
Automated
Trading with R

Quantitative Research and
Platform Development
—
Chris Conlan

www.allitebooks.com

http://www.allitebooks.org

 Automated Trading with R
 Quantitative Research and Platform

Development

Chris Conlan

www.allitebooks.com

http://www.allitebooks.org

Automated Trading with R: Quantitative Research and Platform Development

Chris Conlan
Bethesda, Maryland
USA

ISBN-13 (pbk): 978-1-4842-2177-8 ISBN-13 (electronic): 978-1-4842-2178-5
DOI 10.1007/978-1-4842-2178-5

Library of Congress Control Number: 2016953336

Copyright © 2016 by Chris Conlan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Developmental Editor: Laura Berendson
Technical Reviewers: Stephen Nawara, Jeffery Holt
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com , or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 For my family.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ...xv

About the Technical Reviewers ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Part 1: Problem Scope .. 1

 ■Chapter 1: Fundamentals of Automated Trading ... 3

 ■Part 2: Building the Platform .. 21

 ■Chapter 2: Networking Part I ... 23

 ■Chapter 3: Data Preparation .. 37

 ■Chapter 4: Indicators ... 51

 ■Chapter 5: Rule Sets .. 59

 ■Chapter 6: High-Performance Computing .. 65

 ■Chapter 7: Simulation and Backtesting ... 83

 ■Chapter 8: Optimization ... 101

 ■Chapter 9: Networking Part II .. 131

 ■Part 3: Production Trading .. 153

 ■Chapter 10: Organizing and Automating Scripts ... 155

 ■Chapter 11: Looking Forward .. 161

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

vi

 ■Appendix A: Source Code .. 167

 ■Appendix B: Scoping in Multicore R .. 195

Index ... 203

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ...xv

About the Technical Reviewers ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Part 1: Problem Scope .. 1

 ■Chapter 1: Fundamentals of Automated Trading ... 3

Equity Curve and Return Series ... 3

Characteristics of the Equity Curve .. 5

Characteristics of the Return Series ... 5

Risk-Return Metrics ... 6

Characteristics of Risk-Return Metrics .. 8

Sharpe Ratio ... 10

Maximum Drawdown Ratios ... 12

Partial Moment Ratios .. 14

Regression-Based Performance Metrics .. 16

Optimizing Performance Metrics .. 20

 ■Part 2: Building the Platform .. 21

 ■Chapter 2: Networking Part I ... 23

Yahoo! Finance API ... 24

Setting Up Directories ... 25

URL Query Building ... 25

Data Acquisition .. 26

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Loading Data into Memory ... 27

Updating Data ... 28

YQL Web Service .. 29

URL and Query Building .. 30

Note on Quantmod ... 33

Background .. 33

Comparison .. 33

Organizing as Date-Uniform zoo Object ... 34

Note on zoo Objects .. 35

 ■Chapter 3: Data Preparation .. 37

Handling NA Values .. 37

Note: NA vs. NaN in R ... 37

IPOs and Additions to S&P 500 ... 37

Merging to the Uniform Date Template ... 39

Forward Replacement .. 40

Linearly Smoothed Replacement .. 41

Volume-Weighted Smoothed Replacement .. 42

Discussion of Replacement Methods ... 43

Real Time vs. Simulation .. 43

Infl uence on Volatility Metrics .. 43

Infl uence on Trading Decisions ... 44

Conclusion .. 44

Closing Price and Adjusted Close ... 44

Adjusting for Stock Splits ... 45

Adjusting for Cash Dividends .. 45

Effi cient Updating and Adjusted Close .. 46

Implementing Adjustments ... 47

Test for and Correct Inactive Symbols .. 47

Computing the Return Matrix ... 48

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 4: Indicators ... 51

Indicator Types ... 51

Overlays .. 51

Oscillators ... 51

Accumulators .. 52

Pattern/Binary/Ternary ... 52

Machine Learning/Nonvisual/Black Box ... 52

Example Indicators ... 52

Simple Moving Average .. 52

Moving Average Convergence Divergence Oscillator (MACD)... 53

Bollinger Bands .. 54

Custom Indicator Using Correlation and Slope ... 55

Indicators Utilizing Multiple Data Sets .. 56

Conclusion .. 57

 ■Chapter 5: Rule Sets .. 59

Our Process Flow as Nested Functions .. 59

Terminology .. 59

Example Rule Sets ... 61

Overlays .. 61

Oscillators ... 61

Accumulators .. 61

Filters, Triggers, and Quantifi cations of Favor .. 62

 ■Chapter 6: High-Performance Computing .. 65

Hardware Overview .. 65

Processing .. 65

Multicore Processing .. 65

Hyperthreading ... 66

Memory .. 67

The Disk .. 68

Random Access Memory (RAM) ... 68

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Processor Cache ... 68

Swap Space .. 68

Software Overview ... 69

Compiled vs. Interpreted .. 69

Scripting Languages ... 70

Speed vs. Safety ... 70

Takeaways .. 71

for Loops vs. apply Functions ... 71

for Loops and Memory Allocation ... 72

apply-Style Functions ... 73

Use Binaries Creatively ... 73

Note on Measuring Compute Time ... 74

Multicore Computing in R ... 74

Embarrassingly Parallel Processes... 75

doMC and doParallel ... 75

The foreach Package .. 76

The foreach Package in Practice .. 77

Integer Mapping ... 77

Computing the Return Matrix with foreach .. 78

Computing Indicators with foreach .. 79

 ■Chapter 7: Simulation and Backtesting ... 83

Example Strategies .. 83

Our Simulation Workfl ow .. 85

Listing 7-1: Pseudocode ... 85

Listing 7-1: Explanation of Inputs and User Guide .. 86

Discussion .. 92

Implementing Example Strategies ... 93

Summary Statistics and Performance Metrics... 97

Conclusion .. 99

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xi

 ■Chapter 8: Optimization ... 101

Cross Validation in Time Series .. 101

Numerical vs. Analytical Optimization .. 102

Numerical Optimization Overview .. 103

Parameter Transform for Unbounded Search Algorithms ... 104

Declaring an Evaluator ... 105

Listing 8-1: Pseudocode ... 105

Listing 8-1: Explanation of Inputs and User Guide .. 106

Exhaustive Search Optimization ... 110

Pattern Search Optimization .. 114

Generalized Pattern Search Optimization ... 114

Nelder-Mead Optimization .. 120

Nelder-Mead with Random Initialization .. 120

Projecting Trading Performance ... 127

Conclusion .. 130

 ■Chapter 9: Networking Part II .. 131

Market Overview: Brokerage APIs .. 131

Secure Connections ... 133

Establishing SSL Connections .. 133

Proprietary SSL Connections .. 134

HTTP/HTTPS .. 135

OAuth .. 135

Feasibility Analysis for Trading APIs ... 135

Feasibility of Custom R Packages .. 135

HTTPS + OAuth Through Existing R Packages .. 136

FIX Engines ... 136

Exporting Directions to a Supported Language .. 136

Planning and Executing Trades .. 136

The PLAN Job ... 137

The TRADE Job ... 139

 ■ CONTENTS

xii

Common Data Formats ... 140

Manipulating XML ... 140

Generating XML Documents ... 146

Manipulating JSON Data ... 147

The Financial Information eXchange Protocol .. 148

The FIX eXtensible Markup Language .. 149

OAuth in R ... 150

Conclusion .. 152

 ■Part 3: Production Trading .. 153

 ■Chapter 10: Organizing and Automating Scripts ... 155

Organizing Scripts into Jobs .. 155

Calling Jobs with the Source Function ... 155

Calling Jobs via Sourcing ... 156

Task Scheduling in Windows .. 156

Running R from the Command Line in Windows .. 156

Setting Up and Managing the Task Scheduler .. 158

Task Scheduling in UNIX ... 159

Conclusion .. 160

 ■Chapter 11: Looking Forward .. 161

Language Considerations ... 161

Python ... 161

C/C++ ... 161

Hardware Description Languages .. 162

Retail Brokerages and Right to Refuse... 162

Right to Refuse in the Swiss Currency Crisis ... 163

Connection Latency .. 163

Ethernet vs. WiFi ... 163

Proximity to Exchanges .. 164

 ■ CONTENTS

xiii

Prime Brokerages ... 164

Digesting News and Fundamentals .. 165

Conclusion .. 165

 ■Appendix A: Source Code .. 167

Platform/confi g.R ... 167

Platform/load .. 168

Platform/load.R ... 168

Platform/update.R ... 169

Platform/functions/yahoo.R .. 170

Platform/load/initial.R ... 170

Platform/load/loadToMemory.R .. 171

Platform/load/updateStocks.R .. 172

Platform/load/dateUnif.R .. 176

Platform/load/spClean.R ... 177

Platform/load/adjustClose.R ... 177

Platform/load/return.R .. 177

Platform/load/fi llInactive.R ... 178

Platform/compute .. 178

Platform/compute/MCinit.R .. 178

Platform/compute/functions.R ... 178

Platform/plan.. 184

Platform/plan.R ... 184

Platform/plan/decisionGen.R .. 185

Platform/trade .. 189

Platform/trade.R ... 189

Platform/model... 189

Platform/model.R .. 189

Platform/model/optimize.R ... 190

Platform/model/evaluateFunc.R ... 190

Platform/model/optimizeFunc.R ... 192

 ■ CONTENTS

xiv

 ■Appendix B: Scoping in Multicore R .. 195

Scoping Rules in R ... 195

Using Lexical Scoping ... 195

Takeaways .. 196

The UNIX fork System Call .. 197

The fork Call and Memory Management .. 197

Scoping Implications for R .. 197

Instance Replication in Windows.. 199

Instance Replication and Memory Management .. 199

Scoping Implications for R .. 200

Index ... 203

xv

 About the Author

 Chris Conlan began his career as an independent data scientist
specializing in trading algorithms. He attended the University of Virginia
where he completed his undergraduate statistics coursework in three
semesters. During his time at UVA, he secured initial fundraising for a
privately held high-frequency forex group as president and chief trading
strategist. He is currently managing the development of private technology
companies in high-frequency forex, machine vision, and dynamic
reporting.

xvii

 About the Technical Reviewers

 Dr. Stephen Nawara earned his PhD in pharmacology from Loyola University – Chicago. During the course
of his dissertation, he gained five years of experience analyzing biomedical data. He currently works as a
data scientist and R tutor. He specializes in applying high-performance computing and machine-learning
techniques to automated portfolio management.

 Professor Jeffrey Holt has served as the Program Director of the University of Virginia’s MS in Data Science
and chair of the Department of Statistics, where he is currently the director of the undergraduate program.
He received his PhD in Mathematics from the University of Texas. His research concerns analyzing the
effects of sampling methods in ecological studies. He teaches classes in machine learning, data
manipulation, and mathematics for UVa undergraduate and graduate students.

xix

 Acknowledgments

 I am grateful to Professor Jeffrey Holt for seeing this book through, from inception to completion. I offer my
sincere appreciation to Professor Holt, Gretchen Martinet, and Paul Diver (of the Department of Statistics at
the University of Virginia) whose dedicated teaching has inspired me to share my knowledge.

 I am thankful to Dr. Stephen Nawara, a gifted programmer and fantastic business partner, for his
extraordinary commitment to quality and clarity in his many revisions of this text.

 Further, I would like to thank the R developer community and package contributors for donating their
time and expertise to maintaining and extending the R language.

 Lastly, I cannot thank my family enough for their continual love and support throughout the
development of this text and my life as a whole.

xxi

 Introduction

 This book will cover the broad topic of automated trading , starting with mathematics and moving
to computation and execution. You will gain unique insight into the mechanics and computational
considerations taken in building a backtester, strategy optimizer, and fully functional trading platform.

 The code examples in this text are derived from deliverables of real consulting and software
development contracts. At the end of the book, we will bring the concepts together and build an automated
trading platform from scratch. This book will give a prospective algorithm trader everything he needs except
a trading account, including full source code.

 Definitions
 Trading strategies are predetermined sets of rules a trader uses to make trading decisions. Trading strategies
use the following tools and techniques:

• Manual execution involves the trader placing his trades manually. This can be

• Calling the brokerage

• Placing an order through E*Trade, Tradestation, or other brokerage platforms

• Pit trading

• Computer automation involves the trader authorizing a computer to place trades on
his behalf. Many retail brokerage platforms and trading software have incorporated
this functionality into their platforms, but they are typically very limited. Most
brokerages have an API for more customized implementation through the trader’s
programming language of choice.

• Tradestation Easy Language, Metatrader

• Charles Schwab API

• Black-box algorithms

• Indicators are functions of relevant data that inform the trader by interacting with
rule sets.

• MSI

• Moving averages

• Custom indicators

 ■ INTRODUCTION

xxii

• Rule sets are logical filters of the indicator that trigger trading decisions. The indicator
combined with the rule set comprises the trading strategy.

• “Buy if the indicator rises above 80.”

• “Short if the indicator crosses two standard deviations below its mean.”

• “Cover short if the indicator crosses zero and the position is net short.”

 Strategy development is the art of building, testing, optimizing, and maintaining trading strategies.
Major topics in strategy development include the following:

• Backtesting involves simulating past performance of a given strategy, often with
specific parameters of interest. A backtest will yield the performance metric the
developer aims to maximize. Backtests may be performed thousands or millions of
times in order to optimize parameters in the strategy.

• Strategy optimization attempts to determine a strategy in the present that will
maximize a performance metric in the future. Optimization methods make trade-
offs between computation speed and search completeness.

• Exhaustive search

• Gradient methods

• Genetic search

• Performance metrics can be any function of a return series or equity curve that the
developer attempts to maximize.

• Total return

• Sharpe Ratio

• Total Return to Max Drawdown Ratio

• Parameter updating is part of maintaining a strategy that utilizes real-time
performance data to optimize performance. Traders use faster optimization
methods and more local searches at this stage.

 Scope of This Book
 There are a lot of steps in turning a trading idea into a fully automated trading strategy. This book will
discuss, from start to finish, the development process through R. With this discussion, this book will cover a
broad range of topics in programming, high-performance computing, numerical optimization, finance, and
networking.

 There will be examples at every step, including full source code in Appendix A. This source code
represents the total work product of the topics discussed in the book.

 If you have brokerage accounts with the API clients covered in this text, you can plug in your username
and password and start trading right away. Obviously, it is important that traders understand what is
happening inside their scripts before they begin trading.

 ■ INTRODUCTION

xxiii

 Programming in R
 R is a language of choice for many data scientists and statisticians at every level. It has a large and rapidly
growing community and more than 7,000 contributed packages as of the time of writing. Packages include
software suites for data management, machine learning, graphics and plotting, and much more. Installing a
new package takes a few seconds and opens up a ton of capabilities within R. If a trader wants to experiment
with Lasso regression as an indicator, he can install the glmnet package and run Lasso regression with one
line of code.

 You are not required to have prior experience with R but will benefit from it. Most concepts will be
discussed with complementary mathematics, so they can be read and learned without necessarily executing
the code. Please see the book’s website, r.chrisconlan.com , for instructions on downloading and installing
R and RStudio.

 High-Performance Computing
 Any program that works can probably work even faster. In high-performance computing, we aim to
minimize computation time by taking full advantage of a computer’s resources in an organized fashion.

 Most programs we run utilize only one core in our computers. Unless they are doing some very heavy
lifting, this is probably best. When we write programs that do a lot of number crunching, we may benefit
from distributing the load over multiple cores, known as parallelizing . We will see that some jobs are easy
to parallelize, and some are not. We will also see that some jobs make huge speed improvements with
parallelization, and others are made slower.

 Sometimes programs might run very slowly because our computers run out of memory (RAM) and
need to access memory on our hard drives (disk space). Storing and fetching information from the disk is a
very slow process. We will see how memory management can lead to speed improvements by preventing our
data from spilling out of RAM into disk.

 Numerical Optimization
 Some readers may recall finding the minimum or maximum of a function using basic calculus. This is
known as analytical optimization . In analytical optimization, we analyze the mathematics to find a solution
on paper.

 Numerical optimization , on the other hand, involves using high-performance computing and search
algorithms to estimate minima or maxima. Some of these algorithms will draw on calculus by estimating
high-dimensional derivatives (or gradients), and others will search in an unguided grid-like fashion. We use
these algorithms as opposed to calculus because we do not know the form of the performance function or its
derivatives.

 We will make our biggest speed improvements here by reducing the number of parameters in our
trading strategy and selecting the best-suited algorithm to find the maximum of the performance function.

 Finance
 When building a backtesting algorithm, we must estimate the impact of many real-world financial
phenomena to make sure we produce accurate estimates of strategy performance. We will discuss
various estimation methods for commissions, margin, slippage, and others in order to produce accurate
performance projections in backtesting.

 We will address questions like the best time of day to trade, how to find the optimal trading frequency
given account constraints, and which risk model validation metrics to use.

http://r.chrisconlan.com/

 ■ INTRODUCTION

xxiv

 Networking
 Data providers supply data to all sorts of players in the financial world in real time. Brokerages take messages
from clients and execute orders on their behalf. How do traders get their data? And how do brokers get their
messages?

 To get the data, we will send computer-generated messages to data providers, and they will respond
with the data we request. These computer-generated messages work with the providers through an
application programming interface (API). With an API, our computers can talk to their computers in a
predefined language they understand. It may be through a very long URL or a form of formatted message.

 To give brokerages our orders, we will do the same. Most platform-based brokerages have APIs by which
traders can program computers to trade on their behalf. Brokerages sometimes require different request and
message formats to add security. We will discuss various file transfer and message transfer formats and why
certain services use them.

 Material Overview
 This book will be broken into three major parts. Part I will further clarify the objectives and goals of the
book and discuss some interesting analytic problems in strategy trading. Part II will focus on developing the
core functionality of the platform. This is where the majority of R programming happens. Part III brings the
platform into a production environment by extending and scheduling the platform built in Part II. It will also
discuss how our platform measures up to the competition and where to go next to further your education
and/or career in strategy development.

 Part I: Problem Scope
• Chapter 1 , “Fundamentals of Automated Trading” : We will continue defining the

problem scope of automated trading by mathematically defining the equity curve
and return series. We will introduce some popular risk-return metrics and explore
their characteristics on simulated equity curves and the S&P 500.

 Part II: Building the Platform
• Chapter 2 , “Networking Part I” : We begin by fetching, storing, and loading the data

we will use for analysis and trading throughout the book. We will use URL-based
APIs and MySQL-style APIs to build an ASCII database of .csv files of stock data. We
will discuss efficient updating, storage, and loading into memory for analysis.

• Chapter 3 , “Data Preparation” : Here we take the data loaded in Chapter 2 and apply
a handful of use-specific cleaning methods. We discuss these methods and generate
additional data for use in analysis in later chapters.

• Chapter 4 , “Indicators” : We discuss the theory and usage of indicators in trading
strategies. We introduce the concept of information latency and compute a handful
of indicators as examples. You will grow very comfortable with apply-style functions
that are the cornerstone of time-series computations in R.

• Chapter 5 , “Rule Sets” : We discuss the theory and usage of rule sets in trading
strategies. We introduce and standardize important terminology for discussing and
programming rule sets. We give a lot of attention to which types of indicators work
well with which types of rule sets.

http://dx.doi.org/10.1007/978-1-4842-2178-5_1
http://dx.doi.org/10.1007/978-1-4842-2178-5_2
http://dx.doi.org/10.1007/978-1-4842-2178-5_3
http://dx.doi.org/10.1007/978-1-4842-2178-5_2
http://dx.doi.org/10.1007/978-1-4842-2178-5_4
http://dx.doi.org/10.1007/978-1-4842-2178-5_5

 ■ INTRODUCTION

xxv

• Chapter 6 , “High-Performance Computing” : This chapter serves as a broad
introduction to high-performance computing and a specific guide on high-
performance computing in R. This will extend your familiarity with apply-style
functions to multicore computing.

• Chapter 7 , “Simulation and Backtesting” : We will use our combined knowledge thus
far to generate simulated trade results from our data, indicators, and rule sets with
high-performance methods from Chapter 6 .

• Chapter 8 , “Optimization” : This chapter places Chapter 7 inside a for loop to discover
optimal parameters for trading strategies. We spend a lot of time discussing optimal
methods for parameter discovery.

• Chapter 9 , “Networking Part II” : This chapter covers a handful of popular brokerages
and how to send orders to them through API calls.

 Part III: Production Trading
• Chapter 10 , “Organizing and Automating Scripts” : We establish CRON jobs in both

UNIX and Windows to run your trading strategies automatically on a schedule.

• Chapter 11 , “Looking Forward” : We discuss the challenges that large-scale funds and
high-frequency funds face, what program languages they may use, and generally
how to advance a career in automated trading.

 Learning Resources
• Setting up R and RStudio : r.chrisconlan.com

• Community discussion : r.chrisconlan.com

 Risk Disclosure
 Apress Media LLC and the author warn there is a high level of risk associated with automated trading in any
asset class, and it may not be suitable for all investors. Automation can work against you, as well as to your
advantage. Before deciding to invest in automated trading, you should carefully consider your investment
objectives, level of experience, and risk appetite. The possibility exists that you could sustain a loss of some
or all of your initial investment, and therefore you should not invest money that you cannot afford to lose.
There are risks associated with the use of online deal execution and trading systems including but not limited
to software and hardware failure and Internet disconnection. You should be aware of all the risks associated
with automated trading and consult with an independent financial advisor if you have any doubts.

 Apress Media LLC and the author shall not be responsible for any loss arising from any investment
based on any recommendation, forecast, or other information provided. Apress Media LLC and the author
will not accept liability for any loss or damage, including without limitation to any loss of profit that may
arise directly or indirectly from use of or reliance on such information.

 The materials printed in this book are solely for informational purposes. No offer or solicitation to
buy or sell financial assets, trading advice, or strategy is made, given, or in any manner endorsed by Apress
Media LLC and the author. You are fully responsible for any investment or trading decisions you make, and
such decisions should be based solely on your evaluation of your financial circumstances, investment/
trading objectives, risk tolerance, and liquidity needs.

http://dx.doi.org/10.1007/978-1-4842-2178-5_6
http://dx.doi.org/10.1007/978-1-4842-2178-5_7
http://dx.doi.org/10.1007/978-1-4842-2178-5_6
http://dx.doi.org/10.1007/978-1-4842-2178-5_8
http://dx.doi.org/10.1007/978-1-4842-2178-5_7
http://dx.doi.org/10.1007/978-1-4842-2178-5_9
http://dx.doi.org/10.1007/978-1-4842-2178-5_10
http://dx.doi.org/10.1007/978-1-4842-2178-5_11
http://r.chrisconlan.com/
http://r.chrisconlan.com/

 PART 1

 Problem Scope

3© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_1

CHAPTER 1

Fundamentals of Automated
Trading

The fundamental goal of trading is to maximize risk-adjusted return. When developing strategies, we will
simulate trading performance in an attempt to maximize risk-adjusted return in simulation. There are
many ways to measure risk-adjusted return. They involve examining the shape of the equity curve and the
return series.

Equity Curve and Return Series
The equity curve is the trading account value plotted against time. It can otherwise be thought of as cash
on hand plus the equity value of portfolio assets plotted against time. We want it to rise linearly if we trade
with a uniform account size or exponentially if we reinvest gains. The return series is the list of returns on
the account at each trading period. The return series depends only on which assets are traded when, not the
trading account size, so it will be the same whether or not we reinvest gains.

Figure 1-1 shows an example of an equity curve generated by a strategy that is long up to ten S&P 500
stocks at a time with a trading account of $10,000, trading once per day, without reinvesting gains. A gray
reference line is plotted for an equivalent investment in the SPY S&P 500 ETF, a tradable fund that closely
mimics the behavior of the S&P 500.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-2178-5_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2178-5_1

Chapter 1 ■ Fundamentals oF automated trading

4

The return series is the portfolio gain or loss as a percentage of tradable capital at each trading period.
Figure 1-2 shows the daily return series of the equity curve in Figure 1-1.

Figure 1-2. Example return series

Figure 1-1. Example equity curve

Chapter 1 ■ Fundamentals oF automated trading

5

Characteristics of the Equity Curve
We will introduce some notation to study characteristics of the equity curve.

We define Pt0 to be the dollar value of the portfolio before adjustment and Pt1 to be the dollar value of
the portfolio after adjustment for t in 0, 1, 2,..., T, where t=0 represents the beginning of simulation and t=T
represents the current time.

We assume that portfolio adjustments (or trades) happen instantaneously in time. The change in
P from t

0
 to t

1
 represents change due to adjustment, while the change in P from (t–1)

1
 to t

0
 represents

change due to movement of market prices of the assets in the portfolio. Chronologically, t evolves as
t t t t t T T0 1 0 1 0 0 11 1 2, , , , ,..., ,+() +() +() , with transitions from t

0
 to t

1
 happening instantaneously when an

algorithm automatically adjusts the portfolio.
We define C

0
 as initial cash, Ct0

 and Ct1
 as uninvested cash at t

0
 and t

1
, and K

t
 as trading costs incurred

during instantaneous adjustment from t
0
 to t

1
. The equity curve at time t

0
 is equal to the following:

E C P C P P Kt t t
i

t

i i i0 0 0 0 1
0

1
1 1= + = + - -()

=
-() -å

Note that C Ct0 0
= for t=0. Further, we note that the difference between Et0

 and Et1
 is the total of trading

costs incurred during the adjustment period, from t
0
 to t

1
.

E E Kt t t1 0
= - .

When we plot the equity curve and perform risk-return computations on it, we use only Et1
 for t in

0, 1,..., T. The choice of Et1
 over Et0

 is intended to reflect the impact of commissions in the equity curve.

Characteristics of the Return Series
We define Vt to be the tradable capital at time t

0
. This is a value set by the trader. The total cash invested by

the trader cannot exceed Vt at any given time. We define t(i
1
) and t(i

0
) to be the times t

1
 and t

0
 at which trade i

was initiated and exited, respectively. Trade i is considered to be active at time t if t i t t i1 1 0() £ < () . We say
that i ItÎ if i is active at t

1
. We define ji as the asset initiated in trade i. Further, allow Pt0 and Pt1 to be

subsettable by asset such that Pt j1 ,
 represents the value of asset j in the portfolio at time t

1
.

If we make 15 trades in the instantaneous adjustment period occurring from t
0
 to t

1
, there will be 15

new i’s subsettable to t for these transactions. This allows us to make infinitely many overlapping trades and
describe them using our notation.

The tradable capital must meet the following condition for all t in 0, 1,..., T:

V Pt
i I

t i j
t

i
³

Î
()å 1 ,

where Vt is determined during or prior to (t–1) based on information available at that time.

Chapter 1 ■ Fundamentals oF automated trading

6

Verbally, this means the sum of the initial purchase prices of all active trades is less than or equal to the
tradable capital. Note that there is no restriction regarding the relationship between Vt and Pt0 or Pt1 . This is
because Pt0 and Pt1 represent the current market value of the portfolio rather than the initial purchase price.
The previous equation may seem like a trivial definition, but Vt will serve as the denominator in our return
series equation. It is necessary to define Vt in this way to

•	 Enforce determination of the value of V
t
 algorithmically before the adjustment

period occurs in t
0
 to t

1
.

•	 Penalize the return series for allocating more capital than is invested. In this sense,
allocated capital is treated the same as invested capital even if it remains uninvested.

•	 Allow for flexibility in tradable capital rather than enforce strict constancy or
compounding.

The return series at time t is defined as follows:

R
P P K

Vt

t t t

t

=
- --() -

-

0 1
1 1

1

This definition of the return series is a direct consequence of the definition of V
t
 and benefits greatly

from it.
The classic definition of the return series at t is the percentage change in the equity curve from t–1 to t.

Our definition allows us to honestly measure performance without imposing unrealistic assumptions on our
financial behavior. The classic definition of the return series fails in many scenarios:

•	 If cash withdrawals or deposits are made to the trading account after t=0

•	 If earnings are not strictly reinvested

Many of the risk-return metrics we will discuss and utilize in this book impose no specific rules on how
to calculate the equity curve and return series. Note that we have presented them in this chapter in a way
that is both honest and realistic. Traders and investors should be wary when comparing metrics of their own
strategies to metrics of strategies developed by others. Failing to honor the aforementioned relationships can
give risk-return metrics an unrealistic upward bias.

Risk-Return Metrics
The goal of strategy development is to build a strategy that maximizes future risk-adjusted return. We will
attempt to do this by backtesting performance and selecting the model with the best risk-adjusted return for
use in rea-time trading. There are many measures for risk-adjusted return. We will compute a lot of them
during backtesting but optimize our strategy to maximize a single metric. Table 1-1 summarizes some useful
risk-return metrics mathematically. R code will be discussed later in this chapter.

Chapter 1 ■ Fundamentals oF automated trading

7

Table 1-1. Common Risk-Return Metrics

Metric Formula Notes

High-Frequency
Sharpe Ratio Sharpe

R

R

=
s

, where R
R R

T
T=

¼1 , and

s R tT
R R=

-
-()å1

1

2

Requires that returns are normally
distributed if used for inference.

High-Frequency
Jensen’s Alpha

α, where the regression equation
R Rt t b t= + +a b e, is estimated, where R

t,b

is the return of a benchmark index at t

Requires that returns are normally
distributed if used for inference. Commonly
used to assess fund performance. Rewards
consistently good performance over purely
superior performance.

Pure Profit Score PPS
E V

V
RT=

-
0 0

0

2 where R2 is the

R-squared value of regression

E

V
tt

t
t

0 = + +a b e

Scales return on initial tradable capital by
linearity of equity curve standardized for
level of reinvestment.

Net Profit to Max
Drawdown Ratio

NPMD
E V

MD
T=
-

0 0 , where

MD E Ek l= -()max
0 1

 for k l T< <

Simple but effective nonparametric risk-
return metric. Maximum drawdown is the
largest loss, from any point to any later
point, in the equity curve.

High-Frequency
Burke Ratio

Burke
R

T
MD

n

i

n

i

=
æ

è
ç

ö

ø
÷

=
å1

1

2

1

2

MD
i
 represents the ith largest maximum

drawdown. The denominator is a form of
partial variance accounting for very large
losses. n=T/20 is favorable.

Lower and Higher
Partial Moments of
Order n

LPM R
T

R Rn b
t

T

b t

n() = -[]
=
å1 0

1

 max ,

HPM R
T

R Rn b
t

T

t b

n() = -[]
=
å1 0

1

 max ,

The lower partial moment (LPM) is
considered superior to standard deviation
for performance ratios because it is
affected only by returns below R

b
, the

minimum accepted return. R
b
 can be set to

zero, the risk free rate, or the mean return.

Generalized
Omega of Order n

W n b
b

n b
n

R
R R

LPM R
() = -

()()
1 Sortino Ratio for n=2, Kappa(3) for n=3,

linearly equivalent to Shadwick and
Keating Omega for n=1.

Improved High-
Frequency Sharpe
Ratio

SR
R

LPMn

=
()()0

1

2

Accounts only for negative semivariance
against a mean zero return. Denominator
penalizes only for volatile losses.

Upside Potential
Ratio of Order
(n

1
, n

2
)

UPR R
HPM R

LPM R
n n b

n b
n

n b
n

1 2

1
1

2
2

1

1, () = ()

()

UPR
1,2

(R
b
) developed by Sortino in 1999,

after he developed the Sortino Ratio
in 1991. UPR

2,2
(0) has many desirable

properties.

Chapter 1 ■ Fundamentals oF automated trading

8

Characteristics of Risk-Return Metrics
In this section, we will simulate equity curves to study the characteristics of risk-return metrics in Table 1-1.
This will help us determine which risk-return metrics to focus on when we optimize strategies.

We will generate our equity curve using SPY returns and random numbers with a constant tradable
capital of $10,000. If you want to simulate the same random numbers as in this text, copy the set.seed line.
We will be defining only Et0

 for the sake of simplicity.
Listing 1-1 installs an API package called quantmod that fetches stock data. We will be covering APIs,

time-series packages, and quantmod in a later chapter, so you can ignore it for now. For now, you should
make sure you are connected to the Internet and select a download mirror if prompted. The following code
snippets will assume that you have installed quantmod and called it through the library function. We have
wrapped it in supressWarnings() because it is very verbose. quantmod warnings and xts warnings can
generally be ignored.

Listing 1-1. Loading SPY Data

Checks if quantmod is installed, installs it if unavailable,
loads it and turns off needless warning messages
if(!("quantmod" %in% as.character(installed.packages()[,1])))
 { install.packages("quantmod") }
library(quantmod)

options("getSymbols.warning4.0"=FALSE,
 "getSymbols.auto.assign"=FALSE)

Loads S&P 500 ETF data, stores closing prices as a vector
SPY <- suppressWarnings(
 getSymbols(c("SPY"),from = "2012-01-01"))
SPY <- as.numeric(SPY$SPY.Close)[1:987]

Now that we have acquired and prepared our data, we can begin simulating equity curves and studying
risk-return metrics. All of the remaining code in this chapter is relevant to your understanding of the topics
and content discussed in it. Listing 1-2 randomly generates two more equity curves based on SPY and plots
the results in Figure 1-3. Veteran R users may notice that there are faster methods for performing many of the
computations in this chapter. This is intentional for instruction. We will simulate equity curves and return
series by adding a small constant plus a random effect to the return series of the SPY S&P 500 ETF.

Listing 1-2. Simulating Equity Curves

Set Random Seed
set.seed(123)

Create Time Index
t <- 1:(length(SPY)-1)

Tradable Capital Vector
Vt <- c(rep(10000, length(t)))

Benchmark Return Series
Rb <- rep(NA, length(t))
for(i in 2:length(t)) { Rb[i] <- (SPY[i] / SPY[i - 1]) - 1 }

Chapter 1 ■ Fundamentals oF automated trading

9

Benchmark Equity Curve
Eb <- rep(NA, length(t))
Eb[1] <- Vt[1]
for(i in 2:length(t)) { Eb[i] <- Eb[i-1] * (1 + Rb[i]) }

Randomly Simulated Return Series 1
Rt <- rep(NA, length(t))
for(i in 2:length(t)){
 Rt[i] <- Rb[i] + rnorm(n = 1,
 mean = 0.24/length(t),
 sd = 2.5 * sd(Rb, na.rm = TRUE))
}

Randomly Simulated Return Series 2
Rt2 <- rep(NA, length(t))
for(i in 2:length(t)){
 Rt2[i] <- Rb[i] + rnorm(n = 1,
 mean = 0.02/length(t),
 sd = .75 * sd(Rb, na.rm = TRUE))
}

Randomly Simulated Equity Curve 1
Et <- rep(NA, length(t))
Et <- Vt[1]
for(i in 2:length(t)) { Et[i] <- Et[i-1] * (1 + Rt[i]) }

Randomly Simulated Equity Curve 2
Et2 <- rep(NA, length(t))
Et2 <- Vt[1]
for(i in 2:length(t)) { Et2[i] <- Et2[i-1] * (1 + Rt2[i]) }

Plot of Et1 against the SPY Portfolio
plot(y = Et, x = t, type = "l", col = 1,
 xlab = "Time",
 ylab= "Equity ($)",
 main = "Figure 1–3: Randomly Generated Equity Curves")
grid()
abline(h = 10000)
lines(y = Et2, x = t, col = 2)
lines(y = Eb, x = t, col = 8)
legend(x = "topleft", col = c(1,2,8), lwd = 2, legend = c("Curve 1",
 "Curve 2",
 "SPY"))

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Fundamentals oF automated trading

10

The randomly generated equity curve is intended to behave like a real equity curve of a strategy that
trades members of the S&P 500. We will use R to study the equity curve and return series using methods in
Table 1-1.

Sharpe Ratio
The Sharpe Ratio is one of the best-known metrics for measuring strategy performance. It was developed in
1966 by William F. Sharpe and has been a long-recognized fund and strategy performance metric. It is widely
known that the Sharpe Ratio has theoretical shortfalls, but it is still utilized for off-the-cuff benchmarking in
conversation and reporting.

The Sharpe Ratio established an important framework for measuring fund and strategy performance.
The idea of maximizing excess return divided by risk is echoed in most of our performance metrics in
Table 1-1. For the Sharpe Ratio, it is specifically mean excess return divided by standard deviation of returns.

The High-Frequency Sharpe Ratio neglects to subtract the benchmark/risk-free return in the
numerator, using only R instead of R Rf- . It acknowledges that typical benchmark returns, like the 90-day
T-Bill, are negligibly small when shortened to frequencies of daily or shorter. This metric exists to solidify

Figure 1-3. Randomly generated equity curves

Chapter 1 ■ Fundamentals oF automated trading

11

that high-frequency traders ought not to use the original Sharpe Ratio. Proponents of the original Sharpe
Ratio argue that the benchmark return should be the average of trading costs. This is a valid argument, and it
is the reason our definition of the return series already includes trading costs.

Listing 1-3 computes High-Frequency Sharpe Ratios for the randomly generated equity curves.

Listing 1-3. High-Frequency Sharpe Ratio

Use na.rm = TRUE to ignore NAs at position 1 in return series
SR <- mean(Rt, na.rm = TRUE) / sd(Rt, na.rm = TRUE)
SR2 <- mean(Rt2, na.rm = TRUE) / sd(Rt2, na.rm = TRUE)
SRb <- mean(Rb, na.rm = TRUE) / sd(Rb, na.rm = TRUE)

Listing 1-4 plots the equity curves against the computed values of the Sharpe Ratios in Figure 1-4. In the
rest of the book, plotting code will be included only if it introduces new or instructive plotting concepts. The
following is a good template for comparing equity curves with performance metrics and will not be printed
when used in the future.

Listing 1-4. Plotting Equity Curve Against Performance Metrics

plot(y = Et, x = t, type = "l", col = 1,
 xlab = "",
 ylab= "Equity ($)",
 main = "Figure 1-4: Sharpe Ratios")
grid()
abline(h = 10000)
lines(y = Et2, x = t, col = 2)
lines(y = Eb, x = t, col = 8)
legend(x = "topleft", col = c(1,2,8), lwd = 2,
 legend = c(paste0("SR = ", round(SR, 3)),
 paste0("SR = ", round(SR2, 3)),
 paste0("SR = ", round(SRb, 3))))

Figure 1-4. Sharpe Ratios

Chapter 1 ■ Fundamentals oF automated trading

12

We are quick to notice that the first equity curve with the highest overall return has the lowest Sharpe
Ratio because of its high variance of returns. Curve 2 makes about twice as much as the SPY portfolio with
only slightly higher variance, making it the best according to the Sharpe Ratio.

As we move forward, keep in mind the theoretical shortfalls of the Sharpe Ratio:

•	 The denominator penalizes large gains as well as large losses.

•	 Inference methods using the Sharpe Ratio require returns to be normally distributed.
Financial assets are known to exhibit highly non-normal returns.

•	 The denominator standardizes against the mean return, but the numerator
standardizes against a separate benchmark rate or zero. Performance ratios are
known to benefit in robustness from the consistent application of benchmarking
figures in both the numerator and the denominator.

Maximum Drawdown Ratios
Maximum drawdown simply represents the most dollars in equity a strategy lost from any point to any point
in the future. This figure is a candidate to replace standard deviation in the denominator of the Sharpe Ratio.
It is a one-sided measure of risk and behaves like a variance term when the top n maximum drawdowns are
aggregated in some way.

The formula is short when expressed mathematically, but programmatically, there are a lot of
computations to make in order to compute all drawdowns and then find the n highest. We will define a
function here to use throughout the chapter. Notice that in the formula in Table 2-1 we use Ek0

 and El1
,

before and after the adjustment period, to account for trading costs, which means we normally need to
supply two vectors, Et0

 and Et1
. We will use our single equity curves representing Et0

 for simplicity here.
In the following example and Listing 1-5, we use the following:

MD max E Ek l= -()
1 1

for

k l T< <

Listing 1-5. Maximum Drawdown Function

MD <- function(curve, n = 1){

 time <- length(curve)
 v <- rep(NA, (time * (time - 1)) / 2)
 k <- 1
 for(i in 1:(length(curve)-1)){
 for(j in (i+1):length(curve)){
 v[k] <- curve[i] - curve[j]
 k <- k + 1
 }
 }

 m <- rep(NA, length(n))
 for(i in 1:n){
 m[i] <- max(v)
 v[which.max(v)] <- -Inf
 }

 return(m)

}

http://dx.doi.org/10.1007/978-1-4842-2178-5_2#Tab2

Chapter 1 ■ Fundamentals oF automated trading

13

The argument curve is for the equity curve. The function returns a vector of length n containing the n
highest drawdowns, with a default of n=1. We will demonstrate computation of the Net Profit to Maximum
Drawdown Ratio and the Burke Ratio using this function.

