handler.

import akka.event.Logging.InitializeLogger

import akka.event.Logging.LoggerInitialized

import akka.event.Logging.Error

import akka.event.Logging.Warning

import akka.event.Logging.Info

import akka.event.Logging.Debug

class MyEventListener extends Actor{
def receive = {

  case InitializeLogger(_) =>

 sender ! LoggerInitialized

case Error(cause, logSource, logClass, message) =>

println( "ERROR " + message)

case Warning(logSource, logClass, message) =>

println( "WARN " + message)

case Info(logSource, logClass, message) =>

println( "INFO " + message)

case Debug(logSource, logClass, message) =>

println( "DEBUG " + message)

}

}

This is a very simple example and is only showing the message protocol. In real life,
this actor will be more complex.

Listing 7.18 Using SLF4J eventHandler

Listing 7.19 My eventHandler

Upon receipt of this message, 
initialization of your handler
can be done, and when
complete, a LoggerInitialized 
should be sent to the sender.

An error message is 
received; log this. 
message or not. 
Here you can add 
some logic for
filtering log records 
when your log 
framework doesn’t 
support this.

A warning
message is

received.

information
message is

received.

A debug message is received.
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7.2.2 Using logging

Let’s revisit the creation of the Akka logger instance that we first showed in listing 7.16.
We discussed the first part of the creation process (the ActorSystem). If you recall,
there was a second parameter; here it is again.

class MyActor extends Actor {
val log = Logging(context.system, this)
...

}

The second parameter of Logging is used as the source of this logging channel, in this
case, the class instance. The source object is translated to a String to indicate the
source of the log messages. The translation to a String is done according to the fol-
lowing rules:

 If it’s an Actor or ActorRef, its path is used.
 In case of a String, the string is used.
 In case of a class, an approximation of its simpleName is used.

For convenience you can also use the ActorLogging trait to mixin the log member
to actors. This is provided because most of the time you want to use the logging as
shown next.

class MyActor extends Actor with ActorLogging {
...

}

The adapter also supports using placeholders in the message. Placeholders prevent you
from having to check logging levels. If you construct messages with concatenation, the
work will be done each time, even if the level precludes the insertion of the message in
the log! Using placeholders, you don’t have to check the level (for example if (logger
.isDebugEnabled())), and the message will only be created if it would be included in
the log given the current level. The placeholder is the string {} in the message. 

log.debug("two parameters: {}, {}", "one","two")

Nothing too disorienting here; most people who’ve been doing logging in Java or a
VM language will find this fairly familiar. 

Listing 7.20 Revisiting the creation of the logger

Listing 7.21 Creating logging adapter

Listing 7.22 Using placeholders
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 One of the other common logging challenges that can cause developers head-
aches is learning how to get control of the logging of the various toolkits or frame-
works your app is using. In the next section, we’ll show how this is done with Akka. 

7.2.3 Controlling Akka’s logging

While developing an application, you sometimes need a very low level of debug log-
ging. Akka is able to log records when certain internal events happen or the log has
processed certain messages. These log messages are intended for developers and
aren’t meant for operations. Thankfully, given the architecture that we’ve discussed
already, you don’t have to worry about the possibility that your chosen logging frame-
work and the one Akka uses aren’t the same, or worse, conflict with each other. Akka
provides a simple configuration layer that allows you to exert some control over what
it outputs to the log, and once you change these settings, you’ll see the results in
whatever your chosen appenders are (console, file, and so on). The following listing
shows the settings you can manipulate to elicit more or less information from Akka in
the logs.

akka {
# logging must be set to DEBUG to use any of the options below
loglevel = DEBUG

  # Log level for the very basic logger activated during ActorSystem startup.
  # This logger prints the log messages to stdout (System.out).
  # Options: OFF, ERROR, WARNING, INFO, DEBUG
  stdout-loglevel = "WARNING"

# Log the complete configuration at INFO level when the actor
# system is started. This is useful when you are uncertain of
# what configuration is used.
log-config-on-start = on
debug {

# logging of all user-level messages that are processed by
# Actors that use akka.event.LoggingReceive enable function of
# LoggingReceive, which is to log any received message at
# DEBUG level
receive = on
# enable DEBUG logging of all AutoReceiveMessages
# (Kill, PoisonPill and the like)
autoreceive = on
# enable DEBUG logging of actor lifecycle changes
# (restarts, deaths etc)
lifecycle = on
# enable DEBUG logging of all LoggingFSMs for events,
# transitions and timers
fsm = on
# enable DEBUG logging of subscription (subscribe/unsubscribe)
# changes on the eventStream
event-stream = on

}
remote {

Listing 7.23 Akka’s logging configuration file
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# If this is "on", Akka will log all outbound messages at
# DEBUG level, if off then they are not logged
log-sent-messages = on
# If this is "on," Akka will log all inbound messages at
# DEBUG level, if off then they are not logged
log-received-messages = on

}
}

The comments explain most of these options (see the annotation for the receive
property and its additional requirement). Note also that you’re shielded from one of
the major annoyances of having to tweak the configuration of a framework or toolkit:
knowing which packages to change levels on. This is another inherent advantage of
message-based systems (the notion that they’re pretty self-explanatory, by just watch-
ing the message traffic flow between the collaborators). The following listing shows
how to use LoggingReceive in an actor to log all user-level messages that the actor
receives.

class MyActor extends Actor with ActorLogging {
def receive = LoggingReceive {

case ... => ...
}

}

Now when you set the property akka.debug.receive to on, the messages received by
your actor will be logged.

 Again, we haven’t exhausted the topic of logging, but we’ve shown you enough to
really get going, and to ease your understandable anxiety about whether you’ll be
expected to use some other approach, or have to wrangle with two different loggers
(yours and Akka’s). Logging is a critical tool that you could argue is even more useful
in message-passing systems, where the process of just stepping along a single line of
executing code in a debugger is often not possible. In the next section, we’ll discuss
the last requirement of application delivery: deployment. 

7.3 Deploying actor-based applications
You’ve already seen how you can use the ActorSystem and actors to do the configura-
tion and logging. But it takes more to create an application. Everything has to come
together: the system should be started and a deployment has to be created. In this sec-
tion we’ll show a way to create a distribution for an application. This simple example
will give you an idea of how easy it is to create a distribution.

 To create a standalone application, we’ll use the sbt-native-packager plugin to
create a distribution. We’ll start with the HelloWorld actor. This is a simple actor that
receives a message and replies with a hello message.

Listing 7.24 Using LoggingReceive

Adds LoggingReceive trait 
so you can see actor
messages as log traces
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class HelloWorld extends Actor with ActorLogging {
def receive = {

case msg: String =>
val hello = "Hello %s".format(msg)
sender() ! hello
log.info("Sent response {}",hello)

}
}

Next we need an Actor that calls the HelloWorld actor. Let’s call this the Hello-
WorldCaller.

class HelloWorldCaller(timer: FiniteDuration, actor: ActorRef)
  extends Actor with ActorLogging {

case class TimerTick(msg: String)

override def preStart() {
super.preStart()
implicit val ec = context.dispatcher
context.system.scheduler.schedule(

timer,
timer,
self,
new TimerTick("everybody"))

}

def receive = {
case msg: String => log.info("received {}",msg)
case tick: TimerTick => actor ! tick.msg

}
}

This actor is using the built-in scheduler to generate messages regularly. The scheduler
is used to repeatedly send the created TimerTick. A message is sent to the actor refer-
ence passed to the constructor every time the TimerTick is received (the HelloWorld
actor, in this case). Any String message that the HelloWorld actor receives is logged.

 To create our application, we need to build the actor system at startup. 

import akka.actor.{ Props, ActorSystem }
import scala.concurrent.duration._

object BootHello extends App {

val system = ActorSystem("hellokernel")

Listing 7.25 HelloWorld actor 

Listing 7.26 HelloWorldCaller

Listing 7.27 BootHello
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Creating ActorSystem
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val actor = system.actorOf(Props[HelloWorld])

val config = system.settings.config

val timer = config.getInt("helloWorld.timer")

system.actorOf(Props(

new HelloWorldCaller(

timer millis,

actor)))

}

So now we’ve built our system and need some resources to make our application work
properly. We’ll use configuration to define the default value for our timer.

helloWorld {
 timer = 5000
}

Our default is 5000 milliseconds. Be sure that this reference.conf is placed inside your
JAR file by placing it in the main/resources directory. Next we have to set up the log-
ger, and this is done in the application.conf.

akka {
 loggers = ["akka.event.slf4j.Slf4jLogger"]
 # Options: ERROR,WARNING,INFO, DEBUG
 loglevel = "DEBUG"
}

At this point, we have all our code and resources and need to create a distribution. In
this example we use the sbt-native-packager plugin to create the complete distribu-
tion. Because we use the sbt-native-packager and we want to include the configura-
tion in the distribution, we have to place the application.conf and the logback.xml in
the directory <project home>/src/universal/conf. 

 The next step is to include the sbt-native-packager in the plugins.sbt file in the
<project home>/project directory.

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "1.0.0")

The last part we need before we’re done is the sbt build file for our project.

Listing 7.28 reference.conf

Listing 7.29 application.conf

Listing 7.30 project/plugins.sbt

Creates HelloWorld Actor

Gets timer duration
from our configuration

Creates
Caller
Actor

Creates a Duration from an Integer. This works 
because we’ve imported scala.concurrent.duration._

Passes reference of HelloWorld 
actor to our caller
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Define
applic

depende
name := "deploy"

version := "0.1-SNAPSHOT"

organization := "manning"

scalaVersion := "2.11.8"

enablePlugins(JavaAppPackaging)

scriptClasspath +="../conf"

libraryDependencies ++= {
val akkaVersion = "2.4.9"
Seq(

"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-slf4j" % akkaVersion,
"ch.qos.logback" % "logback-classic" % "1.0.13",
"com.typesafe.akka" %% "akka-testkit" % akkaVersion % "test",
"org.scalatest" %% "scalatest" % "2.2.6" % "test"

)
}

Now we’ve defined our project in sbt and are ready to create our distribution. The
next listing shows how we can start sbt and run the dist command.

sbt
[info] Loading global plugins from home\.sbt\0.13\plugins
[info] Loading project definition from

\github\akka-in-action\chapter-conf-deploy\project
[info] Set current project to deploy (in build

file:/github/akka-in-action/chapter-conf-deploy/)
> stage

sbt creates a distribution in the directory target/universal.stage. This directory con-
tains three subdirectories:

 bin—Contains the start scripts: one for Windows and one for Unix
 lib—Contains all the JAR files our application depends on
 conf—Contains all the configuration files of our application

Listing 7.31 build.sbt

Listing 7.32 Creating distribution

Defines that 
we have a 
standalone 
application

Adds conf directory 
to the class path. 
Otherwise, both 
files (application
.conf and 
logback.xml) can’t 
be found.

s the
ation
ncies

Simple build tool: more information
At some point, you’ll no doubt want more details on sbt and all it can do. You can
read the documentation; the project is hosted on GitHub (https://github.com
/sbt/sbt). Manning Publications also has a recently released book, SBT in Action,
that goes into great detail, working through not only what you can do, but what makes
sbt a next-generation build tool.

Once sbt is 
done loading, 
type stage and 
press Return.

https://github.com/sbt/sbt
https://github.com/sbt/sbt
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Now we have a distribution, and all that’s left is to run our application. Because we
called our application deploy, the stage command has created two start files; one can
be used for Window platforms and the other for Unix-like systems.

deploy.bat

./deploy

And when we look in the log file, we see that every five seconds, the helloWorld actor
is receiving messages, and the caller receives its messages. Of course, this application
has no real utility. But it shows that when you use these simple conventions, it’s easy to
create a complete distribution for your application. 

7.4 Summary
Like so much in development, deployment looks like it’s going to be a piece of cake as
you approach. Yet in practice, it often turns into a vortex of each component configur-
ing itself from its own resources, with no rhyme or reason behind the overall system
approach. As is the case in all things design-wise, Akka’s approach is to provide state-of-
the-art tools, but with the emphasis on simple conventions that are easy to implement.
These tools made making our first app ready to run rather easy. But more importantly,
you’ve seen that you can carry this simplicity forward into much-more-complex realms:

 File conventions for simple overriding of configuration
 Intelligent defaulting: apps can supply most of what’s needed
 Granular control over injecting config
 State-of-the-art logging through an adapter and a single dependency point
 Lightweight application bundling
 Using a build tool that also bundles and runs your app

The age of the release engineer being the hardest-working member of the team may
be ending. As we go forward with more complex examples in the book, you won’t see
the deployment layer blow up on us. This is a huge part of the Akka story: it delivers
not only a power-packed runtime with messaging and concurrency built in, but the
means to get solutions running more rapidly than in the less-powerful application
environments most of us are accustomed to.

Listing 7.33 Run application 



Structural patterns
for actors
One of the immediate concerns with actor-based programming is how you model
code that requires collaborators to work together when each unit of work is done in
parallel. Collaboration implies some notion of process, and although there can be
parallel processes, there will also be cases where it’s essential that certain steps hap-
pen after required prior steps have been completed. By implementing a few of the
classic enterprise integration patterns (EIPs), we’ll show how Akka allows you to employ
these design approaches while still making use of its inherent concurrency.

 We’ll focus primarily on the most relevant EIPs to show different ways of con-
necting actors to solve problems. The architectural EIPs will get the most attention
in this chapter, since we’re considering application structure.

In this chapter
 Pipes and filters for sequential processing

 Scatter-gather for parallelizing tasks

 Recipient list: the scatter component

 Aggregator: the gather component

 Routing slip: dynamic pipes and filters
166
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 We start with the simple pipes and filters pattern. This is the default pattern for
most message-passing systems and is straightforward. The classical version is sequen-
tial; we’ll adapt it to work in our concurrent, message-based architecture. Next will be
the scatter-gather pattern, which does provide a means of parallelizing tasks. Actor
implementations of these patterns are not only remarkably compact and efficient, but
they’re free of a lot of the implementation details that quickly seep into messaging
patterns (as most of these do). 

 Finally, we’ll look at a less-common routing pattern. The routing slip pattern is a
dynamic pipes and filters pattern that’s used when the route between several tasks can
be established at the beginning of message processing.

8.1 Pipes and filters
The concept of piping refers to the ability for one process or thread to pump its results
to another processor for additional processing. Most people know about piping from
some exposure to Unix, where it originated. The set of piped components is often
referred to as a pipeline, and most people’s experience of it is of each step occurring in
sequence with no parallelism. Yet, you’ll see that there are often good reasons to want
to see independent aspects of a process occur in parallel. That’s what we’ll show here:
first, a description of this pattern’s applicability and its form, and then a look at how
you can implement it using Akka.

8.1.1 Enterprise integration pattern: pipes and filters

In many systems, a single event will trigger a sequence of tasks. Take, for example, the
functionality of a camera to catch speeding motorists. It makes a photo and measures
speed. But before the event is sent to central processing, a number of checks are done.
If no license plate is found in the photo, the system is unable to process the message
any further, and it will be discarded. In this example we also discard the message when
the speed is below the maximum legal speed. This means that only messages that con-
tain the license plate of a speeding vehicle end up getting to the central processor. You
can probably already see how we’ll apply the pipes and filters pattern here: the con-
straints are filters, and the interconnects are the pipes in this case (see figure 8.1).

Pipes and filters pattern

Check license

Filter Filter

Check speed Send message
Pipe Pipe

Camera
Pipe

Figure 8.1 Example of pipes and filters
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Each filter consists of three parts: the inbound pipe where the message is received, the
processor of the message, and the outbound pipe where the result of the processing is
published (see figure 8.2).

 The two pipes are drawn partly outside the filter because the outbound pipe of the
check-license filter is also the inbound pipe of the check-speed filter. An important
restriction is that each filter must accept and send the same messages, because the out-
bound pipe of a filter can be the inbound pipe of any other filter in the pattern. This
means that all the filters need to have the same interface. This includes the inbound
and the outbound pipes. This way it’s easy to add new processes, change the order of
processes, or remove them. Because the filters have the same interface and are inde-
pendent, nothing has to be changed, other than potentially adding additional pipes. 

8.1.2 Pipes and filters in Akka

The filters are the processing units of the message system, so when you apply the pipes
and filters pattern to Akka, you use actors to implement your filters. Thanks to the fact
that the messaging is supplied behind the scenes, you can just connect a number of
actors, and the pipes are already there. It would seem to be simple to implement this
pattern with Akka. Are we done here? Not quite. There are two requirements crucial
for implementing the pipes and filters pattern: the interface is the same for all the fil-
ters, and all of the actors are independent. This means that all the messages received
by the different actors should be the same, because the messages are part of the inter-
face of the filter, as shown in figure 8.3. If you were to use different messages, the
interface of the next actor would differ and the uniformity requirement would be vio-
lated, preventing you from being able to indiscriminately apply filters.

Camera Check speed

Processor

Check license

Outbound pipeInbound pipe

Figure 8.2 Three parts of a filter

Camera Check
license

Photo Check
speed

Check
license

License

The photo message must be part of
all the filters’ interfaces, because
the check-license filter has to
process them.

The license message must
also be part of all of the filters’ 
interfaces, because the check-speed 
has to process them.

Figure 8.3 Messages sent by different actors
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Given the requirement that the input and output to the pipe need be the same, both
actors must accept and send the same messages.

 Let’s create a small example with a Photo message and two filters: the License-
Filter and SpeedFilter.

case class Photo(license: String, speed: Int) 

class SpeedFilter(minSpeed: Int, pipe: ActorRef) extends Actor {
def receive = {

case msg: Photo =>
if (msg.speed > minSpeed)

pipe ! msg
}

}

class LicenseFilter(pipe: ActorRef) extends Actor {
def receive = {

case msg: Photo =>
if (!msg.license.isEmpty)

pipe ! msg
}

}

There’s nothing special about these actor filters. We used actors with one-way mes-
sages in section 2.1.2 and in other examples. But because the two actors process and
send the same message type, we can construct a pipeline from them, which allows for
either one to feed the other its results, meaning the order in which we apply the filters
doesn’t matter. In the next example, we’ll show how this gives us flexibility that comes
in handy when we find that the order will have a marked influence on the execution
time. Let’s see how this works.

val endProbe = TestProbe()
val speedFilterRef = system.actorOf(

Props(new SpeedFilter(50, endProbe.ref)))
val licenseFilterRef = system.actorOf(

Props(new LicenseFilter(speedFilterRef)))
val msg = new Photo("123xyz", 60)
licenseFilterRef ! msg
endProbe.expectMsg(msg)

licenseFilterRef ! new Photo("", 60)
endProbe.expectNoMsg(1 second)

licenseFilterRef ! new Photo("123xyz", 49)
endProbe.expectNoMsg(1 second)

Listing 8.1 A pipe with two filters

Listing 8.2 Pipes and filters test

Message 
that will 
be filtered

Filters all Photos that 
have a speed less 
than the speed limit

Filters all Photos 
that have an
empty License

Constructs pipeline

Tests a message 
that should be 
passed through

Tests a message 
without a license

Tests a message 
with a low speed
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The check-license filter uses a lot of
resources. It has to locate the letters
and numbers on the plate, which is
CPU-intensive. When we put the cam-
era on a busy road, we find that the fil-
ter chain can’t keep up with the pace
of new photos arriving. Our investiga-
tions reveal that 90% of the messages
are approved by the license filter, and
50% of the messages are approved by
the speed filter.

 In this example (shown in figure
8.4) the check-license filter has to pro-
cess 20 messages each second. To
improve performance, it would be
better to reorder the filters. Since
most of the messages are filtered by
the check-speed filter, the load on the
check-license filter will be decreased
significantly.

 As you can see in figure 8.5, when
we switch the order of filters, the
check-license filter is asked to evaluate
10 licenses per second; reordering
halved the load of the filter. And
because the interfaces are the same
and the processes are independent,
we can easily change the order of the
actors without changing the function-
ality or the code. Without the pipes
and filters pattern, we had to change
both components to get this to work.
Using this pattern, the only change is
when building the chain of actors at
startup time, which can easily be made
configurable.

val endProbe = TestProbe()
val licenseFilterRef = system.actorOf(

Props(new LicenseFilter(endProbe.ref)))
val speedFilterRef = system.actorOf(

Props(new SpeedFilter(50, licenseFilterRef)))

Listing 8.3 Changed order of filters

Reorders pipeline 
construction

Camera

Check
license

Check
speed

Camera sends 20 photo
messages every second

Check-license filter 
approves 90% of 
the messages

Check-license filter sends 
18 photo messages 
every second

Check-speed filter 
approves 50% of 
the messages

Check-speed filter sends 
9 photo messages 
every second

Figure 8.4 Number of processed messages for each 
filter for initial configuration

Camera sends 20 photo
messages every second

Check-speed filter 
approves 50% of 
the messages

Check-speed filter sends 
10 photo messages 
every second

Check-license filter 
approves 90% of 
the messages

Check-license filter sends 
9 photo messages 
every second

Camera

Check
speed

Check
license

Figure 8.5 Number of processed messages for 
each filter for altered configuration
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val msg = new Photo("123xyz", 60)
speedFilterRef ! msg
endProbe.expectMsg(msg)

speedFilterRef ! new Photo("", 60)
endProbe.expectNoMsg(1 second)

speedFilterRef ! new Photo("123xyz", 49)
endProbe.expectNoMsg(1 second)

You see that it doesn’t matter which order we use; the pipeline gives us the same func-
tionality. This flexibility is the strength of this pattern. In our example we used actual
filters, but this pattern can be extended; the processing pipeline isn’t limited to filters.
As long as the process accepts and produces the same types of messages, and is inde-
pendent of the other processes, this pattern applies. In the next section, you’ll see a
pattern that enables a divide-and-conquer approach, which requires concurrency, and
Akka again makes it easy. We’ll scatter units of work among a number of processing
actors and then gather their results into a single set, allowing the consumer of the
work product to just make a request and get a single response. 

8.2 Enterprise integration pattern: scatter-gather
In the previous section, we created a pipeline of tasks that were executed sequentially.
The ability to execute tasks in parallel is often preferable. We’ll look at the scatter-
gather pattern next and see how we can accomplish this. Akka’s inherent ability to
dispatch work to actors asynchronously provides most of what we need to make this
pattern work. The processing tasks (filters in the previous example) are the gather
parts; the recipient list is the scatter component. We’ll use the Aggregator for the
gather part (provided by Akka). 

8.2.1 Applicability

The pattern can be applied in two different scenarios. The first case is when the tasks
are functionally the same, but only one is passed through to the gather component as
the chosen result. The second scenario is when work is divided for parallel processing
and each processor submits its results, which are then combined into a result set by
the aggregator. You’ll see the benefits of the pattern clearly in both of our Akka imple-
mentations in the following section.

COMPETING TASKS

Let’s start with the following problem. A client buys a product, let’s say a book at a web
shop, but the shop doesn’t have the requested book in stock, so it has to buy the book
from a supplier. But the shop is doing business with three different suppliers and
wants to pay the lowest price. Our system needs to check if the product is available,
and at what price. This has to be done for each supplier, and only the supplier with
the lowest price will be used. In figure 8.6 we show how the scatter-gather pattern can
help here.
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The message of the client is distributed over three processes, and each process checks
the availability and price of the product. The gather process will collect all the results
and only pass the messages with the lowest price (in this example, $20). The process-
ing tasks are all focused on one thing—getting the price of the product—but they may
be doing it in different ways, because there are multiple suppliers. In pattern par-
lance, this is the competing tasks aspect, as only the best result will be used. For our
example, it’s the lowest price, but the selection criteria could be different in other
cases. Selection in the gather component isn’t always based on the content of the mes-
sage. It’s also possible that you only need one solution, in which case the competition
is merely determining which is the quickest response. For example, the time it takes to
sort a list depends greatly on the algorithm used and the initial unsorted list. When
performance is critical, you sort the list in parallel using different sorting algorithms.
If you did such a thing with Akka, you’d have one actor doing a bubble sort, one a
quicksort, maybe one doing a heap sort. All tasks will result in the same sorted list, but
depending on the unsorted list, one of them will be the fastest. In this case the gather
will select the first received message and tell the other actors to stop. This is also an
example of using the scatter-gather pattern for competing tasks. 

PARALLEL COOPERATIVE PROCESSING

Another case where the scatter-gather pattern can be used is when the tasks are per-
forming a subtask. Let’s go back to our camera example. While processing a Photo,
different information has to be retrieved from the photo and added to the Photo mes-
sages, for example, the time the photo was created and the speed of the vehicle. Both
actions are independent of each other and can be performed in parallel. When both
tasks are ready, the results must be joined together into a single message containing
the time and the speed. Figure 8.7 shows the use of scatter-gather for this problem.

Get
price

Process
order

Scatter GatherSupplier II

Supplier III

Supplier I
Unavailable

$20

$20

$30

Scatter-gather pattern

Get price
request

Distribute request to
all competing tasks

Send response
with lowest price

Collect
responses

Figure 8.6 Scatter-gather pattern with competing tasks
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This pattern starts with scattering a message to multiple tasks: GetTime and GetSpeed.
The results of both tasks should be combined into a single message that can be used
by other tasks.    

8.2.2 Parallel tasks with Akka

Let’s see how we can implement the scatter-gather pattern in the second scenario with
Akka actors. We’ll use the photo example. Each component in this pattern is imple-
mented by one actor. In this example we use one type of message, which is used for all
tasks. Each task can add the data to the same type message when processing has com-
pleted. The requirement that all tasks should be independent can’t always be met.
This only means that the order of both tasks can’t be switched. But all the other bene-
fits of adding, removing, or moving the tasks apply.

 We start by defining the message that will be used. This message is received and
sent by all components in this example:

case class PhotoMessage(id: String,
photo: String,
creationTime: Option[Date] = None,
speed: Option[Int] = None)

For our example message, we mock the traffic cameras and image recognition tools by
just providing the image. Note that the message has an ID, which can be used by the
Aggregator to associate the messages with their respective flows. The other attributes
are the creation time and speed; they start empty and are provided by the GetSpeed
and GetTime tasks. The next step is to implement the two processing tasks, GetTime
and GetSpeed, as in figure 8.8.

Camera Check
speed

Scatter Gather

GetSpeed

GetTime

Scatter-gather pattern

Receive photo

Distribute photo

Fully filled
photo messages

Collect partly filled
photo messages

Figure 8.7 Scatter-gather pattern for task parallelization
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The two actors have the same structure, the difference being which attribute is
extracted from the image. These actors are doing the actual work, but we need an
actor that implements the scatter functionality that will dispatch the images for pro-
cessing. In the next section, we’ll use the recipient list to scatter the tasks; then the
results are combined with the aggregator pattern. 

8.2.3 Implementing the scatter component using the recipient list pattern

When a PhotoMessage enters the scatter-gather pattern, the scatter component has to
send the message to the processors (the GetTime and GetSpeed actors from the prior sec-
tion). We use the simplest implementation of the scatter component, and that’s the EIP
recipient list. (The scattering of messages can be implemented in a number of ways; any
approach that creates multiple messages from one message and distributes it will do.)

 The recipient list is a simple pattern because it is one component; its function is to
send the received message to multiple other components. Figure 8.9 shows that the
received messages are sent to the GetTime and GetSpeed tasks.

GetSpeed

class GetSpeed(pipe: ActorRef) extends Actor {
 def receive = {
  case msg: PhotoMessage => {
   pipe ! msg.copy(
   speed = ImageProcessing.getSpeed(msg.photo))
  }
 }
}

GetTime

class GetTime(pipe: ActorRef) extends Actor {
 def receive = {
  case msg: PhotoMessage => {
   pipe ! msg.copy(creationTime =
ImageProcessing.getTime(msg.photo))
  }
 }
}

Scatter Gather

Figure 8.8 Two processing tasks: GetTime and GetSpeed

Camera Recipient list Gather

GetSpeed

GetTime

Distribute received message
to all processing tasks

Figure 8.9 Recipient list pattern
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Given that we have to perform the same two extractions on every message, the
RecipientList is static and the message is always sent to the GetTime and GetSpeed
tasks. Other implementations might call for a dynamic recipient list where the receiv-
ers are determined based on the message content or the state of the list.

 Figure 8.10 shows the simplest implementation of a recipient list; when a message
is received, it’s sent to members. Let’s put our RecipientList to work. We’ll start by
creating it with Akka testProbes (you first saw these in chapter 3).

val endProbe1 = TestProbe()
val endProbe2 = TestProbe()
val endProbe3 = TestProbe()
val list = Seq(endProbe1.ref, endProbe2.ref, endProbe3.ref)
val actorRef = system.actorOf(

Props(new RecipientList(list)))
val msg = "message"
actorRef ! msg
endProbe1.expectMsg(msg)
endProbe2.expectMsg(msg)
endProbe3.expectMsg(msg)

When we send a message to the RecipientList actor, the message is received by all
probes.

 This pattern isn’t mind-blowing, but used in the scatter-gather pattern, it is quite
useful. 

8.2.4 Implementing the gather component with the aggregator pattern

The recipient list is scattering one message into two message flows to GetSpeed and
GetTime. Both flows are doing part of the total processing. When both the time and
speed have been retrieved, the messages need to be joined into a single result. This is
done in the gather component. Figure 8.11 shows the aggregator pattern, which is
used as the gather component, just as RecipientList is used as a scatter component.

 The aggregator pattern is used to combine multiple messages into one. This can
be a selection process when the processing tasks are competing with each other, or

Listing 8.4 Recipient list test

Creates 
recipient 
list

Sends 
message

All recipients have to 
receive message

RecipientList

class RecipientList(recipientList: Seq[ActorRef])
extends Actor {
 def receive = {
  case msg: AnyRef => recipientList.foreach(_ ! msg)
 }
}

GetSpeed

GetTime

Camera

Figure 8.10 RecipientList
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merely combining several messages into one as we do here. One of the characteristics
of the aggregator is that the messages have to be stored somehow, and when all mes-
sages have been received, the aggregator can process them. To keep it simple we’ll
implement an Aggregator that combines two PhotoMessages into one.

class Aggregator(timeout:Duration, pipe:ActorRef) extends Actor {

val messages = new ListBuffer[PhotoMessage]

def receive = {

case rcvMsg: PhotoMessage => {

messages.find(_.id == rcvMsg.id) match {

case Some(alreadyRcvMsg) => {

val newCombinedMsg = new PhotoMessage(

rcvMsg.id,

rcvMsg.photo,

rcvMsg.creationTime.orElse(alreadyRcvMsg.creationTime),

rcvMsg.speed.orElse(alreadyRcvMsg.speed) )

pipe ! newCombinedMsg

//cleanup message

messages -= alreadyRcvMsg

}

case None => messages += rcvMsg

}

}

}

When a message is received, we check if it’s the first message or the second. When it’s
the first, the message is stored in the messages buffer. When it’s the second, we can
process the messages. Processing in this aggregator combines the messages into one
and sends the result to the next process.

val endProbe = TestProbe()
val actorRef = system.actorOf(

Props(new Aggregator(1 second, endProbe.ref)))
val photoStr = ImageProcessing.createPhotoString(new Date(), 60)
val msg1 = PhotoMessage("id1",

Listing 8.5 Aggregator

Listing 8.6 Aggregator test

GetSpeed

GetTime

Scatter Aggregate Check
speed

Figure 8.11 Aggregator pattern as gather component

Buffer to store 
messages that can’t 
be processed yet

This is second (of two) 
messages, so we can
start combining them

Removes processed 
message from the list

Received the first 
message, so stores it 
for processing later
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photoStr,
Some(new Date()),
None)

actorRef ! msg1

val msg2 = PhotoMessage("id1",
photoStr,
None,
Some(60))

actorRef ! msg2

val combinedMsg = PhotoMessage("id1",
photoStr,
msg1.creationTime,
msg2.speed)

endProbe.expectMsg(combinedMsg)

The Aggregator works as expected. Two messages are sent to it, whenever they’re
ready, and one combined message is then created and sent on. But because we have
state in our actor, we need to ensure that the state is always consistent. What happens
when one task fails? When this happens, the first message is stored forever in the buf-
fer, and no one would ever know what happened to this message. As occurrences pile
up, our buffer size increases, and eventually it might consume too much memory,
which can cause a catastrophic fault. There are many way to solve this; in this example
we’ll use a timeout. We expect that both processing tasks need about the same amount
of time to execute; therefore, both messages should be received around the same
time. This time can differ because of the availability of resources needed to process
the message. When the second message isn’t received within the stipulated timeout, it
is presumed lost. The next decision we have to make is how the aggregator should
react to the loss of a message. In our example the loss of a message isn’t catastrophic,
so we want to continue with a message that isn’t complete. So, in our implementation,
the aggregator will always send a message, even if it didn’t receive one of the messages.

 To implement the timeout, we’ll use the scheduler. Upon receipt of the first mes-
sage, we schedule a TimeoutMessage (providing self as the recipient). The messages
buffer is checked when the TimeoutMessage is received to see if the message is still in
the buffer, which is only the case if the second message wasn’t received in time. In that
case only one message is sent through. If the message isn’t in the buffer, then that
means that the combined message has already been sent through. 

case class TimeoutMessage(msg:PhotoMessage)

def receive = {
case rcvMsg: PhotoMessage => {

messages.find(_.id == rcvMsg.id) match {
case Some(alreadyRcvMsg) => {

val newCombinedMsg = new PhotoMessage(
rcvMsg.id,

Listing 8.7 Implementing the timeout

Sends the first message

Sends the second

Expects the combined message
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rcvMsg.photo,
rcvMsg.creationTime.orElse(alreadyRcvMsg.creationTime),
rcvMsg.speed.orElse(alreadyRcvMsg.speed) )

pipe ! newCombinedMsg
//cleanup message
messages -= alreadyRcvMsg

}
case None => {

messages += rcvMsg
context.system.scheduler.scheduleOnce(

timeout,
self,
new TimeoutMessage(rcvMsg))

}
}

}
case TimeoutMessage(rcvMsg) => {

messages.find(_.id == rcvMsg.id) match {
case Some(alreadyRcvMsg) => {

pipe ! alreadyRcvMsg
messages -= alreadyRcvMsg

}

case None => //message is already processed
}

}
}

We’ve implemented the timeout; now let’s see if it’s received when the Aggregator
fails to receive two message in the allowable time:

val endProbe = TestProbe()
val actorRef = system.actorOf(

Props(new Aggregator(1 second, endProbe.ref)))
val photoStr = ImageProcessing.createPhotoString(

new Date(), 60)
val msg1 = PhotoMessage("id1",

photoStr,
Some(new Date()),
None)

actorRef ! msg1

endProbe.expectMsg(msg1)

As you can see, when we send only one message, the timeout is triggered; we detect a
missing message and send the first message as the combined message.

 But this isn’t the only problem that can occur. In section 4.2, which described the
lifecycle of an actor, you saw that we have to be careful when using state due to the pos-
sible restarts. When the Aggregator fails somehow, we lose all the messages that are
already received, because the Aggregator is restarted. How can we solve this problem?
Before the actor is restarted, the preRestart method is called. This method can be
used to preserve our state. For this Aggregator we can use the simplest solution: have
it resend the messages to itself before restarting. Because we don’t depend on the order

Schedules timeout

Timeout has expired

Sends first message when
the second isn’t received

Both messages are 
already processed, 
so does nothing

Creates 
message

Sends only 
one message

Waits for timeout and 
receives message
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of the received messages, this should be fine even when failures occur. We resend the
messages from our buffer, and the messages are stored again when the new instance of
our actor is started. The complete Aggregator is shown in the following listing.

class Aggregator(timeout: FiniteDuration, pipe: ActorRef)
extends Actor {

val messages = new ListBuffer[PhotoMessage]
implicit val ec = context.system.dispatcher
override def preRestart(reason: Throwable, message: Option[Any]) {

super.preRestart(reason, message)
messages.foreach(self ! _)
messages.clear()

}

def receive = {
case rcvMsg: PhotoMessage => {

messages.find(_.id == rcvMsg.id) match {
case Some(alreadyRcvMsg) => {

val newCombinedMsg = new PhotoMessage(
rcvMsg.id,
rcvMsg.photo,
rcvMsg.creationTime.orElse(alreadyRcvMsg.creationTime),
rcvMsg.speed.orElse(alreadyRcvMsg.speed))

pipe ! newCombinedMsg
//cleanup message
messages -= alreadyRcvMsg

}
case None => {

messages += rcvMsg
context.system.scheduler.scheduleOnce(

timeout,
self,
new TimeoutMessage(rcvMsg))

}
}

}
case TimeoutMessage(rcvMsg) => {

messages.find(_.id == rcvMsg.id) match {
case Some(alreadyRcvMsg) => {

pipe ! alreadyRcvMsg
messages -= alreadyRcvMsg

}
case None => //message is already processed

}
}
case ex: Exception => throw ex

}
}

We added the ability to throw an exception to trigger a restart for testing purposes.
But when we receive the same message type twice, how will our timeout mechanism

Listing 8.8 Aggregator

Sends all received 
messages to our
own mailbox

Added for
testing purposes
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work? Because we do nothing when the messages are processed, it isn’t a problem
when we get the timeout twice. And because it is a timeout, we don’t want the timer to
be reset. In this example only the first timeout will take action when this is necessary,
so this simple mechanism will work.

 Does our change solve the problem? Let’s test it by sending the first message, and
make the Aggregator restart before sending the second message. We trigger a restart
by sending an IllegalStateException, which will be thrown by the Aggregator. Is
the Aggregator still able to combine the two messages despite the restart?

val endProbe = TestProbe()
val actorRef = system.actorOf(

Props(new Aggregator(1 second, endProbe.ref)))
val photoStr = ImageProcessing.createPhotoString(new Date(), 60)

val msg1 = PhotoMessage("id1",
photoStr,
Some(new Date()),
None)

actorRef ! msg1

actorRef ! new IllegalStateException("restart")

val msg2 = PhotoMessage("id1",
photoStr,
None,
Some(60))

actorRef ! msg2

val combinedMsg = PhotoMessage("id1",
photoStr,
msg1.creationTime,
msg2.speed)

endProbe.expectMsg(combinedMsg)

The test passes, showing that the Aggregator was able to combine the message even
after a restart. In messaging, durability refers to the ability to maintain messages in the
midst of service disruptions. We implemented the Aggregator simply by having the
actor resend to itself any messages it might be holding, and we verified that it works
with a unit test (so if some aspect of the durable implementation is changed, our
test will let us know before we suffer a runtime failure). There’s an Aggregator in
the akka-contrib module (http://doc.akka.io/docs/akka/2.4.2/contrib/aggregator
.html), which won’t be discussed here. 

8.2.5 Combining the components into the scatter-gather pattern

With each component tested and ready, we can now make a complete implementation
of the pattern. Note that by developing each piece in isolation with unit tests, we enter
this final assembly phase confident that each collaborator will do its job successfully.

Listing 8.9 Aggregator missing a message

Sends first message

Restarts Aggregator

Sends second message

http://doc.akka.io/docs/akka/2.4.2/contrib/aggregator.html
http://doc.akka.io/docs/akka/2.4.2/contrib/aggregator.html
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val endProbe = TestProbe()
val aggregateRef = system.actorOf(

Props(new Aggregator(1 second, endProbe.ref)))
val speedRef = system.actorOf(

Props(new GetSpeed(aggregateRef)))
val timeRef = system.actorOf(

Props(new GetTime(aggregateRef)))
val actorRef = system.actorOf(

Props(new RecipientList(Seq(speedRef, timeRef))))

val photoDate = new Date()
val photoSpeed = 60
val msg = PhotoMessage("id1",

ImageProcessing.createPhotoString(photoDate, photoSpeed))

actorRef ! msg

val combinedMsg = PhotoMessage(msg.id,
msg.photo,
Some(photoDate),
Some(photoSpeed))

endProbe.expectMsg(combinedMsg)

In this example we send one message to the first actor; the RecipientList. This actor
creates two message flows that can be processed in parallel. Both results are sent to the
Aggregator, and when both messages are received, a single message is sent to the next
step: our probe. This is how the scatter-gather pattern works. In our example we have
two tasks, but this pattern doesn’t restrict the number of tasks.

 The scatter-gather pattern can also be combined with the pipes and filters pattern.
This can be done in two ways. The first is to have the complete scatter-gather pattern
as part of a pipeline. This means that the complete scatter-gather pattern is imple-
menting one filter. The scatter component accepts the same messages as the other fil-
ter components in the filter pipeline, and the gather component sends only those
interface messages.

 In figure 8.12 you see the filter pipeline, and one of the filters is implemented
using the scatter-gather pattern. This results in a flexible solution where we can
change the order of filters and add or remove filters without disrupting the rest of the
processing logic.

Listing 8.10 Scatter-gather implementation

Creates Aggregator

Creates GetSpeed actor
and pipes it to Aggregator

Creates
GetTime

actor and
pipes it to

Aggregator.

Creates recipient 
list of GetTime and 
GetSpeed actors

Sends message to 
recipient list.

Receives combined message

ScatterFilter FilterGather

Subtask

Subtask

Scatter-gather pattern

Figure 8.12 Using scatter-gather pattern as filter
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Another possibility is that the pipeline is part of the scattered flow. This means that
the messages are sent through the pipeline before they’re gathered.

 In figure 8.13 you can see that the scatter-gather pattern results in the message
being scattered into two streams. One of the streams is a pipeline, whereas the other is
just a single processing task (per the prior example). Combining the patterns can be
handy as systems grow larger; it keeps the parts flexible and reusable.   

8.3 Enterprise integration pattern: routing slip
Another enterprise integration pattern is the routing slip, which can be seen as a
dynamic version of the pipes and filters pattern. To explain the benefits of this pattern,
we’ll use a slightly more complex example. Suppose we have a car factory and we have
a default black car. When ordering a new car, the client can choose different options,
such as navigation, parking sensors, or gray paint—every car can be customized for
each client. When a default car is ordered, the car only needs to be painted black, and
all the other steps can be skipped. But when a client wants all the options, the black
paint should be skipped, and all the other steps should still be taken. To solve this
problem, the routing slip pattern can be used. This routing slip is a roadmap of tasks
that have to be executed that’s added to the message. The routeSlip is included inside
every message. Each task can find the next task to pass the message to when it’s fin-
ished processing through the routeSlip. The usual metaphor used to explain this con-
cept is the idea of an envelope with an embedded routing slip: it might have a list of
people who have to sign off on a document. As the envelope is taken from one person
to the next, each person performs the needed inspection, and then marks the enve-
lope with the time when they released the document to the next person.

 In figure 8.14 we show two possible customer requests. One example is a customer
who orders a default car, and the other example is a customer who wants all the possi-
ble options. The SlipRouter needs to determine which steps should be taken and
send the message to the first step.

 In the default-car example of figure 8.14, the SlipRouter determines that only the
step PaintBlack should be executed and creates the routing slip with only this step
and the final destination. When the PaintBlack task is finished, it sends the message

Scatter Gather

Subtask

Filter Filter

Pipes and filters pattern

Figure 8.13 Using pipes and filters pattern in a scatter-gather pattern
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to the next step, in this case the final destination, skipping all the other steps. In the
second example, since all the options were chosen, the routing slip contains all the
steps except the PaintBlack step. Every time a task finishes, it sends the message and
routing slip to the next step in the list. To make this work, each processing task needs
to implement the same interface, because the route is dynamically determined. It is
possible to skip tasks or change the order of tasks, and because we use different types
of messages, it’s possible for a task to receive a message it doesn’t know how to pro-
cess. You saw this requirement also with the pipes and filters pattern. The only differ-
ence is that the pipes and filters pattern is a static pipeline: it’s fixed for all the
messages. The routing slip pattern is dynamic and can create for each message
another pipeline; you can look at this pattern as a dynamic pipes and filters pattern.
For each message the SlipRouter creates a pipeline specific for this message.

 When this pattern is used, it’s important that the interfaces of the steps are the
same and that the tasks are independent, just like the filters in the pipes and filters
pattern. Let’s start to implement this example by creating the interface messages for
each of our tasks:

object CarOptions extends Enumeration {
val CAR_COLOR_GRAY, NAVIGATION, PARKING_SENSORS = Value

}

case class Order(options: Seq[CarOptions.Value])
case class Car(color: String = "",

hasNavigation: Boolean = false,
hasParkingSensors: Boolean = false)

SlipRouter

PaintBlack PaintGray Add navigation Add parking
sensors

Car is
finished

Customer
ordered a
default car

SlipRouter

PaintBlack PaintGray Add navigation Add parking
sensors

Car is
finished

Customer
ordered a
car with all

options

Route defined by the routeSlip

Route defined by the routeSlip

Figure 8.14 Routing slip pattern
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We need an order with possible options, which is the message the router is using to
create a routeSlip, and the Car, which is the message routed by the SlipRouter. Now
we need the function for each task to route the message to the next step using the
routing slip. As usual, we need a message class, but we’ll also make a trait that will add
the ability to send the message to the next recipient (based on the routing slip that it
contains).

case class RouteSlipMessage(routeSlip: Seq[ActorRef],
message: AnyRef)

trait RouteSlip {

def sendMessageToNextTask(routeSlip: Seq[ActorRef],
message: AnyRef): Unit = {

val nextTask = routeSlip.head
val newSlip = routeSlip.tail
if (newSlip.isEmpty) {

nextTask ! message
} else {

nextTask ! RouteSlipMessage(
routeSlip = newSlip,
message = message)

}
}

}

We need this function for every task. When the task is finished and has a new Car mes-
sage, the method sendMessageToNextTask must be used to find the next task. Now we
can implement our tasks.

class PaintCar(color: String) extends Actor with RouteSlip {
def receive = {

case RouteSlipMessage(routeSlip, car: Car) => {
sendMessageToNextTask(routeSlip,

car.copy(color = color))
}

}
}

class AddNavigation() extends Actor with RouteSlip {
def receive = {

case RouteSlipMessage(routeSlip, car: Car) => {
sendMessageToNextTask(routeSlip,

car.copy(hasNavigation = true))
}

}
}

Listing 8.11 Routing messages

Listing 8.12 Example tasks
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class AddParkingSensors() extends Actor with RouteSlip {
def receive = {

case RouteSlipMessage(routeSlip, car: Car) => {
sendMessageToNextTask(routeSlip,

car.copy(hasParkingSensors = true))
}

}
}

These tasks update one field of our Car, and when done using the sendMessageTo-
NextTask, send the Car to the next step. All we need now is the actual SlipRouter,
which is also a normal actor that receives an order and creates the routing slip using
the options in the order.

class SlipRouter(endStep: ActorRef) extends Actor with RouteSlip {
val paintBlack = context.actorOf(

Props(new PaintCar("black")), "paintBlack")
val paintGray = context.actorOf(

Props(new PaintCar("gray")), "paintGray")
val addNavigation = context.actorOf(

Props[AddNavigation], "navigation")
val addParkingSensor = context.actorOf(

Props[AddParkingSensors], "parkingSensors")

def receive = {
case order: Order => {

val routeSlip = createRouteSlip(order.options)

sendMessageToNextTask(routeSlip, new Car)
}

}

private def createRouteSlip(options: Seq[CarOptions.Value]):
Seq[ActorRef] = {

val routeSlip = new ListBuffer[ActorRef]
//car needs a color
if (!options.contains(CarOptions.CAR_COLOR_GRAY)) {

routeSlip += paintBlack
}
options.foreach {

case CarOptions.CAR_COLOR_GRAY => routeSlip += paintGray
case CarOptions.NAVIGATION => routeSlip += addNavigation
case CarOptions.PARKING_SENSORS => routeSlip += addParkingSensor
case other => //do nothing

}
routeSlip += endStep
routeSlip

}
}

Listing 8.13 SlipRouter
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The routing slip contains the actor references of the tasks that have to be executed.
When a gray color isn’t requested, the car is painted black. The last reference is the
end step, which is specified when creating the router. Let’s see if it works. We start with
a default car.

val probe = TestProbe()
val router = system.actorOf(

Props(new SlipRouter(probe.ref)), "SlipRouter")

val minimalOrder = new Order(Seq())
router ! minimalOrder
val defaultCar = new Car(

color = "black",
hasNavigation = false,
hasParkingSensors = false)

probe.expectMsg(defaultCar)

When we send an order without any options, the router creates the route slip with an
ActorRef to the PaintCar actor with black as an argument and a reference to our
probe. The RouteSlipMessage, which contains both the car and the RouteSlip, is
sent to the first step, the PaintCar step. When this step is finished, the message is sent
to the probe. When using all options, the car is sent to all tasks, and when it’s received
at the end, it contains all the options.

val fullOrder = new Order(Seq(
CarOptions.CAR_COLOR_GRAY,
CarOptions.NAVIGATION,
CarOptions.PARKING_SENSORS))

router ! fullOrder
val carWithAllOptions = new Car(

color = "gray",
hasNavigation = true,
hasParkingSensors = true)

probe.expectMsg(carWithAllOptions)

The routing slip pattern enables you to dynamically create pipelines with all the bene-
fits of the pipes and filters pattern, yet still retain the flexibility to processes messages
differently. 

Listing 8.14 Creating default car

Listing 8.15 Creating car with all options
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8.4 Summary
In this chapter we tackled the design of flexible collaborative solutions in Akka using
some common enterprise integration patterns. By combining the patterns, you’re
able to create complex systems. Here are some of the takeaways:

 Scaling processing requires that you distribute work among concurrent 
collaborators.

 Patterns give you a starting point on standard ways of scaling.
 The actor programming model allows you to focus on the design of your code,

not messaging and scheduling implementation details.
 Patterns are building blocks that can be combined to build bigger system parts.

Through all of these implementations, Akka has made it easy to adapt to more-complex
requirements without having to change the fundamental approach to constructing our
components. Those messages are part of a sequential process. It’s possible to process
some parts concurrently, but the flow is static and the same for all messages. In the next
chapter we’ll focus on routing messages to different actors to create a dynamic task
structure.



Routing messages
In the previous chapter we looked at enterprise integration patterns as a way to
connect actors to solve a wide range of problems. Yet all those approaches involved
processing incoming messages in the same way. But often, you need to handle mes-
sages differently. 

 Routers are essential when you want to scale up or out. For example, when you
want to scale up, you need multiple instances of the same task, and routers will
decide which instance will process the received message. We’ll start this chapter by
describing the enterprise router pattern and examine the three reasons for using
routing to control message flow:

 Performance
 Message content
 State

We’ll then show you how to create routing processes for each of these patterns.

In this chapter
 Using the enterprise integration router pattern

 Scaling with Akka routers

 Building a state-based router with become/ 
unbecome
188



189The enterprise integration router pattern
 If performance or scaling is why you need to turn to a routing solution, you should
use Akka’s built-in routers, because they’re optimized. Concerns with a message’s con-
tent or state, on the other hand, will point you to using normal actors.

9.1 The enterprise integration router pattern
First, we’ll introduce you to the pattern generally—when it applies and how—before
we get down to the matter of each specific router implementation. When we move on
to implementation, we’ll start with the commonly known pattern for routing different
messages through a needed set of steps. Let’s take a look at the speeding ticket exam-
ple we introduced earlier. This time, we’ll send the messages to the cleanup task or to
the next step, depending on the speed of the vehicle in question. When the speed is
lower than the maximum allowed speed, the message has to be sent to the cleaning
step (instead of just discarding it). But when the speed is higher than the speed limit,
it’s a violation, and the message should be processed normally. To solve this problem,
the router pattern is used. As figure 9.1 shows, the router is able to send messages to
different flows.

 There are many different reasons to construct logic that makes a decision about
where to route a message. As we mentioned in the introduction, there are three rea-
sons for controlling message flow in your applications:

 Performance—A task takes a lot of time to process, but the messages can be pro-
cessed in parallel. So the messages should be divided among different
instances. In the speeding ticket example, the evaluation of individual drivers
can occur in parallel, because all processing logic resides solely within each cap-
tured case.

 Content of the received message—The message has an attribute (License, in our
example) and depending on the value it has, the message should go to a differ-
ent task.

 State of the router—For example, when the camera is in standby, all the messages
have to go to the cleanup task; otherwise, they should be processed normally.

Check
license

Router

Send
message

Cleaning

Router pattern

Speed violation

Speed below
legal maximum

Figure 9.1 Routing logic sending 
different messages to different 
process flows
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In all cases (no matter what the reason is or the specific logic used), the logic needs to
decide which task it should send a message to. The possible tasks a router can choose
from are called the routees in Akka.

 In this chapter we’ll show different approaches to routing messages. This will intro-
duce several more Akka mechanisms that are helpful not only when implementing
routers, but also in the implementation of your own processes, such as when you want
to process messages differently depending on the state of an actor. In section 9.2 we’ll
start our overview of using routers with an example of a router that makes its decisions
based on performance. Scaling is one of the main reasons to use the router function-
ality of Akka, which is a central component of the overall scaling strategy. In section 9.3
we’ll explore routing using normal actors, when message content and state are the key
concerns, and we’ll show other approaches that use normal actors. 

9.2 Balance load using Akka routers
One of the reasons to use a router is to balance the load over different actors, to
improve the performance of the system when processing a lot of messages. This can
be local actors (scale up) or even actors on remote servers (scale out). Part of the core
Akka argument for using scaling is easy routing.

 In our camera example, the recognize step takes a relatively long time to process.
To be able to parallelize this task, we use a router.

 In figure 9.2 you see that the router is able to send the message to one of the
GetLicense instances. When a message is received by the router, the router picks one
of the available processes and sends the message only to that process. When the next
message is received, the router picks another process to handle it.

 To implement this router, we’ll use the built-in router functionality of Akka. In Akka
a separation is made between the router, which contains the routing logic, and the actor
that represents the router. The router logic decides which routee is selected and can be
used within an actor to make a selection. The router actor is a self-contained actor that

Camera Router

GetLicense
instance N

GetLicense
instance 1

Router as load balancer

The router sends message
to only one instance.

All instances send their
result to the next step.

GetSpeed

Figure 9.2 Router as load balancer
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loads the routing logic and other settings from configuration and is able to manage the
routees itself.

 The built-in routers come in two varieties:

 Pool —These routers manage the routees. They’re responsible for creating the
routees and removing them from the list if they terminate. A pool can be used
when all the routees are created and distributed the same way and there isn’t a
need for special recovery of the routees.

 Group—The group routers don’t manage the routees. The routees have to be
created by the system and the group router will use the actor selection to find
the routees. Group routers also don’t watch routees. All the routee management
has to be implemented somewhere else within the system. A group can be used
when you need to control the routees’ lifecycles in a special way or want to have
more control over where the routees are instantiated (on which instances).

The most pronounced difference in routers is that the pool router is simplest, as it
provides management (throughout the routee lifecycle), but it comes at the cost of
having no capacity to customize those behaviors by making routees contain the
needed logic.

 In figure 9.3 we show the actor hierarchy of the routees and see the difference
between using a pool and the group router. The routees are children of the router,
and when using the group, the routees can be a child of any other actor (in this exam-
ple, the RouteeCreator). The routees don’t need to have the same parent. They just
need to be up and running.

Pool
router

Group
router

Routee 2Routee 1

Actor hierarchy using a pool router Routees created
and used by the
pool router

RouteeCreator

Routee 2Routee 1

Actor hierarchy using a group router
Routees created by a 
RouteeCreator actor

Routees used
by the group
router

Figure 9.3 Actor hierarchies 
of pool and group routers
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Akka has several built-in routers, summarized in table 9.1. This table shows the router
logic and the associated pool and group that use the logic.

In section 9.2.1 we show a number of different ways to use these routers. The same
logical requirements can be fulfilled using either type (the differences, as discussed
earlier, are implementation-specific). We’ll use the most common router logic—

Table 9.1 List of available routers within Akka

Logic Pool Group Description

RoundRobinRouting-
Logic

RoundRobinPool RoundRobinGroup This logic sends the first received mes-
sage to the first routee, the next 
message to the second routee, and so 
on. When all routees have gotten one 
message, the first routee gets the next, 
and so forth.

RandomRouting-
Logic

RandomPool RandomGroup This logic sends every received mes-
sage to a randomly chosen routee.

SmallestMailbox-
RoutingLogic

SmallestMail-
boxPool

Not available This router checks the mailboxes of the 
routees and chooses the routee with the 
smallest mailbox. The group version 
isn’t available because it uses the 
select actor functionality internally, and 
the mailbox size isn’t available using 
these references.

Not available BalancingPool Not available This router distributes the messages to 
the idle routees. It does this internally 
differently than the other routers. It 
uses one mailbox for all the routees. 
The router is able to do this by using a 
special dispatcher for the routees. This 
is also the reason that only the pool ver-
sion is available.

BroadcastRouting-
Logic

BroadcastPool BroadcastGroup Sends the received messages to all the 
routees. This is not a router as defined 
in the enterprise integration pattern, but 
it implements the recipient list.

ScatterGather-
FirstCompleted
RoutingLogic

ScatterGather-
FirstCompleted-
Pool

ScatterGather-
FirstCompleted-
Group

This router sends the message to all the 
routees and sends the first response to 
the original sender. Technically, this is a 
scatter-gather pattern using competing 
tasks that select the best result, in this 
case the fastest response.

