Android Development
Tools for Eclipse

Set up, build, and publish Android projects quickly using Android
Development Tools for Eclipse

http://www.allitebooks.org

Android Development Tools
for Eclipse

Set up, build, and publish Android projects quickly using
Android Development Tools for Eclipse

Sanjay Shah
Khirulnizam Abd Rahman

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Android Development Tools for Eclipse

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1200713

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-110-3
www . packtpub. com

Cover Image by J.Blaminsky (milakéewp.pl)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors Project Coordinator
Sanjay Shah Amey Sawant
Khirulnizam Abd Rahman

Proofreader

Reviewer Linda Morris

Thomas Iguchi
Indexer
Acquisition Editor Rekha Nair

Wilson D'souza
Production Coordinator

Commissioning Editors Nilesh R. Mohite
Sharvari Tawde
Ameya Sawant Cover Work

Nilesh R. Mohite

Technical Editors
Ruchita Bhansali
Shashank Desai

Larissa Pinto

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Sanjay Shah has worked on diverse areas of application development across the
mobile and web platform with more than 8 years of experience. He is currently
working as a Software Architect and works in the area of Cloud Based Big Data
Analytics combined with Distributed Cognition leveraging various Java-based
technologies. He is fond of philosophy and enjoys life in Nepal, the land of the
highest peak in the world, Mt. Everest.

I would like to thank each and every one who knows me and
supported me at different aspects of my life. Special thanks to my
parents without whom I wouldn't be what I am today.

Khirulnizam Abd Rahman is a Computer Science lecturer in the faculty of
Information Science and Technology, Selangor International Islamic College,
Malaysia. He has been teaching programming since the year 2000.

He started publishing Android apps in the year 2010, and his apps among others are
Malay Proverb Dictionary (Peribahasa) and m-Mathurat. Currently, he is working on
the apps for Windows Phone Version 8. PHP, C#, and Java are also the programming
languages that he is familiar with.

I would like to express my deepest gratitude to my beloved family;
Mahani, Lugman, Muna, and Amir for making my life more colorful.
Because of you, I am a grown up person with a heart full of love.

In fact, as long as they are happy, I will be happy. Other than
programming, teaching, writing and being with my family, I don't
have anything else to do.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewer

Thomas Iguchi is the founder of Nobu Games LLC, a video games and mobile
app development company, in La Crosse, Wisconsin. His latest Android game
"Zoolicious" has gained international recognition and awards from various Android
news and review websites such as AndroidTapp and Famigo.

Thomas has a wide repertoire of skills, which include programming, graphic
designing, and music composition. His interest in computers and programming
dates back to his childhood, when he became a self-taught programmer. He later
went on to deepen his theoretical knowledge by studying Computer Science at the
University of Mainz, Germany, with focus on linguistics, model-driven architecture,
and software engineering. Overall he looks back at over 20 years of programming
experience with professional expertise in web, mobile applications, and video game
development. His consulting work for a mobile app development company, which
serviced the financial industry, in Frankfurt, Germany, allowed him to perfect his
professional Android programming skills.

For the last 12 years, Thomas has been self-employed working as a web designer,
programmer and consultant, as well as video game graphic designer for the coin-op
entertainment industry.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www . PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . PacktPub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www. PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Installing Eclipse, ADT, and SDK 5
Introducing the Android platform 6
What is Android? 6
Introducing the Android app 6
What is Dalvik Virtual? 7
Understanding API level 7
How many versions (distributions) Android has? 7
Preparing for Android development 9
Installing the JDK 10
Installing the Android SDK 11
Installing the Eclipse (Juno) 13
Installing the ADT in Eclipse Juno 15
Linking the Android SDK to the Eclipse 18
Summary 23
Chapter 2: Important Features of the IDE 25
Project explorer 26
Code editor 28
Graphical layout editor 29
Android manifest editor 30
Menu editor 30
Resources editor 30
XML resources editor 30
Graphical user interface designer 30
The configuration chooser 31
The screen layout designer 31
Properties window 32
Debugging pane 32

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Dalvik Debug Monitor Server (DDMS) 34
SDK manager 35
Android virtual device manager 37
Running the Application 40
Getting help 40
Summary 40
Chapter 3: Creating a New Android Project 41
Creating a new Android application project 42
String resources 46
Using the graphical layout designer 47
The XML layout code editor 50
Widget interactions through the source code editor 50
Toast message 54
Running the application on the emulator 55
Running the application on an Android device 56
Summary 57
Chapter 4: Incorporating Multimedia Elements 59
Adding a TableLayout 62
Adding the image resources 63
Adding ImageView 64
Adding ImageButtons 66
Assigning the widget's ID 67
ImageButtons and handling event 70
Adding audio 73
Adding another screen in the app 75
Adding HTML to WebView 77
Intent and Activity 78
The final product run and test 80
Summary 80
Chapter 5: Adding RadioButton, CheckBox, Menu,
and Preferences 81
Creating a new project 82
Adding a RadioGroup, RadioButton, and a TextField 83
Adding a CheckBox 84
Adding a menu 86
Defining the Strings 87
Defining the Preference screen 87
Hook up 90
Binding the menu and Preference 90
Getting values from Preferences 91

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Run the application 94
Summary 95
Chapter 6: Handling Multiple Screen Types 97
Using wrap_content and match_parent 98
Fragment 98
Defining Fragment and Landscape layout 99
Hook up in the Main Layout file 102
Running the application 103
Optimizing for tablet 104
Persisting the state information during the state transition 105
Summary 106
Chapter 7: Adding an External Library 107
Creating an account at the AdMob website 107
Adding Site/Application 108
Choosing the Ad Network Mediation 1M1
Adding AdMob SDK to the project 112
Making changes in the manifest file 113
Adding the AdMob widget/view in the layout file 114
Running the application 115
Summary 116
Chapter 8: Signing and Distributing APK 117
APK - Android package 117
Preparing for release 118
Compilation for release 118
Generating a private key 119
Signing 119
Alignment 119
Using the Eclipse ADT for release 119
Publishing to Google Play 122
Getting help 123
Summary 123
Index 125

[iii]

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Android Development Tools for Eclipse will show you how to use ADT (Android
Development Tools) for Eclipse to quickly set up Android projects, create application
Ul debug and export a signed (or unsigned) .apk package for distribution using a
hands-on practical approach. The book starts with the installation of ADT, discusses
important tools and guides you through Android application development from
scratch, demonstrating different concepts and implementation, and finally helps you
distribute it.

What this book covers

Chapter 1, Installing Eclipse, ADT, and SDK, guides you through the installation
of Eclipse and ADT(Android Development Tools) needed for Android
application development.

Chapter 2, Important Features of the IDE, describes several important features in Eclipse
and an ADT Environment useful to develop native Android apps.

Chapter 3, Creating a New Android Project, guides you through the creation of a
new project and demonstrates the usage of simple widgets. It also guides across
compiling, debugging, and running the application.

Chapter 4, Incorporating Multimedia Elements, will teach you how to include
multimedia elements and handle multiple screens in the application.

Chapter 5, Adding RadioButton, CheckBox, Menu, and Preferences, deals with adding
menus and Preference Screen and the usage of radio button and check box.

Chapter 6, Handling Multiple Screen Types, teaches you how to tackle different screen
types and orientations.

Preface

Chapter 7, Adding External Library, guides you through adding external library, that is,
the AdMob library and incorporating advertisements in the application.

Chapter 8, Signing and Distributing APK, shows the steps involved in signing and
distributing the Android application.

What you need for this book

It is advisable to have a laptop or a PC with the following specifications for better
performance during development:

e 4GBRAM
e Window 7 OS

* Dual Core /i-Series processor

Who this book is for

Android Development Tools for Eclipse is aimed at beginners and existing developers
who want to learn more about Android development. It is assumed that you have
experience in Java programming and you have used IDE for development.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

[2]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysqgl.conf.sample

/etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[31]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

http://www.PacktPub.com/
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Installing Eclipse, ADT,
and SDK

This chapter serves as an installation instruction for all the development toolkits
required to develop Android on Windows environment. It is separated into the
following subtopics:

Brief introduction to the Android platform

Installing the Java Development Kit (JDK)

Installing the Android SDK

Installing the Eclipse (Juno)

Installing the Android Development Toolkits (ADT) in Eclipse (Juno)
Linking the Android SDK to the Eclipse

Before we proceed with the installation guide, there is some basic information an
Android developer must know.

Installing Eclipse, ADT, and SDK

Introducing the Android platform

In simple terms, Android is a Linux based operating system for touch screen devices
developed by Android Inc., financed by Google and was bought in later 2005. The
beta version of Android came back in November 2007 and the commercial version
1.0 was released in September 2008. As of 2013, over 500 million active devices use
the Android OS worldwide.

What is Android?

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications (platform). The Android Software Development
Kit (SDK) provides the tools and Application Programming Interfaces (APIs)
necessary to begin developing applications on the Android platform using the Java
programming language. The kernel of Android is Linux.

Introducing the Android app

A mobile software application that runs on Android is an Android app. The apps
use the extension of .apk as the installer file extension. There are several popular
examples of mobile apps such as Foursquare, Angry Birds, Fruit Ninja, and so on.

Primarily in an Eclipse environment, we use Java, which is then compiled into
Dalvik bytecode (not the ordinary Java bytecode). Android provides Dalvik virtual
machine (DVM) inside Android (not Java virtual machine JVM). Dalvik VM

does not ally with Java SE and Java ME libraries and is built on Apache Harmony
java implementation.

[6]

Chapter 1

What is Dalvik Virtual?

Dalvik VM is a register-based architecture, authored by Dan Bornstein. It is being
optimized for low memory requirements and the virtual machine was slimmed
down to use less space and less power consumption.

Understanding API level

APl level is an integer value that uniquely identifies the framework API revision
offered by a version of the Android platform.

The Android platform provides a framework API that applications can use to
interact with the underlying Android system. The framework API consists of:

A core set of packages and classes

A set of XML elements and attributes for declaring a manifest file

A set of XML elements and attributes for declaring and accessing resources
A set of Intents

A set of permissions that applications can request, as well as permission
enforcements included in the system

How many versions (distributions)
Android has?

The latest distribution statistics until May 1, 2013, are shown in the following
screenshot. It indicates that Android 2.3.3 has the largest market share; however,
Android 4.1.x is gaining momentum and will have the dominant share. It is
important to know that if the app is primarily targeted to an Android version, it
will not run on the previous version of Android.

[71

Installing Eclipse, ADT, and SDK

For instance, if you are developing an app for Android 2.2 (API level 8), then the
application will not run on Android 2.1 (API level 7) and below. However, the app is
compatible for Android 2.2 and later.

Jelly Bean

lce Cream Sandwich

: ~— Eclair
Froyo

Honeycomb

Gingerbread

Pie chart of the Android API level distribution
(Source: http:/ / developer.android.com/about/dashboards/index.html)

Version | Codename APl | Distribution
1.6 Donut 4 0.1%
21 Eclair 7 1.7%
22 Froyo 8 3.7%
2.3- Gingerbread 9 0.1%
232

23.3- 10 38.4%
237

3.2 Honeycomb 13 0.1%
4.0.3- Ice Cream 15 27.5%
4.0.4 Sandwich

4.1.x Jelly Bean 16 26.1%
42.x 17 2.3%

The Android API level distribution
(Source: http:/ / developer.android.com/about/dashboards/index.html)

[8]

Chapter 1

Preparing for Android development

In this part of the chapter, we will see how to install the development environment
for Android on the Eclipse Juno (4.2). Eclipse is the major IDE for Android
development (see the following screenshot). We need to install eclipse extension
ADT (Android Development Toolkit) for development of the Android Application:

[&> Gleto O~ v|

[£ Package Explorer &2

a 72 kamus-ame
a 8 src
4 [} com.kerul.kamusmm
[¥] a2m java
[¥] ArabicReshaperjava
(4] ArabicUtilities java
(4] e2majava
] kamusmm.java
[3] m2a.java
[J] MyDBHelperjava
GE‘} gen [Generated Java Files]
=4 Android 3.2
=) Referenced Libraries
=i Android Dependencies

&7 assets

= bin
= libs
a = res
» [drawable-mdpi
4 = layout
1 a2mxml
i1 e2maxml
i1l m2axml
A mainxm
. (= values
{1 AndroidManifest.oml
|=| project.properties
- 5 miatihah
» 5 MMTESTL
P MyMediaPlayer

L= I NP7 Sy G,
< [

m

= Java - kamus-ame/src/com/kerul/kamusmm/e2ma.java - Eclipse

File Edit Refactor Scurce Navigate Search Project Run Window Help
i =i = & ka ta) Y » 1 - @ =
fi~Er-HEglaBlu- @ fddls-0-a- N |#e-|®ma - |90 @h

J] kamusmm java) e2maxml

Quick Access

[3] "e2majava 2

[z preak;

¥

imagel,
break;

case R.id.b

if (vm=
Toa
bre

¥

// Toas

//sound

MediaPl

try {
/fm
/T

//image download and display
drawable = LoadImageFromWebOperations(imejurl+ia);

@ clearfnimation(] : void - Vie

@ clearColorFilter() : void -
@ clearFocus() : void - View
@ computeScrall{) : void - Vie

@ createContextMenu(ContexthMenu menu) : void - View

& destrayDrawingCache() : void - Vic

@ dispatchConf\guratmnChanged(ConEgurat\on newConfic
@ dispatchDisplayHint{int hint) : vaid -4

@ dispatchDragEvent(DragEvent event) : boolean - View

@ dispatchGenericMotionEvent(MotionEvent event) : boole:

@ dispatchKeyEvent(KeyEvent event) : boolean - View
] m 3

Press 'Ctrl=Space’ to show Template Propasals

[E=8(EER 5

| [Es)

= =
- |E_|
rry, the
i choose
F=
=
d..., =

mp.setDataSource(voiceurl+vm};
Toast.makeText(e2ma.this, "Download voice "+voiceur

P iToned malbaTawkimda +hic "Dlaninms cromd " Toaac+
« M b
taH] @] Error Log 52 =0
BE-BRXED ~
Workspace Log
type filter text
Message Plug-in Date -
% Exception during deserialization of cached classp arg.eclipse.m2e.logback.appender 8/13/12 11:08 AM
8/13/1211:06 AM -

@] palette: Failed to parse file C\android-junchandr com.android.ide.eclipse.adt

4

Writable

[

Smart Insert 194: 20

ADT on Eclipse in action

To download Android packages a Google API internet connection is a must, hence
take this in notice before moving further. The steps on Windows using Eclipse Juno

are as follows:

Software needed:

* Latest JDK1.6.x from Oracle
e Latest Android SDK
* Eclipse 4.2 (Juno)

[o]

Installing Eclipse, ADT, and SDK

Installing the JDK

To check whether your PC has an existing JDK and it is installed correctly, go
to command prompt, and type javac -version (as shown in the following
screenshot). It is recommended to install JDK 1.6.x for Android Application
Development as it may complain that the compiler compliance level is greater
than 6, and could run into problems:

BN Administrator: C:\Windows\systemBZ\%d.ae EI@

in>javac —version
javac 1.7.8_85

N

Checking the JDK version

You may download JDK 1.6 (Java Development Toolkit) from the download site

and install it. Make sure that JAVA_HOME is set after the installation, and check the
version executing the preceding command.http://www.oracle.com/technetwork/
java/javase/downloads/index.html (see the following screenshot).

This step can be skipped if we have java 1.6.x installed:

System Properties 2
Computer Name | Hardware | Advanced | System Protection | Remate

“You must be logged on as an Administrator to make most of these changes.

Performance
sage. and vitual memory
Environment Variables 4

Settings...
User variables for kerul
[

Edit System Variable 3w

Variable name: PATH Settings...
Variable value: *rogram Files\Java'jdk 1.7.0_05;: \Program

— pfomation

Settings...
Variable Value o
MUMBER_OF_P... 4 Environment Variables
os Windows_NT
PATH C:\Program Files\Comman Files\Microsof...
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS; VBE;.J5;.... 7 r——— -
| MNew... ‘ | Edit... | | Delete |
oK Cancel
Java PATH setting

[10]

Chapter 1

Installing the Android SDK

Create a folder named android-dev (android-dev is just a suggestion; you may
create another name instead). The folder android-dev will be used consistently
throughout this chapter. This folder is to hold all the software that is needed for
Android development. This folder is needed again in another procedure.

Download from http://developer.android.com/sdk/index.html, and install this
software in the android-dev folder. Bear in mind this download only provides the
basic tools of Android SDK, not the complete installation. Later, we need to download
the Android system images, APIs, examples, documentations and other libraries:

Android SDK | Android De [=] Java SE Downloads » [Eclipse Downloads x
L C # [9 developerandroid.com/sdk/index.him w e E o A
Develop Distribute Q, 1
Reference Tools

1

Get the Android SDK

The Android SDK provides you the API libraries an¢
developer tools necessary to build, test, and debug
apps for Android. L4

Download the SDK for Windows

Other platforms | System requirements

[0 »

Android SDK download page

[11]

Installing Eclipse, ADT, and SDK

After completion of the download, install the SDK in the folder mentioned earlier; in
C:\android-dev\android-sdk as shown in following screenshot.

During the installation, the Android SDK will detect the Java Development Kit in the
machine. If we have installed the latest JDK, it should have no problems:

(L) Android SDK Tools Setup el B S

Choose Install Location g
Choose the folder in which to install Android SDK Tools. [)

Setup will install Android SDK Tools in the following folder. To install in a different folder, didk
Browse and select another folder. Click Mext to continue.

Destination Folder

C:\android-devandroid-sdk Browse...

Space required: 110.2MB
Space available: 241.8GB

< Back ” Nextra%l | Cancel

Android SDK installation path

[12]

Chapter 1

Installing the Eclipse (Juno)

Eclipse Juno (4.2) is available for download at http://www.eclipse.org/
downloads/:

& Eclipse Downloads

-~ = C M [J www.eclipse.org/downloads/

Home Downloads Users Members Committers Resources Projects About Us Google

Eclipse Downloads

Packages Projects

Eclipse Juno (4.2) Packages for [SE

e Eclipse IDE for Java EE Developers, 22118 Windows 32 Bit
ko Downloaded 1,209,596 Times ~ Details Windows 64 Bit
. Eclipse Classic 4.2 1a2mB Windows 32 Bit
Downloaded 889,422 Times Details Other Downloads Windows 64 Bit
Eclipse IDE for Java Developers, 149 nB Windows 32 Bit
Downloaded 496,343 Times Details Windows 64 Bit
— Cali INE fawe DIt 1 Man 1 PN T Rl AAKm A nssen 370 M
4 1

P A EEEC @8 e A

@ I \isit other Eclipse Sites
o CHDSE = i
o @ C

-

Download page of Eclipse Classic

The Eclipse comes in a ZIP file, so just unzip it and find the eclipse.exe file to

run it.

[13]

Installing Eclipse, ADT, and SDK

Immediately extract Eclipse in the folder as created earlier (in C:\android-dev).

