
www.allitebooks.com

http://www.allitebooks.org

Android Development Tools
for Eclipse

Set up, build, and publish Android projects quickly using
Android Development Tools for Eclipse

Sanjay Shah

Khirulnizam Abd Rahman

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android Development Tools for Eclipse

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1200713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-110-3

www.packtpub.com

Cover Image by J.Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Sanjay Shah

Khirulnizam Abd Rahman

Reviewer
Thomas Iguchi

Acquisition Editor
Wilson D'souza

Commissioning Editors
Sharvari Tawde

Ameya Sawant

Technical Editors
Ruchita Bhansali

Shashank Desai

Larissa Pinto

Project Coordinator
Amey Sawant

Proofreader
Linda Morris

Indexer
Rekha Nair

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Sanjay Shah has worked on diverse areas of application development across the
mobile and web platform with more than 8 years of experience. He is currently
working as a Software Architect and works in the area of Cloud Based Big Data
Analytics combined with Distributed Cognition leveraging various Java-based
technologies. He is fond of philosophy and enjoys life in Nepal, the land of the
highest peak in the world, Mt. Everest.

I would like to thank each and every one who knows me and
supported me at different aspects of my life. Special thanks to my
parents without whom I wouldn't be what I am today.

Khirulnizam Abd Rahman is a Computer Science lecturer in the faculty of
Information Science and Technology, Selangor International Islamic College,
Malaysia. He has been teaching programming since the year 2000.

He started publishing Android apps in the year 2010, and his apps among others are
Malay Proverb Dictionary (Peribahasa) and m-Mathurat. Currently, he is working on
the apps for Windows Phone Version 8. PHP, C#, and Java are also the programming
languages that he is familiar with.

I would like to express my deepest gratitude to my beloved family;
Mahani, Luqman, Muna, and Amir for making my life more colorful.
Because of you, I am a grown up person with a heart full of love.
In fact, as long as they are happy, I will be happy. Other than
programming, teaching, writing and being with my family, I don't
have anything else to do.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Thomas Iguchi is the founder of Nobu Games LLC, a video games and mobile
app development company, in La Crosse, Wisconsin. His latest Android game
"Zoolicious" has gained international recognition and awards from various Android
news and review websites such as AndroidTapp and Famigo.

Thomas has a wide repertoire of skills, which include programming, graphic
designing, and music composition. His interest in computers and programming
dates back to his childhood, when he became a self-taught programmer. He later
went on to deepen his theoretical knowledge by studying Computer Science at the
University of Mainz, Germany, with focus on linguistics, model-driven architecture,
and software engineering. Overall he looks back at over 20 years of programming
experience with professional expertise in web, mobile applications, and video game
development. His consulting work for a mobile app development company, which
serviced the financial industry, in Frankfurt, Germany, allowed him to perfect his
professional Android programming skills.

For the last 12 years, Thomas has been self-employed working as a web designer,
programmer and consultant, as well as video game graphic designer for the coin-op
entertainment industry.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing Eclipse, ADT, and SDK	 5

Introducing the Android platform	 6
What is Android?	 6

Introducing the Android app	 6
What is Dalvik Virtual?	 7
Understanding API level	 7
How many versions (distributions) Android has?	 7

Preparing for Android development	 9
Installing the JDK	 10
Installing the Android SDK 	 11
Installing the Eclipse (Juno)	 13
Installing the ADT in Eclipse Juno	 15

Linking the Android SDK to the Eclipse	 18
Summary	 23

Chapter 2: Important Features of the IDE	 25
Project explorer	 26
Code editor	 28

Graphical layout editor	 29
Android manifest editor	 30
Menu editor	 30
Resources editor	 30
XML resources editor	 30

Graphical user interface designer	 30
The configuration chooser	 31
The screen layout designer	 31

Properties window	 32
Debugging pane	 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Dalvik Debug Monitor Server (DDMS)	 34
SDK manager	 35
Android virtual device manager	 37
Running the Application	 40
Getting help	 40
Summary	 40

Chapter 3: Creating a New Android Project	 41
Creating a new Android application project	 42
String resources	 46
Using the graphical layout designer	 47
The XML layout code editor	 50
Widget interactions through the source code editor	 50
Toast message	 54
Running the application on the emulator	 55
Running the application on an Android device	 56
Summary	 57

Chapter 4: Incorporating Multimedia Elements	 59
Adding a TableLayout	 62
Adding the image resources	 63
Adding ImageView	 64
Adding ImageButtons	 66
Assigning the widget's ID	 67
ImageButtons and handling event	 70
Adding audio	 73
Adding another screen in the app	 75
Adding HTML to WebView	 77
Intent and Activity	 78
The final product run and test	 80
Summary	 80

Chapter 5: Adding RadioButton, CheckBox, Menu,
and Preferences	 81

Creating a new project	 82
Adding a RadioGroup, RadioButton, and a TextField	 83
Adding a CheckBox	 84
Adding a menu	 86
Defining the Strings	 87
Defining the Preference screen	 87
Hook up	 90

Binding the menu and Preference	 90
Getting values from Preferences	 91

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Run the application	 94
Summary	 95

Chapter 6: Handling Multiple Screen Types	 97
Using wrap_content and match_parent	 98
Fragment	 98

Defining Fragment and Landscape layout	 99
Hook up in the Main Layout file	 102

Running the application	 103
Optimizing for tablet	 104
Persisting the state information during the state transition	 105
Summary	 106

Chapter 7: Adding an External Library	 107
Creating an account at the AdMob website	 107

Adding Site/Application	 108
Choosing the Ad Network Mediation	 111
Adding AdMob SDK to the project	 112
Making changes in the manifest file	 113
Adding the AdMob widget/view in the layout file	 114

Running the application	 115
Summary	 116

Chapter 8: Signing and Distributing APK	 117
APK – Android package	 117
Preparing for release	 118

Compilation for release	 118
Generating a private key	 119
Signing	 119
Alignment	 119

Using the Eclipse ADT for release	 119
Publishing to Google Play	 122

Getting help	 123
Summary	 123

Index	 125

www.allitebooks.com

http://www.allitebooks.org

Preface
Android Development Tools for Eclipse will show you how to use ADT (Android
Development Tools) for Eclipse to quickly set up Android projects, create application
UI, debug and export a signed (or unsigned) .apk package for distribution using a
hands-on practical approach. The book starts with the installation of ADT, discusses
important tools and guides you through Android application development from
scratch, demonstrating different concepts and implementation, and finally helps you
distribute it.

What this book covers
Chapter 1, Installing Eclipse, ADT, and SDK, guides you through the installation
of Eclipse and ADT(Android Development Tools) needed for Android
application development.

Chapter 2, Important Features of the IDE, describes several important features in Eclipse
and an ADT Environment useful to develop native Android apps.

Chapter 3, Creating a New Android Project, guides you through the creation of a
new project and demonstrates the usage of simple widgets. It also guides across
compiling, debugging, and running the application.

Chapter 4, Incorporating Multimedia Elements, will teach you how to include
multimedia elements and handle multiple screens in the application.

Chapter 5, Adding RadioButton, CheckBox, Menu, and Preferences, deals with adding
menus and Preference Screen and the usage of radio button and check box.

Chapter 6, Handling Multiple Screen Types, teaches you how to tackle different screen
types and orientations.

Preface

[2]

Chapter 7, Adding External Library, guides you through adding external library, that is,
the AdMob library and incorporating advertisements in the application.

Chapter 8, Signing and Distributing APK, shows the steps involved in signing and
distributing the Android application.

What you need for this book
It is advisable to have a laptop or a PC with the following specifications for better
performance during development:

•	 4 GB RAM
•	 Window 7 OS
•	 Dual Core /i-Series processor

Who this book is for
Android Development Tools for Eclipse is aimed at beginners and existing developers
who want to learn more about Android development. It is assumed that you have
experience in Java programming and you have used IDE for development.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com/
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Installing Eclipse, ADT,
and SDK

This chapter serves as an installation instruction for all the development toolkits
required to develop Android on Windows environment. It is separated into the
following subtopics:

•	 Brief introduction to the Android platform
•	 Installing the Java Development Kit (JDK)
•	 Installing the Android SDK
•	 Installing the Eclipse (Juno)
•	 Installing the Android Development Toolkits (ADT) in Eclipse (Juno)
•	 Linking the Android SDK to the Eclipse

Before we proceed with the installation guide, there is some basic information an
Android developer must know.

Installing Eclipse, ADT, and SDK

[6]

Introducing the Android platform
In simple terms, Android is a Linux based operating system for touch screen devices
developed by Android Inc., financed by Google and was bought in later 2005. The
beta version of Android came back in November 2007 and the commercial version
1.0 was released in September 2008. As of 2013, over 500 million active devices use
the Android OS worldwide.

What is Android?

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications (platform). The Android Software Development
Kit (SDK) provides the tools and Application Programming Interfaces (APIs)
necessary to begin developing applications on the Android platform using the Java
programming language. The kernel of Android is Linux.

Introducing the Android app
A mobile software application that runs on Android is an Android app. The apps
use the extension of .apk as the installer file extension. There are several popular
examples of mobile apps such as Foursquare, Angry Birds, Fruit Ninja, and so on.

Primarily in an Eclipse environment, we use Java, which is then compiled into
Dalvik bytecode (not the ordinary Java bytecode). Android provides Dalvik virtual
machine (DVM) inside Android (not Java virtual machine JVM). Dalvik VM
does not ally with Java SE and Java ME libraries and is built on Apache Harmony
java implementation.

Chapter 1

[7]

What is Dalvik Virtual?
Dalvik VM is a register-based architecture, authored by Dan Bornstein. It is being
optimized for low memory requirements and the virtual machine was slimmed
down to use less space and less power consumption.

Understanding API level
API level is an integer value that uniquely identifies the framework API revision
offered by a version of the Android platform.

The Android platform provides a framework API that applications can use to
interact with the underlying Android system. The framework API consists of:

•	 A core set of packages and classes
•	 A set of XML elements and attributes for declaring a manifest file
•	 A set of XML elements and attributes for declaring and accessing resources
•	 A set of Intents
•	 A set of permissions that applications can request, as well as permission

enforcements included in the system

How many versions (distributions)
Android has?
The latest distribution statistics until May 1, 2013, are shown in the following
screenshot. It indicates that Android 2.3.3 has the largest market share; however,
Android 4.1.x is gaining momentum and will have the dominant share. It is
important to know that if the app is primarily targeted to an Android version, it
will not run on the previous version of Android.

Installing Eclipse, ADT, and SDK

[8]

For instance, if you are developing an app for Android 2.2 (API level 8), then the
application will not run on Android 2.1 (API level 7) and below. However, the app is
compatible for Android 2.2 and later.

Pie chart of the Android API level distribution
(Source: http://developer.android.com/about/dashboards/index.html)

The Android API level distribution
(Source: http://developer.android.com/about/dashboards/index.html)

Chapter 1

[9]

Preparing for Android development
In this part of the chapter, we will see how to install the development environment
for Android on the Eclipse Juno (4.2). Eclipse is the major IDE for Android
development (see the following screenshot). We need to install eclipse extension
ADT (Android Development Toolkit) for development of the Android Application:

ADT on Eclipse in action

To download Android packages a Google API internet connection is a must, hence
take this in notice before moving further. The steps on Windows using Eclipse Juno
are as follows:

Software needed:

•	 Latest JDK1.6.x from Oracle
•	 Latest Android SDK
•	 Eclipse 4.2 (Juno)

Installing Eclipse, ADT, and SDK

[10]

Installing the JDK
To check whether your PC has an existing JDK and it is installed correctly, go
to command prompt, and type javac –version (as shown in the following
screenshot). It is recommended to install JDK 1.6.x for Android Application
Development as it may complain that the compiler compliance level is greater
than 6, and could run into problems:

Checking the JDK version

You may download JDK 1.6 (Java Development Toolkit) from the download site
and install it. Make sure that JAVA_HOME is set after the installation, and check the
version executing the preceding command.http://www.oracle.com/technetwork/
java/javase/downloads/index.html (see the following screenshot).

This step can be skipped if we have java 1.6.x installed:

Java PATH setting

Chapter 1

[11]

Installing the Android SDK
Create a folder named android-dev (android-dev is just a suggestion; you may
create another name instead). The folder android-dev will be used consistently
throughout this chapter. This folder is to hold all the software that is needed for
Android development. This folder is needed again in another procedure.

Download from http://developer.android.com/sdk/index.html, and install this
software in the android-dev folder. Bear in mind this download only provides the
basic tools of Android SDK, not the complete installation. Later, we need to download
the Android system images, APIs, examples, documentations and other libraries:

Android SDK download page

Installing Eclipse, ADT, and SDK

[12]

After completion of the download, install the SDK in the folder mentioned earlier; in
C:\android-dev\android-sdk as shown in following screenshot.

During the installation, the Android SDK will detect the Java Development Kit in the
machine. If we have installed the latest JDK, it should have no problems:

Android SDK installation path

Chapter 1

[13]

Installing the Eclipse (Juno)
Eclipse Juno (4.2) is available for download at http://www.eclipse.org/
downloads/:

Download page of Eclipse Classic

The Eclipse comes in a ZIP file, so just unzip it and find the eclipse.exe file to
run it.