ConsistentHashing-
RoutingLogic

Consistent-
HashingPool

Consistent-
HashingGroup

This router uses consistent hashing of 
the message to select a routee. This 
can be used when you need different 
messages to be routed to the same rou-
tee, but it doesn’t matter which routee.



193Balance load using Akka routers
round-robin, balancing, and consistent hashing—in the next sections. First, we’ll start
in section 9.2.1 with a pool router, specifically a BalancingPool router, because it has
some special behavior. In section 9.2.2 you’ll learn about the use of a group router;
we’ll use the RoundRobinGroup router for that. We’ll end with an example that uses
the ConsistentHashingPool in section 9.2.3 to explain when and how this router can
be used. 

9.2.1 Akka pool router

You’ve seen that several routers are available, and they come in three flavors: the logic
to be used in your own actor, a group actor, or a pool actor. We’ll start by showing how
to use a pool router. When using the pool actor, you don’t have to create or manage
the routees; that’s done by the pool router. A pool can be used when all the routees
are created and distributed the same way and there isn’t a need for special recovery of
the routees. So for “simple” routees, a pool is a good choice.

CREATING A POOL ROUTER

Using a pool router is simple, and is the same for all the different pool routers. There
are two different ways to use the pool: using the configuration, or configuring it
within the code. We’ll start with the configuration, because using it allows you to
change the logic used by the router, which isn’t possible when configuring the router
in code. Let’s use a BalancingPool for our GetLicense actor. 

 We have to create the router in the code. The router is also an ActorRef, which we
can use to send our messages.

val router = system.actorOf(
  FromConfig.props(Props(new GetLicense(endProbe.ref))),
 "poolRouter"
)

This is all you have to do in your code to create a configuration-specified router. But
we’re not completely done. We have to configure our router.

akka.actor.deployment {

/poolRouter {

router = balancing-pool

nr-of-instances = 5

}

}

Those three lines are enough to configure the router. The first line is the name of
the router, and it has to be equal to the name used in the code. In our example we’ve
created the router using system.actorOf and have created our router at the top level

Listing 9.1 Creating a router using the configuration file

Listing 9.2 Configuring the router

Defines router using configuration

How router should 
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of the actor path; therefore, the name is /poolRouter. If we create the router within
another actor, for example, with the name getLicenseBalancer, the name of the
router within the configuration would be /getLicenseBalancer/poolRouter. This is
important; otherwise, the configuration wouldn’t be found by the Akka framework.

 The next line in the configuration defines the logic which that has to be used, in
this case, the balancing pool actor. The last line defines how many routees (5) will be
created within the pool.

 This is all we have to do when we want to use a pool of GetLicense actors instead
of only one GetLicense actor. The only difference in our code using a pool of actors is
to insert FromConfig.props(). The rest is just the same. Sending messages to one of
the GetLicense routees is accomplished simply by sending a message to the returned
ActorRef of the created router:

router ! Photo("123xyz", 60)

The router decides which routee gets the message to process. We started this section
by mentioning that there are two ways to define a router. The second way is less flexi-
ble, but we’ll show it for completeness. It’s also possible to define the same pool
router within the code, as shown next.

val router = system.actorOf(
  BalancingPool(5).props(Props(new GetLicense(endProbe.ref))),

"poolRouter"
)

The only difference is that we replaced FromConfig with BalancingPool(5) and have
defined the pool and number of routees in the code directly. This is exactly the same
as our prior defined configuration.

 When you send messages to the router, the message is normally sent to the routees.
But there are some messages that are processed by the router itself. Throughout this
section we’ll cover most of these messages. But we’ll start with the Kill and Poison-
Pill messages. These messages aren’t sent to the routees, but will be processed by the
router. The router will terminate, and when using a pool actor, all the routees will also
terminate, due to the parent-child relation.

 You’ve seen that when you send a message to the router, only one routee receives
the message, at least for most routers. But it’s possible to send one message to all the
routees of the router. For this you can use another special message: the Broadcast mes-
sage. When you send this message to the router, the router will send the content of the
message to all the routees. Broadcast messages work on pool and group routers.

NOTE The only router where the Broadcast message doesn’t work is the
BalancingPool. The problem is that all the routees have one and the same
mailbox. Let’s look at an example of a BalancingPool with five instances.

Listing 9.3 Creating a BalancingPool in code

Creates a BalancingPool
with 5 routees
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When the router wants to broadcast a message, it tries to send the message to
all five routees. Due to the fact that there’s only one mailbox, all five messages
are placed in the same mailbox. Depending on the load of the different rou-
tees, the messages are distributed to the routees, which make the first five
requests getting the next message. This will work when the load is equally dis-
tributed. But if one routee has a message that takes longer to process than the
broadcast message, another routee will process multiple broadcast messages
before the busy routee has finished. It’s even possible that one routee could
get all the broadcast messages and the other four routees none of them. So
don’t use Broadcast in combination with the BalancingPool. 

REMOTE ROUTEES

In the previous section, the created routees were all local actors, but we mentioned
before that it’s possible to use routers between multiple servers. Instantiating routees
on a remote server isn’t hard. You have to wrap your router configuration with the
RemoteRouterConfig and supply the remote addresses.

val addresses = Seq(
Address("akka.tcp", "GetLicenseSystem", "192.1.1.20", 1234),
AddressFromURIString("akka.tcp://GetLicenseSystem@192.1.1.21:1234"))

val routerRemote1 = system.actorOf(
RemoteRouterConfig(FromConfig(), addresses).props(

Props(new GetLicense(endProbe.ref))), "poolRouter-config")

val routerRemote2 = system.actorOf(
RemoteRouterConfig(RoundRobinPool(5), addresses).props(

Props(new GetLicense(endProbe.ref))), "poolRouter-code")

Here we show the two examples of constructing an address: using the Address class
directly or constructing an Address from a URI. We also show the two versions of creat-
ing a RouterConfig. The created pool router will create its routees on the different
remote servers. The routees will be deployed in round-robin fashion between the given
remote addresses. This way the routees are evenly distributed over the remote servers.

 As you can see, it’s easy to scale out using routers. All you have to do is use the
RemoteRouterConfig. There’s a similar wrapper that’s also able to create routees on
several remote servers: ClusterRouterPool. This wrapper can be used when you have
a cluster (and is described in chapter 14, which is devoted completely to the topic of
clustering).

 Until now, we’ve used routers with a static number of routees, but when the load of
messages changes a lot, you need to change the number of routees, to get a balanced
system. For this you can use a resizer on the pool. 

DYNAMICALLY RESIZABLE POOL

When the load changes a lot, you’ll want to change the number of routees; when you
have too few routees, you’ll suffer delays because messages have to wait until a routee
is finished. But when you have too many routees, you can waste a lot of resources. In

Listing 9.4 Wrap configuration in a RemoteRouterConfig



196 CHAPTER 9 Routing messages

Def

und
these cases, it would be nice if you could change the pool size dynamically (depending
on the load). This can be done with the resize functionality of the pool.

 You can configure the resizer to your needs. You can set upper and lower bounds
on the number of routees. When you need to increase or decrease the pool, Akka will
do so. All this can be configured when defining the pool.

akka.actor.deployment {
/poolRouter {

router = round-robin-pool
resizer {

enabled = on

lower-bound = 1
upper-bound = 10

pressure-threshold = 1

rampup-rate = 0.25

backoff-threshold = 0.3

backoff-rate = 0.1

  messages-per-resize = 10
}

}
}

The first step is to turn the functionality on. Next you can define the upper and lower
bounds (on routees). This is done using the attributes lower-bound and upper-bound. 

 The next attributes are used to define when the pool should expand, and by what
number of routees.

 We’ll start with the increasing part. When the router pool is under pressure (load),
you need to increase the number of routees. But when is the pool under pressure? The
answer is when all the current routees are under pressure, and when a routee is under
pressure is defined using the pressure-threshold attribute. The value of the attribute
defines how many messages should be in the mailbox of the routee before it’s consid-
ered to be under pressure. For example, when the value is set to 1, a routee is under
pressure when it has at least one message in its mailbox, and when it’s set to 3, the rou-
tee needs to have at least three messages in its mailbox. A special case is the value 0.
This means that when the routee is processing a message, it’s under pressure. Now that
you know when a routee is under pressure, we’ll look at how the mechanism of adding
routees works.

 Let’s consider the example of a router pool with five instances and whose pressure
threshold is set to 0. When this router gets messages, it forwards them to the first four
routees. At this moment, four routees are busy and one is idle. The first situation
shown in figure 9.4 is that upon receiving the fifth message, nothing happens, because
the check is done before assigning the message to a routee. And at this point one rou-
tee is still idle, which means the pool isn’t under pressure yet.

Listing 9.5 Resizer configuration

Turns resizer
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But when the router receives another message, all the routees are busy processing
messages (the second situation in figure 9.4). This means the pool is under pressure
at this point, and new routees are added. This resizing isn’t done synchronously,
because creating a new routee isn’t always faster than just waiting for the routee to fin-
ish the previous message. In a balanced system, the previous message is probably
almost finished. This means that the sixth message isn’t routed to the newly created
routees, but to one of the already existing routees. But probably the next message can
use the newly added routees.

 When the pool is under pressure, it adds new routees. The rampup-rate defines
how many routees are added. The value is a percentage of the total. For example,
when you have five routees and the rampup-rate is 0.25, the pool will be increased by
25% (rounded up to whole numbers) so the pool will be increased by two routees (5 ×
0.25 = 1.25, which is rounded up to 2), resulting in seven routees.

 Now that you know how you can increase the pool size, you can also decrease the
size. The backoff-threshold is the attribute that defines when the router pool will
decrease. The back-off won’t be triggered until the percentage of routees that are

Message

Message arrives when four
routees are busy processing.

Routee 5 is idle
and is waiting
for a message
to process.

Router Routee 3

Router pool is not under pressure

Routee 2

Routee 1

Routee 5

Routee 4

Message

Message arrives and all
routees are busy processing.

Router Routee 3

Router pool is under pressure

Routee 2

Routee 1

Routee 4

Routee 5

Figure 9.4 A router pool coming under pressure
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busy is below the backoff-threshold. When you have 10 routees, the back-off is trig-
gered when the percentage of busy routees is below 30%. This means that when only
two routees (or fewer) are busy, the number of routees in the pool will decrease.

 The number of routees removed is defined by the backoff-rate and works just
like the rampup-rate. In this example with 10 routees and a backoff-rate of 0.1, it
will decrease by one routee (10 × 0.1 = 1).

 The last attribute, messages-per-resize, will define the number of messages a
router has to receive before it’s able to do another resize. This is to prevent a situation
where the router is continually increasing or decreasing with every message. This can
happen when the load is just between two sizes: the load is too big for one pool size,
but when it increases the load is too small, which causes the pool to be adjusted every
time. Or when the messages come in batches, this attribute can be used to delay the
resize action until the next batch of messages arrives. 

SUPERVISION

Another function of the router that should be addressed is supervision. Because the
router is creating the routees, it’s also the supervisor of the actors. When using the
default router, it will always escalate to its own supervisor. This can lead to unexpected
results. When one routee fails, the router will escalate to its supervisor. This supervisor
probably wants the actor to be restarted, but instead of restarting the routee, the
supervisor restarts the router. And the behavior of restarting a router will cause all the
routees to be restarted, not only the failing one. The effect is that it looks like the
router uses an AllForOneStrategy. To solve this issue, we can give the router its own
strategy when creating the router. 

 To set this up, all we need to do is create the strategy and associate it with the
router:

val myStrategy = SupervisorStrategy.defaultStrategy
val router = system.actorOf(
  RoundRobinPool(5,supervisorStrategy = myStrategy).props(Props[TestSuper]),
 "roundrobinRouter"
)

When one routee is failing, only the failing routee is restarted, and the other routees
will proceed without any problem. You can use the default supervisor like in our
example, but it’s also possible to create a new strategy for the router, or use the strat-
egy of the parent actor of the router. This way all the routees of the given router will
behave the same as if they are children of the router’s parent.

 It’s possible to stop the child when there’s a failure, but a pool won’t spawn a new
routee when a routee terminates; it only removes the routee from the pool. When all
the routees are terminated, the router will terminate too. Only when you use a resizer
will the router not terminate and keep the specified minimum number of routers.

 In this section you’ve seen that router pools are flexible, especially when instantiat-
ing the router using the configuration. You’re able to change the number of routees
and even the router logic. And when you have multiple servers, you can also instanti-
ate routees on different servers, without any complex or difficult constructions.

Creates supervisor strategy

Uses
rvisor
rategy



199Balance load using Akka routers
 But sometime the pools are too restricted, and you want more flexibility and con-
trol over the creation and management of the routees. These needs can be met by
implementing groups. 

9.2.2 Akka group router

The pools in the previous section were managing the routees for you. Using the group
routers, you have to instantiate the routees yourself. This can be necessary when you
want to take control of when and where the routees are created. We’ll start with creat-
ing our group router. Next, we’ll show how we can dynamically change the routees
using another set of router messages.

CREATING GROUPS

Creating a group is almost the same as creating a pool. The only difference is that a
pool needs the number of routee instances, and a group needs a list of routee paths.
Let’s start with creating the routees. You don’t need to do anything special, but in our
example we want one parent Actor for all our GetLicense actors. We’ll introduce a
GetLicenseCreator, which is responsible for creating the GetLicense actors. This
actor will be used later to create new routees when one terminates.

class GetLicenseCreator(nrActors: Int) extends Actor {

override def preStart() {
super.preStart()

    (0 until nrActors).map { nr =>
      context.actorOf(Props[GetLicense], "GetLicense"+nr)
      system.actorOf(Props( new GetLicenseCreator(2)),"Creator")

}

    }
}
...

}

system.actorOf(Props( new GetLicenseCreator(2)),"Creator")

Just as with a pool, there are two ways to create a router group using the configuration
and within the code. We’ll start with the configuration example.

akka.actor.deployment {
/groupRouter {

router = round-robin-group
routees.paths = [

"/user/Creator/GetLicense0",
"/user/Creator/GetLicense1"]

}
}

val router = system.actorOf(FromConfig.props(), "groupRouter")

Listing 9.6 GetLicenseCreator creating our routees

Listing 9.7 Configuration of the router using a group
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As you can see, the configuration barely differs from the pool configuration; nr-of-
instances is replaced by routees.paths. Creating a group is even easier than creat-
ing a pool, because you don’t need to specify how the routees are to be created. And
because a group uses actor paths, adding remote actors doesn’t need any changes.
Just add the full path of the remote actor:

akka.actor.deployment {
 /groupRouter {
   router = round-robin-group

   routees.paths = [
    "akka.tcp://AkkaSystemName@10.0.0.1:2552/user/Creator/GetLicense0",
    "akka.tcp://AkkaSystemName@10.0.0.2:2552/user/Creator/GetLicense0"]
  }
}

Configuring a group with the code is again easy; you only have to supply a list of the
routee paths.

val paths = List("/user/Creator/GetLicense0",
"/user/Creator/GetLicense1")

val router = system.actorOf(
RoundRobinGroup(paths).props(), "groupRouter")

At this point we can use our router just as we used a router pool. There’s one differ-
ence: when a routee terminates. When a routee terminates within a pool, the router
detects this and removes the routee from the pool. A group router doesn’t support
this. When a routee terminates, the group router will still send messages to the routee.
This is done because the router doesn’t manage the routees and it’s possible that the
actor will be available at some point.

 Let’s enhance our GetLicenseCreator to create a new actor when one child termi-
nates. We’ll use the watch functionality described in chapter 4.

class GetLicenseCreator(nrActors: Int) extends Actor {

 override def preStart() {
super.preStart()
(0 until nrActors).map(nr => {

val child = context.actorOf(
Props(new GetLicense(nextStep)), "GetLicense"+nr)

context.watch(child)
})

}

def receive = {
case Terminated(child) => {

val newChild = context.actorOf(

Listing 9.8 Creating a group router with code

Listing 9.9 Creating new actors when routee terminates
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Kills
rout
Props(new GetLicense(nextStep)), child.path.name)
context.watch(newChild)

}
}

}

When we use this new GetLicenseCreator, the router group can always use the refer-
ences to the actor without any modification or actions. Let’s see this in action. We’ll
start by creating the routees and then the group, but before we do anything we’ll send
a PoisonPill to all the routees.   

val endProbe = TestProbe()

val creator = system.actorOf(
Props(new GetLicenseCreator2(2, endProbe.ref)),"Creator")

val paths = List(
"/user/Creator/GetLicense0",
"/user/Creator/GetLicense1")

val router = system.actorOf(
RoundRobinGroup(paths).props(), "groupRouter")

router ! Broadcast(PoisonPill)
Thread.sleep(100)

val msg = PerformanceRoutingMessage(
ImageProcessing.createPhotoString(new Date(), 60, "123xyz"),
None,
None)

//test if the routees respond
router ! msg
endProbe.expectMsgType[PerformanceRoutingMessage](1 second)

As you can see, after the routees are killed, the newly created routees will take over
and process the incoming messages. Thread.sleep is the laziest way to make sure that
the GetLicenseCreator has re-created the routees. It would be better to publish an
event on the event stream once all routees are re-created and subscribe to this event in
the test; or add some messages to the GetLicenseCreator to inspect the number of re-
created routees; or use the GetRoutees message described in the next section. This is
left as an exercise for the reader.

 In this example we created new actors with the same path, but it’s also possible to
remove or add routees to the group using router messages. 

DYNAMICALLY RESIZE THE ROUTER GROUP

We talked already about messages that are processed by the router. Now we’ll talk
about three other messages for managing the group routees, which enables you to get
the routees of a given router and add or remove them:

 GetRoutees—To get all the current routees, you can send this message to a
router, which will reply with a Routees message containing the routees.

Listing 9.10 Testing the GetLicenseCreator that manages the routees
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 AddRoutee(routee: Routee)—Sending this message will add the routee to the
router. This message takes a RouteeTrait containing the new routee.

 RemoveRoutee(routee: Routee)—Sending this message will remove the routee
from the router.

But using these messages has some pitfalls. These messages and the replies use the
Routee trait, which contains only one send method. This method enables you to send
a message directly to a routee. Other functionality isn’t supported without converting
the Routee to an implementation class.

 Using the GetRoutees message gives you less information than expected, without
casting the Routee to the actual implementation. The only actual use is to get the
number of routees or when you want to bypass the router. This can be handy when
you want to send specific messages to specific routees. The last use for this message is
to be sure that a router management message is processed, by sending a GetRoutees
message right after a router message. Subsequently receiving a Routees response
means that the router message sent before the GetRoutees message has been pro-
cessed. When you receive the reply (Routees message), you know that the previous
message was also processed.

 The add and remove messages need a Routee. When you want to add an actor to
the router, you need to convert an ActorRef or path to a Routee.

 There are three implementations of the Routee trait available within Akka:

 ActorRefRoutee(ref: ActorRef)

 ActorSelectionRoutee(selection: ActorSelection)

 SeveralRoutees(routees: immutable.IndexedSeq[Routee])

Choosing between the three options, we dispense with the last one, SeveralRoutees,
because it creates a Routee from a list of Routees. If we add a routee with the first
option, ActorRefRoutee, the router will create a watch on the new routee. This
sounds like it shouldn’t be a problem, but when a router receives a Terminated mes-
sage and it isn’t the supervisor of the Routee, it will throw an akka.actor.DeathPact-
Exception, which will terminate the router. This is probably not something you want;
you should use the second option, the ActorSelectionRoutee implementation, to be
able to recover from a termination of a routee.

 When removing a routee, you have to use the same Routee instance type as you
used to add the Routee. Otherwise, the routee won’t be removed. This is why you also
need to use the ActorSelectionRoutee when removing a routee.

 Let’s assume we still need the functionality of resizing a group; we’ll probably end
up with a solution close to listing 9.11. We’ll create a DynamicRouteeSizer, which will
manage the routees and the number used within the group router. We can change the
size by sending a PreferredSize message.
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class DynamicRouteeSizer(nrActors: Int,
props: Props,
router: ActorRef) extends Actor {

var nrChildren = nrActors
var childInstanceNr = 0

//restart children
override def preStart() {

super.preStart()
(0 until nrChildren).map(nr => createRoutee())

}

def createRoutee() {
childInstanceNr += 1
val child = context.actorOf(props, "routee" + childInstanceNr)
val selection = context.actorSelection(child.path)
router ! AddRoutee(ActorSelectionRoutee(selection))
context.watch(child)

}

def receive = {
case PreferredSize(size) => {

if (size < nrChildren) {
//remove
context.children.take(nrChildren - size).foreach(ref => {

val selection = context.actorSelection(ref.path)
router ! RemoveRoutee(ActorSelectionRoutee(selection))

})
router ! GetRoutees

} else {
(nrChildren until size).map(nr => createRoutee())

}
nrChildren = size

}
case routees: Routees => {

//translate Routees into a actorPath
import collection.JavaConversions._
var active = routees.getRoutees.map{

case x: ActorRefRoutee => x.ref.path.toString
case x: ActorSelectionRoutee => x.selection.pathString

}
//process the routee list
for(routee <- context.children) {

val index = active.indexOf(routee.path.toStringWithoutAddress)
if (index >= 0) {

active.remove(index)
} else {

//Child isn't used anymore by router
routee ! PoisonPill

}
}
//active contains the terminated routees
for (terminated <- active) {

val name = terminated.substring(terminated.lastIndexOf("/")+1)
val child = context.actorOf(props, name)

Listing 9.11 Example of a routee sizer for a group
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context.watch(child)
}

}
case Terminated(child) => router ! GetRoutees

}
}

There’s a lot going on here. We start with receiving the PreferredSize. There are two
options when receiving this message: we have too few or too many routees. When
there are too few, we can easily correct this by creating more child actors and adding
them to the router. When we have too many, we need to remove them from the router
and terminate them. We need to do this in order to prevent the router from sending
messages to a killed child actor. This means that we’re losing messages. Therefore, we
send the RemoveRoutee message followed by the GetRoutees message. When we get
the reply routees, we know that the router won’t send any messages to the removed
routees, and we can terminate the child actors. We use the PoisonPill because we
want all previous messages sent to the routee to be processed before stopping it. 

 Next, we describe the action when a child is terminated. Again there are two possi-
ble situations when we get a terminated message. The first one is that we’re busy with
the downsizing; in this situation we don’t have to do anything. In the second situation,
an active routee is terminated accidentally. In this case we need to re-create the rou-
tee. We want to re-create the child using the same name instead of removing the child
from the router and creating a new one, because it’s possible that removing a termi-
nated child will cause the router to terminate when that child was the last active rou-
tee. To decide what needs to be done, we send a GetRoutees message and choose
which action needs to be taken when we get the reply.

 The last part we need to discuss is what happens if we get the Routees reply. We use
this message to determine if we can safely terminate a child and if we need to restart a
child. To be able to do this, we need the actor paths of the routees, which aren’t avail-
able in the Routee interface. To solve this problem, we use the implementation classes
ActorSelectionRoutee and ActorRefRoutee. The latter class is probably not used
within the router, but is added just to be sure. Now that we have a list of actor paths,
we can check if we need to stop children or restart them.

 To use this sizer, we simply create the router and the sizer actor:

val router = system.actorOf(RoundRobinGroup(List()).props(), "router")
val props = Props(new GetLicense(endProbe.ref))
val creator = system.actorOf(

Props( new DynamicRouteeSizer(2, props, router)),
"DynamicRouteeSizer"

)

As we described in this section, you’re able to dynamically change the routees of a
group, but it would be preferable to avoid doing so due to the number of pitfalls.

 You’ve learned how to use router pools and groups, but there’s one type of router
logic that works a little differently than the others, and that is the ConsistentHashing
router. 

Child has terminated; 
checks if it was a planned 
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the routees of the router
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9.2.3 ConsistentHashing router

The previous section showed that routers are a great and easy way to be able to scale
up and even scale out. But there can be a problem with sending messages to different
routees. What happens when you’ve implemented state in your actor, which relies on
the received message? Take, for example, the Aggregator of the scatter-gather pattern
from section 8.2.4. When you have a router with 10 Aggregator routees, each of which
joins two related messages into one, there’s a good chance that the first message will
be sent to routee 1 and the second message to routee 2. When this happens, both
aggregators will decide that the message can’t be joined. To solve this problem, the
ConsistentHashing router was introduced.

 This router will send similar messages to the same routee. When the second mes-
sage is received, the router will route it to the same routee as the first one. This
enables the Aggregator to join the two messages. To make this work, the router must
identify when two messages are similar. The ConsistentHashing router makes a hash
code of the message and maps this to one of its routees. There are several steps to map
a message to a routee, which are shown in figure 9.5.

Step 1 translates a message to a message key object. Similar messages have the same
key, for example, the ID of the message. It doesn’t matter what type the key is; the only
restriction is that this object is always the same for similar messages. This message key
is different for every type of message and should be implemented somehow. The
router supports three ways to translate the message into a message key:

 A partial function is specified in the router. 
This makes the decision specific to that router.

 The message implements akka.routing.ConsistentHashingRouter.Consistent-
Hashable. 
This makes the decision specific for the messages used.

 The messages can be wrapped in a akka.routing.ConsistentHashingRouter
.ConsistentHashableEnvelope. 
This makes the decision specific for the sender. The sender knows which key 
to use.

Message

Step 1:
Translate
message
into a
message key

Step 2:
Translate
message
into a
hash code

Step 3:
Map hash
code to a
virtual node

Step 4:
Map virtual
node to
a routee

Hash codeMessage
 key

Routee 1

Routee 2

Virtual
node 1

Virtual
node 2

Virtual
node 3

Virtual
node 4

Figure 9.5 Steps the ConsistentHashing router follows to decide which routee to select
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The last option is less preferable, because this makes the sender closely coupled to the
routees. The sender needs to know that the next ActorRef is using a Consistent-
HashingRouter and how to distribute the messages. The other two solutions are much
more loosely coupled. Later, we’ll show how to use these three different methods.

 Step 2 creates a hash code from this message key. This hash code is used to select a
virtual node (step 3), and the last step (4) is to select the routee that handles all the mes-
sages for that virtual node. The first thing you’ll notice is the use of a virtual node. Can’t
we just map a hash code directly to a routee? Using virtual nodes is done to get a bigger
change to equally spread all the messages over the routees. The number of virtual
nodes serviced by a routee has to be configured when using a ConsistentHashing-
Router. In our example we have two virtual nodes for each routee.

 Let’s take a look at an example of using a routee that will join two messages based
on their IDs. We’ve stripped all the error recovery from this gather example.

trait GatherMessage {
val id:String
val values:Seq[String]

}

case class GatherMessageNormalImpl(id:String, values:Seq[String])
extends GatherMessage

class SimpleGather(nextStep: ActorRef) extends Actor {
var messages = Map[String, GatherMessage]()
def receive = {

case msg: GatherMessage => {
messages.get(msg.id) match {

case Some(previous) => {
//join
nextStep ! GatherMessageNormalImpl(

msg.id,
previous.values ++ msg.values)

messages -= msg.id
}
case None => messages += msg.id -> msg

}
}

}
}

The SimpleGather actor will join two messages with the same ID together into one
message. We use a trait as a message type, to be able to use different implementations
of the message, which is needed in one of the hashing examples. Let’s look at the
three ways to specify the message key. 

SUPPLY HASHMAPPING PARTIAL FUNCTION TO ROUTER

The first way we’ll examine is specifying the hash mapping of the router. When creat-
ing the router, you supply a partial function that selects the message key:

Listing 9.12 Joining two message into one
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def hashMapping: ConsistentHashMapping = {
case msg: GatherMessage => msg.id

}

val router = system.actorOf(
  ConsistentHashingPool(10,

  virtualNodesFactor = 10,
  hashMapping = hashMapping

  ).props(Props(new SimpleGather(endProbe.ref))),
 name = "routerMapping"
)

This is all you need to do to use a ConsistentHashingRouter. You create a partial
function to select a message key from the received message. When you send two mes-
sages with the same ID, the router makes sure that both messages are sent to the same
routee. Let’s try this:

router ! GatherMessageNormalImpl("1", Seq("msg1"))
router ! GatherMessageNormalImpl("1", Seq("msg2"))
endProbe.expectMsg(GatherMessageNormalImpl("1",Seq("msg1","msg2")))

This method can be used when the router has some specific needs to distribute this
message, for example, when you have several routers in the system that are getting the
same message type, but you want to use another message key. Suppose one router
joins the message based on the ID, and another router counts the message with the
same first value and needs the first value as the message key. When the message key is
always the same for a given message, it makes more sense to implement the translation
within the message. 

MESSAGE HAS A HASHMAPPING

It’s also possible to translate the message to a key within the message itself by extend-
ing the ConsistentHashable trait:

case class GatherMessageWithHash(id:String, values:Seq[String])
extends GatherMessage with ConsistentHashable {

override def consistentHashKey: Any = id
}

When using this message, you don’t have to supply a mapping function, because the
mapping function of the message is used:

val router = system.actorOf(
ConsistentHashingPool(10, virtualNodesFactor = 10)

    .props(Props(new SimpleGather(endProbe.ref))),
name = "routerMessage"

)

router ! GatherMessageWithHash("1", Seq("msg1"))
router ! GatherMessageWithHash("1", Seq("msg2"))
endProbe.expectMsg(GatherMessageNormalImpl("1",Seq("msg1","msg2")))

Defines partial hash-
mapping function

Sets number of virtual 
hashing nodes per routee

Sets
apping

unction
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When the message key is always the same for a given message, this solution is prefera-
ble. But we mentioned that we have three ways to get the message key from a message.
So let’s take a look at the last version: using the ConsistentHashableEnvelope. 

SENDER HAS A HASHMAPPING

The last method is to supply the message key using a ConsistentHashableEnvelope
message.

val router = system.actorOf(
ConsistentHashingPool(10, virtualNodesFactor = 10)

.props(Props(new SimpleGather(endProbe.ref))),
name = "routerMessage"

)

router ! ConsistentHashableEnvelope(
message = GatherMessageNormalImpl("1", Seq("msg1")), hashKey = "1")

router ! ConsistentHashableEnvelope(
message = GatherMessageNormalImpl("1", Seq("msg2")), hashKey = "1")

endProbe.expectMsg(GatherMessageNormalImpl("1",Seq("msg1","msg2")))

Instead of sending our message to the router, we send the ConsistentHashable-
Envelope, which contains our actual message and the hashKey to use as the message
key. But as we mentioned before, this solution requires that all the senders know that
a ConsistentHashingRouter is used and what the message key should be. One exam-
ple of when this method applies is when you need all the messages from one sender to
be processed by one routee: then you can use this approach and use a senderId as the
hashKey. But this doesn’t mean that each routee processes messages from one sender.
It is possible that multiple senders are processed by one routee.

 We’ve shown three different ways to translate a message into a message key, but it is
possible to use the three solutions in one router.

 In this section, we learned how to use Akka routers, which are used for perfor-
mance reasons, but remember that routers are also used based on the content of a
message or state. In the next section, we describe content and state-based routing
approaches. 

9.3 Implementing the router pattern using actors
Implementing the router pattern doesn’t always require Akka routers. When the deci-
sion of the routee is based on the message or some state, it’s easier to implement it in
a normal actor, because you can leverage all the benefits of actors. You do need to
address possible concurrency issues when creating a custom Akka router. 

 In this section we’ll look at some implementations of the router pattern using nor-
mal actors. We’ll start with a message-based router. In the next section, we’ll use the
become/unbecome functionality to implement a state-based router. After this, we’ll
discuss why it’s not required for a router pattern to be implemented in a separate
actor, but that it’s also possible to integrate it into the message-processing actor. 
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9.3.1 Content-based routing

The most common routing pat-
tern in a system is based on the
messages themselves. At the start
of section 9.1, we showed an
example of a message-based
router. When the speed is lower
than the speed limit, the driver
isn’t in violation, and the message
need not be processed anymore,
but the cleanup step has to be
done. When the speed is higher
than the speed limit, then it’s a
violation, and processing should
continue to the next step, the
send-message task.

 Figure 9.6 shows that, based on the content of the message, a flow is chosen. In this
example we need to route based on the speed, but it can also be based on the type of
the message or any other test done on the message itself. We’re not showing an exam-
ple, because the implementation is very functionality related, and you should be able
to implement it with your current knowledge of the Akka framework. In the next sec-
tion, we’ll take a look at state-based routing.   

9.3.2 State-based routing

This approach involves changing the routing behavior based on the state of the
router. The simplest case would be a switch router that has two states: on and off.
When it’s in the on state, all messages are sent to the normal flow, and when it’s in the
off state, the messages are sent to the cleanup flow. To implement this example, we
won’t use the Akka router, because we want to have state in our router and the Akka
router’s state is not thread-safe by default. Instead, we’ll use a normal actor. It’s possi-
ble to implement the state as a class attribute, but because it’s possible to change the
behavior of an actor during its lifecycle, using the become/unbecome functionality,
we can employ this as our state representation mechanism.

 We’ll use the become capability to change the behavior of the actor depending on
its state. In our example we have two states, on and off. When the actor is in the on
state, the messages should be routed to the normal flow, and when it’s in the off state,
the messages should go to the cleanup process. To do this we’ll create two functions to
handle the messages. When we want to switch to another state, we’ll simply replace
the receive function using the become method of the actor’s context. In our example
we use two messages, RouteStateOn and RouteStateOff, to change our state and
therefore our behavior.

Check
license

Router

Send
message

Cleaning

Router pattern

Speed violation

Speed below
legal maximum

Figure 9.6 Routing based on the value of the speed
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case class RouteStateOn()
case class RouteStateOff()

class SwitchRouter(normalFlow: ActorRef, cleanUp: ActorRef)
extends Actor with ActorLogging {

def on: Receive = {
case RouteStateOn =>

log.warning("Received on while already in on state")
case RouteStateOff => context.become(off)
case msg: AnyRef => {

normalFlow ! msg
}

}
def off: Receive = {

case RouteStateOn => context.become(on)
case RouteStateOff =>

log.warning("Received off while already in off state")
case msg: AnyRef => {

cleanUp ! msg
}

}
def receive = off

}

We start with the state off because this is the initial function our actor uses. When the
actor receives messages, it is routed to the cleanup actor. When we send a Route-
StateOn to our router, the become method is called and replaces the receive function
with the on implementation of the receive function. All the subsequent messages are
then routed to the normal flow actor.

val normalFlowProbe = TestProbe()
val cleanupProbe = TestProbe()
val router = system.actorOf(

Props(new SwitchRouter(
normalFlow = normalFlowProbe.ref,
cleanUp = cleanupProbe.ref)))

val msg = "message"
router ! msg

cleanupProbe.expectMsg(msg)
normalFlowProbe.expectNoMsg(1 second)

router ! RouteStateOn

router ! msg

cleanupProbe.expectNoMsg(1 second)
normalFlowProbe.expectMsg(msg)

router ! RouteStateOff
router ! msg

Listing 9.13 State-based router

Listing 9.14 Testing state routerRedirect actor

Receives method 
when state is on

witches
tate off

When state is on, sends 
message to normal flow

Receives method 
when state is off

ches to
tate on

When state is off, sends 
message to cleanup

Actor starts with state off

Switches state to on

Switches state to off
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cleanupProbe.expectMsg(msg)
normalFlowProbe.expectNoMsg(1 second)

In our example, we used only the become method, but there’s also an unbecome
method. Calling this method causes the new receive function to be removed and the
original function to be used. Let’s rewrite our router using the unbecome method. (It’s
a semantic difference, but also a matter of following the convention provided.)

class SwitchRouter2(normalFlow: ActorRef, cleanUp: ActorRef)
extends Actor with ActorLogging {

def on: Receive = {
case RouteStateOn =>

log.warning("Received on while already in on state")
case RouteStateOff => context.unbecome()
case msg: AnyRef => normalFlow ! msg

}
def off: Receive = {

case RouteStateOn => context.become(on)
case RouteStateOff =>

log.warning("Received off while already in off state")
case msg: AnyRef => cleanUp ! msg

}
def receive = {

case msg: AnyRef => off(msg)
}

}

There’s one warning when using the become functionality: after a restart, the behav-
ior of the actor is also returned to its initial state. The become and unbecome func-
tionality can be handy and powerful when you need to change behavior during the
processing of messages. 

9.3.3 Router implementations

So far we’ve shown different routers and how you can implement each. But all these
examples are implementing the clean router pattern; no processing is done in the
router, it merely directs messages to the appropriate recipients. This is the correct pre-
liminary approach when designing with these patterns, but when you’re implementing
the processing task and the router component, it can make sense for routing to be sub-
sumed with processing into a single actor, as shown in figure 9.7. This is most likely to
make sense when the results of processing will influence what the next step should be.

Listing 9.15 State-based router using unbecome

Using the 
unbecome 
method instead 
of become off

GetSpeed actor

SpeedRouter

Cleanup

GetTime

GetSpeed

Figure 9.7 Multiple 
pattern implementation
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In our camera example, we have a GetSpeed process that finds the speed. When this
fails or when the speed is too low, the message has to be sent to the cleanup task; oth-
erwise the message should be sent to the normal flow, in our case the GetTime task. To
design this we need two patterns:

 A process task
 A router pattern

But when implementing these patterns, it’s possible to implement the two compo-
nents GetSpeed and SpeedRouter into one actor. The actor starts the processing task
first, and depending on the result, it sends the message to either the GetTime or the
Cleanup task. The decision to implement these components into one actor or two
depends on the required degree of reusability. When we need the GetSpeed to be
separate, we can’t integrate both steps in one actor. But when the processing actor
also has the obligation to render a decision about how the message should be further
processed, it would be easier to integrate the two components. Another factor would
be that the separation of normal flow and error flow is preferred for the GetSpeed
component. 

9.4 Summary
This chapter was all about how to route messages through different tasks. The Akka
routers are an important mechanism for scaling your application, and they’re very
flexible, especially when using configuration. You’ve seen that there’s different built-
in logic that can be used. In this chapter you’ve also learned the following:

 Akka routers come in two varieties: groups and pools. Pools manage the cre-
ation and termination of the routees, and when using the group you have to
manage routees yourself.

 Akka routers can easily use remote actors as routees.
 The state-based router we implemented with the become/unbecome mecha-

nism enables us to change the behavior of the actor during its lifecycle by
replacing the receive method. When using this approach, we have to be care-
ful with restarts, because when the actor restarts the receive message is
returned to the initial implementation.

 Deciding where to send the message can be based on performance, the content
of the received message, or the state of the router.

We’ve focused on the structure of steps within the application, and how program flow
can be modeled using core Akka services. In the next chapter we’ll focus on how you
send messages between actors, and you’ll see that there are more ways to send mes-
sages than simply using the actor reference.



Message channels
In this chapter we’ll take a closer look at the message channels that can be used to
send messages from one actor to another. We’ll start with the two types of channels:
point-to-point and publish-subscribe. Point-to-point is the channel we’ve used in all
our examples until now, but sometimes we need a more flexible method to send
messages to receivers. In the publish-subscribe section, we’ll describe a method to
send messages to multiple receivers without the sender knowing which receivers
need the message. The receivers are kept by the channel and can change during the
operation of the application. Other names that are often used for these kinds of
channels are EventQueue or EventBus. Akka has an EventStream that implements a

In this chapter
 Direct messaging with point-to-point channels

 Flexible messaging with publish-subscribe channels

 Publishing and subscribing to the EventBus

 Reading undelivered messages using the dead-letter 
channel

 Achieving a higher level of guaranteed delivery with 
the guaranteed-delivery channel

 Guaranteeing delivery with the ReliableProxy
213
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publish-subscribe channel. But when this implementation isn’t sufficient, Akka has a
collection of traits that helps to implement a custom publish-subscribe channel.

 Next we’ll describe two special channels. The first is the dead-letter channel , which
contains messages that couldn’t be delivered. This is sometimes also called a dead-
message queue . This channel can help when you’re debugging why some messages
aren’t processed or monitoring where there are problems. In the last section, we’ll
describe the guaranteed-delivery channel . You can’t create a reliable system without at
least some guaranties of delivering messages. But you don’t always need fully guaran-
teed delivery. Akka doesn’t have fully guaranteed delivery, but we’ll describe the level
that is supported, which differs for sending messages to local and remote actors.

10.1 Channel types
We’ll start this chapter by describing the two types of channels. The first one is the
point-to-point channel. The name describes its characteristics: it connects one point (the
sender) to another point (the receiver). Most of the time this is sufficient, but some-
times you want to send a message to a number of receivers. In this case you need mul-
tiple channels, or you use the second type of channel, the publish-subscribe channel .
One advantage of the publish-subscribe channel is that the number of receivers can
dynamically change when the application is operational. To support this kind of chan-
nel, Akka has implemented the EventBus. 

10.1.1 Point-to-point

A channel transports the message from the sender to the receiver. The point-to-point
channel sends the message to one receiver. We’ve already used this kind of channel in
all our previous examples, so we’ll just recap the important parts here to describe the
differences between the two types of channels.

 In the previous examples, the sender knows the next step of the process and can
decide which channel to use to send its message to the next step. Sometimes there’s
just one channel, like in the pipes and filters examples of section 8.1. In these exam-
ples the sender has one ActorRef where it sends the message when the actor has fin-
ished processing. But in other cases like the RecipientList of section 8.2.3, the actor
has multiple channels and decides which channel to use to send the message. This
way the connectivity between the actors is more static in nature.

 Another characteristic of the channel is that when multiple messages are sent, the
order of these messages isn’t changed. A point-to-point channel delivers the message
to exactly one receiver, as shown in figure 10.1.

Point-to-point channel3 2 1 3 2 1Sender Receiver

Figure 10.1 Point-to-point channel
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It’s possible for a point-to-point channel to have multiple receivers, but the channel
makes sure that only one receiver receives the message. The round-robin router in
section 9.2.1 is an example of a channel having multiple receivers. The processing of
the messages can be done concurrently by different receivers, but only one receiver
consumes any given message. This is shown in figure 10.2.

 The channel has multiple receivers, but every message is delivered to just one
receiver. This kind of channel is used when the connection between sender and receiver
is more static in nature. The sender knows which channel it has to use to reach the
receiver.

 This type of channel is the most common channel in Akka, because in Akka the
ActorRef is the implementation of a point-to-point channel. All messages sent will be
delivered to one actor, and the order of the messages sent to the ActorRef will not
change. 

10.1.2 Publish-subscribe

You’ve seen in the previous section that the point-to-point channel delivers each mes-
sage to only one receiver. In these cases the sender knows where the message has to be
sent. But sometimes the sender doesn’t know who is interested in the message. This is
the greatest difference between the point-to-point channel and the publish-subscribe
channel. The channel, instead of the sender, is responsible for keeping track of the
receivers who need the message. The channel can also deliver the same message to
multiple receivers.

 Let’s assume we have a web shop application. The first step in our application is
receiving the order. After this step, the system needs to take the next step in process-
ing, which is delivering the order (for
example, a book) to the customer. The
receiving step sends a message to the
delivery step. But to keep the inventory
up to date, we also need the order mes-
sage in this component. At this point
the received order needs to be distrib-
uted to two parts of the system, as
shown in figure 10.3.

Point-to-point channel3 2 1

3

2

1

Sender Receiver
II

Receiver
III

Receiver
I

Figure 10.2 Point-to-point channel with multiple receivers

Web shop Receive
order

Deliver
order

Inventory

Figure 10.3 Web shop processing the order 
message
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As a bonus, we want to send a present when a customer buys a book. We extend our
system with a gift module, and again the order message is needed. Every time we add a
new subsystem, we need to change the first step to send the message to more receiv-
ers. To solve this problem, we can use the publish-subscribe channel. The channel is
able to send the same message to multiple receivers, without the sender knowing
about the receivers. Figure 10.4 shows that the published messages are sent to the
delivery and inventory subsystems.

When we want to add the gift functionality, we subscribe to the channel and don’t need
to modify the receive-order task. Another benefit of this channel is that the number of
receivers can differ during the operation and isn’t static. For example, we don’t want to
always send a present, only on the action days. When using this channel, we’re able to
add the gift module to the channel only during the action period and remove the mod-
ule from the channel when there is no gift action. This is shown in figure 10.5.

When a receiver is interested in a message of the publisher, it subscribes itself to the
channel. When the publisher sends a message through the channel, the channel
makes sure that all the subscribers get the message. And when the gift module doesn’t
need the order messages, it unsubscribes itself from the channel. This means that
the channel methods can be classified by two usages. The first usage is done at the
send side: here, one must be able to publish the messages. The other usage is at the

Message
Web shop Receive
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Publish-subscribe
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Deliver
order

Inventory
Message

Order

Message

Order

Order

Figure 10.4 Using the publish-subscribe channel to distribute the order message
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Figure 10.5 Gift module only receives messages on action days
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receiver side: at this end, the receivers must be able to subscribe to and unsubscribe
from the channel. Figure 10.6 shows the two usages.

 Because the receivers can subscribe themselves to the channel, this solution is very
flexible. The publisher doesn’t need to know how many receivers it has. It’s even pos-
sible that it may have no receivers at some point, because the number of subscribers
can vary during the operation of the system. 

AKKA EVENTSTREAM

Akka supports publish-subscribe channels. The easiest way to use a publish-subscribe
channel is to use the EventStream. Every ActorSystem has one, and it’s therefore
available from any actor (through context.system.eventStream). The EventStream
can be seen as a manager of multiple publish-subscribe channels, because the actor
can subscribe to a specific message type, and when someone publishes a message of
that specific type, the actor receives that message. The actor doesn’t need any modifi-
cations to receive messages from the EventStream.

class DeliverOrder() extends Actor {

def receive = {
case msg: Order => ...//Process message

}
}

What is unique here is how the message is sent. It isn’t even necessary that the actor
do the subscribing itself. It’s possible to subscribe from any location in your code, as
long as you have the actor reference and a reference to the EventStream to set up
the subscription. Figure 10.7 shows the subscribe interface of Akka. To subscribe an
actor to receive the Order messages, you need to call the subscribe method of the
EventStream.   

 When the actor isn’t interested anymore, for example when our gift action ends,
the unsubscribe method can be used. In the example we unsubscribe the Gift-
Module, and after this method call, the actor doesn’t receive any Order messages that
are published.

Publish-subscribe channel

Subscribe(receiver)
Unsubscribe(receiver)

Publish(msg)

Figure 10.6 Usages of a publish-subscribe channel
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This is all that has to be done when subscribing the GiftModule to receive Order mes-
sages. After calling the subscribe method, the GiftModule will receive all the Order
messages that are published to the EventStream. This method can be called for dif-
ferent actors that need these Order messages. And when an actor needs multiple mes-
sage types, the subscribe method can be called multiple times with different
message types.

 Publishing a message to the EventStream is also easy; just call the publish method,
as shown in figure 10.8. After this call, the message msg is sent to all subscribed actors
that can do the processing. This is the complete Akka implementation of the publish-
subscribe channel.

 In Akka it’s possible to subscribe to multiple message types. For example, our Gift-
Module also needs the messages when an order is canceled, because the gift shouldn’t
be sent then either. In this case the GiftModule has subscribed to the EventStream to
receive the Order and Cancel messages. But when calling unsubscribe for the Orders,
the subscription for the cancellations is still valid, and these messages are still received.

Publish-subscribe channel

system.eventStream.subscribe(
    giftModule,
    classOf[Order])

system.eventStream.unsubscribe(
    giftModule,
    classOf[Order])

Subscribe to the EventStream
to receive Order messages.

Unsubscribe the Order messages
from the EventSteam.

giftModule is
an ActorRef.

Figure 10.7 Subscribe interface of EventStream

Publish-subscribe channel

val msg = new Order("customer-1", "Akka in Action", 3)

system.eventStream.publish(msg)

Publish a message
to the EventStream. Figure 10.8 Publish interface of EventStream
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When stopping the GiftModule, we need to unsubscribe for all subscriptions. This can
be done with one call:

system.eventStream.unsubscribe(giftModule)

After this call the GiftModule isn’t subscribed to any message type anymore. The
publish, subscribe, and both unsubscribe methods form the Akka interface of the
publish-subscribe channel, which is quite simple. The following listing shows how we
can test whether the Akka EventStream is receiving Order messages.

val DeliverOrder = TestProbe()
val giftModule = TestProbe()

system.eventStream.subscribe(
DeliverOrder.ref,
classOf[Order])

system.eventStream.subscribe(
giftModule.ref,
classOf[Order])

val msg = new Order("me", "Akka in Action", 3)
system.eventStream.publish(msg)

DeliverOrder.expectMsg(msg)
giftModule.expectMsg(msg)

system.eventStream.unsubscribe(giftModule.ref)

system.eventStream.publish(msg)
DeliverOrder.expectMsg(msg)
giftModule.expectNoMsg(3 seconds)

We use the TestProbes as the receivers of the messages. Both receivers are subscribed
to receive the Order messages. After publishing one message to the EventStream,
both receivers have received the message. And after unsubscribing the GiftModule,
only the DeliverOrder is receiving the messages, just as we expected.

 We already mentioned the benefit of decoupling the receivers and the sender, as
well as the dynamic nature of the publish-subscribe channel, but because the Event-
Stream is available for all actors, it’s also a nice solution for messages that can be sent
from all over the local system and need to be collected at one or more actors. A good
example is logging. Logging can be done throughout the system and needs to be col-
lected at one point and written to a log file. Internally the ActorLogging is using the
EventStream to collect the log lines from all over the system.

 This EventStream is useful, but sometimes you’ll need more control and want to
write your own publish-subscribe channel. In the next subsection, we’ll show how you
can do that. 

Listing 10.1 EventStream in action

Creating Receiver actors

Subscribes Receiver actors 
to receive Order messages

Publishes 
an Order

Message is received 
by both actors

Unsubscribes GiftModule

GiftModule doesn’t receive 
message anymore
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CUSTOM EVENTBUS

Let’s assume that we only want to send a gift when someone orders more than one
book. When implementing this, our GiftModule only needs the message when the
amount is higher than 1. When using the EventStream, we can’t do that filtering with
the EventStream. Because the EventStream works on the class type of the message, we
can do the filtering inside the GiftModule, but let’s assume that this consumes
resources we don’t want to allow. In that case we need to create our own publish-
subscribe channel, and Akka also has support to do that.

 Akka has defined a generalized interface: the EventBus, which can be imple-
mented to create a publish-subscribe channel. An EventBus is generalized so that it
can be used for all implementations of a publish-subscribe channel. In the general-
ized form, there are three entities:

 Event—This is the type of all events published on that bus. In the EventStream
the type AnyRef is used as the event type, which means any reference type can
be used as an event.

 Subscriber—This is the type of subscriber allowed to register on that event bus.
In the Akka EventStream, the subscribers are ActorRefs.

 Classifier —This defines the classifier to be used in selecting subscribers for dis-
patching events. In the Akka EventStream, the Classifier is the class type of
the messages.

If you change the definition of these entities, it’s possible to create any publish-
subscribe channel. The interface has placeholders for the three entities and different
publish and subscribe methods, which are also available at the EventStream. In the
next listing, the complete interface of the EventBus is shown.

package akka.event

trait EventBus {
type Event
type Classifier
type Subscriber

/**
* Attempts to register the subscriber to the specified Classifier
* @return true if successful and false if not (because it was
* already subscribed to that Classifier, or otherwise)
*/

def subscribe(subscriber: Subscriber, to: Classifier): Boolean

/**
* Attempts to deregister the subscriber from the specified Classifier
* @return true if successful and false if not (because it wasn't
* subscribed to that Classifier, or otherwise)
*/

def unsubscribe(subscriber: Subscriber, from: Classifier): Boolean

Listing 10.2 EventBus interface
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/**
* Attempts to deregister the subscriber from all Classifiers it may
* be subscribed to
*/

def unsubscribe(subscriber: Subscriber): Unit

/**
* Publishes the specified Event to this bus
*/

def publish(event: Event): Unit
}

The whole interface has to be implemented, and because most implementations need
the same functionality, Akka also has a set of composable traits implementing the
EventBus interface, which can be used to easily create your own implementation of
the EventBus.

 Let’s implement a custom EventBus for our GiftModule to receive only the Orders
that have multiple books. With our EventBus we can send and receive Orders; there-
fore, the Event we use in our EventBus will be the Order class. To define this in our
OrderMessageBus, we simply set the event type defined in the EventBus:

class OrderMessageBus extends EventBus {
type Event = Order

}

Another entity we need to define is the Classifier. In our example we want to distin-
guish between single-book orders and orders with multiple books. We’ve chosen to
classify the Order messages on the criterion “is multiple book order” and use a Bool-
ean as classifier. Therefore, we have to define the Classifier as a Boolean. This is
defined as just the event:

class OrderMessageBus extends EventBus {
type Event = Order
type Classifier = Boolean

}

We skip the subscriber entity for now, because we’ll define that a little differently.
We’ve defined our Classifier and need to keep track of the subscribers for each
Classifier, in our case tracking whether “is multiple book order” is true or false.
Akka has three composable traits that can help you keep track of the subscribers. All
these traits are still generic, so they can be used with any entities you have defined.
This is done by introducing new abstract methods:

 LookupClassification—This trait uses the most basic classification. It main-
tains a set of subscribers for each possible classifier and extracts a classifier from
each event. It extracts a classifier using the classify method, which should be
implemented by the custom EventBus implementation.

 SubchannelClassification—This trait is used when classifiers form a hierar-
chy and it is desired that subscription be possible not only at the leaf nodes, but
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also at the higher nodes. This trait is used in the EventStream implementation,
because classes have a hierarchy and it’s possible to use the superclass to sub-
scribe to extended classes.

 ScanningClassification—This trait is a more complex one; it can be used
when classifiers have an overlap. This means that one Event can be part of
more classifiers; for example, if we give more gifts when ordering more books.
When ordering more than one book, you get a book marker, but when you
order more than 10, you also get a coupon for your next order. So when you
order 11 copies, the order is part of the classifiers “more than 1 book” and
“more than 10 books.” When this order is published, the subscribers of “more
than one book” need the message, but so do the subscribers of “more than 10
books.” For this situation the ScanningClassification trait can be used.

In our implementation we’ll use the LookupClassification. The other two classifica-
tions are similar to this one. These traits implement the subscribe and unsubscribe
methods of the EventBus interface. But they also introduce new abstract methods that
need to be implemented in our class. When using the LookupClassification trait, we
need to implement the following:

 classify(event: Event): Classifier—This is used for extracting the classi-
fier from the incoming events.

 compareSubscribers(a: Subscriber, b: Subscriber): Int—This method
must define a sorting order for subscribers, similar to the compare method on
java.lang.Comparable.

 publish(event: Event, subscriber: Subscriber)—This method will be
invoked for each event for all subscribers that registered themselves for the
events classifier.

 mapSize: Int—This returns the expected number of the different classifiers.
This is used for the initial size of an internal data structure.

We’ll use “is multiple book order” as a classifier. And this has two possible values;
therefore, we’ll use the value 2 for the mapSize:

import akka.event.{LookupClassification, EventBus}

class OrderMessageBus extends EventBus with LookupClassification {
type Event = Order
type Classifier = Boolean

def mapSize = 2

protected def classify(event: StateEventBus#Event) = {
event.number > 1

}
}

We mentioned that the LookupClassification must be able to get a classifier
from our event. This is done using the classify method. In our case we just return
the result of the check event.number > 1. All we need to do now is to define the

Sets
apSize

to 2

Returns true when
number is greater
than 1 and otherwise 
false, which is used 
as classifier
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subscriber; for this we use the ActorEventBus trait. This is probably the trait that will
be used most of the time in an Akka message system, because this trait defines that
the subscriber is an ActorRef. It also implements the compareSubscribers method
needed by the LookupClassification. The only method we still need to implement
before we’re done is the publish method. The complete implementation is shown in
the following listing.

import akka.event.ActorEventBus
import akka.event.{ LookupClassification, EventBus }

class OrderMessageBus extends EventBus
with LookupClassification
with ActorEventBus {

type Event = Order
type Classifier = Boolean
def mapSize = 2

protected def classify(event: OrderMessageBus#Event) = {
event.number > 1

}

protected def publish(event: OrderMessageBus#Event,
subscriber: OrderMessageBus#Subscriber): Unit = {

subscriber ! event
}

}

We’re now finished implementing our own EventBus that can be used to subscribe to
and publish messages. In listing 10.4 you see an example of how this EventBus can be
used.

val bus = new OrderMessageBus

val singleBooks = TestProbe()
bus.subscribe(singleBooks.ref, false)
val multiBooks = TestProbe()
bus.subscribe(multiBooks.ref, true)

val msg = new Order("me", "Akka in Action", 1)
bus.publish(msg)
singleBooks.expectMsg(msg)
multiBooks.expectNoMsg(3 seconds)

val msg2 = new Order("me", "Akka in Action", 3)
bus.publish(msg2)
singleBooks.expectNoMsg(3 seconds)
multiBooks.expectMsg(msg2)

Listing 10.3 Complete implementation of the OrderMessageBus

Listing 10.4 Using the OrderMessageBus

Extends our class 
with the two support 
traits of Akka

Defines entities
Implements 
classify 
method

Implements publis
method by sending
the event to the 
subscriber

Creates OrderMessageBus

Subscribes singleBooks 
to the single book 
classifier (false)

Subscribes multiBooks 
to the multibook 
classifier (true)

Publishes
an order
with one

copy
Only singleBooks 
receives the message

When publishing an order with 
multiple copies, only multiBooks 
receives the message
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As you can see, our custom EventBus works exactly as the EventStream, except that we
use a different classifier. Akka has several other traits that can be used. More details
about these traits can be found in the Akka documentation.