After the extraction, create a desktop shortcut to make life easier, as depicted in the

following screenshot:

.
@f\ujv| . v Computer » O5(C:) » android-dev » eclipse »

Organize « Open = Burn New folder
7
j?—-I 05(C) 0 Name Date maodified Type Size
J SAVG . . ;
. . cenfiguration §/20/201210:04 AM File folder
. SRecycleBin .)
. dropins 6/14/2012 1:41 PM File folder
| 5a2002f331d57019c886b2 i X .
] . features 8/14/2012 8:29 AM File folder
. android-dev .
. . p2 8/13/2012 5:02 PM File folder
. android-sdk . .
= . plugins 8/14/2012 8:29 AM File folder
. eclipse — ; .
) . . readme 8/13/2012 4:35 PM File folder
. configuration .
. | «eclipsepr 4:35 PM ECLIPSEPRODUCT...
. dropins X Open . .
= artifactsxy . 8:29 AM XML Document
. features = % Run as administrator —
|% eclipse.exe 4:35PM Application
| p2 | Convert with FVD Suite - = =
oo 2 | eclipse.ini) 8:29 AM Configuration sett...
J [= eclipseces = 435DM Annlication
. readme] epl-v10.ht Troubleshoot compatibility bluetooth
| workspace @ noticeht i-Zip b 1, Compressed (zipped) folder
E eclipse-java-juno-win32- M Scan with AVG l BB Desktop (create shorteut)
. android-juno Uplead to Megaupload
) I ocuments
. ArabicWordMet n |7 Edit with Notepad++ E = -
AWNBrowser E Upload with B |
! pload with Box _J Mail recipient
. bbndk-1.0 Pin to Taskbar ;
- 9 Siype
. bbpb2_simulator Pin to Start Menu 3 L -
bb " Web_Publishing_Wizard
i Dir-workspace Restore previcus versions -
. blackberrytools,SDK & WinSCP (for upload)
onfio Wel Send to » | 2 DVDRW Drive (D3

Create Eclipse shortcut

[14]

Chapter 1

Installing the ADT in Eclipse Juno

Run Eclipse by identifying the Eclipse installation folder and double-click
eclipse.exe (or double-click the shortcut in the Desktop). Provide a folder
to store all the projects' source codes. And once again, create this folder under
the android-dev folder, as shown in the following screenshot:

= Workspace Launcher 3

Select a workspace

Eclipse 5 Select Workspace Directory (=23
Choose

Select the workspace directory to use.
Workspa e |

SRecycle.Bin
6a2902f931d57019c886b2
4 android-dev
Uze t d android-sdk

eclipse

waorkspace el

android-juno

ArabicWordMet il
Folder: workspace
Make Mew Folder OK | | Cancel

Select Eclipse Workspace

This new Eclipse installation does not provide the Android Developer Toolkits
(ADT) plugins. To install this plugin navigate to Window | Preferences to open the
Preferences panel. Click on Install/Update | Available Software Sites (on the left
panel). Click on the Add button (on the right panel) to add a software download site
(again an Internet connection is needed).

[15]

Installing Eclipse, ADT, and SDK

Another window will appear. Provide ADT in the Name (for example), and the
Location https://dl-ssl.google.com/android/eclipse/(as provided in
http://developer.android.com/sdk/eclipse-adt.html):

Available Software
B L] | ==
File Edit Navigatd Select a site or enter the location of a site, \9‘—
i e 5 | [T ava)
Work with: type or select a site - Add...

(%) Welcome - = g

= Find more software by working with the "Available Software Sites” preferences.
aJ

type filter text

Name Version
Th
1 There s (G Reposttary

Location: hitps://dl-ssl.google.com/android/eclipse/| Archive...

@ [OK] [Cancel]

Select All

Details
Show only the latest versions of available software [| Hide itemns that are already installed
[¥] Group items by category What is already installed?

|| Show only software applicable to target environment
[/] Contact all update sites during install te find required software

@ < Back Next > Finish

In the Available Software dialog, select the checkbox next to Developer Tools and
click on Next. In the next window, you'll see a list of the tools to be downloaded.
Select all except NDK plugins and click on Next. We will be discussing the tools in
the next chapters:

[16]

Chapter 1

a [J]000 Developer Tools
Lf: Android DDMS
@ Android Development Tools
L+ Android Hierarchy Viewer
(it Android Traceview

Lyt Tracer for OpenGL ES
&[] 000 NDK Plugins

[Select All] [Deselect All 5 items selected

Version

20.0.2.v201207191942-407447
20.0.2.v201207191942-407447
20.0.2.:201207191942-407447
20.0.2.201207191942-407447
20.0.2.v201207191942-407447

Available Softw:
S JovaEclpae vailable Software 1 | ===
File Edit Mavigatd Check the items that you wish to install. \‘3)‘—
e = |)
. Work with: ADT - https://dl-ssl.google.com/android/eclipse/ - Add...
2 Walcome A = &

Find more software by working with the "Available Software Sites” preferences.

aJ

type filter text

Name

Details

Show only the |atest versions of available software
Group items by category
["] Show only software applicable to target environment

["|Hide items that are already installed

‘What is already installed?

[7] Contact all update sites during install to find required software

< Back Mext > Einish

Cancel

Selecting the ADT and SDK tools

Read and accept the license agreements, then click on Finish. If you get a security
warning saying that the authenticity or validity of the software can't be established,
click on OK. When the installation completes, restart Eclipse.

[17]

Installing Eclipse, ADT, and SDK

Linking the Android SDK to the Eclipse

Run Eclipse. In the Windows | Preferences, click on Android. Locate the folder of
the android-sdk from the step where you installed the android-sdk, as shown in the
following screenshot:

= Preferences ==
type filter text Android - v v
: i::::ild Android Preferences
. Ant SDK Lecation: Cihandroid-deviandroid-sdk Browse...
. Code Recor
. Help Browse For Folder @
. Install/Upd
. Java
. Maven
> Mylyn B Desktop -
. Run/Debuqg I
- Team * 7 Libraries .
Validation 8 kerul
. WindowBu 4 1% Computer
. XML 455 05(C)
SAVG
SRecycle.Bin
6a2902f931d57019cB86b2
4 android-dev
4 android-sdk
add-ens
extras
platforms
platform-tools
(2 > system-images -
Ry
Folder: android-sdk
m COK] | Cancel
Android preferences in Eclipse
Click on Apply and hit OK.

[18]

Chapter 1

The next thing to do is to download the Android APIs and the operating system
images. Installing Android SDK is time consuming. It requires a smooth broadband
line because after the installation you need to download the API package for
Android and Google API.

To start this, click on the Android SDK Manager icon, as shown in the
following screenshot:

= Java - Eclipse
File Edit Refactor Source MNavigate Search Project Run Help

|n=j'=v' ﬂml“‘l%.ﬂ CI|#§3 MNew Window

Mew Editor
i 3
[# Package Explorer 2 = 0 Open F'.erspectlve
~ <}===»} - Show View 3

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives
Mavigation 2

Android SDK Manager
m AVD Manager
v/l Run Android Lint 3

Preferences

The Android SDK Manager icon

[19]

vww allitebooks.conl

http://www.allitebooks.org

Installing Eclipse, ADT, and SDK

You will be provided with the list of all SDK Platforms for all Android versions.

I suggest you be selective, just download your target platform first. If you are to
develop an app for Froyo (Android 2.2) you need to download the API version 8.
Later, when you have more time, you could come back and download for the other
version. If you do not have any time and Internet data constraints then you may
download all. It will fetch API packages, Android OS images, debugging tools and
other softwares related to Android development.

For this time, we will download the latest SDK with Jellybean system image and

API level 16, as shown in the following screenshot:

= Java - Eclipse
File Edit Refactor Mavigate Search Project Run Window Help
s

Packages Tools

@ Welcome 52
E ceome SDK Path: C:\android-deviandroid-sdk

Packages

‘- Name
4 || Teols
X Andreid SDK Toels
'} Android SDK Platform-tools
Android 4.1 (API16)
Documentation for Android SDK
SDK Platform
Samples for SDK
ARM EAEI v7a System Image
&g Google APls
[F1 B Sources for Android SDK
» [l Android 4.0.3 (API15)
» [[11£] Android 4.0 (API14)

Show: [¥|Updates/New [¥|Installed

[T] Obsolete Select Mew or Updates

Sort by: @) API level) Repository Deselect All

=E==]

[+ = B S N - » B N B =2 e o= 0 A I S e b e
4 Android SDK Manager == R ==
= &/

Status

- Update available: rev. 20.0.3
4 Update available: rev. 14

¥ Mot installed
¥ Mot installed
& Not installed
¥ Mot installed
¥ Mot installed
& Not installed

nsta\l% packages...
Delete 2 packages...

Done loading packages.

< | ([}

Installing SDK with API level 16

[20]

Chapter 1

Before hitting the Install button, there is one important tip I'd like to share. While
conducting this procedure, we may encounter a connection reset problem for no
specific reason. To get over this issue, on the Android SDK Manager window,
navigate to Tools | Options. Uncheck the Force httpsy//...sources to be fetched using
https://... option, and Close (shown in the following screenshot). You may start the
SDK and API installation now:

= Java - Eclipse

[T

[% Package Expl

File Edit Refactor

= || ==
Source Mavigate Search Project Run Window Help
BB |- |ERE|Hs-0-Aa~ N |- |®&E 5~ = e
Quick Access B ‘
Android SDK Manager [o[= |[=] [t & = 8
Packages Tools E%}‘ & |\
SDK Path: C:\android-d
Android SDK Manager - Settings @
Packages = 2 A
2 Proxy Settings LOF AL F Ac
o~
flame HTTP Proxy Server nect Mylyn b
<0 -;W: J HTTP Proxv Port 2003 nect to your task and
ndroi 0. -
B A Manifest Cache E tools or create a
¥ Androi task.
4 [0 Android 4.1] Directory: C:\Users\kerul\.android\cache
Current Size: 516 KiB P =g
S e
Use download cache Clear Cache -
1 & Samplel others t availabl
£ is not available.
; gRMFA [Force https://... sources to befetcheklsmg http://
"By Google
& SDUiES [¥] Ask befare restarting ADB
(]2 Android 4. [Tl Fnahls Braview Tanle
711 Andraid 4. Close il
Show: [¥|Updates/New [¥|Installed || Obsolete Select Mew or Updates Install 6 packages...
Sort by: @ API level ") Repository Deselect All Delete 1 package...
I-ri-= 0

Done loading packages.

~

16, revision

1

Android SDK Content Loader

[21]

Installing Eclipse, ADT, and SDK

After the SDK, APIs and system images have been downloaded, restart Eclipse. The
wait is worth it! After almost a couple of hours of installation and downloading
packages, I got this nice graphical interface for the screen layout arrangement, as
shown in the following screenshot. Check the Android Preferences window, and
you may see the Android 4.1 in the API list. To add another API, again you need to
download through the Android SDK Manager:

= Java - Eclipse o || B &R
File Edit Refactor Mavigate Search Project Run Window Help
e BB M- |EBAdI$-0- Q- N|#HGF-|BS 5|00~ =
iype filter texi] Android oo w P H ETasklstz 0 = 0
. General = - | | =
cners Android Preferences T |®'-‘3:| L | *
> Android -
Ant SDK Location: C:\android-deviandroid-sdk Browse...
» Code Recommenders Note: The list of SDK Targets below is only reloaded once you hit "Apply’ or 'OK'. Find Q] » All » Ac.
» Help @ Connect Mylyn 2
+ Install/Update Target Mame Vendor Platform APL... Connect to your task and
Java Android 4.1 Android Open Source Project 41 16 ALM tools or create a
» Maven local task.
> Mylyn
» Run/Debug 2% Outline 52 = g
- Team =
Validation
. WindowBuilder An outline is not available.
XML

Al = . =
% @ | oF A = g [}

LU L SRS UTI AU LI - Lo Gl
: -
ator.samsungmobile. com/andrc

| Restore Defaults| | Apply ‘
ator.samsungmobile.com/andrc
P roeid API 8, revision 1 =z
_?) [0K] | Cancel | C
List of Android APIs

To avoid earlier steps on setting up ADT with Eclipse and kick start development
please download the ADT bundle from http://developer.android.com/sdk/
index.html and follow the steps for setting up at http://developer.android.
com/sdk/installing/bundle.html.

In the next chapter, we will look into tools of an ADT environment that eases
the development.

[22]

Chapter 1

Summary

In this chapter, we learnt how to install the Eclipse Juno (the IDE), the Android SDK
and the testing platform. The next chapter will discuss the important elements of the
IDE before we create a new Android Application project.

[23]

Important Features of the IDE

This chapter describes several important features in Eclipse and an ADT
Environment useful to develop an Android app. It is separated into the
following topics:

Project explorer

Code editor

Graphical user interface designer
Properties window

Debugging pane

Dalvik Debug Monitor Server (DDMS)
SDK manager

Android virtual device manager
Running an application

Getting help

Important Features of the IDE

Project explorer

The project explorer is a tool to view all folders and files under a project. By
double-clicking the item, one can open and edit the file. When we create a new project,
which will be discussed thoroughly in Chapter 3,Creating a New Project, the ADT will
automatically create all these default folders and files, as shown in the following
screenshot. Depending on the project, we may ignore or modify all these files.

These are brief descriptions of the default folders and files in your Android project:

[% Package Explorer 33 = O

=

-4
4 = IdiemsDictionary
4 8 src
4 £ netkerulidiomsdictionary
- [J] MainActivity java
: Gﬁ gen [Generated Java Files]
. = Android 4.1
. B, Android Dependencies
G@ assets
- &= bin
4 B libs
2 android-support-vd.jar
4 55 res
4 [= drawable-hdpi
™8 ic_action_search.png
™ ic_launcher.png
- [= drawable-Idpi
. = drawable-mdpi
- [= drawable-xhdpi
. 5= layout
4 [menu
a) activity_mainxml
4 = values
a0 strings.xml
a stylesxml
4 [values-v11
a) stylesxml
4 = values-vld
| stylesxml
< AndroidManifest.xml
™ ic_launcher-web.png
= proguard-project.tet
project.properties

Fl 11 F

Project explorer

[26]

Chapter 2

The table that follows contains the brief description of the important folders and files
available in the project tree:

Folder Functions

/src the Java codes are here

/gen generated automatically

/assets put your fonts, videos, sounds here. Is more like a file
system and can also place css, javascript files and so on.

/libs external library (normally in JAR)

/res images, layout, and global variables

/drawable-xhdpi

/drawable-hdpi
/drawable-mdpi

/drawable-1dpi

/layout
/menu
/values

/values-v1l

/values-vl14

AndroidManifest .xml

for extra high specification devices (for examples Tablet,
Galaxy SIII, HTC One X)

for high specification phones (Examples: SGSI, SGSII)

for medium specification phones (Examples: Galaxy W,
HTC Desire)

for low specification phones (Examples: Galaxy Y, HTC
WildFire)

all XML files for the screen(s) layout
XML files for the screen menu
global constants

template style definitions for devices with Honeycomb
(Android API level 11)

template style definitions for devices with ICS (Android
API level 14)

One of the important files to define the apps. This is the first
file located by the Android OS in order to run the app. It
contains the app's properties, activity declarations and list
of permissions.

[27]

Important Features of the IDE

Code editor

This is the tool where the programming is cooked. Several important features of the
Eclipse code editor (programmers love to have) are intelligence and the error marker
(refer screenshot to follow). Code completion suggests objects, methods or variables
available to be incorporated in our code, while the error marker will notify any
syntax error immediately without having to compile the code. These features help a
lot for faster programming:

[% Package Explorer 52 = g < activity_main.xml [3] *MainActivity.java 2 = O
= B - package net.kerul.IdiomsDictionary; el
4 ‘.9 IdiemsDictionary
a ([src ®import android.os.Bundle;[]
4 3 netkerulldiomsDictionan
[J] MainActivity.java public class MainActivity extends Activity {
. @ gen [Generated Java Files] Button btnSearch;
=), Android 4.1
3 GE“ Android Dependencies @verride
g7a“ﬁ5 public veid onCreate(Bundle savedInstanceState) {
'g’r: super.onCreate(savedInstanceState);
'Ezr;; setContentView(R.layout.activity main);
B AndroidManifestxmi btnSearch =(Button)findViewById(R.id,); =
™ ic_launcher-web.png ¥ % button : int - Rid
[proguard-project.tt _ . ¥ editText : int - R.id
[E| project.properties @0verride . o menu_settings : int - fl.id
- public boolean onCreateOptionsMenu(Menu m 9 webViewd : int - Ruid

getMenuInflater().inflate(R.menu.acti
return true;

o class : Class<net.kerulIdion
this

] T 3
4 I 3 4 Press "Ctrl=5pace’ to show

The code editor

The code editor's appearance is customizable to suit your style and preference.
To change the editor's environment, such as the background color or the code's
font styles, right-click on the editor and choose Preferences, and then navigate to
General | Appearance | Colors and Fonts. Then click on Edit to customize, refer
the following screenshot:

[28]

Chapter 2

= Preferences (Filtered) = @
type filter text Colors and Fonts LCh T
a General

Colors and Fonts (¥ = any character, * = any string):
4 Appearance = (J o 9

Colors and Fonl type filter text
Editors . lmgy CVS i Edit...
a Java . [} Debug

- Editor - [} Git Use System Font
a g} Java SEEEE——
[0 Colored labels - match highlight (setto ¢ IBE—SEtI

[0 Colored labels - write access occurrences
[0 Declaration view background

B Inherited l:ﬂembers . Go to Default
Aa Java Editor Text Font (override

Am lauadne disalaw fant (cet ta defankt Diale
3

m

4

Description:

The Java editor text font is used by Java editors.

Preview:

Consolas 12
The quick brown fox jumps over the lazy dog.

‘ Restore Defaults | | Apply |

4 1 b

'hil [oK] | Cancel ‘

Customizing the Code Editor's appearance

There are also several other XML code editors that help during design and
development. They come in two flavors: GUI based; where things can be
manipulated with a GUI interface, useful for someone who is uncomfortable editing
the XML code manually; Source based: where XML codes can be manually edited.
Some of the editors are listed as follows:

Graphical layout editor

Edit and design your XML layout files with a drag and drop interface.
The layout editor renders your interface as well, offering you a preview
as you design your layouts.

[29]

Important Features of the IDE

Android manifest editor

Edit Android manifests with a simple graphical interface. This editor is invoked
when you open an AndroidManifest.xml file.

Menu editor

Edit menu groups and items with a simple graphical interface. This editor is
invoked when you open an XML file with a <menu> declared (usually located
in the res/menu folder).

Resources editor

Edit resources with a simple graphical interface. This editor is invoked when you
open an XML file with a <resources> tag declared.

XML resources editor

Edit XML resources with a simple graphical interface. This editor is invoked when
you open an XML file.

Graphical user interface designer

This is the interface designer. It functions as the GUI editor for controls or a
widget to the application screen. There are three sections of this GUI designer,
the palette, configuration chooser and the screen layout preview, as shown in the
following screenshot:

[30]

Chapter 2

ainActivity.java 1 actrity_mainxm

B *MainActivity] [l ivity_rnai | &2 = O
1 Palette —

= Form Widgets 7r AppTheme - ‘ (& MainActivity - ‘ $® - ‘

Textview Large Medium seat | Bufton sk | off || 6 configuration
+ CheckBox @ RadioButton CheckedTextView w chooser

Spinner | " @1@@'@@'“

»

toRightOf: editTextl
we |diomsDictionary alignParentTop: true

OFF
SCIrecei
[Text Fields layout

(O Layouts designer
[Z7) Composite

[Images & Media
[Time & Date

[Transitions

[Advanced

[C7) Custom & Library Views 4 b

Graphical Layout | [T activity_main.xml|

The ADT's GUI designer

m

The Palette contains all the GUI controls (widgets) that can help us design the
interface. The available controls depend upon the API level we choose during
creation of the project. Some of the common controls are: button, text field, radio
button, check box, multimedia controls and so on.

The configuration chooser

It lets you decide the appearance of your app view across different screen sizes,
orientation, densities and themes.

The screen layout designer

It is a canvas to put things up and try out different designs. It is a designing
workspace. Also, it provides a preview of how the screen may appear in a device.