Installing Eclipse, ADT, and SDK

[14]

Immediately extract Eclipse in the folder as created earlier (in C:\android-dev).
After the extraction, create a desktop shortcut to make life easier, as depicted in the
following screenshot:

Create Eclipse shortcut

Chapter 1

[15]

Installing the ADT in Eclipse Juno
Run Eclipse by identifying the Eclipse installation folder and double-click
eclipse.exe (or double-click the shortcut in the Desktop). Provide a folder
to store all the projects' source codes. And once again, create this folder under
the android-dev folder, as shown in the following screenshot:

Select Eclipse Workspace

This new Eclipse installation does not provide the Android Developer Toolkits
(ADT) plugins. To install this plugin navigate to Window | Preferences to open the
Preferences panel. Click on Install/Update | Available Software Sites (on the left
panel). Click on the Add button (on the right panel) to add a software download site
(again an Internet connection is needed).

Installing Eclipse, ADT, and SDK

[16]

Another window will appear. Provide ADT in the Name (for example), and the
Location https://dl-ssl.google.com/android/eclipse/(as provided in
http://developer.android.com/sdk/eclipse-adt.html):

In the Available Software dialog, select the checkbox next to Developer Tools and
click on Next. In the next window, you'll see a list of the tools to be downloaded.
Select all except NDK plugins and click on Next. We will be discussing the tools in
the next chapters:

Chapter 1

[17]

Selecting the ADT and SDK tools

Read and accept the license agreements, then click on Finish. If you get a security
warning saying that the authenticity or validity of the software can't be established,
click on OK. When the installation completes, restart Eclipse.

Installing Eclipse, ADT, and SDK

[18]

Linking the Android SDK to the Eclipse
Run Eclipse. In the Windows | Preferences, click on Android. Locate the folder of
the android-sdk from the step where you installed the android-sdk, as shown in the
following screenshot:

Android preferences in Eclipse

Click on Apply and hit OK.

Chapter 1

[19]

The next thing to do is to download the Android APIs and the operating system
images. Installing Android SDK is time consuming. It requires a smooth broadband
line because after the installation you need to download the API package for
Android and Google API.

To start this, click on the Android SDK Manager icon, as shown in the
following screenshot:

The Android SDK Manager icon

www.allitebooks.com

http://www.allitebooks.org

Installing Eclipse, ADT, and SDK

[20]

You will be provided with the list of all SDK Platforms for all Android versions.
I suggest you be selective, just download your target platform first. If you are to
develop an app for Froyo (Android 2.2) you need to download the API version 8.
Later, when you have more time, you could come back and download for the other
version. If you do not have any time and Internet data constraints then you may
download all. It will fetch API packages, Android OS images, debugging tools and
other softwares related to Android development.

For this time, we will download the latest SDK with Jellybean system image and
API level 16, as shown in the following screenshot:

Installing SDK with API level 16

Chapter 1

[21]

Before hitting the Install button, there is one important tip I'd like to share. While
conducting this procedure, we may encounter a connection reset problem for no
specific reason. To get over this issue, on the Android SDK Manager window,
navigate to Tools | Options. Uncheck the Force https://...sources to be fetched using
https://... option, and Close (shown in the following screenshot). You may start the
SDK and API installation now:

Installing Eclipse, ADT, and SDK

[22]

After the SDK, APIs and system images have been downloaded, restart Eclipse. The
wait is worth it! After almost a couple of hours of installation and downloading
packages, I got this nice graphical interface for the screen layout arrangement, as
shown in the following screenshot. Check the Android Preferences window, and
you may see the Android 4.1 in the API list. To add another API, again you need to
download through the Android SDK Manager:

List of Android APIs

To avoid earlier steps on setting up ADT with Eclipse and kick start development
please download the ADT bundle from http://developer.android.com/sdk/
index.html and follow the steps for setting up at http://developer.android.
com/sdk/installing/bundle.html.

In the next chapter, we will look into tools of an ADT environment that eases
the development.

Chapter 1

[23]

Summary
In this chapter, we learnt how to install the Eclipse Juno (the IDE), the Android SDK
and the testing platform. The next chapter will discuss the important elements of the
IDE before we create a new Android Application project.

Important Features of the IDE
This chapter describes several important features in Eclipse and an ADT
Environment useful to develop an Android app. It is separated into the
following topics:

•	 Project explorer
•	 Code editor
•	 Graphical user interface designer
•	 Properties window
•	 Debugging pane
•	 Dalvik Debug Monitor Server (DDMS)
•	 SDK manager
•	 Android virtual device manager
•	 Running an application
•	 Getting help

Important Features of the IDE

[26]

Project explorer
The project explorer is a tool to view all folders and files under a project. By
double-clicking the item, one can open and edit the file. When we create a new project,
which will be discussed thoroughly in Chapter 3,Creating a New Project, the ADT will
automatically create all these default folders and files, as shown in the following
screenshot. Depending on the project, we may ignore or modify all these files.
These are brief descriptions of the default folders and files in your Android project:

Project explorer

Chapter 2

[27]

The table that follows contains the brief description of the important folders and files
available in the project tree:

Folder Functions
/src the Java codes are here
/gen generated automatically
/assets put your fonts, videos, sounds here. Is more like a file

system and can also place css, javascript files and so on.
/libs external library (normally in JAR)
/res images, layout, and global variables
/drawable-xhdpi for extra high specification devices (for examples Tablet,

Galaxy SIII, HTC One X)
/drawable-hdpi for high specification phones (Examples: SGSI, SGSII)
/drawable-mdpi for medium specification phones (Examples: Galaxy W,

HTC Desire)
/drawable-ldpi for low specification phones (Examples: Galaxy Y, HTC

WildFire)
/layout all XML files for the screen(s) layout
/menu XML files for the screen menu
/values global constants
/values-v11 template style definitions for devices with Honeycomb

(Android API level 11)
/values-v14 template style definitions for devices with ICS (Android

API level 14)
AndroidManifest.xml One of the important files to define the apps. This is the first

file located by the Android OS in order to run the app. It
contains the app's properties, activity declarations and list
of permissions.

Important Features of the IDE

[28]

Code editor
This is the tool where the programming is cooked. Several important features of the
Eclipse code editor (programmers love to have) are intelligence and the error marker
(refer screenshot to follow). Code completion suggests objects, methods or variables
available to be incorporated in our code, while the error marker will notify any
syntax error immediately without having to compile the code. These features help a
lot for faster programming:

The code editor

The code editor's appearance is customizable to suit your style and preference.
To change the editor's environment, such as the background color or the code's
font styles, right-click on the editor and choose Preferences, and then navigate to
General | Appearance | Colors and Fonts. Then click on Edit to customize, refer
the following screenshot:

Chapter 2

[29]

Customizing the Code Editor's appearance

There are also several other XML code editors that help during design and
development. They come in two flavors: GUI based; where things can be
manipulated with a GUI interface, useful for someone who is uncomfortable editing
the XML code manually; Source based: where XML codes can be manually edited.
Some of the editors are listed as follows:

Graphical layout editor
Edit and design your XML layout files with a drag and drop interface.
The layout editor renders your interface as well, offering you a preview
as you design your layouts.

Important Features of the IDE

[30]

Android manifest editor
Edit Android manifests with a simple graphical interface. This editor is invoked
when you open an AndroidManifest.xml file.

Menu editor
Edit menu groups and items with a simple graphical interface. This editor is
invoked when you open an XML file with a <menu> declared (usually located
in the res/menu folder).

Resources editor
Edit resources with a simple graphical interface. This editor is invoked when you
open an XML file with a <resources> tag declared.

XML resources editor
Edit XML resources with a simple graphical interface. This editor is invoked when
you open an XML file.

Graphical user interface designer
This is the interface designer. It functions as the GUI editor for controls or a
widget to the application screen. There are three sections of this GUI designer,
the palette, configuration chooser and the screen layout preview, as shown in the
following screenshot:

Chapter 2

[31]

The ADT's GUI designer

The Palette contains all the GUI controls (widgets) that can help us design the
interface. The available controls depend upon the API level we choose during
creation of the project. Some of the common controls are: button, text field, radio
button, check box, multimedia controls and so on.

The configuration chooser
It lets you decide the appearance of your app view across different screen sizes,
orientation, densities and themes.

The screen layout designer
It is a canvas to put things up and try out different designs. It is a designing
workspace. Also, it provides a preview of how the screen may appear in a device.

Important Features of the IDE

[32]

Properties window
It helps in editing properties of the widgets. All the properties corresponding to
widgets can be viewed and edited via this window visually. Though the properties
can be edited directly by editing the XML file, this GUI interface eases it. All the
changes made are persisted to XML file instantly and automatically. The following
screenshot shows the Properties window:

The Properties window

Debugging pane
In the debugging perspective, we see the syntax errors, warning, console messages,
run-time errors, variable transition (if breakpoint is used) and LogCat. LogCat is
useful to trace any activity happening inside the device or emulator. The following
screenshot shows the window to list all code problems, such as warnings or
syntax errors:

Chapter 2

[33]

Problems warnings or code syntax errors

A sample of console messages from the ADB is listed in the following screenshot.
As a java person, we would be tempted to use System.out.println() to split out
message and objects' values; which are shown in the LogCat view, however it is
advisable to use Log class for this purpose, reason being we can filter, print different
colors and define log types. This could be one way of debugging your program, by
displaying variables' values or parameters. To use Log, import android.util.Log,
and use one of the following methods to print messages to LogCat:

v(String, String) (verbose)

d(String, String) (debug)

i(String, String) (information)

w(String, String) (warning)

e(String, String) (error)

The Android Debug Bridge console (displays ADB activities)

Important Features of the IDE

[34]

LogCat is used to view the internal log of the Android system, as shown in the
following screenshot. It is useful to trace any activity happening inside the device or
emulator through the ADB (Android Debug Bridge). ADB is a tool to connect your
PC with the virtual device or actual device. Without it, the developer cannot directly
transmit the APK file to an Android device/emulator:

The LogCat (tracedump of all device/emulator activities)

Dalvik Debug Monitor Server (DDMS)
DDMS is a must have tool to view the emulator/device activities. To access
DDMS in the Eclipse, navigate to Windows | Open Perspective | Other and then
choose DDMS. By default it is available in the Android SDK (it's inside the folder
android-sdk/tools by the file ddms). From this perspective the following aspects
are available:

•	 Devices: The list of the devices and AVDs that are connected to ADB
•	 Emulator Control: It helps to carry out device functions
•	 LogCat: It views real time system log messages
•	 Threads: It gives an idea of currently running threads within a VM
•	 Heap: It shows heap usage by application
•	 Allocation Tracker: It provides information on memory allocation of objects
•	 File Explorer: It explores the device file system

Chapter 2

[35]

The following image shows important aspects of DDMS:

Dalvik Debug Monitor Server (DDMS)

SDK manager
SDK Manager is the tool to update Android SDK and manage the download of
Android OS system images, documentations, and APIs. The icon appears, as shown
in the following screenshot:

The SDK manager icon

Important Features of the IDE

[36]

The next screen to follow, as shown in the screenshot has a very long list. We need
to be very decisive about what API level we need and select accordingly as the
download may take significant time, depending upon the Internet speed. If not sure
then choose the latest API level.

Expand the API level we want to issue and check the SDK platform. This download
consists of the API for the corresponding level and the Android OS system image.
By default, the system image is based on the ARM's architecture. However to run
Android OS system image faster on an Intel architecture machine, just tick the Intel
Atom x86 System Image option.

Tick the Samples for SDK if you need to learn from the samples. If your app needs to
incorporate the Google special API (such as the Google Maps), then you might need to
download the Google API. The rest of the list is about the device specific APIs. Unless
you are planning to optimize your app for a certain device, then do not download.

Once you have finished selecting the necessary APIs, then click on the Install
package button. Should you have any connection reset problem while downloading,
navigate to Tools | Options. Uncheck the Force https://... sources to be fetched using
http://... and try again:

The Android SDK Manager window

Chapter 2

[37]

Android virtual device manager
Android virtual device is a virtual mobile device (emulator) that runs on your
computer. The emulator lets you test an Android application without using a
physical device. Although, it's not the best testing approach, as it just mimics the
device, but at least you have something to test in case you cannot afford an actual
Android device.

When the emulator is running, you can interact with the emulated mobile device just
as you would in an actual mobile device, except that you use your mouse pointer to
touch the touchscreen and you are able to use some keyboard keys to invoke certain
keys on the device.

The Android emulator mimics all of the hardware and software features of a typical
mobile device, except that it cannot place actual phone calls. It provides a variety
of navigation and control keys, which you can "tap" using your mouse or keyboard
to generate events for your application. It also provides a screen in which your
application is displayed, together with any other running Android applications.
For some features we may have to be aware of hot keys and details are at
http://developer.android.com/tools/help/emulator.html#KeyMapping

Click on the button as shown in the following screenshot, to open the Android SDK
and AVD Manager window. AVD is Android Virtual Device:

The AVD icon

Important Features of the IDE

[38]

The AVD Manager is shown in the following screenshot. First, click on New… to
set a new emulator, as seen in the screenshot. Enter a name (for example, nexus),
choose a target (make sure the Android OS system image has been downloaded for
the selected target), and for simplicity choose the device, and all other fields will be
auto-populated. We can also edit if you want something different. Also, choose CPU
as ARM (armeabi-v7a) and click on Create AVD:

Creating a new AVD

Chapter 2

[39]

Click on the new AVD that is already created, and start the AVD using the Start
button. Use the default setting and click on the Launch button.