NPMD
E V

MD
T=
-

0 0 .

Burke
E V

T
MD

n
T

i

n

i

=
-

æ

è
ç

ö

ø
÷

=
å

0 0

1

2

1

21
.

The High-Frequency Burke Ratio is an attempt at an improvement on the Sharpe Ratio utilizing the
squared sum of the n highest drawdowns as a variance metric. These ratios are not highly standardized, so
we can use either mean return or total dollar return in the numerator. In Listing 1-6, we will use total dollar
return to compare easily with the Net Profit to Max Drawdown Ratio (NPMD Ratio). Additionally, we will use
n=T/20. We compare the results in Figure 1-5.

Listing 1-6. Maximum Drawdown Ratios

NPMD <- (Et[length(Et)] - Vt[1]) / MD(Et)

Burke <- (Et[length(Et)] - Vt[1]) /
 sqrt((1/length(Et)) * sum(MD(Et, n = round(length(Et) / 20))^2))

Figure 1-5. Maximum drawdown ratios

Chapter 1 ■ Fundamentals oF automated trading

14

In Figure 1-5, curve 2, the second most profitable curve, is again the best performer, and by a factor of
three against curve 1, the black curve. The NPMD and Burke Ratios are almost exactly proportional for these
equity curves. This will not always be the case, especially where we have longer time spans and multiple
periods with massive drawdowns. Maximum drawdown ratios address all of the theoretical shortfalls of the
Sharpe Ratio in that:

•	 The denominator penalizes only large losses and ignores all gains.

•	 Maxima and minima are nonparametric measurements, meaning they make no
assumptions about normality or distribution.

•	 Both the numerator and the denominator standardize against zero.

Issues with maximum drawdown ratios primarily concern robustness and comparison.

•	 Maximum drawdown ratios tend to over-reward low drawdown simulations by
ignoring that a higher maximum drawdown for the given strategy may not have
occurred yet. This is a natural consequence of utilizing a single maximum drawdown
as opposed to a distributional descriptor of downward spikes.

•	 maximum drawdown ratios strongly penalize high-variance strategies when
compared to low-variance strategies. The Sharpe Ratio for curve 2 is about 50
percent higher than for curve 1, while the NPMD and Burke Ratios for curve 2 are
more than three times as high as for curve 1. This is not an issue when we are only
attempting to find a maximum, but when comparing two strategies, investors may
not see curve 2 as three times better than curve 1.

Partial Moment Ratios
Partial moments are also attempts at improvements on the Sharpe Ratio. They are inspired by the statistical
concept of semi-variance, meaning the average squared deviations of only observations that are above or
below the mean, or the upper semivariance and lower semivariance, respectively. In their mathematical
expression, partial moments rely on a max function in the summand where one argument is a difference
between R

t
 and R

b
 and the other is zero. The allows the summand to ignore differences that are above R

b
 for

the lower partial moment or ignore differences below R
b
 for the higher partial moment (HPM). LPM R2 ()

and HPM R2 () are the lower and upper semivariances.

LPM R
T

max R Rn b
t

T

b t

n() = -[]
=
å1 0

1

, .

HPM R
T

max R Rn b
t

T

t b

n() = -[]
=
å1 0

1

, .

Listing 1-7 defines a function in R for computing the HPM and LPM throughout this chapter. It will
default to the LPM

2
(0).

Chapter 1 ■ Fundamentals oF automated trading

15

Listing 1-7. Partial Moment Function

PM <- function(Rt, upper = FALSE, n = 2, Rb = 0){
 if(n != 0){
 if(!upper) return(mean(pmax(Rb - Rt, 0, na.rm = TRUE)^n))
 if(upper) return(mean(pmax(Rt - Rb, 0, na.rm = TRUE)^n))
 } else {
 if(!upper) return(mean(Rb >= Rt))
 if(upper) return(mean(Rt > Rb))
 }
}

It is perhaps easier to see through the R code the effects of different degrees of partial moments.

•	 n=0 is the success or shortfall probability for UPM or LPM, respectively. In other
words, it is the probability that R

t
 is greater than R

b
 for the UPM and is less than R

b
 for

the LPM. It assumes 0 00 = , which is not the case in R, so this is easier to compute as

follows:

For LPM
mean(Rb >= Rt)

Notice how this is manifest in the function declaration in Listing 1-7. This gives the generalization some
mathematical elegance.

•	 n=1 is the mean of returns in excess of R
b
 or less than R

b
, for the UPM and LPM,

respectively.

•	 n=2 is the upper or lower semivariance assuming a mean R
b
.

•	 n=3 is the upper or lower semiskewness assuming a mean R
b
. This is the foundation

of Kaplan and Knowles’s Kappa(3) developed in 2004, which is equal to Ω
3
(R

b
).

The two important partial moment ratios are the Generalized Omega, shown here:

W n b
b

n b
n

R
R R

LPM R
() = -

()()
1

and the Upside Potential Ratio, shown here:

UPR R
HPM R

LPM R
n n b

n b
n

n b
n

1 2

1
1

2
2

1

1, () = ()

()

The Generalized Omega expressed as Ω
2
(0) is the Improved High-Frequency Sharpe Ratio, or otherwise

a high-frequency Sharpe Ratio that utilizes the LPM. It specifically utilizes the LPM
2
(0), which is equivalent

to the semivariance under the assumption of a mean zero return.
The Upside Potential Ratio uses two degree parameters, n

1
 and n

2
, for the UPM and LPM, respectively.

UPR
1,2

(0) was developed by Sortino in 1999 and is mathematically similar to the Sortino Ratio, in that it
utilizes the mean of positive observations as opposed to the mean of all the observations. UPR

2,2
(0) is, in

my opinion, a robust improvement on Sortino’s original ratio. Instead of computing an average return and
dividing it by a penalization factor, UPR

2,2
(0) measures the ratio of positive volatility to negative volatility.

It will strongly favor strategies that are able to short a market crash rather than avoid it. Additionally, equal
degrees in the numerator and the denominator make it a great candidate for gradient optimizations.

Chapter 1 ■ Fundamentals oF automated trading

16

Listing 1-8 computes the Improved High-Frequency Sharpe Ratio (or Ω
2
(0)) and the Upside Potential

Ratio expressed as UPR
2,2

(0). Keep in mind the defaults of the partial moment function declared in Listing
1-7 when reading the following code.

Listing 1-8. Partial Moment Ratios

Omega <- mean(Rt, na.rm = TRUE) / PM(Rt)^0.5
UPR <- PM(Rt, upper = TRUE)^0.5 / PM(Rt)^0.5

See Figure 1-6. Notice that UPR
2,2

(0) is the first ratio to favor curve 1, the most profitable curve,
over curve 2, the second most profitable curve. The many upward spikes in its path contribute to this
phenomenon. Per the formulation of the UPR, if a catastrophic loss is corrected with a gain of equal
magnitude, the ratio will move closer to 1 but not fall below it. Some investors may see this as a desirable
quality because it rewards aggressive but calculated risk-taking.

Figure 1-6. Partial moment ratios

Regression-Based Performance Metrics
In the spirit of maximizing risk-adjusted return, we seek equity curves that are smooth and linear with a
steep upward slope. These three qualities are analogous to low volatility, long-term consistency, and high
returns. Linear regressions allow us to fit the best possible straight line through a set of data. Regression-
based metrics assess strategy performance allowing us to compare returns between indices and measure the
straightness of equity curves.

Jensen’s Alpha is a well-known statistic that is the α term in the regression equation

R Rt t b t= + +a b e,

Chapter 1 ■ Fundamentals oF automated trading

17

where R
t,b

 is the return of a benchmark, like the S&P 500, at time t. α will represent the y-intercept of the fitted
line. It strongly rewards good performance at times when the benchmark is performing badly. In Listing 1-9,
when we run the regression, we will also find the β value of the portfolio. This is the same β that is
well-known in finance for measuring volatility-scaled correlation between assets. We will not use β for
optimizing strategies, but it is interesting nonetheless.

Listing 1-9. Regression Against Benchmark

Scatterplot of Rt against Rb
plot(y = Rt, x = Rb,
 pch = 20,
 cex = 0.5,
 xlab = "SPY Returns",
 ylab= "Return Series 1",
 main = "Figure 1-7: Return Series 1 vs. SPY")
grid()
abline(h = 0)
abline(v = 0)

Compute and store the regression model
model <- lm(Rt ~ Rb)

Plot the regression line
abline(model, col = 2)

Display alpha and beta
legend(x = "topleft", col = c(0,2), lwd = 2,
 legend = c("Alpha Beta R^2",
 paste0(round(model$coefficients[1], 4), " ",
 round(model$coefficients[2], 2), " ",
 round(summary(model)$r.squared, 2))))

See Figure 1-7. Because of the symmetric way we randomly generated our equity curves, the α is
essentially zero. We built our initial examples by adding a small constant plus a random effect to every
return. The regression finds that there is no deliberate avoidance or outperformance of the benchmark
index, which is truly the case here.

Chapter 1 ■ Fundamentals oF automated trading

18

Figure 1-7. Return series 1 vs. SPY

We will run the regression again, temporarily adding a small constant to all negative returns to
demonstrate how Jensen’s Alpha works.

Creates vector of same length without first NA value
RtTemp <- c(0, Rt[-1])

Adds 0.01 to all negative values and runs regression
RtTemp[RtTemp < 0] <- RtTemp[RtTemp < 0] + 0.01
model <- lm(RtTemp ~ Rb)

Figure 1-8. Return series 1 (altered) vs. SPY

Chapter 1 ■ Fundamentals oF automated trading

19

Figure 1-9. Regression statistics (vs. SPY)

We see in Figure 1-8 that Jensen’s Alpha is ten times higher when the strategy is able to reduce the
impact of losing days by an average of 1 percent. Jensen’s Alpha will prefer risk management on down days
to outperformance on good days. Pure Profit Score (PPS) describes risk and return by multiplying the total
account return by the R2 of a regression of a linearized equity curve against time. The equity curve is linearized
by dividing it by the tradable account V

t
, and time is the integer vector 0, 1,..., T. Note that V

t
 is constant in our

simulation, so linearization is trivial in this case. Listing 1-10 implements the following equations:

PPS
E V

V
RT=

-
0 0

0

2

E

V
tt

t
t

0 = + +a b e

Listing 1-10. Perfect Profit Score

Create linearized equity curve and run regression
y <- Et / Vt
model <- lm(y ~ t)

Compute PPS by pulling "r.squared" value from summary function
PPS <- ((Et[length(Et)] - Vt[1]) / Vt[1]) * summary(model)$r.squared

Note that in Figure 1-9, α, β, and R2 refer to summary statistics on the regression between the return
series and the SPY returns, as is computed for Jensen’s Alpha. PPS utilizes the R2 term from a separate
regression between the equity curve and t.

Chapter 1 ■ Fundamentals oF automated trading

20

This is the second metric of many we have covered that favors curve 1 over both curve 2 and the SPY
portfolio. Every metric has a different personality. Investors should study them to choose one that is robustly
applied and favors their investing style.

Optimizing Performance Metrics
The fundamental goal of trading is to maximize risk-adjusted return. The fundamental goal of strategy
development is to build a strategy that maximizes risk-adjusted return during trading. We will accomplish
this with cross-validation methods specific to time-series. We simulate lack of knowledge of future stock
prices by splitting the data into training and testing sections, with the goal of maximizing the performance
metric in the testing section given only the information in the training section.

Chapter 8 will rigorously outline this procedure and make use of the performance metrics covered in
this chapter.

http://dx.doi.org/10.1007/978-1-4842-2178-5_8

 PART 2

 Building the Platform

23© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_2

 CHAPTER 2

 Networking Part I

 In Part 2 of this book, we will be introducing topics in order of appearance in the source code of our trading
platform. This chapter will discuss acquisition, storage, and updating of data using free APIs. Our trading
platform will contain various processes that run automatically throughout the day, and our data needs to be
in our R environment for us to work with it. We may want to run R and RStudio to do unrelated jobs between
those times, which means we need a way to store the data in files in our computer so that they can be
fetched when the analysis starts. In this chapter, we will explore various ways to fetch, store, and load data.
We will ultimately settle on the most efficient method to execute the following algorithm. This algorithm will
be referred to as “the algorithm” throughout the chapter.

• Process 1: Initial Acquisition and Storage

 1. Fetch the list of desired stocks.

 2. If all the desired stocks are present in storage directory,

 a. End Process 1 and proceed to Process 2.

 3. If the desired stocks are missing from storage directory,

 a. Fetch missing stock data as far back in time as desired.

 b. Store data on the directory in the drive for access by other processes.

 c. Clear the R environment.

 d. End Process 1 and proceed to Process 2.

• Process 2: Loading Data into Memory (R Environment)

 1. Fetch the names of all files in the storage directory.

 2. Load data from the drive into the R environment.

 3. If data is up to date,

 a. Proceed to step 5.

 4. If data is not up to date,

 a. Fetch missing data.

 b. Append new data to the existing data in the drive.

 c. Append new data to the existing data in the R environment.

CHAPTER 2 ■ NETWORKING PART I

24

 5. Prepare data in memory.

 a. Compute the date template.

 b. Organize data according to date template.

 c. Organize data in the zoo object with the uniform date attribute.

 Yahoo! Finance API
 Yahoo ! Finance has a popular, simple, and free API for fetching historical stock data. We will learn to use it as
an introduction to APIs and assess its feasibility as a data source for our trading platform.

 Documentation for the Yahoo! Finance API is becoming increasingly hard to locate as the years
go by, leading some longtime users to refer to it as a hidden API. Fortunately, it is straightforward and
well-understood by developers with past experience. This section will present a useful but possibly
incomplete guide to the Yahoo! Finance historical quote API for CSV data. Yahoo! has not made any express
commitments to continue supporting this API, but I have no lack of confidence it will continue to run as it
has for more than a decade.

 There are many ways to interact with APIs in the world of programming. The Yahoo! Finance CSV
API allows us to query a database by supplying and transmitting parameters to a URL. URL-oriented APIs
will consist of a base URL followed by a list of parameters starting with a question mark and separated by
ampersands. For n parameters represented by p

 i
 and n values represented by v

 i

 API URL = Base URL + ? + “ p
1
 = v

1
 ” + & + “ p

2
 = v

2
 ” + & + … + & + “ p

 n
 = v

 n
 ”

 where plus signs represent string concatenation. The Yahoo! Finance historical quote API is outlined in
Table 2-1 .

 Table 2-1. Yahoo! Finance CSV API

 Component Example Argument Notes

 Base URL http://ichart.yahoo.com/
table.csv

 icharts is a subdomain of yahoo.com that hosts the API.

 p
 1
 s=GOOG Stock symbol.

 p
 2
 a=5 Zero-indexed month of start date, from 0 to 11.

 p
 3
 b=5 Calendar day of start date, from 1 to 31.

 p
 4
 c=2011 Calendar year of start date.

 p
 5
 d=8 Zero-indexed month of end date.

 p
 6
 e=20 Calendar day of end date.

 p
 7
 f=2012 Calendar year of end date.

 p
 8
 g=d Frequency. “d” = daily, “w” = weekly, and “m” = monthly.

 p
 9
 ignore=.csv Static parameter required by API.

CHAPTER 2 ■ NETWORKING PART I

25

 Setting Up Directories
 Before we get started with code examples in this chapter, it is important that you set up some of the key
folders and directories for the platform. Navigate to the proper locations on your computer and create the
following:

• A root directory for the project. Mine will be a folder in my home directory.

• A subdirectory of the root for storing .csv files with stock data.

• A subdirectory of the root for storing custom R functions.

 Modify Listing 2-1 to store the paths as character variables.

 Listing 2-1. Setting Path Variables

 rootdir <- "~/Platform/"
 datadir <- "~/Platform/stockdata/"
 functiondir <- "~/Platform/functions/"

 URL Query Building
 The following query URL will call a .csv file of Google stock prices from January 1, 2014, to January 1,
2015: http://ichart.yahoo.com/table.csv?s=GOOG&a=0&b=1&c=2014&d=0&e=1&f=2015&g=w&ignore=.
csv . Try following the link on a computer. It will automatically download a .csv file that can be opened
with spreadsheet software or any text editor. Our programming challenge is to execute the algorithm
automatically in R for many stocks. We will do this by building URL queries in R using string concatenation
and accessing many stocks at a time using loops.

 Listing 2-2 declares a function that calls the Yahoo! Finance API with a reduced set of parameters based
on what we commonly use. Notice that the start date defaults to January 2000 and the ending date has no
default. When the parameter current evaluates to true, its default, the end date parameters, (d,e,f), are
automatically reassigned to the current date. Additionally, we have tryCatch to handle errors. If the stock
symbol is not found or there is no Internet connection, the function will return NULL . Finally, we make sure
to source the function in the functions folder of the root directory. Make sure to create a root directory for
the platform and create a functions folder or subdirectory. We will commonly source small R objects and
functions for accessibility later.

 Listing 2-2. Yahoo! Finance CSV API Function

 yahoo <- function(sym, current = TRUE,
 a = 0, b = 1, c = 2000, d, e, f,
 g = "d")
 {
 if(current){
 f <- as.numeric (substr (as.character (Sys.time ()), start = 1, stop = 4))
 d <- as.numeric (substr (as.character (Sys.time ()), start = 6, stop = 7)) - 1
 e <- as.numeric (substr (as.character (Sys.time ()), start = 9, stop = 10))
 }

 require (data.table)

http://ichart.yahoo.com/table.csv?s=GOOG&a=0&b=1&c=2014&d=0&e=1&f=2015&g=w&ignore=.csv
http://ichart.yahoo.com/table.csv?s=GOOG&a=0&b=1&c=2014&d=0&e=1&f=2015&g=w&ignore=.csv

CHAPTER 2 ■ NETWORKING PART I

26

 tryCatch (
 suppressWarnings (
 fread (paste0 ("http://ichart.yahoo.com/table.csv",
 "?s=", sym,
 "&a=", a,
 "&b=", b,
 "&c=", c,
 "&d=", d,
 "&e=", e,
 "&f=", f,
 "&g=", g,
 "&ignore=.csv"), sep = ",")),
 error = function(e) NULL
)
 }

 setwd (functiondir)
 dump (list = c ("yahoo"), "yahoo.R")

 Running the following code will store a data frame GOOGL in your R environment with Google’s daily
closing price from 01-01-2000 (MM-DD-YYYY), or when it was first sold, through the current date.

 GOOGL <- yahoo ("GOOGL")

 Data Acquisition
 For Process 1, we want to fetch a list of desired stocks, make sure they are all in a directory, and get them
from Yahoo! Finance if they are not present. Listing 2-3 pulls a list of S&P 500 stocks from my web site and
converts the list to a character vector.

 Listing 2-3. List of S&P 500 Stocks

 # Up-to-date at time of writing (May 2016)
 url <- "http://trading.chrisconlan.com/SPstocks.csv"
 S <- as.character (read.csv (url, header = FALSE)[,1])

 We will save it in our directory so that we do not need to download it again.

 setwd (rootdir)
 dump (list = "S", "S.R")

 In Listing 2-4 , we are going to point R to a directory containing .csv files of stock prices. We will check
to see whether the directory contains files with names equal to the vector S with .csv concatenated to it. We
will then load the nonmatched files with the Yahoo! Finance API. On the first run-through, all of the files will
be missing, and they will all be loaded.

 Listing 2-4 also contains a mechanism for checking whether we supplied any invalid stock symbols to R
in the character vector S . These will be stored as an R object after execution if the program discovers that the
stock has no data in the Yahoo! Finance API. This will help prevent unnecessary API calls in future runs. If
the S&P 500 has not been modified since the time of writing, the invalid vector should remain empty.

CHAPTER 2 ■ NETWORKING PART I

27

 Listing 2-4. Initial Directory Loader

 # Load "invalid.R" file if available
 invalid <- character (0)
 setwd (rootdir)
 if("invalid.R" %in% list.files ()) source ("invalid.R")

 # Find all symbols not in directory and not missing
 setwd (datadir)
 toload <- setdiff (S[! paste0 (S, ".csv") %in% list.files ()], invalid)

 # Fetch symbols with yahoo function, save as .csv or missing
 source (paste0 (functiondir, "yahoo.R"))
 if(length (toload) != 0){
 for(i in 1: length (toload)){

 df <- yahoo (toload[i])

 if(! is.null (df)) {
 write.csv (df[nrow (df):1], file = paste0 (toload[i], ".csv"),
 row.names = FALSE)
 } else {
 invalid <- c (invalid, toload[i])
 }
 }
 }

 setwd (rootdir)
 dump (list = c ("invalid"), "invalid.R")

 This marks the end of Process 1. We will clear the R environment and move on to Process 2. We run
 rm() to remove selected R objects from the environment, but this does not necessarily remove them from
memory on our machines. We will run gc() , which stands for garbage collection , after rm() to make sure
memory occupied by cleared objects is made available.

 # Clears R environment except for path variables and functions
 rm (list = setdiff (ls (), c ("rootdir", "functiondir", "datadir", "yahoo")))
 gc ()

 Loading Data into Memory
 We will be fetching the names of all the files in datadir to load into memory. We will use the package data.
table used in the yahoo function to read .csv files quickly. This package provides the fread() function, which
has significant speed advantages over read.csv() when .csv files are large and well-formed. Listing 2-5 stores
each stock’s history as a data frame within a single list, DATA .

 The vector S will now represent all the files successfully downloaded into the data directory.
Throughout this text, S will be used to represent stocks we have data on as opposed to the full list of May
2016 S&P 500 symbols.

CHAPTER 2 ■ NETWORKING PART I

28

 Listing 2-5. Loading Data into Memory

 setwd (datadir)
 S <- sub (".csv", "", list.files ())

 require (data.table)

 DATA <- list ()
 for(i in S){
 suppressWarnings (
 DATA[[i]] <- fread (paste0 (i, ".csv"), sep = ","))
 DATA[[i]] <- (DATA[[i]])[order (DATA[[i]][["Date"]], decreasing = FALSE)]
 }

 The fread() function takes an astonishing six seconds on a home computer to read and organize
200MB of stock data. You may have noticed that we sorted the data by date after loading. This will be
important later when we start appending data from different sources.

 Note on Coding Style
 The coding style of this text is intended to be moderately self-explaining with a few major conventions.
We will use all capitals for large lists and data frames, as is the case with the DATA variable in Listing 2-5 .
Looping variables are lowercase single letters. Scalars and vectors are camel case with the exception of
certain major algorithmic objects, which can be single letters for the sake of brevity and legibility. Such is
the case with the vector S . All variables, package, names, and classes other than large data objects will be
in code font in the text.

 Updating Data
 Listing 2-6 will check to make sure the data is up to date by checking the most recent date of each symbol.
The Yahoo! Finance API updates at about 4:15 p.m. EST after each trading day. This is 40.25 hours away from
midnight the day before. Midnight is the default time assigned by R for dates supplied without timestamps.
We have supplied dates with a daily resolution, so we consider midnight of the night before as the time of
reference. If the difference between the most recent time in our data and the current time is greater than
40.25 hours, then 4:15 p.m. EST of the following day has passed and we update the data.

 If readers are in a time zone other than EST, consider adjusting the 40.25 figure to reflect this or running
the following to set the default time zone to EST:

 Sys.setenv (TZ='EST')

 Additionally, the program checks whether it is the weekend, and there is no new data with the weekend
and span Booleans. If both of the days following the most recent day and the current day are weekend days
and they are less than 48 hours part, we will consider it the weekend and not update the data. The updating
script will effectively prevent meaningless and empty queries by exploiting known behaviors of the API.
Logically, this can cause misfires on Mondays during the morning, and more can be done to completely
prevent unnecessary calls. Fortunately, eventual automation of this process will altogether eliminate the
need for these precautions.

 In the case of unnecessary calls, which are occasionally unavoidable, we exploit the ordering of the data
and the default response of fread() to ensure no duplicate rows are added to our environment or database.
This speeds up the updating process substantially by eliminating the need to computationally verify
uniqueness and order.

CHAPTER 2 ■ NETWORKING PART I

29

 Listing 2-6. CSV Update Method

 currentTime <- Sys.time ()
 for(i in S){
 # Store greatest date within DATA for symbol i
 maxdate <- DATA[[i]][["Date"]][nrow (DATA[[i]])]
 if(as.numeric (difftime (currentTime, maxdate, units = "hours")) >= 40.25){

 # Push the maxdate forward one day
 maxdate <- strptime (maxdate, "%Y-%m-%d") + 86400

 weekend <- sum (c ("Saturday", "Sunday") %in%
 weekdays (c (maxdate, currentTime))) == 2

 span <- FALSE
 if(weekend){
 span <- as.numeric (difftime (currentTime, maxdate, units = "hours")) >= 48
 }
 if(!weekend & !span){
 c <- as.numeric (substr (maxdate, start = 1, stop = 4))
 a <- as.numeric (substr (maxdate, start = 6, stop = 7)) - 1
 b <- as.numeric (substr (maxdate, start = 9, stop = 10))
 df <- yahoo (i, a = a, b = b, c = c)
 if(! is.null (df)){
 if(all (! is.na (df)) & nrow (df) > 0){
 df <- df[nrow (df):1]
 write.table (df, file = paste0 (i, ".csv"), sep = ",",
 row.names = FALSE, col.names = FALSE, append = TRUE)
 DATA[[i]] <- rbind (DATA[[i]], df)
 }
 }
 }
 }
 }

 We have successfully executed all but the final steps in the algorithm using the Yahoo! Finance API.
After running Process 1 once to fill the data directory, our program takes about 15 seconds to check and
update the data on a regular day. This is sufficient for most purposes, including programming a trading
platform.

 With this API, we are limited to stocks on the Yahoo! Finance (most publicly listed U.S. stocks), and we
have to perform one web query per stock when loading and updating. Users run the risk of missing stocks if
they lose an Internet connection momentarily and the code is large and complex. We will investigate other
methods of data acquisition and ultimately combine these components with our Yahoo! Finance API script
for a smoother and more secure execution.

 YQL Web Service
 YQL (Yahoo! Query Language) is a versatile MySQL-style API that streamlines data collection from XML,
HTML, and Yahoo!-owned database resources. The goal of YQL is to facilitate general-purpose web scraping.
Collection and merging are performed on YQL servers and delivered to the user in XML or JSON.

CHAPTER 2 ■ NETWORKING PART I

30

 We will use YQL to update stock data because it has many desirable properties when used to access
data internal to Yahoo! We cannot solely rely on YQL to execute Process 1 of the algorithm because it does
not allow for large file downloads. To best take advantage of YQL, we will make 5 downloads of about 101
stocks each. YQL tends to throw errors and deliver incomplete data if we request more than 15 trading days
at one time (in batches of 101 stocks), so we will use this process with the intention to update the data daily.
If the user ever finds he has not updated his stock data for about 10 days, he can use the updating method in
Listing 2-6 to bring it up to speed. This decision-making process will be automatically handled in the final
source code detailed in Appendix A. Table 2-2 details the structure of the YQL API.

 Table 2-2. YQL API Structure

 Component Example Argument Notes

 Base URL http://query.yahooapis.com/
v1/public/yql

 The base URL for the free YQL API. Allows for
maximum of 20,000 requests per day.

 p
1
 q=select * from yelp.review.

search where term='pizza'
 MySQL-style query that accesses a web site or
predefined datatables.org resource.

 p
2
 diagnostics=false Will YQL include diagnostics in the XML? Often true

in testing and false in production.

 p
3
 env=store://datatables.org/

alltableswithkeys
 We specify this argument when accessing a
datatables.org predefined table.

 URL and Query Building
 The URL for this request will be much bigger than ones we sent to fetch .csv data. We will first illustrate
with a smaller example. We will focus on construction of the q argument. The other arguments are
straightforward.

 The q argument is for a MySQL-like query. It will typically begin with select * from followed by a table
name and subsetting arguments. For example, the following

 base <- "http://query.yahooapis.com/v1/public/yql?"
 begQuery <- "q=select * from yahoo.finance.historicaldata where symbol in "
 midQuery <- "('YHOO', 'GOOGL') "
 endQuery <- "and startDate = '2014-01-01' and endDate = '2014-12-31'"
 endParams <- "&diagnostics=true&env=store://datatables.org/alltableswithkeys"

 urlstr <- paste0 (base, begQuery, midQuery, endQuery, endParams)

 will pull Yahoo! and Google stock prices for the year 2014. Copy and paste urlstr to your browser to see the
XML output.

 We will use the XML package in R to handle the output. Users familiar with XPath will quickly
understand how we pull information from the XML tree downloaded through YQL. XPath is a universal tool,
much like regular expressions, used in many programming languages that allows us to access values in an
XML tree in a similar fashion to UNIX file paths.

 In Listing 2-7 , we will programmatically generate midQuery based on the vector S . Through
experimentation, we have found that YQL typically cooperates with queries of 120 stocks or less. We
will request 101 stocks at a time to account for variability in name length and cover the vector S in five
downloads. We sacrifice some flexibility with dates using YQL because we must request the same date range
for all 101 stocks. We will find the earliest date in the 101-stock batch no greater than a month from today
and discard any duplicates if found.

www.allitebooks.com

http://query.yahooapis.com/v1/public/yql
http://query.yahooapis.com/v1/public/yql
http://www.allitebooks.org

CHAPTER 2 ■ NETWORKING PART I

31

 Listing 2-7. YQL Update Method

 setwd (datadir)
 library (XML)

 currentTime <- Sys.time ()

 batchsize <- 101

 # i in 1:5 for this example
 for(i in 1:(ceiling (length (S) / batchsize))){

 midQuery <- " ("
 maxdate <- character (0)

 startIndex <- ((i - 1) * batchsize + 1)
 endIndex <- min (i * batchsize, length (S))

 # find earliest date and build query
 for(s in S[startIndex:(endIndex - 1)]){
 maxdate <- c (maxdate, DATA[[s]][[1]][nrow (DATA[[s]])])
 midQuery <- paste0 (midQuery, "’", s, "’, ")
 }

 maxdate <- c (maxdate, DATA[[S[endIndex]]][[1]]
 [nrow (DATA[[S[endIndex]]])])

 startDate <- max (maxdate)

 if(startDate <
 substr (strptime (substr (currentTime, 0, 10), "%Y-%m-%d")
 - 28 * 86400, 0, 10)){
 cat ("Query is greater than 20 trading days. Download with csv method.")
 break
 }

 # Adds a day (86400 seconds) to the earliest date to avoid duplicates
 startDate <- substr (as.character (strptime (startDate, "%Y-%m-%d") + 86400), 0, 10)
 endDate <- substr (currentTime, 0, 10)

 # Yahoo! updates at 4:15 EST at earliest, check if it is past 4:15 day after last
 isUpdated <- as.numeric (difftime (currentTime, startDate, units = "hours")) >=
 40.25

 # If both days fall in the same weekend, we will not attempt to update
 weekend <- sum (c ("Saturday", "Sunday") %in%
 weekdays (c (strptime (endDate, "%Y-%m-%d"),
 c (strptime (startDate, "%Y-%m-%d"))))) == 2

 span <- FALSE
 if(weekend){
 span <- as.numeric (difftime (currentTime, startDate, units = "hours")) < 48
 }

CHAPTER 2 ■ NETWORKING PART I

32

 if(startDate <= endDate &
 !weekend &
 !span &
 isUpdated){

 # Piece this extremely long URL together
 base <- "http://query.yahooapis.com/v1/public/yql?"
 begQuery <- "q=select * from yahoo.finance.historicaldata where symbol in "
 midQuery <- paste0 (midQuery, "’", S[min (i * batchsize, length (S))], "’) ")
 endQuery <- paste0 ("and startDate = ’", startDate,
 "’ and endDate = ’", endDate, "’")
 endParams <- "&diagnostics=true&env=store://datatables.org/alltableswithkeys"

 urlstr <- paste0 (base, begQuery, midQuery, endQuery, endParams)

 # Fetch data and arrange in XML tree
 doc <- xmlParse (urlstr)

 # The next few lines rely heavily and XPath and quirks
 # of S4 objects in the XML package in R.
 # We retrieve every node (or branch) on //query/results/quote
 # and retrieve the values Date, Open, High, etc. from the branch
 df <- getNodeSet (doc, c ("//query/results/quote"),
 fun = function(v) xpathSApply (v,
 c ("./Date",
 "./Open",
 "./High",
 "./Low",
 "./Close",
 "./Volume",
 "./Adj_Close"),
 xmlValue))

 # If the URL found data we organize and update
 if(length (df) != 0){
 # We get the attributes from the same tree, which happen
 # to be dates we need
 symbols <- unname (sapply (
 getNodeSet (doc, c ("//query/results/quote")), xmlAttrs))

 df <- cbind (symbols, data.frame (t (data.frame (df, stringsAsFactors = FALSE)),
 stringsAsFactors = FALSE, row.names = NULL))

 names (df) <- c ("Symbol", "Date",
 "Open", "High", "Low", "Close", "Volume", "Adj Close")

 df[,3:8] <- lapply (df[,3:8], as.numeric)
 df <- df[order (df[,1], decreasing = FALSE),]

 sym <- as.character (unique (df$Symbol))

CHAPTER 2 ■ NETWORKING PART I

33

 for(s in sym){

 temp <- df[df$Symbol == s, 2:8]
 temp <- temp[order (temp[,1], decreasing = FALSE),]

 startDate <- DATA[[s]][["Date"]][nrow (DATA[[s]])]

 DATA[[s]] <- DATA[[s]][order (DATA[[s]][[1]], decreasing = FALSE)]
 DATA[[s]] <- rbind (DATA[[s]], temp[temp$Date > startDate,])
 write.table (DATA[[s]][DATA[[s]][["Date"]] > startDate],
 file = paste0 (s, ".csv"), sep = ",",
 row.names = FALSE, col.names = FALSE, append = TRUE)
 }
 }
 }
 }

 Listing 2-7 accomplishes the same updating procedure as Listing 2-6 , but instead of making 500 data
requests, it makes 5. It is much less prone to failure by connection loss but spends more time organizing
data. As long as we are capable of using YQL, we will continue using it to help reduce traffic to Yahoo! and
speed up our platform.

 Note on Quantmod
 Quantmod is a popular package for pulling historical stock prices from Yahoo! Finance and other APIs,
including Google Finance and Bloomberg.

 As a general programming paradigm, developers sacrifice flexibility by relying on prebuilt packages. In
this section, we will discuss why Quantmod was considered but not chosen as a financial data management
tool for our platform.

 Background
 Quantmod is a staple in academia. It is convenient for a classroom of students who are not necessarily R
experts to be able to download finance data with a single line of code. Quantmod was designed specifically
for this purpose.

 getSymbols (c ("SPY"), from = "2012-01-01")

 Comparison
 Unfortunately, academic time-series analysis has a tendency to analyze single series or small groups of
series rather than hundreds at a time. Consequently, Quantmod was built without consideration for robust
batch-fetching of stock data. If you run the previous line of code, you will see that Quantmod loads the data,
converts it to an xts object, and then assigns it the variable SPY . Auto-assignment can be turned off for
single-stock requests, but it will be required if we pull multiple stocks. This forces us to completely forfeit our
ability to organize data and access it programmatically through lists and data frames.

CHAPTER 2 ■ NETWORKING PART I

34

 If we were to attempt to execute the algorithm using Quantmod, we would end up with 500 separate
variables in our R environment. Additionally, it would force us to pause for one second between each
request. This is Quantmod’s way of being courteous to Yahoo! We have gone a step above in speed and
courtesy by utilizing YQL for updating. To illustrate how Quantmod completes 5 percent of our workload,
you can run the following line of code:

 getSymbols (S[1:25], from = "2000-01-01)

 If an error related to auto.assign is thrown, it may have been altered from its default value of TRUE
through the options() function. Specify auto.assign = TRUE in the previous function call to remedy this.

 Organizing as Date-Uniform zoo Object
 This is the last step in executing the algorithm. We want to allow our platform to pull data and run strategies
for a multitude of symbols in any number of countries, so we need to make sure the dates line up and
account for days off in each respective country. Listing 2-8 will use the merge function to accomplish this.
This function is computationally expensive, so we will attempt to save time by checking whether the dates
already match before using it. In the case where all the symbols being analyzed are on major American stock
exchanges, we will not utilize the merge function because the dates will already match.

 Listing 2-8. Organizing as Date-Uniform zoo Object

 library (zoo)

 # Compute the date template as a column of a data.frame for merging
 # Considers date are strings in YYYY-MM-DD format
 datetemp <- sort (unique (unlist (sapply (DATA, function(v) v[["Date"]]))))
 datetemp <- data.frame (datetemp, stringsAsFactors = FALSE)
 names (datetemp) <- "Date"

 # Double-check that our data is unique and in ascending-date order
 DATA <- lapply (DATA, function(v) unique (v[order (v$Date),]))

 # Create 6 new objects that will hold our re-organized data
 DATA[["Open"]] <- DATA[["High"]] <- DATA[["Low"]] <-
 DATA[["Close"]] <- DATA[["Adj Close"]] <- DATA[["Volume"]] <- datetemp

 # This loop will sequentially append the columns of each symbol
 # to the appropriate Open, High, Low, etc. object
 for(s in S){
 for(i in rev (c ("Open", "High", "Low", "Close", "Adj Close", "Volume"))){
 temp <- data.frame (cbind (DATA[[s]][["Date"]], DATA[[s]][[i]]),
 stringsAsFactors = FALSE)
 names (temp) <- c ("Date", s)
 temp[,2] <- as.numeric (temp[,2])

 if(! any (!DATA[[i]][["Date"]][(nrow (DATA[[i]]) - nrow (temp)+1): nrow (DATA[[i]])]
 == temp[,1])){
 temp <- rbind (t (matrix (nrow = 2, ncol = nrow (DATA[[i]]) - nrow (temp),
 dimnames = list (names (temp)))), temp)

CHAPTER 2 ■ NETWORKING PART I

35

 DATA[[i]] <- cbind (DATA[[i]], temp[,2])
 } else {
 DATA[[i]] <- merge (DATA[[i]], temp, all.x = TRUE, by = "Date")
 }

 names (DATA[[i]]) <- c (names (DATA[[i]])[-(ncol (DATA[[i]]))], s)
 }
 DATA[[s]] <- NULL

 # Update user on progress
 if(which (S == s) %% 25 == 0){
 cat (paste0 (round (100 * which (S == s) / length (S), 1), "% Complete\n"))
 }

 }

 # Declare them as zoo objects for use with time-series functions
 DATA <- lapply (DATA, function(v) zoo (v[,2: ncol (v)], strptime (v[,1], "%Y-%m-%d")))
 # Remove extra variables
 rm (list = setdiff (ls (), c ("DATA", "datadir", "functiondir", "rootdir")))

 Note on zoo Objects
 The zoo package and corresponding zoo class is one of the options we have for manipulating time-series
data in R. Other options include the xts class and the ts class from their respective packages. We use zoo
because it is a minimal format that affixes and maintains a vector of dates to time-series data. The vector of
dates is necessary to declare the zoo object. From then on, the object ensures that the output of functions
digesting it are also zoo objects with proper, ordered, and row-unique date assignment.

 There are natural consequences to the safety of the zoo class. For example, manually adding two
elements of a zoo object (with a plus sign) will return an empty numeric value, numeric(0) , because it is
seen as an illegal operation. We will rarely have to do this, because we will primarily rely on time-series
functions to handle our data. In the case that we intend to perform such illegal operations, we can wrap the
call to the zoo object in as.numeric() to alleviate this. We will do this frequently in our simulation algorithm
in Chapter 7 .

http://dx.doi.org/10.1007/978-1-4842-2178-5_7

37© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_3

CHAPTER 3

Data Preparation

In this chapter, we will discuss ways of cleaning data to make analysis faster and more effective. Additionally,
we will compute some new data sets we will need in our analysis. For this chapter, you should have the final
results of the list DATA and the three directory variables from the previous chapter in your R environment.
This list DATA contains 6 zoo objects rather than 500+ stock symbols.

Handling NA Values
There are a handful of specific reasons why a certain stock may have NA values on any given day. We want to
diagnose and treat these reasons appropriately to ensure the validity of our simulation results.

Note: NA vs. NaN in R
The NA value in R means not applicable. It is of functional importance because it allows us to denote where
data is missing, intentionally or otherwise.