 As you’ve seen in this section, Akka has support for publish-subscribe channels. In
most cases the EventStream will be sufficient when you need a publish-subscribe chan-
nel. But when you need more specialized channels, it’s possible to create your own by
implementing the EventBus interface. This is a generalized interface that can be
implemented in any way you need. To support the implementation of an custom
EventBus, Akka has several traits that can be used to implement a part of the Event-
Bus interface.

 In this section you’ve seen the two basic types of channels. In the next section we’ll
take a look at some special channels. 

10.2 Specialized channels
In this section we’ll take a look at two special channels. First we’ll discuss the Dead-
Letter channel. Only failed message are sent to this channel. Listening on this chan-
nel can help you find problems in your system. 

 The second channel we’ll discuss is a guaranteed-delivery channel, which makes it
possible to retry sending messages until they’ve been acknowledged.

10.2.1 Dead letter

The enterprise integration patterns describe a dead-letter channel or dead-letter queue. This
is a channel that contain all the messages that can’t be processed or delivered. This
channel is also called a dead-message queue. This is a normal channel, but you don’t nor-
mally send any messages using this channel. Only when there are problems with the
message, for example, if it can’t be delivered, will the message be placed on this chan-
nel. This is shown in figure 10.9.

Terminated
actor

Dead-letter
queue

The message is sent
automatically to the
dead-letter queue
instead of the actor.

The message can't
be delivered to
terminated actor.

Sender X

Figure 10.9 Dead-letter queue
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By monitoring this channel, you know which messages aren’t processed and can take
corrective actions. Especially when testing your system, this queue can be helpful for
figuring out why some messages aren’t processed. When creating a system that isn’t
allowed to drop any messages, this queue can be used to re-insert the messages when
the initial problems are solved.

 Akka uses the EventStream to implement the dead-letter queue so that only the
actors that are interested in the failed messages receive them. When a message is
queued in a mailbox of an actor that terminates, or is sent after the termination, the
message is sent to the EventStream of the ActorSystem. The message is wrapped into
a DeadLetter object. This Object contains the original message, the sender of the mes-
sage, and the intended receiver. This way the dead-letter queue is integrated in the
EventStream. To get these dead-letter messages, you only need to subscribe your actor
to the EventStream with the DeadLetter class as the classifier. This is the same as
described in the previous section, only here we use another message type: DeadLetter:

val deadletterMonitor: ActorRef = ...

system.eventStream.subscribe(
deadLetterMonitor,
classOf[DeadLetter]

)

After this subscribe, the deadLetterMonitor will get all the messages that fail to be
delivered. Let’s look at a small example. We’ll create a simple Echo actor that sends
messages it receives back to the sender, and after starting the actor we’ll send it a
PoisonPill directly. This will result in the actor being terminated. The following list-
ing shows that we receive the message when we subscribed to the DeadLetter queue.  

val deadLetterMonitor = TestProbe()

system.eventStream.subscribe(
deadLetterMonitor.ref,
classOf[DeadLetter]

     )

val actor = system.actorOf(Props[EchoActor], "echo")
actor ! PoisonPill
val msg = new Order("me", "Akka in Action", 1)
actor ! msg

val dead = deadLetterMonitor.expectMsgType[DeadLetter]
dead.message must be(msg)
dead.sender must be(testActor)
dead.recipient must be(actor)

Messages sent to a terminated actor can’t be processed anymore, and the ActorRef of
this actor shouldn’t be used anymore. When messages are sent to a terminated actor,
these message will be sent to the DeadLetter queue. We can see that our message was
indeed received by our deadLetterMonitor.

Listing 10.5 Catching messages that can’t be delivered

The ... indicates some ActorRef

Subscribes to DeadLetter channel

rminates
ho Actor

Sends message to 
terminated Actor

Expects a DeadLetter message in
the DeadLetterMonitor
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 Another use of the DeadLetter queue is when processing fails. This is an actor-
specific decision. An actor can decide that a received message couldn’t be processed,
and that it doesn’t know what to do with it. In this situation the message can be sent to
the dead-letter queue. The ActorSystem has a reference to the DeadLetter actor. When
a messages needs to be sent to the dead-letter queue, you can send it to this actor:

system.deadLetters ! msg

When a message is sent to DeadLetter, it’s wrapped in a DeadLetter object. But the
initial receiver becomes the DeadLetter actor. In an autocorrecting system, informa-
tion is lost when sending the message this way to the dead-letter queue. For example,
the original sender is lost; the only information you get is the actor that sent the mes-
sage to the queue. This can be sufficient, but when you also need to know the original
sender, it’s possible to send a DeadLetter object instead of the original message.
When this message type is received, the wrapping is skipped and the message sent is
put on the queue without any modification. In the next listing, we send a DeadLetter
object and see that this message isn’t modified.

val deadLetterMonitor = TestProbe()
val actor = system.actorOf(Props[EchoActor], "echo")

system.eventStream.subscribe(
deadLetterMonitor.ref,
classOf[DeadLetter]

     )

val msg = new Order("me", "Akka in Action", 1)
val dead = DeadLetter(msg, testActor, actor)
system.deadLetters ! dead

deadLetterMonitor.expectMsg(dead)

system.stop(actor)

As shown in the example, the DeadLetter message is received unchanged. This makes
it possible to handle all messages that aren’t processed or couldn’t be delivered in the
same way. What to do with the messages is completely dependent on the system you
create. Sometimes it isn’t even important to know that messages were dropped, but
when creating a highly robust system, you may want to resend the message again to
the recipient like it was sent initially.

 In this section we described how to catch messages that failed to be processed. In
the next section, we’ll describe another specialized channel: the guaranteed-delivery
channel.

Listing 10.6 Sending DeadLetter messages

Creates Actor
reference that 
will be used as 
initial recipient

Creates DeadLetter
message and sends it 
to DeadLetter Actor

DeadLetter message is
received in monitor
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10.2.2 Guaranteed delivery

The guaranteed-delivery channel is a point-to-point channel with the guarantee that
the message will be delivered to the receiver. This means that the delivery is done even
when all kinds of errors occur. The channel must have various mechanisms and
checks to be able to guarantee delivery; for example, the message has to be saved on
disk in case the process crashes. Don’t you always need the guaranteed-delivery chan-
nel when creating a system? How can you create a reliable system when it isn’t guaran-
teed that messages are delivered? Yes, you need some guaranties, but you don’t always
need the maximum available guaranty.

 Actually, implementations of a guaranteed-delivery channel aren’t able to guaran-
tee the delivery in all situations, for example, when a message is sent from one loca-
tion and that location burns down. In that situation no possible solution can be found
to send the message anywhere, because it is lost in the fire. The question you need to
ask is this: Is the level of guaranty sufficient for my purpose?

 When creating a system, you need to know what guarantees the channel provides
and if that’s sufficient for your system. Let’s look at the guarantees Akka provides.

 The general rule of message delivery is that messages are delivered at most once.
This means that Akka promises that a message is delivered once or it’s not delivered,
which means that the message is lost. This doesn’t look good when building a reliable
system. Why doesn’t Akka implement fully guaranteed delivery? The first reason is
that fully guaranteed delivery poses several challenges, making it complex, and a lot of
overhead is involved in sending just one message. This results in a performance pen-
alty even when you don’t need that level of guaranteed delivery.

 Secondly, nobody needs just reliable messaging. You want to know if the request
was successfully processed, which is done by receiving a business-level acknowledge-
ment message. This isn’t something Akka could deduce, because this is system depen-
dent. The last reason why Akka doesn’t implement fully guaranteed delivery is
because it’s always possible to add stricter guarantees on top of basic ones, when
needed. The inverse is not possible: you can’t make a strict system less strict without
changing it at its core.

 Akka can’t guarantee exactly once message delivery in all cases, and in fact, no sys-
tem can. But this is the basic rule for delivery of messages to local and remote actors.
When we look at these two situations separately, we see that Akka isn’t as bad as it
sounds.

 Sending local messages will not likely fail, because it’s like a normal method call.
This fails only when there are catastrophic VM errors, like StackOverflowError, Out-
OfMemoryError, or a memory access violation. In all of these cases, the actor was likely
not in a position to process the message anyway. So the guarantees for sending a mes-
sage to a local actor are pretty high.

 Losing messages becomes an issue when you’re using remote actors. With remote
actors, it’s a lot more likely for a message delivery failure to occur, especially when an
intermediate unreliable network is involved. If someone unplugs an Ethernet cable,
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or a power failure shuts down a router, messages will be lost. To solve this problem, the
ReliableProxy was created. This makes sending messages using remote actors almost
as reliable as sending local messages. The only consideration is that critical errors in
the JVMs of both the sender and receiver can negatively influence the reliability of this
channel. 

 How does ReliableProxy work? When ReliableProxy starts, it creates a tunnel
between the two ActorSystems on the different nodes.

 As shown in figure 10.10, this tunnel has an entry, ReliableProxy, and an exit,
Egress. Egress is an actor that’s started by ReliableProxy, and both actors imple-
ment checks and resend functionality to be able to keep track of which messages are
delivered to the remote receiver. When delivery fails, ReliableProxy will retransmit
messages until it succeeds. When Egress receives a message, it checks if it was already
received and sends it to the actual receiver. But what happens when the target actor is
terminated? When this happens it’s impossible to deliver the message. This is solved
by ReliableProxy terminating also when the target terminates. This way the system
behaves the same way as using a direct reference. On the receiver side, the difference
between sending messages directly or using the proxy isn’t visible. One restriction of
using ReliableProxy is that the tunnel is only one-way and for one receiver. This
means that when the receiver replies to the sender, the tunnel is not used. When the
reply has to be also reliable, then another tunnel has to be made between the receiver
and the sender.

Now let’s see this in action. Creating a reliable proxy is simple—all we need is a refer-
ence to the remote target actor:

import akka.contrib.pattern.ReliableProxy

val pathToEcho = "akka.tcp://actorSystem@127.0.0.1:2553/user/echo"

The ReliableProxy creates a tunnel
between the proxy and the Egress,
which is used to send the message
to the other node.

Sender

ReliableProxy

Client node

Echo
service

Egress

Server node

Messages are sent
using the proxy.

Figure 10.10 ReliableProxy
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val proxy = system.actorOf(
Props(new ReliableProxy(pathToEcho, 500.millis)), "proxy")

In the example we create a proxy using the echo reference. We also add a retryAfter
value of 500 milliseconds. When a message fails, it’s retried after 500 milliseconds.
This is all we have to do to use ReliableProxy. To show the result, we create a multi-
node test with two nodes, the client and server nodes. On the server node, we create
an EchoActor as receiver, and on the client node, we run our actual test. Just as in
chapter 6, we need the multi-node configuration and the STMultiNodeSpec for our
ReliableProxySample test class.

import akka.remote.testkit.MultiNodeSpecCallbacks
import akka.remote.testkit.MultiNodeConfig
import akka.remote.testkit.MultiNodeSpec

trait STMultiNodeSpec
extends MultiNodeSpecCallbacks
with WordSpecLike
with MustMatchers
with BeforeAndAfterAll {

override def beforeAll() = multiNodeSpecBeforeAll()

override def afterAll() = multiNodeSpecAfterAll()
}

object ReliableProxySampleConfig extends MultiNodeConfig {
val client = role("Client")
val server = role("Server")
testTransport(on = true)

}

class ReliableProxySampleSpecMultiJvmNode1 extends ReliableProxySample
class ReliableProxySampleSpecMultiJvmNode2 extends ReliableProxySample

Because we want to demonstrate that the message is sent even when the network is
down for a while, we need to turn on the testTransport. As we mentioned, we need
to run an EchoService on the server node:

system.actorOf(
  Props(new Actor {
 def receive = {

case msg:AnyRef => {
sender ! msg

}
}

}),
  "echo"
)

Listing 10.7 Multi-node spec and multi-node configuration

Defines 
client node

Defines server node

We want to simulate transport failures



230 CHAPTER 10 Message channels
This service echoes every message it receives back to the sender. When this is running,
we can do the actual test on the client node. Creating the full environment where we
can do our test is shown next.

import scala.concurrent.duration._
import concurrent.Await
import akka.contrib.pattern.ReliableProxy
import akka.remote.testconductor.Direction

class ReliableProxySample
extends MultiNodeSpec(ReliableProxySampleConfig)
with STMultiNodeSpec
with ImplicitSender {

import ReliableProxySampleConfig._

def initialParticipants = roles.size

"A MultiNodeSample" must {

"wait for all nodes to enter a barrier" in {
enterBarrier("startup")

}

"send to and receive from a remote node" in {
runOn(client) {

enterBarrier("deployed")
val pathToEcho = node(server) / "user" / "echo"
val echo = system.actorSelection(pathToEcho)
val proxy = system.actorOf(

Props(new ReliableProxy(pathToEcho, 500.millis)), "proxy")

... Do the actual test
}

runOn(server) {
system.actorOf(Props(new Actor {

def receive = {
case msg:AnyRef => {

sender ! msg
}

}
}), "echo")
enterBarrier("deployed")

}

enterBarrier("finished")
}

}
}

Now that we have our complete test environment, we can implement the actual test.
In listing 10.9 we show that the message that’s sent while there’s no communication
between the nodes is only processed when we use the proxy. When using the direct
actor reference, the message is lost.

Listing 10.8 Setup of the environment for the ReliableProxySample test

Creates direct 
reference to 
echo service

Creates
ReliableProxy

tunnel

Implements 
echo service
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proxy ! "message1"
expectMsg("message1")
Await.ready(

testConductor.blackhole( client, server, Direction.Both),
1 second

)

echo ! "DirectMessage"
proxy ! "ProxyMessage"
expectNoMsg(3 seconds)

Await.ready(
testConductor.passThrough( client, server, Direction.Both),
1 second

)

expectMsg("ProxyMessage")
echo ! "DirectMessage2"
expectMsg("DirectMessage2")

Using ReliableProxy gives you better guarantees for remote actors. As long as there are
no critical VM errors in the JVM runtime on any nodes of the system, and the network
eventually functions again, the message is delivered one time to the destination actor.

 In this chapter you’ve seen that Akka doesn’t have a guaranteed-delivery channel,
but there’s a level of guaranty that Akka can give. For local actors, the delivery is guar-
anteed as long as there are no critical VM errors. For remote actors, at-most-once
delivery is guaranteed. But this can be improved by using ReliableProxy when send-
ing a message across JVM boundaries. 

 These guarantees of delivery are enough for most systems, but when a system
needs stronger guarantees, you can create a mechanism on top of the Akka delivery
system to get those guarantees. This kind of mechanism isn’t implemented by Akka
because this is often system-specific and requires a performance hit that isn’t neces-
sary in most cases. There are always scenarios in which you cannot guarantee delivery
or in which you need to specify guarantees on an application level. 

10.3 Summary
You’ve seen that there are two types of messaging channels: point-to-point, which
sends a message to one receiver, and publish-subscribe, which can send a message to
multiple receivers. A receiver can subscribe itself to the channel, which makes receiv-
ers dynamic. At any time the number of subscribers can vary. Akka has the Event-
Stream, which is the default implementation of a publish-subscribe channel and uses
the class types of the messages as classifiers. There are several traits that you can use to
make your own publish-subscribe channel when the EventStream is insufficient.

Listing 10.9 Implementation of ReliableProxySample

Tests proxy under
normal conditions

Turns off 
communication
between the two 
nodes

Sends message using both references

Restores 
communication

Message sent using the proxy is received

Testing messages sent directly to 
echo actor are received when
communication is restored
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 You’ve also seen that Akka has a DeadLetter channel, which uses the EventStream.
This channel contains all the messages that couldn’t be delivered to the requested
actor, and can be used when debugging your system, to handle cases where messages
are lost.

 In the last section, we took a closer look at Akka’s delivery guarantees, and saw that
there is a difference between messages sent to local actors and remote actors. When
you need stronger delivery guarantees, you can use ReliableProxy. But be careful:
this is only one-way. When the receiver sends a message back to the sender, Reliable-
Proxy isn’t used.

 In this chapter you’ve seen how you can send messages between actors. When you
are building your application, it’s possible that an actor may need state. Actors are
often used to implement state machines, for instance using the become/unbecome
mechanism shown in chapter 9. In the next chapter you’ll see how to more formally
implement finite state machines with actors. We’ll also look at how state can be shared
with another tool in the toolkit: agents.



Finite-state machines
and agents
Previous chapters have advanced many reasons for using stateless components
when implementing a system to avoid all kinds of problems, like restoring state
after an error. But in most cases, there are components within a system that need
state to be able to provide the required functionality. You’ve already seen two possi-
ble ways to keep state in an actor. The first is to use class variables, which we showed
in our aggregator example (section 8.4.2). This is the simplest way. The second
solution is to use the become/unbecome functionality, which we used in our state-
dependent router (section 9.3.2). These two mechanisms are the more basic ways
to implement state. But in some situations, these solutions are insufficient. 

 In this chapter we’ll show you two other solutions for dealing with state. We’ll start
with how to design dynamic behavior, depending on the actor’s state, using finite-
state machine modeling. We’ll create an example model that will be implemented in

In this chapter
 Implementing finite-state machines

 Using timers within finite-state machines

 Sharing state with agents
233
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the second section, where we’ll show that Akka has support for easily implementing a
finite-state machine. In the last section, we’ll show how you can share state between dif-
ferent threads by using Akka agents. Using these agents eliminates the need to use lock-
ing mechanisms, because the state of the agents can be changed only asynchronously
using events; but the state can be read synchronously, without any significant perfor-
mance penalty.

11.1 Using a finite-state machine
A finite-state machine (FSM), also called a state machine, is a common language-indepen-
dent modeling technique. FSMs can model a number of problems; common applica-
tions are communication protocols, language parsing, and even business application
problems. What they encourage is isolation of state; you’ll see our actors called on
mostly to transition things from one state to another, in atomic operations. Actors
receive one message at a time, so no locks will be needed. For those who haven’t
encountered them, we’ll start with a short description. After this introduction we’ll
move on to an FSM example, which we’ll implement with Akka in the next section. 

11.1.1 Quick introduction to finite-state machines

The simplest example of a finite-state machine is a device whose operation proceeds
through several states, transitioning from one to the next as certain events occur. The
washing machine is usually the classic example used to explain FSMs: there’s a process
that requires initiation steps, and then once the machine takes over, it progresses
through a sequence of specific states (filling the tub, agitation, draining, spinning).
The transitions in the washing machine are all triggered by a program that wants a
certain amount of time for each stage based on the user’s desires (light/heavy loads,
prewash, and so forth). The machine is only ever in one state at a time. The purchase
order process mentioned earlier is a similar example from business: there’s an estab-
lished protocol for two parties to define an exchange of goods or services. With the
example of the business documents, you can see that for each stage of the FSM there’s
a state representation (a purchase order, a quote, or a request for a quote). Modeling
software this way allows you to deal with state in an atomic, isolated way, which is a
core principle of the actor model.

 An FSM is called a machine because it can only be in one of a finite number of
states. Changing from one state to another is triggered by an event or condition. This
state change is called a transition. A particular FSM is defined by a number of states and
the different triggers for all the possible transitions. There are a lot of different ways
to describe the FSM, but most of the time it’s described with some kind of a diagram.
Figure 11.1 shows a simple diagram to illustrate how we describe the FSM, because
there are a number of different notations when creating an FSM diagram.

 In this example we show an FSM with two states, State1 and State2. When instan-
tiating the machine, we start in State1, transitioning from the initial state, which is
shown in the diagram by the black dot. State1 has two different actions: an entry action
and an exit action . (Although we won’t use the exit action in this chapter, we show it so
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you’ll understand how the model works.) Just as the name says, the first action is exe-
cuted when the machine sets the state to State1, and the second when the machine
changes from State1 to another state. In this example we have only two states, so this
action is only executed when it goes to State2. In the next examples, we’ll only use the
entry actions, because this is a simple FSM. Exit actions can do some cleaning or restore
some state, so they don’t embody part of the logic of the machine. It can be seen more
like a finally clause in a try-catch statement, which must always be executed when
exiting the try block. 

 Changing state, transition , can only happen when the machine is triggered by an
event. In the diagram this transition is shown by the arrow between State1 and
State2. The arrow indicates the event and optionally a state condition (for instance,
we might only transition to the spin cycle when the tank is empty). The events in an
Akka FSM are the messages the actor receives. That’s it for the introduction; now let’s
see how an FSM can help you implement a solution to a real problem. 

11.1.2 Creating an FSM model

The example we’ll use to show how you can use FSM support in Akka is a bookstore’s
inventory system. The inventory service gets requests for specific books and sends a
reply. When the book is in inventory, the order system gets a reply that a book has
been reserved. But it’s possible that there might not be any copies of that book and
that the inventory will have to ask the publisher for more books before it can service
the order. These messages are shown in figure 11.2.

 To keep the example simple, we have only one type of book in our inventory and we
support ordering only one book at the time. When an order is received, the inventory
checks if it has any copies of that book. When there are copies, the reply is created stat-
ing that the book is reserved. But when there aren’t any copies of the requested book
left, the processing has to wait and request more books from the publisher. The

State 1 Received message
S(state condition)

E: Action1
X: Action2

Initial state State 2

E: Action

The transition condition: In this case it contains two
parts. The first is the received message, or event. The
second is optional and contains a state condition.

The entry action: This
action is executed when
entering this state.

The exit action: This
action is executed when
leaving this state.

Figure 11.1 Diagram example of a finite-state machine
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publisher can respond by supplying more books or with a sold out message. During the
wait for more books, other orders can be received.

 To describe the situation, we can use an FSM, because the inventory can be in dif-
ferent states and expect different messages before it can proceed to the next step. Fig-
ure 11.3 shows our problem using an FSM. 

 One thing the diagram doesn’t depict is the fact that we can still receive Book-
Requests, which will be added to the PendingRequest list while in our wait state. This
is important because it represents the preservation of needed concurrency. Note that
when we get back to the wait state, it’s possible that there may be pending requests.

Message

Order

Inventory
Message

Reply

Message

RequestBooks

Message

SupplyBooks

Order system Publisher

Figure 11.2 The inventory example

WaitForRequests

BookSupplySoldout

BookRequest | PendingRequests

S(nrBooksInStore>0)

BookSupply

Done

Done

E: Check for pending
     requests

ProcessRequest

E: Send reply

Initial state

State

Entry actionE:

Transition

WaitForPublisher

E: Send request to
     publisher

BookRequest |
PendingRequests

SoldOut

E: Check for pending
     requests

ProcessSoldOut

E: Send error reply

BookRequest | PendingRequests

S(nrBooksInStore == 0)

Figure 11.3 FSM of the inventory example
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The entry action checks this, and if there are, triggers one or both transitions,
depending on the number of books in the store. When the books are sold out, the
state becomes Process SoldOut. This state sends an error reply to the order requester
and triggers the transition to the state SoldOut. FSMs give you the ability to describe
complex behavior in a clear, concise manner.

 Now that we’ve described our solution using an FSM, let’s see how Akka can help to
implement our FSM model. 

11.2 Implementation of an FSM model
In section 9.3.2 you saw the become/unbecome mechanism. This can help in imple-
menting an FSM, just as we did in the state base router: you can map behaviors to
states. It’s possible to use the become/unbecome mechanism for small and simple
FSM models. But when there are multiple transitions to one state, the entry action has
to be implemented in different become/receive methods, which can be hard to main-
tain for more-complex FSMs. Therefore, Akka provides an FSM trait, which you can use
when implementing an FSM model. This results in clearer and more maintainable
code. In this section we’ll explain how to use this FSM trait. We’ll start by implement-
ing the transitions of our inventory FSM, and in the next section we’ll implement the
entry actions to complete the implementation of the inventory FSM. At this point,
we’ll implement the designed FSM, but an Akka FSM also has support for using timers
within the FSM trait, which is described next. We’ll end with the termination of the
Akka FSM trait, which enables you to do some cleanup when needed.

11.2.1 Implementing transitions

To start implementing an FSM model using Akka, we’ll create an Actor with the FSM
trait. (The FSM trait may only be mixed into an actor.) Akka has chosen this approach
instead of extending Actor to make it obvious that an actor is actually created. When
implementing an FSM, we need to take several steps before we have a complete FSM
actor. The two biggest steps are defining the state and then the transitions. So let’s get
started creating our inventory FSM, by making an actor with the FSM trait mixed in:

import akka.actor.{Actor, FSM}

class Inventory() extends Actor with FSM[State, StateData] {
...
}

The FSM trait takes two type parameters:

 State—The super type of all state names
 StateData—The type of the state data that’s tracked by the FSM

The super type is usually a sealed trait with case objects extending it, because it
doesn’t make sense to create extra states without creating transitions to those states.
Let’s start to define our states. We’ll do that in the next section. 
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DEFINING THE STATE

The state definition process starts with a single trait (appropriately named State),
with cases for each of the specific states our object can be in (note: this helps make the
FSM code self-documenting):

sealed trait State
case object WaitForRequests extends State
case object ProcessRequest extends State
case object WaitForPublisher extends State
case object SoldOut extends State
case object ProcessSoldOut extends State

The defined states represent the states shown in figure 11.3. Next we have to create
our state data:

case class StateData(nrBooksInStore:Int,
pendingRequests:Seq[BookRequest])

This is the data that we use when we need a state condition to decide which transition
is fired, so it contains all the pending requests and the number of books in inventory.
In our case we have one class, which contains the StateData (which is used in all
states), but this isn’t mandatory. It’s possible to use a trait for the StateData as well,
and create different StateData classes that extend the basic state trait. The first step
in implementing the FSM trait is to define the initial state and the initial StateData.
This is done using the startWith method:

class Inventory() extends Actor with FSM[State, StateData] {
startWith(WaitForRequests, new StateData(0,Seq()))

...
}

Here we define that our FSM starts in the state WaitForRequests, and StateData is
empty. Next we have to implement all the different state transitions. These state tran-
sitions only occur when there’s an event. In the FSM trait, we define for each state
which events we expect and what the next state will be. By defining the next state, we
designate a transition. So we start with the events of the state WaitForRequests. In
the next section, we’ll define the actual transitions and see how we go from plan to
working code. 

DEFINING THE TRANSITIONS

Let’s look at figure 11.4, where we have our state and the two possible transitions. You
see that we can expect two possible events: the BookRequest or the PendingRequests
message. Depending on the state nrBooksInStore, the state changes to Process-
Request or WaitForPublisher, which are the transitions. We need to implement these
transitions in our inventory FSM. We do that with the when declaration.
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vent 
est 
class Inventory() extends Actor with FSM[State, StateData] {

startWith(WaitForRequests, new StateData(0,Seq()))

when(WaitForRequests) {

case Event(request:BookRequest, data:StateData) => {

....

}

case Event(PendingRequests, data:StateData) => {

...

}

}

...

}

We start with the when declaration for the WaitForRequests state. This is a partial func-
tion to handle all the possible events in the specified state. In our case we can have two
different events. When we’re in the WaitForRequests state, a new BookRequest or a
PendingRequests message can arrive. Next we have to implement the transition.

 Either we’ll remain in the same state or we’ll transition to another one. This can be
indicated by the following two methods:

goto(WaitForPublisher)

stay

Listing 11.1 Defining transactions in the FSM trait

WaitForRequests

BookRequest | PendingRequests

S(nrBooksInStore == 0)

BookRequest | PendingRequests

S(nrBooksInStore>0)

E: Check for pending
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ProcessRequest

E: Send reply
Entry actionE:

Transition

WaitForPublisher

E: Send request to
     publisher
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Figure 11.4 State transitions of the WaitForRequests state

Declares transitions 
for state 
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when a PendingRequests 
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Declares that next state is WaitForPublisher
Declares that state doesn’t change
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Another responsibility of this transition declaration is updating the StateData. For
example, when we receive a new BookRequest event, we need to store the request in our
PendingRequests. This is done with the using declaration. When we implement the
complete transition declaration for the WaitForRequests state, we get the following.

when(WaitForRequests) {

case Event(request:BookRequest, data:StateData) => {

val newStateData = data.copy(

pendingRequests = data.pendingRequests :+ request)

if (newStateData.nrBooksInStore > 0) {

goto(ProcessRequest) using newStateData

} else {

goto(WaitForPublisher) using newStateData

}

}

case Event(PendingRequests, data:StateData) => {

if (data.pendingRequests.isEmpty) {

stay

} else if(data.nrBooksInStore > 0) {

goto(ProcessRequest)

} else {

goto(WaitForPublisher)

}

}

}

In this example we used stay without updating the StateData, but it’s possible to
update the state with using too, just like the goto declaration. This is all we have to do
to declare the transitions of our first state. The next step is to implement the transi-
tions for all our states. When we examine the possible events more closely, we see that
the event BookRequest in most states has the same effect: we generally want to just add
the request to our pending requests and do nothing else. For these events we can
declare whenUnhandled. This partial function is called when the state function doesn’t
handle the event. Here we can implement the default behavior when a BookRequest is
received. The same declarations can be used as in the when declaration: 

whenUnhandled {
// common code for all states
case Event(request:BookRequest, data:StateData) => {

stay using data.copy(
pendingRequests = data.pendingRequests :+ request)

}
case Event(e, s) => {

log.warning("received unhandled request {} in state {}/{}",

Listing 11.2 Implementation of the WaitForRequests transactions

Listing 11.3 Implementing default behavior using whenUnhandled

Creates new state 
by appending 
new request

Declares next 
state and updates 
StateData

Uses stay when
there aren’t any 
pending requests

Uses goto without 
updating 
StateData

Only updates 
StateData

Logs when event 
isn’t handled
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e, stateName, s)
stay

}
}

In this partial function, we can also log unhanded events, which can be helpful with
debugging this FSM implementation. Now we can implement the rest of the states.

when(WaitForPublisher) {
case Event(supply:BookSupply, data:StateData) => {

goto(ProcessRequest) using data.copy(
nrBooksInStore = supply.nrBooks)

}
case Event(BookSupplySoldOut, _) => {

goto(ProcessSoldOut)
}

}
when(ProcessRequest) {

case Event(Done, data:StateData) => {
goto(WaitForRequests) using data.copy(

nrBooksInStore = data.nrBooksInStore - 1,
pendingRequests = data.pendingRequests.tail)

}
}
when(SoldOut) {

case Event(request:BookRequest, data:StateData) => {
goto(ProcessSoldOut) using new StateData(0,Seq(request))

}
}
when(ProcessSoldOut) {

case Event(Done, data:StateData) => {
goto(SoldOut) using new StateData(0,Seq())

}
}

Now we’ve defined all our transitions for every possible state. This was the first step in
creating an Akka FSM actor. At this moment, we have an FSM that reacts to events and
changes state, but the actual functionality of the model—the entry actions—isn’t
implemented yet. This is covered in the next section. 

11.2.2 Implementing the entry actions

The actual functionality is done by the entry and exit actions, which we’ll implement
now. In our FSM model, we had defined several entry actions. Just as the transitions are
declared for each state, the actions are also implemented for each state. Figure 11.5
shows the initial state WaitForRequests again, to show the entry action we have to
implement. The discreet structure of the implementation code, as you’ll see, also lends
itself to unit testing.

Listing 11.4 Implementation of the transition of the other states 

Transition declaration
of the state 
WaitForPublisher

Transition declaration
of the state 
ProcessRequest

Transition
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of the state 
SoldOut
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of the state 
ProcessSoldOut
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ACTIONS ON TRANSITIONS

The entry action can be implemented in the onTransition declaration. It’s possible
to declare every possible transition because the transition callback is also a partial
function and takes as input the current state and the next state:

onTransition {
case WaitForRequests -> WaitForPublisher => {

...
}

}

In this example we define the action that has to be executed when the transition
occurs from WaitForRequests to WaitForPublisher. But it’s also possible to use wild-
cards. In our example we don’t care which state we’re coming from, so we use the
wildcard on the original state. When implementing the action, you would probably
need the StateData because this is called when a transition occurs; both the state
before and the state after the transition are available and can be used. The new state is
available via the variable nextStateData and the old state is available via the variable
StateData. In our example we only use the newly created state, because we have only
entry actions and our state always contains the complete state. In the next listing we
implement all the entry actions of our FSM.

class Inventory(publisher:ActorRef) extends Actor
with FSM[State, StateData] {

startWith(WaitForRequests, new StateData(0,Seq()))

Listing 11.5 Implementation of the entry actions

WaitForRequests

E: Check for pending
     requests

ProcessRequest

E: Send reply
Entry actionE:

Transition
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E: Send request to
     publisher

State

The entry action, which
has to be executed when
entering this state

Figure 11.5 The entry action of the WaitForRequests state
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when...

onTransition {
case _ -> WaitForRequests => {

if (!nextStateData.pendingRequests.isEmpty) {
// go to next state
self ! PendingRequests

}
}
case _ -> WaitForPublisher => {

publisher ! PublisherRequest
}
case _ -> ProcessRequest => {

val request = nextStateData.pendingRequests.head
reserveId += 1
request.target !

new BookReply(request.context, Right(reserveId))
self ! Done

}
case _ -> ProcessSoldOut => {

nextStateData.pendingRequests.foreach(request => {
request.target !

new BookReply(request.context, Left("SoldOut"))
})
self ! Done

}
}

}

If you look closely, you’ll see that we don’t have a declaration for the state SoldOut,
and that’s because that state doesn’t have an entry action. Now that we’ve defined our
complete FSM, we need to call one important method, initialize. This method is
needed to initialize and start up the FSM.  

class Inventory(publisher:ActorRef) extends Actor
with FSM[State, StateData] {

startWith(WaitForRequests, new StateData(0,Seq()))

when...

onTransition...

initialize
}

The FSM is ready; all we need is a mockup implementation for the publisher, and we
can test our FSM, which is shown in the next section. 

Listing 11.6 Initializing the FSM
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TESTING THE FSM
The following example shows the mockup implementation of the Publisher actor.
The Publisher will supply a predefined number of books. When all the books are
gone, the BookSupplySoldOut reply is sent.

class Publisher(totalNrBooks: Int, nrBooksPerRequest: Int)
extends Actor {

var nrLeft = totalNrBooks
def receive = {

case PublisherRequest => {
if (nrLeft == 0)

sender() ! BookSupplySoldOut
else {

val supply = min(nrBooksPerRequest, nrLeft)
nrLeft -= supply
sender() ! new BookSupply(supply)

}
}

}
}

Now we’re ready to test the FSM. We can test the FSM by sending messages and check-
ing if we get the expected result. But while debugging this component, there’s addi-
tional available information. Akka’s FSM has another helpful feature: it’s possible to
subscribe to the state changes of the FSM. This can prove useful in programming the
application functionality, but it can also be helpful when testing. It will allow you to
closely check if all the expected states were encountered, and if all transitions occur at
the correct time. To subscribe to the transition event, all you have to do is to send a
SubscribeTransitionCallBack message to the FSM. In our test, we want to collect
these transition events within a test probe.   

val publisher = system.actorOf(Props(new Publisher(2,2)))

val inventory = system.actorOf(Props(new Inventory(publisher)))
val stateProbe = TestProbe()
inventory ! new SubscribeTransitionCallBack(stateProbe.ref)
stateProbe.expectMsg(new CurrentState(inventory, WaitForRequests))

Listing 11.7 An implementation of the Publisher actor

Listing 11.8 Subscribing to get the transition events
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When subscribing to a request, the FSM responds with a CurrentState message. Our
FSM starts in the WaitForRequests just as we expected. Now that we’re subscribed to
the transitions, we can send a BookRequest and see what happens:

inventory ! new BookRequest("context1", replyProbe.ref)
stateProbe.expectMsg(

new Transition(inventory, WaitForRequests, WaitForPublisher))
stateProbe.expectMsg(

new Transition(inventory, WaitForPublisher, ProcessRequest))
stateProbe.expectMsg(

new Transition(inventory, ProcessRequest, WaitForRequests))
replyProbe.expectMsg(new BookReply("context1", Right(1)))

As you can see, the FSM goes through different states before sending a reply. First, it
has to get books from the publisher. The next step is to actually process the request.
Finally, the state returns into the WaitForRequests state. But we know that the inven-
tory has two copies, so when we send another request, the FSM goes through different
states than the first time:

inventory ! new BookRequest("context2", replyProbe.ref)
stateProbe.expectMsg(

new Transition(inventory, WaitForRequests, ProcessRequest))
stateProbe.expectMsg(

new Transition(inventory, ProcessRequest, WaitForRequests))
replyProbe.expectMsg(new BookReply("context2", Right(2)))

Because there was a book available, it skipped the WaitForPublisher state. At this point
all the books have been sold, so what happens when we send another BookRequest?

inventory ! new BookRequest("context3", replyProbe.ref)
stateProbe.expectMsg(

new Transition(inventory, WaitForRequests, WaitForPublisher))
stateProbe.expectMsg(

new Transition(inventory, WaitForPublisher, ProcessSoldOut))
replyProbe.expectMsg(

new BookReply("context3", Left("SoldOut")))
stateProbe.expectMsg(

new Transition(inventory, ProcessSoldOut, SoldOut))

Now we get the SoldOut message, just as we designed. This is basically the functional-
ity of the FSM, but a lot of times FSM models use timers to generate events and trigger
transitions. Akka also supports timers within its FSM trait. 

Sending this message 
should trigger state 
changes.

Inventory actor will transition through three 
states to handle our preliminary book request

Finally, we’ll 
get our reply.

This time 
through, just 
two states, 
then a reply, 
as expected

Each test 
requires 
merely that we 
send the same 
message.

Different outcome 
this time: we’re 
sold out.
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11.2.3 Timers within FSM

As we mentioned earlier, an FSM can model many problems, and a lot of solutions for
these problems depend on timers, such as detecting an idle connection or a failure
because the reply isn’t received within a specified time. To demonstrate the use of tim-
ers, we’ll change our FSM a little. When it’s in the state WaitingForPublisher, we
don’t wait forever for the publisher to reply. If the publisher fails to respond, we want
to send the request again. Figure 11.6 shows the changed FSM.

The only change is that a timer is set as part of the entry action, and when this timer
expires, the state changes to the WaitForRequests state. When this happens the Wait-
ForRequests checks if there are PendingRequests (and there must be; otherwise the
FSM wouldn’t have been in the WaitForPublisher state in the first place). And
because there are PendingRequests, the FSM goes to the WaitForPublisher state
again, which triggers the entry action again, and a message is sent to the publisher.

 The changes we need to make here are minor. First, we have to set the timeout.
This can be done by setting stateTimeout when declaring the state transitions of the

WaitForRequests

BookSupplySoldout

BookRequest | PendingRequests

S(nrBooksInStore>0)
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Done
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E: Send reply

Initial state

State

Entry actionE:
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E: Send error reply

BookRequest | PendingRequests

S(nrBooksInStore == 0)

Figure 11.6 FSM using timers
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WaitForPublisher state. The second change is to define the transition when the
timer expires. The changed when declaration becomes this:

when(WaitForPublisher, stateTimeout = 5 seconds) {
case Event(supply:BookSupply, data:StateData) => {

goto(ProcessRequest) using data.copy(
nrBooksInStore = supply.nrBooks)

}
case Event(BookSupplySoldOut, _) => {

goto(ProcessSoldOut)
}
case Event(StateTimeout,_) => goto(WaitForRequests)

}

That is all we need to do to be able to retransmit to the publisher using a timer. This
timer is canceled upon receipt of any other message while in the current state. You
can rely on the fact that the StateTimeout message won’t be processed after an inter-
vening message. Let’s see how this works by executing the following test.

val publisher = TestProbe()
val inventory = system.actorOf(

Props(new InventoryWithTimer(publisher.ref)))
val stateProbe = TestProbe()
val replyProbe = TestProbe()

inventory ! new SubscribeTransitionCallBack(stateProbe.ref)
stateProbe.expectMsg(

new CurrentState(inventory, WaitForRequests))

//start test
inventory ! new BookRequest("context1", replyProbe.ref)
stateProbe.expectMsg(

new Transition(inventory, WaitForRequests, WaitForPublisher))
publisher.expectMsg(PublisherRequest)
stateProbe.expectMsg(6 seconds,

new Transition(inventory, WaitForPublisher, WaitForRequests))
stateProbe.expectMsg(

new Transition(inventory, WaitForRequests, WaitForPublisher))

As you can see, when the publisher doesn’t respond with a reply, the state changes
after 5 seconds to the WaitForRequests state. There’s another way to set the state-
Timer. The timer can also be set by specifying the next state using the forMax method,
for example, when you want to set the stateTimer differently, coming from another
state. In the next snippet, you see an example of how you can use the forMax method:

goto(WaitForPublisher) using (newData) forMax (5 seconds)

This method will overrule the default timer setting specified in the WaitFor-
Publisherwhen declaration. With this method it’s also possible to turn off the timer by
using Duration.Inf as the value in the forMax method. 

Listing 11.9 Testing inventory with timers
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 Beside state timers, there’s also support for sending messages using timers within
FSM. The usage isn’t complex, and therefore you just need a quick summary of the
API. There are tree methods to deal with FSM timers. The first one is to create a timer:

setTimer(name: String,
msg: Any,
timeout: FiniteDuration,
repeat: Boolean)

All the timers are referenced with their name. With this method you create a timer
and define the name, the message to send when the timer expires, the interval of the
timer, and if it’s a repeating timer.

 The next method is to cancel the timer:

cancelTimer(name: String)

This will cancel the timer immediately, and even when the timer has already fired and
enqueued the message, the message won’t be processed after this cancelTimer call. 

 The last method can be used to get the status of the timer at any time:

isTimerActive(name: String): Boolean

This method will return true when the timer is still active. This could be because the
timer didn’t fire yet, or because the timer has the repeat set to true. 

11.2.4 Termination of FSM

Sometimes you need to do some cleanup when an actor finishes. The FSM has a spe-
cific handler for these cases: onTermination. This handler is also a partial function
and takes a StopEvent as an argument:

StopEvent(reason: Reason, currentState: S, stateData: D)

There are three possible reasons this might be received.

 Normal—This is received when there’s a normal termination.
 Shutdown—This is received when the FSM is stopped due to a shutdown.
 Failure(cause: Any)—This is received when the termination was caused by a 

failure.

A common termination handler would look something like this:

onTermination {
case StopEvent(FSM.Normal, state, data) => // ...
case StopEvent(FSM.Shutdown, state, data) => // ...
case StopEvent(FSM.Failure(cause), state, data) => // ...

}
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An FSM can be stopped from within the FSM. This can be done using the stop
method, which takes the reason why the FSM is to be stopped. When the ActorRef is
used to stop the actor, the shutdown reason is received by the termination handler.

 The Akka FSM trait gives a complete toolkit to implement any FSM, without much
extra effort. There’s a clean separation between the actions of a state and the state
transitions. The support of timers makes it easy to detect idle state or failures. And
there’s an easy translation from the FSM model to the actual implementation.

 In all the examples about state in this book, the state is contained within one actor.
But what can you do when you need some state among multiple actors? In the next
section, we’ll look at how you can do this using agents. 

11.3 Implement shared state using agents
The best way to deal with state is to use that state only within one actor, but this isn’t
always possible. Sometimes you need to use the same state within different actors, and
as we mentioned before, using shared state requires some kind of locking, and lock-
ing is hard to do correctly. For these situations, Akka has agents, which eliminate the
need for locking. An agent guards the shared state and allows multiple threads to get
the state, and is responsible for updating it on behalf of the various threads. Because
the agent does the updating, the threads don’t need to know about locking. In this
section we’ll describe how these agents are able to guard the state and how you can
get them to share it. We’ll start by addressing what agents are, and then show their
basic usage. After that, we’ll show extra agent functionality to track state updates.

11.3.1 Simple shared state with agents

How can the state of an agent be retrieved by using synchronous calls while updates to
the state are done asynchronously? Akka accomplishes this by sending actions to the
agent for each operation, where the messaging infrastructure will preclude a race con-
dition (by assuring that only one send action at a time is running in a given
ExecutionContext). For our example we need to share the number of copies sold for
each book, so we’ll create an agent that contains this value:

case class BookStatistics(val nameBook: String, nrSold: Int)
case class StateBookStatistics(val sequence: Long,

books: Map[String, BookStatistics])

StateBookStatistics is the state object, and it contains a sequence number, which
can be used to check for changes and the actual book statistics. For each book a
BookStatistics instance is created, which is put into a map using the title as the key.
Figure 11.7 shows that to get the state object from the agent, we can use a simple
method call.

 When we need to update the number of books, we have to send the update action
to the agent. In the example the first update message increases the number of books
sold by one, and the second update increases the number by three. These actions can
be sent from different actors or threads, but are queued like messages sent to actors.
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And just as messages sent to an actor, the actions are executed one at the time, which
makes locking unnecessary.

 To make this work, there’s one important rule: all updates to the state must be
done within the agent’s execution context. This means that the state object contained
by the agent must be immutable. In our example we can’t update the content of the
map. To be able to change it, we need to send an action to the agent to change the
actual state. Let’s see how we do this in the code.

 We start by creating an agent. When creating an agent, we have to supply the initial
state; in this case, an empty instance of StateBookStatistics:

import scala.concurrent.ExecutionContext.Implicits.global
import akka.agent.Agent

val stateAgent = new Agent(new StateBookStatistics(0,Map()))

When creating the agent, we need to provide an implicit ExecutionContext that’s
used by the agent. We use the global ExecutionContext defined by the import of
scala.concurrent.ExecutionContext.Implicits.global. At this point the agent is
guarding the state. As we mentioned earlier, the state of the agent can be simply
retrieved by using synchronous calls. There are two ways to do that. The first is to
make this call:

val currentBookStatistics = stateAgent()

Or you could use the second method, the get method, which does exactly the same
thing:

val currentBookStatistics = stateAgent.get

Both methods return the current state of BookStatistics. So far nothing special, but
updating BookStatistics can only be done by asynchronously sending actions to the

Action

title
nrBooks
+= 3

Action

title
nrBooks
+= 1

Actor

Actor

Reports

Agent

GetState

State map of
BookStatisticsActor

Actions are queued to be
executed after each other.

Any actor or thread
can directly get the
current state.

Figure 11.7 Updating and retrieving state using an agent
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agent. To update the state, we use the send method of the agent; we send the new
state to the agent:

val newState = StateBookStatistics(1, Map(book -> bookStat ))
stateAgent send newState

But be careful with sending a complete, new state; this is only correct when the new
state is independent of the previous state. In our case the state depends on the previ-
ous state, because other threads may have added new numbers or even other books
before us. So we shouldn’t use the method shown. To make sure that, when updating
the state, we end up with the correct state, we invoke a function on the agent instead:

val book = "Akka in Action"
val nrSold = 1

stateAgent send( oldState => {
val bookStat = oldState.books.get(book) match {

case Some(bookState) =>
bookState.copy(nrSold = bookState.nrSold + nrSold)

case None => new BookStatistics(book, nrSold)
}
oldState.copy(oldState.sequence+1,

oldState.books + (book -> bookStat))
})

We use the same send method, but instead of the new state, we send a function. This
function is translating the old state into the new state. The function is updating the
nrSold attribute with one state, and when there isn’t already a BookStatistics object
present for the book, a new object is created. The last step is to update the map.

 Because the actions are executed one at any time, we don’t need to worry that dur-
ing this function the state will be changed, and therefore, we don’t need a locking
mechanism. You’ve seen how you can get the current state and how you can update
the state; this is the basic functionality of an agent. But because the updates are asyn-
chronous, it’s sometimes necessary to wait for the update to be finished. This func-
tionality is described in the next section. 

11.3.2 Waiting for the state update

In some cases you need to update shared state and use the new state. For example, we
need to know which book is selling the most, and when a book becomes popular, we
want to notify the authors. To do this, we need to know when our update has been
processed before we can check whether the book is the most popular. For this, agents
have the alter method, which can be used for updating the state. It works exactly as
the send method, only it returns a Future, which can be used to wait for the new state.

implicit val timeout = Timeout(1000)
val future = stateAgent alter( oldState => {

val bookStat = oldState.books.get(book) match {
case Some(bookState) =>

Since we’ll be waiting, we need a timeout.

Our agent will give us 
a future to wait on.
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bookState.copy(nrSold = bookState.nrSold + nrSold)
case None => new BookStatistics(book, nrSold)

}
oldState.copy(oldState.sequence+1,

oldState.books + (book -> bookStat))
})
val newState = Await.result(future, 1 second)

In this example we performed the update using a function, but just as was the case
with the send method, it’s also possible to use the new state within the alter method.
As you can see, the changed status is returned within the supplied Future. But this
doesn’t mean that this is the last update. It’s possible that there are still pending
changes for this state. We know that our change is processed and that the result of this
change is returned, but there could be multiple changes at nearly the same time, and
we want the final state, or another thread might need the final state and only knows
that the process before it may have updated the state. So this thread doesn’t have any
reference from the alter method; it needs to wait. The agent provides us a Future for
this. This future finishes when the pending state changes are all processed.

val future = stateAgent.future
val newState = Await.result(future, 1 second)

This way, we can be sure of the latest state at this moment. Keep in mind that new
agents are created when using map or flatMap, leaving the original agents untouched.
They’re called persistent for this reason. An example with a map shows the creation of a
new agent:

import scala.concurrent.ExecutionContext.Implicits.global
val agent1 = Agent(3)

val agent2 = agent1 map (_ + 1)

When using this notation, agent2 is a newly created agent that contains the value 4,
and agent1 is just the same as before (it still contains the value 3).

 We showed that when shared state was needed, we could use agents to manage the
state. The consistency of the state is guaranteed by requiring that updates only be done
in the agent’s context. These updates are triggered by sending actions to the agent. 

11.4 Summary
Clearly, writing applications that never hold state is an unattainable goal. In this chap-
ter you saw several approaches to state management that Akka provides. The key take-
aways are these: 

 Finite-state machines, which can seem specialized and perhaps daunting, are
pretty easy to implement with Akka, and the resulting code is clean and main-
tainable. Their implementation as a trait results in code where the actions are
separated from the code that defines the transitions.

This is where 
we update the 
value.

Our new state will be 
returned here when
it’s available.
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 Agents provide another means of state that’s especially useful when several
actors need access. 

 Both techniques—FSMs and agents—allow you to employ some shared state
without falling back into having to manage locks.

 Using timers with FSMs and futures with agents provides a level of orchestration
in implementing state changes. 

This chapter took you through examples that showed the implementation of com-
plex, dependent interactions modifying shared state. We accomplished this while still
keeping the spirit of our stateless messaging principles intact, by using mechanisms
that allow us to coordinate multiple actors around a set of shared states. 



System integration
In this chapter we’ll look at some examples of actors being used to integrate with
other external systems. Today applications are increasingly complex, requiring con-
nections to different information services and applications. It’s almost impossible
to create a system that doesn’t either rely on information from or supply informa-
tion to other systems. To be able to communicate with other systems, the two sides
have to go through an agreed-upon interface. We’ll start with some enterprise inte-
gration patterns (EIPs). Next, we’ll describe how akka-camel (an Akka extension for
Apache Camel, a project that simplifies integration over many transports) can help a
system integrate with other external systems, especially in a request/response style.
We’ll finish with an HTTP example using akka-http and detail the different
approaches to integration with Akka.

In this chapter
 Exploring endpoints and how to use them

 Using Apache Camel with Akka

 Implementing an HTTP interface with Akka

 Managing consumers and producers
254
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12.1 Message endpoints
In the preceding chapters, we showed how to build systems using various enterprise
patterns. In this section we’ll describe the patterns that apply when different systems
need to exchange information. Consider a system that needs customer data from a
customer relations application, yet you don’t want to manage this data in multiple
applications. The implementation of an interface between two systems isn’t always
easy, because the interface contains two areas: the transport layer and the data that’s
sent over this transport layer. Both areas have to be addressed to integrate the systems.
There are also patterns to help you design the integration between multiple systems. 

 For example, say you’re creating an order system for use in a book stockroom; our
system processes orders from all kinds of customers. These customers can order the
books by visiting the store. The bookstore already uses an application to sell and order
books, so the new system needs to exchange data with this existing application. This
can only be done if both systems agree on which messages are sent and how they’re
sent. Because you probably can’t change the external application, you have to create a
component that can send and/or receive messages from the existing application. This
component is called an endpoint. Endpoints are part of our system, and are the glue
between the external system and the rest of our system, which is shown in figure 12.1.

 The endpoint has the responsibility of encapsulating the interface between the
two systems in such a way that the application itself doesn’t need to know how the
request is received. This is done by making the transport pluggable, using a canonical
data format, and standardizing on a request/response style of communication. There
are a lot of different transport protocols to potentially support: HTTP, TCP, message
queues, or simple files. After receiving the message, the endpoint has to translate the
message into a message format that’s supported by our order system. Translating the
message this way means the rest of the system doesn’t know that the order was
received from an external system. In this example the endpoint receives a request
from the external system and sends a response back. This is called a consumer endpoint
because it consumes the request. It’s also possible that our system needs some data
from another system, for example, the customer details, which are kept in the cus-
tomer relations application. 

Endpoint

1. Bookshop places
    an order

4. Endpoint sends
    response

2. Endpoint sends request
    to process order

3. Endpoint receives
    the response

External system

Bookshop
application Order system

Process
orders

Figure 12.1 Endpoint as glue between order system and bookshop application
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In figure 12.2 the order system initiates the communication between systems, and
because the endpoint produces a message that’s sent to the external system, this is
called a producer endpoint. Both usages of the endpoints hide the details of the com-
munication from the rest of the system, and when the interface between the two sys-
tems changes, only the endpoint needs to be changed. There are a few patterns in
the EIP catalog that apply for such endpoints. The first pattern we’ll describe is the
normalizer pattern.    

12.1.1 Normalizer

You’ve seen that our order system receives the orders from the bookshop application,
but it’s possible that our system could also receive orders from a web shop, or by cus-
tomers sending email. You can use the normalizer pattern to make these different
sources all feed into a single interface on the application side. The pattern translates
the different external messages to a common, canonical message. This way all the
message processing can be reused, without our system knowing that different systems
are sending these messages.

 We’ll create three different endpoints to consume the different messages, but trans-
late them into the same message, which is sent to the rest of the system. In figure 12.3
we have the three endpoints, which handle the details on how to get the needed infor-
mation and translate it into the common message format the order system expects.

 Translating the different messages into a common message is called the normalizer
pattern. This pattern combines router and translator patterns into an endpoint. This
implementation of the normalizer pattern is the most common one. But when con-
necting to multiple systems using different transport protocols and different mes-
sages, it’s desirable to reuse the translators of the messages; this makes the pattern
implementation a bit more complex. Let’s assume that there’s another bookshop
that’s connecting to this system using the same messages but using message queues to
send those messages. In cases of more-complex implementations such as this, the nor-
malizer pattern can be considered as three parts. Figure 12.4 shows the three parts.
The first is the implementation of the protocol; next, a router decides which transla-
tor has to be used; and finally, the actual translation takes place.

Endpoint

2. Endpoint sends
    request to customer
    relations application

3. Endpoint receives
    the response

1. Order system needs
    customer information

4. Endpoint returns
    the response to
    the order system

Customer
relations

application

Order system

Process
orders

Figure 12.2 Endpoint as glue between order system and customer relation application
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Figure 12.3 Multiple endpoint example
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Being able to route the message to the correct translator requires the ability to detect
the type of the incoming message. How this is done differs greatly depending on the
external systems and types of messages. In our example we support three types of mes-
sages—plain-text, JSON, and XML—which can be received from any of three transport
layer types—email, HTTP, and message queues. In most cases, the simplest implemen-
tation would make the most sense: the endpoint and translation (and no router)
implemented as a single component. In our example it’s possible to skip the router
for the email and message queue protocol and go directly to the correct translator,
because we receive only one type of message. This is a trade-off between flexibility and
complexity; when using the router, it’s possible to receive all types of messages on all
protocols without any extra effort, but we have more components. Only the router
needs to know how to distinguish between all the message types. Tracing the messages
can be more difficult, which can make this solution more complex, and most of the
time you don’t need this flexibility, because only one type of system is being integrated
(supporting only one message type). 

12.1.2 Canonical data model

The normalizer pattern works well when connecting one system to another external
system. But when the connectivity requirements between the systems increase, you
need more and more endpoints. Let’s go back to our example. We have two back
office systems: the order system and the customer relations system. In the previous
examples, the shops were only connected to the order system, but when they also
need to communicate with the customer relations system, the implementation
becomes more complex, as shown in figure 12.5.