[31]

Important Features of the IDE

Properties window

It helps in editing properties of the widgets. All the properties corresponding to
widgets can be viewed and edited via this window visually. Though the properties
can be edited directly by editing the XML file, this GUI interface eases it. All the
changes made are persisted to XML file instantly and automatically. The following
screenshot shows the Properties window:

= 8 5= Qutline 52 & = 0
Fl Relativelayout
1% | editTextl
- buttonl - "Search”
g6 - €3] webViewl

HE BE- CEEEQQ a® |\

default v| [Mexus One v| v| ¥r AppTheme ~

(3 MainActivity v| ® -

] Properties :'=:5>| laz| & | =

IR @+id/btnSearch]|

=l Layout Para... []

To Left Of

To Right Of @+id/editTextl
Above

Below

| »

m

Align Base...

Align Left

Align Top

Align Right

Align Bott...

Align Pare... [[]
Align Pare... [V]true
Align Pare... [¥]true
Align Pare... [[]
Centerln ...

Center Ho...

O]
[
Center Ver... [[]
[

LD EEED. B

Align Wit...
Width

1

rap_content

The Properties window

Debugging pane

In the debugging perspective, we see the syntax errors, warning, console messages,
run-time errors, variable transition (if breakpoint is used) and LogCat. LogCat is
useful to trace any activity happening inside the device or emulator. The following
screenshot shows the window to list all code problems, such as warnings or

syntax errors:

[32]

Chapter 2

.l Problems % @ Javadec @ Declaration [Console ¥33 LogCat

0 errors, 3 warnings, 0 others
=

Description Resource Path Location
4 & Warnings (3 items)
s Theid "buttonl” is net referring to any views in this layou activity_main.... /IdiomsDictionary/... linel0

s Thewvalue of the field MainActivity. btnSearch is not used MainActivity). /IdiomsDictienary/... line10
s This text field does not specify an inputType or a hint activity_main... /IdiomsDictionary/... lined

v;:uﬁ

Type

Android Lint ..
Java Problem

Android Lint .,

Problems warnings or code syntax errors

A sample of console messages from the ADB is listed in the following screenshot.
As ajava person, we would be tempted to use System.out.println() to split out
message and objects' values; which are shown in the LogCat view, however it is
advisable to use Log class for this purpose, reason being we can filter, print different
colors and define log types. This could be one way of debugging your program, by
displaying variables' values or parameters. To use Log, import android.util.Log,
and use one of the following methods to print messages to LogCat:

v (String, String) (verbose)
d(String, String) (debug)
i(String, String) (information)
w(String, String) (warning)

e (String, String) (error)

. Problems @ Javadoc @) Declaration [El Console &2 33 LogCat

Android
11:22:43 - IdiomsDictionary
11:22:43 - IdiomsDicticnary

Android Launch!

11:22:43 - IdiomsDictionary] You must restart adb and Eclipse.
11:23:18 - IdiemsDicticnary] -------------------------—--—-
11:23:18 - IdiomsDicticnary] Android Launch!

11:23:1@ - IdiomsDicticnary] adbk is running normally.

4 n

kbRl B~rir= O

1
1

11:22:43 - IdiomsDictionary] The connection to adb is down, and a sewvere error has occured.
1

11:22:43 - IdiomsDictionary] Please ensure that adb is correctly located at 'C:\android-deviandroid-sdk

m

The Android Debug Bridge console (displays ADB activities)

[33]

Important Features of the IDE

LogCat is used to view the internal log of the Android system, as shown in the
following screenshot. It is useful to trace any activity happening inside the device or
emulator through the ADB (Android Debug Bridge). ADB is a tool to connect your
PC with the virtual device or actual device. Without it, the developer cannot directly
transmit the APK file to an Android device/emulator:

%! Problems @ Javadoc [, Declaration [l Console ¥ LogCat i3 = 0

Saved Filters &+ cearch for messages. Accepts Java regexes. Prefix with pid:, apps, tag: or text: to li |verbose v| H Bl 1

All messages (no i

. L. | Ti PID TID Applicati T Text 5
net.kerul IdiomsD 1me pplication 29 I:‘
D 08-31 03:23:2... 624 624 net.kerul.Idiom... dalwvikvm Hot late-eni
E 08-31 03:23:2... §24 624 net.kerul.Idiom... Trace error openil
I -31 03:23:2. 624 624 ne .Idiom...

1
)
5
3
i
5
i
h
i
h
i

The LogCat (tracedump of all device/emulator activities)

Dalvik Debug Monitor Server (DDMS)

DDMS is a must have tool to view the emulator/device activities. To access
DDMS in the Eclipse, navigate to Windows | Open Perspective | Other and then
choose DDMS. By default it is available in the Android SDK (it's inside the folder
android-sdk/tools by the file ddms). From this perspective the following aspects
are available:

* Devices: The list of the devices and AVDs that are connected to ADB

* Emulator Control: It helps to carry out device functions

* LogCat: It views real time system log messages

* Threads: It gives an idea of currently running threads within a VM

* Heap: It shows heap usage by application

* Allocation Tracker: It provides information on memory allocation of objects

* File Explorer: It explores the device file system

[34]

Chapter 2

The following image shows important aspects of DDMS:

= DDMS - IdiomsDictionary/AndroidManifestxml - Eclipse (=@] =]
File Edit Refactor MNavigate Search Project Run Window Help
ICEEE N R=RRER AR e R R R g =il i —
Device Screen Capture @
[Refresh] [Rotate] [Save] [
- =
g Devices 53 E Captured image: o
| | [+ ~
Name Name i
- devices - = scct 201 wom iDIOMs
4 [3 jb [emulator-5556] Online > = cache 201 E
com.android.se 272 > [= config 201
com.andreid.de 513 =d 201,
com.andreid.sy 203 = data 201.
com.android.pt 231 = default.pro 116 197i
com.android.q 556 > (= dev 201
com.android.m 348 |5 etc 201
rarn andraid n: 837 k=4 init 105204 197
£l [iib B 9244 10

= LogCat &3

L N Ractivity log

ts Java regexes, Prefix with

All messages (no filters)

net.kerul.IdiomsDictioni L. | Time PID o Appli
I 08-31 03:56:3... 743 743 net.
I 08-31 03:56:3... 743 743 net.
'l T (7 P———— - - T

emulator
screen
capture

qwer tyuiop
as df gh j k!l

£ 'z xevbnme

]|

Dalvik Debug Monitor Server (DDMS)

SDK manager

SDK Manager is the tool to update Android SDK and manage the download of
Android OS system images, documentations, and APIs. The icon appears, as shown

in the following screenshot:

Mavigate Search Project Run
p | M~ | & o
&3 = 8
:EICRAIE
hary = Palette

rul.IdiemsDictionary

inActivity.java

nary/res/layout/activity_main.xml - Eclipse

4| activity_mainxml 52 [J] MainActivi
Palette

= Form Widgets

Teatview Large Medium Smal

Window Help

g0

Button Small

The SDK manager icon

[35]

Important Features of the IDE

The next screen to follow, as shown in the screenshot has a very long list. We need
to be very decisive about what API level we need and select accordingly as the
download may take significant time, depending upon the Internet speed. If not sure
then choose the latest API level.

Expand the API level we want to issue and check the SDK platform. This download
consists of the API for the corresponding level and the Android OS system image.
By default, the system image is based on the ARM's architecture. However to run
Android OS system image faster on an Intel architecture machine, just tick the Intel
Atom x86 System Image option.

Tick the Samples for SDK if you need to learn from the samples. If your app needs to
incorporate the Google special API (such as the Google Maps), then you might need to
download the Google APIL The rest of the list is about the device specific APIs. Unless
you are planning to optimize your app for a certain device, then do not download.

Once you have finished selecting the necessary APlIs, then click on the Install
package button. Should you have any connection reset problem while downloading,
navigate to Tools | Options. Uncheck the Force https://... sources to be fetched using
httpy/... and try again:

Android SDK Manager EI@
Packages Tools
SDK Path: Chandroid-deviandroid-sdk’
Packages
Mame API Rev. Status i
: Android 3.0 (API11)
4 Android 2.3.3 (API10)
] SDK Platform 10 2 - Mot installed [

& Samples for SDK 10 1 & Not installed j

lﬁ Google APls 10 2 « Not installed

i Intel Atom x86 System Image 10 1 « Not installed

la Dual Screen APIs 10 1 -« Mot installed

'ﬁ- RealiD 10 2 & Not installed

lﬁ ADMIRAL 10 5 & Not installed

la ATRIXZ 10 2 -« Mot installed

'ﬁ- Bionic 10 2 & Not installed -

4 [0 3
Show: [¥|Updates/Mew |V|Installed Obsolete Select Mew or Updates Install 1 package...
Sort by: @ AP level Repository Deselect All)
. a

Done loading packages.

The Android SDK Manager window

[36]

Chapter 2

Android virtual device manager

Android virtual device is a virtual mobile device (emulator) that runs on your
computer. The emulator lets you test an Android application without using a
physical device. Although, it's not the best testing approach, as it just mimics the
device, but at least you have something to test in case you cannot afford an actual
Android device.

When the emulator is running, you can interact with the emulated mobile device just
as you would in an actual mobile device, except that you use your mouse pointer to
touch the touchscreen and you are able to use some keyboard keys to invoke certain
keys on the device.

The Android emulator mimics all of the hardware and software features of a typical
mobile device, except that it cannot place actual phone calls. It provides a variety

of navigation and control keys, which you can "tap" using your mouse or keyboard
to generate events for your application. It also provides a screen in which your
application is displayed, together with any other running Android applications.

For some features we may have to be aware of hot keys and details are at
http://developer.android.com/tools/help/emulator.html#KeyMapping

Click on the button as shown in the following screenshot, to open the Android SDK
and AVD Manager window. AVD is Android Virtual Device:

= Java - IdiomsDictionary/res/layout/activity_main.xml - Eclipse

File Edit Refactor Maviga Project RBun Window Help

A~ [&g ld |-G~ g

Opens the Android Virtual Device Manager b

= Q,jl“} = 1 Palette
4 7= IdiomsDictionary = Palette
4 B sre == Form Widgets

a B netkerulIdiomsDictionary
- 1] MainActivity.java
. = gen [Generated Java Files]

textview | arge Medium smail - Button

OFF ¥ CheckBox @ RadioButton

The AVD icon

[37]

Important Features of the IDE

The AVD Manager is shown in the following screenshot. First, click on New... to
set a new emulator, as seen in the screenshot. Enter a name (for example, nexus),
choose a target (make sure the Android OS system image has been downloaded for
the selected target), and for simplicity choose the device, and all other fields will be
auto-populated. We can also edit if you want something different. Also, choose CPU
as ARM (armeabi-v7a) and click on Create AVD:

Android Virtual Devices | Device Definitions
List of existing Android Virtual Devices located at fhome/sshah/.android/avd
AVD Name Target Name | Platform (APl Level | CPU/ABI New... |
~ Nexus Android 4.2 4.2 17 ARM (armeabi-v7
Create new Android Virtual Device (AVD) - -
AVD Name: [nexus|]
Device: | Galaxy Nexus (4.65", 720 x 1280: xhdpi) =1 =
Target: | Android 4.2 - API Level 17 =
CPU/ABI: | =
Keyboard: & Hardware keyboard present
skin: [Display a skin with hardware controls
Front Camera: | None]| | Refresh .
v A Back Camera: | None = |
X A br.
1 MemoryOptions: RAM: (1024 VM Heap: |64 =
Internal Storage: 200 [MiB 2|
SD Card: @® size: |MiB : |

Creating a new AVD

[38]

Chapter 2

Click on the new AVD that is already created, and start the AVD using the Start
button. Use the default setting and click on the Launch button.

™ Android Virtual Device Manager

Android Virtual Devices | Device Definitions

List of existing Android Virtual Devices located at /home/sshah/.android/avd

AVD Name Target Name Platform APlLevel CPU/ABI | New.. |
Android 4.2 4 =

| Edit.. |

| Delete... |

| Details... |

|Starki. |

| Refresh |

~ Avalid Android Virtual Device. =} A repairable Android Virtual Device.
* AnAndroid Virtual Device that Failed to load. Click 'Details’ to see the error.

If we have a lower specification of processor and memory, you will notice that its
emulator boot-up is really slow. I would like to advise you to have at least 3GB of
RAM to make it faster.

Wait until the left screen displays a nice picture with icons, as shown in the following
screenshot. The left component is your device (smartphone) screen and the right
component is the physical smartphone keypad:

The Android emulator

[39]

vww allitebooks.conl

http://www.allitebooks.org

Important Features of the IDE

Running the Application

The project with no error will be able to be executed and sent to the AVD. To run a
project, click on the Run button as, shown on the following image. If your system

is already running several emulators, Eclipse will ask which version of the emulator
to use:

= Java - Eclipse
File Edit Refactor MNavigate Search Project Run Window Help
[Co~ &= laB | d-E0d[F-0- G- |F#EG&-|BS <~
[@ 1HelloU
[Package Explorer 1 = 8 4 activity_mainxml §
[@ 2IdiomsDictionary
e = 1 Palette
o [&] 3 netkerul.Flashcard2 Flashcard2 Activi E
- 12 FlingTest Palette o | ty
= 1] ingTest
4 2 HelloU > Form Widgets ’ |
. [src |
. €8 gen [Generated Java Files] [TetView B La Eupt '
. indr.o_i;hl_.l. R o Run Configurations...
. =, Android Dependencies |1 Text Fields Organize Faverites..,
& e tayous T — |

The Run application button

Getting help
* Go to Help in the menu, and choose Search
* Eclipse help: http://help.eclipse.org/juno/index.jsp
* ADT help: http://developer.android.com/tools/help/adt.html
* Android developer's official reference: http://developer.android.com

* ADT update: regularly check the ADT update from the menu, Help | Check
for Updates

* More on DDMS: http://developer.android.com/tools/debugging/
ddms.html

Summary

In this chapter, we discussed several important tools available in the Eclipse and
the ADT, such as the project explorer, code editor, graphical user interface designer,
properties window, debugging pane, Dalvik debug monitor, SDK manager, AVD
manager, and the run application facilities. The next chapter will discuss how to
create a new Android application project.

[40]

Creating a New
Android Project

This chapter will demonstrate how to create a new Android app with a simple
interaction using the button and text field. We will also write interactivity code,
compile and run an app on the emulator/actual device. To illustrate this chapter,
we will be creating a simple project named HelloU app.

* Creating new Android application project string resources

* Using the graphical layout designer

» String resources

* The XML layout editor

* Widgets' interactions through the source code editor

* Toast message

* Running the application on the emulator

* Running the application on an Android device

* Getting help

Downloading the example code

You can download the example code files for all
~ Packt books you have purchased from your account
Q athttp://www.packtpub. com. If you purchased
this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the
- files e-mailed directly to you. -

Creating a New Android Project

Creating a new Android application
project

To create a new Android project in the Eclipse, navigate to File | New | Project.
A new project window will appear, then choose Android | Android Application
Project from the list. Click on the Next button.

* Application Name: This is the name of your application, it will appear
side-by-side to the launcher icon. Choose a project name that is relevant
to your application.

* Project Name: This is typically similar to your application name. Avoid
having the same name with existing projects in Eclipse, it is not permitted.

* Package Name: This is the package name of the application. It will act as an
ID in the Google Play app store if we wish to publish. Typically it will be the
reverse of your domain name if we have one (since this is unique) followed
by the application name, and a valid Java package name, else we can have
anything now and refactor it before publishing.

The android:minSdkVersion is an integer designating the minimum API Level
required for the application to run. If not sure, leave it to whatever is selected.

For example, you might have your app set to android:minSdkVersion="7". This
setting will guarantee that your app works on devices with Android Eclair (2.1) or
above, but not below.

The targetsdkversion is the target devices you are focusing on. Let's say your app
has android:minSdkVersion="16", it means the apps could utilize all the features of
Android Jelly Bean. However, bear in mind that features, such as the ability to move
the app to an SD card and native Unicode are not supported in Android (2.1) Eclair.
Though these features are available starting in the API level 8 (Android 2.2/Froyo)
and level 11 (Android 3.0/ Honeycomb), they cannot be utilized in the lower version
of Android.

[42]

Chapter 3

Do keep in mind that your targetsdkversion has to be equal or more than the

minSdkVersion. Otherwise, it doesn't really make much sense.

Click on Next to move to the next step:

@ New Android Application |

Application Name:9 |Hellou

Project Name:8|HelloU

Package Name:ﬁ[net.kerul.HelloU| l

Minimum Required SDK:®| API 8: Android 2.2 (Froyo) =1
Target SDK:8| API 17: Android 4.2 (Jelly Bean) =)

Compile With:8| API 17: Android 4.2 (Jelly Bean) -
Theme:9| Holo Light with Dark Action Bar -

+ The package name must be a unique identifier For your application.
Itis typically not shown to users, but it *must* stay the same for the lifetime of your
application; it is how multiple versions of the same application are considered the
"same app".
This is typically the reverse domain name of your organization plus one or more

@ | < Back][Next > J | Cancel J Finish

New Android Application Ty
Creates a new Android Application

Create a new Android project

[43]

Creating a New Android Project

This is the window to configure your launcher icon. The launcher icon is the icon
that will appear in the home screen or in the application drawer. This is an important
aspect of your app as it will be representing the app. For this purpose, you may

use the icon creator wizard using the available text and icon shape pre-customized

in the ADT. Set the foreground as text, provide the letter U as the Text, pick the

circle as the icon shape and adjust your color preference, as shown in the following
screenshot. This wizard will create a simple icon and provides the Idpi (36x36 pixels),
mdpi (48x48 pixels), hdpi (72x72 pixels) and xhdpi (96x96 pixels) of the launcher
icon. Icons of different sizes are created to address various devices with different
configuration of screen sizes and resolution. Click on Next to proceed:

= New Android App = @
Configure Launcher Icon
Configure the attributes of the icon set _.1
] Preview:
Foreground: |Image” C\ipar‘t| Idpi
Text: U U
Font: | Arial Bold | mdpi
/| Trim Surrounding Blank Space @)
Additional Padding: hdpi:

T r13%

4
Foreground Scaling: |Top|
Shape | MNene ” Square |

xhdpi:
Background Color:|-| U

Foreground Color:

'/,? | < Back ” Next = Finish Cancel

Launcher icon creator

Choose BlankActivity in the window, as shown in following screenshot, and click
on Next:

[44]

Create Activity

Select whether to create an activity, and if so, what kind of activity.

Create Activity

BlankActivity
FullscreenAckivity
LoginAckivity
MasterDetailFlow
SettingsAckivity

™ New Android Application

=

(Il ~anmn

New Blank Activity

Creates a new blank activity, with optional inner navigation.

@ | < Back ‘I Next >] | Cancel Finish
Choose blank activity

The next window appears to input the MainActivity name, as shown in the

following screenshot and click on the Finish button:

New Android Application

New Blank Activity

Creates a new blank activity, with optional inner navigation.

Activity Nameﬁlb\’lainActivity

Layout Name® activity_main

Navigation Type®| None

+ The name of the activity class to create

< Back Next Cancel

Finish |

[45]

Chapter 3

Creating a New Android Project

String resources

Usually, it is a practice for Android application to store the string values for

user interface reference in the XML file due to the nature of mobile apps, which
is distributed internationally. So it is best to provide multiple language options.
However, this practice is optional, and you may use direct string assigning if you
wish to do so.

The string resource file is in an XML form and available through the project tree in
res/values/strings.xml. These string resources can also be used to store color
information, integer arrays to name some.

Now, add a new string value by clicking on the Add button, provide the variable
name in the Name box and the Value of the string. Press Ctrl + S to save the changes.
For example, in the following screenshot, a new string variable is created as hello_u
and the value is Hello,:

a strings.xml 52 = B
Android Resources (default)

Resources Elements @ @ @ @ @ @ @ m Az Attributes for String

- @Strings@, with optional simple formatting, car
@ app_name (String) stored and retrieved as resources. You can adc
@ hello_warld (String) formatting to your string by using three standal

@ menu_settings (String) REmove. .. tags: I:-,_i, andu, If you_;se an apc-s_trnphe ;r a

titl i in (Stri your string, you must either escape it or endos:

@ =ac wtglt_maln (5ting) whole string in the other kind of endesing quote
@ hello_u (String) p

Mame |hello_u
Davn Value= |Hello, |

4| | |
j Resources | |5 strings. xml |

Adding a new string value

Add two more string values based on the table that follows. These strings will be
used as the widgets' caption:

String variable Value

s_tvName Your name:

s_btnDisplay Display name!