If we have a lower specification of processor and memory, you will notice that its
emulator boot-up is really slow. I would like to advise you to have at least 3GB of
RAM to make it faster.

Wait until the left screen displays a nice picture with icons, as shown in the following
screenshot. The left component is your device (smartphone) screen and the right
component is the physical smartphone keypad:

The Android emulator

www.allitebooks.com

http://www.allitebooks.org

Important Features of the IDE

[40]

Running the Application
The project with no error will be able to be executed and sent to the AVD. To run a
project, click on the Run button as, shown on the following image. If your system
is already running several emulators, Eclipse will ask which version of the emulator
to use:

The Run application button

Getting help
•	 Go to Help in the menu, and choose Search
•	 Eclipse help: http://help.eclipse.org/juno/index.jsp
•	 ADT help: http://developer.android.com/tools/help/adt.html
•	 Android developer's official reference: http://developer.android.com
•	 ADT update: regularly check the ADT update from the menu, Help | Check

for Updates
•	 More on DDMS: http://developer.android.com/tools/debugging/

ddms.html

Summary
In this chapter, we discussed several important tools available in the Eclipse and
the ADT, such as the project explorer, code editor, graphical user interface designer,
properties window, debugging pane, Dalvik debug monitor, SDK manager, AVD
manager, and the run application facilities. The next chapter will discuss how to
create a new Android application project.

Creating a New
Android Project

This chapter will demonstrate how to create a new Android app with a simple
interaction using the button and text field. We will also write interactivity code,
compile and run an app on the emulator/actual device. To illustrate this chapter,
we will be creating a simple project named HelloU app.

•	 Creating new Android application project string resources
•	 Using the graphical layout designer
•	 String resources
•	 The XML layout editor
•	 Widgets' interactions through the source code editor
•	 Toast message
•	 Running the application on the emulator
•	 Running the application on an Android device
•	 Getting help

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Creating a New Android Project

[42]

Creating a new Android application
project
To create a new Android project in the Eclipse, navigate to File | New | Project.
A new project window will appear, then choose Android | Android Application
Project from the list. Click on the Next button.

•	 Application Name: This is the name of your application, it will appear
side-by-side to the launcher icon. Choose a project name that is relevant
to your application.

•	 Project Name: This is typically similar to your application name. Avoid
having the same name with existing projects in Eclipse, it is not permitted.

•	 Package Name: This is the package name of the application. It will act as an
ID in the Google Play app store if we wish to publish. Typically it will be the
reverse of your domain name if we have one (since this is unique) followed
by the application name, and a valid Java package name, else we can have
anything now and refactor it before publishing.

The android:minSdkVersion is an integer designating the minimum API Level
required for the application to run. If not sure, leave it to whatever is selected.

For example, you might have your app set to android:minSdkVersion="7". This
setting will guarantee that your app works on devices with Android Éclair (2.1) or
above, but not below.

The targetSdkVersion is the target devices you are focusing on. Let's say your app
has android:minSdkVersion="16", it means the apps could utilize all the features of
Android Jelly Bean. However, bear in mind that features, such as the ability to move
the app to an SD card and native Unicode are not supported in Android (2.1) Eclair.
Though these features are available starting in the API level 8 (Android 2.2/Froyo)
and level 11 (Android 3.0/Honeycomb), they cannot be utilized in the lower version
of Android.

Chapter 3

[43]

Do keep in mind that your targetSdkVersion has to be equal or more than the
minSdkVersion. Otherwise, it doesn't really make much sense.

Click on Next to move to the next step:

Create a new Android project

Creating a New Android Project

[44]

This is the window to configure your launcher icon. The launcher icon is the icon
that will appear in the home screen or in the application drawer. This is an important
aspect of your app as it will be representing the app. For this purpose, you may
use the icon creator wizard using the available text and icon shape pre-customized
in the ADT. Set the foreground as text, provide the letter U as the Text, pick the
circle as the icon shape and adjust your color preference, as shown in the following
screenshot. This wizard will create a simple icon and provides the ldpi (36x36 pixels),
mdpi (48x48 pixels), hdpi (72x72 pixels) and xhdpi (96x96 pixels) of the launcher
icon. Icons of different sizes are created to address various devices with different
configuration of screen sizes and resolution. Click on Next to proceed:

Launcher icon creator

Choose BlankActivity in the window, as shown in following screenshot, and click
on Next:

Chapter 3

[45]

Choose blank activity

The next window appears to input the MainActivity name, as shown in the
following screenshot and click on the Finish button:

Creating a New Android Project

[46]

String resources
Usually, it is a practice for Android application to store the string values for
user interface reference in the XML file due to the nature of mobile apps, which
is distributed internationally. So it is best to provide multiple language options.
However, this practice is optional, and you may use direct string assigning if you
wish to do so.

The string resource file is in an XML form and available through the project tree in
res/values/strings.xml. These string resources can also be used to store color
information, integer arrays to name some.

Now, add a new string value by clicking on the Add button, provide the variable
name in the Name box and the Value of the string. Press Ctrl + S to save the changes.
For example, in the following screenshot, a new string variable is created as hello_u
and the value is Hello,:

Adding a new string value

Add two more string values based on the table that follows. These strings will be
used as the widgets' caption:

String variable Value
s_tvName Your name:
s_btnDisplay Display name!

Chapter 3

[47]

If you notice, we use s_ to indicate it is a string variable from the resources, tv
to indicate a TextView, and btn to indicate a button. Bear in mind that these
conventions are not fixed, you may use your own preferences.

The new string values created will be saved in the string.xml file. The XML
code is available by clicking on the tab on the red arrow, as shown in the
following screenshot:

The string.xml code file

Using the graphical layout designer
The next exercise is to add a text label, a text box and a button. These elements
are called widgets in Android which has the class name TextView, EditText and
Button in the Android API. We will not go through the details of these classes; most
importantly we could apply these widgets in our app.

To open this layout, double-click the res/layout/activity_main.xml file from the
project explorer.

On the left of the app screen, you'll see the Palette. Browse the Form Widgets, there
are several widgets including the TextView. Click and drag the TextView widgets to
the app screen. Change the widget ID into "@+id/tvName", and make sure to press
Enter to confirm your changes and save them to the XML file. The "@+id/" is the
ADT representation to say that the new ID has to be created and assigned to
the widget.

Creating a New Android Project

[48]

After that, set the Text properties to point the value defined in the string resources,
s_tvName. This could be done by clicking on the button with three dots, on the
right side of each property. Press Ctrl + S to save the changes and to make sure the
changes appear in the XML file:

Changing the caption of a TextView

Chapter 3

[49]

The next widget to add is the EditText with Id txtName, associate label as Your
name: to accept user input, as shown in the following screenshot:

Adding an EditText

Add another widget, button, specify ID btnDisplay and associate label as D
isplay Name, as shown, and expand it horizontally across the screen. You may
use the resize feature by clicking and dragging the bluish resize mark on the edge
of the widget:

Adding a Button

Creating a New Android Project

[50]

The XML layout code editor
The code editor is an alternative to change the layout properties. We recommend you
change this code directly if you have prior knowledge of XML. It's a straight forward
XML code actually. To access this code directly, just click the activity_main.xml on
the bottom of the layout editor, as shown in following screenshot:

Accessing the XML layout code editor

Widget interactions through the source
code editor
The layout we designed previously does not have to interact with each other
automatically; let's make it happen. To put in simple words, when we execute the
project, clicking on the button on the app will not trigger any action. We need to add
the code for the interactions.

What we are trying to do is when the user taps on the button Display Name!,
the app will capture any text inside the TextView and produce a simple popup
to display your name.

To achieve our goal let's play around, go to src, double click on the package folder
and double click again on the file MainActivity.java. This Java file will contain the
code to load the layout of the XML file main_activity.xml in order to create a UI.
The Java code as follows is the default code provided by ADT.

Chapter 3

[51]

You will see the package name on line one and several classes imported to the
project. The code in line six is the main class declaration which inherits the Activity
class. method onCreate in line eight is the first method to be called when the apps
start. The setContentView(R.layout.activity_main) is the command to initialize
the screen layout based on the main screen designed previously. And the method
in line 13, which is to create the screen menu, will be discussed later in Chapter 5,
Adding RadioButton, Checkbox, Menu, and Preferences.

package net.kerul.HelloU;
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity{
//First method called when App starts
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 // loads Screen menu
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main,
 menu);
 return true;
 }
}

In order to provide button interaction, we need to add implements
OnClickListener to the main class header.

public class MainActivity extends Activity implements OnClickListener
{

In the import section of the code, add this line:

 import android.view.View.OnClickListener;

Now, initialize all the widgets that will get involved in the process. Immediately
after the main class header, add the widgets' member declaration.

public class MainActivity extends Activity implements OnClickListener{
 private EditText txtName;
 private Button btnDisplay;
 …

Creating a New Android Project

[52]

Since EditText and Button are also another class which needs to be imported from
the Android API, so add a couple of lines in the import section.

import android.widget.Button;
import android.widget.EditText;

In Eclipse you do not need to memorize all the classes and the packages'
names that are needed to be imported. Just put the cursor (caret) to the
class and press Ctrl + Shift + O. The IDE will help you to include the
packages involved or point your mouse to the additional class, a menu
will come out, and choose to import the class.

Menu to import class from the Android API

Next is to link the code and the layout design in the MainActivity.xml file.
This is needed since the ADT is incorporating the MVC (Model-View-Controller)
development method. It means that the screen layout is separated from the code to
provide high project maintainability.

Basically after the layout has been loaded using setContentView you need to have
access to these widgets that hide within that layout. This is where findViewById ()
comes into play.

txtName=(EditText)findViewById(R.id.txtName);
btnDisplay=(Button)findViewById(R.id.btnDisplay);

Chapter 3

[53]

The button is the action; we need to add the event listener to the button. The line to
add is as follow:

btnDisplay.setOnClickListener(this);

Here we made the Activity itself implement onClickListener.

For any on-click event to be handled, Java needs a special method to be included.
Inside the method is where the task will be executed. In our case, if the user clicks
(or taps) the button (btnDisplay), the app will extract the content of the text field
(txtName) and display the content on the screen. The action can be coded as follows:

public void onClick(View arg0) {
 if(arg0.getId()==R.id.btnDisplay){
 String hellomsg="Hello, "+txtName.getText().toString();
 Toast.makeText(this.getApplicationContext(), hellomsg,
 Toast.LENGTH_SHORT).show();
 }
 }

View arg0 is the element that triggers the action. arg0.getId() is the method to get
the ID of the widget triggering the action. If the widget ID is the btnDisplay, then
do the action of capturing the input and display it to the screen.

To fetch the string of text field widgets, use the following code:

txtName.getText().toString();

Toast.makeText() is the method to display a short/brief message on the screen, we
will discuss it in the next section.

The complete code would be:

package net.kerul.HelloU;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class MainActivity extends Activity implements OnClickListener{
 private EditText txtName;
 private Button btnDisplay;

Creating a New Android Project

[54]

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 txtName=(EditText)findViewById(R.id.txtName);
 btnDisplay=(Button)findViewById(R.id.btnDisplay);
 btnDisplay.setOnClickListener(this);
 }

 public void onClick(View arg0) {
 if(arg0.getId()==R.id.btnDisplay){
 String hellomsg="Hello, "+txtName.getText().toString();
 Toast.makeText(this.getApplicationContext(), hellomsg,
 Toast.LENGTH_SHORT).show();
 }
 }
}

Toast message
This is one of the common practices to pop-up a message box for notifying the user.
This kind of notification is a type of notification that does not require a user answer
or feedback.

Toast.makeText(this.getApplicationContext(), hellomsg,
 Toast.LENGTH_SHORT).show();

Toast.makeText() contains three parameters which are the application context, the
message and the time length.

•	 The application context is the current screen to display the message
•	 The message is the string to be displayed
•	 The time length is consisting of a short or longer duration of the message

display and has to be one of Toast.LENGTH_* constants

Chapter 3

[55]

The arrow in the following screenshot is pointing to a Toast:

Example of a Toast

Running the application on the emulator
Running the HelloU app in the emulator would need you to start the emulator first.
Start the emulator that has the Android version that suits your target platform. Once
the emulator is fully loaded, we can compile and run the app.

Click on the HelloU project on the project explorer (this is to activate the project).
Navigate to Run in the Eclipse menu, and choose Run or press Ctrl + F11 for a
shortcut. Select run as Android Application, and Enter. Wait for a couple of seconds
and view your emulator. The HelloU app will appear shortly, as in shown in the
following screenshot. Enter your name and tap on the Display Name! button, the
Toast message will appear with the name entered on the bottom of the screen:

The HelloU app running in the Emulator

Creating a New Android Project

[56]

Running the application on an
Android device
To run and deploy on a real device, first install the driver of the device. This varies as
per device model and manufacturer.

These are some links you could refer:

•	 For Google Android devices only http://developer.android.com/sdk/
win-usb.html.