 At this point it isn’t important which system is implementing the endpoints; the
problem is that when it’s necessary to add a new system to integrate with, we need to
add more and more endpoints—one for the shop applications, and two endpoints to
integrate the existing back office systems. Over time, increasing the number of sys-
tems means that the number of endpoints will spiral out of control.

 To solve this problem, we can use the canonical data model. This pattern connects
multiple applications using interface(s) that are independent of any specific system.
Then each system we wish to integrate with will have to have incoming and outgoing
messages converted to the canonical form for the given endpoint.

Web shop
application

Bookshop
application

Order
system

Customer
relation
system

Endpoint

Endpoint

Endpoint

Endpoint

Endpoint Figure 12.5 Connectivity diagram 
between systems
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This way, every system has an endpoint that implements a common interface and uses
common messages. Figure 12.6 shows that when the bookshop application wants to
send a message to the order system, the message is first translated to the canonical for-
mat, and then it’s sent using the common transport layer. The endpoint of the order
system receives the common message, which translates it to an order system message.
This looks like an unnecessary translation, but when applying this to a number of sys-
tems the benefit is clear; see figure 12.7

 As you can see, every system or application has one endpoint. And when the web
shop needs to send a message to the order system, it uses the same endpoint as when
sending it to the customer relations system. When we add a new system to be inte-
grated, we need only one endpoint instead of the four shown in figure 12.5. This
reduces the number of endpoints greatly when there is a large number of integrated
systems.

Bookshop
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systemEndpoint Endpoint
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message

Common interface

Order
system-specific

message
Common
messages

Figure 12.6 Use a common interface between systems
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Figure 12.7 Canonical pattern used to connect multiple systems
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The normalizer pattern and the canonical data model are quite helpful when you’re
integrating a system with other external systems or applications. The normalizer pat-
tern is used to connect several similar clients to another system. But when the number
of integrated systems increases, you need the canonical data model, which looks like
the normalizer pattern, because it also uses normalized messages. The difference is
that the canonical data model provides an additional level of indirection between the
application’s individual data formats and those used by the remote systems, whereas
the normalizer is only within one application. The benefit of this additional level of
indirection is that, when you add a new application to the system, only the translator
into these common messages has to be created; no changes to the existing system are
required.

 Now that you know how you can use endpoints, the next step is to implement
them. When implementing an endpoint, you need to address the transport layer and
the message. Implementing the transport layer can be hard, but most of the time the
implementation is application-independent. Wouldn’t it be nice if someone already
implemented the transport layers? In fact, this is what Apache Camel provides. Let’s
see how it can help you with implementing an endpoint. 

12.2 Implementing endpoints using Apache Camel
Apache Camel’s goal is to make integration easier and more accessible. Apache Camel
makes it possible to implement the standard EIPs in a few lines of code. This is
achieved by addressing three areas:

 Concrete implementations of the widely used EIPs
 Connectivity to a great variety of transports and APIs
 Easy-to-use domain-specific languages (DSLs) to wire EIPs and transports

together

The support for a great variety of transport layers is the reason why you’d want to use
Apache Camel with Akka, because this will enable you to implement different trans-
port layers without much effort. In this section we’ll explain what Apache Camel is
and how to send and receive messages using the Camel Consumer and Producer.

 The Akka Camel module allows you to use Apache Camel within Akka, and
enables you to use all the transport protocols and APIs implemented in Apache
Camel. A few examples of protocols supported are HTTP, SOAP, TCP, FTP, SMTP, and
JMS. At the time of writing, approximately 80 protocols and APIs are supported.

 Using akka-camel is easy. Just add akka-camel to the project dependencies, and
you can use the Camel Consumer and/or Producer classes to create an endpoint.
Using these classes will hide the implementation of the transport layer. The only func-
tionality you have to implement is the translations between your system messages and
the interface messages.

 Because the transport layer implementations are completely hidden, it’s possible
to decide which protocol to use at runtime. This is the next great strength of using
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akka-camel. As long as the message structure is the same, no code changes have to be
made. So when testing, you could write all the messages to the file system, because you
don’t have the correct external system available in the test environment, and as soon
as the system is in the acceptance environment, you can change the used Camel proto-
col into an HTTP interface, for example, with only one configuration setting.

 The akka-camel module works internally with Apache Camel classes. Important
Apache Camel classes are the CamelContext and the ProducerTemplate. The Camel-
Context represents a single Camel routing rule base, and the ProducerTemplate is
needed when producing messages. For more details, look at the Apache Camel docu-
mentation at http://camel.apache.org. The akka-camel module hides the use of these
Apache Camel classes, but sometimes you’ll need them when more control of how
messages are received or produced is required. The akka-camel module creates a
Camel extension for each actor system. Because several internal actors are created,
they need to be started in the correct ActorSystem. To get a system’s Camel extension,
you can use the CamelExtension object:

val camelExtension = CamelExtension(system)

When a specific Apache Camel class is needed, like the context or the Producer-
Template, this extension can be used. You’ll see some examples in the next sections.
We’ll start with a simple consumer example that reads files and changes them using
other protocols like TCP connections and ActiveMQ. We’ll end this section by creating
a producer that can send messages to the created consumer. So let’s begin by using
akka-camel to create a consumer.

12.2.1 Implement a consumer endpoint receiving messages 
from an external system

The example we’ll implement is an order system receiving messages from a bookshop.
This order system must be able to receive messages from different book stores. Let’s
say the received messages are XML files in a directory. The transport layer in this case
is the file system. The endpoint of the order system needs to track new files, and when
there’s a new file, it has to parse the XML content and create a message the system can
process. Before you start implementing your endpoint consumer, you need to have
your messages, shown in figure 12.8.

Process
orders

Bookshop
application

Bookshop
endpoint

<order>
 <customerId>Customer 1</customerId>
 <productId>Akka in Action</productId>
 <number>20</number>
</order>

case class Order(
 customerId: String,
 productId: String,
 number: Int)

Figure 12.8 Messages received and sent by our endpoint

http://camel.apache.org
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The first message to look at is the XML sent by the bookshop application to our end-
point indicating that customer 1 wants 20 copies of Akka in Action. The second mes-
sage is the class definition of the message the order system can process. 

IMPLEMENTING A CAMEL CONSUMER

Now that you have our messages, you can start implementing your consumer end-
point. We’ll start by extending the Actor class with the Camel Consumer trait instead
of the normal Akka Actor class:

class OrderConsumerXml extends akka.camel.Consumer {
 // more code to follow
}

The next step is to set the transport protocol; this is done by overriding the endpoint
URI. This URI is used by Apache Camel to define the transport protocol and its prop-
erties. In your case you want to be able to change this URI, so you’ll add the URI to
your constructor. And you need to implement the receive method, because it’s also
an Akka actor. Figure 12.9 shows the implementation of the consumer.   

 Messages from the Camel component are received as a CamelMessage. A Camel-
Message is a message from the akka-camel module, which is independent from the
used protocol layer and contains a body—the actual message received—as well as a
map of headers. The content of these headers can depend on the protocol used. In
the examples in this section, you don’t use these headers.

Override the
endpoint URI

Extend from the
Camel consumer

Process
orders

import akka.camel.{CamelMessage, Consumer}

class OrderConsumerXml(uri: String, processOrders: ActorRef)

  extends Consumer {

  def endpointUri = uri

  def receive = {

    case msg: CamelMessage => {

      val content = msg.bodyAs[String]

      val xml = XML.loadString(content)

      val order = xml \\ "order"

      val customer = (order \\ "customerId").text

      val productId = (order \\ "productId").text

      val number = (order \\ "number").text.toInt

      processOrders ! new Order(customer, productId, number)

    }

  }

}

Consumer endpoint

Bookshop
application

Receive the
Camel message

Figure 12.9 OrderConsumerXml, the implementation of the consumer endpoint
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re
The body is application-dependent, so you have to implement the conversion of the
data yourself. In this example you convert the body to a string and parse the XML into
an Order message, and send it to the next actor that’s available to process the order.

 You’ve implemented the translation from the XML to the Order object, but how do
you pick up these files? This is all done by Apache Camel. All you have to do is set the
URI. Use the following URI to tell Apache Camel you want it to pick up files:

val camelUri = "file:messages"

Apache Camel defines a component for every kind of transport that it supports. The
URI in the example above starts with a component name. In this case you want the
file component. The second part depends on the chosen component. When using
the file component, the second part is the directory where the message files are
placed. You expect your files in the directory messages. All the possible components
and options can be found at http://camel.apache.org/components.html.

 Let’s start creating the consumer so you can see how that works:

val probe = TestProbe()
val camelUri = "file:messages"
val consumer = system.actorOf(

Props(new OrderConsumerXml(camelUri, probe.ref)))

The CamelExtension creates internal components asynchronously, and you have to
wait for these components to start before you can proceed with your test. To detect
that the consumer startup has finished, you need to use CamelExtension

.activationFutureFor as shown in the next listing.

val camelExtention = CamelExtension(system)

val activated = camelExtention.activationFutureFor(

consumer)(timeout = 10 seconds, executor = system.dispatcher)

Await.ready(activated, 5 seconds)

This extension contains the activationFutureFor method, which returns a Future.
The Future triggers when the Camel route is done starting up. After that, you can pro-
ceed with our test.

 Awaiting with Await.ready makes sense in the context of running tests; in more
realistic code, you’d handle the result of the Future as described in chapter 5. 

val msg = new Order("me", "Akka in Action", 10)
val xml = <order>

<customerId>{ msg.customerId }</customerId>
<productId>{ msg.productId }</productId>

Listing 12.1 Making sure Camel is started

Listing 12.2 Test the order consumer

Gets CamelExtension for
this Akka system

Gets activation futu

Waits for Camel to finish starting up

http://camel.apache.org/components.html
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<number>{ msg.number }</number>
</order>

val msgFile = new File(dir, "msg1.xml")

FileUtils.write(msgFile, xml.toString())

probe.expectMsg(msg)

system.stop(consumer)

As you can see, you receive an Order message when a file containing XML is placed in
the message directory. Note: You’re not required to provide any code dealing with
checking for files and reading them in; all this functionality is provided by the Apache
Camel file component. 

CHANGING THE TRANSPORT LAYER OF YOUR CONSUMER

This is nice, but it’s just the starting point of Camel’s real benefit. Let’s say that you
also get these XML messages though a TCP connection. How should you implement
this? Actually, you already have. To support the TCP connection, all you have to do is
change the used URI and add some libraries to the runtime.

val probe = TestProbe()
val camelUri =

"mina:tcp://localhost:8888?textline=true&sync=false"
val consumer = system.actorOf(

Props(new OrderConsumerXml(camelUri, probe.ref)))
val activated = CamelExtension(system).activationFutureFor(

consumer)(timeout = 10 seconds, executor = system.dispatcher)
Await.ready(activated, 5 seconds)

val msg = new Order("me", "Akka in Action", 10)
val xml = <order>

<customerId>{ msg.customerId }</customerId>
<productId>{ msg.productId }</productId>
<number>{ msg.number }</number>

</order>

val xmlStr = xml.toString().replace("\n", "")
val sock = new Socket("localhost", 8888)
val ouputWriter = new PrintWriter(sock.getOutputStream, true)
ouputWriter.println(xmlStr)
ouputWriter.flush()

probe.expectMsg(msg)

ouputWriter.close()
system.stop(consumer)

In this example you use the Apache Mina component to deal with the TCP connec-
tion. The second part of the URI looks completely different, but is needed to config-
ure the connection. You start with the protocol you need (TCP), and then you indicate

Listing 12.3 TCP test using order consumer
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on which interface and port you want to listen. After this you include two options (as
parameters):

 textline=true—This indicates that you expect plain text over this connection, and
that each message is ended with a newline.

 sync=false—This indicates that you don’t create a response.

As you can see, without any code changes to the consumer, you can change the trans-
port protocol. Can you change to any protocol without code changes? The answer is
no; some protocols do require code changes. For example, what about a protocol that
needs a confirmation? Let’s see how you can do that. Let’s assume that your TCP con-
nection needs an XML response. You need to change your consumer, but it’s not that
hard. You just send the response to the sender and the Camel consumer will take care
of the rest.

class OrderConfirmConsumerXml(uri: String, next: ActorRef)
extends Consumer {

def endpointUri = uri

def receive = {
case msg: CamelMessage => {

try {
val content = msg.bodyAs[String]
val xml = XML.loadString(content)
val order = xml \ "order"
val customer = (order \ "customerId").text
val productId = (order \ "productId").text
val number = (order \ "number").text.toInt
next ! new Order(customer, productId, number)
sender() ! "<confirm>OK</confirm>"

} catch {
case ex: Exception =>

sender() ! "<confirm>%s</confirm>".format(ex.getMessage)
}

}
}

}

That’s all, and when you change the URI, you can test our new consumer. But before
you do that, you also have to catch a possible exception, and didn’t we say in chapter 4
that we let our actors crash if there are any problems? And that the supervisor should
correct these problems? We’re now implementing an endpoint that’s the separation
between a synchronous interface and a message-passing system, which is an asynchro-
nous interface. On these boundaries between the synchronous and asynchronous
interfaces, the rules are a little different because the synchronous interface always
expects a result, even when it fails. When you try to use supervision, you’re missing the
sender details to correctly service the request. And you can’t use the restart hook

Listing 12.4 Confirm order consumer
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either, because the supervisor can decide to resume after an exception, which doesn’t
result in calling the restart hooks. Therefore, you catch the exception and are able to
return the expected response. Having said this, let’s test your consumer.

val probe = TestProbe()
val camelUri =

"mina:tcp://localhost:8887?textline=true"
val consumer = system.actorOf(

Props(new OrderConfirmConsumerXml(camelUri, probe.ref)))
val activated = CamelExtension(system).activationFutureFor(

consumer)(timeout = 10 seconds, executor = system.dispatcher)
Await.ready(activated, 5 seconds)

val msg = new Order("me", "Akka in Action", 10)
val xml = <order>

<customerId>{ msg.customerId }</customerId>
<productId>{ msg.productId }</productId>
<number>{ msg.number }</number>

</order>

val xmlStr = xml.toString().replace("\n", "")
val sock = new Socket("localhost", 8887)
val ouputWriter = new PrintWriter(sock.getOutputStream, true)
ouputWriter.println(xmlStr)
ouputWriter.flush()
val responseReader = new BufferedReader(

new InputStreamReader(sock.getInputStream))
val response = responseReader.readLine()
response must be("<confirm>OK</confirm>")
probe.expectMsg(msg)

responseReader.close()
ouputWriter.close()
system.stop(consumer)

You hardly changed the consumer and were able to generate responses over TCP,
which shows the benefit of Apache Camel. 

USING THE CAMELCONTEXT

There’s one other example we want to show. Sometimes a Camel component needs
more configuration than only a URI.

 For example, suppose you want to use the ActiveMQ component. To be able to use
this, you need to add the component to the CamelContext and define the message
queue broker. This requires the CamelContext.

val camelContext = CamelExtension(system).context
camelContext.addComponent("activemq",

ActiveMQComponent.activeMQComponent(
"vm:(broker:(tcp://localhost:8899)?persistent=false)"))

Listing 12.5 TCP test using order confirm consumer
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First you get the CamelExtension for the used system, and then you add the ActiveMQ
component to the CamelContext. In this case you create a broker that listens on port
8899 (and doesn’t use persistence queues).

 Now you can execute the test. For this example, you use the previous example of a
consumer that doesn’t return a response.

val camelUri = "activemq:queue:xmlTest"
val consumer = system.actorOf(

Props(new OrderConsumerXml(camelUri, probe.ref)))

val activated = CamelExtension(system).activationFutureFor(
consumer)(timeout = 10 seconds, executor = system.dispatcher)

Await.ready(activated, 5 seconds)

val msg = new Order("me", "Akka in Action", 10)
val xml = <order>

<customerId>{ msg.customerId }</customerId>
<productId>{ msg.productId }</productId>
<number>{ msg.number }</number>

</order>

sendMQMessage(xml.toString())
probe.expectMsg(msg)

system.stop(consumer)

The test isn’t any different from the other consumer test, other than how the message
is delivered.

 Because a broker is started, you also need to stop it when you’re ready. This can be
done using ActiveMQ’s BrokerRegistry:

val brokers = BrokerRegistry.getInstance().getBrokers
brokers.foreach { case (name, broker) => broker.stop() }

Using the BrokerRegistry, you can close all the brokers. Note that getBrokers
returns a java.util.Map. You use collection.JavaConversions to convert this map
into a Scala Map.

 As you can see, it’s simple to implement a Consumer. And because Camel has a lot
of components, this gives you the ability to support many transport protocols without
any effort . 

12.2.2 Implement a producer endpoint sending messages 
to an external system

In the previous section, we created an endpoint that receives messages. In this section,
we’ll implement the functionality to send messages using Camel. To show the pro-
ducer functionality, we’ll move to the other side of our example—with the consumer
we were working on an endpoint at the order system, but for these examples we’ll
implement an endpoint in the bookshop application; see figure 12.10.

Listing 12.7 Test when using ActiveMQ
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To implement a producer, akka-camel has another trait you’ll extend: Producer. The
producer is also an actor, but the receive method is already implemented. The sim-
plest implementation is just to extend the Producer trait and set the URI, as shown in
figure 12.11.

This producer sends all received messages to the Camel component defined by the
URI. So when you create an XML string and send it to the producer, it can be sent
using a TCP connection. In this example you use your consumer from the previous
section to receive the message. And because you now have two Camel actors, you can’t
start the test until both actors are ready. To wait for both, you use the
Future.sequence method, which was discussed in chapter 5.   

implicit val ExecutionContext = system.dispatcher
val probe = TestProbe()
val camelUri = "mina:tcp://localhost:8885?textline=true"
val consumer = system.actorOf(

Props(new OrderConfirmConsumerXml(camelUri, probe.ref)))

val producer = system.actorOf(
Props(new SimpleProducer(camelUri)))

val activatedCons = CamelExtension(system).activationFutureFor(

Listing 12.8 Test simple producer

Order system
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Figure 12.10 Producer endpoint sending messages
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import akka.camel.Producer

  class SimpleProducer(uri: String)
  extends Producer {

 def endpointUri = uri
}

Figure 12.11 Implementation of a simple producer endpoint
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consumer)(timeout = 10 seconds, executor = system.dispatcher)
val activatedProd = CamelExtension(system).activationFutureFor(
producer)(timeout = 10 seconds, executor = system.dispatcher)

val camel = Future.sequence(List(activatedCons, activatedProd))
Await.result(camel, 5 seconds)

Every message will be sent to the defined URI. But most of the time you need to trans-
late the message to another format. In your shop system, you use the Order object
when sending messages between the system actors. To solve this you can override the
transformOutgoingMessage. This method is called before sending the message. Here
you can do the translation of your message to the expected XML.

class OrderProducerXml(uri: String) extends Producer {
def endpointUri = uri
override def oneway: Boolean = true

override protected def transformOutgoingMessage(message: Any): Any =
message match {

case msg: Order => {
val xml = <order>

<customerId>{ msg.customerId }</customerId>
<productId>{ msg.productId }</productId>
<number>{ msg.number }</number>

</order>
xml.toString().replace("\n", "")

}
case other => message

}
}

In the transformOutgoingMessage you create an XML string and, just as in the con-
sumer test, you need a message on a single line ended with a new line. Because your
consumer doesn’t send a response, you need to signal the underlying framework that
it doesn’t need to wait for one. Otherwise, it will be consuming resources for no rea-
son. It’s possible that you could consume all the threads, which will stop your system.
So it’s important to override the oneway attribute when there are no responses.

 Now you’re able to send an Order object to the producer endpoint, and the pro-
ducer translates this into XML. But what happens when you do have responses, for
example when you use the OrderConfirmConsumerXML? Figure 12.12 shows the default
behavior of a producer that sends the received CamelMessage, which contains the
XML response to the original sender.

 But just as you need to translate your message when sending it, you need also a
translation of the response. You don’t want to expose the CamelMessage to the rest of
your system. To support this you can use the transformResponse method. This
method is used to convert the received message into a system-supported message, and
the producer will send this response.

Listing 12.9 Translate message in producer

Creates Future to wait for both
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class OrderConfirmProducerXml(uri: String) extends Producer {
def endpointUri = uri
override def oneway: Boolean = false

override def transformOutgoingMessage(message: Any): Any =
message match {

case msg: Order => {
val xml = <order>

<customerId>{ msg.customerId }</customerId>
<productId>{ msg.productId }</productId>
<number>{ msg.number }</number>

</order>
xml.toString().replace("\n", "") + "\n"

}
case other => message

}

override def transformResponse(message: Any): Any =
message match {

case msg: CamelMessage => {
try {

val content = msg.bodyAs[String]
val xml = XML.loadString(content)
val res = (xml \ "confirm").text
res

} catch {
case ex: Exception =>

"TransformException: %s".format(ex.getMessage)
}

}
case other => message

}
}

The transformResponse is called when a response is received, before it’s sent to the
sender of the initial request. In this example you parse the received XML and select
the value of the confirm tag. Let’s see how this works in a test.

Listing 12.10 Translate responses and message in producer
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Figure 12.12 Using responses with the Camel producer
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implicit val ExecutionContext = system.dispatcher
val probe = TestProbe()
val camelUri ="mina:tcp://localhost:9889?textline=true"
val consumer = system.actorOf(

Props(new OrderConfirmConsumerXml(camelUri, probe.ref)))

val producer = system.actorOf(
Props(new OrderConfirmProducerXml(camelUri)))

val activatedCons = CamelExtension(system).activationFutureFor(
consumer)(timeout = 10 seconds, executor = system.dispatcher)

val activatedProd = CamelExtension(system).activationFutureFor(
producer)(timeout = 10 seconds, executor = system.dispatcher)

val camel = Future.sequence(List(activatedCons, activatedProd))
Await.result(camel, 5 seconds)
val probeSend = TestProbe()
val msg = new Order("me", "Akka in Action", 10)
probeSend.send(producer, msg)
probe.expectMsg(msg)
probeSend.expectMsg("OK")

system.stop(producer)
system.stop(consumer)

This is nice, but you don’t want to send the confirmation to the original sender of the
request, but to another actor. Is this possible? Yes, there’s a method called route-
Response that’s responsible for sending the received response to the original sender.
This can be overridden, and here you can implement the functionality to send the
message to another actor. But be careful when you’re also using the transform-
Response method: you have to call it in this overridden method because the default
implementation calls the transformResponse before sending the response message to
the original sender.

 As you can see, creating producers is as easy as creating consumers. Apache Camel
provides a lot of functionality when creating an endpoint, and support for a lot of
transport protocols. This is the greatest benefit of using the akka-camel module: to get
support for a lot of protocols without additional effort.

 In the next section, we’ll look at two examples of consumer endpoints that contain
the actual connection to the order system for creating a response. 

12.3 Implementing an HTTP interface
In the preceding sections, you saw how Apache Camel can help you to implement
endpoints that can work over many kinds of transports. A side effect of defining one
way of communicating over many protocols/transports, is that it gets harder to use
specific features of a particular protocol; for instance, if you want to write an HTTP
interface that takes advantage of all of HTTP’s features. 

 Next, we’ll show an example of how to use Akka to build an HTTP service. Apache
Camel can be used to implement a minimal HTTP interface, but when you need more

Listing 12.11 Test the producer with responses

Message is received 
by Consumer

Confirmation is received 
by your test class



272 CHAPTER 12 System integration
functionality or specific HTTP support, Apache Camel may be too minimalist. The
akka-http module provides an API to build HTTP clients and servers. The example we’ll
show is simple, but it addresses the issues of general integration techniques. We’ll start
with the example description and then show you the akka-http implementation.

12.3.1 The HTTP example

We’ll implement our order system example again. But this time we’ll also implement a
mock-up of our order-processing system. We can see how the endpoint forwards the
request to the system and waits for the response before returning its response. We’ll
do this by implementing one endpoint that uses the HTTP transport protocol. We’ll
use the REST architectural style for defining the API of the HTTP service. An overview
of this example is shown in figure 12.13.

 The example has two interfaces: one between the web shop and the endpoint, and
one between the endpoint and the ProcessOrders actor. We’ll start by defining the
messages for both interfaces. The order system will support two functions. The first
function adds a new order, and the second function gets the status of an order. The
HTTP REST interface we’ll implement supports a POST and a GET. With the POST we’ll
add a new order to our system, and with the GET we’ll retrieve the status of that order.
Let’s start with adding an order. Figure 12.14 shows the messages and the flow.

 The web shop sends a POST request to the endpoint containing the XML already
used in the Camel examples in section 12.2.1. The endpoint translates it to the order
message and sends it to the rest of the system (the ProcessOrders actor). When done,
the response is a TrackingOrder object, which contains the order, a unique ID, and
the current status. The endpoint translates this to a confirmation XML message con-
taining the ID and status and sends it back to the web shop. In this example the new
order got the id1 and the status received.

Webshop application

Order system

Process
orders

REST
endpoint

The REST endpoint communicates
with the ProcessOrders actor.

These messages are sent using
the HTTP transport layer.

Figure 12.13 HTTP REST example overview
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Figure 12.15 shows the messages when getting the status of an order already in the
order system.

 To get the status for the order with ID 1, the web shop will send a GET request to
/orders/1. The REST endpoint translates the GET request to an OrderId. The
response of the system is again a TrackingOrder message when the order is found.
The endpoint translates this response into a statusResponse XML. When the order
isn’t found, the system will respond with a NoSuchOrder object, shown in figure 12.16.

Web shop
application

Process
orders

REST
endpoint

1. Web shop sends a POST
    request to add an order

4. Endpoint sends a confirm
    XML back as response

2. Endpoint sends an Order
    to the rest of the system

3. System responds with
    a TrackingOrder object

case class TrackingOrder(

 id:Long,

 status:String,

 order:Order)

case class Order(

 customerId: String,

 productId: String,

 number: Int)

<order>

 <customerId>Customer 1</customerId>

 <productId>Akka in Action</productId>

 <number>20</number>

</order>

<confirm>

 <id>1</id>

 <status>received</status>

</confirm>

Figure 12.14 Message flow when adding an order
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4. Endpoint sends a statusResponse
    XML back as response

3. System responds with
    a TrackingOrder object

case class TrackingOrder(

 id:Long,

 status:String,

 order:Order)

http://localhost:5000/orders/1

<statusResponse>

 <id>1</id>

 <status>processing</status>

</statusResponse>

1. Web shop sends
    a GET request

2. Endpoint sends an OrderId
    to the rest of the system

case class OrderId(id:Long)

Figure 12.15 Message flow when getting the status of an order
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    NotFound response
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    NoSuchOrder object

http://localhost:5000/orders/999

HTTP/1.1 404 Not Found

1. Web shop sends a GET request
    with an unknown OrderId 2. Endpoint sends the OrderId

case class OrderId(id:Long)

case class NoSuchOrder(id:Long)

Figure 12.16 Message flow when trying to get the status of an unknown order
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The REST endpoint will translate the NoSuchOrder into an HTTP 404 NotFound
response. Now that you’ve defined the messages sent through the system, you’re ready
to implement the order processing. Figure 12.17 shows the implementation of the
interface just defined.

 This is a simple representation of a complete system that implements two possible
requests. We also added a reset function that can be used while testing the complete
system.

 Now we’re ready to implement the REST endpoint using akka-http. 

12.3.2 Implementing a REST endpoint with akka-http

To give you a feeling for how akka-http can help you in implementing a REST inter-
face, we’ll implement the same example endpoint from earlier, this time using akka-
http. But keep in mind that this is only a small part of akka-http; there’s much more.
For instance, we’ll look at examples of streaming data over HTTP in chapter 13.

Receive a
new order

Request status
for given order

Reset state
used for testing

class ProcessOrders extends Actor {

  val orderList = new mutable.HashMap[Long,TrackingOrder]()
  var lastOrderId = 0L

  def receive = {
    case order:Order => {
      lastOrderId +=1
      val newOrder = new TrackingOrder(lastOrderId, "received", order)
      orderList += lastOrderId -> newOrder
      sender ! newOrder
    }
    case order:OrderId => {
      orderList.get(order.id) match {
        case Some(intOrder) =>
          sender ! intOrder.copy(status="processing")
        case None => sender ! NoSuchOrder(order.id)
    }
      }
    case "reset"=> {
      lastOrderId = 0
      orderList.clear()
    }
  }
}

Process orders

REST
Endpoint

Figure 12.17 Implementation of order processing
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 We’ll start by creating the HTTP routes for the REST endpoint in an OrderService
trait. The OrderService trait defines an abstract method that will return an ActorRef
to the ProcessOrders. It’s a good practice to separate the route definitions from the
usage of an actor, because this enables you to test the routes without starting the actor
or by injecting a TestProbe, for instance. Figure 12.18 shows both the OrderService-
Api class that will provide the necessary ExecutionContext and Timeout for using ask
to request from the ProcessOrder, and the OrderService trait containing the routes.
akka-http has its own test kit that enables you to test routes. Listing 12.12 shows how
the OrderService will be tested.

Web shop
application

Order system

REST endpoint

Process
orders

class OrderServiceApi(
  system: ActorSystem, 
  timeout: Timeout, 
  val processOrders: ActorRef // pass in processOrders
  to use
) extends OrderService {
  implicit val requestTimeout = timeout
  // implement timeout for ask
  implicit def executionContext = system.dispatcher
  // implement dispatcher for ask 
}

trait OrderService {
  val processOrders: ActorRef

  implicit def executionContext: ExecutionContext
  // define that an executionContext is needed
  for using ask

  implicit def requestTimeout: Timeout
  // define that a timeout is needed for using ask

  val routes = getOrder ~ postOrders
  // the HTTP routes

  // .. more code

Figure 12.18 Endpoint implementation using akka-http
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package aia.integration

import scala.concurrent.duration._
import scala.xml.NodeSeq
import akka.actor.Props

import akka.http.scaladsl.marshallers.xml.ScalaXmlSupport._
import akka.http.scaladsl.model.StatusCodes
import akka.http.scaladsl.server._
import akka.http.scaladsl.testkit.ScalatestRouteTest

import org.scalatest.{ Matchers, WordSpec }

class OrderServiceTest extends WordSpec
with Matchers
with OrderService
with ScalatestRouteTest {

implicit val executionContext = system.dispatcher
implicit val requestTimeout = akka.util.Timeout(1 second)
val processOrders =

system.actorOf(Props(new ProcessOrders), "orders")

"The order service" should {
"return NotFound if the order cannot be found" in {

Get("/orders/1") ~> routes ~> check {
status shouldEqual StatusCodes.NotFound

}
}

"return the tracking order for an order that was posted" in {
val xmlOrder =
<order><customerId>customer1</customerId>

<productId>Akka in action</productId>
<number>10</number>

</order>

Post("/orders", xmlOrder) ~> routes ~> check {
status shouldEqual StatusCodes.OK
val xml = responseAs[NodeSeq]
val id = (xml \ "id").text.toInt
val orderStatus = (xml \ "status").text
id shouldEqual 1
orderStatus shouldEqual "received"

}
Get("/orders/1") ~> routes ~> check {

status shouldEqual StatusCodes.OK
val xml = responseAs[NodeSeq]
val id = (xml \ "id").text.toInt
val orderStatus = (xml \ "status").text
id shouldEqual 1

Listing 12.12 Testing the OrderService
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id

r

orderStatus shouldEqual "processing"
}

}
}

}

Defining routes is done by using directives. You can view a directive as a rule that the
received HTTP request should match. A directive has one or more of the following
functions:

 Transforms the request
 Filters the request
 Completes the request

Directives are small building blocks out of which you can construct arbitrarily com-
plex route and handling structures. The generic form is this:

name(arguments) { extractions => ... // inner route }

akka-http has a lot of predefined directives, and you can create custom directives. We
use some of the most basic and common directives in this example. A Route uses
directives to match an HTTP request, and extracts data from it. The route needs to
complete the HTTP request with an HTTP response for every matched pattern. We’ll
start with defining the routes in the OrderService by composing two routes together,
one route for getting the orders and one for posting the orders.

val routes = getOrder ~ postOrders

The ~ composes routes and/or directives. You can read this as getOrder or post-
Orders, whichever matches. Every request that doesn’t conform to the postOrders or
getOrder routes will get an HTTP 404 Not Found response; for example, a request with
path order or using the DELETE request. 

 Let’s zoom in to the getOrder method. The getOrder method uses a get directive
to match a GET request. It then matches the "/orders/[id]" path with the path-
Prefix directive, extracting the ID of the order with the IntNumberPathMatcher. 

def getOrder = get {
pathPrefix("orders" / IntNumber) { id =>

onSuccess(processOrders.ask(OrderId(id))) {
case result: TrackingOrder =>

complete(
         <statusResponse>

<id>{ result.id }</id>
<status>{ result.status }</status>

 </statusResponse>)

Listing 12.13 Defining the routes of the OrderService

Listing 12.14 Handling GET orders/id in OrderService
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case result: NoSuchOrder =>
complete(StatusCodes.NotFound)

}
}

}

The IntNumber directive retrieves the id from the URL and converts it to an Int.
When the GET request doesn’t contain the id segment, the selection fails and an HTTP
404 Not Found response is sent back. When you have the ID, you can create your busi-
ness object, OrderId, which you’ll proceed to send on to your system. 

 Now that you have your OrderId, you can send the message to your system and
create the response when the reply is received. This is done by using the complete
directive. 

 The complete directive returns the response for the request. In the simplest imple-
mentation, the result is returned directly. But in our case, we need to asynchronously
handle the reply from the ProcessOrders actor actor before we can create the
response. Therefore, we use onSuccess, which passes the result of the future to the
inner route once the future completes. The code block of the onSuccess method is
executed when the Future finishes, which isn’t in the current thread, so be careful
what references you use. By passing a scala.xml.NodeSeq to the complete directive,
akka-http marshalls the NodeSeq to text and sets the content type of the response auto-
matically to text/xml. This is all there is to implementing the GET method. 

MARSHALLING RESPONSES You might have wondered how akka-http knows
how to complete the HTTP response from a scala.xml.Elem. You need to
provide a ToEntityMarshaller in implicit scope that can marshall the
scala.xml.Elem to a text/html entity. This is done by importing
akka.http.scaladsl.marshallers.xml.ScalaXmlSupport._, which contains
both a ToEntityMarshaller and a FromEntityUnmarshaller for XML. 

Next, we’ll start to implement the POST request. This is almost the same as the GET
implementation. The only difference is that you don’t need the order ID from the
URL, but you need the body of the post. To do this, you’ll use the entity directive: 

post {
path("orders") {

entity(as[NodeSeq]) { xml =>
val order = toOrder(xml)

//... more code

The entity(as[NodeSeq]) directive only works if an implicit FromEntityUnmarshaller
is in implicit scope, which is done by importing ScalaXmlSupport._, which contains an
implicit ToEntityMarshaller[NodeSeq]). 

 The toOrder method, which is not shown here, converts a scala.xml.NodeSeq
into an Order. 

Complete the request with a 
HTTP 404 NotFound response
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 Now that you have your Order, you can implement the response of the POST
request. The complete postOrders method is shown next.

def postOrders = post {

path("orders") {

entity(as[NodeSeq]) { xml =>

val order = toOrder(xml)

onSuccess(processOrders.ask(order)) {

case result: TrackingOrder =>

complete(

<confirm>

<id>{ result.id }</id>

<status>{ result.status }</status>

</confirm>

)

case result =>

complete(StatusCodes.BadRequest)

}

}

}

}

We’ve now implemented the complete route. How do we proceed further? To create a
real server, you need to bind the routes to an HTTP server. You can create the server
when starting your application using the Http extension, shown here.

object OrderServiceApp extends App
with RequestTimeout {

val config = ConfigFactory.load()
val host = config.getString("http.host")
val port = config.getInt("http.port")

implicit val system = ActorSystem()
implicit val ec = system.dispatcher

val processOrders = system.actorOf(
Props(new ProcessOrders), "process-orders"

)

val api = new OrderServiceApi(system,
requestTimeout(config),
processOrders).routes

implicit val materializer = ActorMaterializer()
val bindingFuture: Future[ServerBinding] =

Http().bindAndHandle(api, host, port)

val log = Logging(system.eventStream, "order-service")
bindingFuture.map { serverBinding =>

Listing 12.15 Handling POST orders in OrderService

Listing 12.16 Starting the HTTP server

Match POST requests
Match the /orders path

Unmarshall the entity body 
as a scala.xml.NodeSeq

Convert
to Order Complete request 

with XML response

If the ProcessActor returns 
any other message, return a 
BadRequest status code

RequestTimeout trait reads the 
akka.http.server.request-timeout 
from configuration

Get the host and port 
from the configuration

Create the ProcessOrders actor

OrderServiceApi returns the routes

Bind the routes to the HTTP server
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Log
serv
star
succ
log.info(s"Bound to ${serverBinding.localAddress} ")
}.onFailure {

case ex: Exception =>
log.error(ex, "Failed to bind to {}:{}!", host, port)
system.terminate()

}
}

You can test the OrderServiceApp with your favorite HTTP client by running the appli-
cation in sbt. 

12.4 Summary
System integration tends to require many of the things that Akka offers out of the box: 

 Asynchronous, message-based tasks
 Easy ability to provide data conversion
 Service production/consumption

We pulled in akka-http and Camel to make integration easy, which allowed us to focus
on implementing many of the typical integration patterns using just Akka, and not
writing a lot of code that was tied to our chosen transports or component layers.

 Akka brings a lot to the party on the system integration front. Quite often, this is
the most onerous aspect of integration: dealing with the pressure of real flows going
in and out, against performance constraints and reliability requirements. In addition
to the topics covered here—consuming services, getting data, converting it, and pro-
ducing it to other consumers—the core aspects of the actor model, concurrency, and
fault tolerance represent critical contributors to making the integrated system reliable
and scalable. It’s easy to imagine expanding any of our pattern examples here to
include some of the replaceability we saw in chapter 4, and the scaling abilities from
chapters 6 and 9. 

 that the 
ice is 
ted 
essfully

Log that the service has failed 
to bind to the host and port



Streaming
In chapter 12 you learned how to integrate Akka applications with external services
using requests and responses. In this chapter we’ll look at integrating external ser-
vices using streams of data. 

 A stream of data is a sequence of elements that could have no end. Conceptu-
ally, a stream is transient in that it only exists as long as there’s a producer provid-
ing elements to the stream and a consumer reading elements from the stream. 

 One of the challenges for applications that consume streams is that you can’t
know beforehand how much data you’ll need to handle, because more data may be
produced at any time. Another challenge in streaming applications is dealing with
the varying speeds of producers and consumers. If your application mediates
between streaming producers and consumers, there’s one problem you’ll have to
solve: how to buffer data without running out of memory. How can a producer
know if a consumer can or can’t keep up? 

In this chapter
 Processing streams of events in bounded memory

 Streaming events over HTTP with akka-http

 Broadcasting and merging with the graph DSL 

 Mediating between streaming producers and 
consumers
281
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 As you’ll see in this chapter, akka-stream provides a way to handle unbounded
streams with bounded buffers. Akka-stream is the foundational API for streaming
applications in Akka. Akka-http (which uses akka-stream internally) provides streaming
HTTP operations. Building streaming applications with Akka is quite a large topic, so
this chapter will serve as an introduction to the akka-stream API and to using akka-http
for streaming, from simple pipelines to more-complex graphs of stream-processing
components. 

 The example that we’ll look at in this chapter involves structured application-log
processing. Many applications create some kind of log file to make debugging possi-
ble at runtime. We’ll start by processing log files of any size, collecting interesting
events, without loading the complete file in memory before analyzing it. 

 After that we’ll write a log-stream processing service using akka-http. Throughout
the chapter we’ll build out this example. 

13.1 Basic stream processing
Let’s first look at what processing streams with akka-stream really means. Figure 13.1
shows how elements are processed one at a time in a processing node. Processing one
element at a time is crucial to prevent memory overflow. As is also shown, bounded
buffers can be used in some places in the processing chain.    

Processing
nodeElement 6 Element 5 Element 4 Element 3 Element 2 Element 1

A producer of elements
publishes elements one
after the other.

A consumer of elements
receives elements one
after the other.

A processing node mediating between
a producer and a consumer

Elements flow through the
processing node one at a
time (follow the arrows).

Producer
of

elements

Consumer
of

elements

The signals must propagate
across any processing nodes
between producer and
consumer.

Producer
of

elements

Consumer
of

elements

The consumer has to signal
to the producer how many
elements it can process to
prevent overload.

The producer must only
send as many elements at
a time as requested by
the consumer.

Element
processing

node
Element 6 Element 5 Element 4 Element 3 Element 2 Element 1

Figure 13.1 Stream processing (continued on next page)
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The similarity to actors should be evident. The difference, as shown in figure 13.1, is
the signaling between producers and consumers about what can be processed in
bounded memory, which you’d have to build yourself when using actors. Figure 13.2
shows examples of linear processing chains that we’ll need for the log-stream proces-
sor, such as filtering, transforming, and framing log events. 

Element
processing

node

Producer
of

elements

Consumer
of

elements

Elements can be kept in a buffer of bounded size
outside of the processing node. Elements arrive one
at a time from the perspective of the processing node.

Buffer

Element 6 Element 5 Element 4 Element 3 Element 2 Element 1

Figure 13.1 Stream processing (continued)

Filter
errorsWarning Info Error Error Error Error

Filtering: only error log events
are produced to the consumer.

LogEvent 3

Transform
to JSON JSON JSON JSON

Transforming: serialize log
events to JSON strings.

LogEvent 2 LogEvent 1

From
bytes
to log
events

Consumer
of log
events

Producer
of byte
chunks

Producer
of log
events

Producer
of log
events

b5

LogEvent 5 LogEvent 4

b4 b3 b2

Log Event 5 is spread
across chunks 3, 4, and 5.

Log Event 4 is spread
across chunks 2 and 3.

Framing: from chunks of bytes, deserialized to
elements of type log event. Chunks are differently
sized (based on whatever size was efficient or on
timing). In this example, chunk b1 could have
contained elements 1, 2, and 3, and maybe a
part of element 4 (the elements are encoded
in the byte chunks in some way).

Consumer
of log
events

Consumer
of JSONWarning Info Error

Figure 13.2 Linear stream processing
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The log-stream processor will have to do more than just read from one producer and
write to one consumer, and that’s where a processing graph comes in. A processing
graph makes it possible to build more-advanced processing logic out of existing pro-
cessing nodes. For example, a graph merging two streams and filtering elements is
shown in figure 13.3. Essentially, any processing node is a graph; a graph is a process-
ing element with a number of inputs and outputs. 

 The final version of the log-stream processor service will receive application logs
from many services on the network using HTTP and will combine different kinds of
streams. It will filter, analyze, transform, and eventually send results to other services.
Figure 13.4 shows a hypothetical use case of the service. 

 The figure shows the log-stream processor receiving log events from different parts
of a Tickets application. Log events are sent to the log-stream processor immediately

Producer
of byte
chunks

From
bytes to
element Filter

elements
Consumer of

log events
From

bytes to
element

b1b2b3b4

Producer
of byte
chunks

b10 b9

LogEvent 5 LogEvent 1Merge

MergeFilter:
Graph of processing nodes

A merge node takes an
element from either input
and passes it through.

Filters LogEvents
by some predicate,
for instance, all errors.

The MergeFilter graph of processing nodes can describe more
advanced processing logic by combining simple parts with any
number of inputs and outputs (in this case merging two byte
streams and filtering out specific events).

MergeFilter

A node is a graph, defined by its shape. The shape is
defined by the number of inputs and outputs. Graphs
can be built out of graphs. Akka-stream provides
several standard processing graphs.

Producer
of byte
chunks

b1b2b3b4

Producer
of byte
chunks

b10 b9

Consumer of
log eventsLogEvent 5 LogEvent 1

Figure 13.3 Graph processing
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or after some delay. The Tickets web app and HTTP service send events through as
they occur, while a log-forwarder service sends events after they’ve been aggregated
from third-party service logs. 

 In the use case shown in figure 13.4, the log-stream processor sends identified log
events to an archive service so that users can execute queries later. The log-stream ser-
vice also identifies particular problems that occur in the application’s services and
uses a notification service to notify the team when human intervention is required.
Some of the events are turned into metrics, which can be fed into a service that pro-
vides charts for more analysis. 

 Turning the log events into archived events, notifications, metrics, and an audit
trail will be done in different processing flows, each requiring a separate piece of pro-
cessing logic, and all feeding on the incoming log events. 

 This log-stream processor example will highlight a couple of goals, whose solutions
will follow in the next sections of this chapter: 

 Bounded memory usage—The log-stream processor mustn’t run out of memory
because the log data can’t fit into memory. It should process events one by one,
possibly collecting events in temporary buffers, but never trying to read all log
events into memory. 

Tickets application

Tickets web app
and HTTP service
send logs directly

The log forwarder reads
existing log files from
third-party services. 

Log
events

Log
events

Tickets
web app

Tickets
HTTP service

Log-stream
processor

Log
forwarder

Notifications
service

Metrics and
graphs service

Audited user
actions

Archive 
service

Tickets
database

Container 
services

Load
balancer

Log
events

Notifications

Metrics

Log events

Audit trail

Figure 13.4 Log-stream processor use case
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 Asynchronous, nonblocking I/O—Resources should be used efficiently, and block-
ing threads should be limited as much as possible. For instance, the log-stream
processor can’t send data sequentially to every service and wait for all to
respond in turn. 

 Varying speeds—Producers and consumers should be able to operate at different
speeds. 

The final incarnation of the log-stream processor is an HTTP streaming service, but it
would be great if we could start with a simpler version that just processes events from a
file, writing results to a file. As you’ll see, akka-stream is quite flexible. It’s relatively easy
to decouple the processing logic from the type of streams you read from and write to.
In the next sections we’ll build the log-stream processing app step by step, starting with
a simple stream copy app. We’ll explore the akka-stream API as we go along, and we’ll
discuss the choices that akka-stream has made to enable stream processing. 

13.1.1 Copying files with sources and sinks

As a first step toward building a log-stream processing app, we’ll look at a streaming
copy example. Every byte that’s read from a source stream will be written to a destina-
tion stream. 

 As always, we’ll have to add dependencies to our build file, shown in the following
listing.

"com.typesafe.akka" %% "akka-stream" % version,

Using akka-stream usually involves two steps: 

1 Define a blueprint—A graph of stream-processing components. The graph defines
how streams need to be processed. 

2 Execute the blueprint—Run the graph on an ActorSystem. The graph is turned
into actors that do all the work required to actually stream the data. 

The graph (blueprint) can be shared throughout your program. After it has been cre-
ated, it’s immutable. The graph can be run as many times as you like, and every run is
executed by a new set of actors. A running graph can return results from components
within the streaming process. We’ll get into the details of how all of this works later in
this chapter. Don’t worry if it’s not completely clear right now. 

 We’ll start with a very simple precursor to the problem of log streaming and create
an app that will simply copy logs. The StreamingCopy app copies an input file to an
output file. The blueprint in this case is a very simple pipe. Any data received from a
stream is written to a stream. Listings 13.3 and 13.4 show the most relevant code, the
former to define a blueprint and the latter to execute the blueprint. 

 Getting the intputFile and outputFile from command-line arguments is left out
of those listings. The following listing shows the most important imports.

Listing 13.1 Dependencies

Stream dependency
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import akka.actor.ActorSystem
import akka.stream.{ ActorMaterializer, IOResult }
import akka.stream.scaladsl.{ FileIO, RunnableGraph, Source, Sink }
import akka.util.ByteString

val source: Source[ByteString, Future[IOResult]] =
FileIO.fromPath(inputFile)

val sink: Sink[ByteString, Future[IOResult]] =
FileIO.toPath(outputFile, Set(CREATE, WRITE, APPEND))

val runnableGraph: RunnableGraph[Future[IOResult]] =
source.to(sink)

First, a Source and a Sink are defined by using FileIO.fromPath and FileIO.toPath. 
Source and Sink are both stream endpoints. A Source has one open output, and a

Sink has one open input. Sources and Sinks are typed; the stream element type in this
case is ByteString for both. 

 The Source and Sink are connected together to form a RunnableGraph, shown in
figure 13.5. 

Listing 13.2 Imports for the StreamingCopy app

Listing 13.3 Defining a RunnableGraph to copy a stream

The scaladsl package contains the
Scala DSL for working with streams;

there’s also a javadsl available.

A source to read from

A sink to 
write to

Connecting a source and a sink 
creates a RunnableGraph.

Blocking file I/O
We use FileIO in the examples because it’s very easy to verify input and output in
files, and the sources and sinks for file I/O are very simple.

The types of sources and sinks are relatively easy to switch, say, from file to some
other medium. 

Note that the FileIO-created sources and sinks internally use blocking file I/O. The
actors created for FileIO sources and sinks run on a separate dispatcher, which can
be set globally with akka.stream.blocking-io-dispatcher. It’s also possible to
set a custom dispatcher for graph elements through a withAttributes that takes
an ActorAttributes. Section 13.1.2 shows an example setting a supervisor-
Strategy using ActorAttributes. 

File I/O is a situation where blocking isn’t as bad as you might think. Latency to disk
is far lower than streaming over a network, for instance. An async version of FileIO
might be added in the future if it provides better performance for many concurrent file
streams. 
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MATERIALIZED VALUES Sources and sinks can provide an auxiliary value when
a graph is run, called a materialized value. In this case, it’s a Future[IOResult]
containing how many bytes were read or written. We’ll discuss materialization
in more detail in section 13.1.2. 

The StreamingCopy app creates about the simplest graph we could define by using
source.to(sink), which creates a RunnableGraph that takes data from a Source and
feeds it straight into a Sink. 

 The lines that create a source and a sink are declarative. They don’t create files or
open file handles, but simply capture all the information that will be needed later,
once the RunnableGraph is run. 

 It’s also important to note that creating the RunnableGraph doesn’t start anything.
It simply defines a blueprint for how to copy. 

 The following listing shows how the RunnableGraph is executed. 

implicit val system = ActorSystem()
implicit val ec = system.dispatcher
implicit val materializer = ActorMaterializer()

runnableGraph.run().foreach { result =>
println(s"${result.status}, ${result.count} bytes read.")
system.terminate()

}

Running the runnableGraph results in the bytes being copied from source to sink—
from a file to a file in this case. A graph is said to be materialized once it is run. 

 The graph is stopped in this case once all data is copied. We’ll discuss the details of
this in the next section. 

 The FileIO object is part of akka-stream, which provides a convenient means to
create file sources and file sinks. Connecting the source and sink causes every
ByteString read from the file source to be passed into the file sink, one at a time,
once the RunnableGraph is materialized. 

 In the next section we’ll look at the details of materialization and how this
RunnableGraph is executed. 

Listing 13.4 Execute a RunnableGraph to copy a stream

source.to(sink)

A runnable graph
connects all open
inputs and outputs.

Source

Open
output

Sink

Open
input

RunnableGraph

Source Sink
Figure 13.5 Source, 
Sink, and the simplest 
RunnableGraph

The materializer eventually 
creates actors that execute 
the graph.

Running the graph returns a Future[IOResult]; in this case,the
IOResult contains a count of bytes read from the source.
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13.1.2 Materializing runnable graphs

The run method in listing 13.4 requires a Materalizer in implicit scope. An Actor-
Materializer converts the RunnableGraph into actors, which execute the graph. 

 Let’s look at what that entails in this specific example of copying files. Some of
these details might change, because they’re private internals of Akka, but it’s very use-
ful to trace the code and see how everything works. Figure 13.6 shows a simplified ver-
sion of how the materialization of the StreamingCopy graph starts. 

 The ActorMaterializer checks if the Source and Sink in the graph are prop-
erly connected, and requests the Source and Sink internals to set up resources.
Internally, fromPath creates a Source from a FileSource (which is the internal
implementation of a SourceShape). 

 The FileSource is asked to create its resources and creates a FilePublisher,
an actor that opens a FileChannel. 

 The toPath method creates a Sink from a FileSinkSinkModule. The FileSink
creates a FileSubscriber actor, which opens a FileChannel. 

 The to method used to connect source and sink in this example internally
combines the modules of source and sink together into one module. 

 The ActorMaterializer subscribes subscribers to publishers according to how
the modules are connected, in this case subscribing the FileSubscriber to the
FilePublisher. 

 The FilePublisher reads ByteStrings from the file until it reaches the end,
closing the file once it stops. 

 The FileSubscriber writes any ByteStrings it receives from the FilePublisher
to the output file. The FileSubscriber closes the FileChannel once it stops.

 The FilePublisher completes the stream once it has read all the data from the
file. The FileSubscriber receives an OnComplete message when this happens
and closes the file that was written to. 

Running the examples
As usual, you can run the examples in this chapter from the sbt console. You can
pass through any arguments to the run command that are required by the app in
question. 

A plugin that’s very handy for running applications is sbt-revolver, which makes it pos-
sible to run an app, restart, and stop it (using re-start and re-stop), without having
to exit the sbt console. It can be found here: https://github.com/spray/sbt-revolver. 

The chapter-stream folder in the GitHub project also contains a GenerateLogFile
app, which can create large test log files. 

Copying a file larger than the maximum memory of the JVM (set by the -Xmx param-
eter) to verify that the app is not secretly loading the entire file into memory is an
exercise you can try. 
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A stream can be canceled using operators like take, takeWhile, and takeWithin,
which respectively cancel the stream at a maximum number of elements processed,
when a predicate function returns true, and when a set duration has passed. Inter-
nally these operators complete the stream in a similar way. 

 All actors that were created internally to execute the work are stopped at that
point. Running the RunnableGraph again creates a new set of actors, and the whole
process starts again from the beginning. 

PREVENTING MEMORY OVERLOAD

If the FilePublisher were to read all data from the file into memory (which it
doesn’t), it could cause an OutOfMemoryException, so what does it do instead? The
answer lies in how the Publisher and Subscriber interact with each other. This is
shown in figure 13.7. 

 The FilePublisher can only publish up to the number of elements requested by
the FileSubscriber. 

 In this case, the FilePublisher on the source side can only read more data from
the file if the FileSubscriber on the sink side requests more data. This means that
data is only read from the source as quickly as the sink can write the data out. In this

A RunnableGraph can only be created if all
inputs and outputs in the graph are connected.
The materializer checks that all inputs and
outputs in the graph are connected, instructs
Source and Sink to create publishers and
subscribers, and subscribes subscribers
to publishers according to the graph.

1.

Source eventually creates
a FilePublisher, which
creates a FileChannel
to read from the file.

3. Sink eventually creates
a FileSubscriber, which
creates a FileChannel to
write to the file.

4.

Source and Sink are combined into
one module, which represents the
blueprint of the graph.

2.

ActorMaterializer

FilePublisher

FileChannel

FileSubscriber

FileChannel

Subscription

Create Create

RunnableGraph

Source Sink

Figure 13.6 Materializing the graph
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simple example, we only have two components in the graph; in more-complex graphs,
the demand travels all the way from the end of the graph to the beginning of the
graph, making sure that no publisher can ever publish faster than subscribers
demand. 

 All the graph components in akka-stream work in a similar way. Eventually every
part is translated into a Reactive Streams publisher or subscriber. It’s this API that
makes it possible for akka-stream to process unbounded streams of data in bounded
memory and that sets the rules for how a publisher and subscriber must interact, such
as never publishing more elements than are requested. 

 We’ve simplified the protocol between publisher and subscriber substantially here.
What’s most important is that the subscriber and publisher send each other messages
about supply and demand asynchronously. They don’t block each other in any way.
The demand and supply are specified as a fixed number of elements. The subscriber
can signal the publisher that it can only process less data, or it can signal the publisher
that it could process more. The ability of the subscriber to do this is called nonblocking
back pressure. 

REACTIVE STREAMS INITIATIVE Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with nonblocking back pres-
sure. There are several libraries that have implemented the Reactive Streams
API, which can all integrate with each other. Akka-stream implements the
Reactive Streams API and provides a higher-level API on top of it. You can
read more about it at www.reactive-streams.org/. 

INTERNAL BUFFERS

Akka-stream uses buffers internally to optimize throughput. Instead of requesting and
publishing every single element, internally batches are requested and published. 

in this example 16, by sending a Request message.
FileSubscriber requests a finite number of elements,1.

or fewer by sending OnNext messages.
FilePublisher can only publish 16 elements2.

FilePublisher

FileChannel

FileSubscriber

FileChannel

Request(16)

OnNext(bytes)

Read Write

Figure 13.7 The Subscriber
requests as much data from the 
Publisher as it can handle.

www.reactive-streams.org/
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 The FileSubscriber can request a fixed number of elements at a time. The akka-
stream library ensures that bounded memory is used when reading from and writing
to files. This isn’t something you have to worry about, but if you’re curious, you might
wonder about the maximum number of in-flight elements at any time requested by
the FileSubscriber.

 If you dive a little deeper into the code, you’ll see that the FileSubscriber uses a
WatermarkRequestStrategy with a high watermark set to a maximum input buffer
size. The FileSubscriber won’t request more elements than this setting. 