The NaN value in R typically arises as a result of failed or impossible computations in R. The value NaN
stands for not a number. It is more related to the native R values Inf and -Inf than to the NA value. According
to R, for any positive scalar a,

a
Inf

0
= ,

0

0
=NaN , and - = -

a
Inf

0
, and it will output them as such.

This section will concern itself with the NA value and not the NaN value. We will create solutions for
handling accidental impossible calculations in our source code as the need arises.

IPOs and Additions to S&P 500
We need to observe and know our data to determine why NAs are present and how to best handle them.
Let’s start by observing the symbol KORS. Michael Kors is a luxury fashion brand that has gained significant
popularity in recent years. It went public in December 2011 and was added to the S&P 500 in November
2013. Our data, and the preview given in Table 3-1, should have NA values in all of the days prior to its IPO on
December 15, 2011.

Chapter 3 ■ Data preparation

38

It is important to consider that companies are usually included in the S&P 500 many years after their
IPOs because they are required to meet many liquidity, domicile, and ownership criteria. Most notably,
companies are required to have a $5.3 billion minimum market capitalization. This means that companies
often join the S&P 500 as a result of growth and success. Simulating trading strategies with only current S&P
500 members biases results by ensuring that, as of the date of simulation, all of the companies have survived
enough to maintain their membership in the S&P 500.

Small companies that enjoyed substantial post-IPO growth are likely to have reached the $5.3 billion
market capitalization threshold through growth in share value. Including their pre-S&P performance would
unfairly bias the simulation by introducing the knowledge that a then-small company will have a market cap
greater than $5.3 billion in the future.

To remedy this, we will make sure only to simulate trading on post-inclusion performance. Ideally, we
would like to have data on every stock ever in the S&P 500 and include each stock only when active in the
index. Unfortunately, many of these old members’ data streams are deprecated and incomplete in Yahoo!
Finance.

Based on these facts, we have made the calculated decision to adjust for inclusion dates but not pursue
historical data for previous members of the S&P 500. The drivers for this decision are index rules and
data availability, as discussed. This plan of action makes considerable efforts to reduce bias arising from
inclusion of future knowledge but does not fully absolve itself of such bias. If you are using another data
source or extending the platform, you are encouraged to research asset indices and grouping criteria used in
asset selection to best eliminate bias arising from inclusion of future knowledge.

History on inclusion in the index is scattered and incomplete throughout the Web. My best attempts
to compile a useful inclusion history found that many reputable sources have published incomplete and
conflicting data for stocks not active in the index or added to the index before the late 1990s. I was able to
compile a mostly complete and practically accurate list of “addition dates” for stocks currently in the index.
Utilizing this data set will help us eliminate the most bias possible from our simulations.

Listing 3-1 converts all values occurring before addition to the S&P to NA values. Missing dates are listed
as 1/1/1900 and default to inclusion throughout. Our data reaches as far back as January 1, 2000,
so symbols with dates prior to this default to inclusion throughout.

Listing 3-1. Eliminating Pre-S&P Data

setwd(rootdir)

if("SPdates.R" %in% list.files()){
 source("SPdates.R")
} else {
 url <- "http://trading.chrisconlan.com/SPdates.csv"
 S <- read.csv(url, header = FALSE, stringsAsFactors = FALSE)

Table 3-1. KORS Pre-IPO Data

Date Open High Low Close Volume

2011-12-12 NA NA NA NA NA

2011-12-13 NA NA NA NA NA

2011-12-14 NA NA NA NA NA

2011-12-15 25.00 25.23 23.51 24.20 42259200

2011-12-16 24.45 24.80 23.51 24.10 3998900

2011-12-19 24.50 25.09 24.31 24.88 3245500

Chapter 3 ■ Data preparation

39

 dump(list = "S", "SPdates.R")
}

names(S) <- c("Symbol", "Date")
S$Date <- strptime(S$Date, "%m/%d/%Y")
for(s in names(DATA[["Close"]])){
 for(i in c("Open", "High", "Low", "Close", "Adj Close", "Volume")){
 Sindex <- which(S[,1] == s)
 if(S[Sindex, "Date"] != "1900-01-01 EST" &
 S[Sindex, "Date"] >= "2000-01-01 EST"){
 DATA[[i]][index(DATA[[i]]) <= S[Sindex, "Date"], s] <- NA
 }
 }
}

This process overwrites a lot of data and will take a few minutes. If you want to make sure the process is
proceeding, you can insert print(s) into the loop between the last two curly braces. In the final source code,
this step will be executed as part of the fetching and updating procedure, significantly speeding it up.

Merging to the Uniform Date Template
In the previous chapter, we made sure to design our data fetching and updating algorithms to be able to
handle multiple stocks from multiple countries with different trading schedules. If we had stocks in, say, the
United States and Japan, there would be missing values in nonoverlapping trading days. Conventionally,
there are a few ways to address this. We will discuss the following:

•	 Forward replacement

•	 Linearly smoothed replacement

•	 Volume-weighted smoothed replacement

•	 Doing nothing

Forward replacement involves taking each NA value and replacing it with the entry before it, starting
at the earliest date and moving forward. Linearly smoothed replacement involves drawing a straight line
from the prior nonmissing value to the following. Volume-weighted smoothed replacement takes the two
nearest points generated in linearly smoothed replacement and weights them by the volumes of the nearest
nonmissing days. We will discuss the case for doing nothing with the missing values.

We will simulate a ten-day period of KORS where we pretend we need to fill in prices on Thanksgiving
2015 and the following Black Friday weekend. Listing 3-2 declares our temporary zoo data frame temp for
this discussion.

Listing 3-2. Declaring Temporary Data for Discussion

temp <- c(DATA[["Close"]][index(DATA[["Close"]]) %in% c("2015-11-23",
 "2015-11-24",
 "2015-11-25"), "KORS"],
 zoo(NA, order.by = strptime("2015-11-26", "%Y-%m-%d")) ,
 DATA[["Close"]][index(DATA[["Close"]]) %in% c("2015-11-27"), "KORS"],
 zoo(NA, order.by = strptime(c("2015-11-28", "2015-11-29"), "%Y-%m-%d")),
 DATA[["Close"]][index(DATA[["Close"]]) %in% c("2015-11-30",
 "2015-12-01",
 "2015-12-02"), "KORS"])

Chapter 3 ■ Data preparation

40

Forward Replacement
The forward replacement function will check whether a missing value is present in the last element of a
vector and replace it with the most recent nonmissing value. In Listing 3-3, we will be passing this function
to rollapply(), which treats a vector of length n as n–k slices of length k and cycles through them applying
the function. We need to specify the variable maxconsec as one plus the maximum number of consecutive
NAs we expect in the data. It is generally faster to specify a value a little too high than to compute the
maximum number of NAs. Figure 3-1 shows the effects of forward replacement.

Figure 3-1. Forward replacement

We discuss the details of NA handling by rollapply() in later chapters. For now it is worth noting that
the first width–1=maxconsec–1 elements will be missing from the output when we specify align = "right".
This means that the full data set desired from the replacement methods we discuss is attained by overlaying
the rollapply() output on the NA values of the existing data.

Listing 3-3. Forward Replacement Function

Forward replacement function
forwardfun <- function(v, n) {
 if(is.na(v[n])){
 return(v[max(which(!is.na(v)))])
 } else {
 return(v[n])
 }
}

maxconsec <- 3

We pass maxconsec to rollapply() in "width = "
and pass it again to forwardfun() in "n = "

Chapter 3 ■ Data preparation

41

forwardrep <- rollapply(temp,
 width = maxconsec,
 FUN = forwardfun,
 n = maxconsec,
 by.column = TRUE,
 align = "right")

Linearly Smoothed Replacement
For linearly smoothed replacement, maxconsec must be odd and greater than the maximum number of
consecutive NAs plus two. In our example, that is five. Listing 3-4 implements linearly smoothed replacement.
Figure 3-2 shows the effects of linear and volume-weighted smoothed replacement side by side.

Figure 3-2. Linearly smoothed and volume-weighted replacement

Listing 3-4. Linearly Smoothed Replacement

Linearly Smoothed Replacement Function
linearfun <- function(v, n){
 m <- (n + 1)/2
 if(is.na(v[m])){
 a <- max(which(!is.na(v) & seq(1:n) < m))
 b <- min(which(!is.na(v) & seq(1:n) > m))
 return(((b - m)/(b - a)) * v[a] +
 ((m - a)/(b - a)) * v[b])
 } else {
 return(v[m])
 }
}

Chapter 3 ■ Data preparation

42

maxconsec <- 5
linearrep <- rollapply(temp,
 width = maxconsec,
 FUN = linearfun,
 n = maxconsec,
 by.column = TRUE,
 align = "center")

Volume-Weighted Smoothed Replacement
To study volume-weighted smoothing, we will declare a variable containing the KORS volume from
the same time period. Listing 3-5 implements volume-weighted smoothed replacement. We specify
maxconsec here the same as in Listing 3-4: an odd number greater than the maximum number of
consecutive NA values plus two.

Both volume-weighted smoothed replacement and linearly smoothed replacement will rightfully
return warnings and errors if maxconsec is set too low or if there are trailing NA values. A more robust
implementation of either function may default to forward replacement in the case of trailing NA values,
but we will leave this decision to you to consider given the discussion of replacement methods in the next
section.

Listing 3-5. Volume-Weighted Smoothed Replacement

voltemp <-
 c(DATA[["Volume"]][index(DATA[["Close"]]) %in% c(index(temp)[1:3]), "KORS"],
 zoo(NA, order.by = index(temp)[4]),
 DATA[["Volume"]][index(DATA[["Close"]]) %in% c(index(temp)[5]), "KORS"],
 zoo(NA, order.by = index(temp)[6:7]),
 DATA[["Volume"]][index(DATA[["Close"]]) %in% c(index(temp[8:10])), "KORS"])

Volume-Weighted Smoothed Replacement Function
volfun <- function(v, n, vol){
 m <- (n + 1)/2
 if(is.na(v[m])){
 a <- max(which(!is.na(v) & seq(1:n) < m))
 b <- min(which(!is.na(v) & seq(1:n) > m))
 return(((v[a] + ((m-a-1)/(b-a)) * (v[b] - v[a])) * vol[a] +
 (v[a] + ((m-a+1)/(b-a)) * (v[b] - v[a])) * vol[b]) /
 (vol[a] + vol[b]))
 } else {
 return(v[m])
 }
}

maxconsec <- 5
volrep <- rollapply(cbind(temp, voltemp),
 width = maxconsec,
 FUN = function(v) volfun(v[,1], n = maxconsec, v[,2]),
 by.column = FALSE,
 align = "center")

Chapter 3 ■ Data preparation

43

Discussion of Replacement Methods
Why, in general, might we want to use or avoid certain replacement methods? Which one will help us
generate the most accurate simulation results?

Real Time vs. Simulation
Remember that we replace missing values to facilitate comparison between stocks that are traded on
different schedules. We want to interpolate price movement in the untraded asset to compare it to the traded
asset in both simulation and real-time trading. In this sense, forward replacement is advantageous because
it is the only replacement method we discussed that can be computed in both situations.

Running simulations on data that depends on future price movements invalidates simulation results
by introducing future information. Even in cases where using future information in simulations does not
introduce a drastic bias, the results of the simulation are not reproducible in real time simply because we do
not have access to future information in real-time trading.

Forward replacement requires no knowledge of future prices and has practical applications in
correcting for certain data anomalies that affect simulation and execution. We will discuss this later in the
chapter to correct for symbol deprecation of unknown cause.

Influence on Volatility Metrics
Volatility metrics are generally measured as the mean of a function of changes in asset price. For example,
sample variance ŝ 2 is the mean of squared deviations from the sample mean,

ŝ 2 1

2

1
=

-()

-
=
å
i

n

ir r

n
,

where r
i
 represents asset returns and r represents the sample mean, typically assumed to be zero for our

purposes.
Any smoothing method we use will place a downward bias on volatility metrics by doing the following:

•	 Increasing the denominator by increasing the number of trading days

•	 Decreasing the numerator by substituting single larger price changes for many
smaller price changes

Linearly smoothed replacement and volume-weighted smoothed replacement will have a strong
influence on the numerator because they smooth price changes. Forward replacement will not smooth
price changes and therefore will not change the value of the numerator. All of our replacement methods will
increase the denominator by adding trading days. This is a case where doing nothing is the best option to
preserve the validity of volatility metrics.

Table 3-2 illustrates this concept using our KORS sample. Returns used this example are computed as
percentages as opposed to decimals for clarity.

Table 3-2. Smoothing Effects on Volatility Metrics

Method n-1 ŝ 2

Doing nothing 4.307 5 0.861

Forward replacement 4.307 8 0.538

Linearly smoothed 2.991 8 0.374

Volume-weighted 3.028 8 0.378

å -()r ri

2

Chapter 3 ■ Data preparation

44

Variance metrics are calculated frequently in both indicators and performance metrics. It is easy to see
how introducing smoothing bias into variance metrics could corrupt indicators that depend on them like
Bollinger Bands and Rolling Sharpe Ratios.

Influence on Trading Decisions
If we smooth prices and simulate trading decisions, we run the risk of triggering trades on days where
the asset does not trade, effectively invalidating simulation results. We can programmatically adjust for
this, but it will prove to be unnecessarily complicated for our platform. Working this functionality into
our platform would require us to keep a parallel data set with Boolean values corresponding to tradable
and untradable days. This would be a large memory sacrifice and would add numerous table lookups to
our code.

Conclusion
The R language has great facilities for handling NA values. Many important functions have na.rm = TRUE
options that allow the user to compute means, medians, standard deviations, and more, with the NA values
removed and denominators automatically adjusted. Doing nothing to the NA values will allow R to handle
them and serve as a reminder that assets are not to be traded on these days.

In the spirit of maintaining valid data and simulation results, forward replacement and doing nothing
are the only correct ways to go. In the spirit of practicality within the R language, we will be doing nothing to
the NA values discussed in this section.

In the special case where a stock symbol has ceased trading because of a merger, acquisition, or
bankruptcy, the data will show NA values from the last trading day until the present. We will use forward
replacement to simulate the ability to exit at the final price at any time.

Closing Price and Adjusted Close
It is common in financial literature to use the closing price only when working with discrete-time
fixed-frequency data. This holds for indicators, rule sets, and performance metrics. If a reader sees y

t

indiscriminately named in financial mathematics, he can safely assume it is referring to the closing
price. In the same situation, a reader can safely assume r

t
 refers to returns or percentage changes of the

closing price.
When studying historical stock data, it is often assumed that the reader has adjusted his data for stock

splits. It is less often assumed in academic literature that the reader has adjusted for cash dividends. (The
famous Black-Scholes model includes dividends as a variable distinct from price.) These are simple and
logical transformations of the original closing price series, but they require additional data. In our use case,
we study a basket of both dividend-paying and non-dividend-paying stocks, so it is logical for us to adjust for
splits and dividends rather than define them separately.

Yahoo! Finance includes an Adj Close variable to handle these adjustments, but it applies only to
closing prices. There are no adjusted opens, adjusted highs, or adjusted lows. Interestingly enough, Yahoo!
has already adjusted volume to account for splits. The transformation is fairly straightforward. We simply
multiply Open, High, and Low of each symbol by the ratio of Adj Close to Close for that stock and then
discard Close and use Adj Close in its place. Adj Close more accurately represents the investment value of
a stock, rather than its nominal price, as depicted in Figure 3-3.

Chapter 3 ■ Data preparation

45

Adjusting for Stock Splits
Companies will split their stock for a variety of reasons. It is important to know that, no matter the reason, a
stock split does not directly affect the market capitalization of the company or the value of any individual’s
equity investment in the company.

An n : m split awards shareholders n shares for every m held, increasing the number of outstanding

shares by a factor of
n

m
 and fixing the next morning’s opening price at

m

n
 of the previous day’s closing

price. The financial impact of a stock split is to effectively change nothing but the unit price of the stock.
There are hotly debated corporate motives and psychological impacts of stock splits. The news of a

stock split could, in itself, imply or affirm some projections about a company and the state of its stock. For
the purposes of simulating portfolios, we want to retroactively adjust prices to give the appearance that splits
never happened. In doing this, we differentiate the numerical value of a stock price and the investment value
of a company.

Yahoo! factors splits into Adj Close by multiplying the closing price presplit by
m

n
. We will use the ratio

of Adj Close to Close to find splits, and if a split occurs at time t, we multiply Open, High, and Low by the

ratio m

n
 for 0 1,..., t -() . Yahoo! has already adjusted volume for splits by multiplying by n

m
 for 0 1,..., t -() to

adjust for the change in total outstanding shares.
We will implement this algorithm in R in conjunction with our dividend adjustment algorithm in

Listing 3-6.

Adjusting for Cash Dividends
Companies often give cash dividends on annual or quarterly bases. These companies are typically large and
mature, and they believe stocks should represent a proportional claim not only on assets but on earnings.
We want to adjust our data to reflect a per-share increase in cash or investable capital without having to keep
track of historical cash distributions.

Figure 3-3. AAPL close vs. adjusted closee

Chapter 3 ■ Data preparation

46

If a company makes a distribution of d dollars per share at time t, Yahoo! has adjusted prices in
0 1,..., t -() by a factor of

c
d

Closet
= -

-

1
1

.

In simulation, moving from (t–1) to t, the adjusted data shows

r
c

Close

Closet
t

t

=
æ

è
ç

ö

ø
÷-

-

1
1

1

*

on the date of the distribution, where Close
t
 refers to the price before adjustment. This simulates immediate

reinvestment of dividends in the distributing stock. This behavior cannot be guaranteed in real time, but it
allows us to account for distributions in a sufficiently realistic manner. We will not adjust volume as we did
with stock splits because dividends do not affect the number of outstanding shares.

Accounting for dividends and splits simultaneously produces a stepwise adjustment factor with large
steps at splits and small quarterly steps during periods of regular dividend distribution. Figure 3-4 shows the
ratio of Close to Adjusted Close, or the inverse of the adjustment factor, for Yahoo!, Ford, and Bank of America.

Figure 3-4. Ratio of Close to Adjusted Close

Efficient Updating and Adjusted Close
Based on our discussion of Yahoo! Finance adjustments and the purpose of the adjusted close, we know the
following:

•	 The adjusted close at time T, the current time, is equal to the close at time T. In other
words, the adjusted close is scaled against the close of T for any t in 0,..., T.

•	 A split or dividend at time t affects the value of adjusted close of 0 1,..., t -() .

Chapter 3 ■ Data preparation

47

This is a problem for our data management system because it makes efficiency gains through
incremental downloading and appending within the data directory. If a dividend or split occurs on a stock,
the adjusted close values in our data directory become invalid and useless. Simply put, a dividend or split in
2016 propagates through the adjusted close in 2015, 2014, 2013, and so on.

We must make a sacrifice in efficiency to ensure the validity of our data. We will modify our updating
procedure in the final source code to download a few extra days of data and check for equality in the
adjusted price against the stored data. If a symbol is found to have an unequal adjusted price, we will use a
slight modification of Listing 2-6 to download the entire price history from January 1, 2000. Please see the
updateStocks.R script in Appendix A to view the changes.

Implementing Adjustments
Some things are extremely easy in R. We will take advantage of R’s ability to multiply matrices and data
frames with the same dimensionality quickly in straightforward code. In Listing 3-6, we will be processing
and writing well over 100MB of new data in about 1.3 seconds on a single computer core. We will be
saving the numeric values of Close in a new variable, Price, for use in calculating order sizes in broker
communication.

Listing 3-6. Adjusting OHLC Data

Declare new zoo data frame of adjustment factors
MULT <- DATA[["Adj Close"]] / DATA[["Close"]]

Store Close and Open Prices in new variable "Price" and "OpenPrice"
DATA[["Price"]] <- DATA[["Close"]]
DATA[["OpenPrice"]] <- DATA[["Open"]]

Adjust Open, High, and Low
DATA[["Open"]] <- DATA[["Open"]] * MULT
DATA[["High"]] <- DATA[["High"]] * MULT
DATA[["Low"]] <- DATA[["Low"]] * MULT

Copy Adjusted Close to Close
DATA[["Close"]] <- DATA[["Adj Close"]]

Delete Adjusted Close
DATA[["Adj Close"]] <- NULL

We now have seven variables in our DATA list, adjusted Open, adjusted High, adjusted Low, adjusted
Close, adjusted Volume, unadjusted Close, and unadjusted Open. We delineate the unadjusted Close and
Open by calling Price and OpenPrice, respectively. Unadjusted Close and Open are being kept for use in
order execution, account management, and performance assessment in the future.

Test for and Correct Inactive Symbols
For example, we found it beneficial to perform forward replacement on trailing NA values resulting from
symbol deprecation. Symbol deprecation occurs often in mergers and acquisitions. Forward replacement
of trailing NA values simulates the shareholder’s ability to exit his position at the final closing price, as is the
case with mergers and acquisitions.

Chapter 3 ■ Data preparation

48

As mentioned in our discussion of replacement methods, forward replacement has practical
applications in correcting for certain data anomalies. We will perform forward replacement on trailing NA
values, as this represents inactivity of the symbol due to corporate action. This simulates the shareholder’s
ability to exit his position at the final closing price, as is the case with most corporate action resulting
in symbol deprecation. These corporate actions are mainly mergers and acquisitions but can extend to
more exotic equity transfers. Listing 3-7 will walk backward in time on each symbol and perform forward
replacement if it determines a symbol to be inactive. While transfers of deprecated symbols can still occur
privately, setting the volume as zero post-deprecation is the most logically consistent considering the
account standards of corporate actions and the effect desired in volume-dependent computations.

Listing 3-7. Forward Replacement on Inactive Symbols

for(s in names(DATA[["Close"]])){
 if(is.na(DATA[["Close"]][nrow(DATA[["Close"]]), s])){
 maxInd <- max(which(!is.na(DATA[["Close"]][,s])))
 for(i in c("Close", "Open", "High", "Low")){
 DATA[[i]][(maxInd+1):nrow(DATA[["Close"]]),s] <- DATA[["Close"]][maxInd,s]
 }
 for(i in c("Price", "OpenPrice")){
 DATA[[i]][(maxInd+1):nrow(DATA[["Close"]]),s] <- DATA[["Price"]][maxInd,s]
 }
 DATA[["Volume"]][(maxInd+1):nrow(DATA[["Close"]]),s] <- 0
 }
}

Computing the Return Matrix
There are a number of reasons we will need to utilize the return matrix in our simulation and optimization. It
is best to compute it in advance and save it for later use.

Note that the return matrix is markedly different (and much simpler) than the return series discussed
in Chapter 1. The return matrix will simply be a matrix consisting of every daily return for each stock in our
series. We will only compute on the adjusted close for stock prices.

We define the return on asset j at time t to be

r
y y

y

y

yt j

t j t j

t j

t j

t j

,

, ,

,

,

,

=
-

= --()

-() -()

1

1 1

1

where y
t,j

 is the price of asset j and time t.
Listing 3-8 will use the base R functionality lag(), which moves every element of a time series back

k spots in a data set. Dividing the original data set by the lagged data and subtracting one gives the return
matrix. Be wary of what “back” means. Time-series data sets in some R functions are assumed to be in
decreasing-time order. Our data is in increasing-time order, so we will specify the argument k=–1 to get the
reverse effect.

We will also compute overnight returns to help us simulate purchasing in the morning and selling in the
afternoon as a strategy option.

http://dx.doi.org/10.1007/978-1-4842-2178-5_1

Chapter 3 ■ Data preparation

49

Listing 3-8. Computing Return Matrices

Pad with NAs to preserve dimension equality
NAPAD <- zoo(matrix(NA, nrow = 1, ncol = ncol(DATA[["Close"]])),
 order.by = index(DATA[["Close"]])[1])
names(NAPAD) <- names(DATA[["Close"]])

Compute Daily Close-to-Close Returns
RETURN <- rbind(NAPAD, (DATA[["Close"]] / lag(DATA[["Close"]], k = -1)) - 1)

Compute Overnight Returns (Close-to-Open)
OVERNIGHT <- rbind(NAPAD, (DATA[["Open"]] / lag(DATA[["Close"]], k = -1)) - 1)

51© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_4

CHAPTER 4

Indicators

Indicators are at heart of the trading strategy. They make it unique and profitable. They can be single
computations or a long series of analyses.

Many technically focused trading platforms like TradeStation, Metatrader, and Interactive Brokers
handle all of the data management and let the user select from a list of common and customizable
indicators. These platforms typically emphasize visualization rather than computation. We are handling
our own data management because we want to compute indicators over many symbols and assess them
numerically rather than visually.

Computing indicators efficiently over batches of symbols in R requires a lot of familiarity with
rollapply(). We will give many examples of common indicators implemented this way to make sure
you are comfortable using it. Additionally, we will demonstrate how to change indicators outside of the
rollapply() function by including function declarations and parameters at the head of documents.

Indicator Types
Indicators have broad classifications related to how they are best visualized and what kinds of rule sets tend
to work well with them. We discuss these in this section.

Overlays
Overlays are best characterized by their scale. Overlays typically have the same or similar scale to the
underlying asset and are meant to be laid over to chart of price history. Common examples are the simple
moving average, Bollinger Bands, and volume-weighted average price. Overlays are commonly computed
as the average of something added to a deviation of some form, or the price of the asset added to a curve of
some form.

Rule sets often concentrate on the prices interaction with the overlay or the overlay’s interaction with
components of itself. Here’s an example: If price rises above the simple moving average, buy the stock at
market price.

Oscillators
Oscillators are also best characterized by their scale. Oscillators typically oscillate around zero. Common
examples are the MACD, Stochastic Oscillator, and RSI. These are typically plotted below the price history in
charts because they do not share scale with it.

Rule sets typically concentrate around the indicator’s interaction with the zero line or other
components of itself. Here’s an example: If the MACD rises above zero, buy the stock at market price.

Chapter 4 ■ IndICators

52

Accumulators
Accumulators depend on the value of itself in past periods to calculate future values. This is different from most
indicators that depend only on price history, not indicator history. They have the advantage of being window-
length independent in that the user does not specify any n periods in the past to be computed. This is an
advantage purely on the level of robustness and mathematical elegance. They are very often volume-oriented.
Examples are On-Balance Volume, Negative Volume Index, and the Accumulation/Distribution Line.

Rule sets typically concentrate on the relationship between the accumulator and an average or
maximum of itself. Here’s an example: If the Negative Volume Index crosses above a moving average of itself,
buy the stock at market price.

Pattern/Binary/Ternary
Pattern indicators are classic technical indicators like the head-and-shoulders. They involve detecting
some pattern in the data and triggering a trading signal if found. When we are detecting these patterns
with computers, these indicators are often called binary or ternary because they have two or three possible
values, -1 (short), 0 (neutral), and 1 (long).

Rule sets for these indicators are simple because they are essentially built in to the indicator. Practical
rule sets including these indicators often combine or index pattern indicators along with other indicators.

Machine Learning/Nonvisual/Black Box
When utilizing machine-learning methods to generate stock signals, the outputs are often multidimensional.
These multidimensional outputs easily interact with rule sets optimized to handle them but are most often
not worth visualizing. Not surprisingly, these strategies tend to be the most proprietary and have the highest
information latency when used correctly.

Example Indicators
We will start by demonstrating how to compute example indicators on a handful of stocks. We will declare a
subset of stocks for use in the examples for the sake of speed.

exampleset <- c("AAPL", "GOOGL", "YHOO", "HP", "KORS", "COH", "TIF")

Simple Moving Average

SMA
n

yt n
i

n

t i, =
=

-

-å1
0

1

.

In other words, the SMA at time t is the sample average of the n most recent observations. Listing 4-1
computes the SMA using rollapply().

Listing 4-1. Computing SMA with rollapply()

n <- 20
meanseries <-
rollapply(DATA[["Close"]][,exampleset],
s width = n,
 FUN = mean,
 by.column = TRUE,

Chapter 4 ■ IndICators

53

 fill = NA,
 align = "right")

Moving Average Convergence Divergence Oscillator (MACD)
For n

1
<n

2
,

MACD SMA SMAt n n t n t n, , , ,1 2 1 2
= - .

Listing 4-2 computes the MACD using rollapply().

Listing 4-2. Computing MACD with rollapply()

n1 <- 5
n2 <- 34
MACDseries <-
rollapply(DATA[["Close"]][,exampleset],
 width = n2,
 FUN = function(v) mean(v[(n2 - n1 + 1):n2]) - mean(v),
 by.column = TRUE,
 fill = NA,
 align = "right")

Note that we have organized our data as ascending by date. Recognize this direction when specifying
functions in rollapply(). Notice how we subset the vector as integers between and including n

2
–n

1
+1 to n

2

to represent the n
1
 most recent price points at each time t. Figure 4-1 shows the MACD of GOOGL for the

months leading up to June 2016.

Figure 4-1. GOOGL MACD

Chapter 4 ■ IndICators

54

Bollinger Bands
Bollinger Bands consist of an upper, middle, and lower band. The middle band is a simple moving average,
and the upper and lower bands are the middle band plus and minus two rolling sample standard deviations.

s t n
i

n

t i t nn
y SMA, ,

2

0

2

1

21

1
=

-
-()

=

-

- -å .

Middle SMAt n t n, ,= .

Upper Middlet n t n t n, , ,= +2s .

Lower Middlet n t n t n, , ,= -2s .

Listing 4-3 computes Bollinger Bands using rollapply(). Figure 4-2 shows GOOGL plotted with
Bollinger Bands for the months leading up to June 2016.

Figure 4-2. GOOGL with Bollinger Bands

Listing 4-3. Computing Bollinger Bands with rollapply()

n <- 20
rollsd <- rollapply(DATA[["Close"]][,exampleset],
 width = n,
 FUN = sd,

Chapter 4 ■ IndICators

55

 by.column = TRUE,
 fill = NA,
 align = "right")

upperseries <- meanseries + 2 * rollsd
lowerseries <- meanseries + 2 - rollsd

Custom Indicator Using Correlation and Slope
We will compute a custom indicator by multiplying the rolling R2 between price and time by the average
price change of the period. Listing 4-4 implements this indicator and displays the result in Figure 4-3 for the
months leading up to June 2016.

Figure 4-3. GOOGL custom indicator

Listing 4-4. Computing Custom Indicator with rollapply()

n <- 10
customseries <-
 rollapply(DATA[["Close"]][,exampleset],
 width = n,
 FUN = function(v) cor(v, n:1)^2 * ((v[n] - v[1])/n),
 by.column = TRUE,
 fill = NA,
 align = "right")

Chapter 4 ■ IndICators

56

Indicators Utilizing Multiple Data Sets
Sometimes indicators will utilize information from data sets other than the closing price. Most commonly
we will have indicators that use closing price and volume, or indicators that use Open, High, and Low, as
well as Close. The rollapply() function takes only one argument to data =, so we will have to manipulate
the inputs and functions to accommodate this. The following will illustrate computation of the Chaikin
Money Flow with rollapply()

MFV
y h l

h l
vt

t t t

t t
t=

- -
-

2

where y
t
,h

t
,l

t
, and v

t
 represent the Close, High, Low, and Volume at time t. MFV

t
 is a component of the

Chaikin Money Flow known as the Money-Flow Volume. The Chaikin Money Flow of n periods can then
be represented as follows:

CMF
MFV

v
t n

i

n

t i

i

n

t i

, = =

-

-

=

-

-

å

å
0

1

0

1

Listing 4-5 will take advantage of the extensibility rollapply() has over looping by feeding it the close,
high, low, and volume as a single zoo data frame concatenated by cbind(). We will then tell rollapply()
which portions of the data frame represent each series for use in CMFfunc(). Take note of the method used
to subset the combined data set algorithmically. This is a useful concept for calling apply-style functions on
multiple data sets. We will make use of the by.column = FALSE option to make sure we feed rollapply()
slices of data frames as opposed to vectors.

Listing 4-5. Chaikin Money Flow Using rollapply()

CMFfunc <- function(close, high, low, volume){
 apply(((2 * close - high - low) / (high - low)) * volume,
 MARGIN = 2,
 FUN = sum) /
 apply(volume,
 MARGIN = 2,
 FUN = sum)
}

n <- 20
k <- length(exampleset)
CMFseries <-
rollapply(cbind(DATA[["Close"]][,exampleset],
 DATA[["High"]][,exampleset],
 DATA[["Low"]][,exampleset],
 DATA[["Volume"]][,exampleset]),
 FUN = function(v) CMFfunc(v[,(1:k)],
 v[,(k+1):(2*k)],
 v[,(2*k + 1):(3*k)],
 v[,(3*k + 1):(4*k)]),
 by.column = FALSE,
 width = n,

Chapter 4 ■ IndICators

57

 fill = NA,
 align = "right")

names(CMFseries) <- exampleset

Figure 4-4 plots the result for the months leading up to June 2016.

Figure 4-4. GOOGL Chaikin Money Flow

Note that we declared CMFfunc() outside of the call to rollapply(). We did this simply because the code is
long. We will observe this practice in our source code for functions of all lengths because it will allow us to declare
and edit them at the head of our document. For example, placing n <- 20 at the head of the document would allow
users to change the lookback value without sifting through code to manually test different values of n in CMFfunc().

Conclusion
What constitutes a good indicator?

Indicators need to be information latent in order to be useful. Information latency is the general ability of
an indicator to work with rule sets to produce significantly good trading decisions. We consider random noises
and indicators that resemble random noises to be devoid of information. When speaking about information
latency, we will assume we are speaking of the indicator when applied to logical and reasonable rule sets.

An indicator devoid of information will have an expected return equal to accumulated expenses for a
long/short strategy and the buy-and-hold return less accumulated expenses for a long-only or short-only
strategy. A very information-latent indicator will have a simulated return that substantially differs from the
expected return of a random noise. Even if a strategy generates extremely negative returns, the indicator
will still be considered information-latent because it can generate extremely positive returns if the trading
decisions are reversed in the rule set. In other words, if a developer simulates a long-only strategy that
generates extremely negative returns, he has likely discovered a very good short-only strategy.

Chapter 4 ■ IndICators

58

Another possibility is that the rule set is preventing the information contained in the indicator from
manifesting itself in a good overall strategy.

Diagnosing which component of the strategy is responsible for a certain behavior as much of an art as it
is a science. It requires the developer to have an intimate understanding of the relationship between the data
and the strategy. Here’s the takeaway: Start with a simple rule set to determine whether a complex indicator
is worth pursuing, and start with a simple indicator to determine whether a complicated rule set is worth
pursuing. Trading strategy development rewards slowly building to a robust solution over arbitrarily mixing
components.

59© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_5

CHAPTER 5

Rule Sets

Rule sets link the indicator to the trading decisions. We have given many simple examples in the discussions
about indicators, but rule sets tend to get very complex when we include money management elements.
It is dangerous to completely decouple the trading decision aspects from the money management aspects
of rule sets. In other words, we do not want to decouple the offense from the defense. They should interact
and complement each other in an optimal manner discovered through research and optimization. We will
discuss common rule sets for making trading decisions as they correspond to certain types of indicators. We
will then discuss money management considerations, both integrated and decoupled from generation of
trading decisions.

Our Process Flow as Nested Functions
In this chapter, you will notice many calculations performed in the rule sets that can also be performed in
the indicators. We will mathematically define our objectives in order to explain why this is expected and
acceptable. Our ultimate goal is to find the function F such that

F D A Pt t t; () = ∆

In other words, we want a function that transforms stock data, D
t
, into portfolio adjustments (trading

decisions), ΔP
t
, given the account parameters, A

t
. Account parameters include account size, commission

information, asset holdings, and so on. We have broken down F into components, the indicator function f
i
,

and the rule set function f
r
, such that

F D A f f D A Pt t r i t t t; () = ()() =; ∆

In the trivial case, f
i
 could be the identity function, and all of the computational load can be placed on f

r
.

This discussion is purely to illustrate why it is instructive to separate the two functions and to let you know it
is not important how intermediate steps are classified as long as the rule set generates trading decisions.

Terminology
The following terminology will be established for speaking algorithmically about rule sets:

•	 “If long” is a condition testing whether the current position is net long,

•	 “If short” is a condition testing whether the current position is net short,

•	 “If neutral” is a condition testing whether the current position is neither long
nor short,

Chapter 5 ■ rule SetS

60

•	 Buy n shares.

•	 If neutral, establish a long position of n shares.

•	 If long, add an additional n shares to your long position.

•	 If short, cover the short position and establish a long position of n shares.

•	 Sell short n shares.

•	 If neutral, establish a short position of n shares.

•	 If long, sell the long position and establish a short position of n shares.

•	 If short, add an additional n shares to your short position.

•	 Buy to cover n shares.

•	 If neutral, the command cannot be executed and is invalid.

•	 If long, the command cannot be executed and is invalid.

•	 If short, purchase n shares to subtract from the short position.

•	 Sell n shares.

•	 If neutral, the command cannot be executed and is invalid.

•	 If long, sell n shares to subtract from the long position.

•	 If short, the command cannot be executed and is invalid.

•	 Establish long n shares.

•	 Take necessary steps to establish a net long position of n shares.

•	 Establish short n shares.

•	 Take the necessary steps to establish a net short position of n shares.

•	 Exit.

•	 Take the necessary steps to establish a net zero position.

•	 “At market,”

•	 Execute the command at the current inside ask price for “buy” and “buy to
cover” orders.
* If the order is rejected, attempt to execute again.

•	 Execute the command at the current inside bid price for “sell” and “sell to close”
orders.
* If the order is rejected, attempt to execute again.

•	 “At limit p,”

•	 Accept no price greater than p for “buy” and “buy to cover” orders.

•	 Accept no price less than p for “sell” and “sell to cover” orders.

•	 “Send stop market p.”

•	 Send stop market order with stop price p.

•	 “Send stop limit p
s
, p

l
.”

•	 Send stop limit with stop price p
s
 and limit price p

l
.

Chapter 5 ■ rule SetS

61

More complicated orders are possible and available. These will ultimately be determined by the
brokerage, but we will not need these in our platform.

Example Rule Sets
We will give a few example rule sets for various types of indicators. We will focus our attention on the trading
decisions rather than the money management in this section.

Overlays
Example #1: Single Stock Simple Moving Average

•	 If the stock price crosses above the SMA, buy n shares at market.

•	 If the stock price crosses below the SMA, sell short n shares at market.

Commentary

 1. This position is always either long or short, never neutral.

 2. The trade size is constant.

 3. This trades a single stock and has no portfolio extensibility.

Oscillators
Example #2: Portfolio MACD

 1. Calculate the absolute value of a 20-period Rolling Sharpe Ratio for each stock.

 2. Calculate the MACD for each stock.

 3. This is for ten stocks with the highest absolute value Rolling Sharpe Ratio.

•	 Establish long
n

10
 shares at market if the MACD is positive.

•	 Establish short
n

10
 shares at market if the MACD is negative.

Commentary

 1. This position is always either long or short, never neutral.

 2. The trade size is constant.

 3. The small trade size enforces some diversification.

 4. This works with a portfolio of stocks.

Accumulators
Example #3: Portfolio Accumulation/Distribution Line

 1. This is for stocks with an Accumulation/Distribution (A/D) line that had a
200-period minimum in the past 20 periods.

•	 Buy
n

10
 shares at market if the 20-period MACD crosses above zero.

•	 See rule #3 for the condition.

Chapter 5 ■ rule SetS

62

 2. This is for stocks with an A/D line that had a 200-period maximum in the past 20
periods.

•	 Sell short
n

10
 shares at market if the 20-period MACD crosses above zero.

•	 See rule #3 for the condition.

 3. If buying/selling short in accordance with rule #1 or #2 would require having
more than n total shares outstanding,

•	 Exit position with lowest position-adjusted 10-period rolling Sharpe Ratio at
market.

Commentary

 1. This position is always either long or short, never neutral.

 2. The trade size is constant.

 3. The small trade size enforces some diversification.

 4. This works with a portfolio of stocks.

Filters, Triggers, and Quantifications of Favor
We see a theme developing with portfolio-based strategies. Components can be classified as a filter, trigger,
or quantification of favor. Filter conditions span multiple periods, while trigger conditions span a single
period. Filter conditions help select the stocks, and trigger conditions tell the strategy specifically when
to enter/exit. For example, SMA > Close is a filter condition, while SMA crossing above Close is a trigger
condition. The former is likely to be true or untrue for many periods at a time, while the latter is likely to be
true at specific and isolated times and false otherwise.