•	 Others: http://www.teamandroid.com/download-android-usb-drivers/.

Make sure the Android phone is connected to the computer through the USB cable.
To check whether the phone is properly connected to your PC and in debug mode,
please switch to the DDMS perspective.

The Android phone as appear in the DDMS.

If everything goes well, then run the app. Notice that a window appears asking you
to select between the emulator and a real Android device; select the Android device.
A few seconds later, the app will be running in the Android phone.

Chapter 3

[57]

HelloU app in the actual Android device. Getting help

The following are some references to guide you on using the Eclipse and ADT. You
can spend some time going through the documentation and tutorial to get updated.
Reading the tutorials and discussions at stackoverflow.com are among the
convenient way of learning these tools.

•	 Go to Help in the menu, and choose Search.
•	 Eclipse help: http://help.eclipse.org/juno/index.jsp
•	 ADT help: http://developer.android.com/tools/help/adt.html
•	 Android Developer's official reference: http://developer.android.com
•	 ADT Update: regularly check the ADT update from the menu, Help | Check

for Updates.
•	 More on DDMS: http://developer.android.com/tools/debugging/

ddms.html

Summary
Congratulations! You now have an Android app of your own. You have designed the
screen layout, added a label, text field and a button. The simple interactivity exposed
you to how to develop an android mobile app. In the next chapter, we will add more
widgets and learn to develop more complex apps involving multiple screens.

Incorporating Multimedia
Elements

This chapter will discuss how to incorporate multimedia elements inside a project
and handle several screens in an app. The readers will be shown how to add images,
sounds and an HTML page in the project. We will discuss the following topics with
the help of a project called SimpleNumb3r5:

•	 Forming the layout
•	 Adding the image resources
•	 Inserting ImageView
•	 Inserting ImageButtons
•	 ImageButton and handling events
•	 Adding audio and multiple screen support
•	 Inserting HTML in a WebView
•	 Using Intent and Activity
•	 Adding a new activity in the manifest file
•	 The final product – run, deploy, and test app

For this chapter, we need a new project that will cover the Android devices from
Version 2.1 (API level 7) to the latest version. So set android:minSdkVersion to 7,
and android:targetSdkVersion to 16.

The icon and other resources are available in a downloadable source code (refer to
the download tip mentioned in the Preface of this book). Download these materials
prior to developing this app. We do not want to make your life miserable doing the
graphic design.

Incorporating Multimedia Elements

[60]

The selected name for the new app is SimpleNumb3r5, as shown in the following
screenshot. If you are wondering why we chose Android 2.1, this is to widen the
device coverage:

Create a new Android project named SimpleNumb3r5

We provide the launcher icon in the resource materials and the image named
ic_launcher-web.png in the Image File field, as shown in the following screenshot.
This is the dedicated logo of this app. Should you prefer a different logo to suit your
app, you are welcome to design it personally. By using this wizard, the icon launcher
will be prepared to suit the xhdpi, hdpi, mdpi, and ldpi formats in the respective
drawable folder.

Chapter 4

[61]

Creating the launcher icon

The next screen, as shown in the following screenshot, is to provide a name of the
application. This can be any string that has the right meaning suitable to the app.
The layout name will be created automatically for you, and could be changed to your
preference. Choose the navigation type as None as it has no concern with respect to
our application development.

Choose the blank activity

Incorporating Multimedia Elements

[62]

The following screenshot is the mock-up of the app being developed. We have a
major section of the screen dedicated to display the image of the numbers zero to
nine and the spelling. The bottom row of the screen is the navigation bar where the
user may navigate to the previous and next screen. The button with the speaker is for
the user to listen to the number spoken to them. The button with the lower case, i, is
the icon to show the information screen.

•	 The project title (appears by default).
•	 The image number location. This row consists of the three cells

merged together.
•	 The bottom row consists of previous, info, play sound, and next buttons.

The main screen mock-up

Adding a TableLayout
Our project will consist of one TableLayout and inside it there are two TableRows.
By default, when you add a TableLayout, the IDE will include four sets of
TableRows. Remove two rows by using the XML code editor, the previous app
mock-up can provide some guidelines to remove the rows not in use. Adjust the
TableLayout, so that it utilizes all the space of the screen layout, as shown in the
following screenshot:

Chapter 4

[63]

Inserting a TableLayout

Adding the image resources
Copy the images provided in the supplement files for Chapter 4 to the res/
drawable-hdpi folder through the Windows file manager, as shown in the following
screenshot. In this exercise, we just provide the image resources for hdpi drawable.
It's always a good practice to prepare all the suitable resources for xhdpi, mdpi, and
ldpi accordingly. Do not forget we have a lot of screen size variant in the Android
devices. Currently we also do not consider resources for the tablet size devices.

The resources for the drawable

Incorporating Multimedia Elements

[64]

Then go to your project explorer (in Eclipse), right-click on res/drawable-hdpi
and click on Refresh. The following screenshot shows the appearance of the
drawable-hdpi folder after the image resources have been copied:

The resources for the drawable

Adding ImageView
As shown on the previous screenshot, our app has an image 0 that fills the
entire screen and to achieve that let's add an ImageView to the first row of the
TableLayout. Use the no0 image in the drawable folder as the initial image
(zero is the first number to be displayed). Adjust the width and height of the
ImageView to populate the screen.

Chapter 4

[65]

Adding an ImageView to the app screen

Distribute weight (specifies how much of the extra space in the layout to be allocated
to the View) evenly to center the widget. Use the button shown in the following
screenshot to adjust the ImageView to the center of the screen. Do this while the
ImageView is active (selected):

Distribute weight evenly

Incorporating Multimedia Elements

[66]

Adding ImageButtons
The second row in TableLayout is for the navigation buttons (previous and next) and
the play sound button. ImageButton is more attractive for this kind of app. When you
create an ImageButton, you will be asked to choose the image. For the first button
use the image prev from the drawables. The second is sound and the last one is next.
These buttons need to be added one at a time, as shown in the following screenshot:

Adding ImageButtons

Activate (select) one of the buttons and distribute evenly, as shown in the following
screenshot. This is to make sure all the buttons are spread evenly across the
screen's width.

Distribute weight of the ImageButtons evenly

Chapter 4

[67]

And if you prefer, change the background of your screen. A background image has
been prepared for you; it is in the drawables and is named bglight. Activate the main
layout by clicking on the app title/logo on the app screen. Change the background
properties by clicking on the three dots button on the right-side of the attributes.
Later, you may add the btninfo button to display the app's information.

Assigning the widget's ID
There are basically one ImageView and three ImageButtons. To change the
ImageView ID, select it and go to the widget properties on the right-side. Click
on the three dots button on the Id attribute. Change the ID of the ImageView to
imagenumber, as shown in the following screenshot:

Changing the widget's ID through the Property window

After that, change all the IDs of all the buttons to btnprevious, btninfo, btnsound,
and btnnext. Use the following table as a guide:

Widget ID
ImageView imagenumber
Left most button btnprevious
Display app info btninfo
Play sound button btnsound
Right most button btnnext

Incorporating Multimedia Elements

[68]

Finally, you will get the screen, as shown here:

The whole layout design of the main activity

The following XML code is available through the XML editor in the tab activity_
simple_numb3rs.xml across the Graphical Layout tab:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/bglight" >

 <TableLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true" >

 <TableRow
 android:id="@+id/tableRow1"

Chapter 4

[69]

 android:layout_width="wrap_content"
 android:layout_height="0dp"
 android:layout_weight="1" >

 <ImageView
 android:id="@+id/imagenumber"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/no0" />
 </TableRow>

 <TableRow
 android:id="@+id/tableRow2"
 android:layout_width="wrap_content"
 android:layout_height="0dp"
 android:layout_weight="1" >

 <ImageButton
 android:id="@+id/btnprevious"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/prev" />
 <ImageButton
 android:id="@+id/btninfo"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/info" />
 <ImageButton
 android:id="@+id/btnsound"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/sound" />
 <ImageButton
 android:id="@+id/btnnext"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@drawable/next" />
 </TableRow>
 </TableLayout>
</RelativeLayout>

Incorporating Multimedia Elements

[70]

ImageButtons and handling event
This is where we code the ImageButtons click events. Open the Java source code
from src/net.kerul.simplenumb3r5/SimpleNumb3r5.java. Here, we will be
discussing the main activity class that will provide the screen navigation with the
following code:

public class SimpleNumb3r5 extends Activity implements OnClickListener

The main class, as usual, will inherit the Activity class, and implement
OnClickListener to enable the widget interaction.

The main variable declarations are as follows:

//initialize all widgets
 private ImageView imagenumber;
 private ImageButton btnprevious, btninfo, btnsound, btnnext;
 //define variables to track screen number, start from 0
 private int screennumber=0;
 //define a sound controller
 private MediaPlayer mp;
 //define an array for the sound files
 private String[] soundfile={"0.mp3","1.mp3","2.mp3","3.mp3",
 "4.mp3","5.mp3","6.mp3","7.mp3","8.mp3","9.mp3"};

Widget objects are imagenumber as for the container to display the number of
images, and we have btnprevious, btnsound, and btnnext for the buttons.

The screennumber is the variable to keep a track of the current screen position;
initially it is given the value 0 because we have a list of numbers that start from
zero (0).

The sound controller object is named mp, and the string array named soundfile is
the list of all the recordings of the spoken numbers from zero to nine.

The onCreate method is the place where all the widgets are initialized and linked
together in a view, as follows:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_simple_numb3r5);
 imagenumber=(ImageView)findViewById(R.id.imagenumber);

 //create the object for the button
 btnprevious=(ImageButton)findViewById(R.id.btnprevious);
 //this button will initially be disabled

Chapter 4

[71]

 btnprevious.setEnabled(false);
 //add listener to the button
 btnprevious.setOnClickListener(this);
 btninfo=(ImageButton)findViewById(R.id. btninfo);
 btninfo.setOnClickListener(this);
 btnsound=(ImageButton)findViewById(R.id.btnsound);
 btnsound.setOnClickListener(this);
 btnnext=(ImageButton)findViewById(R.id.btnnext);
 btnnext.setOnClickListener(this);

}//end onCreate

Next, we have the onClick method to handle the navigation interactions. What we
do here is basically disabling the btnprevious button if the screennumber is 0, and
enabling it on for screennumber more than 0. btnnext will also be disabled if the
screennumber value is 9, on when less than 9. These are to prevent runtime errors
when the user trying to access that is less than 0 or more than 9. The btnsound value
is currently ignored; it will be discussed later when we deal with sounds (that is,
playing of sound/audio).

//this method is to handle button click
 public void onClick(View arg0) {
 //when btnprevious is clicked
 if(arg0.getId()==R.id.btnprevious){
 screennumber--;// Decrement 1 to the screennumber
 changeNumber(screennumber);
 if(screennumber==0){
 // Disable previous Button
 btnprevious.setEnabled(false);
 }else{
 // Enable back disabled Button.
 btnprevious.setEnabled(true);
 }
 changeNumber(screennumber);
 btnnext.setEnabled(true);
 }

 //when btnnext is clicked
 else if(arg0.getId()==R.id.btnnext){
 screennumber++;//add 1 to the screennumber
 changeNumber(screennumber);
 if(screennumber==9){
 Disable no screen available next
 btnnext.setEnabled(false);

Incorporating Multimedia Elements

[72]

 }else{
 / Only prevoius screen available
 btnnext.setEnabled(true);
 }
 changeNumber(screennumber);
 btnprevious.setEnabled(true);

 }
 //when btnplay is clicked
 else if(arg0.getId()==R.id.btnsound){
 //playSound - will implement later
 }
 else if(arg0.getId()==R.id.btninfo){
 //display info will implement later
 }

 }//end onClick

There is an additional method to switch the image of the numbers. The
R.id.imagefile is the representation of the actual drawable image resources.
Since we have 10 images altogether, and R.id returns int, so we can use the
switch case 10 times as follows:

//this method is to change the number that appears on the screen
// after the navigation button is clicked
// as R.id retuns int so we use switch
private void changeNumber(int screen){
 switch (screen){
 case 0: imagenumber.setImageResource(R.drawable.no0);
 break;
 case 1: imagenumber.setImageResource(R.drawable.no1);
 break;
 case 2: imagenumber.setImageResource(R.drawable.no2);
 break;
 case 3: imagenumber.setImageResource(R.drawable.no3);
 break;
 case 4: imagenumber.setImageResource(R.drawable.no4);
 break;
 case 5: imagenumber.setImageResource(R.drawable.no5);
 break;
 case 6: imagenumber.setImageResource(R.drawable.no6);
 break;
 case 7: imagenumber.setImageResource(R.drawable.no7);
 break;

Chapter 4

[73]

 case 8: imagenumber.setImageResource(R.drawable.no8);
 break;
 case 9: imagenumber.setImageResource(R.drawable.no9);
 break;

 }
 }//end changeNumber

Adding audio
Before doing this exercise, copy all the sound resources to the assets folder. You
may do this by copying all the mp3 files to the assets folder through the File
Manager, as shown in the following screenshot:

Copy the MP3 files to the folder assets

Add code for btnsound in the onClick method. Add the following lines so
that when the btnplay button is clicked, it will execute the method named
playSound(). This method will receive a string argument as the value of the
sound file name to be played.