 Then there’s the size of the element itself, which we haven’t discussed. In this case,
it’s the size of a chunk read from the file, which can be set in the fromPath method
and is 8 KB by default. 

 The maximum input buffer size sets the maximum number of elements, which can
be set in the configuration using akka.stream.materializer.max-input-buffer-
size. The default setting is 16, so around 128 KB of data can be in flight at maximum
in this example. 

 The maximum input buffer can also be set through ActorMaterializerSettings,
which can be passed to the materializer or to specific graph components, which
you’ll see more of throughout the chapter. ActorMaterializerSettings makes it
possible to configure several aspects of materialization, including which dispatcher
should be used for the actors executing the graph and how graph components should
be supervised. 

 We’ll look at buffering again in section 13.4. 

COMBINING MATERIALIZED VALUES

As we mentioned before, sources and sinks can provide an auxiliary value when the
graph is materialized. The file source and sink provide a Future[IOResult] once they
complete, containing the number of bytes read and written. 

Operator fusion
Looking ahead to the point where we’ll use more nodes between sources and sinks,
akka-stream uses an optimization technique called operator fusion to remove as many
unnecessary asynchronous boundaries as possible in linear chains in the graph. 

By default, as many stages in a graph as possible are run on a single actor to remove
the overhead of passing the elements and the demand and supply signals across
threads. The async method can be used to explicitly create an asynchronous bound-
ary in a graph, so that the processing elements separated by the async call are guar-
anteed to later run on separate actors. 

Operator fusion happens at materialization time. It can be turned off by setting
akka.stream.materializer.auto-fusing=off. It’s also possible to pre-fuse a
graph (before it’s materialized) with Fusing.aggressive(graph). 
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The RunnableGraph returns one materialized value when it’s run, so how is it decided
which value is passed through the graph? 

 The to method is shorthand for toMat, which is a method that takes an additional
function argument to combine materialized values. The Keep object defines a couple
of standard functions for this. 

 By default, the to method uses Keep.left to keep the materialized value on the
left, which explains why the materialized value for the graph in the StreamingCopy
example returns the Future[IOResult] of reading the file, as shown in figure 13.8. 

 You can choose to keep the left, right, none, or both values with the toMat
method, shown next.

import akka.Done
import akka.stream.scaladsl.Keep

val graphLeft: RunnableGraph[Future[IOResult]] =
source.toMat(sink)(Keep.left)

val graphRight: RunnableGraph[Future[IOResult]] =
source.toMat(sink)(Keep.right)

val graphBoth: RunnableGraph[(Future[IOResult], Future[IOResult])] =
source.toMat(sink)(Keep.both)

val graphCustom: RunnableGraph[Future[Done]] =
source.toMat(sink) { (l, r) =>

Future.sequence(List(l,r)).map(_ => Done)
}

Listing 13.5 Keeping materialized values

The to method uses
Keep.left by default.

fromPath
Source

toPath
Sink

Read
IOResult
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Write
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Keep.left
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Keep.right

fromPath
Source

toPath
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Read
IOResult

Write
IOResult

Read
IOResult

Write
IOResult

Write
IOResult

Keep.both

Figure 13.8 Keeping materialized values in the graph
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indicates the stream is done
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Keep.left, Keep.right, Keep.both, and Keep.none are simple functions that return
the left, right, both, or no arguments, respectively. Keep.left is a good default; in a
long graph the materialized value of the beginning of the graph is kept. If Keep.right
were the default, you’d have to specify Keep.left in every step to keep the value of
the first materialized value. 

 So far you’ve seen how a source and a sink can be combined. In the next section,
we’ll get back to the log events example and introduce a Flow component. We’ll look
more closely at stream operations in the context of processing and filtering events. 

13.1.3 Processing events with flows

Now that you know the basics of defining and materializing a graph, it’s time to look
at an example that does more than just copy bytes. We’ll start with the first version of a
log processor. 

 The EventFilter app, which is a simple command-line application, takes three
arguments: an input file containing the log events, an output file to write JSON-
formatted events to, and the state of the events to filter on (events with that state will
be written to the output file). 

 Let’s discuss the log events format before we get into the stream operations. Log
events are written as lines of text, and every element of a log event is separated from the
next with a pipe character (|). The following listing shows an example of the format. 

my-host-1 | web-app | ok | 2015-08-12T12:12:00.127Z | 5 tickets sold.||
my-host-2 | web-app | ok | 2015-08-12T12:12:01.127Z | 3 tickets sold.||
my-host-1 | web-app | ok | 2015-08-12T12:12:02.127Z | 1 tickets sold.||
my-host-2 | web-app | error | 2015-08-12T12:12:03.127Z | exception!!||

A log event line for our first example consists of a host name, service name, state,
time, and description field. The state can be one of the values 'ok', 'warning',
'error', or 'critical'. Every line ends with a newline character (\n). 

 Every text line in the file will be parsed and turned into an Event case class. 

case class Event(
host: String,
service: String,
state: State,
time: ZonedDateTime,
description: String,
tag: Option[String] = None,
metric: Option[Double] = None

)

The Event case class simply has a field for every field in the log line. 

Listing 13.6 Format for log events

Listing 13.7 The Event case class
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The spray-json library is used to convert an Event into JSON. The EventMarshalling
trait, which is omitted here, contains JSON formats for the Event case class. The
EventMarshalling trait can be found in the GitHub repository along with all the code
shown in this chapter, in the chapter-stream directory.

 We’ll use a Flow between a Source and a Sink, as shown in figure 13.9. 
 The flow will capture all the stream-processing logic, and we’ll reuse this logic later in

the HTTP version of the example. Both the Source and a Flow provide methods to oper-
ate on the stream. Figure 13.10 shows the operations in the event filter flow conceptually. 

RunnableGraph

source.via(flow)

A Flow has two open
ports, an input and
an output. Flow

Source Flow Sink

Sink

Source Flow Source

flow.to(sink)

Flow Sink

Combine Flow and
Source, using the
via method, to
become a Source.

Combine Flow
and Sink, using
the to method,
to become a Sink.

A Flow can be combined with
a Source and a Sink to become
a RunnableGraph, such as with
source.via(flow).to(sink).

Figure 13.9 Connecting sources and sinks with flows

Event filter flow

The flow consists of several stream
operations, conceptually grouped in
Framing, Parse, Filter, and Serialize

Parses a chunk
of text into an
Event case class.

Filters interesting Events,
such as all errors.

Framing Parse Filter Serialize

Finds demarcations in the
input and splits the input
into chunks of text that each 
contain a complete log event.

Writes out interesting
events in JSON format
as ByteStrings

ByteString ByteStringEvent EventByteString

Figure 13.10 Filtering events
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The first problem we face is the fact that the flow will receive any size of ByteStrings
as elements from the source. We can’t assume that a received ByteString contains
exactly one log event line. 

 Akka-stream has a couple of predefined Flows for framing that can be used to iden-
tify frames of data in a stream. In this case, we can use the Framing.delimiter flow,
which detects a particular ByteString as a delimiter in the stream. It buffers up to a
maximum of maxLine bytes to find a frame ending with a delimiter, to make sure that
corrupted input can’t lead to an OutOfMemoryException. 

 Listing 13.8 shows the frame flow that turns arbitrarily sized ByteStrings into
ByteString frames that are delimited with a newline. In our format, that indicates a
complete log event line. 

val frame: Flow[ByteString, String, NotUsed] =
Framing.delimiter(ByteString("/n"), maxLine)

.map(_.decodeString("UTF8"))

The Flow has many collection-like operators, such as map and filter, that can be used
to transform the elements in the stream. Listing 13.8 shows how map is used to turn
every framed ByteString into a String. 

 We’re now ready to parse the log line into an Event case class. We’ll leave out the
actual logic for parsing the log line (which can be found in the GitHub project as
always). We’ll simply map over the elements again, turning the String into an Event,
as shown in listing 13.9.

A STREAM IS NOT A COLLECTION You’ll notice that a lot of the streaming oper-
ations sound like collection operations, such as map, filter, and collect.
This might make you think that a stream is just another standard collection,
which is not the case. The big difference is that the size of the stream isn’t
known, whereas the size is known in almost all standard collection classes like
List, Set, and Map. Some methods you might have expected on a Flow, based
on your experience with collection APIs, aren’t available simply because you
can’t traverse all elements of the stream. 

val parse: Flow[String, Event, NotUsed] =
Flow[String].map(LogStreamProcessor.parseLineEx)

.collect { case Some(e) => e }

Listing 13.8 Framing ByteStrings

Listing 13.9 Parsing lines

Returns a Flow[ByteString, 
String, NotUsed]

Decodes every framed ByteString 
to a String log event line

Discards empty lines and extracts 
the event in the Some case

Parses the string using the parseLineEx 
method in the LogStreamProcessor object, 
which returns an Option[Event], or None if 
an empty line is encountered
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The Flow[String] creates a Flow that takes String elements as input and provides
String elements as output. 

 In this case, it’s not important what the type of the materialized value will be.
There’s no reasonable type to choose when the Flow[String] is created. The NotUsed
type is used to indicate that the materialized value isn’t important and shouldn’t be
used. The parse flow takes Strings and outputs Events. 

 Next up is the filter step.

val filter: Flow[Event, Event, NotUsed] =
Flow[Event].filter(_.state == filterState)

All events with a specific filterState are passed through the filter flow, and others
are discarded. 

 The serialize flow is shown next. 

val serialize: Flow[Event, ByteString, NotUsed] =
Flow[Event].map(event => ByteString(event.toJson.compactPrint))

Flows can be composed using via. The next listing shows the definition of the com-
plete event filter flow and how it’s materialized. 

val composedFlow: Flow[ByteString, ByteString, NotUsed] =
frame.via(parse)

.via(filter)

.via(serialize)

val runnableGraph: RunnableGraph[Future[IOResult]] =
source.via(composedFlow).toMat(sink)(Keep.right)

runnableGraph.run().foreach { result =>
println(s"Wrote ${result.count} bytes to '$outputFile'.")
system.terminate()

}

We use toMat here to keep the materialized value on the right, which is the material-
ized value of the Sink, so we can print the total number of bytes written to the output
file. The flow can, of course, also be defined all at once, as follows.

Listing 13.10 Filtering events

Listing 13.11 Serializing events

Listing 13.12 The composed event filter flow

Serializes to JSON using
the spray-json library



298 CHAPTER 13 Streaming
  

val flow: Flow[ByteString, ByteString, NotUsed] =
Framing.delimiter(ByteString("\n"), maxLine)

.map(_.decodeString("UTF8"))

.map(LogStreamProcessor.parseLineEx)

.collect { case Some(e) => e }

.filter(_.state == filterState)

.map(event => ByteString(event.toJson.compactPrint))

In the next section, we’ll look at what happens when errors occur, such as when
there’s a corrupted line in the log file. 

13.1.4 Handling errors in streams

The EventFilter app was a little naive when it came to errors. The LogStream-
Processor.parseLineEx method throws an exception when a line can’t be parsed,
but that’s just one of the errors that could occur. You could pass in a path to a file that
doesn’t exist. 

 By default, stream processing is stopped when an exception occurs. The material-
ized value of the runnable graph will be a failed Future containing the exception.
That’s not very handy in this case. It would make more sense to ignore log lines that
can’t be parsed. 

 We’ll look at ignoring unparsable log lines first. You can define a supervision strat-
egy, similar to how you can define a supervision strategy for actors. The next listing
shows how Resume can be used to drop the element causing the exception, which
leads to the stream processing continuing. 

import akka.stream.ActorAttributes
import akka.stream.Supervision

import LogStreamProcessor.LogParseException

val decider : Supervision.Decider = {
case _: LogParseException => Supervision.Resume
case _ => Supervision.Stop

}

val parse: Flow[String, Event, NotUsed] =
Flow[String].map(LogStreamProcessor.parseLineEx)

.collect { case Some(e) => e }

.withAttributes(ActorAttributes.supervisionStrategy(decider))

The supervision strategy is passed using withAttributes, which is available on all
graph components. You can also set the supervision strategy for the complete graph
using ActorMaterializerSettings, as follows.

Listing 13.13 One flow for the event filter

Listing 13.14 Resuming the flow in LogParseException

Defines a decider, similar
to supervision in actors

Resumes on 
LogParseException

Passes the supervisor
through attributes
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val graphDecider : Supervision.Decider = {
case _: LogParseException => Supervision.Resume
case _ => Supervision.Stop

}

import akka.stream.ActorMaterializerSettings
implicit val materializer = ActorMaterializer(

ActorMaterializerSettings(system)
.withSupervisionStrategy(graphDecider)

)

Stream supervision supports Resume, Stop, and Restart. Some stream operations build
up state, which is discarded when Restart is used; Resume doesn’t discard the state. 

ERRORS AS STREAM ELEMENTS Another error-handling option is to catch
exceptions and use an error type that’s passed through the stream just like
any other element. You could, for instance, introduce an UnparsableEvent
case class and have both Event and UnparsableEvent extend from a common
Result sealed trait, making it possible to pattern-match on it. The complete
flow would then be a Flow[ByteString, Result, NotUsed]. Another option
is to use the Either type and encode errors as left and events as right, end-
ing up with something like Flow[ByteString, Either[Error, Result],
NotUsed]. There are better alternatives to Either available in the community,
such as Scalaz’s Disjunction, Cats’ Xor type, or Scalactic’s Or type. Mapping
to an Either-like type is left as an exercise for the reader. 

Now that we’ve looked briefly at handling stream errors, we’ll look at how we can sep-
arate the serialization protocol from the logic of filtering events. EventFilter is a very
simple app—the main logic consists of filtering events that have a particular state. It
would be great if we could reuse the parsing, filtering, and serializing steps better.
Also, we started quite arbitrarily only supporting the log format as input and JSON as
output. It would be great if we could also support JSON input and text log format out-
put, for instance. In the next section, we’ll look at a bidirectional flow to define a reus-
able serialization protocol that we can stack on top of the filter flow. 

13.1.5 Creating a protocol with a BidiFlow

A BidiFlow is a graph component with two open inputs and two open outputs. One
way to use a BidiFlow is to stack it on top of a flow as an adapter. 

 We’ll use a BidiFlow as two flows that are used together, but it’s important to note
that a BidiFlow can be created in many more ways than just from two flows, which
allows for some interesting advanced use cases. 

 Let’s rewrite the EventFilter app so that it basically only deals with the filter
method, a Flow[Event, Event, NotUsed], from event to event. How the events are read
from incoming bytes and how the events are written out again should be reusable as a
protocol adapter. Figure 13.11 shows the structure of a BidiFlow. 

Listing 13.15 Supervise graph

Passes in supervisor
strategy through 
ActorMaterializerSettings
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A bidirectional flow contains two flows
that should be logically grouped together.

All inputs and outputs need to be
connected or the graph will not run.

Combine a BidiFlow with a Flow, using
the join method, to create a new Flow.

bidiFlow.join(flow)

BidiFlow

Flow

Flow

ComposedFlowBidiFlow Flow

BidiFlow

Figure 13.11 Bidirectional flow

The BidiFlow internally uses two Flows:
one in from ByteString to Event, and
one out from Event to ByteString.

The BidiFlow is stacked
on top of the filter Flow.

File source
Serialization protocol:

BidiFlow
File sink

Bytes Event

Bytes Event

Bytes Event

Filter

File source

Serialization protocol:
BidiFlow

Filter

Framing

Serialize

Parse

Bytes Event

Figure 13.12
Serialization protocol 
using a bidirectional flow
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The BidiEventFilter app separates the serialization protocol from the logic for fil-
tering events, as shown in figure 13.12. In this case, the “out” flow only contains a seri-
alized flow because in this case the framing elements (newline characters) are
automatically added by the serializer. 

 Listing 13.16 shows how a specific BidiFlow is created from command-line argu-
ments. Anything other than “json” will be interpreted as the log file format. 

val inFlow: Flow[ByteString, Event, NotUsed] =
if(args(0).toLowerCase == "json") {

JsonFraming.json(maxJsonObject)
.map(_.decodeString("UTF8").parseJson.convertTo[Event])

} else {
Framing.delimiter(ByteString("\n"), maxLine)

.map(_.decodeString("UTF8"))

.map(LogStreamProcessor.parseLineEx)

.collect { case Some(event) => event }
}

val outFlow: Flow[Event, ByteString, NotUsed] =
if(args(1).toLowerCase == "json") {

Flow[Event].map(event => ByteString(event.toJson.compactPrint))
} else {

Flow[Event].map{ event =>
ByteString(LogStreamProcessor.logLine(event))

}
}

val bidiFlow = BidiFlow.fromFlows(inFlow, outFlow)

JsonFraming frames incoming bytes into JSON objects. We use spray-json here to parse
the bytes containing a JSON object and convert it to an Event. JsonFraming is included
in the GitHub project, which is copied from Konrad Malawski’s preliminary work on
marshallers for streaming JSON (expected to land in an upcoming version of Akka). 

fromFlows creates a BidiFlow from two flows, for deserialization and serialization.
The BidiFlow can be joined on top of the filter flow with join, as shown in the fol-
lowing listing. 

val filter: Flow[Event, Event, NotUsed] =
Flow[Event].filter(_.state == filterState)

val flow = bidiFlow.join(filter)

Another way to think about a BidiFlow is that it provides two flows that you can connect
before and after an existing flow, to adapt on the input side and on the output side of
the flow in question. In this case it’s used to read and write in a consistent format. 

Listing 13.16 Creating a BidiFlow from command-line arguments

Listing 13.17 Joining a BidiFlow with a filter flow

Framing for streaming JSON; 
maxJsonObject is the maximum
number of bytes for any JsonOb

LogStreamProcessor.logLine 
method serializes an event 
to a log line

The in flow of the BidiFlow is left 
of the filter flow; the out flow of 
the BidiFlow is on the right.
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 In the next section, we’ll build a streaming HTTP service and add more features to
the log-stream processor, getting closer to a realistic application. So far we’ve only
worked with straight pipelines of stream operations. We’ll also look at broadcasting
and merging streams. 

13.2 Streaming HTTP
The log-stream processor will run as an HTTP service. Let’s look at what that entails.
Akka-http uses akka-stream, so there isn’t a lot of extra glue code necessary to move
from a file-based app to an HTTP service. Akka-http is a really good example of a
library that embraces akka-stream. You can be sure that more will follow. 

 First, we’ll add some more dependencies to our project. 

"com.typesafe.akka" %% "akka-http-core" % version,
"com.typesafe.akka" %% "akka-http-experimental" % version,
"com.typesafe.akka" %% "akka-http-spray-json-experimental" % version,

This time we’ll build a LogsApp that makes it possible to stream logs from and to some
storage. In this case, to keep it simple, we’ll write streams straight into files. 

 There are quite a few reactive stream-based client libraries available. Connecting
the example to some other kind of (database) storage is left as an exercise for the
reader. 

13.2.1 Receiving a stream over HTTP

We’ll allow clients of the service to stream log events data using an HTTP POST. The
data will be stored in a file on the server. A POST to the URL /logs/[log_id] will cre-
ate a file named [log_id] in a logs directory. For instance, /logs/1 will create the file
1 in the configured logs directory. We’ll stream from that file later when the HTTP GET
is implemented for /logs/[log-id]. The LogsApp that sets up the HTTP server is
omitted here. 

 The HTTP route is defined in a LogsApi class, shown in listing 13.19. LogsApi has a
logsDir that points to the directory where the logs will be stored. The logFile
method just returns a File for the specific ID. The EventMarshalling trait is mixed in
to support JSON marshalling. You’ll also notice that an ExecutionContext and Actor-
Materializer are in implicit scope; they’ll be needed to run Flows. 

class LogsApi(
val logsDir: Path,
val maxLine: Int

)(

Listing 13.18 Akka-http dependencies

Listing 13.19 LogsApi

Akka-http dependency
Integration between

akka-http and spray-json
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implicit val executionContext: ExecutionContext,
val materializer: ActorMaterializer

) extends EventMarshalling {
def logFile(id: String) = logsDir.resolve(id)

// route logic follows..

We’ll use the BidiFlow from the previous section, because it already defines the
protocol from log file to JSON events. The next listing shows the Flow and Sink that
will be used, as well as the Source, which we’ll come back to when the HTTP GET is
implemented. 

import java.nio.file.StandardOpenOption
import java.nio.file.StandardOpenOption._

val logToJsonFlow = bidiFlow.join(Flow[Event])

def logFileSink(logId: String) =
FileIO.toPath(logFile(logId), Set(CREATE, WRITE, APPEND))

def logFileSource(logId: String) = FileIO.fromPath(logFile(logId))

The events are left unchanged in this example; all log lines are converted to JSON
events. Adapting the flow that’s joined with the BidiFlow to filter events based on a
query parameter is left up to the reader. logFileSink and logFileSource are conve-
nience methods that you’ll notice in examples in this section. 

 The HTTP POST is handled in the postRoute method, shown in listing 13.21.
Because akka-http is built on top of akka-stream, receiving a stream over HTTP is rather
easy. The HTTP request entity has a dataBytes Source that we can read the data from. 

Listing 13.20 Flow and Sink used in POST

The bidirectional flow is joined 
with a flow that passes every 
event through unchanged.

Completely read the entity Source before responding
It’s important to completely read all data from the dataBytesSource. If you respond
before all data is read from the source, a client that uses HTTP persistent connec-
tions, for example, could determine that the TCP socket is still good to use for a next
request, which possibly will end up in a Source that’s never read from again. 

It’s often assumed by an HTTP client that a request will be processed completely, so
that it won’t try to read the response before it has an indication that this has hap-
pened. Even when you’re not using persistent connections, it’s best to completely
process the request. 

This usually is a problem for blocking HTTP clients, which won’t start reading the
response until they write the entire request. 

This doesn’t mean that the request/response cycle is processed synchronously. In
the examples in this section, the response is sent back asynchronously after the
request has been processed. 
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def postRoute =
pathPrefix("logs" / Segment) { logId =>

pathEndOrSingleSlash {
post {

entity(as[HttpEntity]) { entity =>
onComplete(

entity
.dataBytes
.via(logToJsonFlow)
.toMat(logFileSink(logId))(Keep.right)
.run()

) {
case Success(IOResult(count, Success(Done))) =>

complete((StatusCodes.OK, LogReceipt(logId, count)))
case Success(IOResult(count, Failure(e))) =>

complete((
StatusCodes.BadRequest,
ParseError(logId, e.getMessage)

))
case Failure(e) =>

complete((
StatusCodes.BadRequest,
ParseError(logId, e.getMessage)

))
}

}
}

}
}

The run method returns a Future[IOResult], so we use the onComplete directive,
which eventually passes the result of the Future to the inner route, where the Success
and Failure cases are handled. The response is returned with the complete directive. 

 In the next section, we’ll look at how we can respond to an HTTP GET request to
stream the log file in JSON format back to the client. 

13.2.2 Responding with a stream over HTTP

Clients should be able to retrieve a stream of log events by using HTTP GET. Let’s
implement the route. The next listing shows the getRoute method. 

def getRoute =
pathPrefix("logs" / Segment) { logId =>

pathEndOrSingleSlash {
get {

if(Files.exists(logFile(logId))) {
val src = logFileSource(logId)
complete(

Listing 13.21 Handling POST

Listing 13.22 Handling GET

Extracts the
HttpRequest

A stream of the data of this 
entity of type 
Source[ByteString, Any]

Writes the JSON 
to the file

The protocol
flow: log format

in, JSON out

Responds with a
BadRequest when

an error occurs
Responds with a LogReceipt

containing the logId and
number of bytes written

Creates a Source[ByteString, 
Future[IOResult]] if the file exists
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HttpEntity(ContentTypes.`application/json`, src)
)

} else {
complete(StatusCodes.NotFound)

}
}

}
}

BACKTICKS IN IDENTIFIERS Akka-http stays as close as possible to the HTTP
specification, and this is also reflected in the naming of identifiers for HTTP
headers, content types, and other elements of the HTTP specification. In
Scala you can use backticks to create identifiers that contain characters that
would normally not be allowed, like dashes and slashes, which are commonly
found in the HTTP specification. 

HttpEntity has an apply method that takes a ContentType and a Source. Streaming
the data from file is as easy as passing the Source to this method, and completing the
response with the complete directive. In the POST example, we simply assume that
the data will be sent as text in the expected log format. In the GET example, we return
the data in JSON format. 

 Now that we’ve got the simplest streaming GET and POST examples out of the way,
let’s look at how to use akka-http for content negotiation, which will make it possible for
the client to GET and POST data in JSON or in log format. 

13.2.3 Custom marshallers and unmarshallers 
for content type and negotiation

The Accept header allows an HTTP client to specify which format it wants to GET, if
more than one MediaType is available. The HTTP client can set a Content-Type
header to specify the format of the entity in the POST. We’ll look at handling both
these cases in this section, making it possible to interchangeably POST and GET data in
JSON or log format, similar to the BidiEventFilter example. 

 Luckily, akka-http provides features for custom marshalling and unmarshalling,
taking care of content negotiation, which means less work for us. Let’s start with han-
dling the Content-Type header in the POST. 

HANDLING CONTENT-TYPE IN A CUSTOM UNMARSHALLER

Akka-http provides a number of predefined types for unmarshalling data from entities,
byte arrays, strings, and such. It also makes it possible to create a custom Unmarshaller.
In this example we’ll only support two content types: text/plain to indicate the log
format and application/json to indicate the log events in JSON format. Based on the
Content-Type, the entity.dataBytes source is framed as delimited lines or as JSON,
and is processed as usual. 

 The Unmarshaller trait only requires one method to be implemented.

Completes with an
HttpEntity, which has

the JSON content type
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import akka.http.scaladsl.unmarshalling.Unmarshaller
import akka.http.scaladsl.unmarshalling.Unmarshaller._

object EventUnmarshaller extends EventMarshalling {
val supported = Set[ContentTypeRange](

ContentTypes.`text/plain(UTF-8)`,
ContentTypes.`application/json`

)

def create(maxLine: Int, maxJsonObject: Int) = {
new Unmarshaller[HttpEntity, Source[Event, _]] {

def apply(entity: HttpEntity)(implicit ec: ExecutionContext,
materializer: Materializer): Future[Source[Event, _]] = {

val future = entity.contentType match {
case ContentTypes.`text/plain(UTF-8)` =>

Future.successful(LogJson.textInFlow(maxLine))
case ContentTypes.`application/json` =>

Future.successful(LogJson.jsonInFlow(maxJsonObject))
case other =>

Future.failed(
new UnsupportedContentTypeException(supported)

)
}
future.map(flow => entity.dataBytes.via(flow))(ec)

}
}.forContentTypes(supported.toList:_*)

}
}

The create method creates an anonymous Unmarshaller instance. The apply
method first creates a Flow to handle the incoming data, which is composed with the
dataBytesSource using via to become a new Source. 

 This Unmarshaller has to be put in implicit scope so that the entity directive can
be used to extract the Source[Event, _], which can be found in the ContentNeg-
LogsApi class. 

implicit val unmarshaller = EventUnmarshaller.create(maxLine, maxJsObject)

def postRoute =
pathPrefix("logs" / Segment) { logId =>

pathEndOrSingleSlash {
post {

entity(as[Source[Event, _]]) { src =>
onComplete(

src.via(outFlow)
.toMat(logFileSink(logId))(Keep.right)
.run()

) {
// Handling Future result omitted here, done the same as before.

Listing 13.23 Handling Content-Type in the EventUnmarshaller

Listing 13.24 Using the EventUnmarshaller in the POST

The set of supported 
content type ranges

apply turns an
entity into a future

source of eventse custom
arshaller

Pattern matches on the 
content type, wraps a 
Flow in a FutureMoves the flows

for the formats to
a LogJson object

Gets a non-
exhaustive

ttern-match
warning

Creates a new 
source using 
via on dataBytes 
Source

Constrains the allowed 
content types for default 
akka-http behavior

 Creates and puts the
Unmarshaller in

implicit scope

entity(as[T])
requires the

Unmarshaller
 implicit scope



307Streaming HTTP
Trying out aia.stream.ContentNegLogsApp is left as an exercise to the reader. Be sure
to specify the Content-Type, using httpie, for instance. Examples are shown next.

http -v POST localhost:5000/logs/1 Content-Type:text/plain < test.log
http -v POST localhost:5000/logs/2 Content-Type:application/json < test.json

In the next section, we’ll look at handling the Accept header for content negotiation
using a custom marshaller. 

CONTENT NEGOTIATION WITH A CUSTOM MARSHALLER

We’ll write a custom Marshaller to support text/plain and application/json con-
tent types in the response. The Accept header can be used to specify certain media
types that are acceptable for the response. Some examples are shown in the following
listing using httpie. 

http -v GET localhost:5000/logs/1 'Accept:application/json'
http -v GET localhost:5000/logs/1 'Accept:text/plain'
http -v GET localhost:5000/logs/1 \
'Accept: text/html, text/plain;q=0.8, application/json;q=0.5'

The client can express that it only accepts a particular Content-type or that it has a
specific preference. The logic that determines which Content-Type should be
responded with is implemented in Akka. All we have to do is create a Marshaller that
supports a set of content types. 

 The LogEntityMarshaller object creates a ToEntityMarshaller. 

import akka.http.scaladsl.marshalling.Marshaller
import akka.http.scaladsl.marshalling.ToEntityMarshaller

object LogEntityMarshaller extends EventMarshalling {

type LEM = ToEntityMarshaller[Source[ByteString, _]]
def create(maxJsonObject: Int): LEM = {

val js = ContentTypes.`application/json`
val txt = ContentTypes.`text/plain(UTF-8)`

val jsMarshaller = Marshaller.withFixedContentType(js) {
src:Source[ByteString, _] =>
HttpEntity(js, src)

}

val txtMarshaller = Marshaller.withFixedContentType(txt) {
src:Source[ByteString, _] =>
HttpEntity(txt, toText(src, maxJsonObject))

}

Listing 13.25 Example POSTs with httpie, using the Content-Type header

Listing 13.26 Example GETs with httpie, using the Accept header

Listing 13.27 Providing marshallers for content negotiation

Only accept JSON

Only accept text (the log format) Prefer text/html, otherwise
text/plain; otherwise, JSON

Log file is 
stored in JSON, 
so streams it 
directly

Log file needs to be converted
back to log lines
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Marshaller.oneOf(jsMarshaller, txtMarshaller)
}

def toText(src: Source[ByteString, _],
maxJsonObject: Int): Source[ByteString, _] = {

src.via(LogJson.jsonToLogFlow(maxJsonObject))
}

}

Marshaller.withFixedContentType is a convenience method that creates a Marshaller
for a specific Content-Type. It takes a function, A => B, which is Source[ByteString,
Any] => HttpEntity  in this case. The src provides the bytes of the JSON log file,
which is converted to an HttpEntity.

 The LogJson.jsonToLogFlow method uses the same trick that we used before,
joining a BidiFlow with a Flow[Event], this time from JSON to log format. 

 This Marshaller has to be put in implicit scope so it can be used in the HTTP GET
route. 

implicit val marshaller = LogEntityMarshaller.create(maxJsObject)

def getRoute =
pathPrefix("logs" / Segment) { logId =>

pathEndOrSingleSlash {
get {

extractRequest { req =>
if(Files.exists(logFile(logId))) {

val src = logFileSource(logId)
complete(Marshal(src).toResponseFor(req))

} else {
complete(StatusCodes.NotFound)

}
}

}
}

}

Marshal(src).toResponseFor(req) takes the log file Source and creates a response
for it based on the request (including the Accept header), which sets off the content
negotiation using LogEntityMarshaller. 

 That concludes the examples of supporting both formats using the Content-Type
header and content negotiation with the Accept header. 

 Both LogsApi and ContentNegLogsApp read and write events unchanged. We could
filter events on their state whenever that’s requested, but it would make more sense to
have events split on the state (OK, warning, error, critical) and store those events in
separate files, so that, for instance, all the errors could be retrieved without having to
filter them every time. In the next section, we’ll look at how to fan out and fan in with
akka-stream. We’ll split the event states into separate files on the server, but we’ll also
make it possible to retrieve a subselection of the states, like all states that are not OK. 

Listing 13.28 Using the LogEntityMarshaller in the GET

f creates
 “super-
shaller”
 the two
shallers

Moves the flows for the 
formats to a LogJson object

 Creates and puts the
marshaller in implicit scope

tractRequest
directive

racts request

 toResponseFor uses
implicit marshaller
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JSON STREAMING SUPPORT The example here supports both a text log format
and a JSON format for log events. There’s an easier option for when you want
to only support JSON. The EntityStreamingSupport object in the akka.http
.scaladsl.common package provides a JsonEntityStreamingSupport
through the EntityStreamingSupport.json, which, when put into implicit
scope, makes it possible to complete an HTTP request directly with a list of
events by using complete(events). It also makes it possible to get a
Source[Event, NotUsed] directly from entity(asSourceOf[Event]).

13.3 Fan in and fan out with the graph DSL
So far we’ve only looked at linear processing with one input and one output. Akka-
stream provides a graph DSL to describe fan-in and fan-out scenarios, which can have
any number of inputs and outputs. The graph DSL is almost a kind of diagramming
ASCII art—in many cases you could translate a whiteboard diagram of a graph into
the DSL. 

 There are numerous fan-in and fan-out GraphStages that can be used to create all
kinds of graphs, just like Source, Flow, and Sink. It’s also possible to create your own
custom GraphStage. 

 You can create a graph of any Shape with the graph DSL. In terms of akka-stream, a
Shape defines how many inputs and outputs the graph has (these inputs and outputs
are called Inlets and Outlets). In the next example, we’ll create a Flow-shaped graph
so it can be used in the POST route like before. Internally it will use a fan-out shape. 

13.3.1 Broadcasting to flows

In our experience with the graph DSL, we’ll split the log events along their state (one
Sink for all errors, one for all warnings, and so on), so that the events don’t have to be
filtered every time a GET request is made for one or more of these states. Figure 13.13
shows how a BroadcastGraphStage is used to send the events to different Flows. 
The graph DSL provides GraphDSL.Builder to create the nodes in the graph, and a ~>
method is used to connect nodes together, much like the via method. A node in a
graph is of type Graph, which could be confusing when referring to a part of the
graph, so we’ll use the term “node” instead in certain cases. 

 The following listing shows how the graph in figure 13.13 is built in code. It also
shows how a flow is defined from the open inlet and outlet of the graph. 

import akka.stream.{ FlowShape, Graph }

import akka.stream.scaladsl.{ Broadcast, GraphDSL, RunnableGraph }

type FlowLike = Graph[FlowShape[Event, ByteString], NotUsed]

def processStates(logId: String): FlowLike = {

val jsFlow = LogJson.jsonOutFlow

Flow.fromGraph(

GraphDSL.create() { implicit builder =>

Listing 13.29 Broadcast to separate log sinks

A flow will be 
created from the 
Graph, and it will 
be used in the 
POST route.

builder is a GraphDSL.Builder
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import GraphDSL.Implicits._

// all logs, ok, warning, error, critical, so 5 outputs

val bcast = builder.add(Broadcast[Event](5))

val js = builder.add(jsFlow)

val ok = Flow[Event].filter(_.state == Ok)

val warning = Flow[Event].filter(_.state == Warning)

val error = Flow[Event].filter(_.state == Error)

val critical = Flow[Event].filter(_.state == Critical)

bcast ~> js.in

bcast ~> ok ~> jsFlow ~> logFileSink(logId, Ok)

bcast ~> warning ~> jsFlow ~> logFileSink(logId, Warning)

bcast ~> error ~> jsFlow ~> logFileSink(logId, Error)

bcast ~> critical ~> jsFlow ~> logFileSink(logId, Critical)

FlowShape(bcast.in, js.out)

})

}

def logFileSource(logId: String, state: State) =

FileIO.fromPath(logStateFile(logId, state))

def logFileSink(logId: String, state: State) =

FileIO.toPath(logStateFile(logId, state), Set(CREATE, WRITE, APPEND))

def logStateFile(logId: String, state: State) =

logFile(s"$logId-${State.norm(state)}")

Brings
the DSL

methods
nto scope

Adds a
Broadcast

node to
the Graph

Adds a Flow node 
to the Graph to 
pass through all 
events, 
unchanged in
JSON format

One of the 
Broadcast 
outputs writes 
directly to the 
inlet of the js 
node for all 
events.

For every
other

output, a
filter is

added in
ont of the
SON Flow. Creates a Flow-shaped Graph out 

of the inlet of the Broadcast and 
the outlet of the JSON Flow

The open inlet and outlet
are returned as Flows so
they can be used in the
POST route.

An open inlet
to connect to the
dataBytes Source

An open outlet
to connect to the log
file Sink for all events

JSON flow
Event Event

Event

Event

Event

Event

JSON flowFilter OK LogFileSink

JSON flow
Filter

warning
LogFileSink

JSON flowFilter error LogFileSink

JSON flow

Byte
String
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String
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String
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Event

Filter
critical

Broadcast

LogFileSink

Figure 13.13 Splitting events with a BroadcastGraphStage
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The builder argument is a GraphDSL.Builder, which is mutable. It’s only intended
to be used inside the anonymous function here to set up a graph. The Graph-
DSL.Builder’s add method returns a Shape, which describes the inlets and outlets of
a Graph. 

 You should see a resemblance between the DSL code and figure 13.13. The filtered
flows write to separate files, as shown by the logFileSink(logId, state) method
calls. For example, for errors of logId1, a 1-errors file is appended to. 

processStates is used as you would expect, like any other flow. 

src.via(processStates(logId))
.toMat(logFileSink(logId))(Keep.right)
.run()

The GET route for returning errors for a log file is very similar to the normal GET route,
except that a naming convention is used to read from a [log-id]-error file. 

 In the next section, we’ll look at merging sources so you can return all logs merged
together, or just the log events that weren’t OK for a log file. 

13.3.2 Merging flows

Let’s look at the graph for merging sources. In the first example, we’ll merge all the
states for a log ID that aren’t OK. A GET to /logs/[log-id]/not-ok will return all
events that aren’t OK. Figure 13.14 shows how a MergeGraphStage is used to combine
three Sources into one.

 The following listing shows how the MergeGraphStage is used in the graph DSL. It
defines a mergeNotOk method that merges all the non-OK log Sources for a particular
logId into one Source.

Listing 13.30 Using processStates in the POST route

It’s Graphs and Shapes all the way down
The return type of processStates might not be what you expected (the FlowLike type
alias is just there for formatting reasons). Instead of a Flow[Event, ByteString,
NotUsed] type, a Graph[FlowShape[Event, ByteString], NotUsed] is used. 

In fact, a Flow[-In, +Out, +Mat] extends from a Graph[FlowShape[In, Out],
Mat]. This shows that a Flow is just a Graph with a predefined Shape. If you look a
little deeper into the akka-stream source code, you’ll find that a FlowShape is a
Shape with exactly one input and one output. 

All the predefined components are defined in a similar way: everything is defined as
a Graph with a Shape. For instance, Source and Sink extend Graph[Source-
Shape[Out], Mat] and Graph[SinkShape[In], Mat], respectively. 
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import akka.stream.SourceShape
import akka.stream.scaladsl.{ GraphDSL, Merge }

def mergeNotOk(logId: String): Source[ByteString, NotUsed] = {
val warning = logFileSource(logId, Warning)

.via(LogJson.jsonFramed(maxJsObject))
val error = logFileSource(logId, Error)

.via(LogJson.jsonFramed(maxJsObject))
val critical = logFileSource(logId, Critical)

.via(LogJson.jsonFramed(maxJsObject))

Source.fromGraph(
GraphDSL.create() { implicit builder =>
import GraphDSL.Implicits._

val warningShape = builder.add(warning)
val errorShape = builder.add(error)
val criticalShape = builder.add(critical)
val merge = builder.add(Merge[ByteString](3))

warningShape ~> merge
errorShape ~> merge
criticalShape ~> merge
SourceShape(merge.out)

})
}

Note that the warning, error, and critical sources are passed through a JSON fram-
ing flow first, because otherwise you could read arbitrary ByteStrings and merge
them together, resulting in garbled JSON output. 

Listing 13.31 Merge all states that are not OK

The merge combines three
sources into one source shape
(a shape with one open outlet).

Read from
the warning,
error, and
critical files.

Warning
logFileSource

Error
logFileSource

Critical
logFileSource

JSON
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JSON
framed

JSON
framed

Merge(3)

Byte
String

Byte
String

Byte
String

Byte
String

Byte
String

Byte
String

Byte
String

Source shape

Figure 13.14 Merging non-OK states with a MergeGraphStage

A source will be 
created from the 
Graph, and it will be 
used in the GET route.
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 The three sources are merged with a MergeGraphStage that takes three inputs, so
all inlets are taken. Merge has one outlet (merge.out). The SourceShape is created
from the merge.out outlet. Source has a fromGraph convenience method that turns a
Graph with a SourceShape into a Source. 

 The mergeNotOk method is used later in getLogNotOkRoute to create a Source to
read from, as shown in the next listing.

THE MERGEPREFERRED GRAPHSTAGE The MergeGraphStage randomly takes
elements from any of its inputs. Akka-stream also provides a MergePreferred-
GraphStage, which has one out port, one preferred input port, and zero or
more secondary in ports. MergePreferred emits when one of the inputs has
an element available, preferring the preferred input if multiple inputs have
elements available. 

def getLogNotOkRoute =
pathPrefix("logs" / Segment /"not-ok") { logId =>

pathEndOrSingleSlash {
get {

extractRequest { req =>
complete(Marshal(mergeNotOk(logId)).toResponseFor(req))

}
}

}
}

There’s also a simplified API for merging sources, which we’ll use to merge all logs.
Requesting GET /logs will return all logs merged together. The next listing shows how
this simplified API is used. 

import akka.stream.scaladsl.Merge

def mergeSources[E](
sources: Vector[Source[E, _]]

): Option[Source[E, _]] = {
if(sources.size ==0) None
else if(sources.size == 1) Some(sources(0))
else {

Some(Source.combine(
sources(0),
sources(1),
sources.drop(2) : _*

)(Merge(_)))
}

}

Listing 13.32 Respond to GET /logs/[log-id]/not-ok

Listing 13.33 The mergeSources method

Merges all sources 
in the Vector

None is returned if the 
sources argument is empty.

Combines any number of sources; 
the first two arguments are of 
type Source, and the third is a 
variable length argument list

Merge is passed in as 
the fan-in strategy.
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The Source.combine method creates a Source out of a number of sources, similar to
how this was done with the graph DSL. The mergeSources method is used to merge
any number of sources of the same type. For example, the mergeSources method is
used in the /logs route, shown in the following listing. 

def getLogsRoute =
pathPrefix("logs") {

pathEndOrSingleSlash {
get {

extractRequest { req =>
val sources = getFileSources(logsDir).map { src =>

src.via(LogJson.jsonFramed(maxJsObject))
}
mergeSources(sources) match {

case Some(src) =>
complete(Marshal(src).toResponseFor(req))

case None =>
complete(StatusCodes.NotFound)

}
}

}
}

}

PREDEFINED AND CUSTOM GRAPHSTAGES There are quite a few predefined
GraphStages in akka-stream that aren’t shown here for load balancing
(Balance), zipping (Zip, ZipWith), and concatenating streams (Concat), to
name a few. The graph DSL for these works much like the examples already
shown. In all cases, you need to add nodes to the builder, connect the inlets
and outlets of the shapes (returned by the add method), and return some
shape from the function, which is then passed to the Graph.create method.
It’s also possible to write your own custom GraphStage, which is beyond the
scope of this introductory chapter on akka-stream.

The BroadcastGraphStage shown in this section applies back pressure when any of
the outputs apply back pressure, which means that you can only broadcast as fast as
the slowest consumer can read. The next section will discuss how buffering can be
used to allow producers and consumers to run at different speeds, and how we can
mediate between producers and consumers that run at different speeds. 

13.4 Mediating between producers and consumers
The next example we’ll look at involves broadcasting events to consuming services. So
far we’ve written the log events to disk—one file for all events for a log file, and several
files for the warnings, errors, and critical errors. Switching the Sink to write all log
events to an external service instead of disk is left as an exercise for the reader. 

Listing 13.34 Respond to GET /logs

getFileSources, not shown here,
lists the files in logsDir and

converts these to Sources with
FileIO.fromPath.

Every file source needs 
to pass through the 
JSON framing flow.

Merges all the file 
sources found in the 
logsDir directory
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 In this final version of the log-stream processor, events will be sent to an archival
service, a notifications service, and a metrics service. 

 The log-stream processor will have to balance supply and demand to make sure
that when one of the services applies back pressure, this won’t slow down the pro-
ducer of log events. In the next section, we’ll discuss how buffers can be used to
achieve this. 

13.4.1 Using buffers

Let’s look at the graph for processing events, now adapted to send data to the three
service sinks. We’ll zoom in to the components of the graph in this section. Figures
13.15 –13.16 show the graph.

 A Broadcast is added on every filtered flow. One output is writing to the log file
Sink as usual, and the other output is used to send data to downstream services. (The
expectation here is that the log file Sinks are really fast, so they aren’t buffered.) A
MergePreferred stage merges all notification summaries to a Sink for the notification
service, preferring the critical event summaries over error and warning summaries. A
critical event summary always contains one critical event. In effect, it’s not rolled up
but immediately sent through. 

 The OK events are also split off using a Broadcast, and they’re sent to the metrics
service. 

 The figure also shows where buffers are inserted. The buffers allow for the down-
stream consumers to differ in the speed at which they consume data. But when a buf-
fer is full, a decision has to be made.

Integrating with services
In the example in this section, we expect all services to provide Sinks. Akka-stream
has several options for integrating external services that don’t provide Sources or
Sinks. For example, the mapAsync method takes a Future and emits the result of
the Future further downstream, which can come in handy when you already have a
service client code that uses Futures. 

It’s also possible to integrate with other Reactive Streams implementations using
Source.fromPublisher and Sink.fromSubscriber, turning any Reactive Streams
Publisher into a Source and any Subscriber into a Sink. 

It’s also possible to integrate with Actors using the ActorPublisher and Actor-
Subscriber traits, which can be useful in specific cases. 

The best and easiest option is to use an akka-stream-based library that provides
Sources, Sinks, or both. 
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The buffer method on Flow requires two arguments: a buffer size and an Overflow-
Strategy, which decides what should happen when the buffer is about to overflow.
The OverflowStrategy can be set to one of dropHead, dropTail, dropBuffer, drop-
New, backpressure, or fail, respectively dropping the first element in the buffer, the
last element in the buffer, the entire buffer, or the newest element; or applying back
pressure when the buffer is full; or failing the entire flow. Which option you choose
depends on the requirements of the application and what’s most important in the spe-
cific use case. 

 In this example, the decision has been made that, even under high load, all events
must be archived, meaning that the log-stream processor flow should fail when it can’t
write events to the archival service sink. A producer can try again later. The buffer is
set to a large size, to take the hit if the archival sink is responding slowly for a while. 
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Figure 13.15 Log event processing graph
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The following listing shows how the buffers are set up in the graph. 

val archBuf = Flow[Event]
.buffer(archBufSize, OverflowStrategy.fail)

val warnBuf = Flow[Event]
.buffer(warnBufSize, OverflowStrategy.dropHead)

val errBuf = Flow[Event]
.buffer(errBufSize, OverflowStrategy.backpressure)

val metricBuf = Flow[Event]
.buffer(errBufSize, OverflowStrategy.dropHead)

The oldest warnings can be dropped under high load if the notification service sink is
slow. Error summaries must not be dropped. Critical errors aren’t buffered, so the
flow will back-pressure by default. 

Listing 13.35 Buffers in the graph

Figure 13.16 Processing OK, warning, error, and critical events
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Me

Er

Warn
 The graph is built up again with the graph DSL as follows. 

val bcast = builder.add(Broadcast[Event](5))
val wbcast = builder.add(Broadcast[Event](2))
val ebcast = builder.add(Broadcast[Event](2))
val cbcast = builder.add(Broadcast[Event](2))
val okcast = builder.add(Broadcast[Event](2))

val mergeNotify = builder.add(MergePreferred[Summary](2))
val archive = builder.add(jsFlow)

MergePreferred always has one preferred port and a number of secondary ports, in
this case two. We’ll look into the individual flows a little later.

 First, the following listing shows how all the graph nodes are connected. 

bcast ~> archBuf ~> archive.in
bcast ~> ok ~> okcast
bcast ~> warning ~> wbcast
bcast ~> error ~> ebcast
bcast ~> critical ~> cbcast

okcast ~> jsFlow ~> logFileSink(logId, Ok)
okcast ~> metricBuf ~>

toMetric ~> recordDrift ~> metricOutFlow ~> metricsSink

cbcast ~> jsFlow ~> logFileSink(logId, Critical)
cbcast ~> toNot ~> mergeNotify.preferred

ebcast ~> jsFlow ~> logFileSink(logId, Error)
ebcast ~> errBuf ~> rollupErr ~> mergeNotify.in(0)

wbcast ~> jsFlow ~> logFileSink(logId, Warning)
wbcast ~> warnBuf ~> rollupWarn ~> mergeNotify.in(1)

mergeNotify ~> notifyOutFlow ~> notificationSink

FlowShape(bcast.in, archive.out)

In the next section, we’ll look at how we can process elements at different rates in the
flows. A special kind of stream operation will be used to detach the rate of one side of
a flow from the other. 

13.5 Rate-detaching parts of a graph
The back pressure that’s automatically applied by all akka-stream components some-
times needs to be detached from parts of the graph. There are cases where you don’t
want one back-pressuring node in the graph to slow down all nodes. In other cases,
you’ll want to be able to keep feeding data to a consumer that can operate faster than
other nodes. Again, a back-pressuring node can prevent this. 

Listing 13.36 Building the graph nodes

Listing 13.37 Connecting the graph nodes

Unfiltered events are buffered 
and connected to outgoing 
archival service flow

trics
flow

Critical errors are 
preferred in the 
merge, if more than
one input has data.

rors
flow

ings
flow
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 The common technique for rate-detaching is to put a buffer between nodes. The
buffer will delay back pressure as long as it has space. 

 To explain how rate-detaching works, we’ll assume that the notifications service is a
slow consumer. Instead of sending on every single notification when it arrives, we’ll
roll up notifications into a summary, essentially buffering notifications that arrive dur-
ing a time window. 

 The metrics service is assumed to be a fast consumer, so we can do a little more
processing. In this case, we’ll record how much the log-stream processor is drifting
behind on what the metrics service could potentially consume. 

 Other kinds of expanding techniques are possible, like sending calculated summa-
ries between normal metrics events or interpolating metrics events. These are left as
exercises for the reader. 

13.5.1 Slow consumer, rolling up events into summaries

The log-stream processor will have to write Summaries to a notifications service that
notifies operators of important events. Notification summaries are prioritized: critical
events are immediately sent one by one, whereas errors and warnings are rolled up
into summaries based on a time window or a maximum number of events. 

 To keep the interface simple, all notification messages are sent as Summarys, so a
critical event is sent as a Summary containing one Event. 

val toNot = Flow[Event].map(e=> Summary(Vector(e)))

The warnings and errors are rolled up using groupedWithin, as shown in the follow-
ing listing. rollupErr and rollupWarn, shown earlier in listing 13.37, use the rollup
method defined here to turn Events into Summarys. 

def rollup(nr: Int, duration: FiniteDuration) =
Flow[Event].groupedWithin(nr, duration)

.map(events => Summary(events.toVector))

val rollupErr = rollup(nrErrors, errDuration)
val rollupWarn = rollup(nrWarnings, warnDuration)

GROUPEDWITHIN AT COMPLETION OF STREAM It’s important to note that
groupedWithin will emit the remaining buffer as a Summary once the stream is
completed. A log events producer in this example is expected to continually
send data. If you try the aia.stream.LogStreamProcessorApp and send a log
file to the service, you’ll notice that what remains is always written to the noti-
fications file, even if fewer events have occurred or the duration hasn’t passed. 

As shown in listing 13.37, the rollupErr and rollupWarn are merged into Merge-
Preferred, preferring the critical errors that might occur. 

Listing 13.38 Summaries of one critical event

Listing 13.39 Roll up Events using groupedWithin

groupedWithin
returns List[Event]
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13.5.2 Fast consumer, expanding metrics 

The metrics service in this scenario is a fast consumer. We’re still applying a buffer for
when it happens to be slow, but because it might be faster than the log-stream proces-
sor, it would be interesting to know when the log-stream processor is falling behind
what the metrics service could potentially consume. The following listing shows how
an Event is turned into a Metric. 

val toMetric = Flow[Event].collect {
case Event(_, service, _, time, _, Some(tag), Some(metric)) =>

Metric(service, time, metric, tag)
}

The expand method makes it possible to add some information to the output when
the consumer requests more than is available. Instead of applying back pressure, you
can generate elements to send back to the consumer. 

 In this case, we’ll send the same metric back, but with an additional drift field to
indicate how many elements the metrics service could have consumed if the log-
stream processor was fast enough. 

val recordDrift = Flow[Metric]
.expand { metric =>

Iterator.from(0).map(d => metric.copy(drift = d))
}

The expand method takes a function argument of type Out =< Iterator[U]. The U
type is inferred from the function, which is a Metric in this case. When there are no
elements available from the flow, it will pull elements from this iterator. The drift field
will be zero if the log-stream processor could keep up, and it will go up, repeating the
Metric data to the metrics service, when the metrics service is faster. 

 It’s important to note that the buffers we’ve used here can’t prevent streams from
failing in all scenarios. In this context, that would simply mean that a streaming HTTP
request would fail. The next could possibly complete. 

13.6 Summary
Building streaming applications with Akka is a very large topic, and we only scratched
the surface here. Still, it should be evident that akka-stream provides a generic and
flexible API for writing streaming applications. The ability to define a graph blueprint
and execute it later is crucial for reuse. 

 In simple linear cases it’s easy to use the combinators on Source, Flow, and Sink.
The BidiFlow is an excellent component for building reusable protocols. If you’ve

Listing 13.40 Turning an Event into a Metric

Listing 13.41 Adding drift information to the Metric
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ever written streaming HTTP applications, you’re likely to agree that it was remarkably
easy to switch from files to akka-http in section 13.2. 

 The fact that akka-http is built on top of akka-stream really pays off, as you saw
when we integrated content negotiation and handling content types using custom
marshallers and unmarshallers. 

 Back pressure makes it possible to process streams in bounded memory, which is
applied by default, and which can be modified with predefined methods like buffer
and expand. 

 Akka-stream comes with a lot of useful predefined graph stages. We’ve only dis-
cussed a few here, and many more are expected to be added, possibly in a separate
akka-stream-contrib library, making the need for building custom GraphStages (which
we didn’t discuss in this chapter) less necessary over time. 



Clustering
In chapter 6 you learned how to build a distributed application with a fixed num-
ber of nodes. The approach we took, using static membership, is simple but pro-
vides no out-of-the-box support for load balancing or failover. A cluster makes it
possible to dynamically grow and shrink the number of nodes used by a distributed
application, and removes the fear of a single point of failure. 

 Many distributed applications run in environments that aren’t completely
under your control, like cloud computing platforms or data centers located across
the world. The larger the cluster, the greater the chance of failure. Despite this,
there are complete means of monitoring and controlling the lifecycle of the clus-
ter. In the first section of this chapter, we’ll look at how a node becomes a member
of the cluster, how you can listen to membership events, and how you can detect
that nodes have crashed in the cluster. 

 First we’ll build a clustered app that counts the number of occurrences of each
word in a piece of text. Within the context of this example, you’ll learn how routers

In this chapter
 Dynamically scaling actors in a cluster

 Sending messages into the cluster with cluster-aware 
routers

 Building a clustered Akka app
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can be used to communicate with actors in the cluster, how you can build a resilient,
coordinated process consisting of many actors in the cluster, and how to test a clus-
tered actor system. 

14.1 Why use clustering?
A cluster is a dynamic group of nodes. On each node is an actor system that listens on
the network (like you saw in chapter 6). Clusters build on top of the akka-remote
module. Clustering takes location transparency to the next level. The actor might
exist locally or remotely and could reside anywhere in the cluster; your code doesn’t
have to concern itself with this. Figure 14.1 shows a cluster of four nodes. 

The ultimate goal for the cluster module is to provide fully automated features for
actor distribution, load balancing, and failover. Right now the cluster module sup-
ports the following features: 

 Cluster membership—Fault-tolerant membership for actor systems.
 Load balancing—Routing messages to actors in the cluster based on a routing

algorithm.

Cluster
(node 1, node 2, node 3, node 4)

Node 1

User

a

c d

b

e

Node 4

User

a

c d

b

e

Node 2

User

a

c d

b

e

Node 3

User

a

c d

b

e

Every node contains an
actor system. The actor
systems need to have the
same name to be part of
the same cluster.

A list of member nodes
is maintained in a current
cluster state. The actor
systems gossip to each
other about this state.

The cluster is
a ring of nodes.