Quantifications of favor are used to determine which stocks should be exited when the filter and
trigger determine the strategy should enter a new trade. Also, quantifications of favor determine which
stocks to enter when the filter and trigger determine more positions should be entered than are allowed
by the rule set.

Example #1: Single Stock Simple Moving Average

•	 Filter:

 (a) None

•	 Trigger:

 (a) SMA crossing zero

•	 Favor:

 (a) None

Example #2: Portfolio MACD

•	 Filters:

 (a) Sign of MACD line

 (b) Top 10 absolute-value 20-period rolling Sharpe Ratio

Chapter 5 ■ rule SetS

63

•	 Trigger:

 (a) Re-adjust portfolio at every period to reflect filters

•	 Favor:

 (a) None

Example #3: Portfolio Accumulation/Distribution Line

•	 Filters:

 (a) A/D line had 200-period minimum within last 20 periods

•	 Triggers:

 (a) MACD crosses zero

•	 Favor:

 (a) 10-period rolling Sharpe Ratio

Strategies do not strictly require filters and quantifications of favor to function. Single-stock strategies
can perform well with trigger-only strategies. Portfolio strategies find very necessary robustness in the
inclusion of filters and quantifications of favor. Thinking about portfolio rule sets in this framework can help
simplify development. Developers need to recognize that conventional trigger-only strategies will not work
because they provide no way of filtering out undesirable triggers or quantifying the favorability of a stock
position at a given time.

65© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_6

CHAPTER 6

High-Performance Computing

In Chapter 7, we will be building our first iteration of a full simulator. We need to cover some high-
performance computing concepts so our simulator is not painfully slow. We will begin with a general
discussion of high-performance computing in R and then move to implementing different methods in both
Windows and UNIX systems. Windows and UNIX systems require different configurations and packages for
multicore computing in R.

Hardware Overview
It is important to know the hardware specifications of your machine to configure high-performance
computer code. Further, we need to understand how our code interacts with our hardware to minimize
compute time. We will discuss important hardware concepts and terminology in this section as a foundation
for an in-depth software discussion throughout this chapter.

Processing
Computers have at least one processor. A processor is a physical electrical circuit within the computer that
performs mathematical computations. Processors typically consist of a logic processing unit (LPU) and a
math processing unit (MPU). These are physical electrical circuits that perform logic and math operations
like and, or, addition, subtraction, multiplication, and division. A scheduler within a processor cooperates
with a computer program to coordinate these tasks.

Multicore Processing
It is rare to find a modern computer without a multicore processor. A multicore processor is a single self-
contained processing chip with multiple schedulers, logic processing units (LPUs), and math processing
units (MPUs), effectively having n processors within itself. An inexpensive laptop nowadays is at minimum
dual-core. Home desktops can be four- or six-core. Servers can have in extreme cases 12- or 18-core
processors, with many sockets for supporting many multicore processors at a time.

A socket is an electrical interface between a processor and the motherboard. One socket holds one
processor, regardless of the internal configuration and type of processor. Theoretically, a single motherboard
could house infinitely many sockets, which provides the potential to craft an extremely powerful computer
on a single motherboard. For this reason, commercial software intended for use on commercial servers is
typically priced on a per-socket rather than per-server basis.

http://dx.doi.org/10.1007/978-1-4842-2178-5_7

Chapter 6 ■ high-performanCe Computing

66

Hyperthreading
Modern processors all have some form of hyperthreading built in. This is a concept invented by Intel that
allows a single processing core to run multiple threads at the same time. A single program will usually run
a single thread. For example, if a computer is running four programs, such as an Internet browser, a photo
editor, a music player, and a text editor, all at the same time, a dual-core machine will hyperthread two
threads (one for each program) on each core. Hyperthreading allows the computer to simulate a virtually
infinite number of threads on a single core, rather than restricting one core to one thread.

Generally, hyperthreading produces the most speed gains when running multiple different programs
simultaneously rather than multiple threads of the same program. This is important to be aware of, because
R will allow us to run any k threads on an n-core machine by hyperthreading n

k
 threads on each core. In the

theoretical case, where a computer is doing nothing but running R, it is best to run one thread per core to
minimize thread management overhead. Realistically, your computer has a sophisticated operating system
with many background and security tasks running constantly. Because your operating system will prevent
every core on your computer from running simultaneously without interruption, we will find that it is best to
optimize the number of threads to a value greater than the number of computer cores but not unduly large.

Figure 6-1 shows a functional diagram of the processing components of a computer. Ellipses show how
processing can be nested at the socket level, the CPU core level, and the hyperthreading level indefinitely
within any single computer.

Figure 6-1. Functional diagram of processing components

Figure 6-2 zooms in on the CPU core to show its functional components. You may see MPU and LPU
identified as integer arithmetic unit and floating-point arithmetic unit elsewhere. Note that hyperthreading
has not been identified in this figure because it is actually a software functionality of the scheduler.

Chapter 6 ■ high-performanCe Computing

67

Memory
Processors access and manipulate memory to make computations. They can access the following hardware
modules.

Figure 6-2. Functional diagram of CPU core

Chapter 6 ■ high-performanCe Computing

68

The Disk
Otherwise known as your hard drive, a disk drive is typically 250GB to 1,000GB on a home computer.
Reading and writing this data is very slow for conventional hard drives. It can range from fractions of a
megabyte per second to about 50 megabytes per second depending on the data type, drive type, program
type, and action type. Binary data (MySQL databases) will read/write faster than text data (.csv files), solid-
state drives will read/write faster than conventional spinning hard drives, compiled programs (C/C++) will
read/write faster than scripting languages (R), and copy/paste operations will be faster than writing new
data. R is a scripting language that typically writes nonbinary data, and it is rarely utilized for copy/paste
operations on the disk, so it generally operates at the lower end of the 0.5Mb/sec to 50Mb/sec spectrum. We
often use specialized packages like data.table and RMySQL with functions that more closely resemble binary
read/write operation.

Random Access Memory (RAM)
Random access memory can be as low as 4GB for laptops and as high as 16GB for a nice home desktop.
A 64GB RAM card on a server will cost upward of $1,000. This is where your R environment is stored. The
sum of object sizes in your R environment cannot exceed your RAM storage capacity. A common complaint
about R from the user community is that it cannot take full advantage of your memory during computation
because of the way it handles copy operations and basic arithmetic. Reading and writing to RAM is much
faster than to disk. RAM in recent years is of the DDR3 type, which can have 5GB to 20GB per second read/
write speed in general and is known to be at least 100,000 times faster than disk for accessing binary data. In
short, we want to keep memory in RAM and out of disk to optimize speed. RAM space is limited and is wiped
when a computer is shut down. For this reason, we store our stock data in the disk when we are not using it
and bring it into RAM when we run computations.

Processor Cache
Processors have memory caches for important and nearby data. Accessing data from the L1 or L2 cache is
typically three to ten times faster than accessing it from RAM, depending on which level of the cache the
data resides in. The L1 cache, nearest to the processor, is typically only 8KB to 16KB in size. The L2 cache,
which contains the L1 cache, is typically 512KB to 1MB in size. Nowadays, each CPU core tends to have its
own L1 and L2 cache. There is one L3 cache per processor. It is 8MB to 16MB, and it is shared between the
CPU cores in the processor.

When the processor needs a piece of data, it looks in the L1 cache first and the L2 cache second. If
it is not in either the L1 or L2 cache, it looks in the L3 cache, then RAM, then the disk, which each take
exponentially more and more time to read. Carefully written low-level code in languages like C/C++ and
Fortran can ensure that important data is kept in the right cache at appropriate times. Vanilla R does not give
us appropriate facilities to fine-tune the behavior of cache data, but it does give us opportunities to access
cache-optimized binary programs.

Swap Space
When your machine runs out of RAM, memory spills onto the disk, but the program treats that overflowing
data just like it would treat RAM. Your operating system has defined space on the disk called swap space that
acts as virtual random access memory, otherwise shortened to virtual memory or virtual RAM. The amount
of swap space on the disk is specified during installation of the operating system and is usually equal to
anywhere from half to a little more (about 2GB more) than the RAM space on the machine. This memory is
extremely slow to access on computers with traditional spinning hard disk drives (HDDs) because it is stored
directly on the disk. Laptops and specialized hardware with solid-state drives (SSDs) will suffer less of a
penalty when accessing swap memory, but it slows your program to a crawl nonetheless.

Chapter 6 ■ high-performanCe Computing

69

When testing R programs, it is helpful to open your system’s performance monitor and observe your
RAM and swap memory as your program runs. You should aim to store nothing in swap memory. It is worth
noting that, depending on your R distribution and OS, R itself may not be able to store memory on swap
space. If this is the case, R will either crash or notify you if it runs out of RAM. Regardless of whether R is
capable of storing data on your specific swap space, it is capable of prioritizing memory for itself, running
other critical programs onto swap space. If other programs are occupying swap space, your program will
suffer the same slowdowns as the programs fight for memory access and manipulate swap data in the
background.

Software Overview
R is a unique and complex scripting language. It is important to know where R lives within the world of
software to better understand its strengths and weaknesses. We will use this knowledge to write faster code.

Compiled vs. Interpreted
In native compiled languages, like C/C++, Fortran, and Visual Basic, a developer’s workflow involves
programming, compiling, and running the program. Before code in these languages can be executed, a
compiler must read through it and convert it to machine code (also called binaries). Machine code is a binary
executable of optimized CPU directives. Compiled languages are considered low level because the compiler
translates them directly into CPU directives. The word low refers to the proximity of the programming
language to the core of the computer. Compiled code can be fine-tuned and optimized to make very efficient
decisions with various levels of memory and compute resources.

Strictly interpreted languages, like R, PHP, and MATLAB, involve sequentially executing precompiled
binaries. A single command in any of these languages will run some sequence of compiled subroutines.
For example, the mean() function depends on subroutines like vector summation, element counting,
dimension checking, NA filtering, and floating-point division. The term subroutine is used loosely because,
without investigation, we do not know at what level these subroutines are being run. Vector summation may
occur at the R level by calling the R function sum(), or it may occur at the compiled level by calling a binary
specifically for mean(). In the end, every instruction and computation must be completed in a compiled
binary along the way. If mean() does not have its own binary, then it depends on sum(), is.na(), length(),
and the division operator, which all have their own binaries.

Since the binaries of interpreted languages are precompiled, they can originate from any compiled
language. In 2016, a study by BlackDuck|OpenHub showed that, counting by lines, base R is about 40.0
percent C/C++, 27.3 percent Fortran, and 20.7 percent R. It is interesting to mention that, looking through
the source code, R’s plotting functions are almost pure Fortran. In addition, R packages can be built from
any compiled or interpreted language as long as the end user has the appropriate binaries on his machine. A
handful of important packages have been written in Java and Perl.

Many important programming languages are hybrids. These languages include Java, Python, and
the .NET framework. They are interpreted languages that either require or give the option to compile to
bytecode. Bytecode is a set of platform-independent low-level directives to machine code. A run-time
environment is responsible for mapping the bytecode to machine code. These environments include the Java
Runtime Environment (for Java) and the Common Language Runtime (for .NET).

Figure 6-3 shows the process flow of different programming languages with common examples
languages, compilers, and run-time environments. Note the R run-time environment lists RRO/MRO
(Revolution/Microsoft R Open) as an example. This is a modified run-time environment developed by
Revolution Analytics and later purchased by Microsoft.

Chapter 6 ■ high-performanCe Computing

70

Scripting Languages
Scripting languages are programming languages built for fast writing or “scripting” of code in domain-
specific applications. R is a scripting language for statistical computing, and PHP is a scripting language for
programming the Web. Scripting languages are almost always interpreted languages. So, when people refer
to R as a scripting language, they are typically pointing out that it is domain-specific to statistical computing
and an interpreted language.

The term scripting is usually used to delineate a language from a general-purpose programming
language, where the goal is broad, dense, full-system applicability. C/C++, Java, and most compiled
languages are considered programming languages, while languages like R, Python, and PHP are considered
scripting languages.

Speed vs. Safety
Further distinguishing scripting languages from interpreted languages is the concept of safety. Before we
begin discussing, note that safety is only typical of scripting languages, not required. Also note that more
safety for interpreted languages can be implemented at the compiler level.

Safety is the broad concept of disallowing unintended memory access at execution time. In R, objects
know their own size. In other words, the size and dimensions of an object are stored in memory as attributes
of the object. When a user accesses an element or some elements of an object, R makes sure that the user is
not attempting to access something outside the dimensions of the object. If R detects this error, it stops the

Figure 6-3. Compiled vs. Interpreted Programming Languages

Chapter 6 ■ high-performanCe Computing

71

program and reports an error message. The next logical question is “What if I write a flawless program that
never requests out-of-bounds elements?” The answer: R will still waste a lot of time checking every time a
user accesses an object.

The flip side to safety is speed. For example, if a user is processing a picture of a cat and a picture of a
dog in C++ and unintentionally accesses indices outside the dimensions of the picture of the cat, he might
end up with the right side of a cat and the left side of a dog in one picture. C and C++ do not check whether
the indices are within the dimensions of the object being accessed. If a user accesses element 101 in a
vector of length 100, unsafe languages will move one space to the right of the position of element 100 in
your memory and attempt to process the value. The user will not get any error messages and is expected to
diagnose and treat these problems himself. Obviously, when the program does work at expected, it is very
fast because it is does not waste time checking the indices.

This is another reason why we want to call fewer powerful binaries as opposed to many more general
binaries. Once R ships the job off to the binaries, most safety checks are done. We want to perform fewer
safety checks to minimize computation time.

Takeaways
R is an interpreted scripting language. Compiled binaries run much faster than sequences of compiled
binaries. We will minimize computation time of our R scripts by minimizing the time spent calling the
binaries and maximizing the time spent in the binaries.

Listing 6-1 illustrates this point.

Listing 6-1. Binaries vs. for Loops

Declare 10mil random numbers in a data frame
df <- data.frame(matrix(nrow = 10000, ncol = 1000, runif(n = 10000 * 1000)))

Compute the sum of each row with a for loop
Completes in 96.692 seconds
v1 <- rep(NA, 10000)
for(i in 1:10000) {
 v1[i] <- sum(df[i,])
}

Use rowSums() binary
Completes in 0.053 seconds
v2 <- rowSums(df)

Results are exactly the same
Expression evaluates to TRUE
all.equal(v1, v2)

We will discuss the nuances of this concept throughout the chapter. There are many ways to invoke
single binaries that may seem unintuitive or hidden. Additionally, there are a lot of functions that look like
calls to single binaries but are really just wrappers for slow R loops.

for Loops vs. apply Functions
In R, many programming problems give us the choice to use either for loops or an apply-style function.
To illustrate this point, we will recompute the RETURN variable from Listing 3-8 using various for loops and
apply methods.

http://dx.doi.org/10.1007/978-1-4842-2178-5_3#Par76

Chapter 6 ■ high-performanCe Computing

72

for Loops and Memory Allocation
As discussed, we want to avoid for loops when possible because they sequentially call binaries rather than
use a single precompiled binary. We will illustrate the use of for loops to compute the return matrix and
benchmark them against other methods.

Listing 6-2 will touch on another important point. Memory allocation in R is slow. Expressions like this

x <- 1:10
y <- x[1] * 2
for(i in 2:10) y <- c(y, x[i] * 2)

where c() can be any concatenation operator like c(), cbind(), or rbind() can slow down a program
substantially if called many times because it changes the size of the variable y. Every time this is called, R must
create a temporary variable corresponding to c(x,y), re-declare (or re-allocate) y as a larger variable with new
dimensions, and then assign the variable to the new y. Remember, this is fine in general, but expressions like these
are often placed inside loops when building larger data sets. A program will always run faster if expressed like this:

z <- rep(numeric(), 10)
x <- 1:10
for(i in 1:10) z[i] <- x[i] * 2

The vector z at the end of the second snippet is the same as y at the end of the first snippet. The vector z
was declared (or pre-allocated) at the beginning to have ten numeric elements, allowing R to make only one
memory allocation but ten equivalent assignments.

Listing 6-2 illustrates this point with the RETURN matrix calculated in Listing 3-7. There is a very
significant time difference between pre-allocating and re-allocating.

Note that we will be calculating and re-calculating the return matrix many times throughout this
chapter. We will concentrate on the computation rather than formatting and post-processing for the sake
of brevity. This means that all.equal() can output confusing results because of differences in dimension,
object type, and attributes. All the versions of RETURN we compute will contain the same data but in varying
formats. The original computation of the return matrix in Listing 3-8 both computes the fastest and outputs
RETURN in the intended format.

Listing 6-2. Pre-allocation vs. Re-allocation

Sequentially re-allocating space in a for loop
RETURN <- NULL
for(i in 2:nrow(DATA[["Close"]])){
 RETURN <- rbind(RETURN, t((matrix(DATA[["Close"]][i,]) /
 matrix(DATA[["Close"]][i-1,])) - 1))
}
RETURN <- zoo(RETURN, order.by = index(DATA[["Close"]])[-1])
99.68 seconds

Pre-allocating space and computing in a for loop
RETURN <- zoo(matrix(ncol = ncol(DATA[["Close"]]),
 nrow = nrow(DATA[["Close"]])),
 order.by = index(DATA[["Close"]]))

for(i in 2:nrow(DATA[["Close"]])){
 RETURN[i,] <- t((matrix(DATA[["Close"]][i,]) / matrix(DATA[["Close"]][i-1,])) - 1)
}
#54.34 seconds

http://dx.doi.org/10.1007/978-1-4842-2178-5_3#Par70
http://dx.doi.org/10.1007/978-1-4842-2178-5_7#Par76

Chapter 6 ■ high-performanCe Computing

73

apply-Style Functions
apply-style functions are a staple in the R language. They include apply(), lapply(), sapply(), and
vapply(), in the base R. Contributed packages, like zoo, have domain-specific implementations like
rollapply() for time series. apply-style functions are extremely useful because of their extensibility. Many
multicore packages will readily accept apply-style functions, and the applied function can be cleanly
modified outside of the apply implementation. We will make heavy use of these functions in this chapter.

apply-style functions are often confused as being necessarily faster than for loops. They can be faster
in some scenarios but are not generally. The counterargument to the assertion that apply-style functions
are faster is that they actually depend on R-level for loops to run. This has given rise to the term loop hiding,
highlighting the idea that apply-style functions look and generalize nicer than for loops but are really just a
clever and flexible wrapper.

apply-style functions pre-allocate memory to the assigned variable by default but contain a lot of
internal constructs for safety and generality that can slow them down. An efficiently written apply-style
function will be slightly slower but more generalizable than an efficiently written for loop. Listing 6-3
computes the RETURN matrix in two different ways using rollapply(). Giving consideration to how
apply-style functions work internally can help speed them up.

Listing 6-3. Writing Efficient apply-Style Functions

Using rollapply() element-by-element
RETURN <- rollapply(DATA[["Close"]],
 width = 2,
 FUN = function(v) (v[2]/v[1]) - 1,
 align = "right",
 by.column = TRUE,
 fill = NA)
105.77 seconds

Using rollapply() row-by-row
RETURN <- rollapply(DATA[["Close"]],
 width = 2,
 FUN = function(v) (v[2,]/v[1,]) - 1,
 align = "right",
 by.column = FALSE,
 fill = NA)
65.37 seconds

Use Binaries Creatively
This section exists to drive home that binaries are faster. Sometimes there is no clear way to utilize an
existing binary, as in Listing 6-1 with rowSums(), so you will have to search for a more creative method to
keep the loop inside the binary. Dissecting Listing 6-4, we see the division operator, the lag() function, and
the subtraction operator. All of these operators loop the specified operation inside the binary after checking
for equal dimension and class. This line of code works well over 100 times faster than our next best solution
in this chapter.

Listing 6-4. Calculating the Return Matrix with Binaries

Using the "lag" method introduced in Listing 3.8
RETURN <- (DATA[["Close"]] / lag(DATA[["Close"]], k = -1)) - 1
0.459 seconds

Chapter 6 ■ high-performanCe Computing

74

Table 6-1 organizes the compute times we have observed thus far in this chapter. The “Re-allocated”
column is empty for functions where it is not logical to ever execute a re-allocated variation because of the
structure of the function. We will expand on this table for more functions and their multicore variations later
in this chapter.

Table 6-1. Compute Times of the Return Matrix (Seconds)

Function Granularity Pre-allocated Re-allocated

for() Row 54.34 99.68

rollapply() Element 105.77 NA

rollapply() Row 65.37 NA

x/lag(x) - 1 Data frame 0.459 NA

Note on Measuring Compute Time
There are lots of ways to measure compute time in R. The most straightforward method is the function proc.
time(). Save the output of the function in a variable, execute your function, and then print the difference
of the current value of proc.time() to the previous. There are three values in proc.time(), and users need
only the third.

proc.time()

user system elapsed
1.793 0.154 2.299

User time is an approximate number generated by your operating system that represents the CPU time
in seconds devoted to executing user instructions at the process level. System time represents the CPU time
in seconds devoted to executing user instructions at the system level. This is unnecessarily confusing, and a
proper discussion of the nuances of CPU clocks is not necessary to optimize code in R. We only care about
the third value, elapsed time, that represents the actual time in seconds elapsed between assigning and
differencing proc.time(). See Listing 6-5 for a practical wrapper for measuring the compute time of any
amount of code. This method was used to generate time measurements in this chapter.

When using this method, make sure to highlight and send the entire chunk of code to the console at
the same time, or use the source function or Run button to run the entire script. We do not want our typing
speed to affect the results of the time measurement.

Listing 6-5. Measuring Compute Time

timeLapse <- proc.time()[3]
for(i in 1:1000000) v <- runif(1)
proc.time()[3] - timeLapse

elapsed
1.826

Multicore Computing in R
This section will explore multicore computing in R for UNIX and Windows systems. We will cover the
most flexible packages for multicore CPU computing. We will distinguish between parallel back ends for
UNIX and Windows but focus on multicore packages that work on any operating system that supports a

Chapter 6 ■ high-performanCe Computing

75

parallel back end. We will introduce integer mapping concepts that extend to multicore computing in every
language. We will discuss how multicore computing in R compares to other languages in flexibility and
memory efficiency.

Embarrassingly Parallel Processes
The phrase embarrassingly parallel was coined by veteran programmers that observed their peers neglecting
to parallelize simple processes. It was considered criminal (in jest) not to parallelize an embarrassingly
parallel process if using a low-level language because the program would waste a lot of time that can be
saved by little programming effort. These are examples of embarrassingly parallel processes:

•	 Converting hundreds of images from color to grayscale

•	 Serving files to many users on a web server

•	 Simple brute-force searches

•	 Summing millions of floating-point numbers

•	 Generating bootstrap estimates

•	 Generating Monte Carlo simulations

Algorithms can be hard to parallelize when processes need to communicate with each other during
computation. If an algorithm can be executed by splitting up the data, handing a piece to each process, and
aggregating the results, it is simple to parallelize. Computation of the RETURN matrix is an embarrassingly
parallel process. We will study it to determine whether it nets significant speed gains from parallelization.

Remember that embarrassingly parallel is a technical phrase with no actual negative connotation.
An embarrassingly parallel process is not necessarily easy to program. R gives us limited facilities for
communicating between processes in multicore computations, so most of our implementations will be
embarrassingly parallel. Most importantly, remember that R is an interpreted language, so speed gains from
utilizing purely binaries will almost always exceed speed gains from parallelizing for loops or other
loop-hiding functions.

doMC and doParallel
The package doMC provides an interface between the foreach packages and the parallel package using
the UNIX system call fork to replicate the R run-time environment n times for execution as independent
processes on k cores.

According to the documentation, the processes should share memory in most cases but will replicate
the data in the parent environment if it determines the processes are modifying it. We will generally
assume the parallel back end replicates memory for every process because this behavior is OS-specific and
poorly documented. This is an important reason to keep an eye on your memory, swap memory, and CPU
utilization when testing multicore code. If a process spills into swap memory or throws an out-of-memory
error because it is replicating the parent environment, you may want to consider reducing the number of
processes or computing the algorithm on a single core.

Listings 6-6 and 6-7 show how to register a parallel back end in UNIX and Windows systems,
respectively. The workers variable should be declared with the number of processes you would like to
run. Your computer will dole out processes in a round-robin fashion to your available CPU cores, so
setting workers to a value higher than the number of physical CPU cores in your machine will trigger
hyperthreading. As mentioned previously in this text, this may be advantageous on machines that will
run other non-R processes concurrently with the trading platform. We will study this behavior later in the
chapter.

Chapter 6 ■ high-performanCe Computing

76

Listing 6-6. Registering Parallel Back End in UNIX

library(doMC)
workers <- 4
registerDoMC(cores = workers)

The parallel backend in Windows relies on the base R function system() to spin up multiple
independent R run-time environments. This is possible in UNIX but avoided because of the clear memory-
sharing advantages of R working with fork. Running system(command = "Rscript scriptname.R ...") in
R is equivalent to running “Rscript scriptname.R ...” in a UNIX or Windows terminal. The Rscript terminal
command takes the path to an R script and a list of parameters and runs the R script with no GUI. The
parallel back end for Windows manipulates this functionality to attempt to simulate UNIX’s fork. In reality,
it operates very differently from fork. Instead of sharing memory, each R instance is given its own global
environment, which is intended to mimic the function-level environment from which foreach() is called.
This opens the door to a number of coding inconsistencies and memory inefficiencies that can complicate
development for Windows users. We will continue to discuss and expand on these issues throughout
Chapter 6 and in Appendix B.

Listing 6-7. Registering Parallel Back End in Windows

library(doParallel)
workers <- 4
registerDoParallel(cores = workers)

The foreach Package
Now that we have registered a parallel backend, we can use the foreach package to parallelize our
computations. The package provides an intuitive and flexible interface for dispatching jobs to separate R
processes. It works just like a typical R for loop, but with a few caveats. Given an iterator variable, i, it will
dispatch one process per value in the looping range of i. If multiple iterators are supplied, i and j, it will
dispatch a number of processes equal to the number of elements in the smaller of the two ranges of i and j.
This means there is no recycling. There is not a technical need to ever supply multiple iterators, so we will
always be supplying only one iterator. The results are returned in a list by default. We will usually specify the
.combine argument with the function c(), rbind(), or cbind() to let the function know we want the results
returned in a concatenated vector or data frame of the results. Listing 6-8 gives you an idea of how foreach()
returns results.

Listing 6-8. Examples with foreach Package

library(foreach)

Returns a list
foreach(i = 1:4) %dopar% {
 j <- i + 1
 sqrt(j)
}

Returns a vector
foreach(i = 1:4, .combine = c) %dopar% {
 j <- i + 1
 sqrt(j)
}

http://dx.doi.org/10.1007/978-1-4842-2178-5_6

Chapter 6 ■ high-performanCe Computing

77

Returns a matrix
foreach(i = 1:4, .combine = rbind) %dopar% {
 j <- i + 1
 matrix(c(i, j, sqrt(j)), nrow = 1)
}

Returns a data frame
foreach(i = 1:4, .combine = rbind) %dopar% {
 j <- i + 1
 data.frame(i = i, j = j, sqrt.j = sqrt(j))
}

Obviously these examples are too small to gain efficiency from multicore processing. They are almost
certainly slower because the workload of the process communication overhead is greater than that of
the mathematics. In the next section, we will use the software we have set up to speed up calculations of
indicators.

The foreach Package in Practice
There are a handful of interesting mathematical challenges we face when parallelizing even the simplest
processes. We will discuss integer mapping, output aggregation, and load balancing.

Integer Mapping
Integer mapping involves breaking up a numerical problem into equally sized pieces. For simple problems,
like computing the sum of each row, the integer mapping process is straightforward. For 100 rows in 4
processes, we dispatch rows 1 through 25 to process 1, rows 26 through 50 to process 2, and so on. For more
complicated processes, like moving averages, the window size complicates integer mapping. A moving
average of length k=5 on n=100 rows of data would return 96 rows. To make sure each process computes 24
rows and has sufficient data available, we would dispatch rows 1 through 28 to process 1, rows 25 through 52
to process 2, rows 49 through 76 to process 3, and rows 73 to 100 to process 4.

The problem becomes even more complex when the number of rows is not divisible by the number
of processes. We will talk through building an algorithm for integer mapping right-aligned time-series
computations under the assumption that each row takes equal time to compute.

Here are some facts to consider:

•	 A right-aligned time series computation with window size k on n rows of input
returns n n ko = - +1 rows of output.

•	 A properly dispatched set of p processes will compute a maximum of
n

p
oé

ë
ê

ù

û
ú rows of

output per process and a minimum of
n

p
poé

ë
ê

ù

û
ú - +1 rows of output per process.

•	 For the output to have the same number of rows as the input, we must mimic
rollapply(... , fill = NA) by appending k–1 rows of NA values to the
beginning of the output.

Listing 6-9 declares the function delegate() that returns the indices of rows required for process i given
n rows of data, a window size of k, and p total processes.

Chapter 6 ■ high-performanCe Computing

78

Listing 6-9. Integer Mapping for Multicore Time-Series Computations

delegate <- function(i = i, n = n, k = k, p = workers){
 nOut <- n - k + 1
 nProc <- ceiling(nOut / p)
 return(((i - 1) * nProc + 1) : min(i * nProc + k - 1, n))
}

Test i as 1 through 4 to verify it matches our example
lapply(1:4, function(i) delegate(i, n = 100, k = 5, p = 4))

We will use this function throughout the chapter and our platform to make easy use of foreach.

Computing the Return Matrix with foreach
Listing 6-10 will show how to use for loops inside foreach() to compute the return matrix. Listing 6-11 will
use rollapply(). We will benchmark performance against examples in Table 6-1 as we progress.

Listing 6-10. Computing the Return Matrix with foreach and for Loops

k <- 2

Using for a for loop, pre-allocated
RETURN <- foreach(i = 1:workers, .combine = rbind,
 .packages = "zoo") %dopar% {

 CLOSE <- as.matrix(DATA[["Close"]])

 jRange <- delegate(i = i, n = nrow(DATA[["Close"]]), k = k, p = workers)

 subRETURN <- zoo(
 matrix(numeric(),
 ncol = ncol(DATA[["Close"]]),
 nrow = length(jRange) - k + 1),
 order.by = (index(DATA[["Close"]])[jRange])[-(1:(k-1))])

 names(subRETURN) <- names(DATA[["Close"]])

 for(j in jRange[-1]){
 jmod <- j - jRange[1]
 subRETURN[jmod,] <- (CLOSE[j,] / CLOSE[j-1,]) - 1
 }
 subRETURN

}
#Completes in 6.99 seconds

These results are admittedly confusing. In theory, breaking up an algorithm into p parallel processes
should increase its speed by no more than p times. Here, we see a speed increase of almost eight times using
four processes. This only serves to prove that we should test everything in R, because we cannot anticipate
every behavior and quirk of the language and its packages.

Chapter 6 ■ high-performanCe Computing

79

It should be said that this code was run on Red Hat Linux Enterprise Server 7.1 with 12 CPU cores and
64GB of RAM. The efficiency of memory sharing through the fork system call in Red Hat might exceed that
of other operating systems and is certainly not replicable in Windows where no fork call exists. Additionally,
R processes do not dedicate themselves to specific cores; rather, they drift between cores, even at full load
where the number of processes equals the number of cores. Running a 4-process test on a 12-core machine
may increase cache efficiency in unanticipated ways.

Listing 6-11. Computing the Return Matrix with rollapply()

Using rollapply(), automatically pre-allocated
RETURN <- foreach(i = 1:workers, .combine = rbind,
 .packages = "zoo") %dopar% {

 jRange <- delegate(i = i, n = nrow(DATA[["Close"]]), k = k, p = workers)

 rollapply(DATA[["Close"]][jRange,],
 width = k,
 FUN = function(v) (v[2,]/v[1,]) - 1,
 align = "right",
 by.column = FALSE,
 na.pad = FALSE)

}
Completes in 22.58 seconds

These results make more sense at first glance. We have a speed increase of about 2.9 from distributing
to 4 processes. As a cursory explanation, we can say that the speed increase is attributed to distribution
to 4 processes, and the discrepancy between 2.9 and 4 is due to communication overhead between the
processes. As we can see from Listing 6-10, this explanation probably fails to cover all of the bases. We simply
do not know everything that goes on under the hood.

In my opinion, sizable treatments of compute-time dynamics in R are hard to come by because they
require researchers and readers to embrace unknown behaviors. This text invites users to embrace unknown
behaviors and exploit them for speed gains.

Keep in mind that computing the return matrix is somewhat of a trivial example because we already
have a very fast method for computing it using binaries that keep the loop in C/C++. The following sections
will cover nontrivial examples of computing indicators and rule sets with foreach().

Computing Indicators with foreach
We will make the most use of foreach() when computing indicators. It becomes harder to build solutions
with R binaries as indicators get more complex and customized. We will cover computation of the indicators
introduced in Chapter 4. Listing 6-12 computes the simple moving average with a few methods using
foreach().

Listing 6-12. Wrapper Function for Multicore Time-Series Computations

mcTimeSeries <- function(data, tsfunc, byColumn, windowSize, workers, ...){

 # For Windows compatability
 args <- names(mget(ls()))
 export <- ls(.GlobalEnv)

http://dx.doi.org/10.1007/978-1-4842-2178-5_4

Chapter 6 ■ high-performanCe Computing

80

 export <- export[!export %in% args]

 # foreach powerhouse
 SERIES <- foreach(i = 1:workers, .combine = rbind,
 .packages = loadedNamespaces(), .export = export) %dopar% {

 jRange <- delegate(i = i, n = nrow(data), k = windowSize, p = workers)

 rollapply(data[jRange,],
 width = windowSize,
 FUN = tsfunc,
 align = "right",
 by.column = byColumn)

 }

 # Correct formatting of column names and dimensions
 names(SERIES) <- gsub("\\..+", "", names(SERIES))

 if(windowSize > 1){
 PAD <- zoo(matrix(nrow = windowSize-1, ncol = ncol(SERIES), NA),
 order.by = index(data)[1:(windowSize-1)])
 names(PAD) <- names(SERIES)
 SERIES <- rbind(PAD, SERIES)
 }

 if(is.null(names(SERIES))){
 names(SERIES) <- gsub("\\..+", "", names(data)[1:ncol(SERIES)])
 }

 # Return results
 return(SERIES)

}

You will notice this is only a slight modification of our first multicore rollapply() implementation in
Listing 6-11. This makes it remarkably easy to compute indicators and rule sets for time series by swapping
out the function declaration, window size, and byColumn parameters. We will very quickly illustrate in Listing
6-13 how to compute indicators from Chapter 4 with very little code. All of the outputs from this function
have the same number of rows, same order.by attribute, and same column names as your original input
data. You can even use cbind() to bind OHLC data together, and you will still get the correct number of
columns with the correct names.

Listing 6-13. Computing Indicators with Our Multicore Wrapper

Computing the return matrix
tsfunc <- function(v) (v[2,] / v[1,]) - 1
RETURN <- mcTimeSeries(DATA[["Close"]], tsfunc, FALSE, 2, workers)

Computing a simple moving average
SMA <- mcTimeSeries(DATA[["Close"]], mean, TRUE, 20, workers)

http://dx.doi.org/10.1007/978-1-4842-2178-5_4

Chapter 6 ■ high-performanCe Computing

81

Computing an MACD, n1 = 5, n2 = 34
tsfunc <- function(v) mean(v[(length(v) - 4):length(v)]) - mean(v)
MACD <- mcTimeSeries(DATA[["Close"]], tsfunc, TRUE, 34, workers)

Computing Bollinger Bands, n = 20, scale = 2
SDSeries <- mcTimeSeries(DATA[["Close"]], function(v) sd(v), TRUE, 20, workers)
upperBand <- SMA + 2 * SDSeries
lowerBand <- SMA - 2 * SDSeries

Computing custom indicator as in Listing 4.3
tsfunc <- function(v) cor(v, length(v):1)^2 * ((v[length(v)] - v[1])/length(v))
customIndicator <- mcTimeSeries(DATA[["Close"]], tsfunc, TRUE, 10, workers)

Computing Chaikin Money Flow, n = 20, (Using CMFfunc() function from Listing 4.5)
cols <- ncol(DATA[["Close"]])
CMFseries <- mcTimeSeries(cbind(DATA[["Close"]],
 DATA[["High"]],
 DATA[["Low"]],
 DATA[["Volume"]]),
 function(v) CMFfunc(v[,(1:cols)],
 v[,(cols+1):(2*cols)],
 v[,(2*cols + 1):(3*cols)],
 v[,(3*cols + 1):(4*cols)]),
 FALSE, 20, workers)

With our wrapper function, the average time-series computation takes about two lines of code and is
just shy of p times as fast. Additionally, declaring all the arguments to the wrapper function outside of the
function call allows us to modify them from anywhere in our code. The most useful application for you
would be to place the function declaration for the indicator at the top of your code for easy adjustment. Our
growing code base is really only worthy of the title “platform” because it offers extended functionalities of
other commercial trading platforms (for example, TradeStation, Metatrader) by allowing users to change
the indicator and more from the head of the document with a single line of code. We will make heavy use of
our multicore wrapper in Chapter 7 as we build our first backtester. We will clean up the R environment to
prepare.

rm(list = setdiff(ls(), c("datadir", "functiondir", "rootdir",
 "DATA", "OVERNIGHT", "RETURN",
 "delegate", "mcTimeSeries", "workers")))
gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 538982 28.8 1168576 62.5 1168576 62.5
Vcells 869518 6.7 3090461 23.6 3087872 23.6

http://dx.doi.org/10.1007/978-1-4842-2178-5_7

83© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_7

CHAPTER 7

Simulation and Backtesting

In this chapter, we will use the data and functions established thus far to build a backtester to simulate the
results of trading with a given strategy. We will run our simulator with a few example strategies. We will
introduce many practical trading considerations as we construct sample strategies.

Recall in Chapter 5 we established the indicator and rule set for a strategy from a composite function
accepting stock data, D

t
, and account variables, A

t
, to output portfolio adjustments, ΔP

t
, as follows

f f D A Pr i t t t()() =;

where f
r
 and f

i
 are the rule set and indicator functions, respectively. We will use multicore functions from

Chapter 6 to compute the proper inputs to reach ΔP
t
 from stock data and account variables by walking

through time in a loop.

Example Strategies
Example #1: Long-Only Portfolio MACD

 1. Calculate the 20-period Rolling Sharpe Ratio for each stock.

 2. Calculate the MACD for each stock with n
1
=5 and n

2
=34.

 3. Define k to be the number of positions held and K=10 to be the maximum
number of positions held. Define C to be uninvested cash.

 4. For stocks with a Rolling Sharpe Ratio higher than the 80th percentile for the
period,

•	 If MACD crosses above 0,

•	 If K positions are held, exit the position with the lowest Rolling Sharpe
Ratio at market.

•	 Establish long
C

K k−()
 dollars at market of triggering stock.

Example #2: Portfolio Bollinger Bands

 1. Calculate the 20-period Rolling Standard Deviation for each stock.

 2. Calculate the 20-period and 100-period Simple Moving Averages for each stock.

 3. Define k to be the number of positions held and K=20 to be the maximum
amount of positions held. Define C to be uninvested cash.

http://dx.doi.org/10.1007/978-1-4842-2178-5_5
http://dx.doi.org/10.1007/978-1-4842-2178-5_6

Chapter 7 ■ Simulation and BaCkteSting

84

 4. Define b
Close SMA

t
t

t

=
− ,

,

20

20σ
 and B

SMA SMA
t

t t

t

=
−, ,

,

20 100

20σ
.

 5. For stocks where 1 3≤ <Bt ,

•	 Establish long
C

K k−()
 dollars at market if b

t
 crosses below -2.

 6. For stocks where − < ≤ −3 1Bt ,

•	 Establish short
C

K k−()
 dollars at market if bt crosses above 2.

 7. For stocks where Bt ≥ 3 ,

•	 Establish short
C

K k−()
 dollars at market if b

t
 crosses above 2.

 8. For stocks where Bt ≤ −3 ,

•	 Establish long
C

K k−()
 dollars at market if b

t
 crosses below -2.

 9. For all positions,

•	 Exit the position at market if B
t
 crosses 0.

 10. For all long positions,

•	 Exit the position at market if b
t
 crosses above 2.

 11. For all short positions,

•	 Exit the position at market if b
t
 crosses below -2.