Incorporating Multimedia Elements

[74]

The soundfile array variable is the variable that stores the list of the mp3 filenames,
while the screennumber indicates the current number on the screen.

//when btnplay is clicked
 else if(arg0.getId()==R.id.btnsound){
 //call the method playSound
 playSound(soundfile[screennumber].toString());
 }//end btnsound clicked

The next important method is the playsound method. This method will play an mp3
sound file. The soundname parameter is the string that contains the sound file name
which resides in the assets folder of the Android project.

public void playSound(String soundName){
 Boolean mpPlayingStatus;

 try{//try to check MediaPlayer status
 mpPlayingStatus=mp.isPlaying();
 }
 catch (Exception e){
 mpPlayingStatus=false;
 }
//if the MediaPlayer is playing a sound, stop it to play new voice
 if(mp.isPlaying()){
 mp.stop(); //stop the sound
 mp.release(); //remove sound from the memory
 }
 else{
 try{
 mp = new MediaPlayer();
 AssetFileDescriptor afd = getAssets().openFd(soundName);
 //set the sound source file

 FileDescriptor fd = afd.getFileDescriptor();
 mp.setDataSource(fd);

 mp.prepare(); // prepare for playback
 mp.start(); //play the sound

 }//try block
 catch(IOException e) {
 //display the error message in debug
 Log.i("Error playing sound: ", e.toString());
 }
 }
}//end playSound

Chapter 4

[75]

The following is the explanation of the variables and processes involved:

•	 try…catch block: This is an exception handler, whose purpose is to enclose
the code that might throw an exception. In this case the exception is to try to
catch any problem while trying to play the sound file using MediaPlayer. If
you notice, the catch block is the statement that will be executed if a certain
code execution causes an exception.

•	 mp is the object instantiated from the class MediaPlayer.
°° isPlaying(): Checks whether the MediaPlayer is playing, True is

playing whereas false is otherwise
°° setDataSource(): Sets the data source to be used. In this case, the

data source is FileDescriptor
°° prepare(): Prepares the player for playback, synchronously
°° play(): Plays the sound file
°° stop(): Stops the current sound playing
°° release(): Releases the sound from the memory

•	 afd is a variable instantiated from the class AssetFileDescriptor.

°° getAssets(): Retrieves the underlying resources (from the assets
folder) via the AssetManager API

°° openFD(): Opens the file specified in the String argument
°° getFileDescriptor(): Returns the FileDescriptor data source

that can be used to read the data in the file
°° getStartOffSet(): Returns the byte offset where this asset entry's

data starts
°° getLength(): Returns the total number of bytes of this asset

entry's data

Adding another screen in the app
This exercise is to add an information screen on the SimpleNumb3r5 app. The
information regarding the developer, email, Facebook fan page, and other information
is displayed in the next screen. Since the screen contains a lot of text information
including several pictures, so we make use of an HTML page as our approach here:

1.	 Now, create an activity class to handle the new screen. Open the src folder,
right-click on the package name (net.kerul.SimpleNumb3r5), and choose
New | Other... From the selections, choose to add a new Android activity,
and click on the Next button. Then, choose a blank activity and click on Next.

Incorporating Multimedia Elements

[76]

2.	 Set the activity name as Info, as shown in the following screenshot and
the wizard will suggest the screen layout as info_activity. Click on the
Finish button.

Creating a new activity named Info

3.	 A blank new screen layout will appear. Remove the HelloWorld TextView
(that comes with default). On the Palette panel, open the folder named
Composite.

4.	 Click and drag the WebView widget. Change the ID of WebView to
webinfo. This layout will be saved in the file info_activity.xml.

Chapter 4

[77]

Adding a WebView widget

Adding HTML to WebView
Create an HTML page using your favorite web editor, or you may just reuse the
HTML page in the resources provided (in the assets folder, file name info.html).
The HTML page, as shown in the following screenshot, is a simple HTML page that
contains the app information. If you find that the HTML is too simple, do add your
own information. In this exercise, we will put the HTML pages and the resources
inside the assets folder, hence before proceeding, copy all the related materials of
the HTML page into the assets folder.

The HTML page in info.html

Incorporating Multimedia Elements

[78]

Next is to edit the source code for Info.java that resides in the folder src/net.
kerul.simplenumb3r5. Add the following code to the existing template:

package net.kerul.simplenumb3r5;
import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class Info extends Activity {
 private WebView webinfo;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_info);

 webinfo=(WebView)findViewById(R.id.webinfo);
 //provide the URL path pointing to info.html
 webinfo.loadUrl("file:///android_asset/info.html");
 }
}

Let's understand the following lines of code added to the template above:

•	 setContentView(R.layout.activity_info): R.layout.activity_info is
referring to the layout created previously.

•	 webinfo.loadUrl("file:///android_asset/info.html"): This is the
method to load an HTML page from a specific URL. The path to point to an
HTML file inside the assets folder is file:///android_asset/info.html.
This path cannot be found on a real device, however it provides access to the
app asset files.

Intent and Activity
Intent is an abstract description of an operation to be performed. To be more specific,
it is an asynchronous call which allows the application to request functionality
from other Android components, for example, services/activities. It can be used
with the startActivity() command to launch an activity. The previous code in
SimpleNumb3r5.java is the main activity (or class) for this application. We've just
created the second activity (class) in the file Info.java. In order for the second
activity to appear, it has to be started using an intent.

Chapter 4

[79]

We have decided to use the button btninfo as the trigger to invoke the second
activity. Again, open the file SimpleNumb3r5.java and add the following lines to
invoke another activity. These lines must be added to the btninfo button's onClick
method. Notice that an instance of Intent is created as info. The main class is able to
call the second class using the startActivity() method. The Info.class argument
is referring to the second class.

 else if(arg0.getId()==R.id.btninfo){
 //invoke the Info activity
 Intent info = new Intent(this, Info.class);
 startActivity(info);
 }Adding Activity in Manifest file

In order to call the second class through Intent, the Manifest.xml files need to be
modified. However, you will notice that this has been done automatically by the
Android Development Toolkits since Version 20. In case the following lines are
missing in AndroidManifest.xml please add it manually:

<activity
 android:name=".Info"
 android:label="@string/title_activity_info" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Should you need to display a webpage from the Internet in the WebView, you must
declare the user permission by adding this line in AndroidManifest.xml above the
<application> tag as follows:

<uses-permission android:name="android.permission.INTERNET" />

Incorporating Multimedia Elements

[80]

The final product run and test
After all the processes we have gone through, run the app in the emulator and you'll
get the following screen:

SimpleNumb3r5 in action

Summary
In this chapter, we have explored a simple approach to incorporate several
multimedia elements, such as image, an HTML page, and voice. The latest SDK is
much more user friendly than any of the previous versions.

In the next chapter, we will learn more about the different widgets, such as menu,
checkbox, radio button, and also about adding the preference screen.

Adding RadioButton,
CheckBox, Menu,
and Preferences

Are you excited enough? If not, you should be; we are half way through and ready
to explore some more of the widgets that are commonly used and have a lot of
significance in any application. The things to be covered in this chapter are adding a
menu, check box, radio button, and preference to the application. We will make use
of these widgets and create the DistanceConverter application .The main objective
of this application is to convert distance entered in km/m to mile/foot and yards.
The following are the steps that we cover in this chapter to successfully create the
DistanceConverter application:

•	 Creating a project: DistanceConverter
•	 Adding a RadioGroup.RadioButton
•	 Adding a CheckBox
•	 Adding a menu
•	 Defining the Strings
•	 Defining the Preferences screen
•	 Hook up
•	 Binding menu and Preference
•	 Getting values from Preference
•	 Running the application

Adding RadioButton, CheckBox, Menu, and Preferences

[82]

Creating a new project
The DistanceConverter application will allow users to input distance in km/m
and convert them to miles, feet, and yards simultaneously. We have already
covered creating a new project in the earlier chapters, hence we will keep it very
short here. Let's create a new project by navigating to File | New | Others |
Android Application Project. Enter the fitting data from the following table in the
corresponding wizards:

Property Value
Application name DistanceCon

Project Name DistanceCon

Package Name com.packt.ch05.distancecon

Template BlankActivity

Activity MainActivity

Layout activity_main

The following screen shows some data being filled in the wizard as per the
preceeding table:

Chapter 5

[83]

Adding a RadioGroup, RadioButton, and
a TextField
Android SDK provides two types of radio controls to be used in conjunction, where
only one control can be chosen at a given time. RadioGroup (android.widget.
RadioGroup) is used to encapsulate a set of RadioButton controls for this purpose.

Before we add the RadioGroup and RadioButton control, let's add the
label Distance and the TextField to allow users to provide inputs. Open
the activity_main.xml file, and add following entries:

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:layout_marginLeft="14dp"
 android:layout_marginTop="44dp"
 android:text="@string/distance "
 android:textAppearance="?android:attr/textAppearanceMedium" />
 <EditText
 android:id="@+id/distText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView1"
 android:layout_alignBottom="@+id/textView1"
 android:layout_toRightOf="@+id/textView1"
 android:ems="10"
 android:inputType="numberDecimal|numberSigned" />

Let's get back and add the RadioGroup and RadioButtons in it. Add the following
entries to the same file:

<RadioGroup android:id="@+id/distanceRadioGp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/distText">
 <RadioButton android:id="@+id/kmRadiobutton"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:checked="true"
 android:text="@string/kmRadio">

Adding RadioButton, CheckBox, Menu, and Preferences

[84]

 </RadioButton>
 <RadioButton android:id="@+id/metreRadioButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/metreRadio">
 </RadioButton>
</RadioGroup>

We have made android:checked="true" to be checked by default. After this step we
would see some errors, don't worry about them as we are yet to define these strings.

The following screenshot is what we may see after adding the preceeding code in the
XML file:

Adding a CheckBox
We will use CheckBox to allow users to have a conversion facility available for
multiple types of conversions, at once. To add a CheckBox, add the following code in
activity_main.xml. We will have three checkboxes for each: Mile, Foot, and Yard;
the same can be achieved using:

<CheckBox
 android:id="@+id/checkBoxFoot"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Chapter 5

[85]

 android:layout_alignLeft="@+id/textView1"
 android:layout_below="@+id/checkBoxMile"
 android:text="@string/toFoot">
</CheckBox>
<CheckBox
 android:id="@+id/checkBoxYard"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/checkBoxFoot"
 android:layout_below="@+id/checkBoxFoot"
 android:text="@string/toYard">
</CheckBox>
<CheckBox
 android:id="@+id/checkBoxMile"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignLeft="@+id/checkBoxFoot"
 android:layout_below="@+id/distanceRadioGp"
 android:layout_marginTop="40dp"
 android:text="@string/toMile">
</CheckBox>

Also add a button, such that upon clicking on it the conversion kicks off:

<Button
 android:id="@+id/calButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="60dp"
 android:onClick="onClick"
 android:text="@string/calc">
</Button>

Adding RadioButton, CheckBox, Menu, and Preferences

[86]

The resulting screen should appear as follows:

Adding a menu
We will invoke the Preference screen from the menu. There are essentially three
different types of menus available: Options menu, Context menu, and Pop up
Menu. Here, we will use the Options menu for our purpose. To add the menu under
res/menu create a new file named prefsetting.xml. Add the menu item, using the
<item></item> element by adding the following code:

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 <item android:id="@+id/menusettings"
 android:showAsAction="never"
 android:title="Preferences"
 android:orderInCategory="100">
 </item>
</menu>

The name of the menu item is set as android:title="Preferences". The
android:showAsAction keyword indicates how an item should appear in the action
bar. For more menu options and attributes please refer to the following URLs:

•	 http://developer.android.com/guide/topics/ui/menus.html

•	 http://developer.android.com/guide/topics/resources/
menu-resource.html

Chapter 5

[87]

Defining the Strings
Under the res/values tab, open strings.xml and add the following entries:

<string name="menu_settings">Settings</string
 <string name="distance ">Distance</string>
 <string name="kmRadio">Km</string>
 <string name="metreRadio">Metre</string>
 <string name="calc">Calculate</string>
 <string name="toMile">Mile</string>
 <string name="toFoot">Feet</string>
 <string name="toYard">Yard</string>

After this step all the previous verbose errors should disappear.