[46]

Chapter 3

If you notice, we use s_ to indicate it is a string variable from the resources, tv
to indicate a Textview, and btn to indicate a button. Bear in mind that these
conventions are not fixed, you may use your own preferences.

The new string values created will be saved in the string.xml file. The XML
code is available by clicking on the tab on the red arrow, as shown in the
following screenshot:

< stringsaxml 52 = 8

1 <resourcesk

name="app_name ">HelloU</string>
name="hello world":Hello world!</string>
name="menu_settings">Settings</string>
name="title activity_main">Hellol</string>
name="helle u":Hello, </string:
name="s_tvName">Your name:</strings
name="s_btnlisplay">Display Name!</string:

=] Resources | (=] stringsxml

The string.xml code file

Using the graphical layout designer

The next exercise is to add a text label, a text box and a button. These elements

are called widgets in Android which has the class name TextView, EditText and
Button in the Android API. We will not go through the details of these classes; most
importantly we could apply these widgets in our app.

To open this layout, double-click the res/layout/activity main.xml file from the
project explorer.

On the left of the app screen, you'll see the Palette. Browse the Form Widgets, there
are several widgets including the Textview. Click and drag the Textview widgets to
the app screen. Change the widget ID into "e+id/tvName", and make sure to press
Enter to confirm your changes and save them to the XML file. The "e+id/" is the
ADT representation to say that the new ID has to be created and assigned to

the widget.

[47]

Creating a New Android Project

After that, set the Text properties to point the value defined in the string resources,
s_tvName. This could be done by clicking on the button with three dots, on the
right side of each property. Press Ctrl + S to save the changes and to make sure the

changes appear in the XML file:

T

Choose a string resource

default '| D Nexus One Y| & % Project Resources

(® MainActivity v| @ - | 16 (" System Resources

HE - e

app_name
hello_u
hello_world
menu_settings
edium Te; g_btnDisplay
’

title_activity_main

Mew Siring... |

I @string/s_tvMName

Resolved Value: Your name:

@:l Clear I CK I Cancel |

e (TextView) - "Medium Text”

+i

| 12| B | @

al

AEEEEERE

-
4 ~ Hint

Medium Text

@-+d/tvName

- |0

wrap_content
wrap_content

il

Changing the caption of a TextView

[48]

Chapter 3

The next widget to add is the EditText with Id txtName, associate label as Your
name: to accept user input, as shown in the following screenshot:

4 —— Palette

<l activity_mainxml £3

¥ Palette

default = | D Mexus One = | - | ¥r AppTheme =~

= 0 B= Outline &3

) Form Widgets

@ Manactvity ~ | @ - | i -

= Text Fields

HE EE- | [

abe

usen@domain

(555) 0100

Address

amet, consectetur
adipisicing elit, sed
do eiusmod tempor

[Layouts

Firstname Lastname

Laorem ipsum dolor sit

T | editTextl

UH

Your name: |

;1

= Properties
T o +id/tcthiame
= Layout Param... [|
To Left OF
To Right Of
Above
Below
Align Baseline
Align Left
Align Top
Align Right
Align Bottom
Align Parent L...
Align Parent ...
Align Parent ...
Align Parent ...
Center In Par

@-+HdjtvName

HIEIEIEIE

Adding an EditText

Add another widget, button, specify ID btnDisplay and associate label as D
isplay Name, as shown, and expand it horizontally across the screen. You may
use the resize feature by clicking and dragging the bluish resize mark on the edge

of the wid

get:

L
~ Resource Chooser

default ~ ‘ 0 NewsOne ~ ‘ Choose a string resource

EE EE- EEEE

@ Project Resources

_ System Rescurces

= [0)

U HelloU

Your name: . menu_settings
LS Display Name! 4 = btnDisplay
y = o =_tvMame

title_activity_main

m

@string/s_btnDisplay

Resolved Value: Display Mame!

&)
g

Clear ||

QK] I Cancel

Adding a Button

[49]

Creating a New Android Project

The XML layout code editor

The code editor is an alternative to change the layout properties. We recommend you
change this code directly if you have prior knowledge of XML. It's a straight forward
XML code actually. To access this code directly, just click the activity main.xml on
the bottom of the layout editor, as shown in following screenshot:

| activity_mainxml 33 = O

<Relativelayout xmlns:android="http://schemas.android. com/apk/res/android” -
xmlns:tools="http://schemas.android. com/tools"™
android: layout_width="match_parent”
android:layout_height="match_parent” >

m

<TextView
android: id="@+id/ tviName"
android:layout_width="wrap_content”
android: layout_height="wrap content”
android: layout_alignParentLeft="trus"
android:layout_alignParentTop="true"
android:text="@string/s_tvName"
android:textAppearance=" android:attr/textdppearancelarge™ />

<EditText
androdd: id="@+id/ txtName"
android: layout width="wrap content”
android: layout height="wrap content”

L] |

=] Graphical La)n:I t | |= activity_main.xml I

Accessing the XML layout code editor

Widget interactions through the source
code editor

The layout we designed previously does not have to interact with each other
automatically; let's make it happen. To put in simple words, when we execute the
project, clicking on the button on the app will not trigger any action. We need to add
the code for the interactions.

What we are trying to do is when the user taps on the button Display Name!,
the app will capture any text inside the Textview and produce a simple popup
to display your name.

To achieve our goal let's play around, go to src, double click on the package folder
and double click again on the file MainActivity.java. This Java file will contain the
code to load the layout of the XML file main_activity.xml in order to create a UL
The Java code as follows is the default code provided by ADT.

[50]

Chapter 3

You will see the package name on line one and several classes imported to the
project. The code in line six is the main class declaration which inherits the Activity
class. method onCreate in line eight is the first method to be called when the apps
start. The setContentView (R.layout.activity main) is the command to initialize
the screen layout based on the main screen designed previously. And the method

in line 13, which is to create the screen menu, will be discussed later in Chapter 5,
Adding RadioButton, Checkbox, Menu, and Preferences.

package net.kerul.HelloU;
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity(
//First method called when App starts
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

// loads Screen menu
@Override
public boolean onCreateOptionsMenu (Menu menu) {
getMenuInflater () .inflate (R.menu.activity main,
menu) ;
return true;

}

In order to provide button interaction, we need to add implements
onClickListener to the main class header.

public class MainActivity extends Activity implements OnClickListener

{
In the import section of the code, add this line:

import android.view.View.OnClickListener;

Now, initialize all the widgets that will get involved in the process. Inmediately
after the main class header, add the widgets' member declaration.

public class MainActivity extends Activity implements OnClickListener(
private EditText txtName;
private Button btnDisplay;

[51]

Creating a New Android Project

Since EditText and Button are also another class which needs to be imported from
the Android API, so add a couple of lines in the import section.

import android.widget.Button;
import android.widget.EditText;

In Eclipse you do not need to memorize all the classes and the packages'
M names that are needed to be imported. Just put the cursor (caret) to the
Q class and press Ctrl + Shift + O. The IDE will help you to include the
packages involved or point your mouse to the additional class, a menu
will come out, and choose to import the class.

4] *MainActivityjava 52

5 impert android.view.Menu;
6 import android.view.View;
_7 dimpert android.view.View.OnClicklistener;
8
9 public class MainActivity extends Activity implement
El@ private EditText txtName;
Etjz' private 43 EditText cannot be resolved to a type
— . .| 9 quick fixes available:
13 @iverrid) —)
ald public v 4— Import 'EditText’ (android.widget} -
15 supe # Change to 'Editor’ (android.content.SharedPreferences)
l: :C @ Change to 'EGLContext' (javax.microedition.khronos.egl) 1
12 € @ Change to 'ExtractEditText' (android.inputmethodservice] |~
) i ¥ @ Create class 'EditText'
J‘f ~ . @ Create interface 'EditText'
19 @verrid Add type parameter 'EditText’' to ‘MainActivity'
a9 public b| @ e i EaT o i
21 getM Press P2 Tor focus
22 return true;
23 T

Menu to import class from the Android API

Next is to link the code and the layout design in the MainActivity.xml file.
This is needed since the ADT is incorporating the MVC (Model-View-Controller)
development method. It means that the screen layout is separated from the code to
provide high project maintainability.

Basically after the layout has been loaded using setContentView you need to have
access to these widgets that hide within that layout. This is where findviewById ()
comes into play.

txtName= (EditText) findViewById(R.id.txtName) ;
btnDisplay=(Button) findViewById(R.id.btnDisplay) ;

[52]

Chapter 3

The button is the action; we need to add the event listener to the button. The line to
add is as follow:

btnDisplay.setOnClickListener (this) ;
Here we made the Activity itself implement onClickListener.

For any on-click event to be handled, Java needs a special method to be included.
Inside the method is where the task will be executed. In our case, if the user clicks
(or taps) the button (btnDisplay), the app will extract the content of the text field
(txtName) and display the content on the screen. The action can be coded as follows:

public void onClick (View arg0) {
if (arg0.getId()==R.id.btnDisplay) {
String hellomsg="Hello, "+txtName.getText ().toString() ;
Toast .makeText (this.getApplicationContext (), hellomsg,
Toast .LENGTH_SHORT) .show () ;
}
}

View argo is the element that triggers the action. argo.getId() is the method to get
the ID of the widget triggering the action. If the widget ID is the btnDisplay, then
do the action of capturing the input and display it to the screen.

To fetch the string of text field widgets, use the following code:

txtName.getText () .toString() ;

Toast .makeText () is the method to display a short/brief message on the screen, we
will discuss it in the next section.

The complete code would be:

package net.kerul.HelloU;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class MainActivity extends Activity implements OnClickListener(
private EditText txtName;
private Button btnDisplay;

[53]

Creating a New Android Project

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

txtName= (EditText) findViewById(R.id.txtName) ;
btnDisplay=(Button) findViewById(R.id.btnDisplay) ;
btnDisplay.setOnClickListener (this) ;

public void onClick (View arg0)
if (arg0.getId()==R.id.btnDisplay) {
String hellomsg="Hello, "+txtName.getText ().toString() ;
Toast .makeText (this.getApplicationContext (), hellomsg,
Toast .LENGTH_ SHORT) .show () ;

Toast message

This is one of the common practices to pop-up a message box for notifying the user.
This kind of notification is a type of notification that does not require a user answer
or feedback.

Toast .makeText (this.getApplicationContext (), hellomsg,
Toast .LENGTH_ SHORT) .show () ;

Toast .makeText () contains three parameters which are the application context, the
message and the time length.

* The application context is the current screen to display the message

* The message is the string to be displayed

* The time length is consisting of a short or longer duration of the message
display and has to be one of Toast . LENGTH_* constants

[54]

Chapter 3

The arrow in the following screenshot is pointing to a Toast:

& 713

U HelloU

Your name: erul

Display Name!

O

Example of a Toast

Running the application on the emulator

Running the HelloU app in the emulator would need you to start the emulator first.
Start the emulator that has the Android version that suits your target platform. Once
the emulator is fully loaded, we can compile and run the app.

Click on the HelloU project on the project explorer (this is to activate the project).
Navigate to Run in the Eclipse menu, and choose Run or press Ctrl + F11 for a
shortcut. Select run as Android Application, and Enter. Wait for a couple of seconds
and view your emulator. The HelloU app will appear shortly, as in shown in the
following screenshot. Enter your name and tap on the Display Name! button, the
Toast message will appear with the name entered on the bottom of the screen:

U HelloU U Hellou

Your name: | Your name: Kerul

Display Name! Display Name!

. | Hello, Kerul

The HelloU app running in the Emulator

[55]

Creating a New Android Project

Running the application on an
Android device

To run and deploy on a real device, first install the driver of the device. This varies as
per device model and manufacturer.

These are some links you could refer:

* For Google Android devices only http://developer.android.com/sdk/
win-usb.html.

e Others: http://www.teamandroid.com/download-android-usb-drivers/.
Make sure the Android phone is connected to the computer through the USB cable.

To check whether the phone is properly connected to your PC and in debug mode,
please switch to the DDMS perspective.

[Devices 32 =8 @ % @ @ Fil.. 2 @ = B
= MName Size Date Time | Permissiens Info s
Mame o = acet 2012-10-13 16:35 drwxr-xr-x
- B jelly-bean-avd [emulator-5556] ' l’:? cach.e 2012-10-14 2113 drwaruoc-=- i
4 [htc-htc_wildfire-HT079PY07513 (& config 20121013 1635 droce—----
netkerul.HelloU d 2012-10-13 16:35 Irwsrwrws -> Jsysike
. [data 2010-05-31 1644 drwsorws--x
ﬁ default.pro 118 1970-01-01 0O7:30 -rw-r--r--
- = dev 2012-10-17 0913 drwsr-xr-x
etc 2012-10-13 1835 Irwxrarwx - fsyster
i 1110&4 107001 .M N7 _ramer_wo o

o 1 * 4 e (3

The Android phone as appear in the DDMS.

If everything goes well, then run the app. Notice that a window appears asking you
to select between the emulator and a real Android device; select the Android device.
A few seconds later, the app will be running in the Android phone.

[56]

Chapter 3

HelloU app in the actual Android device. Getting help

The following are some references to guide you on using the Eclipse and ADT. You
can spend some time going through the documentation and tutorial to get updated.
Reading the tutorials and discussions at stackoverflow.com are among the
convenient way of learning these tools.

* Go to Help in the menu, and choose Search.

* Eclipse help: http://help.eclipse.org/juno/index.jsp

* ADT help: http://developer.android.com/tools/help/adt.html

* Android Developer's official reference: http://developer.android.com

* ADT Update: regularly check the ADT update from the menu, Help | Check
for Updates.

e More on DDMS: http://developer.android.com/tools/debugging/
ddms .html

Summary

Congratulations! You now have an Android app of your own. You have designed the
screen layout, added a label, text field and a button. The simple interactivity exposed
you to how to develop an android mobile app. In the next chapter, we will add more
widgets and learn to develop more complex apps involving multiple screens.

[57]

Incorporating Multimedia
Elements

This chapter will discuss how to incorporate multimedia elements inside a project
and handle several screens in an app. The readers will be shown how to add images,
sounds and an HTML page in the project. We will discuss the following topics with
the help of a project called SimpleNumb3rs:

Forming the layout

Adding the image resources

Inserting ImageView

Inserting ImageButtons

ImageButton and handling events

Adding audio and multiple screen support
Inserting HTML in a WebView

Using Intent and Activity

Adding a new activity in the manifest file

The final product - run, deploy, and test app

For this chapter, we need a new project that will cover the Android devices from
Version 2.1 (API level 7) to the latest version. So set android:minSdkVersion to 7,
and android:targetSdkVersion to 16.

The icon and other resources are available in a downloadable source code (refer to
the download tip mentioned in the Preface of this book). Download these materials
prior to developing this app. We do not want to make your life miserable doing the
graphic design.

Incorporating Multimedia Elements

The selected name for the new app is SimpleNumb3rs, as shown in the following
screenshot. If you are wondering why we chose Android 2.1, this is to widen the
device coverage:

= Mew Android App | = =] ==

New Android Application f \
Creates a new Android Application

Application Name:® SimpleMumb3rs
Project Name:® SimpleMumb3rg

Package Name:@ net.kerul.simplenumb3rg

Build SDK: | Android 4.1 (API16) -|

Minimum Required SDK:6| API7: Android 21 (Eclair) -|

Create custom launcher icon
[Mark this project as a library
Create Project in Workspace

Chandroid-deviworkspace\SimpleMumb3r5

@ <Back | Net> e

Create a new Android project named SimpleNumb3r5

We provide the launcher icon in the resource materials and the image named
ic_launcher-web.png in the Image File field, as shown in the following screenshot.
This is the dedicated logo of this app. Should you prefer a different logo to suit your
app, you are welcome to design it personally. By using this wizard, the icon launcher
will be prepared to suit the xhdpi, hdpi, mdpi, and 1dpi formats in the respective
drawable folder.

[60]

Chapter 4

= New Android App = @
Configure Launcher lcon
Configure the attributes of the icon set
P]
Irmnage File: C:\androld-dev\wol’kspace\numbirS\\ Browse... u
mdpi:
[¥] Trim Surrounding Blank Space H
Additional Padding: hdpi:
Pl [t +10% =
Foreground Scaling: E
Background Color::l
Foreground Color:_l L4
@ [<Back [Net> | Finish

Creating the launcher icon

The next screen, as shown in the following screenshot, is

to provide a name of the

application. This can be any string that has the right meaning suitable to the app.
The layout name will be created automatically for you, and could be changed to your

preference. Choose the navigation type as None as it has
our application development.

no concern with respect to

= New Android App

New Blank Activity

Creates a new blank activity, with optional inner navigation.

o [[o]Es]

Activity Name® SimpleMumb3rd

Layout Name® activity_simple_numb3r5

7
(-]

Navigation Type®| None

Hierarchical Parent®

Title® SimpleMumb3r5

s The type of navigation to use for the activity

@ :

Mext » Finish

] |

Cancel

Choose the blank activity

[61]

Incorporating Multimedia Elements

The following screenshot is the mock-up of the app being developed. We have a
major section of the screen dedicated to display the image of the numbers zero to
nine and the spelling. The bottom row of the screen is the navigation bar where the
user may navigate to the previous and next screen. The button with the speaker is for
the user to listen to the number spoken to them. The button with the lower case, i, is
the icon to show the information screen.

* The project title (appears by default).

* The image number location. This row consists of the three cells
merged together.

* The bottom row consists of previous, info, play sound, and next buttons.

L The project title: SimpleNumb3rs

ZERO

€01

The main screen mock-up

Adding a TableLayout

Our project will consist of one TableLayout and inside it there are two TableRows.
By default, when you add a TableLayout, the IDE will include four sets of
TableRows. Remove two rows by using the XML code editor, the previous app
mock-up can provide some guidelines to remove the rows not in use. Adjust the
TableLayout, so that it utilizes all the space of the screen layout, as shown in the
following screenshot:

[62]

Chapter 4

Adding

) activity_simple_numb3rs.xml <l activity_simple_numb3r3.xml %
4 Palette

T Palette - || default '| [Nexus One '| v| ¥ AppTheme

M EE- HEE =El B

alignParentTop: true
] SimpleNumb3r5 alignParentBottom: true
- alignParentL eft: true

[Form Widgets

[Text Fields

= Layouts

I:l LinearLayout (Horizontal)
Relativelayout

I:‘ Framelayout

B Include Other Layout £

E} Fragment I:‘ TableLayout H

E TableRow I:I Space o = *

alignParentRight: true

| Composite

1 Images & Media

[Time & Date

|| Transitions

() Advanced

() Custom & Library Views f - =
[=] Graphical Layout | [=] activity_simple_numb3r5.xml

Inserting a TableLayout

the image resources

Copy the images provided in the supplement files for Chapter 4 to the res/
drawable-hdpi folder through the Windows file manager, as shown in the following
screenshot. In this exercise, we just provide the image resources for hdpi drawable.
It's always a good practice to prepare all the suitable resources for xhdpi, mdpi, and
1dpi accordingly. Do not forget we have a lot of screen size variant in the Android
devices. Currently we also do not consider resources for the tablet size devices.