Figure 14.1 A four-node clustered actor system
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 Node partitioning—A node can be given a specific role in the cluster. Routers can
be configured to only send messages to nodes with a specific role.

 Partition points—An actor system can be partitioned into actor subtrees that are
located on different nodes.

We’ll dive into the details of these features in this chapter and focus primarily on clus-
ter membership and routing. Chapter 15 details mechanisms for replication of state
and automatic failover. 

 A single-purpose data processing application is a good example of a candidate
application for using clusters, for example, data processing tasks like image recogni-
tion or real-time analysis of social media. Nodes can be added or removed when more
or less processing power is required. Processing jobs are supervised: if an actor fails,
the job is restarted and retried on the cluster until it succeeds. We’ll look at a simple
example of this type of application in this chapter. Figure 14.2 shows an overview for
this type of application; don’t worry about the details here, because we’ll introduce
the terms you may not be familiar with later in this chapter.

 Let’s move on to writing the code to compile our clustered word count applica-
tion. In the next section, we’ll dig into the details of cluster membership so that the
job masters and workers can find each other to work together. 

Cluster
(node 1, node 2, node 3, node 4)

Node 1: Job master role

User

Job
receptionist

Job
master

Job
master

Job receptionists
receive job requests
and forward the jobs
to job masters.

Job workers
are watched
by job masters.

Job workers find
a master with a
job in the cluster
and request work.

Job masters are
started per job.
Job masters are
supervised by
receptionists.

Node 2: Job worker role

User

Job
worker

Job
worker

Node 4: Job worker role

User

Job
worker

Job
worker

Node 3: Job worker role

User

Job
worker

Job
worker

Figure 14.2 Processing jobs
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14.2 Cluster membership
We will start with the creation of the cluster. The processing cluster will consist of job
master and worker nodes. Figure 14.3 shows the cluster that we’ll build.

The job master nodes control and supervise the completion of word-counting jobs.
The job workers request work from a job master, process parts of the text, and return
the partial results to the master. The job master reports the result once all word
counting has been done. A job is repeated if any master or worker node fails during
the process. 

 Figure 14.3 also shows another type of node that will be required in the cluster,
namely, seed nodes. The seed nodes are essential for starting the cluster. In the next sec-
tion, we’ll look at how nodes become seed nodes, and how they can join and leave the
cluster. We’ll look at the details of how a cluster is formed and experiment with join-
ing and leaving a simple cluster using the REPL console. You’ll learn about the differ-
ent states that a member node can go through and how you can subscribe to
notifications of these state changes. 

14.2.1 Joining the cluster

Like with any kind of group, you need a couple of “founders” to start off the process.
Akka provides a seed node feature for this purpose. Seed nodes are the starting point
for the cluster, and they serve as the first point of contact for other nodes. Nodes join
the cluster by sending a join message that contains the unique address of the node
that joins. The Cluster module takes care of sending this message to one of the regis-
tered seed nodes. It’s not required for a node to contain any actors, so it’s possible to
use purely seed nodes. Figure 14.4 shows how a first seed node initializes a cluster and
how other nodes join the cluster.

Node 1:
Seed role

Cluster
Seed nodes: (1, 2, 3)
Master nodes: (4, 5)

Worker nodes: (6,7,8)

Node 7:
Worker role

Node 8:
Worker role

Node 5:
Master role

Node 2:
Seed role

Node 3:
Seed role

Node 4:
Master role

Node 6:
Worker role

Minimal setup
for our cluster:
3 seeds
2 masters
3 workers

Figure 14.3 Word-counting cluster
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Cluster doesn’t (yet) support a zero-configuration discovery protocol like TCP multi-
cast or DNS service discovery. You have to specify a list of seed nodes, or somehow
know the host and port of a cluster node to join to. The first seed node in the list has
a special role in initially forming the cluster. The very next seed node is dependent on
the first seed node in the list. The first node in the seed list starts up and automatically
joins itself and forms the cluster. The first seed node needs to be up before the next
seed nodes can join the cluster. This constraint has been put in place to prevent sepa-
rate clusters from forming while seed nodes are starting up. 

4. Nodes can join as long as one seed exists

Cluster
Seed nodes: (2)

Master nodes: (5)
Worker nodes: (4)

Joining: (6, 7)

Node 2:
Seed role

Node 6: Worker role
seed list (1, 2, 3)

Node 7: Worker role
seed list (1, 2, 3)

Node 4:
Worker role

Node 3:
Seed role

Node 1:
Seed role

Leave Leave

Join
Node 5:

Master role

3. Other nodes can also join using a seed list

Cluster
Seed nodes: (1, 2, 3)
Joining nodes: 4, 5

Node 1:
Seed role

Node 4: Worker role
seed list (1, 2, 3)

Node 5: Master role
seed list (1, 2, 3)

Node 2:
Seed role

Node 2
responds fastest
and handles join
of node 4

Node 3
responds fastest
and handles join
of node 5

Node 3:
Seed role

Join

Join

2. More seeds join the cluster as first contact

Cluster
Seed nodes: (1, 2)

Joining: (3)

Node 1:
Seed role

1. Initialize the cluster with first seed node

Cluster
Seed nodes: (1)

Node 1:
Seed role

Seed node 1 joins
itself automatically

Node 2:
Seed role

Join

Node 3:
Seed role

Figure 14.4 Initializing a cluster with seed nodes
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The seed nodes can all boot independently as long as the first seed node in the list is
started at some point. A subsequent seed node will wait for the first node to come up.
Other nodes join the cluster through any of the seed nodes once the first node is
started and at least one other node has joined. A message is sent to all seed nodes; the
first seed node to respond will get to handle the join command. The first seed node
can safely leave the cluster once the cluster has two or more members. Figure 14.5
shows an overview of how a cluster of masters and workers can be formed after at least
the first seed node has started: 

 Let’s start by creating seed nodes using the REPL console, which will give more
insight into how a cluster is formed. 

 To be clear, you wouldn’t go through these steps manually once you actually
deploy a clustered application. Depending on your environment, it’s most likely that
assigning addresses and starting the seed nodes in the cluster are part of provisioning
and deployment scripts. 

 You can find the project for this example under the chapter-cluster directory.

Manually joining cluster nodes
The seed nodes feature is not required; you can create a cluster manually by starting
a node that joins itself. Subsequent nodes will then have to join that node to join the
cluster, by sending it a Join message. 

This means that they’ll have to know the address of the first node, so it makes more
sense to use the seed functionality. There are cases where you can’t know IP
addresses or DNS names of servers in a network beforehand. In those cases, there
are three choices that seem plausible: 

 Use a list of known pure seed nodes with well-known IP addresses or DNS
names, outside of the network where host name addresses can’t be prede-
termined. These seed nodes don’t run any application-specific code and
purely function as a first point of contact for the rest of the cluster. 

 Get your hands dirty building your own zero-configuration cluster discovery
protocol that fits your network environment. This is a non-trivial task. 

 Use existing service discovery/registry technology like Apache ZooKeeper,
HashiCorp Consul, or CoreOs/etcd and add some “glue.” Instrument every
cluster node with some code to register itself with the discovery service on
startup and write an adapter that gets the currently available cluster nodes
from a service like this to connect to the cluster. 

Mind you, a ZooKeeper solution will still require a full set of host and port combina-
tions, so you’re trading in one well-known set of addresses for another. This is also
not as trivial as it sounds, since you have to keep the discovery service up to date
on the availability of every cluster node, and the discovery service might depend on
a different set of trade-offs than an Akka cluster, which might not be immediately
apparent. Caution is advised. (Different consistency models will probably apply and
your mileage may vary on experience in identifying these trade-offs.) 
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A node first needs to be configured to use the cluster module. The akka-cluster
dependency needs to be added to the build file as shown: 

"com.typesafe.akka" %% "akka-cluster" % akkaVersion

The akka.cluster.ClusterActorRefProvider needs to be configured in much the
same way as the akka-remote module needed a akka.remote.RemoteActorRef-
Provider. The Cluster API is provided as an Akka extension. The ClusterActorRef-
Provider initializes the Cluster extension when the actor system is created. 

4. Cluster is ready

Cluster
Seed nodes: (1, 2, 3)
Master nodes: (4, 5)

Worker nodes: (6, 7, 8)

Cluster
Seed nodes: (1, 2, 3)
Master nodes: (4, 5)
Worker nodes: (6)

Joining nodes: (7, 8)

Node 1:
Seed role

Node 4:
Master role

Node 7:
Worker role

Node 8:
Worker role

Node 6:
Worker role

Node 3:
Seed role

Node 2:
Seed role

Node 5:
Master role

3. Workers join the cluster

Node 1:
Seed role

Node 2:
Seed role

Node 3:
Seed role

2. More seeds and masters join the cluster

Cluster
Seed nodes: (1, 2)
Master nodes: (4)

Joining: (5)

Node 1:
Seed role

Join Join

1. Initialize the cluster with first seed node

Cluster
Seed nodes: (1)

Node 1:
Seed role

Node 2:
Seed role
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Master role

Node 5:
Master role
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Node 4:
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Node 6:
Worker role

Node 7:
Worker role Node 5:

Master role

Figure 14.5 A job-processing cluster

Build file defines a val for
the version of Akka
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 The following listing shows a minimal configuration for the seed nodes (which can
be found in src/main/resources/seed.conf).

akka {
loglevel = INFO
stdout-loglevel = INFO
event-handlers = ["akka.event.Logging$DefaultLogger"]

log-dead-letters = 0
log-dead-letters-during-shutdown = off

actor {
provider = "akka.cluster.ClusterActorRefProvider"

}

remote {
enabled-transports = ["akka.remote.netty.tcp"]
log-remote-lifecycle-events = off
netty.tcp {

hostname = "127.0.0.1"
hostname = ${?HOST}
port = ${PORT}

}
}

cluster {
seed-nodes = [
"akka.tcp://words@127.0.0.1:2551",
"akka.tcp://words@127.0.0.1:2552",
"akka.tcp://words@127.0.0.1:2553"
]

roles = ["seed"]

role {
seed.min-nr-of-members = 1

}
}

}

Listing 14.1 Configuring the seed nodes

Initializes cluster 
module

Remote 
configuration for 
this seed node

Cluster configuration section

Seed nodes of the cluster

Seed node is given a seed role to 
differentiate from workers and masters

Minimum members of every role for the cluster to b
deemed to be “up.” In the case of seed nodes, the cl
should be up once there’s at least one seed node up

Keep the addresses exactly the same
Be sure to use 127.0.0.1 when you follow along; localhost might resolve to a dif-
ferent IP address depending on your setup, and Akka interprets the addresses liter-
ally. You can’t depend on DNS resolution for the addresses. The value in akka.remote
.netty.ctp.host is used exactly for the system’s address; no DNS resolution is done
on this. The exact value of the address is used when actor references are serialized
between Akka remote nodes. So once you send a message to the remote actor
referred to by such an actor reference, it will use that exact address to connect to the
remote server. The main reason behind not using DNS resolution is performance. DNS
resolution, if configured incorrectly, can take seconds; in a pathological case, min-
utes. Finding the cause for delays to be an incorrect DNS configuration is not easy
and usually not immediately apparent. Not using DNS resolution simply avoids this
problem, but it does mean you have to be careful with configuring the addresses. 
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We’ll start all the nodes locally throughout these examples. If you want to test this on a
network, just replace -DHOST and -DPORT with the appropriate host name and port,
respectively, which sets the environment variables HOST and PORT. The seed.conf file is
set up to use these environment values as overrides if they’re available. Start sbt in
three terminals using different ports, inside the chapter-cluster directory. sbt is
started for the first seed node as shown: 

sbt -DPORT=2551 -DHOST=127.0.0.1

Do the same for the other two terminals, changing the -DPORT to 2552 and 2553.
Every node in the same cluster needs to have the same actor system name (words in
the previous example). Switch to the first terminal, in which we’ll start the first seed
node. 

 The first node in the seed nodes must automatically start and form the cluster. Let’s
verify that in a REPL session. Start the console in sbt (by typing console at the sbt
prompt) in the first terminal started with port 2551, and follow along with listing 14.2.
Figure 14.6 shows the result. 

...
scala> :paste
// Entering paste mode (ctrl-D to finish)

import akka.actor._

import akka.cluster._

import com.typesafe.config._

val seedConfig = ConfigFactory.load("seed")
val seedSystem = ActorSystem("words", seedConfig)

// Exiting paste mode, now interpreting.

Listing 14.2 Starting up a seed node

2. Cluster started1. Start seed

1. Start actor system
    with seed cluster
    config
2: Seed automatically
    joins itself

Seed node 1
Host: 127.0.0.1
Port: 2551

Seed node 1
Host: 127.0.0.1
Port: 2551

Cluster formed
Seed nodes: (1)

Figure 14.6 Start up 
the first seed node

Loads configuration for the 
seed node, found in the file 
src/main/resources/seed.conf

Starts words actor
system as seed node
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[Remoting] Starting remoting
[Remoting] listening on addresses :
[akka.tcp://words@127.0.0.1:2551]
...
[Cluster(akka://words)]
Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Started up successfully
Node [akka.tcp://words@127.0.0.1:2551] is JOINING, roles [seed]
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Leader is moving node [akka.tcp://words@127.0.0.1:2551] to [Up]

Start the console on the other two terminals and paste in the same code as in listing 14.2
to start seed nodes 2 and 3. The seeds will listen on the port that we provided as -DPORT
when we started sbt. Figure 14.7 shows the result of the REPL commands for seed nodes
2 and 3. 

 You should see something similar to the next listing in the other two terminals,
confirming that the nodes joined the cluster. 

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2553]
- Welcome from [akka.tcp://words@127.0.0.1:2551]

Listing 14.3 Seed node confirming joining the cluster 

Remote and cluster modules 
are automatically started. 

Cluster name is same as the 
name of the actor system

words cluster seed node is started

words cluster seed node has
automatically joined the cluster

2. Cluster consists of two seed nodes1. Seed 2 joins first seed node

Seed node 1
Host: 127.0.0.1
Port: 2551

Seed node 1
Host: 127.0.0.1
Port: 2552
Seed list:
[akka.tcp://words@127.0.0.1:2551,
 akka.tcp://words@127.0.0.1:2552,
 akka.tcp://words@127.0.0.1:2553]

3. Seed 3 joins just like seed 2

Seed node 1
Host: 127.0.0.1
Port: 2551

Cluster formed
Seed nodes: (1, 2)

Cluster formed
Seed nodes: (1)

Seed node 1
Host: 127.0.0.1
Port: 2551

Seed node 2
Host: 127.0.0.1
Port: 2552

Seed node 2
Host: 127.0.0.1
Port: 2552

Seed node 3
Host: 127.0.0.1
Port: 2553

Cluster formed
Seed nodes: (1, 2, 3)

Other nodes can be
joined by seed node 1
or 2 at this point.

New nodes join using
the seed list. Any of
the three seed nodes
can be contacted.

Figure 14.7 Start up the second seed node

Output formatted for
readability; will show as 
one line in the terminal
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The next listing shows the output of the first seed node. The output shows that the
first seed node has determined that the two other nodes want to join.  

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Node [akka.tcp://words@127.0.0.1:2551] is JOINING, roles [seed])

- Leader is moving node [akka.tcp://words@127.0.0.1:2551] to [Up]
- Node [akka.tcp://words@127.0.0.1:2552] is JOINING, roles [seed]
- Leader is moving node [akka.tcp://words@127.0.0.1:2552] to [Up]
- Node [akka.tcp://words@127.0.0.1:2553] is JOINING, roles [seed]
- Leader is moving node [akka.tcp://words@127.0.0.1:2553] to [Up]

One of the nodes in the cluster takes on special responsibilities: to be the leader of the
cluster. The leader decides if a member node is up or down. In this case the first seed
node is the leader. 

 Only one node can be the leader at any point in time. Any node of the clusters can
become the leader. Seed nodes 2 and 3 both request to join the cluster, which puts
them in the JOINING state. The leader moves the nodes to the Up state, making them
part of the cluster. All three seed nodes have now successfully joined the cluster. 

14.2.2 Leaving the cluster

Let’s see what happens if we let the first seed node leave the cluster. The following list-
ing shows seed node 1 leaving the cluster.

scala> val address = Cluster(seedSystem).selfAddress

address: akka.actor.Address = akka.tcp://words@127.0.0.1:2551

scala> Cluster(seedSystem).leave(address)

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Marked address [akka.tcp://words@127.0.0.1:2551] as [Leaving]
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Leader is moving node [akka.tcp://words@127.0.0.1:2551] to [Exiting]
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Shutting down...
[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2551]
- Successfully shut down

Listing 14.5 shows that seed node 1 marks itself as Leaving, and then as Exiting while
it’s still the leader. These state changes are communicated to all nodes in the cluster.
After that, the cluster node is shut down. The actor system itself (the seedSystem)
isn’t shut down automatically on the node. What happens with the cluster? The leader
node just shut down. Figure 14.8 shows how the first seed node leaves the cluster and
how leadership is transferred. 

Listing 14.4 Terminal output of seed node 1

Listing 14.5 Seed node 1 leaving the cluster

Output abbreviated and 
formatted for readability.

First seed node joins itself
and becomes the leader

d node
2 joins

d node
3 joins

Gets
dress
r this
node

Lets seed 
node 1 leave 
the cluster

d as
ving

d as
iting
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Let’s look at the other terminals. One of the two remaining terminals should show
output similar to this listing.

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Marking exiting node(s) as UNREACHABLE
[Member(address = akka.tcp://words@127.0.0.1:2551, status = Exiting)].
This is expected and they will be removed.

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Leader is removing exiting node [akka.tcp://words@127.0.0.1:2551]

Listing 14.6 Seed node 2 becomes leader and removes seed node 1 from the cluster

2. Seed 1 detected as unreachable1. Seed 1 leaves the cluster

Seed node 1

Seed node 2 Seed node 3

Leave

3. Seed 2 becomes leader.

Seed node 1
cluster node
is shutdown

Cluster
Leader: Node 1
Node 1: Leaving
Node 2: Up
Node 3: Up

Seed node 2 Seed node 3

Cluster
Leader: Node 1
Node 1: Exiting,
              unreachable
Node 2: Up
Node 3: Up

Seed node 2 Seed node 3

Cluster
Leader: Node 2
Node 1: Removed
Node 2: Up
Node 3: Up

Figure 14.8 First seed node leaves the cluster

Exiting seed node
has the Exiting stateLeader removes the exiting node

Gossip protocol
You might have wondered how the seed nodes in the example knew about the fact
that the first seed node was leaving, then exiting, and finally removed. Akka uses a
gossip protocol to communicate the state of the cluster to all member nodes of the
cluster. 

Every node gossips to other nodes about its own state and the states that it has seen
(the gossip). The protocol makes it possible for all nodes in the cluster to eventually
agree about the state of every node. This agreement is called convergence, which
occurs over time while the nodes are gossiping to each other. 

A leader for the cluster can be determined after convergence. The first node, in sort
order, that is Up or Leaving automatically becomes the leader. (The full remote
address of the node is used to sort nodes, like akka.tcp://words@127.0.0.1:2551.) 
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Both remaining seed nodes detect that the first seed node has been flagged as
UNREACHABLE. Both seed nodes are also aware that the first seed node has requested to
leave the cluster. The second seed node automatically becomes the leader when the
first seed node is in an Exiting state. The leaving node is moved from an Exiting
state to a Removed state. The cluster now consists of two seed nodes. 

 The actor system on the first seed node can’t join the cluster again by simply using
Cluster(seedSystem).join(selfAddress). The actor system is removed and can
only join the cluster again if it’s restarted. The next listing shows how the first seed
node can “rejoin.” 

scala> seedSystem.terminate()
scala> val seedSystem = ActorSystem("words", seedConfig)

An actor system can only ever join a cluster once. But a new actor system can be
started with the same configuration, using the same host and port, which is what’s
done in listing 14.7. 

 Now you know how nodes can gracefully join and leave clusters. Figure 14.9 shows
a state diagram of the member states that you’ve seen so far. The leader performs a
leader action on specific member states, moving a member from Joining to Up and
from Exiting to Removed. 

 This is not the complete picture yet. Let’s look at what happens if one of the seed
nodes crashes. We can simply kill the terminal that runs seed node 1 and look at the
output of the other terminals. The following listing shows the output of the terminal
running seed node 2 when seed node 1 has been killed abruptly.

Listing 14.7 Seed node 2 becomes leader and removes seed node 1 from the cluster

Terminates actor system
Starts new actor system with the same

configuration. The actor system
automatically joins the cluster.

Joining
Leader action

Up
Leader

Leaving

Leader action

Exiting

Leader action

Removed

Initial state

State in transition

Key

Final state

Join

Figure 14.9 Graceful state transitions of a node joining and leaving the cluster
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Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Marking node(s) as UNREACHABLE

[Member(address = akka.tcp://words@127.0.0.1:2551, status = Up)]

Seed node 1 has been flagged as UNREACHABLE. The cluster uses a failure detector to
detect unreachable nodes. The seed node was in an Up state when it crashed. A node
can crash in any of the states you’ve seen before. The leader can’t execute any leader
actions as long as any of the nodes are unreachable, which means that no node can
leave or join. The unreachable node will first have to be taken down. You can take a
node down from any node in the cluster using the down method. The next listing
shows how the first seed node is downed from the REPL.

scala> val address = Address("akka.tcp", "words", "127.0.0.1",2551)
scala> Cluster(seedSystem).down(address)

[Cluster(akka://words)] Cluster Node [akka.tcp://words@127.0.0.1:2552]
- Marking unreachable node [akka.tcp://words@127.0.0.1:2551] as [Down]
- Leader is removing unreachable node [akka.tcp://words@127.0.0.1:2551]
[Remoting] Association to [akka.tcp://words@127.0.0.1:2551]
having UID [1735879100]
is irrecoverably failed. UID is now quarantined and
all messages to this UID
will be delivered to dead letters.
Remote actorsystem must be restarted to recover from this situation.

The output also shows that if the seed node 1 actor system wanted to rejoin, it would
have to restart. An unreachable node can also be taken down automatically. This
is configured with the akka.cluster.auto-down-unreachable-after setting. The
leader will automatically take unreachable nodes down after the set duration in this
setting. Figure 14.10 shows all possible state transitions for a node in the cluster.

Listing 14.8 Seed 1 crashes

Listing 14.9 Taking down seed node 1 manually

Seed node 1 becomes
unreachable

Seed node 
1 is down.

Seed node 1 is 
quarantined 
and removed.

Joining
Leader actionJoin

Up

Unreachable

Down

Leader
Leaving

Leader action

Exiting

Leader actionDown

Removed

Initial state

State in transition

Key

Final state

Figure 14.10 All states and transitions of a node
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You’d definitely want to be notified if any of the nodes in a cluster fail. You can sub-
scribe an actor to cluster events using the subscribe method on the Cluster exten-
sion. Listing 14.10 shows an actor that subscribes to cluster domain events (which can
be found in src/main/scala/aia/cluster/words/ClusterDomainEventListener.scala).

...
import akka.cluster.{MemberStatus, Cluster}

import akka.cluster.ClusterEvent._

class ClusterDomainEventListener extends Actor with ActorLogging {

Cluster(context.system).subscribe(self, classOf[ClusterDomainEvent])

def receive ={

case MemberUp(member) => log.info(s"$member UP.")

case MemberExited(member)=> log.info(s"$member EXITED.")

case MemberRemoved(m, previousState) =>

if(previousState == MemberStatus.Exiting) {

Listing 14.10 Subscribing to Cluster domain events

Failure detector
The cluster module uses an implementation of a ϕ accrual failure detector to detect
unreachable nodes. The work is based on a paper by Naohiro Hayashibara, Xavier
Défago, Rami Yared, and Takuya Katayama.a Detecting failures is a fundamental
issue for fault tolerance in distributed systems. 

The ϕ accrual failure detector calculates a value on a continuous scale (called a ϕ
(phi) value) instead of determining a Boolean value indicating failure (if the node is
reachable or not). From the referenced paper: “Roughly speaking, this value captures
the degree of confidence that a corresponding monitored process has crashed. If the
process actually crashes, the value is guaranteed to accrue over time and tend
toward infinity, hence the name.” This value is used as an indicator for suspecting
that something is wrong (a suspicion level) instead of determining a hard-and-fast
yes-or-no result. 

The suspicion level concept makes the failure detector tunable and allows for a
decoupling between application requirements and monitoring of the environment.
The cluster module provides settings for the failure detector that you can tune for
your specific network environment in the akka.cluster.failure-detector sec-
tion, among which is a threshold for the ϕ value at which a node is deemed to be
unreachable. 

Nodes are very often deemed unreachable when they’re in a GC pause state, which
means that it’s taking far too long to finish garbage collection, and a JVM can’t do
anything else until garbage collection has completed.

a. The ϕ Accrual Failure Detector, May 10 2004, www.jaist.ac.jp/~defago/files/pdf/IS_RR_
2004_010.pdf 

Subscribes to the cluster domain
events on actor creation

Listens for cluster
domain events

www.jaist.ac.jp/~defago/files/pdf/IS_RR_2004_010.pdf
www.jaist.ac.jp/~defago/files/pdf/IS_RR_2004_010.pdf
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log.info(s"Member $m gracefully exited, REMOVED.")
} else {

log.info(s"$m downed after unreachable, REMOVED.")
}

case UnreachableMember(m) => log.info(s"$m UNREACHABLE")
case ReachableMember(m) => log.info(s"$m REACHABLE")
case s: CurrentClusterState => log.info(s"cluster state: $s")

}

override def postStop(): Unit = {
Cluster(context.system).unsubscribe(self)
super.postStop()

}
}

The example ClusterDomainEventListener simply logs what has happened in the
cluster. 

 The Cluster domain events tell you something about the cluster members, but in
many cases it suffices to know if an actor in the cluster is still there. You can simply use
DeathWatch using the watch method to watch actors in the cluster, as you’ll see in the
next section. 

14.3 Clustered job processing
It’s time to process some jobs with a cluster. We’ll focus first on how the actors in the
cluster communicate with each other to complete a task. The cluster receives a text
whose words we want to count. The text is divided into parts and delivered to several
worker nodes. Every worker node processes its part by counting the occurrences of
every word in the text. The worker nodes process the text in parallel, which should
result in faster processing. Eventually the result of the counting is sent back to the
user of the cluster. The fact that we’ll count the occurrences of words isn’t the focus;
you can process many jobs in the way we show in this section. 

 The example can be found in the same chapter-cluster directory as used before,
for the examples on joining and leaving the cluster. Figure 14.11 shows the structure
of the application.

 The JobReceptionist and JobMaster actors will run on a master role node. The
JobWorkers will run on worker role nodes. Both JobMaster and JobWorker actors are
created dynamically, on demand. Whenever a JobReceptionist receives a Job-
Request, it spawns a JobMaster for the Job and tells it to start work on the job. The
JobMaster creates JobWorkers remotely on the worker role nodes. Figure 14.12 shows
an overview of the process. We’ll address each step in detail in the rest of this chapter. 

 Every JobWorker receives a Task message that contains a portion of the text. The
JobWorker splits the text into words and counts the occurrence of every word, returning
a TaskResult that contains a Map of word counts. The JobMaster receives the Task-
Results and merges all the maps, adding up the counts for every word, which is basically
the reduce step. The WordCount result is eventually sent back to the job receptionist. 

Unsubscribes after
actor is stopped
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Figure 14.11 Words cluster actors
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Figure 14.12 Job processing (continued on next page)



339Clustered job processing
In the next sections, we’ll address all the steps in the overview. First, we’ll start the clus-
ter, and then we’ll distribute the work that has to be done between master and workers.
After that, we’ll look at how we can make the job processing resilient, including restart-
ing the job when a node crashes. Finally, we’ll address how to test the cluster. 
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Job
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Figure 14.12 Job processing (continued)

Some caveats for the example
This example is kept simple on purpose. The JobMaster keeps intermediate results
in memory and all the data that is processed is sent between the actors. 

If you have to deal with batch processing of extremely large amounts of data, you
need to put effort into getting the data close to the process before processing it and
stored on the same server that the process is running on, and you can’t simply collect
data in memory. In Hadoop-based systems, for example, this means pushing all the
data onto HDFS (Hadoop Distributed File System) before processing it and writing all
the results back to HDFS, as well. In our example, we’ll simply send the workload
around 
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14.3.1 Starting the cluster

You can build the example in the chapter-cluster directory using sbt assembly. This
creates a words-node.jar file in the target directory. The JAR file contains three dif-
ferent configuration files: one for the master, one for the worker, and one for the
seed. The following listing shows how to run one seed node, one master, and two
workers locally on different ports.

java -DPORT=2551 \
-Dconfig.resource=/seed.conf \
-jar target/words-node.jar

java -DPORT=2554 \
-Dconfig.resource=/master.conf \
-jar target/words-node.jar

java -DPORT=2555 \
-Dconfig.resource=/worker.conf \
-jar target/words-node.jar

java -DPORT=2556 \
-Dconfig.resource=/worker.conf \
-jar target/words-node.jar

The listing only starts one seed node, which is fine for now. (The master.conf and
worker.conf files define a list of local seed nodes running on 127.0.0.1 and ports 2551,
2552, and 2553; since 2551 is the first seed node, this will work fine.) The seed node
list can also be configured using a system property, if you’d like to run the seed nodes
on other hosts and ports. 

OVERRIDING THE SEED NODE LIST FROM THE COMMAND LINE You can override
the seed node list with -Dakka.cluster.seed-nodes.[n]=[seednode] where
[n] needs to be replaced with the position in the seed list starting with 0 and
[seednode] with the seed node value. 

The master can’t do anything without the workers, so it would make sense to have the
JobReceptionist on the master start up only when the cluster has some set minimum
number of worker nodes running. You can specify the minimum number of members

Listing 14.11 Running nodes

(continued)
around in the cluster. The reduce step that adds up the results of all the workers is
done by the master to simplify things instead of having parallel reducers that start as
soon as the first task has been completed. 

It’s possible to achieve all of this, but it’s more than we can cover here in this chap-
ter. Our example will show how to do resilient job processing and can be a starting
point for more realistic cases. 
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with a certain role in the cluster configuration. The next listing shows part of the master
.conf file for this purpose.

role {
worker.min-nr-of-members = 2

}

The configuration of the master node specifies that there should be at least two worker
nodes in the cluster. The Cluster module provides a registerOnMemberUp method to
register a function that’s executed when the member node is up—in this case, the mas-
ter node, which takes the minimum number of worker nodes into account. The func-
tion is called when the master node has successfully joined the cluster and when there
are two or more worker nodes running in the cluster. The following listing shows the
Main class that’s used to start all types of nodes in the words cluster.

object Main extends App {
val config = ConfigFactory.load()
val system = ActorSystem("words", config)

println(s"Starting node with roles: ${Cluster(system).selfRoles}")

val roles = system.settings
.config
.getStringList("akka.cluster.roles")

if(roles.contains("master")) {
Cluster(system).registerOnMemberUp {

val receptionist = system.actorOf(Props[JobReceptionist],
"receptionist")

println("Master node is ready.")
}

}
}

The worker node doesn’t need to start any actors; the JobWorkers will be started on
demand, as you’ll see in the next section. We’ll use a router to deploy and communi-
cate with the JobWorkers. 

14.3.2 Work distribution using routers

The JobMaster needs to first create the JobWorkers and then broadcast the Work mes-
sage to them. Using routers in the cluster is exactly the same as using routers locally.
We just need to change how we create the routers. We’ll use a router with a Broadcast-
PoolRouterConfig to communicate with the JobWorkers. A Pool is a RouterConfig
that creates actors, whereas a Group is a RouterConfig that’s used to route to already-

Listing 14.12 Configure minimum number of worker nodes for MemberUp event

Listing 14.13 Configuring minimum number of worker nodes for MemberUp event

Only start 
JobReceptionist 
if this node has 
a master role

Registers code block to be 
executed when the member is up

JobReceptionist 
is only created 
when cluster is 
up with at least 
two worker role 
nodes present
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N

existing actors, as explained in chapter 9. In this case we want to dynamically create the
JobWorkers and kill them after the job is done, so a Pool is the best option. The Job-
Master actor uses a separate trait to create the router. The separate trait will come in
handy during testing, as you’ll see later. The trait is shown in the next listing, which cre-
ates the worker router (which can be found in src/main/scala/aia/cluster/words
/JobMaster.scala).

trait CreateWorkerRouter { this: Actor =>
def createWorkerRouter: ActorRef = {

context.actorOf(
ClusterRouterPool(BroadcastPool(10),

ClusterRouterPoolSettings(
totalInstances = 1000,
maxInstancesPerNode = 20,
allowLocalRoutees = false,
useRole = None

)
).props(Props[JobWorker]),
name = "worker-router")

}
}

ROUTER CONFIGURATION In this case the JobMaster is created dynamically for
every job, so it needs to create a new router every time, which is why it’s done in
code. It’s also possible to configure router deployment using the configuration,
as described in chapter 9. You can specify a cluster section in the deployment
configuration to enable the router for clustering and set the ClusterRouter
pool or group settings, like use-role and allow-local-routees. 

The CreateWorkerRouter trait only does one thing: create the router to the workers.
Creating the clustered router is very similar to creating a normal router. All you need to
do is pass in a ClusterRouterPool that can use any of the existing pools—Broadcast-

Pool, RoundRobinPool, and ConsistentHashingPool and the like. ClusterRouter-
PoolSettings controls how instances of the JobWorkers are created. JobWorkers will
be added to joining worker nodes as long as the totalInstances haven’t been reached
yet. In the configuration in listing 14.14, 50 nodes can join the cluster before the
router stops deploying new JobWorkers. When the JobMaster is created, it creates the
router, as shown in the next listing, and uses it to send out messages to the workers, also
shown in figure 14.13.

class JobMaster extends Actor
with ActorLogging
with CreateWorkerRouter {

// inside the body of the JobMaster actor..
val router = createWorkerRouter

Listing 14.14 Creating a clustered BroadcastPool router

Listing 14.15 Using the router to broadcast Work messages

Needs to mixin with an actor

ClusterRouterPool takes a Pool

Total maximum number of workers in cluster

Max
number of

workers
per node

Do not create local 
routees. We only want 
Workers on the other
nodes.

odes with
this role

will be
routed to.

Creates JobWorkers 
with standard Props

Mixes in 
CreateWorkerRouter
trait

Creates router
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def receive = idle

def idle: Receive = {
case StartJob(jobName, text) =>

textParts = text.grouped(10).toVector
val cancel = system.scheduler.schedule(0 millis,

1000 millis,
router,
Work(jobName, self))

become(working(jobName, sender(), cancel))
}
// more code

The code snippet in listing 14.15 also shows something else. The JobMaster actor is a
state machine and uses become to go from one state to the next. It starts in the idle
state until the job receptionist sends it a StartJob message. Once the JobMaster
receives this message, it splits up the text into parts of 10 lines and schedules the Work
messages without delay to the workers. It then transitions to the Working state to start
handling responses from the workers. The Work message is scheduled in case other
worker nodes join the cluster after the job has been started. State machines make a
distributed coordinated task more comprehensible. In fact, both the JobMaster and
JobWorker actors are state machines. 

 There’s also a ClusterRouterGroup, which has ClusterRouterGroupSettings sim-
ilar to how the ClusterRouterPool is set up. The actors that are being routed to need
to be running before a group router can send messages to them. The words cluster can
have many master role nodes. Every master role node starts up with a JobReceptionist
actor. In the case where you want to send messages to every JobReceptionist,
you could use a ClusterRouterGroup, for instance, sending a message to the Job-
Receptionists to cancel all currently running jobs in the cluster. Listing 14.16
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    broadcast Work

1. Create a master,
    send StartJob

Job
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Create master
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master

JobRequest
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Job
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Job
master
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Work Deploy workers

Figure 14.13 Deploying JobWorkers and broadcasting Work messages
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shows how you can create a router that looks up JobReceptionists on master role
nodes in the cluster (an example can be found in src/main/scala/aia/cluster/words
/ReceptionistRouterLookup.scala).  

val receptionistRouter = context.actorOf(
ClusterRouterGroup(

BroadcastGroup(Nil),
ClusterRouterGroupSettings(

totalInstances = 100,
routeesPaths = List("/user/receptionist"),
allowLocalRoutees = true,
useRole = Some("master")

)
).props(),
name = "receptionist-router")

Now you’ve seen how the JobMaster distributes the Work message to the JobWorkers.
In the next section, we’ll look at how the JobWorkers request more work from the
JobMaster until the work is done, and how the cluster recovers from failure during
job processing. 

14.3.3 Resilient jobs

The JobWorker receives the Work message and
sends a message back to the JobMaster that it wants
to enlist itself for work. It also immediately sends
the NextTask message to ask for the first task to pro-
cess. Figure 14.14 shows the flow of messages. List-
ing 14.17 shows how the JobWorker transitions
from the idle state to the enlisted state.

 The JobWorker indicates to the JobMaster that
it wants to take part in the job by sending an
Enlist message. The Enlist message contains the
JobWorker’s ActorRef so that the JobMaster can
use it later. The JobMaster watches all the Job-
Workers that enlist, in case one or more of them
crashes, and stops all the JobWorkers once the job
is finished. 

def receive = idle

def idle: Receive = {
case Work(jobName, master) =>

become(enlisted(jobName, master))

log.info(s"Enlisted, will start working for job '${jobName}'.")

Listing 14.16 Sending messages to all JobReceptionists in the cluster

Listing 14.17 JobWorker transitions from idle to enlisted state

ClusterRouterGroup
Number of instances is overridden 
by cluster group settings
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    and NextTask

Job
worker

Job
worker

Job
worker

Job
worker

Job
master

Enlist Enlist

Enlist Enlist

NextTask NextTask

NextTask NextTask

Figure 14.14 JobWorker enlists 
itself and requests NextTask
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master ! Enlist(self)
master ! NextTask

watch(master)
setReceiveTimeout(30 seconds)

def enlisted(jobName:String, master:ActorRef): Receive = {
case ReceiveTimeout =>

master ! NextTask
case Terminated(master) =>

setReceiveTimeout(Duration.Undefined)
log.error(s"Master terminated for ${jobName}, stopping self.")
stop(self)

...
}

The JobWorker switches to the Enlisted state and
expects to receive a Task message from the master
to process. The JobWorker watches the JobMaster
and sets a ReceiveTimeout. If the JobWorker
receives no messages within the ReceiveTimeout,
it will ask the JobMaster again for a NextTask, as
shown in the enlisted Receive function. The
JobWorker stops itself if the JobMaster dies. As
you can see, there’s nothing special about the
watch and Terminated messages; DeathWatch
works just like in nonclustered actor systems. The
JobMaster is in the working state in the mean-
time, shown in figure 14.15 and the next listing.

// inside the JobMaster..

import SupervisorStrategy._
override def supervisorStrategy: SupervisorStrategy = stoppingStrategy

def working(jobName:String,
receptionist:ActorRef,
cancellable:Cancellable): Receive = {

case Enlist(worker) =>
watch(worker)
workers = workers + worker

case NextTask =>
if(textParts.isEmpty) {

sender() ! WorkLoadDepleted
} else {

sender() ! Task(textParts.head, self)
workGiven = workGiven + 1

Listing 14.18 JobMaster enlists worker and sends Tasks to JobWorkers
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Figure 14.15 JobMaster sends Tasks 
to JobWorkers and watches them
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textParts = textParts.tail
}

case ReceiveTimeout =>
if(workers.isEmpty) {

log.info(s"No workers responded in time. Cancelling $jobName.")
stop(self)

} else setReceiveTimeout(Duration.Undefined)

case Terminated(worker) =>
log.info(s"Worker $worker got terminated. Cancelling $jobName.")
stop(self)

//more code to follow..

The listing shows that the JobMaster registers and
watches the workers that want to take part in the
work. The JobMaster sends back a WorkLoad-
Depleted to the JobWorker if there’s no more
work to be done. 

 The JobMaster also uses a ReceiveTimeout
(which is set when the job is started) just in case no
JobWorkers ever report to enlist. The JobMaster
stops itself if the ReceiveTimeout occurs. It also
stops itself if any JobWorker is stopped. The Job-
Master is the supervisor of all the JobWorkers it
deployed (the router automatically escalates prob-
lems). Using a StoppingStrategy makes sure that
a failing JobWorker is automatically stopped,
which triggers the Terminated message that the
JobMaster is watching out for. 

 The JobWorker receives a Task, processes the
Task, sends back a TaskResult, and asks for the NextTask. Figure 14.16 and the fol-
lowing listing show the enlisted state of the JobWorker.

def enlisted(jobName:String, master:ActorRef): Receive = {
case ReceiveTimeout =>

master ! NextTask

case Task(textPart, master) =>
val countMap = processTask(textPart)
processed = processed + 1
master ! TaskResult(countMap)
master ! NextTask

case WorkLoadDepleted =>
log.info(s"Work load ${jobName} is depleted, retiring...")
setReceiveTimeout(Duration.Undefined)
become(retired(jobName))

Listing 14.19 JobWorker processes Task and sends back TaskResult

JobMaster stops if no 
workers have enlisted 
within a ReceiveTimeout

JobMaster stops if any 
of the JobWorkers fail
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Sends result to JobMaster
Asks for next task
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Job
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Figure 14.16 JobWorker processes 
Task and sends back TaskResult
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T
t

case Terminated(master) =>
setReceiveTimeout(Duration.Undefined)
log.error(s"Master terminated for ${jobName}, stopping self.")
stop(self)

}

def retired(jobName: String): Receive = {
case Terminated(master) =>

log.error(s"Master terminated for ${jobName}, stopping self.")
stop(self)

case _ => log.error("I'm retired.")
} // definition of processTask follows in the code...

There are some benefits to requesting the work from the JobWorker as is done in this
example. The main one is that the workload is automatically balanced between the
JobWorkers because the JobWorkers request the work. A JobWorker that has more
resources available to do work simply requests tasks more often than a JobWorker
that’s under a higher load. If the JobMaster were instead forced to send tasks to all
JobWorkers in round-robin fashion, it would be possible that one or more of the Job-
Workers could be overloaded while others sit idle. 

ADAPTIVELOADBALANCINGPOOL AND ADAPTIVELOADBALANCINGGROUP There’s
an alternative to requesting work from the worker nodes. The AdaptiveLoad-
BalancingPool and AdaptiveLoadBalancingGroup routers use the cluster
metrics to decide which node is best suited to receive messages. The metrics
can be configured to use JMX or Hyperic Sigar.1

The JobMaster receives TaskResult messages in the working state and merges the
results when there’s a task result for every task that was sent out. Figure 14.17 and the
following listing show how the JobMaster transitions to the finishing state when all
work is done to merge the intermediate results, sending back the WordCount. 

def working(jobName:String,
receptionist:ActorRef,
cancellable:Cancellable): Receive = {

...

case TaskResult(countMap) =>
intermediateResult = intermediateResult :+ countMap
workReceived = workReceived + 1

if(textParts.isEmpty && workGiven == workReceived) {
cancellable.cancel()
become(finishing(jobName, receptionist, workers))
setReceiveTimeout(Duration.Undefined)

1 Read more about Hyperic Sigar here: http://sigar.hyperic.com/

Listing 14.20 JobMaster stores and merges intermediate results, completes the Job

Retired state

Stores intermediate 
results coming from
JobWorkers

Remember scheduled 
task that sends out 
Work messages? It’s 
now time to cancel it.

ransitions
o finishing

state

http://sigar.hyperic.com/
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a

self ! MergeResults
}

}
...
def finishing(jobName: String,

receptionist: ActorRef,
workers: Set[ActorRef]): Receive = {

case MergeResults =>
val mergedMap = merge()
workers.foreach(stop(_))
receptionist ! WordCount(jobName, mergedMap)

case Terminated(worker) =>
log.info(s"Job $jobName is finishing, stopping.")

}
...

The JobReceptionist finally receives the WordCount and kills the JobMaster, which
completes the process. The JobWorker crashes when it encounters a text with the word
FAIL in it to simulate failures by throwing an exception. The JobReceptionist watches
the JobMasters it creates. It also uses a StoppingStrategy in case the JobMaster
crashes. Let’s look at the supervision hierarchy for this actor system and how Death-
Watch is used to detect failure in figure 14.18. 

 We use ReceiveTimeout to detect that the actors aren’t receiving messages in time
so that we can take action. The JobReceptionist keeps track of the jobs it has sent
out. When it receives a Terminated message, it checks if the job has been completed.
If not, it sends itself the original JobRequest, which results in the process starting over
again. The JobReceptionist simulates the resolution of the failure simulated with the
FAIL text by removing the text from the job after a number of retries, as shown next.
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results are merged in the finishing state
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Figure 14.17 JobWorker processes tasks and sends back TaskResult
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case Terminated(jobMaster) =>
jobs.find(_.jobMaster == jobMaster).foreach { failedJob =>

log.error(s"$jobMaster terminated before finishing job.")

val name = failedJob.name
log.error(s"Job ${name} failed.")
val nrOfRetries = retries.getOrElse(name, 0)

if(maxRetries > nrOfRetries) {
if(nrOfRetries == maxRetries -1) {

// Simulating that the Job worker
// will work just before max retries

val text = failedJob.text.filterNot(_.contains("FAIL"))
self.tell(JobRequest(name, text), failedJob.respondTo)

} else self.tell(JobRequest(name, failedJob.text),
failedJob.respondTo)

updateRetries
}

}
}

We’ll use this simulation of failures in the next section where we’ll test the words cluster. 

14.3.4 Testing the cluster

You can use the sbt-multi-jvm plugin and the multi-node-testkit module just like
the akka-remote module. It’s also still convenient to test the actors locally, which is
easily done if we isolate the creation of actors and routers into traits. Listing 14.22
shows how test versions of the Receptionist and the JobMaster are created for the

Listing 14.21 JobReceptionist retries JobRequest on JobMaster failure
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Figure 14.18 Supervision hierarchy for the words actor system
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test (which can be found in src/test/scala/aia/cluster/words/LocalWordsSpec.scala).
Traits are used to override the creation of the worker routers and job masters. 

trait CreateLocalWorkerRouter extends CreateWorkerRouter {
def context: ActorContext

override def createWorkerRouter: ActorRef = {
context.actorOf(BroadcastPool(5).props(Props[JobWorker]),

"worker-router")
}

}

class TestJobMaster extends JobMaster
with CreateLocalWorkerRouter

class TestReceptionist extends JobReceptionist
with CreateMaster {

override def createMaster(name: String): ActorRef = {
context.actorOf(Props[TestJobMaster], name)

}
}

The local test is shown in listing 14.23. As you can see, the test is business as usual:
JobRequests are sent to the JobReceptionist. The response is verified using expect-
Msg (the ImplicitSender automatically makes the testActor the sender of all mes-
sages, as described in chapter 3). 

class LocalWordsSpec extends TestKit(ActorSystem("test"))
with WordSpec
with MustMatchers
with StopSystemAfterAll
with ImplicitSender {

val receptionist = system.actorOf(Props[TestReceptionist],
JobReceptionist.name)

val words = List("this is a test ",
"this is a test",
"this is",
"this")

"The words system" must {
"count the occurrence of words in a text" in {

receptionist ! JobRequest("test2", words)
expectMsg(JobSuccess("test2", Map("this" -> 4,

"is" -> 3,
"a" -> 2,
"test" -> 2)))

Listing 14.22 JobReceptionist retries JobRequest on JobMaster failure

Listing 14.23 Local words test

This trait requires that the “mixee” define a 
context, which is the JobMaster class in our case.

Creates nonclustered router

Creates test version 
of JobMaster, 
overriding how the 
router is created

Creates test version 
of JobMaster

Creates test version of JobReceptionist,
overriding how the JobMaster is created

Creates test 
version of 
JobReceptionist
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er

t.
expectNoMsg
}
...
"continue to process a job with intermittent failures" in {

val wordsWithFail = List("this", "is", "a", "test", "FAIL!")
receptionist ! JobRequest("test4", wordsWithFail)
expectMsg(JobSuccess("test4", Map("this" -> 1,

"is" -> 1,
"a" -> 1,
"test" -> 1)))

expectNoMsg
}

}
}

The multi-node test doesn’t modify the creation of the actors and the router. To test the
cluster, we first have to create a MultiNodeConfig, as shown in the next listing, which
can be found in src/multi-jvm/scala/aia/cluster/words/WordsClusterSpecConfig
.scala. 

import akka.remote.testkit.MultiNodeConfig
import com.typesafe.config.ConfigFactory

object WordsClusterSpecConfig extends MultiNodeConfig {
val seed = role("seed")
val master = role("master")
val worker1 = role("worker-1")
val worker2 = role("worker-2")

commonConfig(ConfigFactory.parseString("""
akka.actor.provider="akka.cluster.ClusterActorRefProvider"

"""))
}

The MultiNodeConfig is used in the MultiNodeSpec, as you might recall from chap-
ter 6. The WordsClusterSpecConfig is used in the WordsClusterSpec, which is shown
next (which can be found in src/multi-jvm/scala/aia/cluster/words/WordsCluster-
Spec.scala).

class WordsClusterSpecMultiJvmNode1 extends WordsClusterSpec
class WordsClusterSpecMultiJvmNode2 extends WordsClusterSpec
class WordsClusterSpecMultiJvmNode3 extends WordsClusterSpec
class WordsClusterSpecMultiJvmNode4 extends WordsClusterSpec

class WordsClusterSpec extends MultiNodeSpec(WordsClusterSpecConfig)
with STMultiNodeSpec with ImplicitSender {

import WordsClusterSpecConfig._

def initialParticipants = roles.size

Listing 14.24 The MultiNode configuration

Listing 14.25 Words cluster spec

Failure is simulated by a
job worker throwing an
exception on finding the

word FAIL in text

Defines roles 
in the test

Provides a test configuration. 
ClusterActorRefProvider makes sure clust
is initialized. You can add more common
configuration here for all nodes in the tes

One class extending
WordsClusterSpec for
every node in the test
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Su
tes
it’s

to ex

no
val seedAddress = node(seed).address
val masterAddress = node(master).address
val worker1Address = node(worker1).address
val worker2Address = node(worker2).address

muteDeadLetters(classOf[Any])(system)
"A Words cluster" must {

"form the cluster" in within(10 seconds) {

Cluster(system).subscribe(testActor, classOf[MemberUp])
expectMsgClass(classOf[CurrentClusterState])

Cluster(system).join(seedAddress)

receiveN(4).map { case MemberUp(m) => m.address }.toSet must be(
Set(seedAddress, masterAddress, worker1Address, worker2Address))

Cluster(system).unsubscribe(testActor)

enterBarrier("cluster-up")
}

"execute a words job" in within(10 seconds) {
runOn(master) {

val receptionist = system.actorOf(Props[JobReceptionist],
"receptionist")

val text = List("some", "some very long text", "some long text")
receptionist ! JobRequest("job-1", text)
expectMsg(JobSuccess("job-1", Map("some" -> 3,

"very" -> 1,
"long" -> 2,
"text" -> 2)))

}
enterBarrier("job-done")

}
...

}
}

The actual test is almost exactly the same as the local version, as you can see. The clus-
tered version only makes sure that the cluster is up before the test is run on the mas-
ter. The test that recovers from failure isn’t shown here, but is exactly the same as the
test in listing 14.25 with a “FAIL” text added to the text to trigger the failure, just like
in the local version. 

Gets address 
for every node

Joins seed node. The 
config is not using a 
seed list, so we 
manually start the 
seed role node.

bscribes
tActor so
 possible
pect the

cluster
member

events

Verifies
that all

des have
joined

Runs a job on
master and 
verifies results. 
Other nodes only 
call enterBarrier.

Cluster client
The test sends the JobRequest from the master node. You might wonder how you
can talk to a cluster from the outside; for instance, in this case how you can send a
JobRequest to one of the nodes in the cluster from outside the cluster? 

The akka-contrib module contains a couple of cluster patterns; one of them is the
ClusterClient. A ClusterClient is an actor initialized with a list of initial contacts
(for instance, the seed nodes) that forwards messages to actors in the cluster using
ClusterRecipient actors on every node. 
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That concludes our discussion of how actors can be tested in a cluster. We’ve just
shown a few test cases here; in real life you’d obviously test far more scenarios. Testing
locally has the benefit of testing the logic of how the actors communicate, whereas the
multi-node-testkit can help you find issues in cluster startup or other cluster-
specific issues. We hope we’ve demonstrated that testing a clustered actor system isn’t
very different from testing local actors, and doesn’t necessarily have to be hard. Multi-
node tests are great for high-level integration tests where you can verify sequentially
how a cluster initializes or what happens if a node crashes. 

14.4 Summary
Dynamically growing and shrinking a simple application ended up being rather sim-
ple with the Cluster extension. Joining and leaving the cluster is easily done, and you
can test the functionality in a REPL console, a tool that allows you to experiment and
verify how things work. If you’ve followed along with the REPL sessions, it should’ve
been immediately apparent how solid this extension is; crashes in the cluster are prop-
erly detected and death watch works just as you’d expect. 

 Clustering has been a notoriously painful chasm to cross, usually requiring a lot of
admin and programming changes. In this chapter you saw that Akka makes it much
easier, and doesn’t require rewriting code. In the process, you also learned 

 How easy it is to form a cluster
 The node lifecycle state machine
 How to put it all together into a working app
 How to test the cluster logic

The example wasn’t about counting words, but about Akka’s generic way of process-
ing jobs in parallel in a cluster. We made use of clustered routers and some simple
messages for actors to work together and deal with failure. 

 Finally, we were able to test everything, another big advantage you quickly get used
to when using Akka. Being able to unit test a cluster is a unique feature, and makes it
possible to find problems in your application before you get to large-scale production
deployment. The words cluster actors used some temporary state about the job,
spread among the various actors. We could reproduce the input from the JobRequest
that was stored at the JobReceptionist when a failure occurred in the masters or the
workers. One situation this solution can’t recover from is when the JobReceptionist
crashes, because the JobRequest data will be lost, making it impossible to resend it to
a master. In the next chapter, we’ll look at how you can even restore state for actors
from a persistent store using the akka-persistence module. 



Actor persistence
The in-memory state of an actor is lost when an actor is stopped or restarted, or
when the actor system crashes or shuts down. This chapter is all about how to make
this state durable using the akka-persistence module. 

 It’s quite common to use a database API for creating, retrieving, updating, and
deleting records (also known as CRUD operations). Database records are often used
to represent the current state of a system. The database acts as a container for shared
mutable state in this case.

 It should come as no surprise that Akka persistence prefers a more immutable
approach. The design technique on which Akka persistence is based is called event
sourcing and is covered in the first section of this chapter. In short, you’ll learn how
to capture state changes as a sequence of immutable events in a database journal.

 Next we’ll look at the PersistentActor. A persistent actor makes it easy for an
actor to record its state as events and to recover from the events after a crash or
restart.

In this chapter
 Using event sourcing for durability

 Recording and recovering durable state with 
persistent actors

 Clustering persistent actors
354
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 The Akka cluster and persistence modules can be used together to build clustered
applications that can continue to operate even if nodes in the cluster crash or get
replaced. We’ll look at two cluster extensions, cluster singleton and cluster sharding, which
can both be used to run persistent actors in an Akka cluster, for different reasons.

 But first let’s start with event sourcing, the design technique that underpins Akka
persistence. In the case that you’re already familiar with event sourcing, you can skip
the next section and go straight to section 15.1.3, “Event sourcing for actors.”

15.1 Recovering state with event sourcing
Event sourcing is a technique that’s been in use for a long time. We’ll use a simple
example to show the difference between event sourcing and working with records in
CRUD style, which we expect you to be familiar with. In this case we’ll take the exam-
ple of a calculator that only needs to remember the last result it calculated.

Why would an actor need to recover its state?
Just to step back for a moment, it doesn’t make sense to make every actor persistent
just because you can. So when is it really necessary to keep actor state around?

This has a lot to do with how you design your system, what you’re modelling with
actors, and how other systems interact with the actors.

An actor that has a lifetime that’s longer than one message (or request/response)
and that accumulates valuable information over time often requires persistent state.
This kind of actor has an identity—some identification that can be used to reach it
later. An example of this is a shopping basket actor; a user goes back and forth
between searching for products and a shopping basket to add and remove products.
You wouldn’t want to incorrectly show an empty basket after the actor has crashed
and restarted.

Another case is where many systems send messages to an actor that models a state
machine to orchestrate messages between systems. The actor can keep track of
which messages it has received and can build up some context around the commu-
nication between the systems. An example of this is a system that takes orders from
a website and coordinates the process of claiming stocks, delivery of orders, and any
required accounting by integrating with several existing services. If the actor restarts,
you’ll need to continue in the right state so that the connected systems can pick up
where they left off for the order in question.

These are just some examples of where you’d need to persist the actor state.

There’s no need to persist state if an actor can do all its work simply by processing
the messages it receives. An example of this is an actor that’s created from stateless
HTTP requests, containing all the information that the actor needs. A client will need
to retry the HTTP request if the actor fails in that case. 
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15.1.1 Updating records in place

Updating records in place is commonplace when using a SQL database for OLTP
(online transaction processing). Figure 15.1 shows how SQL insert and update state-
ments can be used to keep track of the calculation result shown in the calculator.