Defining the Preference screen
Preferences are an important aspect of the android applications. It allows users to
have the choice to modify and personalize it. Preferences can be set two ways: the
first method is to create the preferences.xml file in the res/xml directory and the
second method is to set the preferences from the code. We will use the former, also
the easier one, by creating the preferences.xml file as follows:

Create the xml directory, if it does not exit, and add the preferences.xml file.
Every preference needs the following attributes, as shown in the table:

Property Description
android:key Used to get the preference value
android:title To specify the android title
android:summary Summary about preferences
android:defaultValue Optional, used to set the default values

Usually, there are five different preference views, as listed in the following table:

Views Description
CheckBoxPreference Simple checkbox returns true/false
ListPreference Shows RadioGroup, only 1 item selected
EditTextPreference Shows dialog box edit TextView, returns String
RingTonePreference RadioGroup that shows ringtone
PreferenceCategory Is a category with preferences

Adding RadioButton, CheckBox, Menu, and Preferences

[88]

We will make use of CheckBoxPreference, ListPreference, and
PreferenceCategory in our application. Let's add these preferences view in the
preferences.xml file we have created. Add the following entries:

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/
android" >
 <PreferenceCategory android:title="Set Default Converison ">
 <CheckBoxPreference android:title="@string/convertToMile"
 android:key="inputUserMile"
 android:summary="@string/summaryMile"
 android:defaultValue="false">
 </CheckBoxPreference>
 <CheckBoxPreference android:title="@string/convertToYard"
 android:key="inputUserYard"
 android:summary="@string/summaryYard"
 android:defaultValue="false">
 </CheckBoxPreference>
 </PreferenceCategory>
 <CheckBoxPreference android:title="@string/convertToFeet"
 android:key="inputUserFt"
 android:summary="@string/summaryFt"
 android:defaultValue="false">
 </CheckBoxPreference>
 <PreferenceCategory android:title="@string/prefInputType">
 <ListPreference android:title="@string/inputTypeList"
 android:key="inputTypeKey"
 android:summary="@string/userInputSummary"
 android:entries="@array/inputEntry"
 android:entryValues="@array/inputValues">
 </ListPreference>
 </PreferenceCategory
</PreferenceScreen>

This will result in spitting a lot of errors, however we will now solve this by defining
strings. ListPreference provides a list and allows the selection of only one item,
and hence, contains android:entries, and android:entryValues takes array.
Now we will provide an array declaration for the same, to do that under res/
values, if it does not exist, create the file arrays.xml and add the following entries:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="inputEntry">
 <item >Distance in Km</item>
 <item >Distance in Metre</item>

Chapter 5

[89]

 </string-array>
 <string-array name="inputValues">
 <item >1</item>
 <item >2</item>
 </string-array>
</resources>

Define the following strings that are used in the preferences.xml file in the
strings.xml file.

<string name="prefInputType">Set Default Input Type</string>
 <string name="userInputSummary">Distance provided for
 calculation</string>
 <string name="convertedSummary">Summary of Conversion</string>
 <string name="convertToMile">Mile</string>
 <string name="convertToYard">Yard</string>
 <string name="convertToFeet">Foot</string>
 <string name="summaryMile">Convert to Mile</string>
 <string name="summaryYard">Convert to Yard</string>
 <string name="summaryFt">Convert to Feet</string>
 <string name="inputTypeList">Choose default distance supplied
 </string>

Now that we are done defining the Preference screen, let's do some work to show
it. The Preference framework comes with the activity class android.preference.
PreferenceActivity needs to be overridden with our class. Create a class
UserSettings.java under the com.packt.ch05.distnacecon package and write
the following code:

package com.packt.ch05.distancecon;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class UserSettings extends PreferenceActivity {

@Override
 public void onCreate(Bundle savedInstanceState){
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.preferences);
}
}

addPreferencesFromResources() loads the Preference screen from the
preferences.xml file.

www.allitebooks.com

http://www.allitebooks.org

Adding RadioButton, CheckBox, Menu, and Preferences

[90]

Hook up
After doing all the hard work of defining and putting things in place, let's get in
to do some action by hooking up everything with the main screen (Main Activity).
Open the MainActivity.java file and let's binds things in now.

Initialize the widgets as follows:

 private EditText text;
 private RadioButton rBtnKm;
 private RadioButton rBtnMtr;
 private CheckBox cBoxMile;
 private CheckBox cBoxFt;
 private CheckBox cBoxYd;

The onCreate method is first called to fetch the instances of widgets as follows:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 text= (EditText)findViewById(R.id.distText);

rBtnKm=(RadioButton)findViewById(R.id.kmRadiobutton);
rBtnMtr= (RadioButton)findViewById(R.id.metreRadioButton);
cBoxMile = (CheckBox) findViewById(R.id.checkBoxMile);
cBoxFt = (CheckBox) findViewById(R.id.checkBoxFoot);
cBoxYd = (CheckBox) findViewById(R.id.checkBoxYard);
}

Binding the menu and Preference
We specify our earlier defined menu from the resources file prefesetting.xml, by
getMenuInflater().inflate(R.menu.prefsetting, menu) command as follows:

 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if
 it is present.
 getMenuInflater().inflate(R.menu.prefsetting, menu);
 return true;
 }

Chapter 5

[91]

On the menu item select the override method as follows:

public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menusettings:
 //Get the intent Preference Activity
 Intent i = new Intent(this, UserSettings.class);
 //Start the intent and return the result
 startActivityForResult(i, 1);
 break;
 }
 return true;
 }

onActivityResult is called receiving the result from the following code, so perform
the operation needed here:

protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 switch (requestCode) {
 case 1:
 showPreferenceSettings();
 break;
 }
 }

Getting values from Preferences
Now, we want to reflect the value set in the Preference screen onto the main screen to
show personalization.

We get the values from the Preference screen and set it back to the main screen in
showPreferenceSettings(). We get the preferences values via PreferenceManager.

private void showPreferenceSettings(){
 SharedPreferences sharedPrefs =
 PreferenceManager.getDefaultSharedPreferences(this);

 if(sharedPrefs.getBoolean("inputUserMile", false))
 cBoxMile.setChecked(true);
 if(sharedPrefs.getBoolean("inputUserYard", false))

Adding RadioButton, CheckBox, Menu, and Preferences

[92]

 cBoxYd.setChecked(true);
 if(sharedPrefs.getBoolean("inputUserFt", false))
 cBoxFt.setChecked(true);
 }

On clicking the Calculate button, the conversion should happen and the result
should be shown. To show the result we make use of the ToastView command here.

The onClick function is called when the button is clicked, we then get the
RadioButton values and the checked CheckBox values and call the corresponding
convert functions which is then shown via ToastView with the following code:

public void onClick(View view){
 StringBuffer dist =new StringBuffer();
 switch (view.getId()){
 case R.id.calButton:
 if(text.getText().length()==0){
 Toast.makeText(this, "Please enter the valid number ",
 Toast.LENGTH_LONG).show();
 return ;
 }

 double distValue=Double.parseDouble
 ((text.getText().toString()));
 //Find RadioButton is checked
 if(rBtnKm.isChecked()){
 //Find checkBox is checked
 if(cBoxMile.isChecked()){
 double km=convertKmToMile(distValue);
 dist.append(km+"Mile.");
 }
 if(cBoxYd.isChecked()){
 double yd=convertkmToYard(distValue);
 dist.append(" "+yd+"yard.");
 }
 if(cBoxFt.isChecked()){
 double ft=convertkmToFoot(distValue);
 dist.append(" "+ft+"ft.");
 }

 Toast.makeText(this,dist,Toast.LENGTH_SHORT).show();
 }

Chapter 5

[93]

 if(rBtnMtr.isChecked()){
 if(cBoxMile.isChecked()){
 double km=convertMToMile(distValue);
 dist.append(km+"Mile.");
 }
 if(cBoxYd.isChecked()){
 double yd=convertMtoYard(distValue);
 dist.append(" "+yd+"yard.");
 }
 if(cBoxFt.isChecked()){
 double ft=convertMtoFoot(distValue);
 dist.append(" "+ft+"ft.");
 }
 Toast.makeText(this,dist,Toast.LENGTH_SHORT).show();
 }
 return;
 }

 }

Let's add the conversion method for each type as follows:

 private double convertKmToMile(double distance){
 return (distance*0.62137);
 }

 private double convertkmToYard(double distance){
 return distance*1093.6;
 }

Add the other conversion method for the others as well.

Finally, add the following tag which denotes an activity in the
AndroidManifest.xml file.

<activity android:name=".UserSettings" />

The complete code and resources are available in a downloadable source code.

Adding RadioButton, CheckBox, Menu, and Preferences

[94]

Run the application
When we run the application, the following screen should appear where the first
screen accepts the input and the output appears as ToastView popup on clicking the
Calculate button:

Chapter 5

[95]

The following screenshot shows the Preference screen:

Summary
In this chapter we have learned about how to get going with widgets, such as
CheckBox, RadioButton together with RadioButton, menu, and creating custom
Preferences view and getting values from it. Also, using these concepts we have
created the DistanceConverter application.

In the next chapter, we will learn how to handle the various screen types and
orientations for this application.

Handling Multiple
Screen Types

Android devices are available in different shapes and sizes. For a wider audience,
handling multiple screen types across different devices is the key. In this chapter we
will learn about catering to different screen orientation changes and different screen
types. We will make use of the DistanceConverter application discussed earlier, and
make changes to cater to different concepts needed to achieve this:

•	 Adapting to different screens using wrap_content and match_parent
•	 Introducing Fragment
•	 Defining Fragment and Landscape layout
•	 Hook up in the Main Layout file
•	 Running the application
•	 Optimizing for tablet
•	 Persisting the state information during the state transition

We will use the DistanceConverter application from a previous
chapter and use fragment to define layouts for landscape, and
adapt to different screen orientations and types.

Handling Multiple Screen Types

[98]

Using wrap_content and match_parent
In order to cater to the need of a variety of android devices available in the market,
the application needs to be compatible to different screen sizes. For example, a layout
should adapt to different screen sizes, and the corresponding views should also
resize accordingly. To ensure that we make use of wrap_content and match_parent
for width and height of view components refer to the following:

•	 wrap_content: It ensures that the width and height of the view is set to the
minimum size required to fit the content

•	 match_parent: Before API level 8, it was known as fill_parent and it
ensures the component expands to match the size of its parent view

Therefore, use of these attributes affirms our views to use the space required
and expands to fill the available space. We have made use of these in the
DistanceConverter application for components in layout file. Following is a small code
snippet from activity_main.xml, our previous application to demonstrate its usage:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >
 <RadioGroup android:id="@+id/distanceRadioGp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/distText">
</RelativeLayout>

Fragment
A Fragment is an independent component that can be connected to an Activity or
simply is a subactivity. Typically it defines a part of UI but can also exist with no
user interface, that is, headless. An instance of fragment must exist within an activity.

Fragments ease the reuse of components for different layouts. Fragments are the way
to support UI variances across different types of screens. The most popular use is
for building single pane layouts for phones and multipane layouts for tablets (large
screens). Fragment was introduced in Android 3.0 API 11. Fragment can also be used
for supporting different layouts for portrait and landscape orientations.

Chapter 6

[99]

A fragment stops as activity stops, and is destroyed as activity is destroyed. The
OnCreateView() method is where the view UI is created via the inflate() method
call. Following is the screenshot of our application in landscape orientation from our
previous code:

We will make use of fragment to define a landscape layout for our DistanceConverter
application in the proceeding chapter.

Defining Fragment and Landscape layout
Let's make changes in the layout for Landscape mode. To support different layouts
for landscape mode, create a folder layout-land in the res folder. Create a file
activity_main.xml under it and add following code:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >
 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:layout_marginLeft="14dp"
 android:layout_marginTop="44dp"
 android:text="@string/distance "
 android:textAppearance="?android:attr/textAppearanceMedium"
/>

Handling Multiple Screen Types

[100]

 <EditText
 android:id="@+id/distText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/textView1"
 android:layout_alignBottom="@+id/textView1"
 android:layout_toRightOf="@+id/textView1"
 android:ems="10"
 android:inputType="numberDecimal|numberSigned" />
 <RadioGroup android:id="@+id/distanceRadioGp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_below="@+id/distText"
 <RadioButton android:id="@+id/kmRadiobutton"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:checked="true"
 android:text="@string/kmRadio">
 </RadioButton>
 <RadioButton android:id="@+id/metreRadioButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/metreRadio">
 </RadioButton>
 </RadioGroup>
 <Button
 android:id="@+id/calButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="60dp"
 android:onClick="onClick"
 android:text="@string/calc"
 </Button>
</RelativeLayout>

Create a file fragment_checkbox.xml under the same folder to define the UI for
fragment. Add the following code in it:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"

Chapter 6

[101]

 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView>
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="14dp"
 android:layout_marginTop="44dp"
 android:text="@string/convertTo"
 android:textAppearance="?android:attr/textAppearanceMedium" />
 <CheckBox
 android:id="@+id/checkBoxMile"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/toMile" />
 <CheckBox
 android:id="@+id/checkBoxYard"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/toYard" />
 <CheckBox
 android:id="@+id/checkBoxFoot"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/toFoot" />
</LinearLayout>

Fragment layout from the preceding code is as shown in the following screenshot:

Handling Multiple Screen Types

[102]

After putting down layout of fragments let's define fragment by extending the
android.app.Fragment class. Let's create a fragment class ConvertToFragment
with the following code:

@TargetApi(Build.VERSION_CODES.HONEYCOMB)
public class ConvertToFragment extends Fragment{
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container,Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_checkbox,
 container, false);
 return view;
 }
}

As fragment is available in the Android 3.0 (also known as API 11), we have put
@TargetApi(Build.VERSION_CODES.HONEYCOMB) at the top. For devices at lower
API level, fragments will not be available, in that case we have to define and arrange
views in activity-main.xml under the res/layout-land folder.

For the compulsive use of fragments in lower API level, use Support Libraries
which is a JAR file that allows us to use the most recent Android APIs. For more
information, refer to the http://developer.android.com/training/basics/
fragments/support-lib.html.

In the onCreateView() method we inflate the view from XML via the inflate()
method.