G-

Organize =

« workspace b SimpleNumb3r5 b res b drawable-hdpi ~ [43][Search drawa

Include in library = Share with + Slide show Burn New folder
SimpleMumb3r5 o
. settings
. bin ih
en bglight.png ic_action_se ic_launcher. logo_numbe next.png
9 arch.png png rs_text.png
. libs
. ores -
drawable-hdpi n 7 3 d 5
drawable-ldpi o e e o e
. drawable-mdpi nal.png no.png nod.png ned.png ned.png
. drawable-xhdpi
. layout 8 g = “
. menu v
i e ne
- values no7.png nod.png nod.png prev.png sound.png
. values-vll
values-vld
src -

noll.png

L [-JIJ

no@.png

The resources for the drawable

[63]

Incorporating Multimedia Elements

Then go to your project explorer (in Eclipse), right-click on res/drawable-hdpi
and click on Refresh. The following screenshot shows the appearance of the
drawable-hdpi folder after the image resources have been copied:

[Package Explorer 3 - <‘===D| ¥ =8
4 32 SimpleNumb3r5 -
» [src
bz} Generated Java Eiles]
: gen [Generated Java Files]

. == Android 41
. =, Android Dependencies
G@ assets

. 2= bin

m

. 2= libs

PR
4 |[= drawable-hdpi

bglight.png
ic_action_search.png
ic_launcher.png
logo_numbers_text.png
next.png
nol.png
nol.png
nod.png
no3.png
nod.png
nol.png
nob.png
nof.png
nod.png
nof.png
prev.png
sound.png
. = drawable-ldpi
- = drawable-mdpi
- = drawable-xhdpi -

d 333 E a0 aE e

¢ 1 3

The resources for the drawable

Adding ImageView

As shown on the previous screenshot, our app has an image 0 that fills the
entire screen and to achieve that let's add an ImageView to the first row of the
TableLayout. Use the no0 image in the drawable folder as the initial image
(zero is the first number to be displayed). Adjust the width and height of the
ImageView to populate the screen.

[64]

Chapter 4

) activity_simple_numb3rs.xml
4 Palette
¥ Palette
] Form Widgets
] Text Fields
[Layouts
[Composite
= Images & Media

Gallery

ImageView

[Time & Date
[Transitions
[Advanced

[Custom & Library Views

ediaController u VideoView

[=] Graphical Layout | |=| activity_simple_numb3r5.xm|

a| activity_simple_numb3r5.xml 23

default v| [0 Nexus One v| =

5 -

Hi| B E- DO

B SimpleNumb3r5

4

Adding an ImageView to the app screen

Distribute weight (specifies how much of the extra space in the layout to be allocated
to the View) evenly to center the widget. Use the button shown in the following
screenshot to adjust the ImageView to the center of the screen. Do this while the

ImageView is active (selected):

= Images & Media
Gallery

|I| MediaController u VideoView 1

] Time & Date

|| Transitions

|| Advanced

[) Custom & Library Views ‘

Wi,
W

ctribute

eights Evenly

) activity_simple_numb3rs.xml) *activity_simple_numb3r5xml iF = H
4 Palette)

@ Palette < || default " [J Mexus One " " +r AppTheme v‘
fmn Eoern Walgats @ SimpleNumb3rs v| © v‘ 6 -

|| Text Fields

O Layouts HE([Dua- noeE 88
) Composite

u

ZERO

[=] Graphical Layout | | =] activity_simple_numb3r5.xml

m

Distribute weight evenly

[65]

Incorporating Multimedia Elements

Adding ImageButtons

The second row in TableLayout is for the navigation buttons (previous and next) and
the play sound button. ImageButton is more attractive for this kind of app. When you
create an ImageButton, you will be asked to choose the image. For the first button
use the image prev from the drawables. The second is sound and the last one is next.
These buttons need to be added one at a time, as shown in the following screenshot:

Q. activity_simple_numb3rs.xml) Factivity_simple_numb3rdxml &2 = 0
4 Falette

% Palette - default = D Nexus One = | o AppTheme ~
(S ekt @ SimpleNumb3s ~| @ ~| Fi6 ~

|] Text Fields

[Layouts EHE- MOEER| B B| tblerow
) Composite
= Images & Media

Gallery

EﬁController n VideoView

ImageButton 2
[Time & Date
[Transitions ZERO
) Advanced | T“) s
[Custom & Library Views < h)
=] Graphical Layout | 5] activity_simple_numb3r5 xrml

Adding ImageButtons

Activate (select) one of the buttons and distribute evenly, as shown in the following
screenshot. This is to make sure all the buttons are spread evenly across the
screen's width.

Q activity_simple_numb3rsxml Q) *activity_simple_numb3r3xml &2 = 0
4 Palette

% Palette - default = DNexusOﬂE - - | o AppTheme =~
[J Form Widgets @ SimpleNumb3s =~ | & = 6 =

] Text Fields

C Layouts Bo|([fuE- 0oaa| 8=
) Composite

= Images & Media
Gallery

[] MediaContraller [VideoView

(] Time & Date

] Transitions

) Advanced

) Custom & Library Views
=] Graphical Layout |= activity_simple_numb3r3.xml

m

Distribute weight of the ImageButtons evenly

[66]

Chapter 4

And if you prefer, change the background of your screen. A background image has
been prepared for you; it is in the drawables and is named bglight. Activate the main
layout by clicking on the app title/logo on the app screen. Change the background
properties by clicking on the three dots button on the right-side of the attributes.
Later, you may add the btninfo button to display the app's information.

L L L '
Assigning the widget's ID
There are basically one ImageView and three ImageButtons. To change the
ImageView ID, select it and go to the widget properties on the right-side. Click
on the three dots button on the Id attribute. Change the ID of the ImageView to
imagenumber, as shown in the following screenshot:

EE Outline 23 =
a Relativelayout 1 Properties }:b la:’ 2 @ e
4Ll T Sl osidimage.. [D
@+id/i (B

4 [=] tableRowl . o = mage... [

= String editor = @

_content |
@+id/imagenumber [|7

aK] | Cancel rawable... [~

LONTENT LISS... |?_-|

= ImageView Il
Src & @drawable...[=]
Scale Type

Adjust Vie.. [[] [

Max Width [

Max Height [=]

Baseline Al.. [7] [

Crop To Pa... [[] [
L] 1 r 5 “'rie_""'. Il -

Changing the widget's ID through the Property window

After that, change all the IDs of all the buttons to btnprevious, btninfo, btnsound,
and btnnext. Use the following table as a guide:

Widget ID
ImageView imagenumber
Left most button btnprevious
Display app info btninfo

Play sound button btnsound
Right most button btnnext

[67]

Incorporating Multimedia Elements

Finally, you will get the screen, as shown here:

B SimpleNumb3r5

B, A, E
il h i)

The whole layout design of the main activity

The following XML code is available through the XML editor in the tab activity_
simple numb3rs.xml across the Graphical Layout tab:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"

xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:background="@drawable/bglight" >

<TableLayout
android:layout width="wrap content"
android:layout height="wrap content"
android:layout alignParentBottom="true"
android:layout alignParentLeft="true"
android:layout alignParentRight="true"
android:layout alignParentTop="true" >

<TableRow
android:id="@+id/tableRowl"

[68]

Chapter 4

android:layout width="wrap content"
android:layout height="0dp"
android:layout weight="1" >

<ImageView
android:id="@+id/imagenumber"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:src="@drawable/noo0" />
</TableRow>

<TableRow
android:id="@+id/tableRow2"
android:layout width="wrap content"
android:layout height="0dp"
android:layout weight="1" >

<ImageButton
android:id="@+id/btnprevious"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:src="@drawable/prev" />

<ImageButton
android:id="@+id/btninfo"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:src="@drawable/info" />

<ImageButton
android:id="@+id/btnsound"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:src="@drawable/sound" />

<ImageButton
android:id="@+id/btnnext™"
android:layout width="0dp"
android:layout height="wrap content"
android:layout weight="1"
android:src="@drawable/next" />

</TableRow>
</TableLayout >
</RelativeLayout>

[69]

Incorporating Multimedia Elements

ImageButtons and handling event

This is where we code the ImageButtons click events. Open the Java source code
from src/net .kerul.simplenumb3r5/SimpleNumb3rs.java. Here, we will be
discussing the main activity class that will provide the screen navigation with the
following code:

public class SimpleNumb3r5 extends Activity implements OnClickListener

The main class, as usual, will inherit the Activity class, and implement
onClickListener to enable the widget interaction.

The main variable declarations are as follows:

//initialize all widgets
private ImageView imagenumber;
private ImageButton btnprevious, btninfo, btnsound, btnnext;
//define variables to track screen number, start from 0
private int screennumber=0;
//define a sound controller
private MediaPlayer mp;
//define an array for the sound files
private String[] soundfile={"0.mp3","1l.mp3","2.mp3","3.mp3",
"4.mp3","5.mp3","6.mp3","7.mp3","8.mp3","9.mp3"};

Widget objects are imagenumber as for the container to display the number of
images, and we have btnprevious, btnsound, and btnnext for the buttons.

The screennumber is the variable to keep a track of the current screen position;
initially it is given the value 0 because we have a list of numbers that start from
zero (0).

The sound controller object is named mp, and the string array named soundfile is
the list of all the recordings of the spoken numbers from zero to nine.

The oncreate method is the place where all the widgets are initialized and linked
together in a view, as follows:

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity simple numb3rs5) ;
imagenumber= (ImageView) findViewById (R.id.imagenumber) ;

//create the object for the button
btnprevious= (ImageButton) findViewById(R.id.btnprevious) ;
//this button will initially be disabled

[70]

Chapter 4

btnprevious.setEnabled(false) ;

//add listener to the button

btnprevious.setOnClickListener (this) ;
btninfo=(ImageButton) findViewById(R.id. btninfo) ;

btninfo.setOnClickListener (this) ;

btnsound= (ImageButton) findViewById(R.id.btnsound) ;

btnsound.setOnClickListener (this) ;

btnnext=(ImageButton) findViewById(R.id.btnnext) ;

btnnext.setOnClickListener (this) ;

}//end onCreate

Next, we have the onclick method to handle the navigation interactions. What we
do here is basically disabling the btnprevious button if the screennumber is 0, and
enabling it on for screennumber more than 0. btnnext will also be disabled if the
screennumber value is 9, on when less than 9. These are to prevent runtime errors
when the user trying to access that is less than 0 or more than 9. The btnsound value
is currently ignored; it will be discussed later when we deal with sounds (that is,
playing of sound/audio).

//this method is to handle button click
public void onClick (View arg0) {
//when btnprevious is clicked
if (arg0.getId()==R.id.btnprevious) {
screennumber--;// Decrement 1 to the screennumber
changeNumber (screennumber) ;
if (screennumber==0) {
// Disable previous Button
btnprevious.setEnabled (false) ;
lelse{
// Enable back disabled Button.
btnprevious.setEnabled (true) ;
}
changeNumber (screennumber) ;
btnnext .setEnabled (true) ;

//when btnnext is clicked
else if (arg0.getId()==R.id.btnnext)
screennumber++;//add 1 to the screennumber
changeNumber (screennumber) ;
if (screennumber==9) {
Disable no screen available next
btnnext.setEnabled(false) ;

[71]

Incorporating Multimedia Elements

lelse{
/ Only prevoius screen available
btnnext.setEnabled (true) ;

}

changeNumber (screennumber) ;
btnprevious.setEnabled (true) ;

}

//when btnplay is clicked

else if (arg0.getId()==R.id.btnsound) {
//playSound - will implement later

}

else if (arg0.getId()==R.id.btninfo) {

//display info will implement later

}//end onClick

There is an additional method to switch the image of the numbers. The
R.id.imagefile is the representation of the actual drawable image resources.
Since we have 10 images altogether, and r. id returns int, so we can use the
switch case 10 times as follows:

//this method is to change the number that appears on the screen
// after the navigation button is clicked
// as R.i1d retuns int so we wuse switch
private void changeNumber (int screen) {
switch (screen) {

case 0: imagenumber.setImageResource (R.drawable.no0) ;
break;
case 1: imagenumber.setImageResource (R.drawable.nol) ;
break;
case 2: 1imagenumber.setImageResource (R.drawable.no2) ;
break;
case 3: 1imagenumber.setImageResource (R.drawable.no3) ;
break;
case 4: 1imagenumber.setImageResource (R.drawable.no4) ;
break;
case 5: 1imagenumber.setImageResource (R.drawable.no5) ;
break;
case 6: 1imagenumber.setImageResource (R.drawable.noé) ;
break;
case 7: 1imagenumber.setImageResource (R.drawable.no7) ;
break;

[72]

Chapter 4

case 8: 1imagenumber.setImageResource (R.drawable.no8) ;
break;

case 9: imagenumber.setImageResource (R.drawable.no9) ;
break;

}

}//end changeNumber

Adding audio

Before doing this exercise, copy all the sound resources to the assets folder. You
may do this by copying all the mp?3 files to the assets folder through the File
Manager, as shown in the following screenshot:

=N |EcR (=53
@uv| .« android-dev » workspace » SimpleNumb3r5 » assets - |¢7 || Se Pl
Organize = Include in library = Share with Play all Burn MNew folder =« [@l
. SimpleMumb3r5 - i
| settings | | - | W
. bin h
gen MP3 MP3 MP3 MP3
© libs 0.mp3 L.mp3 2.mp3 3.mp3
J res
[= [= [— [=
J src
J SimpleNumb3rs J) J) J) J)
tcenter MP3 MP3 MP3 MP3 E
b test 3 4.mp3 5.mp3 6.mp3 7.mp3
1) net.kerul.Flashcardz
i SimpleMumb3r5.zip| | U h—
. android-juno » ' , » ' ,
. android-sdk-20-eclipse
| ArabicWordNet MES MES
. AWNBrowser 8.mp3 9.mp3 bglight.png facebook-logo.p
. bbl0-simulator "9 L4
. bbndk-1.0 a Lo
. bbpb2_simulator
. bbpb-simulator-2_1 v f .
. bb-workspace MP3 m
blackberry.tools.50K hello.mp3 ic_launcher.png info.html logo_numbers_te
Canfin Msi 4 xt.onn 2

Copy the MP3 files to the folder assets

Add code for btnsound in the onclick method. Add the following lines so
that when the btnplay button is clicked, it will execute the method named
playSound (). This method will receive a string argument as the value of the
sound file name to be played.

[73]

Incorporating Multimedia Elements

The soundfile array variable is the variable that stores the list of the mp3 filenames,
while the screennumber indicates the current number on the screen.

//when btnplay is clicked
else if (arg0.getId()==R.id.btnsound) {
//call the method playSound
playSound (soundfile [screennumber] .toString()) ;
}//end btnsound clicked

The next important method is the playsound method. This method will play an mp3
sound file. The soundname parameter is the string that contains the sound file name
which resides in the assets folder of the Android project.

public void playSound(String soundName) {
Boolean mpPlayingStatus;

try{//try to check MediaPlayer status
mpPlayingStatus=mp.isPlaying() ;

}

catch (Exception e) {
mpPlayingStatus=false;

}

//1if the MediaPlayer is playing a sound, stop it to play new voice
if (mp.isPlaying()) {

mp.stop(); //stop the sound
mp.release(); //remove sound from the memory
}
else(
try{

mp = new MediaPlayer () ;
AssetFileDescriptor afd = getAssets() .openFd (soundName) ;
//set the sound source file

FileDescriptor fd = afd.getFileDescriptor() ;
mp .setDataSource (fd) ;

mp.prepare(); // prepare for playback
mp.start(); //play the sound

}//try block
catch (IOException e) ({
//display the error message in debug
Log.i ("Error playing sound: ", e.toString());

}

}//end playSound

[74]

Chapter 4

The following is the explanation of the variables and processes involved:

try..catch block: This is an exception handler, whose purpose is to enclose
the code that might throw an exception. In this case the exception is to try to
catch any problem while trying to play the sound file using MediapPlayer. If
you notice, the catch block is the statement that will be executed if a certain
code execution causes an exception.

mp is the object instantiated from the class MediaPlayer.

o

isPlaying (): Checks whether the MediaPlayer is playing, True is
playing whereas false is otherwise

setDataSource (): Sets the data source to be used. In this case, the
data source is FileDescriptor

prepare () : Prepares the player for playback, synchronously
play () : Plays the sound file

stop () : Stops the current sound playing

release () : Releases the sound from the memory

afd is a variable instantiated from the class AssetFileDescriptor.

[e]

getAssets () : Retrieves the underlying resources (from the assets
folder) via the AssetManager API

openFD () : Opens the file specified in the String argument

getFileDescriptor (): Returns the FileDescriptor data source
that can be used to read the data in the file

getStartOffset (): Returns the byte offset where this asset entry's
data starts

getLength () : Returns the total number of bytes of this asset
entry's data

Adding another screen in the app

This exercise is to add an information screen on the SimpleNumb3r5 app. The
information regarding the developer, email, Facebook fan page, and other information
is displayed in the next screen. Since the screen contains a lot of text information
including several pictures, so we make use of an HTML page as our approach here:

1.

Now, create an activity class to handle the new screen. Open the src folder,
right-click on the package name (net .kerul.SimpleNumb3rs5), and choose
New | Other... From the selections, choose to add a new Android activity,
and click on the Next button. Then, choose a blank activity and click on Next.

[75]

Incorporating Multimedia Elements

2. Set the activity name as Info, as shown in the following screenshot and

the wizard will suggest the screen layout as info_activity. Click on the
Finish button.

= New Activity o 2=

MNew Blank Activity . .

Creates a new blank activity, with opticnal inner navigation. | |
Project: |SimpleNumb3r5 v| ([l e

Activity Name® Inf0|

Layout Mame® activity_info

Navigation TypeOlNone v|
Hierarchical Parent® |:|
Title® Info

5 The name of the activity class to create

@ <Back | Net> |[Fimsh |[Cancel

Creating a new activity named Info

3. A blank new screen layout will appear. Remove the Helloworld TextView
(that comes with default). On the Palette panel, open the folder named
Composite.

4. Click and drag the WebView widget. Change the ID of WebView to
webinfo. This layout will be saved in the file info_activity.xml.

[76]

Chapter 4

@ *SimpleMumb3r5 java @ Murnb3r5.java 0 *activity_simple_numb3r3xml
4 Palette

% Palette default = | [NexusOne ~ -
) Form Widgets m @

) Text Fields

Ere

& Composite || |]

=5 SlidingDrawer o~

Bl sz Tam Tam
[€3] webView -

|| Images & Media

") Time & Date

[Transitions

|| Advanced

[7] Custom & Library Views

[=] Graphical Layout | = infoxml

Adding a WebView widget

Adding HTML to WebView

Create an HTML page using your favorite web editor, or you may just reuse the
HTML page in the resources provided (in the assets folder, file name info.html).
The HTML page, as shown in the following screenshot, is a simple HTML page that
contains the app information. If you find that the HTML is too simple, do add your
own information. In this exercise, we will put the HTML pages and the resources
inside the assets folder, hence before proceeding, copy all the related materials of
the HTML page into the assets folder.

SimpleNumb3r5 v1.0
by kerul.net

Communicate, feedback through this
FB fanpage
facebook.com/KerulNet

email: khirulnizam@gmail.com

website: http://kerul.net

The HTML page in info.html

[77]

Incorporating Multimedia Elements

Next is to edit the source code for Info.java that resides in the folder src/net.
kerul.simplenumb3r5. Add the following code to the existing template:

package net.kerul.simplenumb3r5;
import android.app.Activity;
import android.os.Bundle;

import android.webkit.WebView;

public class Info extends Activity {
private WebView webinfo;
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity info);

webinfo= (WebView) findViewById(R.id.webinfo) ;
//provide the URL path pointing to info.html
webinfo.loadUrl ("file:///android asset/info.html");

}

Let's understand the following lines of code added to the template above:

* setContentView(R.layout.activity info):R.layout.activity infois
referring to the layout created previously.