 12. If entering a position requires holdings more than K=20 stocks,

•	 Enter the new position after exiting the position with the lowest mean return.

Example #3: Portfolio RSI Reversal

 1. Calculate the 20-period Average True Range as ATR
t,20

 for each stock.

 2. Calculate the 20-period Relative Strength Index as RSI
t,20

 for each stock.

 3. Calculate the 100-period Rolling Minimum as MIN
t,100

 and 100-period Rolling
Maximum as MAX

t,100
 for each stock.

 4. Define k to be the number of positions held and K=20 to be the maximum
amount of positions held. Define C to be uninvested cash.

 5. Define m
MAX Close

ATRt
t t

t

+ =
−,

,

100

20

 and m
Close MIN

ATRt
t t

t

− =
− ,

,

100

20

.

 6. For stocks where mt
+ ≤ 2 ,

•	 Establish short
C

K k−()
 dollars at market if RSI

t,20
 crosses below 70.

 7. For stocks where mt
− ≤ 2 ,

•	 Establish long
C

K k−()
 dollars at market if RSI

t,20
 crosses above 30.

 8. For all long positions,

•	 Exit the position at market if RSI
t,20

 crosses above 70.

•	 Exit the position at market if RSI
t,20

 crosses below 15.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7 ■ Simulation and BaCkteSting

85

 9. For all short positions,

•	 Exit the position at market if RSI
t,20

 crosses below 30.

•	 Exit the position at market if RSI
t,20

 crosses above 85.

 10. If entering a position requires holdings more than K=20 stocks,

•	 Enter the new position after exiting the position with the lowest mean return.

Our Simulation Workflow
Listing 7-1 is a large function for simulating the performance of portfolio strategies. It aims to balance speed
and flexibility by taking minimal inputs computed outside of the function and specifying many of the most
important features of portfolio strategies. Reading the code may not be productive for all readers, so we
will discuss the steps of the algorithm in pseudocode, making sure to mark in the code the corresponding
sections of the pseudocode.

Listing 7-1: Pseudocode
 1. Check that ENTRY, EXIT, and FAVOR match in dimensionality with

DATA[["Close"]], throwing an error if nonmatching.

 2. Assign account variables based on function inputs. Allocate space for share
count matrix P, entry price matrix p, equity curve vector equity, and cash vector
C. Note that the share count matrix accounts for shorts with negative share
counts.

 3. The walk-through optimization begins. Repeat steps 4 through 12 for each
trading day.

 4. Carry over cash and positions from the last period.

 5. Determine which stocks to enter based on ENTRY. If in excess of K, eliminate
extras by favorability based on FAVOR.

 6. Determine which stocks to exit by trigger based on EXIT.

 7. Determine whether more stocks must be exited to respect K, the maximum
number of assets held at any given time. Determine which of these stocks to
exit by favorability based on FAVOR. Stocks that have been marked for exit by the
trigger in the previous step cannot also be marked for exit based on favorability.

 8. Finalize the vector of stocks to exit.

 9. Exit all stocks marked for exit.

 10. Enter all stocks marked for entry.

 11. Loop through active positions to determine equity for the period.

 12. If verbose = TRUE, output optimization diagnostics every 21 trading days (about
monthly).

 13. Return the equity curve, cash vector, share count matrix, and entry price matrix.

Chapter 7 ■ Simulation and BaCkteSting

86

Listing 7-1: Explanation of Inputs and User Guide
•	 OPEN will most often be DATA[["Open"]]. This is given as a nontrivial input for cross

validation and optimization purposes in Chapter 8. Remember that we trade at the
open because of the nature of our data. We gain access to a given day’s closing price
at least 15 minutes after the market closes, so the next opportunity we have to trade
is the open of the following day.

•	 CLOSE will most often be DATA[["Close"]]. Similarly to OPEN, this will be an
important input in Chapter 8.

•	 ENTRY is a zoo object with the same dimensions as DATA[["Close"]] that specifies
which stocks to enter when. A 0 corresponds to no action, a 1 corresponds to long,

and a -1 corresponds to short. A stock triggered by ENTRY will have C

K k−()
 dollars

allocated to either the long or short position. If ENTRY denotes more than K stocks
should be entered that period, it will pick K stocks according to favorability.

•	 EXIT is a zoo object with the same dimensions as DATA[["Close"]] that specifies
when to deliberately exit a stock. A 0 corresponds to no action, a 1 corresponds
to exiting a long position, a -1 corresponds to exiting a short position, and a
999 corresponds to exiting any position. In every case, the entire position is
liquidated. For strategies that only require ENTRY and FAVOR, EXIT can be set to
all zeros.

•	 FAVOR is a zoo object with the same dimensions as DATA[["Close"]] that specifies
the favorability of a given stock at any given time. This is required when ENTRY
indicates more than K stocks to enter, and when ENTRY requires some, existing
positions must be liquidated in order to avoid owning more than K stocks. A higher
value of FAVOR indicates a desirable long position and an undesirable short position.
A lower or more negative value of FAVOR indicates a desirable short position or
an undesirable long position. Good defaults are mean return and Rolling Sharpe
Ratio. It may be of theoretical interest in certain strategies to fill FAVOR with random
numbers. Any NA values in FAVOR will be replaced with zeros at the initiation of the
simulator. This object is sorted and ordered frequently in the course of simulation,
and NA values cannot be handled via default R behavior.

•	 maxLookback is the greatest number of periods any indicator looks back in time
plus one. This is necessary to ensure matrices are not being processed when
they contain all NA values or incomplete computations due to na.rm=TRUE.
We typically want to use na.rm=TRUE to allow for maintenance of NA values
in our uniform date template data, but we do not want to abuse it to allow
computations of SMA

t,100
 at t=2.

•	 maxAssets is equal to K, which specifies the greatest number of stocks or unique
assets to be held at any given time. Our simulator allows portfolio management with
equal allocation of cash between K stocks. It will distribute startingCash among K
stocks and then distribute on-hand cash equally between new stocks as the money
compounds.

•	 startingCash is simply the amount invested initially. It is important to specify a
realistic value to each individual to study the interaction between account sizes and
commission structures.

http://dx.doi.org/10.1007/978-1-4842-2178-5_8
http://dx.doi.org/10.1007/978-1-4842-2178-5_8

Chapter 7 ■ Simulation and BaCkteSting

87

•	 slipFactor is a percentage of slippage to be added to each trade. Slippage is defined
as the difference between the price in data and the price in execution not accounting
for spreads. Realistically, slippage can work for or against you, but it is necessary to
account for a small amount to simulate realistic trading results. We will discuss the
degree of slippage that is appropriate for our sample strategies, which will highlight
the importance of automation. For this input, 0.001 corresponds to a 0.1 percent
handicap in each entry and exit. This will increase the prices when buying and
decrease them when selling.

•	 spreadAdjust is the dollar value to handicap each trade. It works as the dollar-value
analog to slipFactor but is most commonly used to adjust for paying the spread in
market orders. A value of 0.01 corresponds to a one-cent handicap and is realistic
when trading small-dollar volumes on liquid stocks during nonvolatile trading.

•	 flatCommission is the dollar value of a commission for a single trade of any size. It
is incorporated at both entry and exit. If your brokerage offers a $7 flat commission
on each trade, 7.00 is the appropriate value. If your brokerage offers a $7 flat
commission at only the entry, a value of 3.50 will simulate this properly.

•	 perShareCommission is the dollar value to handicap the price of each share to
simulate the effects of commissions charged on a per-share basis. If the per-share
commission is one-half of a cent each way, the proper value is 0.005. At the time of
writing, I am unaware of any scenario where the per-share commission is charged on
entry only, so one-way per-share commissions are not supported in this function but
can be approximated by entering half of the value as in flat commissions.

•	 verbose is a logical flag indicating whether to output performance information as the
function walks through time. We will not use this when running the function through
multicore algorithms because the console output is discarded. Some time can be
saved reaching the final results by setting this to FALSE.

•	 failThresh is the dollar value of the equity curve at which to halt the process,
returning the incomplete equity curve and a warning message. When testing
strategies manually, in a sequential loop, multicore loop, or otherwise, halting failing
strategies without throwing errors may help the user save time. It defaults to 0, which
is hard to breach because of the geometric nature of compounding, but it is well
utilized when set to some fraction of starting cash. There are situations, like during
gradient optimization or early exploratory research, where it would be unwise to set
this value to something other than zero.

•	 initP and initp are used during cross validation to pass position and account
information across strategy simulations. We will not touch these until the end of
Chapter 8.

•	 equNA is a function used in the data preparation that dynamically enforced
maxLookback on stocks that start their S&P tenure in the middle of OPEN and CLOSE.

Listing 7-1. Simulating Performance

equNA <- function(v){
 o <- which(!is.na(v))[1]
 return(ifelse(is.na(o), length(v)+1, o))
}

http://dx.doi.org/10.1007/978-1-4842-2178-5_8

Chapter 7 ■ Simulation and BaCkteSting

88

simulate <- function(OPEN, CLOSE,
 ENTRY, EXIT, FAVOR,
 maxLookback, maxAssets, startingCash,
 slipFactor, spreadAdjust, flatCommission, perShareCommission,
 verbose = FALSE, failThresh = 0,
 initP = NULL, initp = NULL){

Step 1
if(any(dim(ENTRY) != dim(EXIT)) |
 any(dim(EXIT) != dim(FAVOR)) |
 any(dim(FAVOR) != dim(CLOSE)) |
 any(dim(CLOSE) != dim(OPEN)))
 stop("Mismatching dimensions in ENTRY, EXIT, FAVOR, CLOSE, or OPEN.")

if(any(names(ENTRY) != names(EXIT)) |
 any(names(EXIT) != names(FAVOR)) |
 any(names(FAVOR) != names(CLOSE)) |
 any(names(CLOSE) != names(OPEN)) |
 is.null(names(ENTRY)) | is.null(names(EXIT)) |
 is.null(names(FAVOR)) | is.null(names(CLOSE)) |
 is.null(names(OPEN)))
 stop("Mismatching or missing column names in ENTRY, EXIT, FAVOR, CLOSE, or OPEN.")

FAVOR <- zoo(t(apply(FAVOR, 1, function(v) ifelse(is.nan(v) | is.na(v), 0, v))),
 order.by = index(CLOSE))

Step 2
K <- maxAssets
k <- 0
C <- rep(startingCash, times = nrow(CLOSE))
S <- names(CLOSE)

P <- p <- zoo(matrix(0, ncol=ncol(CLOSE), nrow=nrow(CLOSE)),
 order.by = index(CLOSE))

if(!is.null(initP) & !is.null(initp)){
 P[1:maxLookback,] <-
 matrix(initP, ncol=length(initP), nrow=maxLookback, byrow = TRUE)
 p[1:maxLookback,] <-
 matrix(initp, ncol=length(initp), nrow=maxLookback, byrow = TRUE)
}
names(P) <- names(p) <- S

equity <- rep(NA, nrow(CLOSE))

rmNA <- pmax(unlist(lapply(FAVOR, equNA)),
 unlist(lapply(ENTRY, equNA)),
 unlist(lapply(EXIT, equNA)))

for(j in 1:ncol(ENTRY)){
 toRm <- rmNA[j]

Chapter 7 ■ Simulation and BaCkteSting

89

 if(toRm > (maxLookback + 1) &
 toRm < nrow(ENTRY)){
 FAVOR[1:(toRm-1),j] <- NA
 ENTRY[1:(toRm-1),j] <- NA
 EXIT[1:(toRm-1),j] <- NA
 }
}

Step 3
for(i in maxLookback:(nrow(CLOSE)-1)){

 # Step 4
 C[i+1] <- C[i]
 P[i+1,] <- as.numeric(P[i,])
 p[i+1,] <- as.numeric(p[i,])

 longS <- S[which(P[i,] > 0)]
 shortS <- S[which(P[i,] < 0)]
 k <- length(longS) + length(shortS)

 # Step 5
 longTrigger <- setdiff(S[which(ENTRY[i,] == 1)], longS)
 shortTrigger <- setdiff(S[which(ENTRY[i,] == -1)], shortS)
 trigger <- c(longTrigger, shortTrigger)

 if(length(trigger) > K) {

 keepTrigger <- trigger[order(c(as.numeric(FAVOR[i,longTrigger]),
 -as.numeric(FAVOR[i,shortTrigger])),
 decreasing = TRUE)][1:K]

 longTrigger <- longTrigger[longTrigger %in% keepTrigger]
 shortTrigger <- shortTrigger[shortTrigger %in% keepTrigger]
 trigger <- c(longTrigger, shortTrigger)

 }

 triggerType <- c(rep(1, length(longTrigger)), rep(-1, length(shortTrigger)))

 # Step 6
 longExitTrigger <- longS[longS %in%
 S[which(EXIT[i,] == 1 | EXIT[i,] == 999)]]

 shortExitTrigger <- shortS[shortS %in%
 S[which(EXIT[i,] == -1 | EXIT[i,] == 999)]]

 exitTrigger <- c(longExitTrigger, shortExitTrigger)

 # Step 7
 needToExit <- max((length(trigger) - length(exitTrigger)) - (K - k), 0)

Chapter 7 ■ Simulation and BaCkteSting

90

 if(needToExit > 0){

 toExitLongS <- setdiff(longS, exitTrigger)
 toExitShortS <- setdiff(shortS, exitTrigger)

 toExit <- character(0)

 for(counter in 1:needToExit){
 if(length(toExitLongS) > 0 & length(toExitShortS) > 0){
 if(min(FAVOR[i,toExitLongS]) < min(-FAVOR[i,toExitShortS])){
 pullMin <- which.min(FAVOR[i,toExitLongS])
 toExit <- c(toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else {
 pullMin <- which.min(-FAVOR[i,toExitShortS])
 toExit <- c(toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 } else if(length(toExitLongS) > 0 & length(toExitShortS) == 0){
 pullMin <- which.min(FAVOR[i,toExitLongS])
 toExit <- c(toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else if(length(toExitLongS) == 0 & length(toExitShortS) > 0){
 pullMin <- which.min(-FAVOR[i,toExitShortS])
 toExit <- c(toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 }

 longExitTrigger <- c(longExitTrigger, longS[longS %in% toExit])
 shortExitTrigger <- c(shortExitTrigger, shortS[shortS %in% toExit])

 }

 # Step 8
 exitTrigger <- c(longExitTrigger, shortExitTrigger)
 exitTriggerType <- c(rep(1, length(longExitTrigger)),
 rep(-1, length(shortExitTrigger)))

 # Step 9
 if(length(exitTrigger) > 0){
 for(j in 1:length(exitTrigger)) {

 exitPrice <- as.numeric(OPEN[i+1,exitTrigger[j]])

 effectivePrice <- exitPrice * (1 - exitTriggerType[j] * slipFactor) -
 exitTriggerType[j] * (perShareCommission + spreadAdjust)

 if(exitTriggerType[j] == 1){

 C[i+1] <- C[i+1] +

Chapter 7 ■ Simulation and BaCkteSting

91

 (as.numeric(P[i,exitTrigger[j]]) * effectivePrice)
 - flatCommission

 } else {

 C[i+1] <- C[i+1] -
 (as.numeric(P[i,exitTrigger[j]]) *
 (2 * as.numeric(p[i, exitTrigger[j]]) - effectivePrice))
 - flatCommission
 }

 P[i+1, exitTrigger[j]] <- 0
 p[i+1, exitTrigger[j]] <- 0

 k <- k - 1
 }
 }

 # Step 10
 if(length(trigger) > 0){
 for(j in 1:length(trigger)){

 entryPrice <- as.numeric(OPEN[i+1,trigger[j]])

 effectivePrice <- entryPrice * (1 + triggerType[j] * slipFactor) +
 triggerType[j] * (perShareCommission + spreadAdjust)

 P[i+1,trigger[j]] <- triggerType[j] *
 floor(((C[i+1] - flatCommission) / (K - k)) / effectivePrice)

 p[i+1,trigger[j]] <- effectivePrice

 C[i+1] <- C[i+1] -
 (triggerType[j] * as.numeric(P[i+1,trigger[j]]) * effectivePrice)
 - flatCommission

 k <- k + 1

 }
 }

 # Step 11
 equity[i] <- C[i+1]
 for(s in S[which(P[i+1,] > 0)]){
 equity[i] <- equity[i] +
 as.numeric(P[i+1,s]) *
 as.numeric(OPEN[i+1,s])
 }

 for(s in S[which(P[i+1,] < 0)]){
 equity[i] <- equity[i] -

Chapter 7 ■ Simulation and BaCkteSting

92

 as.numeric(P[i+1,s]) *
 (2 * as.numeric(p[i+1,s]) - as.numeric(OPEN[i+1,s]))
 }

 if(equity[i] < failThresh){
 warning("\n*** Failure Threshold Breached ***\n")
 break
 }

 # Step 12
 if(verbose){
 if(i %% 21 == 0){
 cat(paste0("################################## ",
 round(100 * (i - maxLookback) /
 (nrow(CLOSE) - 1 - maxLookback), 1), "%",
 " ##################################\n"))
 cat(paste("Date:\t",as.character(index(CLOSE)[i])), "\n")
 cat(paste0("Equity:\t", " $", signif(equity[i], 5), "\n"))
 cat(paste0("CAGR:\t ",
 round(100 * ((equity[i] / (equity[maxLookback]))^
 (252/(i - maxLookback + 1)) - 1), 2),
 "%"))
 cat("\n")
 cat("Assets:\t", S[P[i+1,] != 0])
 cat("\n\n")
 }
 }

}

Step 13
return(list(equity = equity, C = C, P = P, p = p))

}

Discussion
It is important to consider that this simulator is built around the limitations of our platform and data. We
only have access to prices after the market close, so the simulator will simulate making decisions the night
before and entering the position in the morning. Opening prices often differ from closing prices, which is not
ideal. This is a drawback we will have to live with when using Yahoo! Finance data to make trading decisions.

We have assumed and only allowed for fixed-proportion compounding in our simulator. Simulators
and strategies can be arbitrarily complex, and users are invited to modify the simulator as they see the need.
Speed is the biggest motivator to build case-specific simulators. In arriving at the simulator presented in this
text, many faster simulators were built with fewer points of flexibility. For example, ignoring the need for the
EXIT matrix, neglecting to support shorts, and returning less output removes logic gates and subprocesses
that slow down the simulator. Many users will want to build long-only simulators if trading only large-cap
U.S. equities.

This simulator views portfolios as unlevered. This means that a long or short position is assumed to be
fully purchased in cash or fully collateralized in cash, respectively. In other words, the leverage multiple is
one or the margin ratio is 100 percent. The motivation for this comes from the idea that leveraged accounts

Chapter 7 ■ Simulation and BaCkteSting

93

can almost always utilize their leverage in either direction, long or short, if leverage is available at all. In
effect, this is equivalent to trading with a large account size with limitations on how much can be lost. The
simulator views portfolios as unlevered but can be parameterized to simulate levered accounts. Additionally,
there is a comparability advantage in handling leverage in this manner.

Simulation of levered has greater comparability when we consider startingCash to be the total
available dollar value for trading given the leverage multiple and consider failThresh to be the dollar value
at which the account is automatically liquidated by the brokerage. For example, if a trader placed $2,000
of cash into an account with the leverage multiple 50, he would have $100,000 to trade, but the brokerage
would liquidate his positions if the equity value of his assets fell below $98,000, the point where he can no
longer collateralize loss. We can achieve this behavior in our simulator by setting startingCash to $100,000
and failThresh to $98,000. Thus, we can fully accommodate for simulation of leveraged portfolios if we
view leverage as loaned cash. Traders can further adjust slipFactor, spreadAdjust, flatCommission, and
perShareCommission to account for higher trading costs accrued in the course of leveraging.

To build a simulator that supports shorts, we need to be able calculate the equity value of a short
position at any given time. The equity value of a position expresses the cash value of any position at a given
time. The formulation for the value of a long position is simple. The equity of a long position at time t is
equal to the number of shares n multiplied by the price y

t
. For shorts, the equity value of the position

depends on the entry price. For entry price y
e
, an unlevered short involves fully collateralizing ny

e
 dollars at

initiation and buying back the stock at time t for a profit of n y ye t−() dollars. When the trade is exited, the
cash is freed (no longer required as collateral) and the trader receives the profit. Therefore, the equity value
of a short at time t is ny n y y n y ye e t e t+ −() = −()2 . This logic is reflected in steps 9 and 11 in our simulator.

Implementing Example Strategies
We will compute the required matrices to simulate the example strategies outlined earlier in this chapter
with our simulator function. Listings 7-2, 7-3, and 7-4 will compute inputs and simulate trading for example
strategies #1, #2, and #3, respectively.

Listing 7-5 in the following section will compute summary statistics and performance metrics for
example strategy #1. We have removed the first 3,500 rows of our data for discussion in this section.

Using the formulas and listings from Chapter 1 should allow you to explore and study strategies
thoroughly. Chapter 8 will build on this ability by automating the research process further.

Listing 7-2. Long-Only Portfolio MACD

SUBDATA <- lapply(DATA, function(v) v[-(1:3500),])
SUBRETURN <- RETURN[-(1:3500),]

n1 <- 5
n2 <- 34
nSharpe <- 20
shThresh <- 0.80

INDIC <- mcTimeSeries(SUBDATA[["Close"]],
 function(v) mean(v[(n2 - n1 + 1):n2]) - mean(v),
 TRUE, n2, workers)

entryfunc <- function(v){
 cols <- ncol(v) / 2
 as.numeric(v[1,1:cols] <= 0 &
 v[2,1:cols] > 0 &

http://dx.doi.org/10.1007/978-1-4842-2178-5_1
http://dx.doi.org/10.1007/978-1-4842-2178-5_8

Chapter 7 ■ Simulation and BaCkteSting

94

 v[2,(cols+1):(2*cols)] >
 quantile(v[2,(cols+1):(2*cols)], shThresh, na.rm = TRUE)
)
}

FAVOR <- mcTimeSeries(SUBRETURN,
 function(v) mean(v, na.rm = TRUE)/sd(v, na.rm = TRUE),
 TRUE, nSharpe, workers)

ENTRY <- mcTimeSeries(cbind(INDIC, FAVOR),
 entryfunc,
 FALSE, 2, workers)

EXIT <- zoo(matrix(0, ncol=ncol(SUBDATA[["Close"]]), nrow=nrow(SUBDATA[["Close"]])),
 order.by = index(SUBDATA[["Close"]]))
names(EXIT) <- names(SUBDATA[["Close"]])

K <- 10

maxLookback <- max(n1, n2, nSharpe) + 1

RESULTS <- simulate(SUBDATA[["Open"]], SUBDATA[["Close"]],
 ENTRY, EXIT, FAVOR,
 maxLookback, K, 100000,
 0.0005, 0.01, 3.5, 0,
 TRUE, 0)
Attaching package: ’tools’
##
The following object is masked from 'package:XML':
##
toHTML

Listing 7-3. Portfolio Bollinger Bands

SUBDATA <- lapply(DATA, function(v) v[-(1:3500),])
SUBRETURN <- RETURN[-(1:3500),]

n1 <- 20
n2 <- 100
maxLookback <- max(n2, n1) + 1

SD <- mcTimeSeries(SUBDATA[["Close"]],
 function(v) sd(v, na.rm = TRUE),
 TRUE, n1, workers)

MOVAVG <- mcTimeSeries(SUBDATA[["Close"]],
 function(v) mean(v, na.rm = TRUE),
 TRUE, n1, workers)

LONGMOVAVG <- mcTimeSeries(SUBDATA[["Close"]],
 function(v) mean(v, na.rm = TRUE),
 TRUE, n2, workers)

Chapter 7 ■ Simulation and BaCkteSting

95

bt <- (SUBDATA[["Close"]] - MOVAVG) / SD
Bt <- (MOVAVG - LONGMOVAVG) / SD

triggerfunc <- function(v, columns) {

 goLong <- as.numeric(
 ((v[2,1:columns] >= 1 & v[2,1:columns] < 3) | v[2,1:columns] <= -3) &
 (v[1,(columns+1):(2*columns)] >= -2 & v[2,(columns+1):(2*columns)] < -2)
)

 goShort <- as.numeric(
 ((v[2,1:columns] > -3 & v[2,1:columns] <= -1) | v[2,1:columns] >= 3) &
 (v[1,(columns+1):(2*columns)] <= 2 & v[2,(columns+1):(2*columns)] > 2)
)

 return(goLong - goShort)

}

exitfunc <- function(v, columns){

 exitLong <- as.numeric(v[2,(columns+1):(2*columns)] >= 2 &
 v[1,(columns+1):(2*columns)] < 2)

 exitShort <- -as.numeric(v[1,(columns+1):(2*columns)] >= -2 &
 v[2,(columns+1):(2*columns)] < -2)

 exitAll <- 999 * as.numeric((v[1,1:columns] >= 0 & v[2,1:columns] < 0) |
 (v[1,1:columns] <= 0 & v[2,1:columns] > 0))

 out <- exitLong + exitShort + exitAll

 out[out > 1] <- 999
 out[!out %in% c(-1,0,1,999)] <- 0

 return(out)

}

columns <- ncol(SUBDATA[["Close"]])

ENTRY <- mcTimeSeries(cbind(Bt, bt), function(v) triggerfunc(v, columns),
 FALSE, 2, workers)

FAVOR <- mcTimeSeries(SUBRETURN, mean, TRUE, n1, workers)

EXIT <- mcTimeSeries(cbind(Bt, bt), function(v) exitfunc(v, columns),
 FALSE, 2, workers)

K <- 20

Chapter 7 ■ Simulation and BaCkteSting

96

RESULTS <- simulate(SUBDATA[["Open"]], SUBDATA[["Close"]],
 ENTRY, EXIT, FAVOR,
 maxLookback, K, 100000,
 0.0005, 0.01, 3.5, 0,
 TRUE, 0)

Listing 7-4. Portfolio RSI Reversal

SUBDATA <- lapply(DATA, function(v) v[-(1:3500),])
SUBRETURN <- RETURN[-(1:3500),]

truerangefunc <- function(v, cols){
 pmax(v[2, (cols+1):(2*cols)] - v[2,1:cols],
 abs(v[2, 1:cols]-v[1, (2*cols + 1):(3*cols)]),
 abs(v[1, (cols+1):(2*cols)]-v[2, (2*cols + 1):(3*cols)]))
}

cols <- ncol(SUBDATA[["Close"]])
TR <- mcTimeSeries(cbind(SUBDATA[["Low"]], SUBDATA[["High"]], SUBDATA[["Close"]]),
 function(v) truerangefunc(v, cols), FALSE, 2, workers)

Calculate ATR with SMA method
ATR <- mcTimeSeries(TR, mean, TRUE, 20, workers)

ROLLMIN <- mcTimeSeries(SUBDATA[["Close"]], min, TRUE, 100, workers)
ROLLMAX <- mcTimeSeries(SUBDATA[["Close"]], max, TRUE, 100, workers)

m_plus <- (ROLLMAX - SUBDATA[["Close"]]) / ATR
m_minus <- (SUBDATA[["Close"]] - ROLLMIN) / ATR

RS <- mcTimeSeries(SUBRETURN,
 function(v) mean(v[v>0], na.rm = T) / mean(v[v<0], na.rm = T),
 TRUE, 20, workers)

RSI <- mcTimeSeries(RS, function(v) 100 - (100 / (1 + v)), FALSE, 1, workers)

entryfunc <- function(v, cols){

 goshort <- v[2,1:cols] <= 2 &
 (v[1,(2*cols+1):(3*cols)] > 70 &
 v[2,(2*cols+1):(3*cols)] <= 70)

 golong <- v[2,(cols+1):(2*cols)] <= 2 &
 (v[1,(2*cols+1):(3*cols)] < 30 &
 v[2,(2*cols+1):(3*cols)] >= 30)

 return(as.numeric(golong) - as.numeric(goshort))

}

ENTRY <- mcTimeSeries(cbind(m_plus, m_minus, RSI),
 function(v) entryfunc(v, cols), FALSE, 2, workers)

Chapter 7 ■ Simulation and BaCkteSting

97

FAVOR <- mcTimeSeries(SUBRETURN, mean, TRUE, 20, workers)

exitfunc <- function(v){
 cols <- ncol(SUBDATA[["Close"]])
 exitlong <- as.numeric(v > 70 | v < 15)
 exitshort <- as.numeric(v < 30 | v > 85)
 return(exitlong - exitshort)
}

EXIT <- mcTimeSeries(RSI, exitfunc, FALSE, 1, workers)

K <- 20

RESULTS <- simulate(SUBDATA[["Open"]], SUBDATA[["Close"]],
 ENTRY, EXIT, FAVOR,
 maxLookback, K, 100000,
 0.0005, 0.01, 3.5, 0,
 TRUE, 0)

Summary Statistics and Performance Metrics
Listing 7-5 computes summary statistics and performance metrics given the list() results of a run with the
simulator function. The outputs of the simulator function are sufficient to compute performance metrics as
described in Table 1-1. Figures 7-1 and 7-2 plot the return series and equity curve for the abbreviated data
running the MACD long-only strategy.

Figure 7-1. Return series for long-only MACD

http://dx.doi.org/10.1007/978-1-4842-2178-5_1#Tab1

Chapter 7 ■ Simulation and BaCkteSting

98

Listing 7-5. Summary Statistics and Performance Metrics

changeInEquity <- c(NA, RESULTS[["equity"]][-1] -
 RESULTS[["equity"]][-length(RESULTS[["equity"]])])

Return Series as defined in Chapter 1
R <- zoo(changeInEquity / (RESULTS[["equity"]]), order.by = index(SUBDATA[["Close"]]))

plot(100 * R, type = "l", main = "Figure 7.1: Return Series for Long-Only MACD",
 ylab = "Percent Return", xlab = "")
grid()
abline(h = 0, col = 8)

Equity Curve
plot(y = RESULTS[["equity"]], x = index(SUBDATA[["Close"]]),
 type = "l", main = "Figure 7.2: Equity Curve for Long-Only MACD",
 ylab = "Account Equity ($)", xlab = "")
abline(h = RESULTS[["C"]][1])
grid()

Sharpe Ratio
sharpeRatio <- mean(R, na.rm = T) / sd(R, na.rm = T)

Daily percent portfolio turnover
changeP <- RESULTS[["P"]] - lag(RESULTS[["P"]], k = -1)
percentTurnover <- 100 * (sum(changeP > 0) / nrow(DATA[["Close"]])) / K

Figure 7-2. Equity curve for long-only MACD

Chapter 7 ■ Simulation and BaCkteSting

99

Conclusion
In this chapter, we built a simulator that balances flexibility and speed. Depending on complexity of the
strategy and volume of data used in simulation, the simulation process can take anywhere from 30 seconds
to a few hours to run. This is extremely useful for manual exploration and research into the effectiveness
of certain trading strategies, but we eventually want to settle on a specific strategy and test a range of
parameters for it. In Chapter 8, we will place the simulator function inside a for loop to search for optimal
parameters on our behalf. Depending on the objectives of the developer, we may use a handful of different
methods to accomplish this.

http://dx.doi.org/10.1007/978-1-4842-2178-5_8

101© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_8

CHAPTER 8

Optimization

Optimization is more than finding the best simulation results. It is itself a complex and evolving field
that, subject to certain information constraints, allows data scientists, statisticians, engineers, and
traders alike to perform reality checks on modeling results. We will discuss common ideological pitfalls
and how to avoid them. We will talk about cross validation and its specific application to time series,
and we will use our simulator from Chapter 7 to project trading performance with confidence and
validity.

We will discuss the best optimization methods and performance metrics. Our simulator takes a
considerable amount of time to run, so it is in our best interest to condense parameters and minimize calls
to the function within an optimizer.

Cross Validation in Time Series
In Chapter 7, we built a simulator. The simulator tells us how a given strategy with certain account
constraints performs over a period of time. Developers can manually test and reconfigure strategies to learn
which strategies and configurations perform best over a certain period of time. Developers will be tempted
to assume that a configuration that performs well in one period will perform similarly in another. As a basic
principle of statistics, we know that good performance in the past does not guarantee good performance in
the future. The vast majority of people will avoid this ideological pitfall.

There are less obvious ideological pitfalls we need to avoid. A developer may feel some sense
of accomplishment when he discovers a strategy and configuration that performs well over a long
period of time. Naturally, there is reason to get excited about a strategy that makes solid returns over
years or decades and avoids catastrophic losses during recessions. Unfortunately, this is a substantial
ideological pitfall.

The developer has tinkered with the strategy and parameters to optimize performance over a
long period of time. He assumes that this strategy will perform well in the future because it weathered
many business cycles and made consistent gains. He is excited to put the strategy into production and
start generating profits, but important logistics questions remain. How will he determine the best strategy
a year from now? Will he keep using the current strategy? Or will he repeat the process of optimizing
over all available data and use the best new strategy in the following year? Important projection
questions remain. If the strategy made 30 percent in 2016, how much can the developer expect to
make 2017?

Any performance projections of a strategy optimized in this manner are invalid because of the use of
information in the future to adjust parameters in the past. In classical statistics, optimization in this manner
is called curve fitting and is solved by cross validation.

http://dx.doi.org/10.1007/978-1-4842-2178-5_7
http://dx.doi.org/10.1007/978-1-4842-2178-5_7

Chapter 8 ■ OptimizatiOn

102

In statistics, the concepts of tests and models correspond to the concepts of simulations and strategies
in trading. The motivating idea behind cross validation is that test results are not valid unless there is
(at minimum) a weakly deterministic process for arriving at the parameterization of the model using
information outside and independent of the test data set.

In trading terms, simulation performance is not valid unless there is (at minimum) a weakly
deterministic process for arriving at the parameterization of the trading strategy using only data available
before data in the test data set.

A weakly deterministic process is one that relies on strictly deterministic processes and
constrained randomness. A strictly deterministic process is a deliberate and repeatable functional
mapping of one set of information to another. Constrained randomness is the generation of random
numbers per a strictly deterministic probability distribution. The inclusion of weak determinism in
addition to strict determinism exists to allow optimization procedures to declare search points and
initial values at random.

Notice in our definition how “outside and independent” in statistics terms equates to “available before”
in trading terms. This is a translation from the more general statistical definition of cross validation to
the application-specific time-series definition. In most statistical applications, observations are assumed
independent, so we can separate training and testing data by randomly sampling observations. In time
series, if we want to simulate performance starting at time t, all data before t is our training data and all data
after t is our testing data.

In short, simulation results for data occurring any time after t are trivial acts of curve fitting unless
they use only information both occurring and available before t to determine the strategy. To generate
performance simulations for the duration of our data, we will move through time, generating a given year’s
performance simulation with a strategy determined by data available prior to it. This will necessarily exclude
the performance simulation for the first year of our data, the year 2000, and include everything up to the
present.

Numerical vs. Analytical Optimization
In general, the goal of an optimization problem for objective function f ⋅() is to find the parameter
vector θ such that

θ θ
θ

= () argmin f .

Ultimately, we may find the actual value of θ, or we might find an estimate θ̂ because of natural constraints
of the problem. We touched on the difference between analytical and numerical optimization in the
introduction of this text. We will delineate further here.

In analytical optimization, we know the form and gradient of the objective function. Note that a
gradient is a vector of derivatives in each dimension of the candidate parameter vector. To find the minimum
of a function in analytical optimization, we solve for the points where the derivative is equal to zero and
test them, keeping the arguments of the minimum value as the global minimum of the function. In almost
every case, analytical optimization will find θ rather than θ̂ . Analytical optimization is a problem commonly
found in calculus and other advanced mathematics that is seldom seen again by practitioners in data
science, statistics, and algorithmic trading.

Chapter 8 ■ OptimizatiOn

103

Numerical optimization involves algorithmically searching for the minimum of a function
with a known form but an unknown gradient. Claiming to know the form of the objective function
is a mathematical technicality. We may know how to compute the objective function but find it too
computationally expensive to examine its form comprehensively. We not only aim to find the minimum
of a function with an undefined gradient but minimize the steps and time taken to find a reasonable
estimate for a minimum.

We will only be dealing with numerical optimization in this text. The output of our objective
function is a performance metric computed from the results of a simulation, and our simulations are
very computationally expensive to run. We will cover a handful of optimization algorithms including
Exhaustive, Genetic, Pattern Search, Nelder-Mead, and BFGS. Numerous functions and packages
exist to run these algorithms given data and an objective function, but they typically assume near-
instantaneous computation of the objective function and strictly continuous inputs. There is a clear
necessity to program our own optimizers and adapt them to handle common problems and constraints
of trading strategy optimization.

Note that we seek the minimum as opposed to the maximum of the objective function purely as
convention. Most performance metrics in finance are designed to be maximized, so we minimize the
negative of the performance metric in practice.

Numerical Optimization Overview
We will outline major concepts in numerical optimization and explain their uses.

Gradient optimization involves approximating the gradient of the objective function with respect
to its parameters to point the algorithm in the direction of a minimum value. These procedures perform
best finding the minima of smooth functions with a medium to large number of parameters (ten or
more). The algorithm generally takes steps in the parameter space proportional to the negative gradient
in search of minima. Gradient optimization requires the objective function be relatively smooth.
Substantial research efforts have sought to generalize gradient optimization to work with nonsmooth
objective functions.

While it is possible to implement gradient procedures in trading strategy optimization, we will
generally avoid them. Sophisticated gradient optimization algorithms are capable of efficiently locating
minima of nonsmooth objective functions, but our objective function has the added challenge of taking
integer parameters. Search methods are typically designed to find the minima of objective functions
with continuous inputs, so integer inputs must be rounded after declaration to give the objective
function a real-valued domain. This is a problem for gradient optimization because the objective
function becomes stepwise with respect to integer-valued parameters. Gradients are computed to
estimate the magnitude of parameter changes required to find the minimum. Numerical gradient
estimates throw unwieldy and misleading values in stepwise functions because the gradient is
technically undefined at every step. If we are rounding integer inputs before simulation, the true
gradient is undefined at every point x+0.5 where x is any integer. Particularly unwieldy and misleading
behavior occurs when calculating the gradient near or within steps, leading to unrealistically large or
zero-valued gradients, respectively. Figure 8-1 illustrates this phenomenon for a one-dimensional
parameter vector θ and the objective function f ⋅() .

Chapter 8 ■ OptimizatiOn

104

We will avoid gradient search methods in favor of direct search methods. Direct search methods
use searching algorithms to iteratively discover minima in the objective function. Direct search
methods typically take an intuitive search procedure in a one- or two-dimensional parameter space
and generalize them to n-dimensional parameter vectors. We will cover exhaustive search, generalized
pattern search, and Nelder-Mead optimization. We will make preparations to run these algorithms in
the next sections.

Parameter Transform for Unbounded Search Algorithms
The generalized pattern search and Nelder-Mead algorithms assume continuous real-valued parameters
on the domain of −∞ ∞(), . We will take the logistic transform of the parameters when optimizing with these
algorithms. Even in algorithms that do not strictly require continuous unbounded inputs, transforming the

Figure 8-1. Misleading gradient estimation in stepwise objective functions

Chapter 8 ■ OptimizatiOn

105

parameters improves search robustness in general. Where x represents the input to the logistic function and
p represents the logistic transform,

p
ex

=
+
1

1

with the inverse

x
p

p
=

−

ln

1
.

The output of the logistic function is bounded by (0,1). In practice, the optimizer will generate
candidate vectors that are continuous on the domain −∞ ∞(), . The purpose of the logistic transform is
clearer from the manner in which we compute inputs into the simulator. Where θ

sim
 is the candidate

parameter vector of logically bounded inputs to the simulator, θ
min

 is a vector of logical minima of the
parameter vector, θ

max
 is a vector of logical maxima of the parameter vector, and θ

opt
 is the unbounded

candidate vector generated by the optimization algorithm that exists on the domain −∞ ∞(), ,

θ θ θ θ θsim
e opt

= + −()
+ −min max min

1

1
.

This process maps the unbounded candidate vectors generated by optimizers to logically bounded
domains specific to each parameter.

Declaring an Evaluator
Optimization algorithms are fairly plug-and-play given a compact evaluator function. An optimization
algorithm needs to be able to evaluate the objective function given any valid candidate parameter vector. For
our use case, we will declare an evaluator that takes a named parameter vector, transforms the inputs based
on rectangular bounds (two constant named vectors) on the parameter vector, subsets our data for a given
year, and returns a performance metric for the strategy.