Hook up in the Main Layout file
Open the activity_main.xml file in res/layout-land and append following code:

<fragment
 android:id="@+id/convertToCheckBox"
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_alignParentTop="true"
 android:layout_marginLeft="45dp"
 android:layout_toRightOf="@+id/calButton"
 class="com.packt.ch05.distancecon.ConvertToFragment"
 tools:layout="@layout/fragment_checkbox" />

The class points to the corresponding fragment class. The tools:layout points to
the layout for the corresponding fragment.

Chapter 6

[103]

After the preceding step, the graphical layout screen should look like the
following screenshot:

Running the application
Now that we are done with all of the programming, let's check out how our
final application will look. The application in landscape mode is depicted in the
following screenshot:

Handling Multiple Screen Types

[104]

The application in the portrait mode is depicted in the following screenshot:

Use Ctrl+F11 to change screen mode from portrait to
landscape and vice versa in the emulator.

Optimizing for tablet
Tablet is another emerging Android device in the present context. We should also
define layouts to support tablet devices. To cater to tablet devices, or so called
large devices, we need to have another set of layouts defined under the folder
res/layout-xlarge (for the portrait mode) and layout-xlarge-land
(for landscape mode).The following snapshot shows the folders and files for
defining the layouts for larger devices (tablets):

Chapter 6

[105]

Once we have created the corresponding folder, we can make use of fragments
as demonstrated previously, to create different layouts and achieve the goal of
supporting tablets.

Persisting the state information during
the state transition
You must have observed that the state of checkboxes are not persisted after screen
mode changes from landscape to portrait and vice versa. This is a very important
concept that we should be aware of. For every screen orientation change, the
activity is destroyed, and then recreated. The onCreate() method is called and
hence, the current state of the activity is lost. We need to save the state using the
onSaveInstanceSate method and get it back with the onRestoreInstanceState
method. So let's override these methods to achieve this with the following code:

@Override
 public void onSaveInstanceState(Bundle outState)
 {
 //---save whatever you need to persist—
 outState.putBoolean("mileChecked",cBoxMile.isChecked());
 outState.putBoolean("ydChecked",cBoxYd.isChecked());
 outState.putBoolean("ftchecked",cBoxFt.isChecked());
 super.onSaveInstanceState(outState);
 }
@Override
 public void onRestoreInstanceState(Bundle savedInstanceState)
 {
 super.onRestoreInstanceState(savedInstanceState);
 //---retrieve the information persisted earlier---
 cBoxFt.setChecked(savedInstanceState.getBoolean("ftchecked"));
 cBoxMile.setChecked(savedInstanceState.getBoolean
 ("mileChecked"));
 cBoxYd.setChecked(savedInstanceState.getBoolean("ydChecked"));
 }

For the complete source, go to http://www.packtpub.com/support. For more
information on handling different screen types, refer to the following URLs:

•	 http://developer.android.com/training/multiscreen/
screensizes.html

•	 http://developer.android.com/distribute/googleplay/quality/
tablet.html

Handling Multiple Screen Types

[106]

Summary
In this chapter, we learned about fragment and its usage, and used it to have
different layouts for landscape mode for our application DistanceConverter.
We also learned about handling different screen types and persisting state during
screen mode changes. In the next chapter, we will learn about adding an external
library, for example, AdMob, and incorporate advertisements in the application.

Adding an External Library
An Android application cannot achieve everything on its own, it will always
need the company of external jars/libraries to achieve different goals and serve
various purposes. Almost every free Android application published on store
has advertisements embedded in it, which makes use of external components
to achieve it. Incorporating advertisements in the Android application is a vital
aspect of today's application development. In this chapter, we will continue on our
DistanceConverter application developed from the previous chapters, and make
use of an external library, AdMob, to incorporate advertisements in our application.
The coverage will include the following:

•	 Creating an account at the AdMob site
•	 Adding Site/Application
•	 Adding the Advertisement Meditation Network
•	 Adding AdMob in the application
•	 Making changes in the manifest file
•	 Adding the AdMob widget/view in the layout file
•	 Running the application

Creating an account at the AdMob website
AdMob is one way to incorporate advertisements in our Android application. To
make use of AdMob, the first thing we need to do is to register and get an account
for ourselves. To register, visit the http://www.admob.com website and register
on it. On the right-hand side, click on Sign up with AdMob, and then fill up the
form and register.

Adding an External Library

[108]

The following screenshot shows the sign up form:

We can use our existing Google ID if we have, else the preceding steps will create
one and link it with the AdMob account.

Adding Site/Application
Once we have created our account, we need to add a Site/Application (basically, it
identifies or acts as unique handle for ads networks for the ads they place). To add
Site/Application we perform the following steps:

Chapter 7

[109]

1.	 Navigate to Add Site/App from the Sites & Apps menu, as shown in the
preceding screenshot. The Add Site/App screen will appear, as shown in
the following screenshot:

2.	 Select Android App, as shown in the preceding screenshot and fill in
the other details. Because our application is not in the market place, use
http:// for Android Package URL, as shown in the preceding screenshot.

Adding an External Library

[110]

3.	 Select the corresponding category, in this case we used Tools, and add some
description in the App description textarea. Also, leave the other fields to
their default, and enter the captcha and create site. After this the following
screen will appear:

4.	 Next, click on the Download AdMob Android SDK button to download
the AdMob SDK. Once the SDK is downloaded, click on the Go to Sites/App
button and our site should have been added, and will appear in the sites list
as shown in the following screenshot:

Chapter 7

[111]

5.	 The Status appears to be red as it has not received any ad request for this
site. It will automatically turn green once it starts getting ad requests for
this site.

Choosing the Ad Network Mediation
Once we are done with adding the Site/Application and downloading the SDK lets
get into adding Ad Network Mediation (AdMob Mediation). It coordinates with
the different ad networks to help us maximize fill rate (represents the percentage of
ad requests that satisfy the ad requests sent by the app) and increase monetization.
It ensures that a proper network is selected to serve the ads at any time. For more
information on AdMob Mediation, please refer to the following URL:

https://support.google.com/admob/topic/2403413?hl=en&ref_topic=1307209

To add the Ad Network Mediation, follow the given steps:

1.	 Navigate to the Ad Network Mediation under the Sites & Apps menu, and
follow the steps, as shown in the following screenshot:

2.	 Select the Ad Size as Banner - Typical 320x50 for support on most of the
iPhones and Android phones in portrait, and Platform as Android.
For more information on banner sizes and decision, refer to the following URL:
https://developers.google.com/mobile-ads-sdk/docs/admob/
smart-banners

Adding an External Library

[112]

3.	 Next, select Automatic Refresh, and then specify the Refresh rate, and then
click on the Save & Continue button. The following screen will appear.
Select Ad Network from it, and then click on Continue as depicted in the
following screenshot:

4.	 Choose the network you wish from the options in the preceding screenshot.

Publisher credentials are to be provided for the network we select at
the bottom of the same screen. In this case, we have credentials for
AdMob as we just signed up and we only chose AdMob Network, as
shown in the preceding screenshot. However, we are free to add any
number of networks, provided we have credential details. Also, we
can always add any network at any point of time.

Adding AdMob SDK to the project
Let's extract the previously downloaded AdMob SDK zip file, and we should
get the folder GoogleAdMobAdsSdkAndroid-6.*.*. Under that folder there is
GoogleAdMobAdsSdk-6.x.x.jar file. Copy this JAR file in the libs folder of the
project, as shown in the following screenshot:

Chapter 7

[113]

Other Java libraries can be added in the same way for use in our project, and
to reference Android libraries in the project, information is available at the
following URL:

http://developer.android.com/tools/projects/projects-eclipse.html

Making changes in the manifest file
The AdMob needs to make request across the internet to fetch ads. Therefore, that
permission needs to be added in the AndroidManifest.xml file as shown in the
following code:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />

In other words, it also helps the AdMob SDK to figure out a currently working
Internet connection before it places requests.

Also, add the AdView activity which is responsible for getting and showing ads in the
file, as shown in the following code:

<activity
 android:name="com.google.ads.AdActivity"
android:configChanges="keyboard|keyboardHidden|orientation|screenLayou
t|uiMode|screenSize|smallestScreenSize" />

For more information on integration, refer to the following URL:

https://developers.google.com/mobile-ads-sdk/docs/

Adding an External Library

[114]

Adding the AdMob widget/view in the
layout file
To add the AdMob view, add the following code in the layout/activity_main.xml
file for the portrait mode:

<com.google.ads.AdView
 android:id="@+id/adView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 ads:adSize="SMART_BANNER"
 ads:testDevices="TEST_EMULATOR"
 ads:adUnitId="a1516e8871e5b38"
 ads:loadAdOnCreate="true"/>

Similarly, add the same piece of code in the layout-land/activity_main.xml
file for the landscape mode. After this addition, an error will be shown, and that is
because we have not defined the namespace for AdView. We will do that next and
the error will disappear.

Add the meta tag in the namespace at the top of the XML along with
other namespaces:

xmlns:ads="http://schemas.android.com/apk/lib/com.google.ads"

Let's look at some of the important tags and the values of AdView that were
used previously:

Item Value
ads:adSize SMART_BANNER: the banner adjusts according to the screen

types and orientation using the width of screen.
ads:testDevices It is used for testing whether the code is fine.

TEST_EMULATOR is used for Emulator. Devices ID can
also be specified if used for testing. It should be removed if
moving to production from dev. The easiest way to find the
device ID is from the AdMob SDK log output.

ads:adUnitId Publisher ID. Replace with the corresponding ID.
ads:loadAdOnCreate To create the view by inflating, and send ad request to

AdMob.

Chapter 7

[115]

In the previous case we are loading Adview and making request via XML. There is
another way to achieve this by placing the following code in the MainActivity.java
file in the onCreate() method, as shown in the following code snippet:

adView = (AdView)findViewById(R.id.adView);
AdRequest re = new AdRequest();
re.setTesting(true);
adView.loadAd(re)

Make sure the testing mode is removed before the Android app
gets ready to be published to the store.

Running the application
After all the hard work, let's run the application to check out how it looks.
In the landscape mode, the advertisement would appear as shown in the
following screenshot:

Adding an External Library

[116]

In the portrait mode, the ad will appear as shown in the following screenshot:

For the first time the AdMob ads may take 1 or 2 minutes to show, so have patience.

Summary
In this chapter, we learned how to add an external library by means of incorporating
AdMob mobile advertisements in our DistanceConverter application.

In the next chapter, we will learn about what it takes to sign and get ready to
publish the application.

Signing and Distributing APK
All the hard work done so far is not going to pay off unless we distribute our
application for others to use. An Android application has to be signed before it goes
on the radar for distribution. Any Android application, be it used in the emulator or
distributed to friends, relative for testing, or published to Google Play store, needs
to be signed electronically. In this chapter, we will learn about how to sign it and
publish it for use by others. This chapter will cover the following:

•	 APK (Android package)
•	 Preparing for release
•	 Compilation for release
•	 Generating a private key
•	 Using the Eclipse ADT for release
•	 Publish to Google Play

APK – Android package
The Android package (APK), in simple terms, is similar to the runnable JAR or
executable file (on Windows OS) which consists of everything that is needed to
run the application.

The Android ecosystem uses a virtual machine, that is, Dalvik virtual machine
(DVM) to run the Java applications. Dalvik uses its own bytecode, which is quite
different from the Java bytecode.

A tool dx under Android SDK converts our Java classes to .dex (Dalvik executable).

The .dex files and resources of application (XML and images) are packaged by the
tool aapt (Android asset packing tool) into the .apk file.

Signing and Distributing APK

[118]

Preparing for release
After the hard work of coding and testing the application needs to be packaged for
release. Packaging involves the following steps.

Compilation for release
This is the very first step towards release and distribution. It comprises of setting a
package name in the application's manifest file, configuring application attributes,
and compilation before release. They involve the following steps:

•	 Choosing appropriate package name: Once the application is released
it cannot be undone hence, the need to dwell upon and choose a suitable
package name. The package name can be set in the application's manifest file.

•	 Disabling debugging: We need to make sure we disable debugging
before we release it. To disable debugging, comment or remove the Log()
method call in the code. Also, debugging can be disabled by removing the
android:debuggable attribute from the <application> tag.

•	 Pointing out the application icon: Every application needs to have an icon
of itself. Please make sure that the icon follows the icon guidelines a:
http://developer.android.com/guide/practices/ui_guidelines/
icon_design_launcher.html. Icons can be specified by using the icon
attributes of the <application> tag.

Versioning: This is the most important aspect of release and also maintenance. The
version identifies the application's release build and determines how it should be
updated. To put it in the simple terms, the version number must be incremented with
each published release. With no version in place, it is rather impossible for future
updates. The versioning information is provided by the following two attributes:

android:versionCode It is the integer represents version of application.
android:versionName It is the string that is displayed to users to identify

what is installed in the device.

Both these attributes can be specified under the <manifest> element.

•	 Review the manifest file for permissions: It should only specify relevant
permissions in the manifest file using the <uses-permission> tag.

Chapter 8

[119]

Generating a private key
An android application must be signed with our own private key. It identifies a
person, corporation, or entity associated with the application. This can be generated
using the program keytool from the Java SDK. The following command is used for
generating the key:

keytool -genkey -v -keystore <filename>.keystore -alias <key-name>
-keyalg RSA -keysize 2048 -validity 10000

We can use a different key for each published application, and specify a different
name to identify it. Also, Google expects validity of at least 25 years or more. A very
important thing to consider is to keep a back up and securely store the key, because
once it is compromised it impossible to update an already published application.