The calculator inserts one row on startup; the statement for finding out if the record
already exists is omitted. Every calculation is executed in the database, using update
statements on one row in the table. (You can assume that every update will be exe-
cuted in its own transaction.)

 Figure 15.1 shows that the calculator displays 0.75 as the result. The application
queries the result when it’s restarted, shown in figure 15.2.

This is all pretty straightforward; the record only stores the most recently calculated
result. There’s no way to know how the user got to 0.75 or what the intermediate
results were after the calculation completed. (We’re ignoring the fact that it’s theoreti-
cally possible to observe some intermediate results in a SQL query that runs concur-
rently with the updates in a low isolation level.)

 If you wanted to know all calculations that the user performed, you would have to
store this in a separate table.

 Every calculation is done inside a SQL statement. Every calculation depends on the
previous result that’s stored in the record in the database table. 

1. Start with one record: insert into results
values (1, 0)

id

1

Result

0

2. Add 1: update results
set result = result + 1
where id = 1

id

1

Result

1

3. Multiply by 3: update results
set result = result * 3
where id = 1

id

1

Result

3

4. Divide by 4: update results
set result = result / 4
where id = 1

id

1

Result

0.75

SQL statement Results table

Figure 15.1 Storing state with updates

select result from results where id = 1 Result

0.75

SQL statement Query result

Figure 15.2 Calculator selects last known state from database
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15.1.2 Persisting state without updates

The event-sourced approach is up next. Instead of storing the last result in one
record, we’ll capture every successful operation in a journal as an event. An event needs
to capture exactly what has happened; in this case we’ll store the name of the opera-
tion and its argument. Again simple SQL statements are used as an example; the jour-
nal is represented as a simple database table. Figure 15.3 shows the statements that are
used to keep track of all calculations.

The calculations are done in-memory; an event is stored after a successful operation.
The ID column uses a database sequence and is automatically incremented with every
insert. (And you can assume that every insert is executed in its own transaction or that
some autocommit feature is used.)

 The events describe the successful operations that were executed on the initial
state, which starts off as zero. A simple variable is used to keep track of the last result.
Every event is crudely serialized as a string, the name of the event and the argument
separated by a colon.

 Now let’s look at how the calculator restores the last known state from the events.
The calculator starts at the initial value of 0 and applies every operation in exactly the
same order. The calculator app reads and deserializes the events, interprets each event,
and executes the same operations to get to the result of 0.75, shown in figure 15.4.

 As you can see, event sourcing is a simple concept. In the next section, we’ll go a
little deeper into how event sourcing can be used to make actors durable.

1. var res = 0d

2. res += 1 insert into events(event)
values("added:1")

id

1

event

added:1

3. res *= 3 insert into events(event)
values("multiplied:3")

id

1

2

event

added:1

multiplied:3

id

1

2

3

event

added:1

multiplied:3

divided:4

4. res /= 4 insert into events(event)
values("divided:4")

SQL statementIn-memory operation Event table

Figure 15.3 Storing all successful operations as events



358 CHAPTER 15 Actor persistence
15.1.3 Event sourcing for actors

One of the biggest benefits of event sourcing is that writing to and reading from the
database are separated into two distinct phases. Reading from the journal only hap-
pens when recovering the state of a persistent actor. Once the actor has recovered its
state, it’s business as usual: the actor can simply process messages and keep state in
memory, as long as it makes sure to persist events.

 A journal has a simple interface. Leaving out some details, it only needs to support
appending serialized events and reading deserialized events from a position in the

1. Select * from events order by id ASC

2. Start with initial state

id

1

2

3

event

added:1

multiplied:3

divided:4

1 added:1

Deserialize into operation and argument,
execute operation

Deserialize into operation and argument,
execute operation

Deserialize into operation and argument,
execute operation

var res = 0

3. res +=1

2 multiplied:34.

3 divided:45.

Calculator ends up with res = 0.75, displays to user

res *=3

res /=4

res = 0.75

Figure 15.4 Calculator recalculates last known state from initial value and events

Which one is “simpler”?
The CRUD-style solution would fit just fine for this simple calculator application. It
requires less storage space, and the recovery of the last result is simpler. The calcu-
lator app example is simply used to highlight the difference between the two
approaches.

Shared mutable state is still our enemy. Pushing it to the database doesn’t make the
problem go away. The interactions with the database become increasingly complex
when CRUD operations are allowed without constraints. The combination of actors
and the persistence module provides a simple way to implement event sourcing with-
out having to do too much work yourself, as you’ll see in this chapter. 
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journal. The events in the journal are effectively immutable; the events can’t be
changed after they’ve been written. Once again immutability wins over mutability
when it comes to the complexity of concurrent access.

 Akka persistence defines a journal interface that makes it possible for anyone to
write a journal plugin. There’s even a TCK (technology compatibility kit) to test com-
patibility with Akka persistence. Events can be stored in a SQL database, a NoSQL data-
base, an embedded database, or a file-based system, as long as the journal plugin can
append events in order and make it possible to read them again in the same order.
You can find quite a few journal plugins already available from the Akka community
page at http://akka.io/community/.

 Event sourcing also has some drawbacks. An obvious drawback is the increase in
required storage space. All events from day one need to be recovered after a crash,
and every change in state has to be executed to finally get to the last known state,
which could potentially take a lot of time at the start of an application.

 Creating snapshots of the actor state, which we’ll look at in section 15.2.3, can
reduce the required storage space and speed up recovery of current state. In short this
means that it’s possible to skip many events and only process snapshots, possibly even
only the last known snapshot, after which events can be recovered again.

 If the actor state doesn’t fit in memory, we obviously have another problem. Shard-
ing, which is the distribution of state across servers, makes it possible to scale out the
required space for in-memory state. The cluster sharding module, which is discussed in
section 15.3.2, provides a sharding strategy for actors.

 It’s safe to say that event sourcing requires some form of serialization of events.
Serialization can be done automatically in some cases; in other cases, you’ll need to
write some specific code. Imagine that you change an event in your application
(rename a field, for instance, or add a required field)—how will you be able to deseri-
alize both the old and the new versions of this event from the journal? Versioning
serialized data can be a tricky problem; we’ll discuss a few options in section 15.2.4.

 Event sourcing really only provides a way to recover state from events; it’s not a
solution for ad hoc queries. A well-known approach for ad hoc queries is to replicate
events to a system that’s optimized for analysis.

 In the next section, we’ll start building the calculator to get the basics out of the
way. After that we’ll look at a more involved example of an online shopping service. 

15.2 Persistent actors
First we’ll need to add the dependency to our build file.

parallelExecution in Test := false

fork := true

libraryDependencies ++= {
val akkaVersion = "2.4.9"

Listing 15.1 akka-persistence dependency

Disables parallel 
tests, since we’ll use 
a shared file-based 
journal for testing

Forking tests, in case 
the native LevelDB 
database is used

http://akka.io/community/
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Seq(
"com.typesafe.akka" %% "akka-actor" % akkaVersion,
"com.typesafe.akka" %% "akka-persistence" % akkaVersion,

// other dependencies for the rest of this chapter
)

}

Akka persistence comes bundled with two LevelDB (https://github.com/google
/leveldb) journal plugins (which should be used for testing purposes only), a local
plugin, and a shared plugin. The local plugin can only be used by one actor system;
the shared plugin can be used by many actor systems, which comes in handy when
testing persistence in a cluster.

 The plugins use a native LevelDB library (https://github.com/fusesource/leveldbjni)
or a Java port of the LevelDB project (https://github.com/dain/leveldb). Listings 15.2
and 15.3 show how to configure the plugins to use the Java port instead of the native
library.

akka.persistence.journal.leveldb.native = off

akka.persistence.journal.leveldb-shared.store.native = off

Forking tests are required for using the native library; otherwise you’ll get a linking
error.

 Now that we have a minimal build file, we can start building the calculator in the
next section.

15.2.1 Persistent actor

A persistent actor works in two modes: it recovers from events or it processes commands.
Commands are messages that are sent to the actor to execute some logic; events provide
evidence that the actor has executed the logic correctly. The first thing to do is define
the commands and events for the calculator actor. The following listing shows the
commands that the calculator can handle and the events that occur when the calcula-
tor validates the commands.

sealed trait Command
case object Clear extends Command
case class Add(value: Double) extends Command
case class Subtract(value: Double) extends Command
case class Divide(value: Double) extends Command
case class Multiply(value: Double) extends Command
case object PrintResult extends Command
case object GetResult extends Command

Listing 15.2 Configuring the Java library for the local LevelDB journal plugin

Listing 15.3 Configuring the Java library for the shared LevelDB journal plugin

Listing 15.4 Calculator commands and events

Dependency on akka-persistence

All commands extend 
Command trait. Console 
output is simplified to show 
most relevant messages.

https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/fusesource/leveldbjni
https://github.com/dain/leveldb
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sealed trait Event
case object Reset extends Event
case class Added(value: Double) extends Event
case class Subtracted(value: Double) extends Event
case class Divided(value: Double) extends Event
case class Multiplied(value: Double) extends Event

Commands and events are separated by extending from distinct sealed traits, Command
for commands and Event for events. (A sealed trait allows the Scala compiler to check
whether a pattern match on case classes extending the trait is complete.) Akka persis-
tence provides a PersistentActor trait that extends the Actor trait. Every persistent
actor requires a persistentId, which is used to uniquely identify the events in the
journal for that actor. (Without it there would be no way to separate one actor’s events
from another.) The ID is automatically passed to the journal when a persistent actor
persists an event. In the calculator example, there’s only one calculator; listing 15.5
shows that the calculator uses a fixed persistenceId—my-calculator—which is
defined in Calculator.name. The state of the calculator is kept in a CalculationRe-
sult case class, which is shown in listing 15.8.

class Calculator extends PersistentActor with ActorLogging {
import Calculator._

def persistenceId = Calculator.name

var state = CalculationResult()
// more code to follow ..

A persistent actor requires two receive definitions—receiveCommand and receive-
Recover—instead of the one receive definition that you’ve seen so far. receive-
Command is used to handle messages after the actor has recovered, and receiveRecover
is used to receive past events and snapshots while the actor is recovering.

 The receiveCommand definition in listing 15.6 shows how the persist method is
used to persist the command immediately as an event, except in the case of division,
where the argument is first validated to prevent a divide-by-zero error.

val receiveCommand: Receive = {
case Add(value) => persist(Added(value))(updateState)
case Subtract(value) => persist(Subtracted(value))(updateState)
case Divide(value) => if(value != 0) persist(Divided(value))(updateState)
case Multiply(value) => persist(Multiplied(value))(updateState)
case PrintResult => println(s"the result is: ${state.result}")
case GetResult   => sender() ! state.result
case Clear           => persist(Reset)(updateState)

}

updateState does the required calculation and updates the calculation result (called
state in the code, which is the CalculationResult). The updateState function

Listing 15.5 Extend persistent actor and define persistenceId

Listing 15.6 receive for handling messages after recovery

All events extend 
Event trait
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This me
is sent

recover
compl
shown in listing 15.7 is passed to the persist method, which takes two argument lists:
the first for the event to persist, and the second for a function to handle the persisted
event, which is called after the event has been successfully persisted in the journal.

 The function to handle the persisted event is called asynchronously, but akka-
persistence makes sure that the next command isn’t handled before this function is
completed, so it’s safe to refer to sender() from this function, quite unlike normal asyn-
chronous calls from within actors. This does come at some performance overhead,
since messages will have to be stashed. If your application doesn’t require this guaran-
tee, then you can use persistAsync, which doesn’t stash incoming commands.

val updateState: Event => Unit = {
case Reset            => state = state.reset
case Added(value)      => state = state.add(value)
case Subtracted(value) => state = state.subtract(value)
case Divided(value)    => state = state.divide(value)
case Multiplied(value) => state = state.multiply(value)

}

CalculationResult supports the operations that the calculator requires and returns
a new immutable value at every operation, shown in listing 15.8. The updateState
function calls one of the methods of CalculationResult and assigns it to the state
variable.

case class CalculationResult(result: Double = 0) {
def reset = copy(result = 0)
def add(value: Double) = copy(result = this.result + value)
def subtract(value: Double) = copy(result = this.result - value)
def divide(value: Double) = copy(result = this.result / value)
def multiply(value: Double) = copy(result = this.result * value)

}

To summarize the write side of this calculator actor: Every correct calculation com-
mand becomes an event that gets stored in the journal. The state is set to the new cal-
culation result after the associated event is stored.

 Let’s look at receiveRecover for the calculator in listing 15.9, which will be called
with all the events that have occurred when the actor (re-)starts. It will have to execute
exactly the same logic that was used when the commands were processed correctly, so
we’ll use the same updateState function here.

val receiveRecover: Receive = {
case event: Event      => updateState(event)
case RecoveryCompleted => log.info("Calculator recovery completed")

}

Listing 15.7 Updating the internal state

Listing 15.8 Perform calculation and return next state

Listing 15.9 receive for recovery
ssage
 once
y has
eted.
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Every calculator event that has ever been appended to the journal using the same
persistenceId is passed to the same updateState function to have the exact same
effect as before, updating the calculation result.

receiveRecover is used when the actor is started or restarted. New commands that
are received while the actor recovers are handled in order once the actor has finished
recovering.

 Here are some takeaways from this simple code example that we’ll use in our next
examples:

 Commands are immediately converted into events or validated first in the case
of division.

 Commands turn into events if the commands are valid and if they affect the
state of the actor. Events cause state updates in the actor after recovery and dur-
ing recovery; the logic is exactly the same.

 Writing the logic in an updateState function is recommended to avoid code
duplication in the receiveCommand and receiveRecover definitions.

 The CalculationResult contains the calculator logic in an immutable way (by
providing a copy of the result at every operation). This makes the updateState
function really simple to implement and to read.

In the next section, we’ll write a test for this simple example. 

15.2.2 Testing

Next let’s see how we can test the calculator. The unit test in listing 15.10 shows that
we can test this actor as usual, provided we use a base class for testing with Akka persis-
tence and include a trait for cleaning up the journal. This is necessary since the
LevelDB journal writes to the same directory for all tests, by default in a journal direc-
tory inside the current working directory. Sadly there’s no Akka persistence test kit
that does this setup for you automatically, or provides other persistence-related test
features, but for now some simple helpers will do the trick. Since we turned off paral-
lel tests earlier, every test can use the journal in isolation.

package aia.persistence.calculator

import akka.actor._
import akka.testkit._
import org.scalatest._

class CalculatorSpec extends PersistenceSpec(ActorSystem("test"))
with PersistenceCleanup {

"The Calculator" should {
"recover last known result after crash" in {

val calc = system.actorOf(Calculator.props, Calculator.name)
calc ! Calculator.Add(1d)
calc ! Calculator.GetResult
expectMsg(1d)

Listing 15.10 Unit test for the calculator
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calc ! Calculator.Subtract(0.5d)
calc ! Calculator.GetResult
expectMsg(0.5d)

killActors(calc)

val calcResurrected = system.actorOf(Calculator.props, Calculator.name)
calcResurrected ! Calculator.GetResult
expectMsg(0.5d)

calcResurrected ! Calculator.Add(1d)
calcResurrected ! Calculator.GetResult
expectMsg(1.5d)

}
}

}

The unit test contains a simple example to verify that the calculator correctly recovers
from a crash. The calculator responds with the result of the calculation when it
receives a GetResult message. The PersistenceSpec defines killActors, which
watches, stops, and awaits termination of all actors passed to it. The calculator is
killed, after which a new calculator is created and continues where it left off.

 The following listing shows the PersistenceSpec class and the Persistence-
Cleanup trait.

import java.io.File
import com.typesafe.config._

import scala.util._

import akka.actor._
import akka.persistence._
import org.scalatest._

import org.apache.commons.io.FileUtils

abstract class PersistenceSpec(system: ActorSystem) extends TestKit(system)
with ImplicitSender
with WordSpecLike
with Matchers
with BeforeAndAfterAll
with PersistenceCleanup {

def this(name: String, config: Config) = this(ActorSystem(name, config))
override protected def beforeAll() = deleteStorageLocations()

override protected def afterAll() = {
deleteStorageLocations()
TestKit.shutdownActorSystem(system)

}

def killActors(actors: ActorRef*) = {
actors.foreach { actor =>

watch(actor)
system.stop(actor)

Listing 15.11 Base class for persistence specs
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expectTerminated(actor)
}

}
}

trait PersistenceCleanup {
def system: ActorSystem

val storageLocations = List(
"akka.persistence.journal.leveldb.dir",
"akka.persistence.journal.leveldb-shared.store.dir",
"akka.persistence.snapshot-store.local.dir").map { s =>
new File(system.settings.config.getString(s))

}

def deleteStorageLocations(): Unit = {
storageLocations.foreach(dir => Try(FileUtils.deleteDirectory(dir)))

}
}

The PersistenceCleanup trait defines a deleteStorageLocations method that
removes directories created by the LevelDB journal (as well as the default snapshot
journal, which we’ll talk about a little more in section 15.2.3). It gets the configured
directories from the Akka configuration. The PersistenceSpec deletes any leftover
directories before the unit test starts, deletes the directories after all specifications,
and shuts down the actor system used during the test.

CalculatorSpec creates an actor system with default configuration for the test, but
it’s also possible to pass in a custom configuration to the test, using the auxiliary
constructor of PersistenceSpec, which takes a system name and a config object.
PersistenceCleanup uses org.apache.commons.io.FileUtils to delete the directo-
ries; the dependency for the commons-io library can be found in the sbt build file.

 The PersistenceSpec will be used for unit tests in the upcoming sections. In the
next section we’ll look at using snapshots to speed up recovery. 

15.2.3 Snapshots

As mentioned before, snapshots can be used to speed up the recovery of an actor.
Snapshots are stored in a separate SnapshotStore. The default snapshot store stores
files on disk in a directory configured by akka.persistence.snapshot-store.local.dir.

 To show how snapshots work, we’ll use an example of a shopping basket actor. In
the next sections, we’ll go through the persistence aspects of an online shopping ser-
vice, focused on handling shopping baskets. The following listing shows the com-
mands and events for a Basket actor.

sealed trait Command extends Shopper.Command

Listing 15.12 Basket commands and events

Basket commands are
shopper commands; Shopper

actor will be shown later
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case class Add(item: Item, shopperId: Long) extends Command
case class RemoveItem(productId: String, shopperId: Long) extends Command
case class UpdateItem(productId: String,

number: Int,
shopperId: Long) extends Command

case class Clear(shopperId: Long) extends Command
case class Replace(items: Items, shopperId: Long) extends Command
case class GetItems(shopperId: Long) extends Command

case class CountRecoveredEvents(shopperId: Long) extends Command
case class RecoveredEventsCount(count: Long)

sealed trait Event extends Serializable
case class Added(item: Item) extends Event
case class ItemRemoved(productId: String) extends Event
case class ItemUpdated(productId: String, number: Int) extends Event
case class Replaced(items: Items) extends Event
case class Cleared(clearedItems: Items) extends Event

case class Snapshot(items: Items)

A basket contains items, and as you would expect, you can add, remove, and update
items in a basket and clear the basket once it’s paid for. Every shopper in the online
service has a basket, adds items to the basket, and eventually pays for the items in the
basket. The Basket actor contains Items to represent its state.

case class Items(list: List[Item]) {
// more code for working with the item..

case class Item(productId: String, number: Int, unitPrice: BigDecimal) {
// more code for working with the item..

The details of items are left out; methods to add, remove, and clear items return a new
immutable copy, similar to the approach taken with the CalculationResult. The bas-
ket is cleared once the shopper has paid. It makes sense to make a snapshot once the
basket is cleared; there’s no need to know about the previous items in the basket if all
you want to do is show the current shopping basket as quickly as possible after a
restart.

 For now we’ll only look at the relevant code for snapshots; in later sections we’ll
look at how the Basket actor is created as part of the complete service. We’ll start with
the updateState and receiveCommand methods.

Listing 15.13 Items

Listing 15.14 Item

ket is
eared
ce it’s
id for

Event indicating that
basket has been cleared
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private val updateState: (Event => Unit) = {
case Added(item) => items = items.add(item)
case ItemRemoved(id) => items = items.removeItem(id)
case ItemUpdated(id, number) => items = items.updateItem(id, number)
case Replaced(newItems) => items = newItems
case Cleared(clearedItems) => items = items.clear

}

def receiveCommand = {
case Add(item, _) =>

persist(Added(item))(updateState)

case RemoveItem(id, _) =>
if(items.containsProduct(id)) {

persist(ItemRemoved(id)){ removed =>
updateState(removed)
sender() ! Some(removed)

}
} else {

sender() ! None
}

case UpdateItem(id, number, _) =>
if(items.containsProduct(id)) {

persist(ItemUpdated(id, number)){ updated =>
updateState(updated)
sender() ! Some(updated)

}
} else {

sender() ! None
}

case Replace(items, _) =>
persist(Replaced(items))(updateState)

case Clear(_) =>
persist(Cleared(items)){ e =>

updateState(e)
//basket is cleared after payment.
saveSnapshot(Basket.Snapshot(items))

}

case GetItems(_) =>
sender() ! items

case CountRecoveredEvents(_) =>
sender() ! RecoveredEventsCount(nrEventsRecovered)

case SaveSnapshotSuccess(metadata) =>
log.info(s"Snapshot saved with metadata $metadata")

case SaveSnapshotFailure(metadata, reason) =>
log.error(s"Failed to save snapshot: $metadata, $reason.")

}

Listing 15.15 Basket updateState

Listing 15.16 Basket receiveCommand

Saves snapshot when
basket is cleared

Snapshot 
successfully saved

Snapshot couldn’t be saved
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The Items in the basket are saved as a snapshot using the saveSnapshot method.
SaveSnapshotSuccess or SaveSnapshotFailure is eventually returned to indicate if
the snapshot could be saved. In this example it’s purely an optimization to save the
snapshot, so we don’t take any action when the snapshot couldn’t be saved. The fol-
lowing listing shows the receiveRecover for the Basket actor. 

def receiveRecover = {
case event: Event =>

nrEventsRecovered = nrEventsRecovered + 1
updateState(event)

case SnapshotOffer(_, snapshot: Basket.Snapshot) =>
log.info(s"Recovering baskets from snapshot: $snapshot for $persistenceId
")

items = snapshot.items
}

receiveRecover uses the updateState as expected, but it also handles a Snapshot-
Offer message. By default the last saved snapshot is passed to the actor before any
events that follow the snapshot. Any events that occurred before the snapshot aren’t
passed to receiveRecover. In this case this means that all events for baskets that have
been paid for don’t have to be processed during recovery.

RECOVERY CUSTOMIZATION By default only the latest snapshot taken is
offered during recovery, which is the most common case. There’s a way to
customize from which snapshot a persistent actor should recover; you can
override the recovery method. The Recovery value returned from this
method selects a snapshot to start recovering from by sequenceNr and/or
timestamp, and optionally a sequenceNr until which to recover or a max
number of messages to recover.

The CountRecoveredEvents command is added to test if the events are really skipped
during recovery. Listing 15.17 shows that nrEventsRecovered is incremented with
every event; the Basket actor returns the number of recovered events when it receives
a CountRecoveredEvents, shown in listing 15.16. The BasketSnapshotSpec in listing
15.18 shows a unit test to validate that events are skipped after snapshots are made
(once baskets are cleared).

package aia.persistence

import scala.concurrent.duration._

import akka.actor._
import akka.testkit._
import org.scalatest._

class BasketSpec extends PersistenceSpec(ActorSystem("test"))
with PersistenceCleanup {

Listing 15.17 Basket receiveRecover

Listing 15.18 BasketSnapshotSpec

Snapshot 
is offered 
during 
recovery
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val shopperId = 2L
val macbookPro = Item("Apple Macbook Pro", 1, BigDecimal(2499.99))
val macPro = Item("Apple Mac Pro", 1, BigDecimal(10499.99))
val displays = Item("4K Display", 3, BigDecimal(2499.99))
val appleMouse = Item("Apple Mouse", 1, BigDecimal(99.99))
val appleKeyboard = Item("Apple Keyboard", 1, BigDecimal(79.99))
val dWave = Item("D-Wave One", 1, BigDecimal(14999999.99))

"The basket" should {
"skip basket events that occured before Cleared during recovery" in {

val basket = system.actorOf(Basket.props, Basket.name(shopperId))
basket ! Basket.Add(macbookPro, shopperId)
basket ! Basket.Add(displays, shopperId)
basket ! Basket.GetItems(shopperId)
expectMsg(Items(macbookPro, displays))

basket ! Basket.Clear(shopperId)

basket ! Basket.Add(macPro, shopperId)
basket ! Basket.RemoveItem(macPro.productId, shopperId)
expectMsg(Some(Basket.ItemRemoved(macPro.productId)))

basket ! Basket.Clear(shopperId)
basket ! Basket.Add(dWave, shopperId)
basket ! Basket.Add(displays, shopperId)

basket ! Basket.GetItems(shopperId)
expectMsg(Items(dWave, displays))

killActors(basket)

val basketResurrected = system.actorOf(Basket.props,
Basket.name(shopperId))

basketResurrected ! Basket.GetItems(shopperId)
expectMsg(Items(dWave, displays))

basketResurrected ! Basket.CountRecoveredEvents(shopperId)
expectMsg(Basket.RecoveredEventsCount(2))

killActors(basketResurrected)
}

}
}

Counting the number of snapshots that are offered is left as an exercise to the reader.
This is a simple example of snapshots: the snapshot that we save is always empty, which
we use as a marker in the journal to prevent having to process all previous basket
interactions.

 As you’ve seen, a persistent actor can recover itself from snapshots and events
stored in a journal. There might be cases where you’d like to read events from the
journal outside of the recovery process of a persistent actor. In the next section, we’ll
look at how events can be read directly from a journal. 

Clearing 
basket causes 
a snapshot

Assert that only events 
after last snapshot are 
processed during recovery
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15.2.4 Persistence query

Persistence query is an experimental module for querying a journal, out of band from
the recovery of persistent actors. We’ll take only a brief look at the module in this sec-
tion, since it’s experimental and not essentially required for recovering actor state, the
focus of this chapter. It’s important to note that this is not a tool for ad hoc query like
SQL. The best use case for persistent query is to continuously read events out of band
from the persistent actors and update these events in another database in a shape
more suitable for querying.

 If you have very limited querying requirements, persistence query might suffice for
your use case directly. Persistence query supports getting all events, getting events for
a particular persistenceId, and getting events by a specific tag (which requires an
event adapter to explicitly tag events into the journal, not described here).

 That might sound limited, but these features are enough to read all or a subset of
events and write them to your database of choice for querying. Persistence query pro-
vides an API to read from an akka-stream Source of events.

 In this section we’ll focus on how you can access a Source of events; updating a
database for querying is left as an exercise for the reader. Let’s first add the depen-
dency for it.

libraryDependencies ++= {
val akkaVersion = "2.4.9"
Seq(

// other dependencies omitted ..
"com.typesafe.akka" %% "akka-persistence-query-experimental" % akkaVersion,
// other dependencies omitted ..

)

A LevelDB read journal is bundled in this dependency, which we’ll use in this section.
It’s expected that most community journal plugins will support a read journal. The
following listing shows how to get access to the LevelDB ReadJournal.

implicit val mat = ActorMaterializer()(system)
val queries =

PersistenceQuery(system).readJournalFor[LeveldbReadJournal](
LeveldbReadJournal.Identifier

)

You need to provide an implicit ActorMaterializer, which is common when using
akka-stream. The readJournalFor method on the PersistenceQuery extension
returns a specific read journal, in this case a LeveldbReadJournal.

 The LeveldbReadJournal supports all types of queries, which can be found in the All-
PersistenceIdsQuery, CurrentPersistenceIdsQuery, EventsByPersistenceIdQuery,

Listing 15.19 Add persistence-query dependency

Listing 15.20 Get the ReadJournal
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CurrentEventsByPersistenceIdQuery, EventsByTagQuery, and CurrentEventsByTag-
Query traits. Other journal plugins might decide to implement all, some, or none of
these traits.

 There are basically two types of queries: methods starting with current return a
Source that completes the stream once all currently stored events have been provided
through the Source, and methods that don’t start with current won’t complete the
stream, and will continuously provide “live” events as they arrive. (The stream can of
course complete with a failure when the journal can’t be read; you’ll have to handle
total stream failure yourself.)

 The next listing shows how you can read the current basket events that are stored
in the LevelDB journal for a specific basket.

val src: Source[EventEnvelope, NotUsed] =
queries.currentEventsByPersistenceId(

Basket.name(shopperId), 0L, Long.MaxValue)

val events: Source[Basket.Event, NotUsed] =
src.map(_.event.asInstanceOf[Basket.Event])

val res: Future[Seq[Basket.Event]] = events.runWith(Sink.seq)

The persistenceId in the Basket actor is set to the same value as what is returned by
Basket.name, which is why this example works. The currentEventsByPersistenceId
method takes two arguments, a fromSequenceNr and a toSequenceNr; using 0 and
Long.MaxValue, respectively, returns all events in the journal for the persistenceId.
The following listing shows how you can read a live stream of basket events that are
stored in the LevelDB journal for a specific basket.

val src: Source[EventEnvelope, NotUsed] =
queries.eventsByPersistenceId(

Basket.name(shopperId), 0L, Long.MaxValue)

val dbRows: Source[DbRow, NotUsed] =
  src.map(eventEnvelope => toDbRow(eventEnvelope))
  events.runWith(reactiveDatabaseSink)

The Source returned by eventsByPersistenceId will never complete; it will continue
to provide events when they occur. Translating events to some database representation
and writing them to a database sink, shown in the previous listing, should be read
more as “incomplete pseudo code” than real code; this is left as an exercise for the

Listing 15.21 Get current basket events

Listing 15.22 Get a live stream of basket events

Gets a source to the curren
events for a specific basket,
from the beginning, until 
the last event stored.

You could run a source with a Sink.seq to get all the
events for testing purposes. You would probably await

the future to compare it with a list of known events.

Since we’re only writing Basket.Event 
type events to the journal, it’s safe to 
cast the events here.

Gets a source to all events 
for a specific basket, which 
doesn’t end.

You could translate the events 
into “database rows,” which coul
be written to some database sink
details are omitted here.
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reader. You would have to keep track of the sequence number that you stored previ-
ously in case some error occurs or if this logic is restarted for any reason. A good
option for keeping track of sequence numbers is to write these out into the target
database. (The EventEnvelope has a sequenceNr field.) At restart, you can then take
the maximum sequence number in the target database and continue from there.

 In the next section, we’ll look at how events and snapshots are serialized.

15.2.5 Serialization

Serialization is configured through Akka’s serialization infrastructure. Java serializa-
tion is used by default. This is fine for testing purposes, but shouldn’t be used in pro-
duction; in most cases you need a more efficient serializer.

 Using anything but the default takes some work, which is the topic of this section.
 Writing a custom serializer is the best choice if you want full control over how

events and snapshots are serialized, which is what we’ll do in this section.

Before we look into the actual code of the custom serializers, let’s have a look at how to
configure them. The code in the next listing shows how you can configure a custom
serializer for all Basket.Event classes and the Basket snapshot class: Basket.Snapshot.

Seriously, write a custom serializer?
Writing a custom serializer is a bit of work. If you find that the default serializer isn’t
fast enough for your use case, or if you need to execute custom logic to automatically
migrate from previously serialized data, then writing a custom serializer is a good
choice.

Aren’t there any other options, you might ask? The akka-remote module contains a
serializer for the Google Protocol Buffers format (https://github.com/google/
protobuf), but this serializer only works with protobuf-generated classes, which works
best if you start out with protobuf definitions. Classes are then generated from the
protobuf definitions, which are then used directly as events.

Another option is to use a third-party akka-serialization library. A library called akka-
kryo-serialization (https://github.com/romix/akka-kryo-serialization) is an example of
a serialization library that claims to support serialization of most Scala classes auto-
matically, using the kryo format. The library still needs some configuration though,
and doesn’t support version migration.

Stamina (https://github.com/scalapenos/stamina) is an akka-serialization toolkit
specifically built for akka-persistence. It has an optional module for JSON serializa-
tion using spray-json. Stamina provides a DSL for versioning and automigrating seri-
alized data (also called upcasting), which makes it possible to upgrade your service
without having to stop the service and convert the entire journal before starting the
service again.

https://github.com/romix/akka-kryo-serialization
https://github.com/google/protobuf
https://github.com/google/protobuf
https://github.com/scalapenos/stamina
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akka {
actor {

serializers {
basket = "aia.persistence.BasketEventSerializer"
basketSnapshot = "aia.persistence.BasketSnapshotSerializer"

}
serialization-bindings {

"aia.persistence.Basket$Event" = basket
"aia.persistence.Basket$Snapshot" = basketSnapshot

}
}

}

Any class that’s not bound will automatically use the default serializer. Class names
need to be fully qualified. In this case Event and Snapshot are part of the Basket com-
panion object. The Scala compiler creates a Java class for the object with a dollar sign
added to the end, which explains the strange, fully qualified class names (FQCNs) of
Basket.Event and Basket.Snapshot. 

 Any serializer needs to create a byte array representation of the event or snapshot
in question. A serializer needs to be able to reconstruct the correct event or snapshot
from that same byte array later on. The next listing shows the trait that we need to
implement in a custom serializer.

trait Serializer {
/**
* Completely unique value to identify this
* implementation of Serializer,
* used to optimize network traffic
* Values from 0 to 16 is reserved for Akka internal usage
*/

def identifier: Int

/**
* Serializes the given object into an Array of Byte
*/

def toBinary(o: AnyRef): Array[Byte]

/**
* Returns whether this serializer needs a manifest
* in the fromBinary method
*/

def includeManifest: Boolean

/**
* Produces an object from an array of bytes,
* with an optional type-hint;
* the class should be loaded using ActorSystem.dynamicAccess.
*/

def fromBinary(bytes: Array[Byte], manifest: Option[Class[_]]): AnyRef
}

Listing 15.23 Serialization configuration

Listing 15.24 Akka Serializer trait

Registers custom serializers

Binds classes that 
need custom
serialization to a 
specific serializer
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In general, any serializer will need to write a discriminator into the serialized bytes to
be able to read them back again later. This can be a serialized class name, or simply a
numerical ID to identify a type. Using Java serialization, Akka can automatically write a
class manifest into the serialized bytes, if includeManifest is set to true in the custom
serializer.

 The custom serializers for the basket event and snapshot will use the spray-json
library to read and write in JSON format (we have to pick something, after all). The
full list of JSON formats is defined in a JsonFormats object, which is omitted from the
listings here. Let’s first look at the BasketEventSerializer, which is used to serialize
Basket.Events.

import scala.util.Try
import akka.serialization._
import spray.json._

class BasketEventSerializer extends Serializer {
import JsonFormats._

val includeManifest: Boolean = false
val identifier = 123678213

def toBinary(obj: AnyRef): Array[Byte] = {
obj match {

case e: Basket.Event =>
BasketEventFormat.write(e).compactPrint.getBytes

case msg =>
throw new Exception(s"Cannot serialize $msg with ${this.getClass}")

}
}

def fromBinary(bytes: Array[Byte],
clazz: Option[Class[_]]): AnyRef = {

val jsonAst = new String(bytes).parseJson
BasketEventFormat.read(jsonAst)

}
}

The BasketEventFormat in JsonFormats writes a JSON array for every event. The first
element is a discriminator to indicate which event is stored in the second element of
the array. This same discriminator is used to determine which event format to use to
deserialize the event. BasketEventFormat is shown next.

implicit object BasketEventFormat
extends RootJsonFormat[Basket.Event] {

import Basket._
val addedId = JsNumber(1)
val removedId = JsNumber(2)
val updatedId = JsNumber(3)

Listing 15.25 Custom Basket event serializer

Listing 15.26 BasketEventFormat

JsonFormats (omitted here) 
contains spray-json formats for
basket events and snapshots.

Registers custom serializers

Every
rializer
needs

ique ID Only serializes basket events

Converts byte array to 
a spray-json AST 
(abstract syntax tree)

Converts json to Basket.Event 
using a BasketEventFormat
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val replacedId = JsNumber(4)
val clearedId = JsNumber(5)

def write(event: Event) = {
event match {

case e: Added =>
JsArray(addedId, addedEventFormat.write(e))

case e: ItemRemoved =>
JsArray(removedId, removedEventFormat.write(e))

case e: ItemUpdated =>
JsArray(updatedId, updatedEventFormat.write(e))

case e: Replaced =>
JsArray(replacedId, replacedEventFormat.write(e))

case e: Cleared =>
JsArray(clearedId, clearedEventFormat.write(e))

}
}
def read(json: JsValue): Basket.Event = {

json match {
case JsArray(Vector(`addedId`,jsEvent)) =>

addedEventFormat.read(jsEvent)
case JsArray(Vector(`removedId`,jsEvent)) =>

removedEventFormat.read(jsEvent)
case JsArray(Vector(`updatedId`,jsEvent)) =>

updatedEventFormat.read(jsEvent)
case JsArray(Vector(`replacedId`,jsEvent)) =>

replacedEventFormat.read(jsEvent)
case JsArray(Vector(`clearedId`,jsEvent)) =>

clearedEventFormat.read(jsEvent)
case j =>
deserializationError("Expected basket event, but got " + j)

}
}

}

The BasketSnapshotSerializer is shown in listing 15.27. It uses the implicitly
defined format defined in JsonFormats for converting between JSON and Basket-
Snapshots.

 A custom serializer like this can also be used to automatically migrate old versions
of serialized data. One solution would be to write a discriminator value into the bytes,
similar to the one that determines the event type, which is then used to select a cus-
tom piece of logic to read all older versions of serialized data into the most current
version. (The Stamina library does something along these lines and provides a nice
DSL to define version migrations.)

class BasketSnapshotSerializer extends Serializer {
import JsonFormats._

val includeManifest: Boolean = false
val identifier = 1242134234

Listing 15.27 Custom Basket snapshot serializer
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def toBinary(obj: AnyRef): Array[Byte] = {
obj match {

case snap: Basket.Snapshot => snap.toJson.compactPrint.getBytes
case msg => throw new Exception(s"Cannot serialize $msg")

}
}

def fromBinary(bytes: Array[Byte],
clazz: Option[Class[_]]): AnyRef = {

val jsonStr = new String(bytes)
jsonStr.parseJson.convertTo[Basket.Snapshot]

}
}

The custom serializers shown here simply serve as examples. Serialization is a hard
problem to solve generically for all cases. The custom solution described here isn’t
ideal, but at least provides an idea of the issues that you can encounter. Integrating
one of the community’s serializer plugins is left as an exercise to the reader. In the
next section, we’ll look at persisting actors in a cluster. 

15.3 Clustered persistence
So far we’ve looked at recovering actor state in a local actor system. In this section
we’ll build the online shopping service out further. First, we’ll look at the local actor
system solution in a little more detail.

 Then, we’ll change the application so it can run on a cluster as a cluster singleton. A
cluster singleton allows you to run exactly one instance of an actor (and its children)
on a node (with the same role) in an Akka cluster.

 The cluster singleton automatically starts all shopping baskets on another node
when the current singleton node has crashed, so the shopping baskets need to be

Event adapters
akka-persistence doesn’t just serialize the events and snapshots directly into byte
arrays into the Journal or SnapshotStore. The serialized objects are wrapped into
an internal protobuf format, which is required for internal bookkeeping. This means
that you can’t simply query the backend database of a journal plugin for some JSON
structure when your custom serializer serializes events to JSON, like in the example
you’ve just seen.

An EventAdapter simplifies this. It sits between the journal and the event that’s
read or written, making it possible to write arbitrary transformations between the two.
This makes it possible to decouple the event from the persisted data model.

The EventAdapter will have to fit on the Journal plugin. An EventAdapter could
convert events to JSON objects, but for this to work, the Journal has to also handle
JSON objects differently than any event object that would normally get serialized to
bytes and wrapped into the internal structure.
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persisted somewhere else, preferably in a distributed database like Apache Cassandra.
This will improve the fault tolerance of the shopping service, but it doesn’t solve the
fact that we possibly need to keep more baskets in memory than can fit on one node
in the cluster.

 For this we’ll look at cluster sharding, which makes it possible to divide shopping
baskets across the cluster according to a sharding strategy.

 But before we get to those details, let’s look at the overall structure of the online
shopping service. Figure 15.5 shows an overview of the shopping service.

 The project on GitHub contains an HTTP service for shopping baskets (the
ShopperService). The ShopperService takes an ActorRef to a Shoppers actor. This
actor creates or finds a Shopper actor for every unique shopperId. If no Shopper exists
yet for the unique ID, then one will be created; if the Shopper already exists, it will be
returned. The shopper forwards any request to a specific Shopper actor based on a
command. A shopper command always contains the shopperId. Both Basket and
Wallet commands are also Shopper commands.

 You could imagine that a cookie is automatically generated when a user visits the
online store for the first time. The same cookie is used when the user returns to the
online store. The cookie contains a unique ID to track the shopper, which is called a
shopperId in the example. (Cookies are left out of the example HTTP service.) The
shopperId in the example is a simple Long value; you would probably use a random
universally unique identifier (UUID) in a real application. The following listing shows
a piece of the ShoppersRoutes trait that defines the HTTP routes of the service.

trait ShoppersRoutes extends
ShopperMarshalling {

def routes =

Listing 15.28 ShoppersRoutes

ShopperService

Has ActorRef to

Forwards to Shopper by shopperID

Forwards commands to Basket or Wallet

Shoppers

Shopper

WalletBasket Figure 15.5 Overview of 
the shopping service
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deleteItem ~
updateItem ~
getBasket ~
updateBasket ~
deleteBasket ~
pay

def shoppers: ActorRef

implicit def timeout: Timeout
implicit def executionContext: ExecutionContext

def pay = {
post {

pathPrefix("shopper" / ShopperIdSegment / "pay") { shopperId =>
shoppers ! Shopper.PayBasket(shopperId)
complete(OK)

}
}

}

The LocalShoppers actor is shown next.

package aia.persistence

import akka.actor._

object LocalShoppers {
def props = Props(new LocalShoppers)
def name = "local-shoppers"

}

class LocalShoppers extends Actor
with ShopperLookup {

def receive = forwardToShopper
}

trait ShopperLookup {
implicit def context: ActorContext

def forwardToShopper: Actor.Receive = {
case cmd: Shopper.Command =>

context.child(Shopper.name(cmd.shopperId))
.fold(createAndForward(cmd, cmd.shopperId))(forwardCommand(cmd))

}

def forwardCommand(cmd: Shopper.Command)(shopper: ActorRef) =
shopper forward cmd

def createAndForward(cmd: Shopper.Command, shopperId: Long) = {
createShopper(shopperId) forward cmd

}

def createShopper(shopperId: Long) =
context.actorOf(Shopper.props(shopperId),

Shopper.name(shopperId))
}

Listing 15.29 LocalShoppers actor
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Looking up a Shopper actor has been factored out into a ShopperLookup, since we can
reuse it in a slightly modified manner for both the cluster singleton and cluster shard-
ing extensions.

 The Shopper actor is shown next.

import akka.actor._

object Shopper {
def props(shopperId: Long) = Props(new Shopper)
def name(shopperId: Long) = shopperId.toString

trait Command {
def shopperId: Long

}

case class PayBasket(shopperId: Long) extends Command
// for simplicity every shopper got 40k to spend.
val cash = 40000

}

class Shopper extends Actor {
import Shopper._

def shopperId = self.path.name.toLong

val basket = context.actorOf(Basket.props,
Basket.name(shopperId))

val wallet = context.actorOf(Wallet.props(shopperId, cash),
Wallet.name(shopperId))

def receive = {
case cmd: Basket.Command => basket forward cmd
case cmd: Wallet.Command => wallet forward cmd

case PayBasket(shopperId) => basket ! Basket.GetItems(shopperId)
case Items(list) => wallet ! Wallet.Pay(list, shopperId)
case Wallet.Paid(_, shopperId) => basket ! Basket.Clear(shopperId)

}
}

The Shopper creates a Basket actor and a Wallet actor, and forwards commands to
these actors. Paying for a basket is orchestrated by the Shopper actor. It first sends
GetItems to the Basket; once it receives the Items, it sends a Pay message to the
Wallet, which responds with a Paid message. The Shopper then sends a Clear mes-
sage to the basket to complete the flow. In the next section, we’ll look at the changes
we have to make for running the Shoppers actor as a cluster singleton. 

Listing 15.30 Shopper actor

Every Shopper command 
has a shopperId.
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15.3.1 Cluster singleton

The next topic we’ll look at is the cluster singleton extension. We’ll run the Shoppers
actor as a singleton in the cluster, meaning there will always be only one Shoppers
actor in the cluster.

 The cluster singleton extension is part of the cluster-tools module; the cluster
sharding extension is part of the cluster-sharding module; so dependencies need to be
added to the project.

libraryDependencies ++= {
val akkaVersion = "2.4.9"
Seq(

// other dependencies omitted ..
"com.typesafe.akka" %% "akka-cluster-tools" % akkaVersion,
"com.typesafe.akka" %% "akka-cluster-sharding" % akkaVersion,
// other dependencies omitted ..

)

The cluster singleton extension requires a correct cluster configuration, which can be
found in the application.conf file in src/main/resources, discussed in chapter 13. Fig-
ure 15.6 shows the changes that we’ll make.

Listing 15.31 Cluster singleton and sharding dependencies

ShopperService

Get or create a
Shopper by shopperId

Get or create a
Shopper by shopperId

LocalShoppers

Shopper

WalletBasket

ShopperService

ShoppersSingleton

Shoppers

Shopper

WalletBasket

Creates a singleton
Shoppers actor in the
cluster, and forwards
to it through the
ClusterSingletonProxy

Persists which
Shopper actors
were created before
and recreates those
Shopper actors at
recovery

Figure 15.6 From local to cluster singleton



381Clustered persistence
A ShoppersSingleton actor reference will be passed to the ShoppingService instead
of the LocalShoppers actor reference. The ShoppersSingleton actor is shown next.

import akka.actor._
import akka.cluster.singleton.ClusterSingletonManager
import akka.cluster.singleton.ClusterSingletonManagerSettings
import akka.cluster.singleton.ClusterSingletonProxy
import akka.cluster.singleton.ClusterSingletonProxySettings
import akka.persistence._

object ShoppersSingleton {
def props = Props(new ShoppersSingleton)
def name = "shoppers-singleton"

}

class ShoppersSingleton extends Actor {

  val singletonManager = context.system.actorOf(
    ClusterSingletonManager.props(
      Shoppers.props,
      PoisonPill,
      ClusterSingletonManagerSettings(context.system)
        .withRole(None)
        .withSingletonName(Shoppers.name)
    )
 )

val shoppers = context.system.actorOf(
    ClusterSingletonProxy.props(
      singletonManager.path.child(Shoppers.name)
        .toStringWithoutAddress,
      ClusterSingletonProxySettings(context.system)
        .withRole(None)
        .withSingletonName("shoppers-proxy")
    )

)

def receive = {
case command: Shopper.Command => shoppers forward command

}
}

The ShoppersSingleton actor functions as a reference to the actual singleton in the
cluster. Every node in the cluster will start up a ShoppersSingleton actor. Only one of
the nodes will actually run the Shoppers actor as a singleton.

 The ShoppersSingleton creates a reference to the ClusterSingletonManager.
The singleton manager ensures that there’s only one Shoppers actor at any point in
time in the cluster. All we need to do is pass it the Props and name of the singleton
actor that we want to use (via singletonProps and singletonName). The Shoppers-
Singleton also creates a proxy to the Shoppers singleton actor, which it forwards mes-
sages to. This proxy always points to the current singleton in the cluster.

Listing 15.32 ShoppersSingleton
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 The Shoppers actor is the actual singleton. It’s a PersistentActor, and it stores
which shoppers have successfully been created as events. The Shoppers actor can
recover these events and re-create the Shopper actors after a crash, which makes it
possible for the cluster singleton to move to another node.

 It’s important to note that the cluster singleton focuses on preventing more than
one active singleton in the cluster at any time. When a cluster singleton crashes,
there’s a period of time in which the next cluster singleton hasn’t been started yet,
which means that you could potentially lose messages during that time.

 Both baskets and wallets are also persistent actors, so they automatically re-create
themselves from events as well when they’re re-created by the Shopper.

 The Shoppers actor is shown next.

object Shoppers {
def props = Props(new Shoppers)
def name = "shoppers"

sealed trait Event
case class ShopperCreated(shopperId: Long)

}

class Shoppers extends PersistentActor
with ShopperLookup {

import Shoppers._

def persistenceId = "shoppers"

def receiveCommand = forwardToShopper

override def createAndForward(cmd: Shopper.Command, shopperId: Long) = {
val shopper = createShopper(shopperId)
persistAsync(ShopperCreated(shopperId)) { _ =>

forwardCommand(cmd)(shopper)
}

}

def receiveRecover = {
case ShopperCreated(shopperId) =>

context.child(Shopper.name(shopperId))
.getOrElse(createShopper(shopperId))

}
}

The createAndForward method is overridden to also persist a ShopperCreated event.
We can safely use persistAsync here; there’s no need to re-create the shoppers in
exactly the same order. You can try the cluster singleton by executing sbt run and
selecting the aia.persistence.SingletonMain as the main class to start. In a real sce-
nario, you’d have a load balancer in front of all the nodes. The REST service on any
node can communicate with the cluster singleton through the cluster proxy in the
ShoppersSingleton actor. You do need to choose a different journal implementation
for testing this.

Listing 15.33 Shoppers actor
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 If you only want to run it locally, you can use the shared LevelDB journal, which is
only meant for testing purposes, since it only stores data locally.

 One option for production use is the akka-persistence-cassandra journal plugin
(https://github.com/krasserm/akka-persistence-cassandra/) for Apache Cassandra.

 Apache Cassandra is a highly scalable and available database that replicates data
between cluster nodes. Storing actor state in Apache Cassandra means that the appli-
cation can survive failing nodes both in the database cluster as well as in the Akka
cluster.

 As you can see, we didn’t have to change much to go from a local shopper service
to a service that can tolerate node failures in a cluster. In the next section, we’ll look at
the changes that we have to make to shard actors across the cluster. 

15.3.2 Cluster sharding

Next up is cluster sharding. We’ll shard shoppers based on their shopperId. Cluster
sharding divides actors to nodes in shards. Every shopperId only falls within one
shard. The ClusterSharding module takes care of allocating and rebalancing actors
into the shards across the cluster. Figure 15.7 shows the changes that we’ll make.

 The ClusterSharding extension has a shardRegion method that returns an actor
reference to a ShardRegion actor. The ShardRegion actor is used to forward com-
mands to the sharded actor, in this case a slightly modified version of the Shopper

ShopperService

Creates a singleton Shoppers
actor in the cluster

Get or create a
Shopper by shopperId

ShoppersSingleton

Shoppers

Shopper

WalletBasket

ShopperService

Forwards
to ShardRegion actor

Forwards
commands

ShardedShoppers

ShardRegion

ShardedShopper

WalletBasket

ShardedShoppers
starts ClusterSharding
and gets a reference to
a ShardRegion actor.

The shopperID
of the shopper is
extracted from the
Shopper command.
The ShardedShopper
is created somewhere
in the cluster.

Figure 15.7 From cluster singleton to cluster sharding

https://github.com/krasserm/akka-persistence-cassandra/
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actor called ShardedShopper. The following listing shows the sharded version of the
Shoppers actor, ShardedShoppers.

package aia.persistence.sharded

import aia.persistence._
import akka.actor._
import akka.cluster.sharding.{ClusterSharding, ClusterShardingSettings}

object ShardedShoppers {
def props= Props(new ShardedShoppers)
def name = "sharded-shoppers"

}

class ShardedShoppers extends Actor {

  ClusterSharding(context.system).start(
    ShardedShopper.shardName,
    ShardedShopper.props,
    ClusterShardingSettings(context.system),
    ShardedShopper.extractEntityId,
    ShardedShopper.extractShardId
  )

  def shardedShopper = {
    ClusterSharding(context.system).shardRegion(ShardedShopper.shardName)
  }

  def receive = {
    case cmd: Shopper.Command =>
      shardedShopper forward cmd
  }
}

The ShardedShoppers actor starts the ClusterSharding extension. It provides all the
required details to start a ShardedShopper in a shard somewhere in the cluster. The
typeName is the name of the type of actor that will be sharded. A sharded actor is also
called an entry, which explains the name entryProps. The ClusterSharding exten-
sion provides an actor reference to the ShardRegion actor for the shard, which for-
wards messages to the sharded actors, in this case the ShardedShopper actor.

 Every node on the cluster runs a ShardRegion; a ShardingCoordinator (which
runs as a cluster singleton) determines which ShardRegion will own the shard behind
the scenes, shown in figure 15.8.

 A ShardRegion manages a number of Shards, which are basically groupings of
sharded actors. A Shard actor eventually creates the sharded actor from the props pro-
vided to the ClusterSharding.start method. You don’t have to worry about the fact
that the Shard actor sits between your sharded actor and the ShardRegion actor.

 Listing 15.35 shows the sharded version of the Shoppers actor, ShardedShopper.

Listing 15.34 ShardedShoppers
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package aia.persistence.sharded

import aia.persistence._
import akka.actor._
import akka.cluster.sharding.ShardRegion
import akka.cluster.sharding.ShardRegion.Passivate

object ShardedShopper {
def props = Props(new ShardedShopper)
def name(shopperId: Long) = shopperId.toString

Listing 15.35 ShardedShopper

Cluster

Node Node

Node Node

The ShardingCoordinator
decides which ShardRegion
contains which Shards.

Every Shard can have many sharded
child actors, in this example,
many ShardedShoppers. 

ShardRegion

ShardRegion

ShardingCoordinator

(Cluster singleton)

ShardShard

Shard

ShardRegion

Shard

Shard ShardShard

ShardRegion

Figure 15.8 Shards in the cluster
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case object StopShopping

val shardName: String = "shoppers"

  val extractEntityId: ShardRegion.ExtractEntityId = {
    case cmd: Shopper.Command => (cmd.shopperId.toString, cmd)
  }

  val extractShardId: ShardRegion.ExtractShardId = {
    case cmd: Shopper.Command => (cmd.shopperId % 12).toString

}
}

class ShardedShopper extends Shopper {
import ShardedShopper._

context.setReceiveTimeout(Settings(context.system).passivateTimeout)

override def unhandled(msg: Any) = msg match {
case ReceiveTimeout =>

context.parent ! Passivate(stopMessage = ShardedShopper.StopShopping)
case StopShopping => context.stop(self)

}
}

The ShardedShopper’s companion object defines two important functions: the
ExtractEntityID function to extract an identifier out of a command, and an Extract-
ShardId function that creates a unique shard ID from every shopper command. In this
case we simply use the shopperId as the identifier for sharding. We can be sure that
there will be no duplicate ShardedShopper actors running in the cluster.

 Note that the ShardedShoppers in listing 15.34 doesn’t start any ShardedShoppers,
unlike the singleton version of the Shoppers actor. The ClusterSharding module will
automatically start a ShardedShopper once it tries to forward a command. It will
extract the ID and shardId from the command and create a ShardedShopper appro-
priately, using the entryProps that has been passed in earlier. The same Sharded-
Shopper will be used for subsequent commands.

 The ShardedShopper actor simply extends the Shopper actor and only defines
what should happen if it doesn’t receive commands for a long time. A sharded shop-
per can be passivated when it’s not used for a while to control memory usage.

 The ShardedShopper asks the Shard actor to be passivated if it receives no com-
mands. The Shard in turn sends the ShardedShopper the stopMessage that’s
requested inside the Passivate message so it can stop itself. This works in a way simi-
lar to a PoisonPill: all enqueued messages in the ShardRegion are handled first
before the ShardedShopper is stopped.

 You can try the cluster sharding solution by executing sbt run and selecting
aia.persistence.sharded.ShardedMain as the main class to start. Just like in chapter
14, you should change the port at which the application runs. Configuring the journal
for Apache Cassandra (or something similar) is left as an exercise for the reader.
Looking back, we started out with a shoppers app that could only run on one node. It
took very few code changes to make the shoppers application work in a cluster as a
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cluster singleton. Taking the next step, sharding shoppers across the cluster, also
didn’t require a lot of code changes, which once again shows how Akka benefits from
a message-driven approach.

 One of the reasons why we didn’t have to change much from local to singleton to
sharding is because the commands for the shopper already contained the shopperId,
which was required for the sharding. 

15.4 Summary
 Event sourcing proved to be a simple and fitting strategy for persisting actor

state. Persistent actors turn valid commands into events that are persisted in a
journal; these events are ready to be used for recovery when they crash. Persis-
tent actors are relatively easy to test (provided that a small amount of base func-
tionality is used to delete the journal).

 It doesn’t make a lot of sense to persist all events in a journal on the same node
where the actors are running, because you could easily lose all data if that one
server crashes. Using a journal plugin that’s backed by a replicated database
increases chances for survival.