The evaluator function, declared in Listing 8-1, will look sloppier than much of the code we have written
up to this point. Any given evaluator function is not part of our code base, but it is a flexible outline of a specific
strategy of interest. This function and declaration of inputs to the simulator, which will look strikingly similar, are
the most fluid pieces of code presented in this text. They will be changed frequently while researching strategies.

Listing 8-1: Pseudocode
 1. If requested, transform unbounded parameters to their original domains

bounded between minVal and maxVal. This allows optimizers that require
continuous unbounded inputs to communicate with our simulator that requires
bounded and often integer-only values. If transformOnly = TRUE is specified,

 ■ Note: the code for generating inputs to the long-only maCD has been optimized for speed within the
evaluator. it does not match Listing 7-2. in this case, it was found that the runmean() function from the caTools
package computes means faster than mcTimeSeries() because of internal algorithmic improvements. this
sacrifices the ability to fine-tune NA-handling at the indicator level, but this is not an issue given the structure
of our stock data as established in this text. Users with alternate data containing periodic or regular NA values
should explore the ability of mcTimeSeries() and rollapply() to handle NA values at the indicator level.

http://dx.doi.org/10.1007/978-1-4842-2178-5_7#list91

Chapter 8 ■ OptimizatiOn

106

exit the function by returning the bounded parameters after transformation. This
is a helpful shortcut for transforming unbounded parameters back into their
practical domains without going through the lengthy simulation step.

 2. Regardless of whether the supplied parameters underwent transformation
in the first step, this step enforces numeric type and bounding rules as to not
break the simulator. For example, we enforce that n1 is an integer greater than
or equal to 2. Then we enforce that n2 is an integer greater than or equal to
both n1 and 3. This code should be modified as new strategies are built into the
evaluator. Incorrect bounding conditions during optimization is a large source
of run-time errors.

 3. We subset the data according to the argument y. This can be a range of years or a
single year. The simulator will run over the range of years supplied.

 4. The subset requires elements of the DATA object according to the previous step.

 5. Compute the ENTRY, EXIT, and FAVOR matrix according to the strategy specified.
This and step 2 are the most variable sections of code. They will change often as
you research and develop new strategies.

 6. Simulate the strategy and store the results in a list. If account parameters are
passed to the evaluator, supply them to the simulator.

 7. Compute the performance metric and return it. By default, we have supplied
the High-Frequency Sharpe Ratio. This will change frequently as users explore
new performance metrics. Return the negative of the performance metric if
requested. Return the data from simulation rather than the performance metric if
requested.

Listing 8-1: Explanation of Inputs and User Guide
•	 PARAM is a named vector of inputs. These can be bounded according to minVal and

maxVal or unbounded on the domain −∞ ∞(), depending on the value of

transform. PARAM must have names matching minVal and maxVal if they are
supplied.

•	 minVal and maxVal are named vectors of logical bounds on the values of parameters
inputted to the strategy. They need to be supplied if transform or transformOnly is
set to TRUE.

•	 y is a single number, pair of numbers, or range of numbers corresponding to the years
to evaluate over. y = 2016 will evaluate performance in 2016. y = 2011:2016 and
y = c(2011,2016) will both evaluate performance from 2011 up to and through 2016.

•	 transform specifies if PARAM is supplied as unbounded parameters subject to our
domain transformation based on the logistic transform. If transform = TRUE, minVal
and maxVal are required inputs. An example of PARAM input when transform = TRUE
could be c(n1 = -0.23, nFact = 3.6, nSharpe = -2.5, shThresh = 3.1). An
example of PARAM input with transform = FALSE could be c(n1 = 21, nFact = 3,
nSharpe = 43, shThresh = 0.80).

•	 verbose is the same as in Listing 7-1. This parameter is passed to the simulator if the
user desires run-time diagnostics.

http://dx.doi.org/10.1007/978-1-4842-2178-5_7#list91

Chapter 8 ■ OptimizatiOn

107

•	 negative specified whether to return the negative value of the performance metric.
This assumes that all performance metrics are coded such that greater values
correspond to a better assessment of performance. This is useful for extending the
evaluator to algorithms that perform minimization as opposed to algorithms that
perform maximization.

•	 transformOnly is set to TRUE if the user desires to use the evaluator as a shortcut
to transform to unbounded parameters back to their logically bounded domains.
It simply performs the transformation and halts the function early to return the
logically bounded parameters.

•	 returnData is set to TRUE if the user desires to bypass computation of the
performance metric and return the list of account variables normally output from
the simulator.

•	 accountParams is set if the user desires to pass positions and cash data of the account
across evaluations. This will come into play in Listing 8-6 when we cross validate
using the optimization algorithms discussed in the chapter. The list provided to this
argument must contain the final row of P, the final row of p, and the final element of
C as defined in the Listing 7-1 pseudo-code and as seen in the output of Listing 7-1.
See Listing 8-6 for an implementation example.

Listing 8-1. Declaring the Evaluator Function

y <- 2014

minVal <- c(n1 = 1, nFact = 1, nSharpe = 1, shThresh = .01)
maxVal <- c(n1 = 150, nFact = 5, nSharpe = 200, shThresh = .99)

PARAM <- c(n1 = -2, nFact = -2, nSharpe = -2, shThresh = 0)

Declare entry function for use inside evaluator
entryfunc <- function(v, shThresh){
 cols <- ncol(v)/2
 as.numeric(v[1,1:cols] <= 0 &
 v[2,1:cols] > 0 &
 v[2,(cols+1):(2*cols)] >
 quantile(v[2,(cols+1):(2*cols)],
 shThresh, na.rm = TRUE)
)
}

evaluate <- function(PARAM, minVal = NA, maxVal = NA, y = 2014,
 transform = FALSE, verbose = FALSE,
 negative = FALSE, transformOnly = FALSE,
 returnData = FALSE, accountParams = NULL){

 # Step 1
 # Convert and declare parameters if they exist on unbounded (-inf,inf) domain
 if(transform | transformOnly){
 PARAM <- minVal +
 (maxVal - minVal) * unlist(lapply(PARAM, function(v) (1 + exp(-v))^(-1)))
 if(transformOnly){
 return(PARAM)

http://dx.doi.org/10.1007/978-1-4842-2178-5_7#list91
http://dx.doi.org/10.1007/978-1-4842-2178-5_7#list91

Chapter 8 ■ OptimizatiOn

108

 }
 }

 # Step 2
 # Declare n1 as itself, n2 as a multiple of n1 defined by nFact,
 # and declare the length and threshold in sharpe ratio for FAVOR.
 # This section should handle rounding and logical bounding
 # in moving
 n1 <- max(round(PARAM[["n1"]]), 2)
 n2 <- max(round(PARAM[["nFact"]] * PARAM[["n1"]]), 3, n1+1)
 nSharpe <- max(round(PARAM[["nSharpe"]]), 2)
 shThresh <- max(0, min(PARAM[["shThresh"]], .99))
 maxLookback <- max(n1, n2, nSharpe) + 1

 # Step 3
 # Subset data according to range of years y
 period <-
 index(DATA[["Close"]]) >= strptime(paste0("01-01-", y[1]), "%d-%m-%Y") &
 index(DATA[["Close"]]) < strptime(paste0("01-01-", y[length(y)]+1), "%d-%m-%Y")

 period <- period |
 ((1:nrow(DATA[["Close"]]) > (which(period)[1] - maxLookback)) &
 (1:nrow(DATA[["Close"]]) <= (which(period)[sum(period)]) + 1))

 # Step 4
 CLOSE <- DATA[["Close"]][period,]
 OPEN <- DATA[["Open"]][period,]
 SUBRETURN <- RETURN[period,]

 # Step 5
 # Compute inputs for long-only MACD as in Listing 7.2
 # Code is optimized for speed using functions from caTools and zoo
 require(caTools)
 INDIC <- zoo(runmean(CLOSE, n1, endrule = "NA", align = "right") -
 runmean(CLOSE, n2, endrule = "NA", align = "right"),
 order.by = index(CLOSE))
 names(INDIC) <- names(CLOSE)

 RMEAN <- zoo(runmean(SUBRETURN, n1, endrule = "NA", align = "right"),
 order.by = index(SUBRETURN))

 FAVOR <- RMEAN / runmean((SUBRETURN - RMEAN)^2, nSharpe,
 endrule = "NA", align = "right")
 names(FAVOR) <- names(CLOSE)

 ENTRY <- rollapply(cbind(INDIC, FAVOR),
 FUN = function(v) entryfunc(v, shThresh),
 width = 2,
 fill = NA,
 align = "right",
 by.column = FALSE)
 names(ENTRY) <- names(CLOSE)

Chapter 8 ■ OptimizatiOn

109

 EXIT <- zoo(matrix(0, ncol=ncol(CLOSE), nrow=nrow(CLOSE)),
 order.by = index(CLOSE))
 names(EXIT) <- names(CLOSE)

 # Step 6
 # Max shares to hold
 K <- 10

 # Simulate and store results
 if(is.null(accountParams)){
 RESULTS <- simulate(OPEN, CLOSE,
 ENTRY, EXIT, FAVOR,
 maxLookback, K, 100000,
 0.001, 0.01, 3.5, 0,
 verbose, 0)
 } else {
 RESULTS <- simulate(OPEN, CLOSE,
 ENTRY, EXIT, FAVOR,
 maxLookback, K, accountParams[["C"]],
 0.001, 0.01, 3.5, 0,
 verbose, 0,
 initP = accountParams[["P"]], initp = accountParams[["p"]])
 }

 # Step 7
 if(!returnData){

 # Compute and return sharpe ratio
 v <- RESULTS[["equity"]]
 returns <- (v[-1] / v[-length(v)]) - 1
 out <- mean(returns, na.rm = T) / sd(returns, na.rm = T)
 if(!is.nan(out)){
 if(negative){
 return(-out)
 } else {
 return(out)
 }
 } else {
 return(0)
 }

 } else {
 return(RESULTS)
 }
}

To test value of objective function
objective <- evaluate(PARAM, minVal, maxVal, y)

Chapter 8 ■ OptimizatiOn

110

Exhaustive Search Optimization
It is wise to start your research on a new strategy with a wide-spanning exhaustive search. Exhaustive
searches involve scanning an n-dimensional grid of parameters, where n is the number of parameters tested.
Exhaustive testing is computationally expensive. If testing k

i
 points for each parameter i n∈1 2, ,..., , the

number of calls to the evaluate() function required to complete the optimization is

i

n

ik
=
∏

1

.

Exhaustive searches are helpful because they allow us to view surface plots of the objective function,
informing more detailed exhaustive searches or initial values for other search methods. Listing 8-2
performs an exhaustive search by declaring every possible combination of the test points in the OPTIM
data frame. Throughout this chapter, the OPTIM data frame will make a point of storing the inputs and
results of every call to the evaluate function made by an algorithm, even when the algorithm does not call
for or depend on this data.

Listing 8-2 includes a simple clock for estimating time to completion. It assumes the average
completion time is constant throughout the optimization process, which is not necessarily true when
parameters increase the maximum lookback and computational complexity as the search progresses.
Nonetheless, it will give a rough estimate of time to completion for an optimization. Careless
declaration of bounds and step sizes can initialize an optimization process that takes weeks
or years.

Notice in Listing 8-2 that we declare equal lower and upper bounds onnFact and nSharpe. This is
intentional in order to declare these values in the optimization but prevent the search procedure from
scanning through different values of nFact and nSharpe.

We will declare transform = FALSE in our evaluator function to let it know we are not giving it
transformed inputs. In Listing 8-2, we optimize with constant step size. You may want to specify transform
= TRUE to test with a nonconstant step size in an unbounded parameter space. You can step into the
beginning of this code and replace the elements of the POINTS list with any desired sequence of test points
without disrupting the rest of the code.

Listing 8-2. Exhaustive Optimization

Declare bounds and step size for optimization
lowerBound <- c(n1 = 5, nFact = 3, nSharpe = 22, shThresh = 0.05)
upperBound <- c(n1 = 80, nFact = 3, nSharpe = 22, shThresh = 0.95)
stepSize <- c(n1 = 5, nFact = 1, nSharpe = 1, shThresh = 0.05)

pnames <- names(stepSize)
np <- length(pnames)

Declare list of all test points
POINTS <- list()
for(p in pnames){
 POINTS[[p]] <- seq(lowerBound[[p]], upperBound[[p]], stepSize[[p]])
}

Chapter 8 ■ OptimizatiOn

111

OPTIM <- data.frame(matrix(NA, nrow = prod(unlist(lapply(POINTS, length))),
 ncol = np + 1))
names(OPTIM)[1:np] <- names(POINTS)
names(OPTIM)[np+1] <- "obj"

Store all possible combinations of parameters
for(i in 1:np){
 each <- prod(unlist(lapply(POINTS, length))[-(1:i)])
 times <- prod(unlist(lapply(POINTS, length))[-(i:length(pnames))])
 OPTIM[,i] <- rep(POINTS[[pnames[i]]], each = each, times = times)
}

Test each row of OPTIM
timeLapse <- proc.time()[3]
for(i in 1:nrow(OPTIM)){
 OPTIM[i,np+1] <- evaluate(OPTIM[i,1:np], transform = FALSE, y = 2014)
 cat(paste0("## ", floor(100 * i / nrow(OPTIM)), "% complete\n"))
 cat(paste0("## ",
 round(((proc.time()[3] - timeLapse) *
 ((nrow(OPTIM) - i)/ i))/60, 2),
 " minutes remaining\n\n"))
}

Listing 8-3 gives examples of useful visualizations of exhaustive search results. There are many 3D
visualization packages in R. Thelattice package typically comes with base-R and is lightweight and easy
to use. For wireframes, users will have to play with the visualization axes to view the surface plot properly. I
suggest keeping x negative and y unchanged so that the plot is oriented with the objective function pointing
upward. Adjust the z access to rotate the plot clockwise and counterclockwise to get the best angle.

I suggest the rgl package in R for manually rotating and viewing 3D plots in an interactive GUI.

Listing 8-3. Surface Plots and Level Plots for Exhaustive Optimization

library(lattice)
wireframe(obj ~ n1*shThresh, data = OPTIM,
 xlab = "n1", ylab = "shThresh",
 main = "Long-Only MACD Exhaustive Optimization",
 drape = TRUE,
 colorkey = TRUE,
 screen = list(z = 15, x = -60)
)

levelplot(obj ~ n1*shThresh, data = OPTIM,
 xlab = "n1", ylab = "shThresh",
 main = "Long-Only MACD Exhaustive Optimization"
)

Figures 8-2 and 8-3 show surface and level plots of the same optimization. In these figures, nFact and
nSharpe were held constant at 3 and 22, respectively.

Chapter 8 ■ OptimizatiOn

112

Figures 8-4 and 8-5 show surface and level plots of the same optimization. In these figures, nSharpe and
shThresh were held constant at 22 and 0.8, respectively.

Figure 8-2. Long-only MACD surface plot

Figure 8-3. Long-only MACD level plot

Chapter 8 ■ OptimizatiOn

113

Figure 8-4. Long-only MACD Sharpe Ratio: surface

Figure 8-5. Long-Only MACD Sharpe Ratio: level

The two optimizations shown in Figures 8-2 through 8-5 took 304 and 208 calls to the evaluator function
and found the maxima of the objective function to be about 1.77 and 1.74, respectively. After this lengthy
analysis, we have left much of the parameter space unsearched because time constraints forced us to search
only two parameter spaces at a time, while fixing the remaining two. A solution to this problem may be to

Chapter 8 ■ OptimizatiOn

114

perform many small exhaustive optimizations where sections of the parameter space with high values of
the objective function are searched with more granularity for higher maxima. Fortunately, this logic can be
automated through generalized pattern search algorithms.

Pattern Search Optimization
The concept of the pattern search optimizer is simple and flexible. There are many proprietary variations
to pattern searches. Tailoring a pattern search optimizer to its application domain can be very powerful for
discovering the minima of highly nonlinear objective functions.

Similarly to exhausting searches, a pattern search will go through a maximum of K iterations searching the
vicinity of the candidate point θ

k
 in a grid with distance Δ

k
 between each adjacent node. The node distance and

candidate point will change iteratively in a logical searching fashion, shrinking the node distance if it believes
the minima is within the neighborhood and expanding the node distance if it believes it should cast a wider net.
The details of point movement and node distance changes are application-specific. We will discuss generalized
pattern search and tailor it to a known characteristic of our optimization goals and objective function.

Pattern search algorithms generally require the parameters be continuous on ∞ −∞(), , so we will use the
default transform = TRUE argument in our evaluator function. We will use the negative = TRUE argument in our
evaluator function, treating the optimization as a minimization problem, to maintain consistency with traditional
optimization literature. We will give pseudocode for our algorithm and then discuss the R code.

Generalized Pattern Search Optimization
 1. Given range-bound sigmodial inputs to objective function f ⋅() , define K maximum

iterations, iteration k, n-dimensional candidate parameter vector θ
k
, the i-th element

of the k-th candidate parameter vector θ
k,i

, initial step size 0 0> , iterative step size
vector Δ

k
, completion threshold Δ

T
, and scale factor σ such that σ>1.

 2. Set k = 0. Set θ
0,i

= 0 for all i n∈1,..., .

 3. Evaluate f(θ
k
). Store the result as f

min
. Start SEARCH subroutine.

 4. Define the SEARCH subroutine:

•	 Perform n random searches at dual test points θ σk k kB U± () −() ()2 5 1. ,∆ ∆
where B(p) and U(a,b) represent two n-dimensional vectors of n independent
Bernoulli distributed and uniformly distributed random numbers, respectively.
The evaluator function will be called a total of 2n times.

•	 If any test points evaluate to less than f
min

, store the new minimum value as f
min

,
store the responsible parameter vector as θ

k+1
, and increase the step size such

that ∆ ∆k k+ =1 σ . Set k=k+1 and repeat the SEARCH subroutine.

•	 If no test points evaluate to less than f
min

, begin the POLL subroutine.

•	 If k=K, return f
min

 and θ
k
, end the optimization.

 5. Define the POLL subroutine:

•	 For i n∈1,..., , search at dual test points generated as θ σk iv± , where v
i
 is an n-

dimensional vector with 1 in position i and 0s elsewhere. The evaluator function
will be called a total of 2n times.

•	 If any test points evaluate to less than f
min

, store the new minimum value as f
min

,
store the responsible parameter vector as θ

k+1
, and increase the step size such

that ∆ ∆k k+ =1 σ . Set k=k+1 and run the SEARCH subroutine.

Chapter 8 ■ OptimizatiOn

115

•	 If no test points evaluate to less than f
min

, decrease the step size such

that ∆
∆

k
k

+ =1 σ
. Set k=k+1.

•	 If k = K, return fmin and θk, end the optimization.

•	 If ∆ ∆k T< , set ∆ ∆k = 0 , θ σ σk k kU= −()∆ ∆, , and f f kmin = ()θ . Run the

SEARCH subroutine.

•	 Else run the SEARCH subroutine.

We will define a box to be the n-dimensional analog to a square or cube in this discussion. The
algorithm will begin with the SEARCH subroutine, which will test n randomly selected points inside a box
with side length 2σΔk

 but outside a box with side length 2Δ
k
, both centered at θ

k
. This region will be referred

to as the search region given θ
k
, Δ

k
, and σ. The SEARCH subroutine also tests the reflections of the n randomly

selected points about θk, which will naturally also lie in the search region. This process is exemplified in
Figure 8-6. Figures 8-6 and 8-7 plot θk as a hollow circular point and test points as triangles. The gray-shaded
area represents the random search region.

Figure 8-6. Example of search subroutine for n = 2

Chapter 8 ■ OptimizatiOn

116

The SEARCH subroutine either will establish a better θ
k
, grow the search region, and repeat, or will

trigger the POLL subroutine. The POLL subroutine will search adjacent points by picking a parameter θ
k,i

 and
adjusting it by Δ

k
 in both the positive and negative directions. The POLL subroutine will either establish a

better θ
k
, grow the search region, and trigger the SEARCH subroutine, or will shrink the search region and

trigger the SEARCH subroutine. This process is exemplified in Figure 8-7.

Figure 8-7. Example of poll subroutine for n = 2

Listing 8-4 is a flexible algorithm for generalized pattern search optimization. Some practical
considerations are required to allow it to run efficiently without errors. It will aggressively search extrema
of the parameters in the early stages of optimization, so it is important that the evaluator function cannot
return any NA or NaN values. Place controls in the input and output steps of the evaluator function, and make
sure the minVal and maxVal vectors cover operable extrema rather than theoretical extrema.

This algorithm is vulnerable to getting stuck in the boundless flat zones in the extrema of the logistic-
transformed parameters. At some point, when the absolute value of the continuous input transform
is around ten or greater, adjustments to the parameter vector of around up to two or three units in any
direction will have inconsequential or no effect on the objective function because of internal rounding in
the evaluator and tail flatness of the logistic transform. Adjusting for this behavior is a double-edged sword,
because while we do not like to see the optimizer puttering around near-equal extrema, it arrives at that area
of the parameter space because there is evidence of global minima and nontrivial local minima.

Chapter 8 ■ OptimizatiOn

117

We will exploit the randomness of the SEARCH subroutine and restart the algorithm with a randomly
generated initial parameter vector. This will move the initial search box of the SEARCH algorithm, ideally
introducing a new path to local minimization. Whether the path is superior and results in a better minima is
trivial, because the information will be stored in the OPTIM data frame along with the previous optimization.

If studying the search path of the optimization repeatedly shows parameters butting up against their
extrema, the user should expand the bounds of minVal and maxVal such that they are still functionally logical
but allow the optimization to settle somewhere other their extrema. This will make time-consuming calls to
the evaluator function more efficient.

It is important to note that pattern search optimizers in general are guaranteed to converge to a local
minima but not necessarily guaranteed to converge to a global minimum of the objective function. We
randomly initialize new starting points after detecting convergence by the size of Δ

k
 for this reason. Even

where we have successfully avoided allowing the parameters to drift into similar maxima, the algorithm
promises to find us only local minima. It is important that we are aware of this so that we can correctly
interpret the results of our research.

In any numerical optimization problem, we are only guaranteed to locate a local minimum. We study
many optimization problems with a goal of finding the most significant local minima quickly.

Listing 8-4. Generalized Pattern Search Optimization

Maximum iterations
Max possible calls to evaluator is K * (4 * n + 1)
K <- 100

Restart with random init when delta is below threshold
deltaThresh <- 0.05

Set initial delta
delta <- deltaNaught <- 1

Scale factor
sigma <- 2

Vector theta_0
PARAM <- PARAMNaught <- c(n1 = 0, nFact = 0, nSharpe = 0, shThresh = 0)

bounds
minVal <- c(n1 = 1, nFact = 1, nSharpe = 1, shThresh = 0.01)
maxVal <- c(n1 = 250, nFact = 10, nSharpe = 250, shThresh = .99)

np <- length(PARAM)

OPTIM <- data.frame(matrix(NA, nrow = K * (4 * np + 1), ncol = np + 1))
names(OPTIM) <- c(names(PARAM), "obj"); o <- 1

fmin <- fminNaught <- evaluate(PARAM, minVal, maxVal, negative = TRUE, y = y)
OPTIM[o,] <- c(PARAM, fmin); o <- o + 1

Print function for reporting progress in loop
printUpdate <- function(step){
 if(step == "search"){
 cat(paste0("Search step: ", k,"|",l,"|",m, "\n"))
 } else if (step == "poll"){

Chapter 8 ■ OptimizatiOn

118

 cat(paste0("Poll step: ", k,"|",l,"|",m, "\n"))
 }
 names(OPTIM)
 cat("\t", paste0(strtrim(names(OPTIM), 6), "\t"), "\n")
 cat("Best:\t",
 paste0(round(unlist(OPTIM[which.min(OPTIM$obj),]),3), "\t"), "\n")
 cat("Theta:\t",
 paste0(round(unlist(c(PARAM, fmin)),3), "\t"), "\n")
 cat("Trial:\t",
 paste0(round(as.numeric(OPTIM[o-1,]), 3), "\t"), "\n")
 cat(paste0("Delta: ", round(delta,3) , "\t"), "\n\n")
}

for(k in 1:K){

 # SEARCH subroutine
 for(l in 1:np){
 net <- (2 * rbinom(np, 1, .5) - 1) * runif(np, delta, sigma * delta)
 for(m in c(-1,1)){

 testpoint <- PARAM + m * net
 ftest <- evaluate(testpoint, minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- c(testpoint, ftest); o <- o + 1
 printUpdate("search")

 }
 }

 if(any(OPTIM$obj[(o-(2*np)):(o-1)] < fmin)){

 minPos <- which.min(OPTIM$obj[(o-(2*np)):(o-1)])
 PARAM <- (OPTIM[(o-(2*np)):(o-1),1:np])[minPos,]
 fmin <- (OPTIM[(o-(2*np)):(o-1),np+1])[minPos]
 delta <- sigma * delta

 } else {

 # POLL Subroutine
 for(l in 1:np){
 net <- delta * as.numeric(1:np == l)
 for(m in c(-1,1)){
 testpoint <- PARAM + m * net
 ftest <- evaluate(testpoint, minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- c(testpoint, ftest); o <- o + 1
 printUpdate("poll")

 }
 }

Chapter 8 ■ OptimizatiOn

119

 if(any(OPTIM$obj[(o-(2*np)):(o-1)] < fmin)){

 minPos <- which.min(OPTIM$obj[(o-(2*np)):(o-1)])
 PARAM <- (OPTIM[(o-(2*np)):(o-1),1:np])[minPos,]
 fmin <- (OPTIM[(o-(2*np)):(o-1),np+1])[minPos]
 delta <- sigma * delta

 } else {

 delta <- delta / sigma

 }

 }

 cat(paste0("\nCompleted Full Iteration: ", k, "\n\n"))

 # Restart with random initiate
 if(delta < deltaThresh) {

 delta <- deltaNaught
 fmin <- fminNaught
 PARAM <- PARAMNaught + runif(n = np, min = -delta * sigma,
 max = delta * sigma)

 ftest <- evaluate(PARAM, minVal, maxVal,
 negative = TRUE, y = y)
 OPTIM[o,] <- c(PARAM, ftest); o <- o + 1

 cat("\nDelta Threshold Breached, Restarting with Random Initiate\n\n")

 }

}

Return the best optimization in untransformed parameters
evaluate(OPTIM[which.min(OPTIM$obj),1:np], minVal, maxVal, transformOnly = TRUE)

The pattern search in Listing 8-4 is much more effective than exhaustive optimization at locating
meaningful minima of the objective function. In about 475 calls to the evaluator, at iteration 31, it
located a point with a Sharpe Ratio of 0.227. This is far superior to our exhaustive optimization where
we made 512 calls to the evaluator over two separate optimizations to find a maximum Sharpe Ratio
of 0.177. Both of these optimizations will take between one and two hours on a home computer.
Figure 8-8 shows the running minimum of the negative Sharpe Ratio in a run of the pattern search
optimizer. Note that the x-axis represents the number of calls to the evaluator (equivalently row number
in OPTIM) rather than iteration number k. A single iteration can make between 2n and 4n+1 calls to
the evaluator.

Chapter 8 ■ OptimizatiOn

120

Notice how we manually set up two separate runs of the exhaustive optimizer, but we simply let the
pattern search optimizer run with no user input. A good approach to using the pattern search optimizer in
Listing 8-4 is to set K extremely high and let the optimizer run over the night, day, or week. Plan on manually
stopping the optimizer when the output is showing no improvements for a significant amount of time.

Nelder-Mead Optimization
The final optimization method we will discuss is Nelder-Mead. This algorithm is a direct search process in a
class of optimizers called simplex methods. Simplex methods iteratively transform an n-dimensional simplex
to locate minima of the objective function. In the same way we defined a box to be an n-dimensional
analog to a square or cube, the term simplex is a more formal one that defines the n-dimensional analog of
a triangle or triangular pyramid. It can be simply defined as a set of n+1 points that form a polyhedron with
finite nonzero n-volume in an n-dimensional space.

Nelder-Mead with Random Initialization
 1. Given range-bound sigmodial inputs to objective function f ⋅() , define K

maximum iterations, iteration k, n+1 vertices of an n-dimensional simplex that
represents candidate parameter vectors θ

i
 for i n∈ +1 1,..., . The j-th element of

the i-th simplex point as θ
i,j

 for j n∈1,..., .

 2. Define reflection factor α such that α>0, expansion factor γ such that γ>0,
contraction factor ρ such that 0<ρ<1, and shrink factor σ such that 0<σ<1, initial
simplex size Δ such that ∆ > 0 , and convergence threshold δ such that δ>0.

 3. Set θi j jv, = − + −

∆
∆

2 1 for all i n∈ +1 1,..., and all j n∈1,..., , where v
j
 represents an

n-dimensional vector with 1 in the j-th position and 0 elsewhere. v
0
 is a zero vector.

Figure 8-8. Running minimum of objective function for pattern search

Chapter 8 ■ OptimizatiOn

121

 4. Set k=0. Define θ
0
 to be centroid of the vertices θ

i
 for i n∈1,..., computed as the

mean of each dimension such that

θ
θ

0
1

,

,

j
i

n

i j

n
= =
∑

.

 5. Evaluate f (θ
i
) and store as f

i
 for all i n∈ +1 1,..., .

 6. Define the ORDER subroutine:

•	 Set k = k + 1.

•	 Order the evaluations f
i
. Reassign indices to θ

i
 and f

i
 for i n∈ +1 1,..., such that

f f fn1 2 1≤ ≤…≤ + .

•	 Run the CONVERGENCE subroutine.

•	 Compute the updated centroid θ
0
.

•	 Start the REFLECT subroutine.

 7. Define the REFLECTION subroutine:

•	 Compute the reflected point θ θ α θ θr n= + −()+0 0 1 . Evaluate f fr r= ()θ .

•	 If f f fr n1 ≤ < , set θ θn r+ =1 and f fn r+ =1 . Start the ORDER subroutine.

•	 If f fr < 1 , start the EXPAND subroutine.

 8. Define the EXPAND subroutine:

•	 Compute the expansion point θ θ γ θ θe r= + −()0 0 . Evaluate f fe e= ()θ .

•	 If f fe r< , set θ θn e+ =1 and f fn e+ =1 . Start the ORDER subroutine.

•	 If f fr e< , set θ θn r+ =1 and f fn r+ =1 . Start the ORDER subroutine.

 9. Define the CONTRACT subroutine:

•	 Compute contraction point θ θ ρ θ θc n= + −()+0 1 0 . Evaluate f fc c= ()θ .

•	 If f fc n< +1 , set θ θn c+ =1 and f fn c+ =1 . Start the ORDER subroutine.

•	 If f fr e< , set θ θn r+ =1 and f fn r+ =1 . Start the ORDER subroutine.

 10. Define the SHRINK subroutine:

•	 Set θ θ σ θ θi i= + −()1 1 and compute f fi i= ()θ for i n∈ +2 1,..., .

•	 Start the ORDER subroutine.

 11. Define the CONVERGENCE subroutine:

•	 Define s, a proxy for the size of a simplex, to be the maximum of a scaled 1-norm
distance from θ

i
 to θ

0
 for all i n∈ +1 1,..., such that

s
ni

j

n

i j j= −

=
∑max , ,

1

1
0θ θ .

Chapter 8 ■ OptimizatiOn

122

•	 If s<δ, declare the new simplex as θi U= −()∆ ∆, where U(a,b) represents an

independent pull from a uniform distribution and compute f fi i= ()θ for all

i n∈ +1 1,..., .

•	 If k=K, end the optimization. Return f
1
 and θ

1
.

The motivations behind the steps taken in this algorithm are very intuitive. The original Nelder-Mead
algorithm was created in 1965 when researchers had far less computing power to work with. Naturally, the test
functions for numerical optimization algorithms were generally more theoretical and smooth. The prevailing
logic for direct search minimization in this context was that it is better to move directly away from maxima than
directly toward a minima. This logic provides a robust framework for direct search minimization.

The motivation behind the REFLECT subroutine is to take the point with the highest value θ
n+1

 and
test a value opposite to it, or to reflect away from it. The motivation behind the EXPAND subroutine is that if
reflecting produced a new minimum in the simplex, there are likely interesting points further in the same
direction. If the reflection produced a very poor value, there are likely interesting points within the simplex,
so we run CONTRACT and move away from θ

n+1
 toward the centroid. If none of these subroutines produces

values better than f
n+1

, we push for convergence with the SHRINK subroutine by moving all other θ
i
 toward θ

1
.

Figures 8-9 and 8-10 give visual representations of the subroutines in a two-dimensional space.

Figure 8-9. Reflect, extend, and contract steps

Chapter 8 ■ OptimizatiOn

123

Nelder-Mead is effective at discovering local minima but is guaranteed only to converge to a local
minimum under certain conditions. For this reason, as with the pattern search algorithm, we make heuristic
improvements to the algorithm such as testing for convergence by simplex size and random initialization
after first restart. Random initialization helps substantially in quickly discovering unique and important
local minima but makes the optimization weakly deterministic. Listing 8-5 is a lightweight algorithm for
Nelder-Mead optimization as outlined at the beginning of this section. Similarly to the pattern search
algorithm, the Nelder-Mead optimizer is best utilized by setting K very high and stopping manually later.

Listing 8-5. Nelder-Mead Optimization

K <- maxIter <- 200

Vector theta_0
initDelta <- 6
deltaThresh <- 0.05
PARAM <- PARAMNaught <-
 c(n1 = 0, nFact = 0, nSharpe = 0, shThresh = 0) - initDelta/2

Figure 8-10. Shrink step

Chapter 8 ■ OptimizatiOn

124

bounds
minVal <- c(n1 = 1, nFact = 1, nSharpe = 1, shThresh = 0.01)
maxVal <- c(n1 = 250, nFact = 10, nSharpe = 250, shThresh = .99)

Optimization parameters
alpha <- 1
gamma <- 2
rho <- .5
sigma <- .5

randomInit <- FALSE

np <- length(initVals)

OPTIM <- data.frame(matrix(NA, ncol = np + 1, nrow = maxIter * (2 * np + 2)))
o <- 1

SIMPLEX <- data.frame(matrix(NA, ncol = np + 1, nrow = np + 1))
names(SIMPLEX) <- names(OPTIM) <- c(names(initVals), "obj")

Print function for reporting progress in loop
printUpdate <- function(){
 cat("Iteration: ", k, "of", K, "\n")
 cat("\t\t", paste0(strtrim(names(OPTIM), 6), "\t"), "\n")
 cat("Global Best:\t",
 paste0(round(unlist(OPTIM[which.min(OPTIM$obj),]),3), "\t"), "\n")
 cat("Simplex Best:\t",
 paste0(round(unlist(SIMPLEX[which.min(SIMPLEX$obj),]),3), "\t"), "\n")
 cat("Simplex Size:\t",
 paste0(max(round(simplexSize,3)), "\t"), "\n\n\n")
}

Initialize SIMPLEX
for(i in 1:(np+1)) {

 SIMPLEX[i,1:np] <- PARAMNaught + initDelta * as.numeric(1:np == (i-1))
 SIMPLEX[i,np+1] <- evaluate(SIMPLEX[i,1:np], minVal, maxVal, negative = TRUE,
 y = y)
 OPTIM[o,] <- SIMPLEX[i,]
 o <- o + 1

}

Optimization loop
for(k in 1:K){

 SIMPLEX <- SIMPLEX[order(SIMPLEX[,np+1]),]
 centroid <- colMeans(SIMPLEX[-(np+1),-(np+1)])

Chapter 8 ■ OptimizatiOn

125

 cat("Computing Reflection...\n")
 reflection <- centroid + alpha * (centroid - SIMPLEX[np+1,-(np+1)])

 reflectResult <- evaluate(reflection, minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- c(reflection, obj = reflectResult)
 o <- o + 1

 if(reflectResult > SIMPLEX[1,np+1] &
 reflectResult < SIMPLEX[np, np+1]){

 SIMPLEX[np+1,] <- c(reflection, obj = reflectResult)

 } else if(reflectResult < SIMPLEX[1,np+1]) {

 cat("Computing Expansion...\n")
 expansion <- centroid + gamma * (reflection - centroid)
 expansionResult <- evaluate(expansion,
 minVal, maxVal, negative = TRUE, y = y)

 OPTIM[o,] <- c(expansion, obj = expansionResult)
 o <- o + 1

 if(expansionResult < reflectResult){
 SIMPLEX[np+1,] <- c(expansion, obj = expansionResult)
 } else {
 SIMPLEX[np+1,] <- c(reflection, obj = reflectResult)
 }

 } else if(reflectResult > SIMPLEX[np, np+1]) {

 cat("Computing Contraction...\n")
 contract <- centroid + rho * (SIMPLEX[np+1,-(np+1)] - centroid)
 contractResult <- evaluate(contract, minVal, maxVal, negative = TRUE, y = y)

 OPTIM[o,] <- c(contract, obj = contractResult)
 o <- o + 1

 if(contractResult < SIMPLEX[np+1, np+1]){

 SIMPLEX[np+1,] <- c(contract, obj = contractResult)

 } else {
 cat("Computing Shrink...\n")
 for(i in 2:(np+1)){
 SIMPLEX[i,1:np] <- SIMPLEX[1,-(np+1)] +
 sigma * (SIMPLEX[i,1:np] - SIMPLEX[1,-(np+1)])
 SIMPLEX[i,np+1] <- c(obj = evaluate(SIMPLEX[i,1:np],
 minVal, maxVal,
 negative = TRUE, y = y))
 }

Chapter 8 ■ OptimizatiOn

126

 OPTIM[o:(o+np-1),] <- SIMPLEX[2:(np+1),]
 o <- o + np

 }

 }

 centroid <- colMeans(SIMPLEX[-(np+1),-(np+1)])
 simplexSize <- rowMeans(t(apply(SIMPLEX[,1:np], 1,
 function(v) abs(v - centroid))))

 if(max(simplexSize) < deltaThresh){

 cat("Size Threshold Breached: Restarting with Random Initiate\n\n")

 for(i in 1:(np+1)) {

 SIMPLEX[i,1:np] <- (PARAMNaught * 0) +
 runif(n = np, min = -initDelta, max = initDelta)

 SIMPLEX[i,np+1] <- evaluate(SIMPLEX[i,1:np],
 minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- SIMPLEX[i,]
 o <- o + 1

 SIMPLEX <- SIMPLEX[order(SIMPLEX[,np+1]),]
 centroid <- colMeans(SIMPLEX[-(np+1),-(np+1)])
 simplexSize <- rowMeans(t(apply(SIMPLEX[,1:np], 1, function(v) abs(v - centroid))))

 }
 }

 printUpdate()

}

Return the best optimization in untransformed parameters
evaluate(OPTIM[which.min(OPTIM$obj),1:np], minVal, maxVal, transformOnly = TRUE)

The optimization performs worse than the pattern search optimizer for our Sharpe Ratio test on the
long-only MACD. Figure 8-11 shows the running minimum against calls to the evaluator. Intuitively, this
algorithm should perform better with smoother objective functions like many of those discussed in
Chapter 1. You are encouraged to try to compare.

http://dx.doi.org/10.1007/978-1-4842-2178-5_1

Chapter 8 ■ OptimizatiOn

127

Projecting Trading Performance
Now that we have a sturdy optimization toolbox, we can start using our optimized parameters to simulate
real trading performance. The beginning of this chapter discussed the difference between cross validation
and curve fitting. If we were to use our optimization algorithms to generate the best parameters for a given
time period and then claim we could replicate that performance in production trading, we would be falling
victim to curve fitting logic. To project valid and honest results of a strategy, we need to generate optimal
parameters in one period and then evaluate them in the following period. The performance of the strategy
from the following period is what can be validly and honestly expected in production trading because the
means to arriving at such performance figures are replicable in real time. This does not mean we are forced
to test purely the optimal parameters in the previous period on the following period. We are allowed to
create arbitrarily complex rules for establishing the parameters used in simulation as long as they adhere to
the principles of cross validation.

We will define a heuristic using the language of this text for generating valid performance projections.

 1. Define time t where t T∈1,..., , where 1 represents the beginning of the data and

T the last time period in the data.

 2. Define D(a,b) as all data and A(a,b) as all account variables such that a t b< ≤ .

Define f (θ; D(a, b)) to be the objective function that takes parameter vector θ and
data as arguments. Define the optimizer g ⋅() such that

g D a b argmin f D a b, , .()() = ()()
θ

θ ;

 3. Define the simulator h ⋅() that returns account variables such that

A a b h D a b A a a+() = () −()()1 1, ; , ,θ , .