Signing
After obtaining the private key we need to sign the application. This is done using a
program jarsigner from the Java SDK. The following command is used:

jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1 -keystore my-
release-key.keystore my_application.apk alias_name

Alignment
Once the APK is signed it needs to be optimized, to do that we use the zipalign tool
available with the Android SDK under the tools/ directory. The usage is as follows:

zipalign -v 4 your_project_name-unaligned.apk your_project_name.apk

Using the Eclipse ADT for release
Using the Eclipse Android Development Tool (ADT), all the aforementioned
steps in the Preparing for release section can be done with ease. Let's prepare our
DistanceConverter from the earlier chapter for release using the Eclipse ADT.

Signing and Distributing APK

[120]

Follow the given steps:

1.	 Right-click on the project DistanceConverter and then select Export from
the context menu. Select Export Android Application, as shown in the
following screenshot:

2.	 The Export wizard will now guide you through the process of signing,
including the steps for selecting the private key (if already generated
using the tool), or creating a new keystore and private key. Some of the
following screens are captured, with the first screenshot being the creation
of a keystore.

3.	 Now select Create new keystore and provide the Location and
Password values:

Chapter 8

[121]

4.	 In the following screen we can enter other details about the key creation as
specified in the next table:

Signing and Distributing APK

[122]

5.	 In the Export Android Application wizard, fill in the respective details:

Field Value
Alias DIS – It is the key alias name
Password <password>

Validity 25 – for publishing in Google Play, a period
ending 22 October 2033 is a requirement

First and Last Name <NAME>

Organizational Unit Personal
Organization Personal
City or Locality <CITY NAME>

State or Province <STATE NAME>

Country Code(xx) Two letter code (for example, US)

6.	 Click on Finish, and the result is compiled, signed, aligned, and ready
for distribution.

Publishing to Google Play
Publishing at Google Play is very simple and involves the following:

•	 Register for Google Play: Visit and register it at https://play.google.
com/. It requires $25 USD to register, and is fairly straightforward and can
take a few days until you get the final access.

•	 Uploading APK: Once the registration is over, the users have to log in and
upload the APK file using the Upload Application link. Also, they have to
upload the required assets, and edit the listing details, the one users will see
when they browse the application in store.

•	 Finish up the task by using the publish button.

Chapter 8

[123]

Getting help
For more information and help on signing and publishing, refer to following links:

•	 http://developer.android.com/tools/publishing/app-signing.html

•	 http://developer.android.com/tools/publishing/versioning.html

•	 http://developer.android.com/tools/publishing/preparing.html

Summary
In this chapter, we learned about the steps involved in signing and distribution of
APK, and how it can be achieved using the Eclipse ADT easily.

Index
Symbols
.dex (Dalvik executable) 117
/drawable-hdpi 27
/drawable-ldpi 27
/drawable-mdpi 27
/drawable-xhdpi 27
/layout 27
/libs 27
/menu 27
/res 27
/src 27
/values 27
/values-v11 27
/values-v14 27

A
aapt (Android asset packing tool) 117
account creation, in AdMob website

AdMob SDK, adding to project 112, 113
AdMob widget/view, adding in

layout file 114, 115
Ad Network Mediation, choosing 111, 112
manifest file, changes making 113
Site/Application, adding 108-111

activity
launching 78, 79

activity_main.xml file 102
Activity property 82
Add Site/App screen 109
AdMob website

account, creating 107, 108
application, running 115, 116

AdMob widget/view
adding, in layout file 114, 115

Ad Network Mediation
(AdMob Mediation) 111

ads:adSize 114
ads:adUnitId 114
ads:loadAdOnCreate 114
ads:testDevices 114
ADT

about 119, 120
installing, in Eclipse Juno(4.2) 15-17
URL 40

Android
about 6
API level 7
application, running on 56, 57
app 6
versions 7

Android app
app 6

Android Debug Bridge (ADB) 32
android:defaultValue property 87
Android development

about 9
ADT, installing in Eclipse (Juno) 15-17
Android SDK, installing 11, 12
Eclipse (Juno), installing 13
JDK, installing 10
prerequisites 9

Android Development Tool. See ADT
Android Development Toolkits 79
android:key property 87
Android manifest editor 30
AndroidManifest.xml 27
android:minSdkVersion 42
Android package. See APK
Android platform 6
Android Preferences window 22

[126]

Android SDK
installing 11, 12
linking, to Eclipse 18-22

android:showAsAction keyword 86
android:summary property 87
android:title property 87
Android Virtual Device. See AVD
Android virtual device manager 37, 39
API level, Android

components 7
APIs 6
APK 117
application

running 40, 95
running, on Android device 56, 57
running, on emulator 55

Application name property 82
Application Programming

Interfaces. See APIs
audio

adding 73-75
afd 75
mp 75
try...catch block 75

Available Software dialog 16
AVD 37
AVD Manager 38

C
Calculate button 92
CheckBox

adding 84, 85
code editor

about 28, 29
Android manifest editor 30
graphical layout editor 29
Menu editor 30
Resources editor 30
XML resources editor 30

compilation process, release preparation
application icon 118
debugging, disabling 118
package name, selecting 118
versioning 118

configuration chooser 31
conversion method 93

Ctrl+F11 104

D
Dalvik Debug Monitor Server. See DDMS
Dalvik Virtual 7
Dalvik virtual machine (DVM) 6, 117
DDMS

about 34
Allocation Tracker 34
devices 34
Emulator Control 34
File Explorer 34
Heap 34
images 35
LogCat 34
Threads 34

debugging pane 32-34
DistanceConverter application 82

E
Eclipse

Android SDK, linking to 18-22
URL 40

Eclipse ADT
using, for release 119-122

Eclipse Juno(4.2)
installing 13, 14

emulator
application, running 55

event
handling 70-72

Export Android Application 122
Export wizard 120

F
features, IDE

Android virtual device manager 37
Code editor 28
Dalvik Debug Monitor Server (DDMS) 34
Debugging pane 32
GUI 30
project explorer tool 26, 27
Properties window 32
SDK manager 35

[127]

final product
running 80
testing 80

folders, project explorer tool
AndroidManifest.xml 27
/assets 27
/drawable-hdpi 27
/drawable-ldpi 27
/drawable-mdpi 27
/drawable-xhdpi 27
/gen 27
/layout 27
/libs 27
/menu 27
/res 27
/src 27
/values 27
/values-v11 27
/values-v14 27

fragment
about 98, 99
defining 99-102

Froyo (Android 2.2) 20

G
Google Play

APK, uploading 122
publishing to 122
registering 122

graphical layout designer
using 47, 49

graphical layout editor 29
Graphical user interface designer

about 30, 31
configuration chooser 31
screen layout designer 31

H
HelloU project 55
help section 40

I
ImageButtons

about 70-72
adding 66, 67

Image File field 60
image resources

adding 63, 64
ImageView

adding 64, 65
inflate() method 102
Insert HTMLs

WebView 77, 78
installations

Android SDK 11, 12
Eclipse Juno 4.2 13, 14
JDK 10

Intent
about 78
launching 79

J
JDK

installing 10

L
Landscape layout

application, running 103, 104
defining 99-102

Launch button 39
Layout property 82
LogCat 34

M
Manager icon 19
match_parent

using 98
menu

adding 86
building 90, 91

Menu editor 30

N
new Android application project

creating 42-45
new project

creating 82

[128]

O
onClick function 92
onCreate method 70, 90
onCreate() method 105
OnCreateView() method 99
onRestoreInstanceState method 105
onSaveInstanceSate method 105

P
Package name property 82
playsound method 74
Preference screen

about 86
building 90, 91
defining 87-89
values, obtaining 91-93

private key
generating 119

project explorer tool
about 26
folders 27

Project name property 82
Properties window 32

R
RadioButton 83
RadioGroup 83
release preparation

alignment 119
compilation 118
private key, generating 119
signing 119

Resources editor 30
Run button 40

S
screen layout designer 31
SDK 6
SDK manager 35, 36
SimpleNumb3r5 app

about 60-62
screen, adding 75, 76

Software Development Kit. See SDK
soundname parameter 74

source code editor
used, for widget interactions 50-53

StartActivity command 78
StartActivity() method 79
state transition

information, persisting 105
string resources

about 46
s_btnDisplay variable 46
s_tvName variable 46

Strings
defining 87

T
TableLayout

about 62
adding 62

tablet
optimizing for 104

Template property 82
TextField 83, 84
Toast.makeText() 54
Toast message 54

U
Upload Application link 122

V
versioning 118
versions, Android 7
views

CheckBoxPreference 87
EditTextPreference 87
ListPreference 87
PreferenceCategory 87
RingTonePreference 87

W
WebView

Insert HTMLs 77, 78
widget

about 30
Display app info 67
ImageView 67

[129]

X
XML layout code editor 50
XML resources editor 30

interactions, source code editor used 50-53
Left most button 67
Play sound button 67
Right most button 67

widgets ID
assigning 67, 68

wrap_content
using 98

Thank you for buying
Android Development Tools for Eclipse

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android 3.0 Application
Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1.	 Written for Android 3.0 but also applicable to
lower versions

2.	 Quickly develop applications that take
advantage of the very latest mobile
technologies, including web apps, sensors,
and touch screens

3.	 Part of Packt's Cookbook series: Discover tips
and tricks for varied and imaginative uses of
the latest Android features

Android Database Programming
ISBN: 978-1-84951-812-3 Paperback: 212 pages

Exploit the power of data-centric and data-driven
Android applications with this practical tutorial

1.	 Master the skills to build data-centric
Android applications

2.	 Go beyond just code by challenging yourself
to think about practical use-cases with SQLite
and others

3.	 Focus on flushing out high level design
concepts, before drilling down into different
code examples

Please check www.PacktPub.com for information on our titles

Android 4: New Features for
Application Development
ISBN: 978-1-84951-952-6 Paperback: 166 pages

Develop Android applications using the new features
of Android Ice Cream Sandwich

1.	 Learn new APIs in Android 4

2.	 Get familiar with the best practices in
developing Android applications

3.	 Step-by-step approach with clearly explained
sample codes

Android Native Development
Kit Cookbook
ISBN: 978-1-84969-150-5 Paperback: 346 pages

A step-by-step tutorial with more than 60 concise
recipes on Android NDK development skills

1.	 Build, debug, and profile Android NDK apps

2.	 Implement part of Android apps in native
C/C++ code

3.	 Optimize code performance in assembly with
Android NDK

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Eclipse, ADT
and SDK
	Introducing the Android platform
	What is Android?
	Introducing the Android app
	What is Dalvik Virtual?
	Understanding API level
	How many versions (distributions)
Android has.

	Preparing for Android development
	Installing the JDK
	Installing the Android SDK
	Installing the Eclipse (Juno)
	Installing the ADT in Eclipse Juno

	Linking the Android SDK to the Eclipse
	Summary

	Chapter 2: Important Features of the IDE
	Project explorer
	Code editor
	Graphical layout editor
	Android manifest editor
	Menu editor
	Resources editor
	XML resources editor

	Graphical user interface designer
	The configuration chooser
	The screen layout designer

	Properties window
	Debugging pane
	Dalvik Debug Monitor Server (DDMS)
	SDK manager
	Android virtual device manager
	Running the Application
	Getting help
	Summary

	Chapter 3: Creating a New Android Project
	Creating a new Android application project
	String resources
	Using the graphical layout designer
	The XML layout code editor
	Widgets interactions through the source code editor
	Toast message
	Running the application on the emulator
	Running the application on an
Android device
	Summary

	Chapter 4: Incorporating Multimedia Elements
	Adding a TableLayout
	Adding the image resources
	Adding ImageView
	Adding ImageButtons
	Assigning the widget's ID
	ImageButtons and handling event
	Adding audio
	Adding another screen in the app
	Insert HTMLs in WebView
	Intent and Activity
	The final product run and test
	Summary

	Chapter 5: Adding RadioButton, CheckBox, Menu,
and Preferences
	Creating a new project
	Adding a RadioGroup, RadioButton, and a TextField
	Adding a CheckBox
	Adding a menu
	Defining the Strings
	Defining the Preference screen
	Hook up
	Binding the menu and Preference
	Getting values from Preferences

	Run the application
	Summary

	Chapter 6: Handling Multiple
Screen Types
	Using wrap_content and match_parent
	Fragment
	Defining Fragment and Landscape layout
	Hook up in the Main Layout file:

	Running the application
	Optimizing for tablet
	Persisting the state information during the state transition
	Summary

	Chapter 7: Adding an External Library
	Creating an account at the AdMob website
	Adding Site/Application
	Choosing the Ad Network Mediation
	Adding AdMob SDK to the project
	Making changes in the manifest file
	Adding the AdMob widget/view in the
layout file

	Running the application
	Summary

	Chapter 8: Signing and Distributing APK
	APK – Android package
	Preparing for release
	Compilation for release
	Generating a private key
	Signing
	Alignment

	Using the Eclipse ADT for release
	Publishing to Google Play
	Getting help

	Summary

	Index