 Keeping all actors on one node isn’t a very good idea either, since that would
mean that your application is immediately unavailable the moment that node
crashes.

 A cluster singleton can be used to hop from a crashed node onto one that still
works. We’ve shown how little work is required to change our local Shoppers
actor into a cluster singleton.

 Cluster sharding takes availability one level further, allowing the required mem-
ory space to grow beyond one singleton node. Sharded actors are created on
demand and can be passivated when idle. This makes it possible to elastically
use the available nodes in the cluster. And again, it didn’t take a lot of work to
get to a cluster sharded version of the shopping service.



Performance tips
We’ve pretty much run the gamut of Akka’s actor functionality thus far in the book.
We started with structuring your applications to use actors, how to deal with state
and errors, and how to connect with external systems and deal with persistence.
You’ve also seen how you can scale out using clusters. We’ve used the Akka actors
like a black box: you send messages to the ActorRef, and your receive method
implementation is called with the message. The fact that you don’t need to know
the internals of Akka is one of its biggest strengths. But there are times when you
need more control over the performance metrics of an actor system. In this chap-
ter we’ll show how you can customize and configure Akka to improve the overall
performance.

In this chapter
 Key parameters of performance in actor systems

 Eliminating bottlenecks to improve performance

 Optimizing CPU usage with dispatcher tuning

 Changing the use of thread pools

 Performance improvements by changing thread 
releasing
388
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 Performance tuning is hard to do, and it’s different for every application. This is
because the performance requirements vary, and all the components in a system will
affect each other in different ways. The general approach is to find out which part is
slow, and why. Based on the answer to those questions, find a solution. In this chapter
we’ll focus on improving performance by configuring the threading backend that
actors run on.

 Here’s how the chapter progresses: 

 First, a quick introduction to performance tuning and important performance
metrics.

 Measuring the actors in a system by creating our own custom mailbox and an
actor trait. Both implementations create statistical messages that enable us to
find problem areas.

 The next step is to solve the problem area. We’ll start by describing the differ-
ent options to improve one actor.

 But sometimes you just need to use resources more efficiently. In the last sec-
tions, we’ll focus on the use of threads. We’ll start with a discussion of how to
detect that we have threading problems; after that, we’ll look at different solu-
tions by changing the dispatcher configuration, which is used by the actors.
Next we’ll describe how an actor can be configured to process many messages
at a time on the same thread. Changing this configuration enables you to make
a trade-off between fairness and increased performance.

 Finally, we’ll show how you can create your own dispatcher type for dynamically
creating multiple thread pools.

16.1 Performance analysis
To address performance problems, you need to understand how problems arise and
how different parts interact with each other. When you understand the mechanism, you
can determine what you need to measure to analyze your system, find performance
problems, and solve them. In this section you’ll gain insight into how performance is
affected, by determining which metrics are playing a key part in the system’s overall
performance.

 We’ll start by identifying the performance problem area of a system, followed by
describing the most important performance metrics and terms.

16.1.1 System performance

Experience teaches that even though it’s difficult to see which of the many interacting
parts of a system are limiting performance, it’s often only a small part affecting the sys-
tem’s total performance. The Pareto principle (better known as the 80–20 rule) applies
here: 80% of performance improvements can be made by addressing only 20% of the
system. This is good and bad news. The good news is that it’s possible to make minor
changes to the system to improve performance. The bad news is that only changes to



390 CHAPTER 16 Performance tips
that 20% will have any effect on the performance of the system. These parts that are
limiting the performance of the whole system are called bottlenecks.

 Let’s look at a simple example from chapter 8 where we created a pipes and filters
pattern. We used two filters in a traffic camera example, which created the pipeline
shown in figure 16.1.

 When we look at this system, we can easily detect our bottleneck. The step “check
license” can only service 5 images per second, while the first step can service 20 per
second. Here we see that one step dictates the performance of the whole chain; there-
fore, the bottleneck of this system is the check-license step.

 When our simple system needs to process two images per second, there isn’t a per-
formance problem at all, because the system can easily process that amount and even
has spare capacity. There will always be some part of the system that can be said to con-
strain performance, but it’s only a bottleneck if the amount the system is constrained
exceeds an operational constraint on the business side. 

 So basically we keep on solving bottlenecks until we achieve our performance
requirements. But there’s a catch. Solving the first bottleneck gives us the biggest
improvement. Solving the next bottleneck will result in a lesser improvement (the
concept of diminishing returns).

 This is because the system will become more balanced with each change and
reaches the limit of using all your resources. In figure 16.2 you see the performance
reaching the limit when bottlenecks are removed. When you need a performance
higher than this limit, you have to increase
your resources, for example, by scaling out. 

 This, again, is one of the reasons why
efforts should focus on requirements. One
of the most common conclusions of metrics
studies is that programmers tend to spend
time optimizing things that have little effect
on overall system performance (given the
users’ experience). Akka helps address this
by keeping the model closer to the require-
ments; we’re talking here about things that
translate directly into the usage realm—
licenses, speeders, and so on. 

 Thus far, we’ve been talking about per-
formance in general, but there are two
types of performance problems:

Check speed:
20 per second

Check license:
5 per second

Figure 16.1 Pipeline with 
a bottleneck

P
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Number of bottlenecks solved

Maximum possible
performance

Figure 16.2 Performance effect of solving 
bottlenecks
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 The throughput is too low—The number of requests that can be served is too low,
such as the capacity of the check-license step in our example.

 The latency is too long—Each request takes too long to be processed; for example,
the rendering of a requested web page takes too long.

When having one of these problems, most people call it a performance problem.
But the solutions to the problems can require vastly different amounts of time.
Throughput problems are usually solved by scaling, but latency problems generally
require design changes in your application. Solving performance problems of actors
will be the focus of section 16.3, where we’ll show you how to improve performance
by addressing bottlenecks. But first you need to learn a bit more about performance
factors and parameters. You’ve just seen two of these: throughput and latency. We’ll
cover these in more detail, and look also at other parameters. You’ll then have a
good understanding of what can affect performance, before we address improving it
in section 16.3.

 Again, these are a function of the fact that our system is composed of actors and
messages, not classes and functions, so we’re adapting what you already know about
performance to the Akka realm. 

16.1.2 Performance parameters

Invariably, in the question of investigating the performance characteristics of a com-
puter system, a lot of terms will make an appearance. We’ll start with a quick explana-
tion of the most important ones. Then we’ll look at a single actor including the
mailbox, as shown in figure 16.3. This figure shows the three most important perfor-
mance metrics: arrival rate, throughput, and service time.

Let’s start with the arrival rate. This is the number of jobs or messages arriving during
a period. For example, if eight messages were to arrive during our observation period
of 2 seconds, the arrival rate would be four per second.

 The next metric appeared in the previous section: the processing rate of the mes-
sages. This is called the throughput of the actor. The throughput is the number of com-
pletions during a period. Most will recognise this term, if not from prior performance
tuning, then because network performance is measured in how many packets were
successfully processed. As figure 16.4 shows, when a system is balanced, as it is at the
top of the figure, it’s able to service all the jobs that arrive without making anyone

Arrival rate (λ) Service
time (S)

Queue/waiting
area

Throughput (X)

Processing
part Figure 16.3 An actor node
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wait. This means that the arrival rate is equal to the throughput (or at least doesn’t
exceed it). When the service isn’t balanced, moving down in the figure, waiting invari-
ably creeps in because the workers are all busy. In this way, message-oriented systems
are really no different than thread pools (as you’ll see later).

 In this case the node can’t keep up with the arrival of the messages, and the mes-
sages accumulate in the mailbox. This is a classic performance problem. It’s impor-
tant to realize, though, that we don’t want to eliminate waiting; if the system never has
any work waiting, we’ll end up with workers that are doing nothing. Optimal perfor-
mance is right in the middle—each time a task is completed, there’s another one to
do, but the wait time is vanishingly small.

 The last parameter shown in figure 16.3 is the service time. The service time of a
node is the time needed to process a single job. Sometimes the service rate is men-
tioned within these models. This is the average number of jobs serviced during a time
period and is represented by μ. The relation between the service time (S) and service
rate is this:

Worker
Fifth message

arrives 5 34

Mailbox

Worker
Fourth message

arrives 4 3 2

Mailbox

Worker

Third message
arrives while

second message
is still in the queue

3 2

Mailbox

Worker
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arrives while
first is retrieved
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is retrieved for

processing
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processing

2 1

Mailbox

Worker
First message

arrives 1

Mailbox

Figure 16.4 Unbalanced node. Arrival rate is greater than the throughput.
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The service time is closely related to the latency, because the latency is the time between
the exit and the entry. The difference between the service time and the latency is the
waiting time of a message in the mailbox. When the messages don’t need to wait in the
mailbox for other messages to be completed, the service time is the latency.

 The last performance term that’s often used within performance analysis is the uti-
lization. This is the percentage of the time the node is busy processing messages. When
the utilization of a process is 50%, the process is processing jobs 50% of the time and
is idle 50% of the time. The utilization gives an impression of how much more the sys-
tem can process, when pushed to the maximum. And when the utilization is equal to
100%, then the system is unbalanced or saturated. Why? Because if the demand grows
at all, wait times will ensue immediately. 

 These are the most important terms pertaining to performance. If you paid atten-
tion, you noticed that the queue size is an important metric indicating that there’s a
problem. When the queue size grows, it means that the actor is saturated and holding
the entire system back. 

 Now that you know what the different performance metrics mean and their rela-
tions to each other, we can start dealing with our performance problems. The first
step is to find the actors that have performance issues. In the next section, we’ll pro-
vide possible solutions to measure an actor system to find the bottlenecks. 

16.2 Performance measurement of actors
Before you can improve the performance of the system, you need to know how it’s
behaving. As you saw in section 16.1.1, you should only change the problem areas, so
you need to know where the problem areas are. To do this, you need to measure your
system. You’ve learned that growing queue sizes and utilization are important indica-
tors of actors with performance problems. How can you get that information from
your application? In this section we’ll show you an example of how to build your own
means for measuring performance.

 Looking at the metrics queue sizes and utilization, you see that you can divide the
data into two components. The queue sizes have to be retrieved from the mailbox,
and the utilization needs the statistics of the processing unit. In figure 16.5 we show
the interesting times when a messages is sent to an actor and is processed.

 When you translate this to your Akka actors, you need the following data (from the
Akka mailbox): 

 When a message is received and added to the mailbox
 When it was sent to be processed, removed from the mailbox, and handed over

to the processing unit
 When the message was done processing and left the processing unit 

When you have these times for each message, you can get all the performance metrics
you need to analyze your system. For example, the latency is the difference between
the arrival time and the leaving time. In this section we’ll create an example that
retrieves this information. We’ll start by making our own custom mailbox that retrieves
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the data needed to trace the message in the mailbox. In the second part, we’ll create a
trait to get the statistics of the receive method. Both examples will send statistics to
the Akka EventStream. Depending on our needs, we could just log these messages or
do some processing first. We don’t describe in the book how to collect these statistics
messages, but with the knowledge you have now, it isn’t hard to implement by yourself.

MICRO BENCHMARKING A common problem with finding performance prob-
lems is how to add code measurements that won’t affect the performance
you’re trying to measure. 

Just like adding println statements to your code for debugging, measur-
ing timestamps with System.currentTimeMillis is a simple way to get a
rough indicator to the problem in many cases. In other cases it falls short
entirely.

Use a micro benchmarking tool like JMH (http://openjdk.java.net/projects
/code-tools/jmh/) when more fine-grained performance testing is required.

16.2.1 Collect mailbox data

From the mailbox, we want to know the maximum queue size and the average waiting
time. To get this information, we need to know when a message arrives in the queue
and when it leaves. First, we’ll create our own mailbox. In this mailbox, we’ll collect
data and send it using the EventStream to one actor that processes the data into the
performance statistics we need for detecting bottlenecks. 

 To create a custom queue and use it, we need two parts. The first is a message
queue that will be used as the mailbox, and the second is a factory class that
creates a mailbox when necessary. Figure 16.6 shows the class diagram of our mailbox
implementation.

 The Akka dispatcher is using a factory class (MailboxType) to create new mail-
boxes. By switching the MailboxType, we’re able to create different mailboxes. When
we want to create our own mailbox, we’ll need to implement a MessageQueue and a
MailboxType. We’ll start with mailbox creation. 

MSG MSGProcess
message

Complete actor

Time

Wait time

Finish
processing
message

Message
enters

mailbox

Message
exits

mailbox

Start
processing
message

Service time

Figure 16.5 Important timestamps when processing a message

http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
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CREATING A CUSTOM MAILBOX

To create a custom mailbox, we need to implement the MessageQueue trait.

 def enqueue(receiver: ActorRef, handle: Envelope)—This method is called
when trying to add an Envelope. The Envelope contains the sender and the
actual message.

 def dequeue(): Envelope—This method is called to get the next message. 
 def numberOfMessages: Int—This returns the current number of messages

held in this queue.
 def hasMessages: Boolean—This indicates whether this queue is non-empty.
 def cleanUp(owner: ActorRef, deadLetters: MessageQueue)—This method

is called when the mailbox is disposed of. Normally it’s expected to transfer all
remaining messages into the dead-letter queue.

We’ll implement a custom MonitorQueue which will be created by a MonitorMailbox-
Type. But first we’ll define the case class containing the trace data needed to calculate
the statistics, called MailboxStatistics. We’ll also define a class used to contain the
trace data while collecting the data, MonitorEnvelope, while the message is waiting in
the mailbox, as shown in the next listing.

case class MonitorEnvelope(queueSize: Int,
receiver: String,
entryTime: Long,
handle: Envelope)

Listing 16.1 Data containers used to store mailbox statistics

Akka
dispatcher

InterfaceInterface

MessageQueueMailboxType

MonitorQueueMonitorMailboxType

Akka dispatcher uses the
MailboxType to create a mailbox
when creating a new actor

Our implementation of the
MailboxType, which creates
our own MonitorMailbox

Our implementation
of a MessageQueue

Figure 16.6 Custom mailbox class diagram

Message to send 
the trace data
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case class MailboxStatistics(queueSize: Int,
receiver: String,
sender: String,
entryTime: Long,
exitTime: Long)

The class MailboxStatistics contains the receiver, which is the actor that we’re mon-
itoring. entryTime and exitTime contain the time the message arrived or left the
mailbox. Actually we don’t need the queueSize, because we can calculate it from the
statistics, but it’s easier to add the current stack size too.

 In the MonitorEnvelope, the handle is the original Envelope received from the
Akka framework. Now we can create the MonitorQueue.

 The constructor of the MonitorQueue will take a system parameter so we can get to
the eventStream later, which is shown in listing 16.2. We also need to define the
semantics that this queue will support. Since we want to use this mailbox for all actors
in the system, we’re adding the UnboundedMessageQueueSemantics and the Logger-
MessageQueueSemantics. The latter is necessary since actors used internally in Akka
for logging requires these semantics. 

class MonitorQueue(val system: ActorSystem)
extends MessageQueue
with UnboundedMessageQueueSemantics
with LoggerMessageQueueSemantics {

private final val queue = new ConcurrentLinkedQueue[MonitorEnvelope]()

SELECTING A MAILBOX WITH SPECIFIC MESSAGE QUEUE SEMANTICS The seman-
tics traits are simple marker traits (they do not define any methods). In this
use case we don’t need to define our own semantics, though it can be conve-
nient in certain cases, since an actor can require a specific semantics by using
a RequiresMessageQueue; for instance, the DefaultLogger requires Logger-
MessageQueueSemantics by mixing in a RequiresMessageQueue[Logger-
MessageQueueSemantics] trait. You can link a mailbox to semantics using the
akka.actor.mailbox.requirements configuration setting. 

Next we’ll implement the enqueue method, which creates a MonitorEnvelope and
adds it to the queue.

def enqueue(receiver: ActorRef, handle: Envelope): Unit = {
val env = MonitorEnvelope(queueSize = queue.size() + 1,

receiver = receiver.toString(),

Listing 16.2 Extending from the MessageQueue trait and mixing in semantics

Listing 16.3 Implementing the enqueue method of the MessageQueue trait

Envelope to collect 
the trace data

Semantics required for standard 
actors to function on this mailbox

Later on we’ll use system.eventStream
to publish statistics

Semantics required for Akka 
logging to function on this mailbox

The type of queue that is used internally
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entryTime = System.currentTimeMillis(),
handle = handle)

queue add env
}

The queueSize is the current size plus one, because this new message isn’t added to
the queue yet. Then we set about implementing the dequeue method. dequeue checks
if the polled message is a MailboxStatistics instance, in which case it skips it, since
we want to use the MonitorQueue for all mailboxes, and if we don’t exclude these mes-
sages, this will recursively create MailboxStatistics messages when it’s used by our
statistics collector.

 The next listing shows the implementation of the dequeue method.

def dequeue(): Envelope = {
val monitor = queue.poll()
if (monitor != null) {

monitor.handle.message match {
case stat: MailboxStatistics => //skip message
case _ => {

val stat = MailboxStatistics(
queueSize = monitor.queueSize,
receiver = monitor.receiver,
sender = monitor.handle.sender.toString(),
entryTime = monitor.entryTime,
exitTime = System.currentTimeMillis())

system.eventStream.publish(stat)
}

}
monitor.handle

} else {
null

}
}

When we’re processing a normal message, we create a MailboxStatistics and pub-
lish it to the EventStream. When we don’t have any messages, we need to return null
to indicate that there aren’t any messages. At this point we’ve implemented our func-
tionality, and all that’s left is to implement the other supporting methods defined in
the MessageQueue trait.

def numberOfMessages = queue.size
def hasMessages = !queue.isEmpty

def cleanUp(owner: ActorRef, deadLetters: MessageQueue): Unit = {
if (hasMessages) {

var envelope = dequeue
while (envelope ne null) {

Listing 16.4 Implementing the dequeue method of the MessageQueue trait

Listing 16.5 Finish the implementation of the MessageQueue trait

Skips MailboxStatistics 
to avoid recursive 
sending of message

Sends MailboxStatistics 
to event stream

Returns original envelope 
to Akka system

Returns null when there are 
no envelopes waiting

Returns number of envelopes in queue
Implements hasMessages

On cleanup, sends all waiting
messages to dead-letter queue
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deadLetters.enqueue(owner, envelope)
envelope = dequeue

}
}

}

We use the dequeue method so the statistics are created too.
 Our mailbox trait is ready to be used in the factory class, described in the next

section. 

IMPLEMENTING MAILBOXTYPE

The factory class, which creates the actual mailbox, implements the MailboxType trait.
This trait has only one method, but we also need a specific constructor, so this should
also be considered as part of the interface of the MailboxType. Then the interface
becomes this:

 def this(settings: ActorSystem.Settings, config: Config)—This is the
constructor used by Akka to create the MailboxType.

 def create( owner: Option[ActorRef], system: Option[ActorSystem] ):
MessageQueue—This method is used to create a new mailbox.

When we want to use our custom mailbox, we need to implement this interface. Our
fully implemented MailboxType is shown next.

class MonitorMailboxType(settings: ActorSystem.Settings, config: Config)
extends akka.dispatch.MailboxType
with ProducesMessageQueue[MonitorQueue]{

final override def create(owner: Option[ActorRef],
system: Option[ActorSystem]): MessageQueue = {

system match {
case Some(sys) =>

new MonitorQueue(sys)
case _ =>

throw new IllegalArgumentException("requires a system")
}

}
}

When we don’t get an ActorSystem, we throw an exception because we need the
ActorSystem to be able to operate. Now we’re done implementing the new custom
mailbox. All that’s left is to configure the Akka framework that it will use as its mailbox. 

CONFIGURATION OF MAILBOXES

When we want to use another mailbox, we can configure this in the application.conf
file. There are multiple ways to use the mailbox. The type of the mailbox is bound to
the dispatcher used, so we can create a new dispatcher type and use our mailbox.
This is done by setting the mailbox-type in the application.conf configuration file,

Listing 16.6 Implementation of the MailboxType using our custom mailbox

Implements constructor
expected by Akka

Creates the MonitorQueue, 
passes in the system

When we don’t have an
ActorSystem, we can’t create
and use our MessageQueue.



399Performance measurement of actors

f 

Se
and we use the dispatcher when creating a new actor. One way is shown in the follow-
ing snippet:

my-dispatcher {
mailbox-type = aia.performance.monitor.MonitorMailboxType

}

val a = system.actorOf(
Props[MyActor].withDispatcher("my-dispatcher")

)

We mentioned before that there are other ways to get Akka to use our mailbox. The
mailbox is still bound to the chosen dispatcher, but we can also overrule which mail-
box the default dispatcher should use, with the result that we don’t have to change the
creation of our actors. To change the mailbox used by the default dispatcher, we can
add the following lines in the configuration file:

akka {
actor {

default-mailbox {
mailbox-type = "aia.performance.monitor.MonitorMailboxType"

}
}

}

This way, we use our custom mailbox for every actor. Let’s see if everything is working
as designed.

 To test the mailbox, we need an actor that we can monitor. Let’s create a simple
one. It does a delay before receiving a message, to simulate the processing of the mes-
sage. This delay simulates the service time of our performance model.

class ProcessTestActor(serviceTime:Duration) extends Actor {
def receive = {

case _ => {
Thread.sleep(serviceTime.toMillis)

}
}

}

Now that we have an actor to monitor, let’s send some messages to this actor.

val statProbe = TestProbe()
system.eventStream.subscribe(

statProbe.ref,
classOf[MailboxStatistics])

val testActor = system.actorOf(Props(
new ProcessTestActor(1.second)), "monitorActor2")

statProbe.send(testActor, "message")
statProbe.send(testActor, "message2")

Listing 16.7 Test the custom mailbox

Sets mailbox type o
dispatcher in
application.conf file

Creates an actor using our
dispatcher configuration

Creates actor
normallynds three

messages
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statProbe.send(testActor, "message3")
val stat = statProbe.expectMsgType[MailboxStatistics]

stat.queueSize must be(1)
val stat2 = statProbe.expectMsgType[MailboxStatistics]

stat2.queueSize must (be(2) or be(1))
val stat3 = statProbe.expectMsgType[MailboxStatistics]

stat3.queueSize must (be(3) or be(2))

As you can see, we get a MailboxStatistics for each message sent on the Event-
Stream. At this point, we have completed the code to be able to trace the mailbox of
our actors. We’ve created our own custom mailbox to put the tracing data of the mail-
box on the EventStream, and learned that we need a factory class and the mailbox
type to be able to use the mailbox. In the configuration we can define which factory
class has to be used when creating a mailbox for a new actor. Now that we can trace
the mailbox, let’s turn our attention to the processing of messages. 

16.2.2 Collecting processing data

The data we need for tracing performance can be retrieved by overriding the actor’s
receive method. This example requires the receive method of an actor to be changed
for monitoring it, which is more intrusive than the mailbox example, because we have
the ability to add the functionality without changing the original code. To be able to
use the next example, we need to add the trait with every actor we want to trace. Again
we start by defining the statistics message:

case class ActorStatistics( receiver: String,
sender: String,
entryTime: Long,
exitTime: Long)

The receiver is the actor we monitor, and our statistics contain the entry and exit
times. We also add the sender, which can give more information on the messages pro-
cessed, but we’re not using this in these examples. Now that we have our Actor-
Statistics, we can implement the functionality by creating the trait that overrides
the receive method.

trait MonitorActor extends Actor {

abstract override def receive = {
case m: Any => {

val start = System.currentTimeMillis()
super.receive(m)
val end = System.currentTimeMillis()

val stat = ActorStatistics(
self.toString(),
sender.toString(),

Listing 16.8 Tracing actor receive method

Last message 
should have a 
queue size of 3 or
2, depending on
whether first 
message has 
already been
removed from
queue

Calls receive method of actor

Creates and sends statistics



401Improving performance by addressing bottlenecks
start,
end)

context.system.eventStream.publish(stat)
}

}
}

We use the abstract override to get in between the actor and the Akka framework. This
way we can capture the start and end time of processing the message. When the pro-
cessing is done, we create the ActorStatistics and publish it to the event stream.

 To do this, we can simply mixin the trait when creating the actor:

val testActor = system.actorOf(Props(
new ProcessTestActor(1.second) with MonitorActor)
,"monitorActor")

When we send a message to the ProcessTestActor, we expect an ActorStatistics
message on the EventStream.

val statProbe = TestProbe()
system.eventStream.subscribe(

statProbe.ref,
classOf[ActorStatistics])

val testActor = system.actorOf(Props(
new ProcessTestActor(1.second) with MonitorActor)
,"monitorActor")

statProbe.send(testActor,"message")

val stat = statProbe.expectMsgType[ActorStatistics]
stat.exitTime -

stat.entryTime must be (1000L plusOrMinus 10)

And just as expected, the processing time (exit time minus entry time) is close to the
set service time of our test actor.

 At this point we’re also able to trace the processing of the messages. We now have a
trait that creates the tracing data and distributes that data using the EventStream.
Now we can start to analyze the data and find our actors with performance issues.
When we’ve identified our bottlenecks, we’re ready to solve them. In the next sec-
tions, we’ll look at different ways to address those bottlenecks. 

16.3 Improving performance by addressing bottlenecks
To improve the system’s performance, you only have to improve the performance of
the bottlenecks. There are a variety of solutions, but some have more impact on
throughput, and others more directly impact latency. Depending on your require-
ments and implementation, you can choose the solution best suited to your needs.
When the bottleneck is a resource shared between actors, you need to direct the

Listing 16.9 Testing the MonitorActor trait

Creates actor with 
MonitorActor trait

Result must be close 
to specified service 
time of 1 second



402 CHAPTER 16 Performance tips
resource to the tasks most critical for your system and away from tasks that aren’t that
critical and can wait. This tuning is always a trade-off. But when the bottleneck isn’t a
resource problem, you can make changes to your system to improve performance. 

 When you look at a queueing node in figure 16.7, you see that it contains two
parts: the queue and the processing unit. You’ll also note the two performance param-
eters we just explored in section 16.1.2: arrival rate and the service time. We added a
third parameter to add more instances of an actor: the number of services. This is actu-
ally a scaling-up action. To improve the performance of an actor, you can change
three parameters:

 Number of services—Increasing the number of services increases the possible
throughput of the node.

 Arrival rate—Reducing the number of messages to be processed makes it easier
to keep up with the arrival rate.

 Service time—Making processing faster improves latency and makes it possible to
process more messages, which also improves the throughput.

When you want to improve performance, you have to change one or more of these
parameters. The most common change is to increase the number of services. This
will work when throughput is a problem, and the process isn’t limited by the CPU.
When the task uses a lot of CPU, it’s possible that adding more services could increase
the service times. The services compete for CPU power, which can decrease the total
performance.

 Another approach is reducing the number of tasks that need to be processed. This
approach is often forgotten, but reducing the arrival rate can be an easy fix that can
result in a dramatic improvement. Most of the time, this fix requires changing the
design of the system. But this doesn’t have to be a hard thing to do. In section 8.1.2 on

Arrival rate (λ)

Service
time (S)

Service
time (S)

Queue/waiting
area

Processing
part

A number
of services with
service time (S)

…
…

Figure 16.7 Performance 
parameters of a node
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the pipes and filters pattern, you saw that simply changing the order of two steps can
make an impressive improvement in performance.

 The last approach is to reduce service time. This will increase throughput and
decrease response time, and will always improve performance. This is also the hardest
to achieve, because the functionality has to be the same, and most of the time it’s hard
to remove steps to reduce service time. One thing worth checking is if the actor is
using blocking calls. This will increase service time, and the fix is often easy: rewrite
your actor to use nonblocking calls by making it event-driven. Another option to
reduce service time is to parallelize the processing. Break up the task and divide it
over multiple actors, and make sure that tasks are processed in parallel by using, for
example, the scatter-gather pattern, explained in chapter 8. 

 But there are also other changes that can improve performance, for example,
when server resources like CPU, memory, or disk usage are the problem. If utilization
of these resources is 80% or more, they’re probably holding your system back. This
can be because you use more resources than you have available, which can be solved
by buying bigger and faster platforms, or you can scale out. This approach would also
require a design change, but with Akka scaling out doesn’t need to be a big problem,
as we’ve shown in chapter 13 using clusters.

 But resource problems don’t always mean that you need more. Sometimes you
need to use what you have more sensibly. For example, threads can cause issues when
you use too many or too few. This can be solved by configuring the Akka framework
differently and using available threads more effectively. In the next section, you’ll
learn how to tune Akka’s thread pools by assigning one thread to each task, which
eliminates the repeated context-switch of the thread. 

16.4 Configure dispatcher
In chapter 1 we mentioned that the dispatcher of an actor is responsible for assigning
threads to the actor when there’s a message waiting in the mailbox. Until now you
didn’t need to know about the details of the dispatcher (although we changed the
behavior earlier in chapter 9 with the routers). Most of the time, the dispatcher
instance is shared between multiple actors. It’s possible to change the configuration of
the default dispatcher or create a new dispatcher with a different configuration. In
this section we’ll start by figuring out how to recognize a thread pool problem. Next,
we’ll create a new dispatcher for a group of actors. And after that we’ll show how you
can change the thread pool size and how to use a dynamically sized thread pool by
using another executor. 

16.4.1 Recognizing thread pool problems

In chapter 9 you saw that you can change the behavior of actors by using the
BalancingDispatcher. But there are more configuration changes we can make to the
default dispatcher that will affect performance. Let’s start with a simple example. Fig-
ure 16.8 shows a receiver actor and 100 workers.
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The receiver has a service time of 10 ms, and there are 100 workers with a service time
of 1 second. The maximum throughput of the system is 100/s. When we implement
this example in Akka, we get some unexpected results. We use an arrival rate of 66
messages/s, which is below the 80% threshold we discussed. The system shouldn’t
have any problems keeping up. But when we monitor it, we see that the queue size of
the receiver is increasing over time (as column 2 of table 16.1 shows).

According to these numbers, the receiver can’t process the messages before the next
message arrives, which is strange because the service time is 10 ms, and the time
between the messages is 15 ms. What’s happening? You learned from our discussion of
performance metrics that when an actor is the bottleneck, the queue size increases
and the utilization approaches 100%. But in our example, you see the queue size is
growing but the utilization is still low at 6%. This means that the actor is waiting for

Table 16.1 Monitor metrics of the test example

Period number
Receiver: Max 
mailbox size

Receiver: 
Utilization

Worker 1: Max 
mailbox size

Worker 1: 
Utilization

1 70 5% 1 6%

2 179 8% 1 6%

3 285 8% 1 10%

4 385 7% 1 6%

Receiver
S = 10 msec

Queue

Worker 1
S = 1 sec

Queue

Round-robin 100 instances
of the workers

Worker 100
S = 1 sec

Queue

Figure 16.8 Example system with a receiver and 100 workers
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something else. The problem is the number of threads available for the actors to pro-
cess. By default, the number of threads available is three times the number of avail-
able processors within your server, with a minimum of 8 and a maximum of 64
threads. In this example we have a two-core processor, so there are 8 threads available
(minimum number of threads). During the time that 8 workers are busy processing
messages, the receiver has to wait until one worker has finished before it can process
the waiting messages.

 How can we improve this performance? The actor’s dispatcher is responsible to
give the actor a thread when there are messages. To improve this situation, we need to
change the configuration of the dispatcher used by the actors. 

16.4.2 Using multiple instances of dispatchers

The behavior of the dispatcher can be changed by changing its configuration or dis-
patcher type. Akka has four built-in types, as shown in table 16.2.

When we look at our receiver actor with 100 workers, we could use the Pinned-
Dispatcher for our receiver. This way it doesn’t share the thread with the workers.
And when we do, it solves the problem of the receiver being the bottleneck. Most of
the time a PinnedDispatcher isn’t a solid solution. We used thread pools in the first

Table 16.2 Available built-in dispatchers

Type Description Use case

Dispatcher This is the default dispatcher, 
which binds its actors to a 
thread pool. The executor can be 
configured, but uses the fork-
join-executor as default. 
This means that it has a fixed 
thread pool size.

Most of the time, you’ll use this 
dispatcher. In almost all our pre-
vious examples, we used this 
dispatcher.

PinnedDispatcher This dispatcher binds an actor to 
a single and unique thread. This 
means that the thread isn’t 
shared between actors.

This dispatcher can be used 
when an actor has a high utiliza-
tion and has a high priority to 
process messages, so it always 
needs a thread and can’t wait to 
get a new thread. But you’ll see 
that usually better solutions are 
available.

BalancingDispatcher This dispatcher redistributes the 
messages from busy actors to 
idle actors.

We used this dispatcher in the 
router load-balancing example in 
section 9.1.1.

CallingThreadDispatcher This dispatcher uses the current 
thread to process the messages 
of an actor. This is only used for 
testing.

Every time you use 
TestActorRef to create an 
actor in your unit test, this dis-
patcher is used.
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place to reduce the number of threads and use them more efficiently. In our example
the thread will be idle 33% of the time if we use a PinnedDispatcher. But the idea of
not letting the receiver compete with the workers is a possible solution. To achieve
this, we give the workers their own thread pool by using a new instance of the dis-
patcher. This way we get two dispatchers, each with its own thread pool.

 We’ll start by defining the dispatcher in our configuration, and using this dis-
patcher for our workers.

application.conf:
worker-dispatcher {}

Code:
val end = TestProbe()
val workers = system.actorOf(

Props( new ProcessRequest(1 second, end.ref) with MonitorActor)
.withDispatcher("worker-dispatcher")
.withRouter(RoundRobinRouter(nrOfInstances = nrWorkers))

,"Workers")

When we do the same test as before, we get the results shown in table 16.3.

We see that the receiver is now performing as expected and is able to keep up with the
arriving messages, because the maximum queue size is 1. This means that the previous
message was removed from the queue before the next one arrived. And when we look
at the utilization, we see that it is 66%, exactly what we expect: every second we pro-
cess 66 messages that take 10 ms each.

 But now the workers can’t keep up with the arriving messages, as indicated by col-
umn 5. Actually, we see that there are periods when the worker isn’t processing any
message during the measurement period (utilization is 0%). By using another thread
pool, we only moved the problem from the receiver to the workers. This happens a lot
when tuning a system. Tuning is usually a trade-off. Giving one task more resources
means that other tasks get less. The trick is to direct the resources to the most critical
tasks for your system, away from tasks that are less critical and can wait. Does this mean
we can’t do anything to improve this situation? Do we have to live with this result?

Listing 16.10 Defining and using a new dispatcher configuration

Table 16.3 Monitoring metrics of the test example using a different thread pool for the workers

Period number
Receiver: Max 
mailbox size

Receiver: 
Utilization

Worker 1: Max 
mailbox size

Worker 1: 
Utilization

1 2 15% 1 6%

2 1 66% 2 0%

3 1 66% 5 33%

4 1 66% 7 0%

Defines new dispatcher
in application.conf

Uses worker
dispatcher for

the workers
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16.4.3 Changing thread pool size statically

In our example we see that the workers can’t keep up with the arrival of messages,
which is caused because we have too few threads, so why don’t we increase the number
of threads? We can, but the result greatly depends on how much CPU the workers
need to process a message.

 Increasing the number of threads will have an adverse effect on the total perfor-
mance when the processing is heavily dependent on CPU power, because one CPU
core can only execute one thread at any given moment. When it has to service multi-
ple threads, it has to switch context between multiple threads. This context switch also
takes CPU time, which reduces the time used to service the threads. When the ratio of
number of threads to available CPU cores becomes too large, the performance will
only decrease. Figure 16.9 shows the relationship between the performance and num-
ber of threads for a given number of CPU cores.

 The first part of the graph (up to the first dotted vertical line) is almost linear,
until the number of threads is equal to the number of available cores. When the num-
ber of threads increases even more, the performance still increases, but at a slower
rate until it reaches the optimum. After that, the performance decreases when the
number of threads increases. This graph assumes that all the available threads need
CPU power. So there’s always an optimum number of threads. How can you know if
you can increase the number of threads? Usually the utilization of the processors can
give you an indication. When this is 80% or higher, increasing the number of threads
will probably not help to increase the performance.

 But when the CPU utilization is low,
you can increase the number of
threads. In this case the processing of
messages is mainly waiting. The first
thing you should do is check whether
you can avoid the waiting. In this
example it looks like freezing your
actor and not using nonblocking calls,
for example, using the ask pattern,
would help. When you can’t solve the
waiting problem, it’s possible to
increase the number of threads. In our
example we’re not using any CPU
power, so let’s see in our next configu-
ration example if increasing the
thread number works.

 The number of used threads can
be configured with three configu-
ration parameters in the dispatcher
configuration:
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Figure 16.9 Performance versus number of threads
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Min
of

Max
of
worker-dispatcher {
fork-join-executor {

parallelism-min = 8
parallelism-factor = 3.0
parallelism-max = 64

}
}

The number of threads used is the number of available processors multiplied by the
parallelism-factor, but with a minimum of parallelism-min and a maximum of
parallelism-max. For example, when we have an eight-core CPU, we get 24 threads
(8 × 3). But when we have only two cores available, we get 8 threads, although the
number would be 6 (2 × 3), because we’ve set a minimum of 8.

 We want to use 100 threads independent of the number of cores available; there-
fore, we set the minimum and maximum to 100:

worker-dispatcher {
fork-join-executor {

parallelism-min = 100
parallelism-max = 100

}
}

Finally, when we run the example, we can process all the received messages in time.
Table 16.4 shows that with the change, the workers also have a utilization of 66% and
a queue size of 1.

In this case we could increase the performance of our system by increasing the num-
ber of threads. In this example we used a new dispatcher for only the workers. This is
better than changing the default dispatcher and increasing the number of threads,
because normally this is just a small part of the complete system, and when we
increase the number of threads, it’s possible that 100 other actors will run simultane-
ously. And it’s possible that the performance will drop drastically because these actors
depend on CPU power, and the ratio between active threads and CPU cores is out of

Table 16.4 Monitoring metrics of the test example using 100 threads for the workers

Period number
Receiver: Max 
mailbox size

Receiver: 
Utilization

Worker 1: Max 
mailbox size

Worker 1: 
Utilization

1 2 36 2 34

2 1 66 1 66

3 1 66 1 66

4 1 66 1 66

5 1 66 1 66

 number
 threads

Factor used to calculate 
number of threads from
available processors

 number
 threads
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balance. When using a separate dispatcher, only the workers run simultaneously in
large numbers, and the other actors use the default available threads.

 In this section you’ve seen how you could increase the number of threads, but
there are situations when you want to change the thread size dynamically, for exam-
ple, if the worker load changes drastically during operation time. This is also possible
with Akka, but we need to change the executor used by the dispatcher. 

16.4.4 Using a dynamic thread pool size

In the previous section, we had a static number of workers. We could increase the
number of threads, because we knew how many workers we had. But when the num-
ber of workers depends on the system’s work load, you don’t know how many threads
you need. For example, suppose we have a web server, and for each user request a
worker actor is created. The number workers depends on the number of concurrent
users on the web server. We could handle this by using a fixed number of threads,
which works perfectly most of the time. The important question is this: what size do
we use for the thread pool? When it’s too small, we get a performance penalty,
because requests are waiting for each other to get a thread, like the first example of
the previous section, shown in table 16.1. But when we make the thread pool too big,
we’re wasting resources. This is again a trade-off between resources and performance.
But when the number of workers is normally low or stable but sometimes increases
drastically, a dynamic thread pool can improve performance without wasting
resources. The dynamic thread pool increases in size when the number of workers
increases, but decreases when the threads are idle too long. This will clean up the
unused threads, which otherwise would waste resources.

 To use a dynamic thread pool, we need to change the executor used by the dis-
patcher. This is done by setting the executor configuration item of the dispatcher con-
figuration. There are three possible values for this configuration item, as shown in
table 16.5.

Table 16.5 Configuring executors

Executor Description Use case

fork-join-executor This is the default executor and uses 
the fork join executor.

This executor performs better 
than the thread pool executor 
under high workloads. 

thread-pool-executor This is the other standard supported 
executor and uses the thread-pool 
executor.

This executor is used when you 
need a dynamic thread pool, 
because a dynamic thread pool 
isn’t supported by the fork-
join-executor.
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When you need a dynamic thread pool, you need to use the thread-pool-executor,
and this executor also has to be configured. The default configuration is shown in the
next code listing.

my-dispatcher {
type = "Dispatcher"
executor = "thread-pool-executor"

thread-pool-executor {
core-pool-size-min = 8
core-pool-size-factor = 3.0
core-pool-size-max = 64

max-pool-size-min = 8
max-pool-size-factor = 3.0
max-pool-size-max = 64

task-queue-size = -1

# Specifies which type of task queue will be used,
# can be "array" or "linked" (default)
task-queue-type = "linked"

# Keep alive time for threads
keep-alive-time = 60s

# Allow core threads to time out
allow-core-timeout = on

}
}

The minimum and maximum thread pool sizes are calculated, as can be seen in the
fork-join-executor in section 16.4.1. When you want to use a dynamic thread pool,
you need to set the task-queue-size. This will define how quickly the pool size will
grow when there are more thread requests than threads. By default it’s set to -1, indi-
cating that the queue is unbounded and the pool size will never increase. The last con-
figuration item we want to address is the keep-alive-time. This is the idle time before
a thread will be cleaned up, and it determines how quickly the pool size will decrease.

 In our example we set the core-pool-size close to or just below the normal num-
ber of threads we need, and set the max-pool-size to a size where the system is still
able to perform, or to the maximum supported number of concurrent users.

Fully qualified class name 
(FQCN)

You can create your own 
ExecutorServiceConfigurator, 
which returns a factory that will cre-
ate a Java ExecutorService, 
which will be used as executor.

When neither built-in executor 
suffices, you can use your own 
executor.

Listing 16.11 Configuring a dispatcher using the thread-pool-executor

Table 16.5 Configuring executors (continued)

Executor Description Use case

Uses thread pool executor

Sets minimal thread pool size. 
This works just like the fork-join
parallelism configuration.

Sets maximum thread pool size.

Sets size of waiting 
thread requests before 
the thread pool size is 
increased. -1 means 
unbounded and results 
in never increasing the 
thread pool.Time a thread can

be idle before it’s 
cleaned up
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 You’ve seen in this section how you can influence the thread pool used by the dis-
patcher that assigns threads to an actor. But there’s another mechanism that’s used to
release the thread and give it back to the thread pool. By not returning the thread
when an actor has more messages to process, you eliminate waiting for a new thread
and the overhead of assigning a thread. In busy applications this can improve the
overall performance of the system. 

16.5 Changing thread releasing
In previous sections you saw how you can increase the number of threads, and that
there’s an optimum number, which is related to the number of CPU cores. When
there are too many threads, the context switching will degrade performance. A similar
problem can arise when different actors have a lot of messages to process. For each
message an actor has to process, it needs a thread. When there are a lot of messages
waiting for different actors, the threads have to be switched between the actors. This
switching can also have a negative influence on performance.

 Akka has a mechanism that influences the switching of threads between actors.
The trick is not to switch a thread after each message when there are messages still in
the mailbox waiting to be processed. A dispatcher has a configuration parameter,
throughput, and this parameter is set to the maximum number of messages an actor
may process before it has to release the thread back to the pool:

my-dispatcher {
fork-join-executor {

parallelism-min = 4
parallelism-max = 4

}
throughput = 5

}

The default is set to 5. This way the number of thread switches is reduced, and overall
performance is improved.

 To show the effect of the throughput parameter, we’ll use a dispatcher with four
threads and 40 workers with a service time close to zero. At the start, we’ll give each
worker 40,000 messages, and we’ll measure how much time it takes to process all the
messages. We’ll do this for several values of throughput. The results are shown in fig-
ure 16.10.

 As you can see, increasing the throughput parameter will improve performance
because messages are processed faster.1

 In these examples we have better performance when we set the parameter high, so
why is the default 5 and not 20? This is because increasing throughput also has nega-
tive effects. Let’s suppose we have an actor with 20 messages in its mailbox, but the

1 The Akka “Let it crash” blog has a nice post on how to process 5 million messages per second by changing the
throughput parameter: http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-
single-machine.

http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine
http://letitcrash.com/post/20397701710/50-million-messages-per-second-on-a-single-machine
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service time is high, for example, 2 seconds. When the throughput parameter is set to
20, the actor will claim the thread for 40 seconds before releasing the thread. There-
fore, other actors wait a long time before they can process their messages. In this case
the benefit of the throughput parameter is less when the service time is greater,
because the time it takes to switch threads is far less than the service time, which can
be negligible. The result is that actors with a high service time can take the threads for
a long time. For this there’s another parameter, throughput-deadline-time, which
defines how long an actor can keep a thread even when there are still messages and
the maximum throughput hasn’t been reached yet:

my-dispatcher {
throughput = 20
throughput-deadline-time = 200ms

}

By default, this parameter is set to 0ms, meaning that there isn’t a deadline. This
parameter can be used when you have a mix of short and long service times. An actor
with a short service time processes the maximum number of messages after obtaining
a thread, while an actor with a long service time will only process one message or mul-
tiple messages until it reaches 200 ms each time it obtains a thread.

16.5.1 Limitations on thread release settings

Why can’t we use these settings as our default? There are two reasons. The first one is
fairness. Because the thread isn’t released after the first message, the messages of
other actors need to wait longer to be processed. For the system as a whole, this can be
beneficial, but for individual messages, it can be a disadvantage. With batch-like
systems, it doesn’t matter when messages are processed, but when you’re waiting for a
message, for instance, one that’s used to create a web page, you don’t want to wait lon-
ger than your neighbor. In these cases you want to set the throughput lower, even
when it means that the total performance will decrease.
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Another problem with a high value for the throughput parameter is that the process
of balancing the work over many threads can negatively impact performance. Let’s
take a look at another example, shown in figure 16.11. Here we have three actors and
only two threads. The service time of the actors is 1 second. We send 99 messages to
the actors (33 each).

 This system should be able to process all the messages in close to 50 seconds (99 ×
1 second / 2 threads). But when we change the throughput, we see an unexpected
result in figure 16.12.

Worker 1
S = 1 sec

Queue

33 messages

Worker 2
S = 1 sec

Queue

33 messages

Worker 3
S = 1 sec

Queue

33 messages

Figure 16.11 Example: three actors 
with two threads
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Figure 16.12 Effect of the throughput parameter
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To explain this, we have to look at the time the actors spend processing. Let’s take the
most extreme value: 33. When we start the test, we see in figure 16.13 that the first two
actors are processing all their messages. Because throughput is set to 33, they’re able
to clean their mailboxes completely. When they’re done, only the third actor has to
process its messages. This means that during the second part, one thread is idle and
causes the processing time of the second part to double.

Changing the release configuration can help to improve the performance, but
whether you need to increase or decrease the throughput configuration is completely
dependent on the arrival rate and the function of the system. Choosing the wrong set-
ting could well decrease performance. 

 In the previous sections, you’ve seen that you can improve the performance by
increasing threads, but sometimes this isn’t enough, and you need more dispatchers. 

16.6 Summary
You’ve seen that the threading mechanism can have a big influence on system perfor-
mance. When there are too few threads, actors wait for each other to finish. Too many
threads, and the CPU is wasting precious time switching threads, many of which are
doing nothing. You learned

 How you can detect actors waiting for available threads
 How to create multiple thread pools
 How you can change the number of threads (statically or dynamically)
 Configuring actors’ thread releasing

Actor 1

Both actors are
processing 33

messages.

Actor 3 has to wait until a
thread is available.

Two threads are
released and Actor 3

gets one of them.

Only Actor 3 is
processing 33

messages.

All messages
are processed.

Actor 2 Actor 3

Figure 16.13 Three actors 
processing messages with 
two threads
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We’ve discussed in earlier chapters that in a distributed system, the communication
between nodes can be optimized to increase overall system performance. In this chap-
ter we showed that many of the same techniques can be applied in local applications
to achieve the same goals. 



Looking ahead
In previous chapters we’ve hinted at several upcoming Akka features. Akka is a fast-
moving project; at the time of writing, a couple of important features are under
development that are worth mentioning and keeping track of. 

 This chapter will discuss two important features to look out for in the near future
that are currently being developed. Every section will have a short preview of what
the module enables or how it will change the way you currently use Akka features. 

 The actor model that’s described in this book uses untyped messages, as noted
in chapter 1. Scala has a rich type system, and many developers are drawn to Scala
because of type safety, which is why some argue against actors in their current form,
especially if they’re used as components to build applications. We’ll look at the
akka-typed module that will make it possible to write type-safe actors. 

 Another module to look out for is Akka distributed data. This module makes it pos-
sible to distribute state in-memory in an akka cluster using conflict-free replicated data
types (CRDTs). We’ll briefly discuss the module and what we expect you could use it for. 

In this chapter
 Statically typing messages with the akka-typed 

module

 Distributing in-memory state with Akka Distributed 
Data
416
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17.1 akka-typed module
The akka-typed module will provide a typed Actor API. It can be difficult to under-
stand at times why a simple change in (untyped) actor code suddenly breaks the appli-
cation in runtime. Listing 17.1 shows an example that compiles but that will never
work. It shows the Basket actor from chapter 14, and some code asking for the items
in the basket. 

object Basket {
// .. other messages ..
case class GetItems(shopperId: Long)
// .. other messages ..

}

class Basket extends PersistentActor {
def receiveCommand = {

// .. other commands ..
case GetItems(shopperId) =>
// .. other commands ..

}
}

//.. somewhere else, asking the Basket Actor ..
val futureResult = basketActor.ask(GetItems).mapTo(Items)

The code to ask the Basket for its items and the Basket code itself are shown together
for a reason. It’s now easy to see why this will never work, but that’s not always the case
when code is spread around many files. In case you haven’t noticed what the problem
is here, we send a GetItems to the Basket instead of a GetItems(shopperId). The
code compiles because ask takes Any, and GetItems extends Any. Opening up a REPL
makes it crystal clear.

chapter-looking-ahead > console
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.11.8 ... (output truncated)
Type in expressions to have them evaluated.
Type :help for more information.

scala> GetItems
res0: aia.next.Basket.GetItems.type = GetItems

scala> GetItems(1L)
res1: aia.next.Basket.GetItems = GetItems(1)

As you can see, we’ve erroneously tried to send the type of the GetItems case class to
the Basket actor. This is one of those small mistakes you can make that can take a long
time to find, ending in a facepalm. This kind of problem can occur frequently during

Listing 17.1 Basket actor example

Listing 17.2 Checking the type in the REPL

Returns a failed
Future; reason is an

AskTimeoutException

GetItems is type of 
GetItems case class, 
not an instance of it
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maintenance of an existing application: someone adds or removes a field from a mes-
sage and forgets to change the receive method of an actor. In other cases a simple
typo can cause this. The compiler should have helped us more here, but it can’t
because of how the current ActorRef works; you can send it literally any message. 

 akka-typed provides a DSL to build actors that is quite different than you’ve seen so
far. Messages are checked during compile time to prevent the issue that you’ve just
seen. The next listing shows how getting items from a TypedBasket actor would look
like in a unit test.

"return the items in a typesafe way" in {
import akka.typed._
import akka.typed.ScalaDSL._
import akka.typed.AskPattern._
import scala.concurrent.Future
import scala.concurrent.duration._
import scala.concurrent.Await

implicit val timeout = akka.util.Timeout(1 second)

val macbookPro =
TypedBasket.Item("Apple Macbook Pro", 1, BigDecimal(2499.99))

val displays =
TypedBasket.Item("4K Display", 3, BigDecimal(2499.99))

val sys: ActorSystem[TypedBasket.Command] =
ActorSystem("typed-basket", Props(TypedBasket.basketBehavior))

sys ! TypedBasket.Add(macbookPro, shopperId)
sys ! TypedBasket.Add(displays, shopperId)

val items: Future[TypedBasket.Items] =
sys ? (TypedBasket.GetItems(shopperId, _))

val res = Await.result(items, 10 seconds)
res should equal(TypedBasket.Items(Vector(macbookPro, displays)))
//sys ? Basket.GetItems
sys.terminate()

}

The big change here is that ActorSystem and ActorRef now take a type argument that
describes the messages that they can receive. This makes it possible for the compiler
to check the message types. 

 Listing 17.4 shows a part of the TypedBasket actor, where only getting items has
been implemented. (The Basket actor is a PersistentActor in the original example
in chapter 14, which is ignored for now; we expect that it will be possible at some
point to build persistent actors with akka-typed in the future.)

Listing 17.3 Getting items with akka-typed

This now does not compile.
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package aia.next

import akka.typed._
import akka.typed.ScalaDSL._
import akka.typed.AskPattern._
import scala.concurrent.Future
import scala.concurrent.duration._
import scala.concurrent.Await

object TypedBasket {
sealed trait Command {

def shopperId: Long
}

final case class GetItems(shopperId: Long,
replyTo: ActorRef[Items]) extends Command

final case class Add(item: Item, shopperId: Long) extends Command

// a simplified version of Items and Item
case class Items(list: Vector[Item]= Vector.empty[Item])
case class Item(productId: String, number: Int, unitPrice: BigDecimal)

val basketBehavior =
ContextAware[Command] { ctx =>

var items = Items()

Static {
case GetItems(productId, replyTo) =>
replyTo ! items

case Add(item, productId) =>
items = Items(items.list :+ item)

//case GetItems =>
}

}
}

The Akka team found out during their research that a big part of the problem lies in
the sender() method. It’s one of the things that makes it impossible to simply turn
the current actor API into a typed one: every message could be sent by any sender,
making it impossible to type it on the receiving side. 

 akka-typed doesn’t have a sender() method, which means that if you want to send
a message back to the calling actor, you’ll have to send its actor reference along in the
message. Putting the sender in the message has benefits in untyped actors too: you
always know who sent the message, so you don’t need to keep this state anywhere else. 

 akka-typed saves us from having to define a sender() method to keep this state,
sidestepping the issue altogether. 

 Defining the actor looks a lot different from what you have gotten used to; actors
are now defined in terms of typed behaviors. Every message is passed to an immutable
behavior. The behavior of an actor can change over time by switching between behav-
iors, or the behavior can stay the same. 

Listing 17.4 TypedBasket 

This now does not compile.
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 In this case the behavior is defined as a Static behavior, which means that the
TypedBasket actor won’t change its behavior. This behavior is wrapped in a Context-
Aware that takes an ActorContext[T] => Behavior[T] function, which will be used as
the behavior of the actor. This basically allows us to get to the context, but also to
define the items actor state. 

 There are a lot more changes in akka-typed compared to the current actor mod-
ule. preStart, preRestart, and other methods, for example, are replaced by special
signal messages. 

 The akka-typed API looks promising, but is highly likely to change since it hasn’t
been pushed to its limits yet by anyone, and right now it shouldn’t be used in produc-
tion. The benefits of types are huge, so we expect the module to become very impor-
tant in upcoming versions of Akka. 

17.2 Akka Distributed Data
Another module to look out for is Akka Distributed Data, which provides replicated
in-memory data structures in an Akka cluster. The data structures are so-called conflict-
free replicated data types (CRDTs), which are eventually consistent. It doesn’t matter in
which order you execute operations on the data type or if you repeat operations: the
result is eventually correct. 

CRDTs always have a merge function that can take many data entries living on dif-
ferent nodes and merge these automatically into one consistent view of the data, with-
out any coordination between the nodes. The types of data structures that you can use
are limited: they have to be CRDTs. Akka Distributed Data provides a couple of data
structures out of the box, but it’s also possible to build your own data structure, as
long as it implements a merge function according to the rules of CRDTs (it needs to be
associative, commutative, and idempotent). 

 Akka Distributed Data provides a Replicator actor that replicates a data structure
throughout the Akka cluster. Data structures are stored under a user-defined key, and
it’s also possible to subscribe to the key to receive updates on the data structure. 

 The shopping basket example in this book is a good example of where Akka Distrib-
uted Data could be used. The items could be modeled as a CRDT set, called an ORset.
Every basket would eventually show up in the correct state on every node in the cluster.
There’s a CRDT data structure for collaborative editing of documents, another exam-
ple of where Akka Distributed Data could be a good solution. Combining Akka Distrib-
uted Data with Akka persistence could make it possible to recover the in-memory state
from a journal after a crash. 

17.3 Summary
We’ve touched on two important updates that could have a big impact in future Akka
releases. This is obviously not a complete list of up-and-coming features, and time will
tell how successful every module will prove to be. 
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 akka-typed provides more type safety, which means more errors will be found at
compile time, making it easier to build and (more importantly) maintain actor-based
applications, which we expect to be very convenient to use. 

 Although this is definitely a good first step, a lot more research has to be done in
how modern type theory can be applied to safely check communication protocols, not
to mention how this will be implemented in Scala in akka-typed. 

 Akka Distributed Data will require you to think about your problem domain in
terms of CRDTs; if it is possible to express the problem in these kinds of data types,
there is a potentially high benefit to be gained. 

 It’s incredible to see how many different problems benefit from the message-
driven approach of Akka actors; it’s hard to predict what will come next. 
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