 4. Define longitudinal step values for optimization and projection as δ
O

 and δ
P
,

respectively, such that 0<δ
O

,δ
P
<T.

Figure 8-11. Running minimum of objective function for Nelder-Mead

Chapter 8 ■ OptimizatiOn

128

 5. Initialize A(0,T) with logical starting values, reflecting holding all cash and no
assets for 1,..., T.

 6. For integers i∈[δ
O

/δ
P
],...,[T/δ

P
]

•	 Set t i TP P= −[]min ,δ δ .

•	 Calculate θ δ= −()()g D t tO , .

•	 Calculate A t t h D t t A t tP P+ +() = +() −()()1 1, ; , , ,δ θ δ .

 7. Calculate equity curve, return series, performance metrics, and other desired
metrics for t T∈0,..., from data contained in A(0,T).

We will use the functions we have built thus far to write a brief listing performing this heuristic. We have
discussed many optimizers but have not wrapped them in functions in order to allow users to experiment
with their various outputs and results. For this heuristic, we will wrap our generalized pattern in a function
that returns only untransformed parameter values. There is information loss in not keeping the optimization
variables in the parent R environment, but this is a necessary sacrifice to incorporate it into this heuristic.
You are encouraged to modify any of the functions utilized here to output desired auxiliary information in R
list objects for later use.

We will not repeat code here for declaration of the optimize() function. You should wrap any of the three
optimization algorithms covered in this chapter in a function and pass parameters y,minVal, and maxVal to
it. Add the following return line to end of the function call to evaluate g ⋅() as defined in our heuristic.

optimize(y, minVal, maxVal){

 # Insert Listing 8.2, 8.4, or 8.5
 # passing y, minval, and maxval
 # as parameters.

 # Make sure y, minVal, and maxVal are not
 # overwritten anywhere inside the function.
 # They should remain unaltered from their
 # supplied values.

 # Finally, return the named vector of
 # optimal parameters. This return() statement
 # will work for any listing you include.
 return(
 evaluate(OPTIM[which.min(OPTIM$obj),1:np],
 minVal, maxVal, transformOnly = TRUE)
)
}

Additionally, when wrapping the optimization, it is suggested users lower the maximum iterations value
of K to something more manageable.

Listing 8-6 executes the heuristic with δ
O

=δ
P
=1year. The equity curve assembled from this process is a

valid cross validation for time series that validly and responsibly estimates the performance of your strategy
in the future.

This is a key step often ignored in commercial trading platforms. It is usually possible but strenuous to
implement this type of cross validation in a commercial platform.

Chapter 8 ■ OptimizatiOn

129

This heuristic is best left to run overnight. It is the final version of many nested functions and loops
developed throughout the book. The final output is a list object of the portfolio, cash, and equity curve
information for each year. We have added code at the end to consolidate the equity curve information for
quick analysis. Otherwise, this is where post-optimization analysis can get arbitrarily complex based on
users’ desire to study trade frequency, recession performance, effects of drawdown schedules, and so on.

Note that we started our simulation in 2004 because our parameters can reach as far back as 150*5 days
according to the minVal and maxVal in Listing 8-6.

Listing 8-6. Generating Valid Performance Projections with Cross Validation

minVal <- c(n1 = 1, nFact = 1, nSharpe = 1, shThresh = .01)
maxVal <- c(n1 = 150, nFact = 5, nSharpe = 200, shThresh = .99)

RESULTS <- list()
accountParams <- list ()
testRange <- 2004:2015

As defined in heuristic with delta_O = delta_P = 1 year
for(y in testRange){

 PARAM <- optimize(y = y, minVal = minVal, maxVal = maxVal)

 if(y == testRange[1]){

 RESULTS[[as.character(y+1)]] <-
 evaluate(PARAM, y = y + 1, minVal = minVal, maxVal = maxVal,
 transform = TRUE, returnData = TRUE, verbose = TRUE)

 } else {

 # Pass account parameters to next simulation after first year
 strYear <- as.character(y)
 aLength <- length(RESULTS[[strYear]][["C"]])
 accountParams[["C"]] <-(RESULTS[[strYear]][["C"]])[aLength]
 accountParams[["P"]] <- (RESULTS[[strYear]][["P"]])[aLength]
 accountParams[["p"]] <- (RESULTS[[strYear]][["p"]])[aLength]

 RESULTS[[as.character(y+1)]] <-
 evaluate(PARAM, y = y + 1, minVal = minVal, maxVal = maxVal,
 transform = TRUE, returnData = TRUE, verbose = TRUE,
 accountParams = accountParams)

 }

}

extract equity curve
for(y in (testRange + 1)){

 strYear <- as.character(y)
 inYear <- substr(index(RESULTS[[strYear]][["P"]]), 1, 4) == strYear

Chapter 8 ■ OptimizatiOn

130

 equity <- (RESULTS[[strYear]][["equity"]])[inYear]
 date <- (index(RESULTS[[strYear]][["P"]]))[inYear]

 if(y == (testRange[1] + 1)){
 equitySeries <- zoo(equity, order.by = date)
 } else {
 equitySeries <- rbind(equitySeries, zoo(equity, order.by = date))
 }
}

Figure 8-12 shows the equity curve for our cross-validated trading simulation. The strategy suffered
going into 2008, perhaps because it was long-only and had no exit criteria. It is likely the Sharpe Ratio is not a
robust enough performance metric for generating optimal parameters at t+1 from information in t.

Most importantly, this is an accurate representation of how the strategy would have performed if
running from 2005 through 2016 in real time. Fitting a successful strategy to all the data at once simply
proves existence of a solution. Discovering an optimization process and a strategy framework that work
together to generate consistently good results in cross validation is a significant feat of financial engineering.

Conclusion
Optimization can be a daunting field. We have presented large volumes of code in this chapter that will make
up the most flexible and research-centered parts of the code base. Before we move to production trading,
Chapter 9 will discuss APIs for sending trades to brokerages. Chapter 10 and on will focus on practical
considerations for running your platform daily.

Figure 8-12. Cross-validated equity curve for long-only MACD

http://dx.doi.org/10.1007/978-1-4842-2178-5_9
http://dx.doi.org/10.1007/978-1-4842-2178-5_10

131© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_9

 CHAPTER 9

 Networking Part II

 In this chapter, we will discuss the available APIs for automating your trading strategies. The structure
of commercially available APIs varies widely with each requiring a specific set of skills and software
considerations. We will survey the most popular and accessible APIs to help traders determine the optimal
system to pursue or how to best integrate with an existing brokerage. See Chapter 2, Networking Part I, for a
general introduction to APIs.

 Most brokerages will restrict access to API documentation to developers they have vetted and approved.
These brokerages will restrict the developer’s ability to share and distribute the code and documentation
associated with the API thereafter. This chapter will give you the tools and direction you need to utilize a
variety of retail brokerage APIs.

 Market Overview: Brokerage APIs
 The quantity and variety of commercially available APIs can be daunting. They generally market themselves
as accommodating to all developers of all programming backgrounds, but this is rarely the case. For
regulatory reasons, we will discuss APIs that allow retail traders access to U.S. equities and that require a
secure connection established by a lower-level programming language, typically C++, .NET, or Java. The
 R language is great at calling certain low-level languages to handle such connections, so it is important to
know what programming languages an API supports before committing to a brokerage.

 Table 9-1 gives software specifications for a handful of APIs as of June 2016. There may be a lot of new
terminology in this table if you are unfamiliar with advanced networking concepts. This chapter will cover
these terms so that traders have an accurate idea of the considerations required to trade using these APIs.
The APIs have mixed feasibility for integration with R, which we will discuss at length.

CHAPTER 9 ■ NETWORKING PART II

132

 Ta
bl

e
9-

1.
 S

of
tw

ar
e

Sp
ec

ifi
ca

ti
on

s
fo

r
C

om
m

on
 A

P
Is

 B
ro

ke
ra

ge

 C
om

m
un

ic
at

io
n

M
et

ho
d

 R
es

po
ns

e
Fo

rm
at

 D

oc
um

en
ta

tio
n

 La
ng

ua
ge

s
 A

ss
et

s

 In
te

ra
ct

iv
e

B
ro

ke
rs

 SS

L
vi

a
SD

K

 U
n

iq
u

e
 P

u
b

lic

 C
++

, J
av

a,
 .N

E
T,

 D
D

E
, A

ct
iv

eX

 E
q

u
it

ie
s,

 fu
tu

re
s,

 fo
re

x

 E
*T

ra
d

e
 SS

L
vi

a
SD

K

 X
M

L/
JS

O
N

 P

ri
va

te

 V
C

++
, P

H
P,

 Ja
va

,
 E

q
u

it
ie

s,
 fu

tu
re

s

 P
in

n
ac

le

 SS
L

vi
a

SD
K

 FI

X

 P
ri

va
te

 C

++
, .

N
E

T,
 Ja

va

 V
is

u
al

 B
as

ic
, W

in
32

, F
IX

 E
n

gi
n

e
 E

q
u

it
ie

s,
 fu

tu
re

s,
 fo

re
x

 T
ra

d
eK

in
g

 H
T

T
P

S
an

d
 O

A
u

th
 1

.0
a

 JS
O

N
 a

n
d

 F
IX

M
L

 P
u

b
lic

 A

n
y

 E
q

u
it

ie
s,

 fu
tu

re
s,

 fo
re

x

 Li
gh

ts
p

ee
d

 SS

L
vi

a
SD

K

 U
n

kn
ow

n

 P
ri

va
te

 C

++
 (

D
LL

s
on

ly
)

 E
q

u
it

ie
s,

 fu
tu

re
s,

 fo
re

x

 O
p

ti
on

sX
p

re
ss

 U

n
kn

ow
n

 X

M
L

 P
ri

va
te

 U

n
kn

ow
n

 E

q
u

it
ie

s,
 fu

tu
re

s

 T
D

A
m

er
it

ra
d

e
 U

n
kn

ow
n

 U

n
kn

ow
n

 P

ri
va

te

 U
n

kn
ow

n

 E
q

u
it

ie
s,

 fu
tu

re
s

 O
A

N
D

A
 R

E
ST

 H

T
T

P
S

an
d

 O
A

u
th

 2
.0

 JS

O
N

 P

u
b

lic

 A
n

y
 Fo

re
x

CHAPTER 9 ■ NETWORKING PART II

133

 Secure Connections
 Every brokerage has some security measures to authenticate users and pass messages through a secure
connection . At the highest level, brokerages use some form of the Secure Sockets Layer (SSL) protocol ,
which uses private and public keys to encrypt messages before they are sent to be decrypted by the receiving
party. SSL is used over TCP/IP ports specified by the brokerage. TCP/IP refers to a high-level concept of
client-server communications that includes specific application protocols such as HTTP/HTTPS, SMTP, and
FTP. Brokerages differ in how they implement SSL by which authentication and application protocols they
utilize to connect and communicate.

 The majority of brokerages listed in Table 9-1 communicate via specific SSL implementations given
to clients in a software developer kit (SDK) . An SDK can be either a collection of source code or a dynamic
loading library (DLL) that allows users to code the API in supported languages. DLLs are simply the
precompiled counterparts of APIs distributed in source code. They are unique to C++. It is worth noting that
brokerages listed with unknown communication methods likely utilize SSL via SDKs rather than HTTPS.

 Brokerages listed with HTTPS as a communication method have APIs similar to the Yahoo! Finance
and YQL APIs covered in Chapter 2 . They first verify identity through OAuth, and then they use HTTPS to
communicate with the program.

 Establishing SSL Connections
 SSL is used generally to refer to the original SSL and its functional successor, Transport Layer Security (TLS) .
Through cryptographic software suites, two parties can negotiate an algorithm for transmitting encrypted
data such that an eavesdropper is unable to decrypt the messages.

 Flavors of SSL vary widely. The process of establishing a connection can become complicated,
especially on the Web where single servers intend to establish secure connections with many anonymous
users. The process becomes more straightforward when a host communicates with a known client, as is the
case with broker-client communications. Broker-client communications on proprietary SSL programs (as
in SDKs) will typically use a predetermined secret key, while secure connections between a server and an
anonymous client (HTTPS) will typically rely on a signing authority.

 In cases where the server does not need to identify the user, from a networking rather than a personal
identity standpoint, only the server is required to have a private key. This is typically the case when shopping
online over HTTPS. In more secure applications, like those in the SDKs listed in Table 9-1 , both parties
can be required to have a private key. The private keys help both parties come to an agreement on a public
key without communicating the public key over the connection. This private key allows the parties to
communicate by repeatedly encrypting and decrypting messages with symmetric cryptography algorithms.

 We will give a very general outline for the steps SSL takes in both single private key and dual
private key instances.

 1. Negotiation Phase

• The client server generates a random number, lists its supported encryption
algorithms and SSL versions, and sends them to the host server.

• The host server and client server agree on an encryption algorithm and SSL
version supported by each party.

http://dx.doi.org/10.1007/978-1-4842-2178-5_2

CHAPTER 9 ■ NETWORKING PART II

134

• The servers verify that the proper parties own the proper private keys. This is
verified through encrypted signatures on the keys. These private keys, as the
name would imply, are never communicated explicitly by the servers. To verify
ownership, the servers combine an explicitly communicated random number
and encryption process with the privately held keys. Ownership is verified by
the equality of a signature generated by a combination of the aforementioned
elements.

• At this point, the servers both have the public key in hand without having ever
communicated it. The combination of the publicly communicated random
number and the encryption algorithm with the private key allow the public key
to be generated at each server without ever being communicated explicitly.
This is of course dependent on the joint ownership of the private key, which is
verified in the previous step. By this step, the servers have established a unique
encryption process for transferring data over the SSL connection.

 2. The host server communicates that all communications are now encrypted. The
host server sends an encrypted message communicating the connection has
been established. The client server checks that the initial encrypted message is
valid.

 3. The client server communicates that all communications are now encrypted.
The client server sends an encrypted message communicating the connection
has been established. The host server checks that the initial encrypted message
is valid.

 4. The connection is established, and application communications between the
host and client are encrypted.

 Proprietary SSL Connections
 HTTP/HTTPS communication is very straightforward, so it may seem strange that a brokerage would opt to
use its own version of an SSL protocol. We will discuss some reasons that this benefits the brokerage.

 Brokerages build their own SSL protocols and release their own SDKs to make trading safer. Note that
brokerages trade in exchanges on our behalf and face a lot of regulation from governmental organizations
and exchanges themselves. When brokerages require that we trade through their SDKs, they seek to pass
some or most of these regulations on to the trader.

 The most important regulation the brokerage seeks to enforce is the heartbeat requirement. The
system must check in at regular intervals to be considered active and connected. If a heartbeat check-in fails
and further attempts to contact the system by the server are unsuccessful, the system will be considered
disconnected. Certain orders are canceled automatically, and special rules kick in to ensure orders are not
executed when owners of the system are unable to monitor performance.

 Brokerages reserve the right to refuse on any order a trader sends their way. This is a right not often
exercised by brokerages, as it would damage the reputation of a brokerage that overused it. Increased security
requirements mostly serve to broaden the scope of justifiable uses of right to refuse in the brokerage’s favor.
Exchanges also hold the right to refuse, but they exercise it in a more well-defined manner. Brokerages seek
to minimize their risk by extending the reach of these exchange restrictions and are not required to explicitly
define these restrictions. While an exchange might implement a minimum heartbeat (check-in) frequency of
once per 0.5 seconds, a brokerage trading in that exchange might enforce a heartbeat requirement on its client
of once per 0.2 seconds. Brokerages shoulder considerable risk in executing trades on behalf their clients, so
they will act in a variety ways to increase security for clients running automated systems.

CHAPTER 9 ■ NETWORKING PART II

135

 HTTPS with or without OAuth cannot enforce heartbeat requirements with low enough latency to be
practical in most cases, so it is generally not enforced by brokerages allowing HTTPS access. HTTP may have
low enough latency to support heartbeat requirements but is unsecured and therefore not used. A heartbeat
is a check-in message verifying that a network connection is live and stable.

 Brokerages often specify specific ports on which their SSL connections communicate such that they do
not interfere with commonly used ports devoted to other activities.

 HTTP/HTTPS
 HTTP and HTTPS are TCP/IP protocols that communicate on ports 80 and 443, respectively, by default.
HTTP is not secure and therefore not used for trading communication. HTTPS uses a form of SSL that
does not require the host and client to agree on a private key in advance. It enables the server to connect
with anonymous clients securely by relying on a server-side private key and independent verification by a
predetermined signing authority.

 Since HTTPS relies on an independent signing authority and requires no private key from the client,
there is no embedded way for it to determine the identity of the client. In secure applications that want
to verify the identity of the client, it is typically required that the client provide some signature dependent
on an agreed-upon secret key as a parameter in the URL. This accomplishes the same function as an SSL
connection with two private keys but stays within the HTTPS framework.

 OAuth
 The rise of social media and social-assisted apps brought a surge of interest into standardizing and securing
app-assisted login. A cohort of open source developers created OAuth. OAuth verifies the identity of the
user and the third-party application through the API provider, allowing the user to permit the application to
access the API on its behalf without the user disclosing its password to the application.

 This process went a step above HTTPS with non-SSL private keys and was rapidly adopted by many
API providers. It serves the same function as HTTPS with non-SSL private keys if the user and third-party
application are considered the same person, all while reserving the extensibility to open the application to
anonymous users in the future.

 OAuth is a great development for the retail trading industry because it allows brokerages to create
one API with one authentication system that serves the needs of both automated traders and platform
developers.

 Feasibility Analysis for Trading APIs
 We can accomplish almost anything with R because it can call low-level languages. For this section, keep in
mind possible is not the same as easy . Some APIs are easy to integrate with our platform, while others are not.
In our platform, we keep trade execution separate from all other components including order generation.
Developers will naturally find different ways of accomplishing trade execution in ways that leverage their
programming skills and brokerage APIs.

 Feasibility of Custom R Packages
 Any brokerage that requires an SSL connection through its SDK will require the developer to build an R
package around it to use it directly from R. Creating an R package from C++ or Java is a well-documented
and doable process for developers familiar with C++ or Java.

CHAPTER 9 ■ NETWORKING PART II

136

 Note that R uses the GNU-C++ compiler (GCC) for compiling C/C++ code, so C/C++ code built in/for
the VC++ or .NET framework will likely fail to compile in R. On Windows, R uses a GCC compiler within a
MinGW environment even on machines with working VC++ and .NET compilers.

 Brokerages that offer APIs through DLLs can also be compiled into R packages through C++ wrapper
code.

 Developers familiar with C/C++ or Java may want to compile broker SDKs for easy use in their R code.
We will explore other means of executing trades that may be more feasible even to experienced low-level
programmers.

 HTTPS + OAuth Through Existing R Packages
 The ROAuth, RJSONIO, and XML packages provide users with everything they need to execute trades
directly from R with no other programming languages. Opening up APIs to high-level languages is a new
concept aimed at stimulating web-based platform development and high-volume automated trading from
retail clients. It is an exciting prospect for traders looking to automate orders at a frequency of a few times
per second or less.

 The biggest downside to this avenue is brokerage selection. Developers are unlikely to have existing
accounts with these brokerages and do not have a lot of opportunity to shop for competitive rates.

 Fortunately, these brokerages tend to have large and active communities of like-minded developers.

 FIX Engines
 FIX is an open source protocol for communicating orders in a minimal number of bytes using integer
parameters and pipes. Many FIX engines exist that communicate over SSL connections with the brokerage.
 FIX engine compatibility is more common at the institutional level, but some retail brokerage APIs
offer it. Traders familiar with FIX engines or with existing accounts in a brokerage that support pure FIX
communication may find it favorable to export trade directions from R to the FIX engine.

 Exporting Directions to a Supported Language
 Developers familiar with any language explicitly supported by their brokerage should try exporting trading
directions from R to their language of choice for execution. There is a strong chance the SDK in their
language of choice is well-supported with plenty of sample code, making it more practical to read from a text
file of trading directions rather than wrap the SDK in an R package.

 Planning and Executing Trades
 Planning our trades ahead of time and running automated execution algorithms are distinct,
straightforward, and lightweight processes. We will outline heuristics for planning and executing trades.
These heuristics cover two of four distinct processes that our platform will automate, the PLAN and TRADE
jobs, respectively. The remaining two jobs, MODEL and UPDATE , are outlined in Chapter 10 and Appendix A but
do not deal with networking concepts specific to this chapter.

http://dx.doi.org/10.1007/978-1-4842-2178-5_10

CHAPTER 9 ■ NETWORKING PART II

137

 The PLAN Job
 We are planning to trade in the morning of the coming trading day based on information from the last
trading day. The PLAN job must be executed between the time when information from the prior day becomes
available and the market opens the coming morning. Practically, running the job between 6 p.m. the night
before and 8 a.m. the following morning (EST) should ensure the information is available for trading when
the market opens.

 1. Compute only the last row, or most recent observation, of ENTRY , EXIT , and
 FAVOR .

 2. Fetch current positions from the brokerage. Compute that last row of P , the
matrix of position directions. Place 1s in the positions of stocks currently held
long and -1s in the positions of stocks currently held short.

 3. Execute steps 4 through 8 of the “Listing 7-1 : Pseudocode” section from Chapter
 7 . In Listing 9-1 , these correspond to steps 4 through 8 of the Listing 7-1 code but
treat zoo objects ENTRY , EXIT , FAVOR , and P as named vectors.

 4. Output the list of trades-to-exit and the manner in which to exit them. Output
the list of trades-to-enter and the manner in which to enter them. Store these in a
location accessible by the TRADE job.

 Listing 9-1 shows a modification of our simulator function to plan trades based on steps 4 through 8 of
the “Listing 7-1 : Pseudocode” section from Chapter 7 . Most importantly, this is consistent with the way we
have simulated strategy performance in this text.

 Listing 9-1. The PLAN Job

 # Normally declared by your strategy
 FAVOR <- rnorm (ncol (DATA[["Close"]]))
 ENTRY <- rbinom (ncol (DATA[["Close"]]), 1, .005) -
 rbinom (ncol (DATA[["Close"]]), 1, .005)
 EXIT <- rbinom (ncol (DATA[["Close"]]), 1, .8) -
 rbinom (ncol (DATA[["Close"]]), 1, .8)

 # Normally fetched from brokerage
 currentlyLong <- c ("AA", "AAL", "AAPL")
 currentlyShort <- c ("RAI", "RCL", "REGN")
 S <- names (DATA[["Close"]])
 initP <- (S %in% currentlyLong) - (S %in% currentlyShort)

 names (initP) <-
 names (FAVOR) <-
 names (ENTRY) <-
 names (EXIT) <-
 names (DATA[["Close"]])

 # At this point we have established everything normally
 # taken care of by your trading strategy.
 # Given named vectors of length ncol(DATA[["Close"]])
 # initP, FAVOR, ENTRY, and EXIT, we proceed.

 maxAssets <- 10
 startingCash <- 100000

http://dx.doi.org/10.1007/978-1-4842-2178-5_7#Par82
http://dx.doi.org/10.1007/978-1-4842-2178-5_7
http://dx.doi.org/10.1007/978-1-4842-2178-5_7#Par82
http://dx.doi.org/10.1007/978-1-4842-2178-5_7#Par82
http://dx.doi.org/10.1007/978-1-4842-2178-5_7

CHAPTER 9 ■ NETWORKING PART II

138

 K <- maxAssets
 k <- 0
 C <- c (startingCash, NA)
 S <- names (DATA[["Close"]])
 P <- initP

 # Step 4
 longS <- S[which (P > 0)]
 shortS <- S[which (P < 0)]
 k <- length (longS) + length (shortS)

 # Step 5
 longTrigger <- setdiff (S[which (ENTRY == 1)], longS)
 shortTrigger <- setdiff (S[which (ENTRY == -1)], shortS)
 trigger <- c (longTrigger, shortTrigger)

 if(length (trigger) > K) {

 keepTrigger <- trigger[order (c (as.numeric (FAVOR[longTrigger]),
 - as.numeric (FAVOR[shortTrigger])),
 decreasing = TRUE)][1:K]

 longTrigger <- longTrigger[longTrigger %in% keepTrigger]
 shortTrigger <- shortTrigger[shortTrigger %in% keepTrigger]

 trigger <- c (longTrigger, shortTrigger)

 }

 triggerType <- c (rep (1, length (longTrigger)), rep (-1, length (shortTrigger)))

 # Step 6
 longExitTrigger <- longS[longS %in% S[which (EXIT == 1 | EXIT == 999)]]

 shortExitTrigger <- shortS[shortS %in% S[which (EXIT == -1 | EXIT == 999)]]

 exitTrigger <- c (longExitTrigger, shortExitTrigger)

 # Step 7
 needToExit <- max ((length (trigger) - length (exitTrigger)) - (K - k), 0)

 if(needToExit > 0){

 toExitLongS <- setdiff (longS, exitTrigger)
 toExitShortS <- setdiff (shortS, exitTrigger)

 toExit <- character (0)

 for(counter in 1:needToExit){
 if(length (toExitLongS) > 0 & length (toExitShortS) > 0){

CHAPTER 9 ■ NETWORKING PART II

139

 if(min (FAVOR[toExitLongS]) < min (-FAVOR[toExitShortS])){
 pullMin <- which.min (FAVOR[toExitLongS])
 toExit <- c (toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else {
 pullMin <- which.min (-FAVOR[toExitShortS])
 toExit <- c (toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 } else if(length (toExitLongS) > 0 & length (toExitShortS) == 0){
 pullMin <- which.min (FAVOR[toExitLongS])
 toExit <- c (toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else if(length (toExitLongS) == 0 & length (toExitShortS) > 0){
 pullMin <- which.min (-FAVOR[toExitShortS])
 toExit <- c (toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 }

 longExitTrigger <- c (longExitTrigger, longS[longS %in% toExit])
 shortExitTrigger <- c (shortExitTrigger, shortS[shortS %in% toExit])

 }

 # Step 8
 exitTrigger <- c (longExitTrigger, shortExitTrigger)
 exitTriggerType <- c (rep (1, length (longExitTrigger)),
 rep (-1, length (shortExitTrigger)))

 # Output planned trades
 setwd (rootdir)

 # First exit these
 write.csv (file = "stocksToExit.csv",
 data.frame (list (sym = exitTrigger, type = exitTriggerType)))

 # Then enter these
 write.csv (file = "stocksToEnter.csv",
 data.frame (list (sym = trigger, type = triggerType)))

 The TRADE Job
 We separate trading into the planning and executing phases for two reasons. First, we cannot allow
compute times to delay our trading. Second, we want to give developers the option of executing trades in a
programming language that makes sense for them and their brokerage. In many cases, this language will be
R, but often it will be more feasible to execute in a language expressly supported by the brokerage.

 The following heuristic will apply to any language implementing our portfolio management framework:

 1. Initiate the program anywhere from 60 to 300 seconds before market open and
attempt to establish a connection with the brokerage. If successful, maintain this
connection. If unsuccessful, re-attempt the connection until successful.

CHAPTER 9 ■ NETWORKING PART II

140

 2. Read in trades to exit and trades to enter. Prepare necessary variables in advance
of market open.

 3. At market open, send exit orders at market in rapid succession.

 4. As soon as, or if initially, cash is available, send entry orders in rapid succession.

Buy the most shares of a stock possible with C

K k
 dollars, where C represents

cash on hand, K represents the maximum number of unique assets to hold, and k
represents the number of assets currently held.

 5. (Optional) At any point before, during, or after execution, adjust behavior based
on user-defined fail safes and risk-avoidance criteria. This may include avoiding
stocks that took adverse overnight price moves or halting activity if account
equity reaches a certain point.

 Code for this process cannot be explicitly defined without tying us to a specific broker. Specific source
code will not be provided for the TRADE job in this chapter and in Appendix A. The rest of this chapter will
discuss a host of communication protocols and data formats. We will give special attention to R methods for
handling and manipulating these connections and formats. By the end of the chapter, you should be well-
equipped to digest API documentation from a variety of brokerages.

 Common Data Formats
 We will discuss eXtensible Markup Language (XML) , JavaScript Object Notation (JSON) , Financial
Information eXchange (FIX) , and a hybrid FIX and XML (FIXML) .

 Data manipulation of XML is handled by XPath, which is language-independent. There are XPath
analogs for JSON data, but they are nonstandard. Handling JSON combines language-dependent packages
and the general assumption of well-formed JSON data.

 A JSON document can almost always convey the same information as the equivalent XML document
in fewer characters, sparking many debates concerning whether XML will be completely phased out in
the future. XML has advantages in readability, accessibility, and standardization. Users will typically see
XML used in scenarios where there is highly variable formatting and small message sizes, barring direct
dependencies on JavaScript technologies in which JSON is likely to be used.

 Manipulating XML
 XPath is the universal language for manipulating XML . It can be thought of as the XML analog to regular
expressions for readers familiar with string manipulation. Much like regular expressions, almost every
language has an interface for standard XPath, but interfaces vary by language and often by package/library.

 The most robust XPath library for R is simply called XML . We have used it in this text to organize data
from Yahoo! Query Language. We will use an example from YQL to give an introduction to XPath and discuss
some practical methods for handling XML in R.

 First, we will grab a small XML document from YQL using a slight modification of a code piece from
Chapter 2 . This will pull two days each of Apple and Yahoo! stock prices. The xmlParse() function can take a
file path or URL. It will return an XML document organized internally in a C-level Document Object Model
(DOM), which is a special C object that stores the nodes of an XML tree as objects. This means if we want
to efficiently manipulate XML documents, we will use XPath to organize them within C-level DOMs before
we map the data to an R object. DOMs can be directly mapped to R list objects because of their similar tree
structure. The XML package provides the ability to do this, but we will refrain from taking advantage of
XPath’s efficiency and avoid losing details of DOM.

http://dx.doi.org/10.1007/978-1-4842-2178-5_2

CHAPTER 9 ■ NETWORKING PART II

141

 See the help file of xmlParse() for variations and arguments for more exotic XML files.

 library (XML)

 base <- "http://query.yahooapis.com/v1/public/yql?"
 begQuery <- "q=select * from yahoo.finance.historicaldata where symbol in "
 midQuery <- "(’YHOO’, ’AAPL’) "
 endQuery <- "and startDate = ’2016-01-11’ and endDate = ’2016-01-12’"
 endParams <- "&diagnostics=false&env=store://datatables.org/alltableswithkeys"

 urlstr <- paste0 (base, begQuery, midQuery, endQuery, endParams)

 doc <- xmlParse (urlstr)

 The variable doc is now a reference to a C-level DOM. If we print the variable to the R console, we can
see the XML document. Listing 9-2 shows the output of printing the variable doc . We will use this to variable
to give examples of XPath in R. Further, Listing 9-3 provides a list of common XPath field types for reference.

 Listing 9-2. YQL XML Output Sample

 <?xml version="1.0" encoding="UTF-8"?>
 < query xmlns:yahoo="http://www.yahooapis.com/v1/base.rng" yahoo:count="4"
 yahoo:created="2016-06-25T22:09:50Z" yahoo:lang="en-US">
 < results>
 < quote Symbol="YHOO">
 < Date>2016-01-12< / Date>
 < Open>30.58< / Open>
 < High>30.969999< / High>
 < Low>30.209999< / Low>
 < Close>30.690001< / Close>
 < Volume>12635300< / Volume>
 < Adj_Close>30.690001< / Adj_Close>
 </ quote>
 < quote Symbol="YHOO">
 < Date>2016-01-11< / Date>
 < Open>30.65< / Open>
 < High>30.75< / High>
 < Low>29.74< / Low>
 < Close>30.17< / Close>
 < Volume>16676500< / Volume>
 < Adj_Close>30.17< / Adj_Close>
 </ quote>
 < quote Symbol="AAPL">
 < Date>2016-01-12< / Date>
 < Open>100.550003< / Open>
 < High>100.690002< / High>
 < Low>98.839996< / Low>
 < Close>99.959999< / Close>
 < Volume>49154200< / Volume>
 < Adj_Close>98.818866< / Adj_Close>
 </ quote>
 < quote Symbol="AAPL">

CHAPTER 9 ■ NETWORKING PART II

142

 < Date>2016-01-11< / Date>
 < Open>98.970001< / Open>
 < High>99.059998< / High>
 < Low>97.339996< / Low>
 < Close>98.529999< / Close>
 < Volume>49739400< / Volume>
 < Adj_Close>97.40519< / Adj_Close>
 </ quote>
 </ results>
 </ query>
 <!-- total: 89 -->
 <!-- main-9ec5d772-3a4c-11e6-a4df-d4ae52974c31 -->

 Listing 9-3. Common XML Field Types

 # Opening and closing XML tags, empty
 <Date> </ Date>

 # Opening and closing XML tags, with value
 < Date>2016-01-11< / Date>

 # Opening and closing XML tags, with value and attribute
 < Date format="YYYY-MM-DD">2016-01-11< / Date>

 # Self-closing XML tag
 < Date / >

 # Self-closing XML tag with attributes
 < Date format="YYYY-MM-DD" value="2016-01-11" / >

 # XML Comment
 <!-- some comment or explanation -->

 # XML Declaration
 < ?xml version="1.0" encoding="UTF-8"?>

 # Processing Instruction
 < ?xml-stylesheet type="text/xsl" href="XLS/Todo.xsl" ?>

 # Character Data Entity (Escapes symbolic characters)
 < codeSnippet> < ![CDATA[y < x | z > sqrt (y)]]> </ codeSnippet>
 # Document Type Declaration
 < !DOCTYPE html>

 XPath examines XML documents like a filesystem with extra control structures. An XPath query consists
of one or more statements of the following format separated by forward slashes. We will explain the meaning
of axis , node-test , and predicate in this context.

 axis::node-test[predicate]

CHAPTER 9 ■ NETWORKING PART II

143

 The axis argument has many abbreviations, so we will rarely specify it explicitly. Many XPath axes work
the same way as filesystem axes in the UNIX and MS-DOS command lines. We can use a single period to
specify the self axis or two periods to specify the parent axis. Table 9-2 details common XPath axes.

 Table 9-2. Common XPath Axes

 Axis Symbol Description

 Child Default Specifies nodes in the level below the reference node. This is the
default.

 Attribute @ Specifies attributes of the reference node.

 Parent .. Specifies the level of the context node. /someNode/../anotherNode
searches for anotherNode in the DOM level of someNode .

 Descendent None Any child, child of a child, and so on, relative to the reference node.

 Descendent-or-self / Same as descendent, except includes the reference node. In context,
this looks like someNode//descendentNode , as in it adds one forward
slash to the typical separator.

 Ancestor None All levels above reference node.

 Ancestor-or-self None All levels above the reference node including itself.

 Following None Nodes that lie below the reference node in the document.

 Preceding None Nodes that lie above the reference node in the document.

 Following-sibling None All nodes on the same level as the reference node and below the
reference node in the document.

 Preceding-sibling None All nodes on the same level as the reference node and above the
reference node in the document.

 Namespace None Specifies node with the document namespace.

 XPath axes with abbreviations are the most commonly used. See Listing 9-4 for examples of
abbreviations and their equivalent long-form expressions.

 Listing 9-4. XPath Abbreviations

 # Child node
 child::someNode
 someNode

 # Attribute value
 attribute::someAttr
 @someAttr

 # Parent node
 someNode/parent:: */ someSibling
 someNode/../someSibling

 # Descendent-or-self
 someNode/descendent-or-self:: node ()/someDescendent
 someNode/ / someDescendent

CHAPTER 9 ■ NETWORKING PART II

144

 # Ancestor (has no abbreviation)
 someNode/ancestor::someAncestorNode

 The node-test argument is most commonly the name of a node. Specifying only a node name defaults
to testing equality between the name specified and the nodes of the tree. Other arguments, like asterisks and
conditional symbols, can enter the mix. These will typically be made obsolete by points of flexibility in the
 XML package for R. XML attributes can also be accessed in the node-test but are also best manipulated by
functions in the XML package.

 Predicates are conditional statements attached to the node-test. In addition to meeting the
requirements of the node-test, nodes must meet the requirements of the predicate. Predicates can contain
conditional tests and native XPath functions capable of referencing any piece of information in an XML
document, making them much more powerful than the node-test for selecting specific sets of nodes. In
general, node-tests can be thought as having the regular capabilities of a UNIX directory engine for flexibly
accessing files. Predicates can be thought of as extra functionalities specific to XPath. Axes have many
functionalities native to UNIX filesystems and many specific to XPath. Table 9-3 details common XPath
predicate function for reference.

 Table 9-3. Common XPath Predicate Functions

 Function Input Description

 last() None Number of elements in the reference node set.

 position() None Position number of reference node.

 count() None Number of elements in the node set.

 name() None Name of the first node in the reference node set.

 concat() One of more strings Returns concatenation of string arguments supplied.

 starts-with() Target and search string Returns true if first string starts with second.

 contains() Target and search string Returns true if first string contains the second.

 substring() Position a and length b Portion of string starting at a for the length of b .

 string-length() Single string Number of characters in supplied string.

 Arithmetic operators As implied Add, subtract, multiply, divide, modulus
(+ - * div mod).

 Comparative operators As implied <, <=, >, >=, = as implied.

 not() Single Boolean not(a = b) is the functional equivalent of a != b .

 Logical operators As implied and and or spelled in all lowercase.

 Listing 9-5 will give a handful of examples on the doc variable of XML data pulled earlier in this section.
Supplying minimal parameters to the getNodeSet() function is a great way to test XML queries. We will
supply more parameters to it and call xpathSApply() within it in practice.

 Listing 9-5. XPath Examples on YQL Data

 # Descend the tree to each individual stock quote
 getNodeSet (doc, "/query/results/quote")

 # Get the second quote
 getNodeSet (doc, "/query/results/quote[2]")

CHAPTER 9 ■ NETWORKING PART II

145

 # Descend to the third level of the tree, get second element
 getNodeSet (doc, "/*/*/*[2]")

 # Get all nodes named "quote" regardless of level
 getNodeSet (doc, "//quote")

 # Get all node with Symbol = AAPL attribute
 getNodeSet (doc, "/query/results/quote[@Symbol = ’AAPL’]")

 # Get the last quote
 getNodeSet (doc, "/query/results/quote[last()]")

 # Get the first 3 quotes
 getNodeSet (doc, "/query/results/quote[position() <= 3]")

 # Get all quotes with closing price less than 40
 getNodeSet (doc, "/query/results/quote[./Close < 40]")

 # Get all closing prices less than 40
 getNodeSet (doc, "/query/results/quote[./Close < 40]/Close")

 In practice, we will have XML with a known structure. We will use knowledge of this structure to convert
the XML directly into R objects we are comfortable with. Most often, these will be data frames and lists.

 The YQL output used in our examples can easily be mapped to a data frame with each row containing
the price information, the date, and the corresponding stock symbol. We want to first descend the tree to the
 quote level where we have four nodes. Descending the tree can take a considerable amount of time for large
or complex XML data, so we want to make a point of descending it as few times as possible. We will supply
the xpathSApply() function and the xmlValue() function to getNodeSet() to accomplish this. This makes
use of a quirk in the R XML package that allows us to make multiple queries, descend the tree once, and not
copy pieces of the tree in separate variables. This is very computationally efficient with compact code. We
will descend the tree twice, first using xmlValue() to get the price data and then using xmlAttrs() to get
the attributes from the nodes. Notice how we do not use the @ symbol to access the attributes. There is an
equivalent but less robust way to handle this using the @ symbol given in Listing 9-6 . Listing 9-6 converts the
YQL XML data to a data frame in a logical and compact fashion.

 Listing 9-6. XPath Converting YQL to Data Frame

 # Descend the tree to this point
 root <- "/query/results/quote"

 # Descend to each of these leaves for every node in root
 leaves <- c ("./Date", "./Open", "./High", "./Low",
 "./Close", "./Volume", "./Adj_Close")

 # Get data in list
 df <- getNodeSet (doc, root, fun = function(v) xpathSApply (v, leaves, xmlValue))

 # Get symbols as attributes
 sym <- getNodeSet (doc, root, fun = function(v) xpathSApply (v, ".", xmlAttrs))

 # This is equivalent to the above line in this case
 # sym <- as.character(getNodeSet(doc, "/query/results/quote/@Symbol"))

CHAPTER 9 ■ NETWORKING PART II

146

 # Organize as data frame
 df <- data.frame (t (data.frame (df)), stringsAsFactors = FALSE)

 # Append stock symbols
 df <- cbind (unlist (sym), df)
 df[,3:8] <- lapply (df[3:8], as.numeric)
 df[,1] <- as.character (df[,1])

 # Fix names
 rownames (df) <- NULL
 colnames (df) <- c ("Symbol", substring (leaves, 3))

 Generating XML Documents
 We will be using XML to transmit and receive data. There are great functionalities in the XML package for
intuitively generating XML documents. The most common XML document traders will generate is a FIXML
message. We will discuss FIX and FIXML in the following sections, but for now we will give a simple example
and generate it using the XML package. Listing 9-7 gives a simple FIXML sample message, and Listing 9-8
generates the same message using the XML package.