* webinfo.loadUrl("file:///android asset/info.html"): This is the
method to load an HTML page from a specific URL. The path to point to an
HTML file inside the assets folderis file:///android asset/info.html.
This path cannot be found on a real device, however it provides access to the
app asset files.

Intent and Activity

Intent is an abstract description of an operation to be performed. To be more specific,
it is an asynchronous call which allows the application to request functionality

from other Android components, for example, services/activities. It can be used
with the startActivity () command to launch an activity. The previous code in
SimpleNumb3r5.java is the main activity (or class) for this application. We've just
created the second activity (class) in the file Info.java. In order for the second
activity to appear, it has to be started using an intent.

[78]

Chapter 4

We have decided to use the button btninfo as the trigger to invoke the second
activity. Again, open the file SimpleNumb3r5.java and add the following lines to
invoke another activity. These lines must be added to the btninfo button's onclick
method. Notice that an instance of Intent is created as info. The main class is able to
call the second class using the startActivity () method. The Info.class argument
is referring to the second class.

else if (arg0.getId()==R.id.btninfo) {
//invoke the Info activity
Intent info = new Intent(this, Info.class);
startActivity (info) ;

}Adding Activity in Manifest file

In order to call the second class through Intent, the Manifest.xml files need to be
modified. However, you will notice that this has been done automatically by the
Android Development Toolkits since Version 20. In case the following lines are
missing in AndroidManifest.xml please add it manually:

<activity
android:name=".Info"
android:label="@string/title_activity info" >
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Should you need to display a webpage from the Internet in the WebView, you must
declare the user permission by adding this line in AndroidManifest.xml above the
<applications tag as follows:

<uses-permission android:name="android.permission.INTERNET" />

[79]

Incorporating Multimedia Elements

The final product run and test

After all the processes we have gone through, run the app in the emulator and you'll
get the following screen:

i SimpleNumb3r5 i SimpleNumb3r5 Info

emids

SimpleNumb3rs v1.0
by kerul.net

Communicate, feedback through this FB

fanpage
facebook.com/KerulNet

_f

email: khirulnizam@gmail.com

website: hitp://kerul.net

Tap on the Back button to return.

SimpleNumb3r5 in action

Summary

In this chapter, we have explored a simple approach to incorporate several
multimedia elements, such as image, an HTML page, and voice. The latest SDK is
much more user friendly than any of the previous versions.

In the next chapter, we will learn more about the different widgets, such as menu,
checkbox, radio button, and also about adding the preference screen.

[80]

Adding RadioButton,
CheckBox, Menu,
and Preferences

Are you excited enough? If not, you should be; we are half way through and ready
to explore some more of the widgets that are commonly used and have a lot of
significance in any application. The things to be covered in this chapter are adding a
menu, check box, radio button, and preference to the application. We will make use
of these widgets and create the DistanceConverter application .The main objective
of this application is to convert distance entered in km/m to mile/foot and yards.
The following are the steps that we cover in this chapter to successfully create the
DistanceConverter application:

Creating a project: DistanceConverter
Adding a RadioGroup.RadioButton
Adding a CheckBox

Adding a menu

Defining the Strings

Defining the Preferences screen

Hook up

Binding menu and Preference

Getting values from Preference

Running the application

Adding RadioButton, CheckBox, Menu, and Preferences

Creating a new project

The DistanceConverter application will allow users to input distance in km/m
and convert them to miles, feet, and yards simultaneously. We have already
covered creating a new project in the earlier chapters, hence we will keep it very
short here. Let's create a new project by navigating to File | New | Others |
Android Application Project. Enter the fitting data from the following table in the
corresponding wizards:

Property Value

Application name DistanceCon

Project Name DistanceCon

Package Name com.packt.ch05.distancecon
Template BlankActivity

Activity MainActivity

Layout activity main

The following screen shows some data being filled in the wizard as per the
preceeding table:

-~ New Android Application |
New Android Application y \
Creates a new Android Application
Application Name:®| DistanceCon

Project Name:@| DistanceCon

Package Name:ﬁl om.packt.ch05.distanceco

Minimum Required SDK:®| API 8: Android 2.2 (Froyo) -

Target SDK:@| AP 17: Android 4.2 (Jelly Bean) 2.

Compile with:2| API1 17: Android 4.2 (Jelly Bean) &

Theme:®| Holo Light with Dark Action Bar -

w The package name must be a unique identifier for your application.
It is typically not shown to users, but it *must* stay the same For the lifetime of your
application; it is how multiple versions of the same application are considered the
"same app".
This is typically the reverse domain name of your organization plus one or more

@ <Back || Next> | Ccancel Finish

[82]

Chapter 5

Adding a RadioGroup, RadioButton, and

a TextField

Android SDK provides two types of radio controls to be used in conjunction, where
only one control can be chosen at a given time. RadioGroup (android.widget.
RadioGroup) is used to encapsulate a set of RadioButton controls for this purpose.

Before we add the RadioGroup and RadioButton control, let's add the
label Distance and the TextField to allow users to provide inputs. Open
the activity main.xml file, and add following entries:

<TextView
android:
android:
android:
android:
android:
android:
android:
android:
android:
<EditText
android:
android:
android:
android:
android:
android:
android:
android:

id="@+id/textViewl"

layout width="wrap content"

layout height="wrap content"

layout alignParentLeft="true"

layout alignParentTop="true"

layout marginLeft="14dp"

layout marginTop="44dp"

text="@string/distance "
textAppearance="?android:attr/textAppearanceMedium" />

id="@+id/distText"

layout width="wrap content"

layout height="wrap content"

layout alignBaseline="@+id/textViewl"
layout alignBottom="@+id/textViewl"
layout toRightOf="@+id/textViewl"
ems="10"

inputType="numberDecimal |numberSigned" />

Let's get back and add the RadioGroup and RadioButtons in it. Add the following
entries to the same file:

<RadioGroup android:id="e@+id/distanceRadioGp"

android:
android:
android:
android:

layout width="wrap content"
layout height="wrap content"
layout alignParentLeft="true"
layout below="@+id/distText">

<RadioButton android:id="@+id/kmRadiobutton"
android:layout height="wrap content"

android:layout width="wrap content"

android:checked="true"

android:text="@string/kmRadio">

[83]

Adding RadioButton, CheckBox, Menu, and Preferences

</RadioButton>
<RadioButton android:id="@+id/metreRadioButton"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/metreRadio">
</RadioButton>
</RadioGroup>

We have made android:checked="true" to be checked by default. After this step we
would see some errors, don't worry about them as we are yet to define these strings.

The following screenshot is what we may see after adding the preceeding code in the
XML file:
DistanceCon

(@string/distance
& @string/kmRadio

(@string/metreRadio

NOTE: This project contains resource errors, !

Adding a CheckBox

We will use CheckBox to allow users to have a conversion facility available for
multiple types of conversions, at once. To add a CheckBox, add the following code in
activity main.xml. We will have three checkboxes for each: Mile, Foot, and Yard;
the same can be achieved using:

<CheckBox
android:id="@+id/checkBoxFoot"
android:layout width="wrap_ content"
android:layout height="wrap_ content"

[84]

Chapter 5

android:
android
android
</CheckBox>
<CheckBox
android:
android:
android
android
android
android:
</CheckBox>
<CheckBox
android
android
android:
android:
android
android
android
</CheckBox>

Also add a button, such that upon clicking on it the conversion kicks off:

<Button
android:
android:
android:
android:
android:
android:
android:
android:

</Buttons>

layout_alignLeft="@+id/textViewl"

:layout_below="@+id/checkBoxMile"
:text="@string/toFoot">

id="@+id/checkBoxYard"
layout width="wrap content"

:layout height="wrap content"
:layout_alignLeft="@+id/checkBoxFoot"
:layout below="@+id/checkBoxFoot"

text="@string/toYard">

:id="@+1id/checkBoxMile"
:layout width="wrap content"

layout height="wrap content"
layout_alignLeft="@+id/checkBoxFoot"

:layout _below="@+id/distanceRadioGp"
:layout marginTop="40dp"
:text="@string/toMile">

id="@+id/calButton"
layout_width="wrap_content"
layout height="wrap content"
layout _alignParentBottom="true"
layout_centerHorizontal="true"
layout marginBottom="60dp"
onClick="onClick"
text="@string/calc">

[85]

Adding RadioButton, CheckBox, Menu, and Preferences

The resulting screen should appear as follows:

DistanceCon

@string/distance
® @string/kmRadio

@string/metreRadic

@string/toMile
@string/ toFoot
(@string/toYard

[@string/calc

NOTE: This project contains resource errors,

Adding a menu

We will invoke the preference screen from the menu. There are essentially three
different types of menus available: Options menu, Context menu, and Pop up
Menu. Here, we will use the Options menu for our purpose. To add the menu under
res/menu create a new file named prefsetting.xml. Add the menu item, using the
<item></item> element by adding the following code:

<menu xmlns:android="http://schemas.android.com/apk/res/android"
<item android:id="@+id/menusettings"
android:showAsAction="never"
android:title="Preferences"
android:orderInCategory="100">
</item>
</menu>

The name of the menu item is set as android:title="Preferences". The
android:showAsAction keyword indicates how an item should appear in the action
bar. For more menu options and attributes please refer to the following URLs:

® http://developer.android.com/guide/topics/ui/menus.html

® http://developer.android.com/guide/topics/resources/

menu-resource.html

[86]

Chapter 5

Defining the Strings

Under the res/values tab, open strings.xml and add the following entries:

<string name="menu settings"s>Settings</string
<string name="distance ">Distance</string>
<string name="kmRadio">Km</string>
<string name="metreRadio">Metre</string>
<string name="calc">Calculate</string>
<string name="toMile">Mile</string>
<string name="toFoot">Feet</string>
<string name="toYard">Yard</string>

After this step all the previous verbose errors should disappear.

Defining the Preference screen

Preferences are an important aspect of the android applications. It allows users to
have the choice to modify and personalize it. Preferences can be set two ways: the
first method is to create the preferences.xml file in the res/xml directory and the
second method is to set the preferences from the code. We will use the former, also
the easier one, by creating the preferences. xml file as follows:

Create the xml directory, if it does not exit, and add the preferences.xml file.
Every preference needs the following attributes, as shown in the table:

Property Description

android:key Used to get the preference value
android:title To specify the android title
android:summary Summary about preferences
android:defaultValue Optional, used to set the default values

Usually, there are five different preference views, as listed in the following table:

Views Description

CheckBoxPreference Simple checkbox returns true/false
ListPreference Shows RadioGroup, only 1 item selected
EditTextPreference Shows dialog box edit TextView, returns String
RingTonePreference RadioGroup that shows ringtone
PreferenceCategory Is a category with preferences

[87]

Adding RadioButton, CheckBox, Menu, and Preferences

We will make use of CheckBoxPreference, ListPreference, and
PreferenceCategory in our application. Let's add these preferences view in the
preferences.xnl file we have created. Add the following entries:

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/
android" >

<PreferenceCategory android:title="Set Default Converison ">

<CheckBoxPreference android:title="@string/convertToMile"
android:key="inputUserMile"
android:summary="@string/summaryMile"
android:defaultValue="false">

</CheckBoxPreference>

<CheckBoxPreference android:title="@string/convertToYard"
android:key="inputUserYard"
android:summary="@string/summaryYard"
android:defaultValue="false">

</CheckBoxPreference>

</PreferenceCategory>

<CheckBoxPreference android:title="@string/convertToFeet"
android:key="inputUserFt"
android:summary="@string/summaryFt"
android:defaultValue="false">

</CheckBoxPreference>

<PreferenceCategory android:title="@string/prefInputType">

<ListPreference android:title="@string/inputTypeList"
android:key="inputTypeKey"
android:summary="@string/userInputSummary"
android:entries="@array/inputEntry"
android:entryValues="@array/inputValues">

</ListPreference>

</PreferenceCategory

</PreferenceScreens>

This will result in spitting a lot of errors, however we will now solve this by defining
strings. ListPreference provides a list and allows the selection of only one item,
and hence, contains android:entries, and android:entryValues takes array.
Now we will provide an array declaration for the same, to do that under res/
values, if it does not exist, create the file arrays.xml and add the following entries:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="inputEntry">
<item >Distance in Km</item>

<item sDistance in Metre</item>

[88]

Chapter 5

</string-array>

<string-

array name="inputValues">

<item >l</item>

<item >2</item>

</string-array>

</resources>

Define the following strings that are used in the preferences.xmnl file in the

strings.xml file.

<string name="prefInputType">Set Default Input Type</strings>

<string

name="userInputSummary">Distance provided for

calculation</string>

<string
<string
<string
<string
<string
<string
<string
<string

name="convertedSummary" >Summary of Conversion</strings>
name="convertToMile">Mile</string>
name="convertToYard">Yard</string>
name="convertToFeet">Foot</string>
name="summaryMile">Convert to Mile</string>
name="summaryYard">Convert to Yard</strings
name="summaryFt">Convert to Feet</string>
name="inputTypeList">Choose default distance supplied

</string>

Now that we are done defining the Preference screen, let's do some work to show
it. The Preference framework comes with the activity class android.preference.
PreferenceActivity needs to be overridden with our class. Create a class
UserSettings.java under the com.packt.ch05.distnacecon package and write
the following code:

package com.

packt.ch05.distancecon;

import android.os.Bundle;

import android.preference.PreferenceActivity;

public class UserSettings extends PreferenceActivity

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
addPreferencesFromResource (R.xml .preferences) ;

}
}

addPreferencesFromResources () loads the Preference screen from the
preferences.xml file.

[89]

vww allitebooks.conl

http://www.allitebooks.org

Adding RadioButton, CheckBox, Menu, and Preferences

Hook up

After doing all the hard work of defining and putting things in place, let's get in
to do some action by hooking up everything with the main screen (Main Activity).
Open the MainActivity.java file and let's binds things in now.

Initialize the widgets as follows:

private EditText text;
private RadioButton rBtnKm;
private RadioButton rBtnMtr;
private CheckBox cBoxMile;
private CheckBox cBoxFt;
private CheckBox cBoxYd;

The onCreate method is first called to fetch the instances of widgets as follows:

protected void onCreate (Bundle savedInstanceState)
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
text= (EditText)findViewById(R.id.distText) ;

rBtnKm= (RadioButton) findViewById (R.id.kmRadiobutton) ;
rBtnMtr= (RadioButton)findViewById(R.id.metreRadioButton) ;

cBoxMile = (CheckBox) findViewById(R.id.checkBoxMile) ;
cBoxFt = (CheckBox) findViewById(R.id.checkBoxFoot) ;
cBoxYd = (CheckBox) findViewById(R.id.checkBoxYard) ;

}

Binding the menu and Preference

We specify our earlier defined menu from the resources file prefesetting.xml, by
getMenuInflater().inflate (R.menu.prefsetting, menu) command as follows:

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if
it is present.
getMenuInflater () .inflate (R.menu.prefsetting, menu) ;
return true;

}

[90]

Chapter 5

On the menu item select the override method as follows:

public boolean onOptionsItemSelected (Menultem item) {
switch (item.getItemId()) {
case R.id.menusettings:
//Get the intent Preference Activity
Intent 1 = new Intent(this, UserSettings.class);
//Start the intent and return the result
startActivityForResult (i, 1);

break;

}

return true;

}

onActivityResult is called receiving the result from the following code, so perform
the operation needed here:

protected void onActivityResult (int requestCode, int resultCode,

Intent data)
super.onActivityResult (requestCode, resultCode, data);

switch (requestCode) ({
case 1:
showPreferenceSettings () ;

break;

Getting values from Preferences
Now, we want to reflect the value set in the Preference screen onto the main screen to
show personalization.

We get the values from the Preference screen and set it back to the main screen in
showPreferenceSettings (). We get the preferences values via PreferenceManager.

private void showPreferenceSettings(){
SharedPreferences sharedPrefs =
PreferenceManager.getDefaultSharedPreferences (this) ;

if (sharedPrefs.getBoolean ("inputUserMile", false))
cBoxMile.setChecked (true) ;
if (sharedPrefs.getBoolean ("inputUserYard", false))

[91]

Adding RadioButton, CheckBox, Menu, and Preferences

cBoxYd.setChecked (true) ;
if (sharedPrefs.getBoolean ("inputUserFt", false))
cBoxFt.setChecked (true) ;

}

On clicking the Calculate button, the conversion should happen and the result
should be shown. To show the result we make use of the ToastView command here.

The onclick function is called when the button is clicked, we then get the
RadioButton values and the checked CheckBox values and call the corresponding
convert functions which is then shown via ToastView with the following code:

public void onClick (View view) {
StringBuffer dist =new StringBuffer();
switch (view.getId()) {
case R.id.calButton:
if (text.getText () .length()==0) {
Toast .makeText (this, "Please enter the valid number ",
Toast .LENGTH LONG) .show () ;
return ;

double distValue=Double.parseDouble
((text.getText () .toString())) ;
//Find RadioButton is checked
if (rBtnKm.isChecked ()) {
//Find checkBox is checked
if (cBoxMile.isChecked())
double km=convertKmToMile (distValue) ;
dist.append (km+"Mile.") ;
}
if (cBoxYd.isChecked ()) {
double yd=convertkmToYard(distValue) ;
dist.append (" "+yd+"yard.") ;
}
if (cBoxFt.isChecked ()) {
double ft=convertkmToFoot (distValue) ;
dist.append (" "rft+"frL) ;

}

Toast .makeText (this,dist, Toast .LENGTH SHORT) .show () ;

[92]

Chapter 5

if (rBtnMtr.isChecked()) {
if (cBoxMile.isChecked()) {
double km=convertMToMile (distValue) ;
dist.append (km+"Mile.") ;

}

if (cBoxYd.isChecked()) {
double yd=convertMtoYard (distValue) ;
dist.append (" "+yd+"yard.") ;

}

if (cBoxFt.isChecked()) {
double ft=convertMtoFoot (distValue) ;
dist.append (" "+ft+mfEL")

}

Toast .makeText (this,dist, Toast .LENGTH SHORT) .show () ;

}

return;

}
Let's add the conversion method for each type as follows:

private double convertKmToMile (double distance){
return (distance*0.62137) ;

private double convertkmToYard (double distance){
return distance*1093.6;

}

Add the other conversion method for the others as well.

Finally, add the following tag which denotes an activity in the
AndroidManifest.xml file.

<activity android:name=".UserSettings" />

The complete code and resources are available in a downloadable source code.

[93]

Adding RadioButton, CheckBox, Menu, and Preferences

Run the application

When we run the application, the following screen should appear where the first
screen accepts the input and the output appears as ToastView popup on clicking the
Calculate button:

o 5554:nexus

DistanceCon

Preferences

Distance 67
® Km

Metre

[Mile
[Feet

[] vard

Calculate

[94]

Chapter 5

The following screenshot shows the Preference screen:

o

5554:nexus

DistanceCon

SET DEFAULT CONVERISON

Mile s
Convert to Mile :

Yard e

Convert to Yard

Foot
Convert to Feet

SET DEFAULT INPUT TYPE

Choose default distance supplied
Distance provided for calculation

Summary

In this chapter we have learned about how to get going with widgets, such as
CheckBox, RadioButton together with RadioButton, menu, and creating custom
Preferences view and getting values from it. Also, using these concepts we have
created the DistanceConverter application.

In the next chapter, we will learn how to handle the various screen types and
orientations for this application.

[95]

Handling Multiple
Screen Types

Android devices are available in different shapes and sizes. For a wider audience,
handling multiple screen types across different devices is the key. In this chapter we
will learn about catering to different screen orientation changes and different screen
types. We will make use of the DistanceConverter application discussed earlier, and
make changes to cater to different concepts needed to achieve this:

Adapting to different screens using wrap_content and match_parent
Introducing Fragment

Defining Fragment and Landscape layout

Hook up in the Main Layout file

Running the application

Optimizing for tablet

Persisting the state information during the state transition

M We will use the DistanceConverter application from a previous
Q chapter and use fragment to define layouts for landscape, and
adapt to different screen orientations and types.

Handling Multiple Screen Types

Using wrap_content and match_parent

In order to cater to the need of a variety of android devices available in the market,
the application needs to be compatible to different screen sizes. For example, a layout
should adapt to different screen sizes, and the corresponding views should also
resize accordingly. To ensure that we make use of wrap_content and match_parent
for width and height of view components refer to the following:

* wrap_content: It ensures that the width and height of the view is set to the
minimum size required to fit the content

* match parent: Before API level 8, it was known as £111 parent and it
ensures the component expands to match the size of its parent view

Therefore, use of these attributes affirms our views to use the space required

and expands to fill the available space. We have made use of these in the
DistanceConverter application for components in layout file. Following is a small code
snippet from activity main.xml, our previous application to demonstrate its usage:

<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/
android"

xmlns:tools="http://schemas.android.com/tools"

android:layout width="match parent"

android:layout height="match parent"

tools:context=".MainActivity" >

<RadioGroup android:id="@+id/distanceRadioGp"
android:layout width="wrap_ content"
android:layout height="wrap content"
android:layout_alignParentLeft="true"
android:layout below="@+id/distText">

</Relativelayout>

Fragment

A Fragment is an independent component that can be connected to an Activity or
simply is a subactivity. Typically it defines a part of UI but can also exist with no
user interface, that is, headless. An instance of fragment must exist within an activity.

Fragments ease the reuse of components for different layouts. Fragments are the way
to support Ul variances across different types of screens. The most popular use is

for building single pane layouts for phones and multipane layouts for tablets (large
screens). Fragment was introduced in Android 3.0 API 11. Fragment can also be used
for supporting different layouts for portrait and landscape orientations.

[98]

Chapter 6

A fragment stops as activity stops, and is destroyed as activity is destroyed. The
OnCreateView () method is where the view Ul is created via the inflate () method
call. Following is the screenshot of our application in landscape orientation from our
previous code:

Y

5554:nexus

DistanceCon

Distance
@® Km

Metre

Mile

Feet Calculate

Yard

We will make use of fragment to define a landscape layout for our DistanceConverter
application in the proceeding chapter.

Defining Fragment and Landscape layout

Let's make changes in the layout for Landscape mode. To support different layouts
for landscape mode, create a folder 1ayout-1land in the res folder. Create a file
activity main.xml under it and add following code:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
tools:context=".MainActivity" >
<TextView
android:id="@+id/textViewl"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout_alignParentLeft="true"
android:layout alignParentTop="true"
android:layout marginLeft="14dp"
android:layout marginTop="44dp"
android:text="@string/distance "
android:textAppearance="?android:attr/textAppearanceMedium"

/>

[99]

Handling Multiple Screen Types

<EditText
android:id="@+id/distText"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout _alignBaseline="@+id/textViewl"
android:layout alignBottom="@+id/textViewl"
android:layout toRightOf="@+id/textViewl"
android:ems="10"
android:inputType="numberDecimal |numberSigned" />

<RadioGroup android:id="@+id/distanceRadioGp"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout alignParentLeft="true"
android:layout below="@+id/distText"

<RadioButton android:id="@+id/kmRadiobutton"
android:layout height="wrap content"
android:layout width="wrap content"
android:checked="true"
android:text="@string/kmRadio">

</RadioButtons>

<RadioButton android:id="@+id/metreRadioButton"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/metreRadio" >

</RadioButtons>

</RadioGroup>

<Button
android:id="@+id/calButton"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout alignParentBottom="true"
android:layout centerHorizontal="true"
android:layout marginBottom="60dp"
android:onClick="onClick"
android:text="@string/calc"

</Buttons>

</RelativeLayout>

Create a file fragment checkbox.xml under the same folder to define the UI for
fragment. Add the following code in it:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"

android:layout width="match parent"

[100]

Chapter 6

android:layout height="match parent"
android:orientation="vertical" >
<TextViews>
android:id="@+id/textViewl"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginLeft="14dp"
android:layout marginTop="44dp"
android:text="@string/convertTo"
android:textAppearance="?android:attr/textAppearanceMedium" />
<CheckBox
android:id="@+id/checkBoxMile"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/toMile" />
<CheckBox
android:id="@+id/checkBoxYard"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="e@string/toYard" />
<CheckBox
android:id="@+1id/checkBoxFoot"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/toFoot" />
</LinearLayout>

Fragment layout from the preceding code is as shown in the following screenshot:

i)
&

I Form Widgets m|=| |

[t = | @rge Medium small - Button

jmall | ©FF [+ Checkbox
| RadioButtzn CheckedTextyiew D | Sta n C eC 0 n
Spinner
|
I Convert To
Yard
[0 Text Fields
[0 Layouts Feet
|7 Composite

[Images & Media

[J Time & Date

[0 Transitions

|2 Advanced

[o Other

fustom & Library Views
Graphi(al Layout | =l fragment_checkbox.xml

[101]

Handling Multiple Screen Types

After putting down layout of fragments let's define fragment by extending the
android.app.Fragment class. Let's create a fragment class ConvertToFragment
with the following code:

@TargetApi (Build.VERSION CODES.HONEYCOMB)
public class ConvertToFragment extends Fragment {
@Override

public View onCreateView (LayoutInflater inflater, ViewGroup
container,Bundle savedInstanceState) {

View view = inflater.inflate(R.layout.fragment checkbox,
container, false);
return view;

}

As fragment is available in the Android 3.0 (also known as API 11), we have put
@TargetApi (Build.VERSION_CODES.HONEYCOMB) at the top. For devices at lower
API level, fragments will not be available, in that case we have to define and arrange
views in activity-main.xml under the res/layout-1land folder.

For the compulsive use of fragments in lower API level, use Support Libraries
which is a JAR file that allows us to use the most recent Android APIs. For more
information, refer to the http://developer.android.com/training/basics/
fragments/support-lib.html.

In the onCreateview () method we inflate the view from XML via the inflate ()
method.

Hook up in the Main Layout file

Open the activity main.xml file in res/layout-1land and append following code:

<fragment
android:id="@+id/convertToCheckBox"
android:layout width="wrap content"
android:layout height="match parent"
android:layout alignParentTop="true"
android:layout marginLeft="45dp"
android:layout toRightOf="@+id/calButton"
class="com.packt.ch05.distancecon.ConvertToFragment"
tools:layout="@layout/fragment checkbox" />

The class points to the corresponding fragment class. The tools:layout points to
the layout for the corresponding fragment.

[102]

Chapter 6

After the preceding step, the graphical layout screen should look like the
following screenshot:

\ Palette
@ v @ NexusoOne v v % AppTheme v |@® MainActivity|~ @& ~ 17 v
[# Palette .
[= Form Widgets v = ®)

extv = L arge Medium =mal Button

smal OFF ¥ Checktiox

& Radiabuttan CheckedTextVien D i Sta nc eC on

Spinner
Sabterm

—

. Distance Convert To
o 77 77 I ¥ @ Km Mile

Metre Yard
[Text Fields

[J Layouts Feet
- Composite Calculate

[J Images & Media

[J Time & Date

[Transitions

[0 Advanced

[0 other

Custom & Library Views
[=] Graphical Layout | = activity_main.xml

Running the application

Now that we are done with all of the programming, let's check out how our
final application will look. The application in landscape mode is depicted in the
following screenshot:

5554:nexus

DistanceCon

—
Distance 2:{ Convert To
® Km [Mile
() Metre + Yard [~
v Feet
Calculate “—

[103]

Handling Multiple Screen Types

The application in the portrait mode is depicted in the following screenshot:

©® 5554:nexus

DistanceCon

Distance 2d
® Km

Metre

| Mile
Feet
Yard

Calculate

landscape and vice versa in the emulator.

1
[‘Q Use Ctrl+F11 to change screen mode from portrait to]

Optimizing for tablet

Tablet is another emerging Android device in the present context. We should also
define layouts to support tablet devices. To cater to tablet devices, or so called
large devices, we need to have another set of layouts defined under the folder
res/layout-xlarge (for the portrait mode) and layout-xlarge-land

(for landscape mode).The following snapshot shows the folders and files for
defining the layouts for larger devices (tablets):

¥ = layout-large

a| activity_main.xml
¥ (= layout-large-land

d| activity_main.xml
¥ = layout-xlarge

| activity_main.xml
¥ = layoutxlarge-land

_Cll-l--nu-\-uu-uu-'nu

[104]

Chapter 6

Once we have created the corresponding folder, we can make use of fragments
as demonstrated previously, to create different layouts and achieve the goal of
supporting tablets.

Persisting the state information during
the state transition

You must have observed that the state of checkboxes are not persisted after screen
mode changes from landscape to portrait and vice versa. This is a very important
concept that we should be aware of. For every screen orientation change, the
activity is destroyed, and then recreated. The onCreate () method is called and
hence, the current state of the activity is lost. We need to save the state using the
onSaveInstanceSate method and get it back with the onRestoreInstanceState
method. So let's override these methods to achieve this with the following code:

@Override
public void onSaveInstanceState (Bundle outState)
{
//---save whatever you need to persist—
outState.putBoolean ("mileChecked", cBoxMile.isChecked()) ;
outState.putBoolean ("ydChecked", cBoxYd.isChecked()) ;
outState.putBoolean ("ftchecked", cBoxFt.isChecked()) ;
super.onSaveInstanceState (outState) ;
}
@Override
public void onRestoreInstanceState (Bundle savedInstanceState)
{
super.onRestoreInstanceState (savedInstanceState) ;
//---retrieve the information persisted earlier---
cBoxFt.setChecked (savedInstanceState.getBoolean ("ftchecked")) ;

cBoxMile.setChecked (savedInstanceState.getBoolean
("mileChecked")) ;
cBoxYd.setChecked (savedInstanceState.getBoolean ("ydChecked")) ;

}

For the complete source, go to http://www.packtpub.com/support. For more
information on handling different screen types, refer to the following URLs:

® http://developer.android.com/training/multiscreen/
screensizes.html

® http://developer.android.com/distribute/googleplay/quality/
tablet.html

[105]

Handling Multiple Screen Types

Summary

In this chapter, we learned about fragment and its usage, and used it to have
different layouts for landscape mode for our application DistanceConverter.

We also learned about handling different screen types and persisting state during
screen mode changes. In the next chapter, we will learn about adding an external
library, for example, AdMob, and incorporate advertisements in the application.

[106]

Adding an External Library

An Android application cannot achieve everything on its own, it will always

need the company of external jars/libraries to achieve different goals and serve
various purposes. Almost every free Android application published on store

has advertisements embedded in it, which makes use of external components

to achieve it. Incorporating advertisements in the Android application is a vital
aspect of today's application development. In this chapter, we will continue on our
DistanceConverter application developed from the previous chapters, and make
use of an external library, AdMob, to incorporate advertisements in our application.
The coverage will include the following;:

* Creating an account at the AdMob site

* Adding Site/ Application

* Adding the Advertisement Meditation Network
* Adding AdMob in the application

* Making changes in the manifest file

* Adding the AdMob widget/view in the layout file

* Running the application

Creating an account at the AdMob website

AdMob is one way to incorporate advertisements in our Android application. To
make use of AdMob, the first thing we need to do is to register and get an account
for ourselves. To register, visit the http://www.admob . com website and register
on it. On the right-hand side, click on Sign up with AdMob, and then fill up the
form and register.

Adding an External Library

The following screenshot shows the sign up form:

Google accounts

Create an Account

T you akieady Rave 4 GOOGH ACCOUNE, YU CaN Sid

Required information for Google account

Your current email address:

Choose & password: Passord strengin:

Re-enter password:

& saay signed in

& Enable Web History Leam More

Location: Nepal (737)

Birthday:

Word Verification: Typss 1he CRATACIENS YU S84 in h pictuns Bolow

ol 107

We can use our existing Google ID if we have, else the preceding steps will create
one and link it with the AdMob account.

Adding Site/Application

Once we have created our account, we need to add a Site/ Application (basically, it
identifies or acts as unique handle for ads networks for the ads they place). To add
Site/ Application we perform the following steps:

admob

by Google:

Sites & Apps
Sites & Apps

House Ads Rf
Sites & 4 Ad Metwork Mediation

@ We are simplifying our suite of products by transitioning AdMob mobile web publishers to Google AdSense. Starting May 1, 2012 support for mobile web
sites on AdMob will be discontinued and you must have a Google AdSense account to monetize mobile web sites. More information is available here.

@ The AdMob SDK v6 for i0S and Android is now available! Download here

o Google AdSense Ads Enabled
Congratulations! Apps in your account have been enabled to serve Google AdSense ads. For any unfilled ad request, AdMob will attempt to serve Google
AdSense ads to help improve your fill rate. No further changes are required on your part. This program applies the Google AdSense Online Terms and

Conditions. You can change your Google AdSense ad settings at anytime. Go to "Manage Settings" for your iPhone or Android apps and then click on the
"App Settings" tab

Here a few tips to remember:
Stats for Google AdSense ads will be consolidated with your existing AdMob network ads, including all revenue and impressions
+ Reporting for Google AdSense ads will be delayed by up to 48 hours
= AdMob ad filters will not apply for any Google AdSense ads served to your app
* More information is available here

[108]

Chapter 7

1. Navigate to Add Site/App from the Sites & Apps menu, as shown in the
preceding screenshot. The Add Site/App screen will appear, as shown in
the following screenshot:

Add Site/App
T - cod:

Select a site or app type

Publisher Help

Select your site type and complete the
\ . information below to register your site or app
L |

and retrieve the appropriate Publisher Code
on the subsequent page.

Each type of site or app has a specific version
of Publisher Code required to integrate with
the AdMob marketplace.

Android App iPad App iPhone App Windows
Phone 7 App

Details

App name: |DistanceCon

Android Package
URL:

€

htep://

category: | Selecta category —

ApP dMob SDK Update]
description:

All new Android, iPad, iPhone, and Windows
Phone 7 apps require an AdMob SDK that was
released on or after March 15, 2011

If you are using a version of the AdMob SDK
that was released before March 15, 2011,

2. Select Android App, as shown in the preceding screenshot and fill in
the other details. Because our application is not in the market place, use
http:// for Android Package URL, as shown in the preceding screenshot.

[109]

Adding an External Library

3. Select the corresponding category, in this case we used Tools, and add some
description in the App description textarea. Also, leave the other fields to
their default, and enter the captcha and create site. After this the following

screen will appear:

e e e G G

Sites & Apps Add New Site/App

Add New Sites / Apps
site o

Install Code - DistanceCon

%\, This app requires an AdMob SDK that was released on or after March 15, 2011. Please download the latest version of the AdMob SDK before making ad

requests with this app

The AdMob Android SDK includes:

1. README: Get started with AdMob Android ads!
2. AdMob Jar file: Reguired for publishing ads. Follow the documentation in javadocfindex.html and drop the AdMob Jar file into your project.

3. Javadoc: APl Documentation for the AdMob Android SDK.

| Download AdMob Android SDK |

See developer's guide, examples, and FAQ at Google Code.

Go to Sites/Apps

4. Next, click on the Download AdMob Android SDK button to download
the adMob SDK. Once the SDK is downloaded, click on the Go to Sites/App
button and our site should have been added, and will appear in the sites list

as shown in the following screenshot:

Sites & Apps

" Congratulations! You have successfully created your site!
+ To configure your site settings, click on Manage Settings

Today's Revenue Estimated Earnings Revenue Trends

$0.00 $0.00

Revenue eCPM Ad Balance: $0.00 505
Yesterday $0.00 (0%) $0.00 (0%) £0.25
Last 7 Days $0.00 (0%) $0.00 (0%) 30
t updated on 2013-04-22 00:00:00 GMT 04/18 04/19 04/20 04/21 Today
Set table date range:
Add Site/App [#] 2013/03/23 - 2013/04/22
Name Type Status Mediation Revenue « Requests eCPM Fill Rate RPM
(] Available $0.00 0 $0.00 0.00% $0.00

DistanceCon

[110]

Chapter 7

5. The Status appears to be red as it has not received any ad request for this
site. It will automatically turn green once it starts getting ad requests for
this site.

Choosing the Ad Network Mediation

Once we are done with adding the Site/ Application and downloading the SDK lets
get into adding Ad Network Mediation (AdMob Mediation). It coordinates with
the different ad networks to help us maximize fill rate (represents the percentage of
ad requests that satisfy the ad requests sent by the app) and increase monetization.
It ensures that a proper network is selected to serve the ads at any time. For more
information on AdMob Mediation, please refer to the following URL:

https://support.google.com/admob/topic/2403413?hl=en&ref topic=1307209
To add the Ad Network Mediation, follow the given steps:

1. Navigate to the Ad Network Mediation under the Sites & Apps menu, and
follow the steps, as shown in the following screenshot:

=

Sites & Apps Ad Network Mediation Add Network Mediation Placement

Add Network Mediation Placement

Placement Details

Name: |CestDistAd

Platform: | Android =

Ad Size) : Banner - Typically 320x50
Automatic Refresh) : No refresh

@ Refresh rate: |60 seconds
(12

(12 - 120 seconds)

Save & Continue | cancel

2. Select the Ad Size as Banner - Typical 320x50 for support on most of the
iPhones and Android phones in portrait, and Platform as Android.

For more information on banner sizes and decision, refer to the following URL:

https://developers.google.com/mobile-ads-sdk/docs/admob/
smart-banners

[111]

Adding an External Library

3. Next, select Automatic Refresh, and then specify the Refresh rate, and then
click on the Save & Continue button. The following screen will appear.
Select Ad Network from it, and then click on Continue as depicted in the
following screenshot:

Sites & Apps Ad Network Mediation Add Ad Network

Add Ad Networks To: testDistAd
Choose Ad Networks:

For each network you'd like to use, enter your publisher credentials and click "Save". You can add more ad networks later as you sign up for them. Click
"Continue" once you're done adding networks.

Ad Network

AdMab House Ads

(<)

AdMob Network

AdMob eCPM Floor Beta

Adfonic

Domob

Drawbridge

Flurry

4. Choose the network you wish from the options in the preceding screenshot.

Publisher credentials are to be provided for the network we select at
_ the bottom of the same screen. In this case, we have credentials for
% AdMob as we just signed up and we only chose AdMob Network, as
L shown in the preceding screenshot. However, we are free to add any
number of networks, provided we have credential details. Also, we
can always add any network at any point of time.

Adding AdMob SDK to the project

Let's extract the previously downloaded AdMob SDK zip file, and we should

get the folder GoogleAadMobAdsSdkAndroid-6.*.*. Under that folder there is
GoogleAdMobAdsSdk-6.x.x. jar file. Copy this JAR file in the 1ibs folder of the
project, as shown in the following screenshot:

[112]

Chapter 7

v £ DistanceCon
> #src
» @8 gen [Generated Java Files]
» =) Android 4.2
> =) Android Dependencies
2 assets
» & bin
| Slbs
& android-supportv4.jar
&) GoogleAdMobAdsSdk-6.3.1.jar
> L res
a AndroidManifest.xml
[, ic_launcher-web.png
proguard-projeck.txt
project.properties

b e El g gallars

Other Java libraries can be added in the same way for use in our project, and
to reference Android libraries in the project, information is available at the
following URL:

http://developer.android.com/tools/projects/projects-eclipse.html

Making changes in the manifest file

The AdMob needs to make request across the internet to fetch ads. Therefore, that
permission needs to be added in the AndroidManifest.xml file as shown in the
following code:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission
android:name="android.permission.ACCESS NETWORK_ STATE" />

In other words, it also helps the AdMob SDK to figure out a currently working
Internet connection before it places requests.

Also, add the Adview activity which is responsible for getting and showing ads in the
file, as shown in the following code:

<activity

android:name="com.google.ads.AdActivity"
android:configChanges="keyboard|keyboardHidden|orientation|screenLayou
t |uiMode | screenSize|smallestScreenSize" />

For more information on integration, refer to the following URL:

https://developers.google.com/mobile-ads-sdk/docs/

[113]

Adding an External Library

Adding the AdMob widget/view in the
layout file

To add the adMob view, add the following code in the layout/activity main.xml
file for the portrait mode:

<com.google.ads.AdView
android:id="@+id/adView"
android:layout width="£fill parent"
android:layout height="wrap content"
android:layout alignParentBottom="true"
ads:adSize="SMART BANNER"
ads:testDevices="TEST EMULATOR"
ads:adUnitId="al516e8871e5b38"
ads:loadAdOnCreate="true" />

Similarly, add the same piece of code in the layout-land/activity main.xml
file for the landscape mode. After this addition, an error will be shown, and that is
because we have not defined the namespace for Adview. We will do that next and
the error will disappear.

Add the meta tag in the namespace at the top of the XML along with
other namespaces:

xmlns:ads="http://schemas.android.com/apk/lib/com.google.ads"

Let's look at some of the important tags and the values of Adview that were
used previously:

Item Value

ads:adSize SMART BANNER: the banner adjusts according to the screen
types and orientation using the width of screen.

ads:testDevices It is used for testing whether the code is fine.
TEST EMULATOR is used for Emulator. Devices ID can
also be specified if used for testing. It should be removed if
moving to production from dev. The easiest way to find the
device ID is from the AdMob SDK log output.

ads:adunitId Publisher ID. Replace with the corresponding ID.

ads:loadAdOnCreate To create the view by inflating, and send ad request to
AdMob.

[114]

Chapter 7

In the previous case we are loading Adview and making request via XML. There is
another way to achieve this by placing the following code in the MainActivity.java
file in the oncreate () method, as shown in the following code snippet:

advView = (AdView)findViewById(R.id.adView) ;
AdRequest re = new AdRequest () ;
re.setTesting (true) ;

(r

adView. loadAd (re)

NG Make sure the testing mode is removed before the Android app
gets ready to be published to the store.

Running the application

After all the hard work, let's run the application to check out how it looks.
In the landscape mode, the advertisement would appear as shown in the
following screenshot:

DistanceCon

Distance Convert To

® Km Mile
Metre v Yard
v Feet

Calculate

Full Width Test Ad

[115]

Adding an External Library

In the portrait mode, the ad will appear as shown in the following screenshot:

DistanceCon

Distance
® Km

Metre
L | Mile

Feet

| Yard

Calculate

3 Full Width Test Ad

‘:—__)

For the first time the AdMob ads may take 1 or 2 minutes to show, so have patience.

Summary

In this chapter, we learned how to add an external library by means of incorporating
AdMob mobile advertisements in our DistanceConverter application.

In the next chapter, we will learn about what it takes to sign and get ready to
publish the application.

[116]

Signing and Distributing APK

All the hard work done so far is not going to pay off unless we distribute our
application for others to use. An Android application has to be signed before it goes
on the radar for distribution. Any Android application, be it used in the emulator or
distributed to friends, relative for testing, or published to Google Play store, needs
to be signed electronically. In this chapter, we will learn about how to sign it and
publish it for use by others. This chapter will cover the following:

* APK (Android package)

* Preparing for release

* Compilation for release

* Generating a private key

* Using the Eclipse ADT for release

* Publish to Google Play

APK - Android package

The Android package (APK), in simple terms, is similar to the runnable JAR or
executable file (on Windows OS) which consists of everything that is needed to
run the application.

The Android ecosystem uses a virtual machine, that is, Dalvik virtual machine
(DVM) to run the Java applications. Dalvik uses its own bytecode, which is quite
different from the Java bytecode.

A tool ax under Android SDK converts our Java classes to .dex (Dalvik executable).

The . dex files and resources of application (XML and images) are packaged by the
tool aapt (Android asset packing tool) into the . apk file.

Signing and Distributing APK

Preparing for release

After the hard work of coding and testing the application needs to be packaged for
release. Packaging involves the following steps.

Compilation for release

This is the very first step towards release and distribution. It comprises of setting a
package name in the application's manifest file, configuring application attributes,
and compilation before release. They involve the following steps:

* Choosing appropriate package name: Once the application is released
it cannot be undone hence, the need to dwell upon and choose a suitable
package name. The package name can be set in the application's manifest file.

* Disabling debugging: We need to make sure we disable debugging
before we release it. To disable debugging, comment or remove the Log ()
method call in the code. Also, debugging can be disabled by removing the
android:debuggable attribute from the <applications tag.

* Pointing out the application icon: Every application needs to have an icon
of itself. Please make sure that the icon follows the icon guidelines a:
http://developer.android.com/guide/practices/ui_guidelines/
icon_design_launcher.html. Icons can be specified by using the icon
attributes of the <application> tag.

Versioning: This is the most important aspect of release and also maintenance. The
version identifies the application's release build and determines how it should be
updated. To put it in the simple terms, the version number must be incremented with
each published release. With no version in place, it is rather impossible for future
updates. The versioning information is provided by the following two attributes:

android:versionCode Itis the integer represents version of application.

android:versionName Itis the string that is displayed to users to identify
what is installed in the device.

Both these attributes can be specified under the <manifest> element.

* Review the manifest file for permissions: It should only specify relevant
permissions in the manifest file using the <uses-permission> tag.

[118]

Chapter 8

Generating a private key

An android application must be signed with our own private key. It identifies a
person, corporation, or entity associated with the application. This can be generated
using the program keytool from the Java SDK. The following command is used for
generating the key:

keytool -genkey -v -keystore <filename>.keystore -alias <key-name>
-keyalg RSA -keysize 2048 -validity 10000

We can use a different key for each published application, and specify a different
name to identify it. Also, Google expects validity of at least 25 years or more. A very
important thing to consider is to keep a back up and securely store the key, because
once it is compromised it impossible to update an already published application.

Signing
After obtaining the private key we need to sign the application. This is done using a
program jarsigner from the Java SDK. The following command is used:

jarsigner -verbose -sigalg MD5withRSA -digestalg SHAl -keystore my-
release-key.keystore my application.apk alias name

Alignment

Once the APK is signed it needs to be optimized, to do that we use the zipalign tool
available with the Android SDK under the tools/ directory. The usage is as follows:

zipalign -v 4 your project name-unaligned.apk your project name.apk

Using the Eclipse ADT for release

Using the Eclipse Android Development Tool (ADT), all the aforementioned
steps in the Preparing for release section can be done with ease. Let's prepare our
DistanceConverter from the earlier chapter for release using the Eclipse ADT.

[119]

Signing and Distributing APK

Follow the given steps:

1. Right-click on the project DistanceConverter and then select Export from
the context menu. Select Export Android Application, as shown in the
following screenshot:

Select
4

Select an export destination:

* (= General
¥ (= Android
* = EJB

» (= Install

* (= Java

» (= Java EE

> = Plug-in Development
* (= Remote Systems

» (= Run/Debug
B 7 Tacks

< Back Next> | Cancel Finish
@ I | |

2. The Export wizard will now guide you through the process of signing,
including the steps for selecting the private key (if already generated
using the tool), or creating a new keystore and private key. Some of the
following screens are captured, with the first screenshot being the creation
of a keystore.

3. Now select Create new keystore and provide the Location and
Password values:

[120]

Chapter 8

4.

= Export Android Application |

Keystore selection

@ Enter path to keystore.

I Use existing keystore

@® Create new keystore

Location: [|

| Browse... |

Password:

Confirm:

@ | < Back

Cancel

In the following screen we can enter other details about the key creation as

specified in the next table:

Export Android Application

Key Creation

@ Enter key alias.

Alias:
Password:
Confirm:

Validity (years):

First and Last Name: _
Organizational Unit: _
Organization:

City or Locality:

State or Province:

Country Code (XX):

@ <Back

Cancel

[121]

Signing and Distributing APK

5. In the Export Android Application wizard, fill in the respective details:

Field Value

Alias DIS - It is the key alias name

Password <passwords>

Validity 25 - for publishing in Google Play, a period

ending 22 October 2033 is a requirement
First and Last Name <NAME>

Organizational Unit = Personal

Organization Personal

City or Locality <CITY NAME>

State or Province <STATE NAME>

Country Code(xx) Two letter code (for example, US)

6. Click on Finish, and the result is compiled, signed, aligned, and ready
for distribution.

Publishing to Google Play

Publishing at Google Play is very simple and involves the following:

* Register for Google Play: Visit and register it at https://play.google.
com/. It requires $25 USD to register, and is fairly straightforward and can
take a few days until you get the final access.

* Uploading APK: Once the registration is over, the users have to log in and
upload the APK file using the Upload Application link. Also, they have to
upload the required assets, and edit the listing details, the one users will see
when they browse the application in store.

* Finish up the task by using the publish button.

[122]

Chapter 8

Getting help

For more information and help on signing and publishing, refer to following links:

® http://developer.android.com/tools/publishing/app-signing.html
® http://developer.android.com/tools/publishing/versioning.html

® http://developer.android.com/tools/publishing/preparing.html

Summary

In this chapter, we learned about the steps involved in signing and distribution of
APK, and how it can be achieved using the Eclipse ADT easily.

[123]

Symbols

.dex (Dalvik executable) 117
/drawable-hdpi 27
/drawable-1dpi 27
/drawable-mdpi 27
/drawable-xhdpi 27
/layout 27

/libs 27

/menu 27

[res 27

[src 27

/values 27
/values-vll 27
[values-vl4 27

A

aapt (Android asset packing tool) 117
account creation, in AdMob website
AdMob SDK, adding to project 112, 113
AdMob widget/view, adding in
layout file 114, 115
Ad Network Mediation, choosing 111, 112
manifest file, changes making 113
Site/ Application, adding 108-111
activity
launching 78, 79
activity_main.xml file 102
Activity property 82
Add Site/App screen 109
AdMob website
account, creating 107, 108
application, running 115,116
AdMob widget/view
adding, in layout file 114, 115

Index

Ad Network Mediation
(AdMob Mediation) 111

ads:adSize 114
ads:adUnitld 114
ads:loadAdOnCreate 114
ads:testDevices 114
ADT

about 119, 120

installing, in Eclipse Juno(4.2) 15-17

URL 40
Android

about 6

APl level 7

application, running on 56, 57

app 6

versions 7
Android app

app 6
Android Debug Bridge (ADB) 32
android:defaultValue property 87
Android development

about 9

ADT, installing in Eclipse (Juno) 15-17

Android SDK, installing 11, 12

Eclipse (Juno), installing 13

JDK, installing 10

prerequisites 9
Android Development Tool. See ADT
Android Development Toolkits 79
android:key property 87
Android manifest editor 30
AndroidManifest.xml 27
android:minSdkVersion 42
Android package. See APK
Android platform 6
Android Preferences window 22

Android SDK

installing 11, 12

linking, to Eclipse 18-22
android:showAsAction keyword 86
android:summary property 87
android:title property 87
Android Virtual Device. See AVD
Android virtual device manager 37, 39
API level, Android

components 7
APIs 6
APK 117
application

running 40, 95

running, on Android device 56, 57

running, on emulator 55
Application name property 82
Application Programming

Interfaces. See APIs

audio

adding 73-75

afd 75

mp 75

try...catch block 75
Available Software dialog 16
AVD 37
AVD Manager 38

C

Calculate button 92
CheckBox
adding 84, 85
code editor
about 28, 29
Android manifest editor 30
graphical layout editor 29
Menu editor 30
Resources editor 30
XML resources editor 30
compilation process, release preparation
application icon 118
debugging, disabling 118
package name, selecting 118
versioning 118
configuration chooser 31
conversion method 93

Ctrl+F11 104

D

Dalvik Debug Monitor Server. See DDMS
Dalvik Virtual 7

Dalvik virtual machine (DVM) 6,117
DDMS

about 34

Allocation Tracker 34
devices 34

Emulator Control 34
File Explorer 34
Heap 34

images 35

LogCat 34

Threads 34

debugging pane 32-34
DistanceConverter application 82

E

Eclipse

Android SDK, linking to 18-22
URL 40

Eclipse ADT

using, for release 119-122

Eclipse Juno(4.2)

installing 13, 14

emulator

application, running 55

event

handling 70-72

Export Android Application 122
Export wizard 120

F

features, IDE

Android virtual device manager 37

Code editor 28

Dalvik Debug Monitor Server (DDMS) 34
Debugging pane 32

GUI 30

project explorer tool 26, 27

Properties window 32

SDK manager 35

[126]

final product
running 80
testing 80
folders, project explorer tool
AndroidManifest.xml 27
/assets 27
/drawable-hdpi 27
/drawable-1dpi 27
/drawable-mdpi 27
/drawable-xhdpi 27
/gen 27
/layout 27
/libs 27
/menu 27
/res 27
/src 27
/values 27
/values-v1l 27
/values-v1l4 27
fragment
about 98, 99
defining 99-102
Froyo (Android 2.2) 20

G

Google Play
APK, uploading 122
publishing to 122
registering 122

graphical layout designer
using 47,49

graphical layout editor 29

Graphical user interface designer
about 30, 31
configuration chooser 31
screen layout designer 31

H

HelloU project 55
help section 40

ImageButtons
about 70-72
adding 66, 67

Image File field 60
image resources
adding 63, 64
ImageView
adding 64, 65
inflate() method 102
Insert HTMLs
WebView 77,78
installations
Android SDK 11, 12
Eclipse Juno 4.2 13,14
JDK 10
Intent
about 78
launching 79

J

JDK
installing 10

L

Landscape layout
application, running 103, 104
defining 99-102

Launch button 39

Layout property 82

LogCat 34

Manager icon 19
match_parent
using 98
menu
adding 86
building 90, 91
Menu editor 30

N

new Android application project
creating 42-45

new project
creating 82

[127]

O

onClick function 92

onCreate method 70, 90

onCreate() method 105
OnCreateView() method 99
onRestoreInstanceState method 105
onSavelnstanceSate method 105

P

Package name property 82
playsound method 74
Preference screen

about 86

building 90, 91

defining 87-89

values, obtaining 91-93
private key

generating 119
project explorer tool

about 26

folders 27
Project name property 82
Properties window 32

R

RadioButton 83

RadioGroup 83

release preparation
alignment 119
compilation 118
private key, generating 119
signing 119

Resources editor 30

Run button 40

S

screen layout designer 31
SDK 6
SDK manager 35, 36
SimpleNumb3r5 app

about 60-62

screen, adding 75,76
Software Development Kit. See SDK
soundname parameter 74

source code editor

used, for widget interactions 50-53

StartActivity command 78
StartActivity() method 79
state transition

information, persisting 105

string resources

about 46
s_btnDisplay variable 46
s_tvName variable 46

Strings

defining 87

T

TableLayout

about 62
adding 62

tablet

optimizing for 104

Template property 82
TextField 83, 84
Toast.makeText() 54
Toast message 54

U

Upload Application link 122

\'

versioning 118
versions, Android 7
views

CheckBoxPreference 87
EditTextPreference 87
ListPreference 87
PreferenceCategory 87
RingTonePreference 87

w

WebView

Insert HTMLs 77,78

widget

about 30
Display app info 67
ImageView 67

[128]

interactions, source code editor used 50-53 X
Left most button 67

Play sound button 67 XML layout code editor 50
Right most button 67 XML resources editor 30
widgets ID

assigning 67, 68
wrap_content
using 98

[129]

open source

community experience distilled

PUBLISHING

Thank you for buying
Android Development Tools for Eclipse

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Android 3.0 Application
Development Cookbook

Android 3.0 Application

Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1. Written for Android 3.0 but also applicable to
lower versions

2. Quickly develop applications that take
advantage of the very latest mobile
technologies, including web apps, sensors,
and touch screens

3. Part of Packt's Cookbook series: Discover tips
and tricks for varied and imaginative uses of
the latest Android features

Android Database Programming
ISBN: 978-1-84951-812-3 Paperback: 212 pages

Exploit the power of data-centric and data-driven
Android applications with this practical tutorial

1. Master the skills to build data-centric
Android applications

2. Go beyond just code by challenging yourself
to think about practical use-cases with SQLite
and others

3. Focus on flushing out high level design
concepts, before drilling down into different
code examples

Please check www.PacktPub.com for information on our titles

[PACKT] open source™

PUBLISHING

Android 4: New features for
Application Development

Android 4: New Features for
Application Development
ISBN: 978-1-84951-952-6 Paperback: 166 pages

Develop Android applications using the new features
of Android Ice Cream Sandwich

1. Learn new APIs in Android 4

2. Get familiar with the best practices in
developing Android applications

3. Step-by-step approach with clearly explained
sample codes

Android Native Development
Kit Cookbook

Android Native Development

Kit Cookbook
ISBN: 978-1-84969-150-5 Paperback: 346 pages

A step-by-step tutorial with more than 60 concise
recipes on Android NDK development skills

1. Build, debug, and profile Android NDK apps

2. Implement part of Android apps in native
C/C++ code

3. Optimize code performance in assembly with
Android NDK

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Eclipse, ADT
and SDK
	Introducing the Android platform
	What is Android?
	Introducing the Android app
	What is Dalvik Virtual?
	Understanding API level
	How many versions (distributions)
Android has.

	Preparing for Android development
	Installing the JDK
	Installing the Android SDK
	Installing the Eclipse (Juno)
	Installing the ADT in Eclipse Juno

	Linking the Android SDK to the Eclipse
	Summary

	Chapter 2: Important Features of the IDE
	Project explorer
	Code editor
	Graphical layout editor
	Android manifest editor
	Menu editor
	Resources editor
	XML resources editor

	Graphical user interface designer
	The configuration chooser
	The screen layout designer

	Properties window
	Debugging pane
	Dalvik Debug Monitor Server (DDMS)
	SDK manager
	Android virtual device manager
	Running the Application
	Getting help
	Summary

	Chapter 3: Creating a New Android Project
	Creating a new Android application project
	String resources
	Using the graphical layout designer
	The XML layout code editor
	Widgets interactions through the source code editor
	Toast message
	Running the application on the emulator
	Running the application on an
Android device
	Summary

	Chapter 4: Incorporating Multimedia Elements
	Adding a TableLayout
	Adding the image resources
	Adding ImageView
	Adding ImageButtons
	Assigning the widget's ID
	ImageButtons and handling event
	Adding audio
	Adding another screen in the app
	Insert HTMLs in WebView
	Intent and Activity
	The final product run and test
	Summary

	Chapter 5: Adding RadioButton, CheckBox, Menu,
and Preferences
	Creating a new project
	Adding a RadioGroup, RadioButton, and a TextField
	Adding a CheckBox
	Adding a menu
	Defining the Strings
	Defining the Preference screen
	Hook up
	Binding the menu and Preference
	Getting values from Preferences

	Run the application
	Summary

	Chapter 6: Handling Multiple
Screen Types
	Using wrap_content and match_parent
	Fragment
	Defining Fragment and Landscape layout
	Hook up in the Main Layout file:

	Running the application
	Optimizing for tablet
	Persisting the state information during the state transition
	Summary

	Chapter 7: Adding an External Library
	Creating an account at the AdMob website
	Adding Site/Application
	Choosing the Ad Network Mediation
	Adding AdMob SDK to the project
	Making changes in the manifest file
	Adding the AdMob widget/view in the
layout file

	Running the application
	Summary

	Chapter 8: Signing and Distributing APK
	APK – Android package
	Preparing for release
	Compilation for release
	Generating a private key
	Signing
	Alignment

	Using the Eclipse ADT for release
	Publishing to Google Play
	Getting help

	Summary

	Index