 We notice a few things. XML namespaces are similar to attributes but must be declared using a different
argument.

 Listing 9-7. FIXML Sample Message

 <FIXML xmlns="http://www.fixprotocol.org/FIXML-5-0-SP2">
 < Order TmInForce="0" Typ="1" Side="1" Acct="999999">
 < Instrmt SecTyp="CS" Sym="AAPL"/ >
 < OrdQty Qty="100"/ >
 </ Order>
 </ FIXML>

 Listing 9-8. Generating XML Data

 library (XML)

 # Generate the XML message in Listing 9- 7
 out <- newXMLNode ("FIXML",
 namespaceDefinitions =
 "http://www.fixprotocol.org/FIXML-5-0-SP2")

 newXMLNode ("Order",
 attrs = c (TmInForce = 0, Typ = 1, Side = 1, Acct=999999),
 parent = out)

 newXMLNode ("Instrmt",
 attrs = c (SecTyp = "CS", Sym = "AAPL"),
 parent = out["Order"])

 newXMLNode ("OrdQty",
 attrs = c (Qty = 100),
 parent = out["Order"])

CHAPTER 9 ■ NETWORKING PART II

147

 print (out)

 # Extra example for how to insert content in non-self-closing nodes
 newXMLNode ("extraInfo", "invalid content.", parent = out["Order"])
 print (out)

 Manipulating JSON Data
 JSON data can handle the delivery of all the information that an XML document can handle in fewer
characters. Unfortunately, this reduces standardization and the range of facilities available for manipulating
it. JSON does not have a natural ability to handle attributes, so translation of attributes from XML creates
fields named attr:{} or a similar abbreviation. Sometimes an API decides that certain XML attributes
should not be treated as attributes in JSON, so it treats attributes like normal data fields. This is the case with
the Symbol attribute when YQL outputs JSON.

 We will request the same data as used in our XML examples as JSON from YQL. JSON is simple enough
that it can be losslessly mapped to an R list object. We do not have a standard analog for efficiently accessing
JSON like XPath, so we go straight to R lists and work from there. R lists can easily replicate the tree-
descending behavior of XPath with many double-bracket subsetting operations.

 Listing 9-9 loads JSON data from YQL and organizes the same data frame as in Listing 9-6 . It is relatively
simple to do so because the quote level of the tree has four sets of seven data points. This enables the default
behavior of data.frame() to generate useful output. It is easy to see how poorly structured or incomplete
JSON data can lead to complicated tree-descent procedures.

 Listing 9-9. Manipulating JSON Data

 library (RJSONIO)

 base <- "http://query.yahooapis.com/v1/public/yql?"
 begQuery <- "q=select * from yahoo.finance.historicaldata where symbol in "
 midQuery <- "(’YHOO’, ’AAPL’) "
 endQuery <- "and startDate = ’2016-01-11’ and endDate = ’2016-01-12’"

 # Supply "format=json" argument to URL
 endParams <-
 "&diagnostics=false&format=json&env=store://datatables.org/alltableswithkeys"

 urlstr <- paste0 (base, begQuery, midQuery, endQuery, endParams)

 # Encode URL before requesting
 # This is normally handled automatically by the XML package
 jdoc <- fromJSON (URLencode (urlstr))

 # Format and output data frame as in Listing 9- 6
 df <- data.frame (t (data.frame (jdoc[["query"]][["results"]][["quote"]])),
 stringsAsFactors = FALSE)
 df[,3:8] <- lapply (df[3:8], as.numeric)
 df[,1] <- as.character (df[,1])
 rownames (df) <- NULL

 It is worth discussing how the fromJSON() function maps JSON to R lists. You may have noticed that
the leaves of our R list jdoc were named vectors. This is a simplification performed by fromJSON() when
the default argument simplify = Strict is used. This greatly simplifies visualization and manipulation of

CHAPTER 9 ■ NETWORKING PART II

148

the R list into other formats. Technically, mapping a JSON document to an R list should be a strict list of lists
rather than a list of named vectors. This may be useful to have in cases where the JSON structure is variable.
For this we specify the argument simplify = FALSE . See the documentation for fromJSON() for options to
simplify singular or multiple specific data types.

 Generating JSON output is simple because any R list can be instantly converted to JSON. The JSON
document will be of a similar form to str(jdoc) in R. Be wary if R list attributes need to be passed to the
JSON output. Behaviors vary across attributes and package-specific classes. Users passing R list attributes to
JSON documents are encouraged to manually verify the output is as intended during development.

 # Outputs JSON representation of list object as string
 jout <- toJSON (jdoc)

 Note on URL Encoding
 Listing 9-9 required URLencode() because HTTP requests through the RJSONIO package do not automatically
encode. Encoding is the process of replacing unsafe characters with ASCII-encoded values. These values are
percent signs followed by two hexadecimal characters. Various web security practices and HTTP protocol
specifications justify URL encoding. It is important to know that transmitting unsafe characters over HTTP/
HTTPS is forbidden and typically results in the error code “400: Bad Request” from the intended target.
Browsers and software packages will often automatically encode URLs, but some like RJSONIO do not. This
requires that we manually call the URLencode() function.

 Some common unsafe characters include the spacebar and the following: < > # % { } | [] ‘ .

 The Financial Information eXchange Protocol
 The FIX protocol is a widely accepted and independently maintained protocol for financial communication.
The protocol is normally communicated over low-level languages that establish proprietary FIX-compliant
connections on top of standard TCP connections. These are the types of connections established by
proprietary SDKs offered by retail brokerages.

 A FIX engine is a program that establishes and maintains the FIX connection between two parties.
Many FIX engines exist to provide out-of-the-box compatibility with brokerages supporting pure FIX
implementations.

 FIX is a very low-latency protocol most commonly used in order management systems between
brokers or funds and electronic exchanges. Only ultra-low-latency strategies can significantly benefit from
the efficiency of pure FIX. All other strategies will not significantly benefit from the minimal latency of FIX
messages. Our strategy only involves daily adjustments and therefore does not require the minimal latency
of FIX. It is important to understand FIX nonetheless because typical client-to-broker communications
will be more verbose versions or analogs of FIX. The prime example of this is FIXML, which is an XML
adaptation of FIX. FIXML sacrifices latency advantages of FIX but is easier to read and manipulate.

 The nonprofit FIX maintenance body FIX Trading Community is developing FIXT as well. FIXT
stands for Transport-Independent FIX. It is currently in version 1.1 and seeks to make FIX independent
of FIX-compliant TCP connections. This opens up the opportunity for brokerages to extend connection
options other than FIX-compliant TCP, including web services (HTTP/HTTPS mainly) and message queues
(Amazon SQS, Microsoft Message Queueing, and so on). This is an important development for bringing
us into the language-independent standardization of financial messaging. Brokers may offer the ability
to transmit such FIXT messages over HTTPS in the future, opening up ultra-low-latency trading to all
languages that can transmit secure HTTP requests.

 A comprehensive treatment of FIX format is beyond the scope of this text, but there are a few key
facts to know. FIX messages comprise key-value pairs of mostly integer parameters separated by the ASCII

CHAPTER 9 ■ NETWORKING PART II

149

control code known as the start-of-header character (SOH) . SOH can be expressed as A in ASCII or 0x01 in
hexadecimal. In almost every character representation, it is represented as the second character of a zero-
indexed set. In FIX documentation, it is often replaced with a pipe character for readability.

 It is important to note that while exchanges may support most FIX capabilities, retail brokerages provide
a deliberately limited set of FIX capabilities. This practice is necessary to shield them from certain risks, and
it consequentially dictates the most efficient way to learn FIX. Since FIX capabilities are dependent on the
brokerage itself, the best way to learn FIX is almost always from the brokerage’s documentation. Examples
given by the brokerage are guaranteed to be supported. Traders are wise to follow these examples and
guidelines rather than expecting the broker to support a capability of FIX it is not familiar with.

 The following is an arbitrary example of a FIX message to buy shares of the symbol TESTA. Pure FIX
distinguishes itself from other communication protocols through minimalism. FIX messages are not
self-documenting like FIXML messages. Parameter names are arbitrary integer values.

 8=FIX.4.2|9=153|35=D|49=BLP|56=SCHB|34=1|50=30737|97=Y|
 52=20000809-20:20:50|11=90001008|1=10030003|21=2|55=TESTA|54=1|38=4000|
 40=2|59=0|44=30|47=I|60=20000809-18:20:32|10=061|

 It is worth noting that the authoritative body on FIX runs a very slow, confusing, and unreliable web
site at www.fixtradingcommunity.org/ (noted as of June 2016). Documentation can be located with
some perseverance, but many links are dead and/or hang. This is an additional reason to learn from your
brokerage’s documentation.

 The FIX eXtensible Markup Language
 FIXML is both XML and self-explaining, meaning the knowledge of the acronyms and abbreviations used
within it can fully explain the content and purpose of a message. FIXML deliberately sacrifices the minimal
latency of FIX for easier readability and adoptability. As with the FIX protocol, it is best to learn from
examples provided by the brokerages themselves because they will offer fewer features than the creators of
FIXML make possible to communicate.

 The placement of parameters is important in FIXML. Parameters are placed as attributes in the
appropriate node. Table 9-4 discusses some common FIXML attributes. There are many more parameters
available to options, complex orders, foreign exchange, fixed income, and so on. These are the most
commonly used attributes for stock trading. We will discuss the node structure as well.

 Table 9-4. Common FIXML Attributes

 Attribute Node Description

 Acct Order The account number needs to be passed with all order requests.

 AcctTyp Order Only for buy-to-cover short positions. Mark AcctTyp="5" .

 OrigID OrdCxlReq Order ID that needs to be passed for any change or cancel requests.

 Px Order Limit price for limit orders.

 SecTyp Instrmt Security type. CS for common stock.

 Side Order Specifies order. 1 = buy or buy to cover, 2 = sell, 5 = sell short.

 Sym Instrmt Ticker symbol of underlying security.

 TmInForce Order Time in force. 0 = Day, 1 = GTC, 7 = Market On Close. Not applicable when Typ = 1.

 Typ Order Order type. 1 = Market, 2 = Limit, 3 = Stop, 4 = Stop Limit, P = trailing stop.

 Qty OrdQty Specifies number of shares on which to execute the corresponding order.

http://www.fixtradingcommunity.org/

CHAPTER 9 ■ NETWORKING PART II

150

 The following is a copy of Listing 9-7 . This FIXML message is a market buy order for 100 shares of Apple
stock on account 999999.

 <FIXML xmlns="http://www.fixprotocol.org/FIXML-5-0-SP2">
 < Order TmInForce="0" Typ="1" Side="1" Acct="999999">
 < Instrmt SecTyp="CS" Sym="AAPL"/ >
 < OrdQty Qty="100"/ >
 </ Order>
 </ FIXML>

 The following is a sell-short limit-day order at $690 for 100 shares of Google stock:

 <FIXML xmlns="http://www.fixprotocol.org/FIXML-5-0-SP2">
 < Order TmInForce="0" Typ="2" Side="5" Px="690" Acct="999999">
 < Instrmt SecTyp="CS" Sym="GOOGL"/ >
 < OrdQty Qty="100"/ >
 </ Order>
 </ FIXML>

 This is a FIXML order for replacing existing order SVI-888888 with a buy limit-day order for 100 shares
of Caterpillar stock:

 <FIXML xmlns="http://www.fixprotocol.org/FIXML-5-0-SP2">
 < OrdCxlRplcReq TmInForce="0" Typ="2" Side="1" Px="75" Acct="999999"
 OrigID="SVI-888888">
 < Instrmt SecTyp="CS" Sym="CAT"/ >
 < OrdQty Qty="100"/ >
 </ OrdCxlRplcReq>
 </ FIXML>

 FIXML messages are most often transmitted over HTTPS and FIX SSL connections. When transmitting
over HTTPS, the FIXML message will be supplied as a lengthy HTML parameter in a POST request. We will
discuss this further when covering OAuth.

 OAuth in R
 We have discussed the dynamics of OAuth in detail. R has a simple ROAuth package that wraps many of the
complicated communication steps of OAuth with a single R object. Within this R object, users can manage
the connection and make GET / POST requests.

 There are a lot of ways to initiate OAuth depending on the user’s security clearance for a specific project.
We mentioned before that OAuth for client-brokerage communications in client-built systems often treats
the client’s trading program as both the end user and the third party within the OAuth framework. In this
case, the client will receive both a consumer key-secret pair and an OAuth key-secret pair. In the case where
the client is acting as a third party authenticating on behalf of an end user, the third party will need a single
key-secret pair and a single access-request URL pair.

 Depending on your brokerage and the key-secret pairs available, you may consider using various pieces
of Listings 9-10 and 9-11 . The code presented shows different scenarios the ROAuth package can handle.

CHAPTER 9 ■ NETWORKING PART II

151

 Listing 9-10. ROAuth with Secret-Key and Access-Request Pairs

 # Example is not executable.
 # For example purposes only.
 library (ROAuth)

 # Requesting with key-secret and access-request pair
 reqURL <- "requestUrl"
 accessURL <- "accessUrl"
 authURL <- "authenticationUrl"
 cKey <- "consumerKey"
 cSecret <- "consumerSecret"

 credentials <- OAuthFactory$ new (consumerKey=cKey,
 consumerSecret=cSecret,
 requestURL=reqURL,
 accessURL=accessURL,
 authURL=authURL,
 needsVerifier=FALSE)
 credentials$ handshake ()

 # Send GET Request to URL
 testURL <- "http://someurl.com/some parameters"
 credentials$ OAuthRequest (testURL, "GET")

 # Send GET Request to URL
 testURL <- "http://someurl.com/some un-encoded parameters"
 credentials$ OAuthRequest (testURL, "GET")

 Listing 9-11. ROAuth with Two Secret-Key Pairs, FIXML Message, and No Verifier

 oKey <- "oauthKey"
 oSecret <- "oauthSecret"
 cKey <- "consumerKey"
 cSecret <- "consumerSecret"
 credentials <- OAuthFactory$ new (consumerKey = cKey,
 consumerSecret = cSecret,
 oauthKey = oKey,
 oauthSecret = oSecret,
 needsVerifier=FALSE)

 # Manually declare authentication as complete
 credentials$handshakeComplete <- TRUE

 # Send a FIXML message through OAuth to testURL with POST request
 aFIXMLmessage <- c ("<FIXML xmlns=...>content</FIXML>")
 testURL <- "https://testurl.com/"
 credentials$ OAuthRequest (testURL, "POST", aFIXMLmessage)

 POST requests deliver information in the same URL format as other APIs that use purely GET requests.
 POST requests have different headers and can handle substantially longer URLs.

CHAPTER 9 ■ NETWORKING PART II

152

 As of ROAuth version 0.9.2, APIs that require verification-on-request or nonpersistent OAuth sessions
will need manual override of the handshake verifier. This allows the ROAuth package to pass the verification
information on request rather than rely on a persistent OAuth session. This may change in future releases of
 ROAuth . Watch out for documentation and package updates from both CRAN and your brokerage for users
relying on this method of ROAuth .

 Conclusion
 Programming client-brokerage communication is the most open-ended element of this text. Until now, we
have provided a precise framework and set of examples for developing trading strategies. In this chapter,
you have been asked to assess your abilities, connections, and financial needs to choose the best method
for client-brokerage communication. We will move through the end of this book assuming this has been
achieved to some degree. You are encouraged to read through the remaining chapters to see how our
platform is fully prepared and executed from a home computer, even if you do not have client-brokerage
communications fully developed.

 The next chapter will discuss how to automate different R jobs from the command line of a Windows or
UNIX machine. This is the final step to bringing a trading platform into production.

 PART 3

 Production Trading

155© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_10

 CHAPTER 10

 Organizing and Automating Scripts

 This chapter will cover CRON jobs for UNIX machines and task scheduling for Windows machines to
automate routine execution of trading scripts. We will discuss which jobs should be run when, frequently
referencing Appendix A for production-ready code examples.

 Organizing Scripts into Jobs
 There are four possible jobs we may want to automate on a schedule. We will call these jobs UPDATE , PLAN ,
 TRADE , and MODEL .

 The UPDATE job will need to be run once per day after Yahoo! Finance has updated trade data. This can
be around 5 to 6 p.m. EST. This script will update the data in our stock data directory for use in other scripts.

 The PLAN job will run after we update the data but before the start of the trading day. This job will run
the strategy on the most recently available data and output trading directions for use by the TRADE job.

 The TRADE job is the most open-ended in terms of execution. It can be written in the most appropriate
language for the job, as discussed in Chapter 9 . This script will be run right when the trading day starts at
9:30 a.m. EST. It will rely purely on the output of the PLAN job to execute trades.

 The MODEL job has the most flexible schedule. This job is responsible for updating the parameters
utilized by the strategy implemented in the TRADE job. Depending on the trader’s simulation and
optimization framework, this may have time to run every night, every weekend, or once per month. Running
the MODEL job more frequently is not necessarily better, and this decision should depend on results of the
trader’s research into his strategy. It may be desirable to only update the strategy manually, in which the
 MODEL job would not be used.

 Calling Jobs with the Source Function
 The source() function in R allows us to call scripts from files like R functions, but with a few important
differences.

• The source() function does not pass information by parameters. It passes
information through the parent R environment.

• R functions create in-memory copies of their parameters in a local environment that
are deleted upon function termination.

• All scripts called with the source() function share the scope of the parent
environment, while independent R function calls do not share or maintain scope.

http://dx.doi.org/10.1007/978-1-4842-2178-5_9

CHAPTER 10 ■ ORGANIZING AND AUTOMATING SCRIPTS

156

 In short, the source() function allows us to effortlessly break up pieces of existing scripts for on-demand
use. Nesting calls to the source() function allows us to easily perform our four jobs as described previously.

 The remainder of this section will describe the four jobs as nested calls to the source() function, as
defined in the source code of Appendix A.

 Calling Jobs via Sourcing
 Users who have arranged the source code of this text as in Appendix A are able to call jobs via the source()
function, as in Listing 10-1 .

 Listing 10-1. Calling Jobs via Sourcing

 # Warning: These are not to be run concurrently

 # UPDATE Job
 source ("~/Platform/update.R")

 # PLAN Job
 source ("~/Platform/plan.R")

 # TRADE Job
 source ("~/Platform/trade.R")

 # MODEL Job
 source ("~/Platform/model.R")

 Listing 10-1 is a trivial example to illustrate the power of the source() function. In practice, we intend to
call these scripts independently of one other in an automated fashion. We will introduce CRON jobs and the
Windows Task Scheduler for this reason.

 Task Scheduling in Windows
 Task scheduling is the Windows equivalent of UNIX CRON jobs for running programs on a schedule. Some
MS-DOS basics are required to understand how to get our R scripts to run with the Windows Task Scheduler.
The code discussed here will work with Windows 7, 8, and 10. Some previous versions of Windows may
successfully execute the code as well, particularly Vista.

 Running R from the Command Line in Windows
 R installations contain utilities for running the R console from the command line and running scripts
as programs from the command line. To do so, we must let Windows know where the R binaries exist. R
installations contain a /bin/ directory with R and Rscript executables. Windows R installations may contain
a /bin/x64/ directory with 64-bit copies of R and Rscript executables. The most efficient way to access these
executables is to declare the /bin/ or /bin/x64/ directory as part of the path variable. The contents of the
 path variable can be observed by simply typing it at the command prompt and hitting the Enter key.

 Windows users may have trouble locating the R installation in their machine. If default paths are used
upon install, it should be in C:/Program Files/R/R-3.x.x/bin/ with or without /x64/ at the end, depending
of your architecture. If users have a different flavor or R installed, it will be in a different place. For example, if
users have Microsoft R Open (MRO), the binaries will be in C:/Program Files/Microsoft/MRO/R-3.x.x/bin/ .

CHAPTER 10 ■ ORGANIZING AND AUTOMATING SCRIPTS

157

 Listing 10-2 shows the special format required to add the R binaries to the path variable on a default
64-bit R installation. It is important to respect case and spacing at the command prompt, particularly in path
statements.

 Listing 10-2. Setting the path Variable in Windows

 set path= %path%;C:\Program Files\R\R-3.3.0\bin\x64

 Now we are capable of calling the R and Rscript executables from the command line. If you would
like to experiment with using R from the Windows command line, type R and hit the Enter key to start an R
session in the terminal. Run the quit function q() with no parameters to exit.

 We are more interested in the Rscript executable. This enables us to run scripts from the command line.
If we want to run the plan.R script in our platform, we can run Listing 10-3 in the terminal. Be aware that the
command line treats spaces as delimiters. If a file path contains spaces, it will need to be placed in double
quotes.

 Listing 10-3. Running R Scripts from the Command Line

 Rscript C:\Platform\plan.R

 Running scripts like this is ambiguous. The only indication that a script completes or terminates is
the greater-than sign re-appearing in the terminal. Output from the R console is not sent to the terminal.
We can better observe our scripts and diagnose them in the event of failure by sending the R console
output to a file.

 Listing 10-4 changes the directory with the cd command and then sends the console output of plan.R to
a file called planlog.txt . Notice the trailing 2>&1 in this command. This is an interesting console command
that is the same across many UNIX and Windows terminals. It sends the stderr stream (stream 2) into the
 stdout stream (stream 1). The result stores both streams in the same text file, similar to the way we see
the actual R console output. The stdout and stderr streams are simply the standard output and standard
error streams native to any console. Normally, black console output represents the stdout stream, and red
console output represents the stderr stream when using Rgui or RStudio.

 Listing 10-4. Sending Console Output to a Text File

 cd C:\Platform\errorlog
 Rscript C:\Platform\plan.R > planlog.txt 2>&1

 Before we schedule our R scripts, we will store a few commands together in a Windows BAT file
(otherwise referred to as a .bat file). These are text files of MS-DOS commands that end in .bat . They can be
run from the terminal in a single command. This will make it simple and concise for us to schedule multiple
terminal commands at a time. Listing 10-5 combines the concepts we have discussed into a single BAT file.
Save this listing in your C:/Platform/ directory using a text editor as plan.bat . Make sure to change the
paths to R binaries and logging directories as needed. Generate and save analogs for the UPDATE , TRADE , and
possibly MODEL jobs as well.

 Listing 10-5. BAT File for Running the PLAN Job (plan.bat)

 set path= %path%;C:\Program Files\R\R-3.2.3\bin
 cd C:\Platform\errorlog\
 Rscript C:\Platform\plan.R > planlog.txt 2>&1

CHAPTER 10 ■ ORGANIZING AND AUTOMATING SCRIPTS

158

 Setting Up and Managing the Task Scheduler
 The Windows Task Scheduler can be accessed from the command-line utility schtasks . This utility has
many varied and abbreviated parameters that can get confusing. It can accommodate very complex and
dozens of parameters. We will focus on what we need as traders. We would like to run scripts at a specific
time every weekday. To do this, we execute the schtasks utility created in Listing 10-6 .

 Listing 10-6. Scheduling plan.R with schtasks

 schtasks /create /tn PLAN /sc weekly /d mon,tue,wed,thu,fri /mo 1 /st 19:00
 /tr "C:\Platform\plan.bat"

 Reading through Listing 10-6 , we see that it created (/create) a task with the task name (/tn) PLAN . It
runs on a weekly schedule (/sc) on the days (/d) Monday through Friday. We clarify with a modifier (/mo)
we will be running every week as opposed to every two, three, four weeks, or so on. Finally, the start time
(/st) is 1900 hours, and the command is simply to run (/tr) C:/Platform/plan.bat . This will run every
weekday at 7 p.m. to prepare for trading.

 Users will need to build analogs for the other jobs as with the BAT files.
 These tasks can be created and managed through the Windows Task Scheduler GUI as well. We have

focused on command-line solutions to minimize OS dependency of our tutorial. We will further explain
how to manage scheduled tasks from the command line. See Listing 10-7 for common Task Scheduler
management commands.

 Listing 10-7. Managing Scheduled Tasks with Examples for PLAN

 # Delete a task
 schtasks /delete /tn PLAN

 # Run a task
 schtasks /run /tn PLAN

 # End a currently run task, does not affect scheduling
 schtasks /end /tn PLAN

 # Get info on a task
 schtasks /query /tn PLAN

 # Modify a task (this example removes Wednesday from PLAN)
 schtasks /change /tn PLAN /d mon,tue,thu,fri

 # Disable a task, cancel scheduling
 schtasks /change /tn PLAN /disable

 # Enable an inactive task, resume scheduling
 schtasks /change /tn PLAN /enable

 Further research into task scheduling in Windows can add features users may be interested in. For
example, requiring user authentication on a task run is a good way to prevent trading when the developer is
not present to monitor the results in real time.

CHAPTER 10 ■ ORGANIZING AND AUTOMATING SCRIPTS

159

 Task Scheduling in UNIX
 UNIX systems have a few advantages that make scheduling tasks very simple. The R and Rscript executables
are almost always available without changing the PATH variable in UNIX. Additionally, scheduling jobs is
handled by editing a single line of a file already managed your system’s native CRON daemon.

 The CRON file you will be editing is most likely /etc/crontab but can differ depending on your OS.
The CRON daemon in your machine checks /etc/crontab and files in the /etc/cron.*/ directories every
minute and runs commands on them at the appropriate times.

 The crontab utility enables UNIX users to safely edit and manage often sensitive items in the CRON file.
Most importantly, the editing function provides CRON-specific security and error-checking, going above and
beyond a typical text editor. Listing 10-8 shows common crontab commands.

 Listing 10-8. Managing CRON Jobs

 # Edit CRON jobs
 crontab -e

 # Delete all user-specified CRON jobs
 crontab -r

 The following is a useful ASCII graphic for explaining CRON job formatting. We can see from this
formatting schema that vanilla CRON cannot handle scheduling tasks at the same level of complexity as
Windows Task Scheduler can. Nonetheless, it is sufficient for our purposes.

 * * * * * command to be executed
 - - - - -
 | | | | |
 | | | | ----- Day of week (0 - 7) (Sunday = 0 or 7)
 | | | ------- Month (1 - 12)
 | | --------- Day of month (1 - 31)
 | ----------- Hour (0 - 23)
 ------------- Minute (0 - 59)

 Before we execute commands with CRON jobs, we will wrap our calls to Rscript in bash scripts. Our
bash scripts require only one line of code, the call to Rscript, but our console output will be at the CRON
level rather than the R level if we call directly from CRON. We would like our output to be at the R console
level so that we can capture output in a text file.

 The bash script is similar to the Windows analog. Note that the first line of Listing 10-9 is not a comment
but the “shebang” symbol (#!) followed by the path to the bash binary (/bin/bash). Save Listing 10-9 as
 plan.sh in your platform directory to be called by CRON.

 Listing 10-9. Bash Script for PLAN Job

 #!/bin/bash
 cd ~ / Platform/errorlog
 Rscript ~ / Platform/plan.R > planlog.txt 2>&1

 Run the following line in the terminal to make sure the file is executable:

 chmod +x ~ / Platform/plan.sh

CHAPTER 10 ■ ORGANIZING AND AUTOMATING SCRIPTS

160

 Add Listing 10-10 to your /etc/crontab file by running crontab -e . This will run the PLAN job on
weekdays at 7 p.m. EST.

 Listing 10-10. CRON Line for PLAN Job

 0 19 * * 1-5 ~/Platform/plan.sh

 Conclusion
 You are now equipped to schedule and configure trading tasks using R code developed throughout this text.
The next chapter will compare our platform to the rest of the automated trading ecosystem, as well as point
you in the right direction to access more functionalities and advanced careers in automated trading.

161© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_11

 CHAPTER 11

 Looking Forward

 Our platform stands out in transparency and flexibility. R is very legible but generally slow. We have made
efforts to speed up our platform but will always be slower than the equivalent multicore program in C/C++.

 We have made accommodations for trading with delayed daily data and retail brokerages. These
resources are not the height of aspirations for automated traders.

 In this chapter, we will talk about how to get to higher frequencies, further streamline automation, and
advance a career in automated trading.

 Language Considerations
 We have discussed in detail the advantages and disadvantages of using R to trade. Please refer to the
“Software Overview” section of Chapter 6 if necessary. This section is a continuation of that discussion.

 It is uncommon to find a production trading system built end-to-end in R. It is a scripting language that
calls lower-level languages. It often sacrifices speed and memory efficient for readability. If traders would
like to move to higher frequencies or build faster optimizers, there are languages other than C/C++ that do
not sacrifice all of the benefits of R for the sake of speed.

 Python
 Python is a legible and safe programming language (in other words, not a scripting language) that is
commonly used to build end-to-end automated trading systems. It relies on lower-level languages to run,
but, unlike R, it can be both compiled and interpreted. R programmers usually have an easier time learning
Python than Java or C/C++. Many professionals have been known to use both for different purposes,
typically relying on R for exploratory analysis and on Python for the production deployment of complex
algorithms.

 Python 2.7. x is more common in production environments than Python 3. x.x as of the time of writing
and is better supported for most available libraries.

 C/C++
 It is worth writing programs in C/C++ rather than Python if milliseconds matter. C/C++ has more capability
to fine-tune memory management and thread communication in multicore programs. To fine-tune memory
management, expert C/C++ programmers can manipulate cache-proximity and typecasting to optimize
compute time. For multicore computation, expert C/C++ programmers will benefit from the vast number of
CPU directives available for thread communication.

http://dx.doi.org/10.1007/978-1-4842-2178-5_6

CHAPTER 11 ■ LOOKING FORWARD

162

 C/C++ can be difficult to learn for programmers accustomed to scripted or interpreted languages.
Speed is the bigger concern in trading rather than in research. It is common for exploratory analysis and
model development to be performed in R and Python, while separate C/C++ programs use the results of the
research to make trading decisions in real time.

 Hardware Description Languages
 Hardware description languages (HDLs) are necessary when microseconds matter. HDLs allow physical
electronic circuits to be constructed based on textual input. They are most commonly C-like languages for
programmable logic devices.

 The most flexible and common programmable logic device for high-frequency trading is
the Field-Programmable Gate Array (FPGA) . To understand what an FPGA is, we need to discuss
 application-specific integrated circuit (ASIC) chips. ASIC chips are the small computer chips that
run most electronic devices in our daily lives. They are the computer chips that run coffee makers,
sound systems, treadmills, and many other electronic devices we interface with regularly. FPGAs are
functionally ASIC chips that can be rewired on demand. They are rewired through special devices that
interpret HDL languages and physically transform logic gates on the chip to run the desired program.

 Expressing a program through digital logic gates makes many components of conventional CPUs
unnecessary. For example, FPGAs have no need for schedulers because the schedule is printed on the chip.
This substantially speeds up computations.

 FPGA’s development has a high production cost and presents a unique challenge drawing on electrical
engineering knowledge just as much as programming skill. Specializing in FPGA development can open up
many interesting career opportunities both inside and outside of high-frequency trading.

 Retail Brokerages and Right to Refuse
 Retail brokerages trade on behalf of their clients with direct-to-market trading algorithms. The brokerage
acts as a counterparty to other direct-to-market participants, including institutional traders, market makers,
funds, banks, and other brokerages. Brokerages stay in business by taking commissions and managing risks
associated with trading on their clients’ behalf.

 Direct-to-market participants are institutions that trade at the purest level. These institutions trade with
other participants within the exchanges with no middle man.

 One of the biggest risks brokerages face is margin default by leveraged and/or short traders. During
volatile market conditions, clients run a high risk of getting margin calls. Typically, the brokerage
would exit the position on your behalf and bill you or your account for the overage. In volatile market
conditions, the brokerage may be unable to exit the security at a desirable price in the event of forced
liquidation. This may result in the client’s inability to pay margin overages and result in a large loss for
the brokerage.

 To mitigate this risk, brokerages can disallow initiation of positions. This is known as the right to refuse .
Brokerages will typically maintain the right to refuse without justification. Reputable brokerages do not
abuse this right in an effort to best serve their clients, but the fact remains that no order sent by a client is
guaranteed to clear under any circumstances.

 Platforms built under our framework are not likely to trigger right to refuse because they are
characteristically nonaggressive. Aggressive trading systems that attempt to exploit volatile price moves in
real time are more likely to trigger the right to refuse. Funds that trade direct-to-market are at a significant
advantage in aggressive trading because they are not subject this provision.

CHAPTER 11 ■ LOOKING FORWARD

163

 Right to Refuse in the Swiss Currency Crisis
 A memorable example of widespread dependence on right to refuse took place during the January 15,
2015, Swiss Currency Crisis. At 9:30 a.m. GMT the Swiss National Bank issued a statement declaring that
its currency would be unpegged and its federal deposit interest rate would be -0.75 percent. This caused
immediate waves in the currency markets. The USDCHF pair (U.S. dollar against Swiss franc) fell as much as
31 percent in a matter of minutes.

 Data feeds from many retail brokerage price charts failed to show any tick-by-tick data from 9:30 a.m.
GMT to about 9:36 a.m. GMT. This indicated that retail brokerages were not generating spreads actionable
by clients during this time period. This means that, for example, a limit order to buy the USDCHF may have
been rejected even when the market price fell below the limit price, regardless of whether the order was first
sent before or after 9:30. Orders sent during this time were rejected because the brokerage feared it would
result in losses in excess of account values and general defaults by clients.

 After the crisis, many retail currency brokerages decreased maximum leverage multiples by 33 percent
to 50 percent. Additionally, many foreign exchange branches of mature brokerages sold or merged in an
effort to cut losses.

 Connection Latency
 Institutional traders make great efforts to secure connections and minimize the time it takes to communicate
over them.

 Ethernet vs. WiFi
 As a bare-minimum provision, any computer running automated strategies should be hardwired to a
modem through Ethernet. This means that a computer connected to a router wirelessly communicating with
the modem will not suffice. The computer can be connected to a router only if the router has a hardwired
path to the modem.

 Only as a last resort should any automated strategy be communicating over a wireless connection.
WiFi connections can be significantly slower than Ethernet when an imperfect connections sends corrupt
or partial packets that must be re-sent. Packets are bits of information that comprise pieces of the entire
message being communicated over a connection. The router manages packets by checking whether they
have been corrupted in transit. If a packet fails to deliver for any reason, it will be re-sent after the router
is notified the packet is missing. This checking and notification process takes substantially more time per
packet than the successful receipt of a packet.

 For example, Voice over IP (VoIP) traffic will suffer negligible loss of speech quality at 1 percent package
loss, but speech will be incomprehensible at anywhere from 5 percent to 10 percent packet loss. Packet loss
for WiFi can vary substantially depending on the types of physical materials the signal must pass through.
Metals and nonorganic objects tend to deflect and corrupt signals the greatest.

 Packet loss over Ethernet is typically between 0.01 percent and 0.1 percent depending on the
length of the cable and sources of radiation surrounding the cable. Fiber-optic lines, like those used
by the modem to communicate with your Internet service provider, typically suffer 0.0001 percent
packet loss. Understandably, some large funds have taken to communicating trades over purely
fiber-optic lines.

CHAPTER 11 ■ LOOKING FORWARD

164

 Given a network connection that must deliver content without loss, as is the case with web pages,
e-mails, trading messages, and so on, we can estimate connection latency to be proportional to

k

p

p
1

1
+

-
æ

è
ç

ö

ø
÷g

where k is the size of a message in bytes, p is the sum of packet loss proportions over all communication
media traversed by the message, and γ> 1 is a constant. The constant γ is equal to the ratio of time taken by
the average packet failure to the time taken by the average packet delivery.

 If we have a message traveling over a WiFi connection with 10 percent packet loss, an Ethernet
connection with 0.1 percent packet loss, and fiber-optic connections with 0.0001 percent packet loss, we
have p =0.101001. If a packet loss takes approximately 20 times longer than a packet delivery, we have γ= 20.

In this case, a message of size k will take 1 20
0 101

1 0 101
3 246+()

-
=

.

.
. times longer than a lossless connection to

deliver the message.
 Be wary that this formula assumes messages travel at the same speed. Wireless messages take longer

to travel over airwaves than wires take to transmit messages electronically. This difference can become
substantial if transmitting messages over hundreds of miles, so this formula is most appropriate for
comparing communication latency over short distances.

 Proximity to Exchanges
 Large funds take great pains to make sure they are close to the exchanges to reduce latency. Exchanges
operate on a first-come, first-served basis, so proximity can significantly affect performance in high-
frequency arenas. This has caused funds to compete over server proximity in exchange buildings. When
milliseconds matter, institutional traders co-locate servers in the same data warehouses used by financial
exchanges. At this point, they try to shave microseconds and nanoseconds off of connection latency by
making sure their servers are closer to the exchange servers than the competition’s servers.

 High-frequency trading is as much of a networking problem as it is a strategy development problem.
As frequency increases, funds take more expensive and more drastic measures to reduce compute time and
connection latency.

 Prime Brokerages
 We have spoken about trading through retail brokerages and direct-to-market. These represent two extremes
of dependence and freedom for traders. Prime brokerages lie in between these two options but a little
toward the “freedom” end of the spectrum. Prime brokerages act just like retail brokerages in that they can
provide leverage and execution. They differ in that they provide much more power and flexibility to execute
orders on the client’s terms. These are typically specific execution algorithms for exotic order types that mix
limit, stop, and market orders to attain some desired discretion, speed, or market impact.

 Relationships with prime brokerages are often stronger and more personal than those established
with retail brokerages. With increased personal attention and lower commissions per dollar traded come
increased minimum account sizes. These brokerages cater to wealthy individuals and funds rather than
retail traders.

CHAPTER 11 ■ LOOKING FORWARD

165

 Digesting News and Fundamentals
 We have spent the bulk of this chapter discussing how to increase trade frequency. Advancing capabilities
in automated trading is hardly limited to increasing trade frequency. Automated trading systems of all
frequencies can benefit from automatically digesting news and fundamentals. Some expensive services will
automatically assess the significance of and direction of the market impact of news breaks, but it is also well
within the capabilities of programmers to measure market sentiment with news.

 Chapter 9 discussed ways to digest and organize XML data. Developers can organize HTML data using
these methods. Relatively simple natural-language processing (NLP) can be used to determine sentiment
from news. The methods in Chapter 9 can also be used to digest fundamental information on assets. History
of asset fundamentals can be easily incorporated into indicators and optimizations to great effect.

 Conclusion
 There are a lot of opportunities to learn about different fields in automated trading and advance a career in
it. There are equally as many opportunities to build on the platform created in this book within or outside of
the R language. I hope you will continue to increase your knowledge and advance the field.

http://dx.doi.org/10.1007/978-1-4842-2178-5_9
http://dx.doi.org/10.1007/978-1-4842-2178-5_9

167© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_12

 APPENDIX A

 Source Code

 This appendix will include all the production code covered in this book organized into an R project
directory. An R project directory is a traditional file hierarchy of source code files that will be called by
delegating scripts in the root of the project directory. In our case, we will continue using the root directory
named in variable rootdir in the “Setting Up Directories” section of Chapter 2 . We will create some new
directories for holding source code and declare all of our directories in a list format to keep them organized.

 Every script will be named by its file path in this appendix. You are expected to copy and save these files
in the proper locations with the proper names for the platform to work. Initial commentary will be given,
and new project-level code comments will be included. You are encouraged to go back to the section in
which the code was introduced if more specific explanation is needed.

 It is important to distinguish delegating scripts from job scripts. A delegating script may call other
scripts but will be dependent on previous scripts to run properly. Job scripts scripts are the highest-level
scripts meant to be run independently. This can be done from the command line, another call to source() ,
or manually in Rgui or RStudio.

 Platform/config.R
 Everything in this document is meant to be editable. It will be called at the beginning of each delegating
script to set important global configuration variables. If there are other values within the platform a user
would like to edit frequently, it should be declared here in the CONFIG list. The declaration of the variable
within the source code should then be modified to the proper entry in the CONFIG list.

 We use lists to hold configuration variables because they can be extended to hold any number of
variables. Our code will frequently use the rm() function to clean up the R environment of every variable but
a few select ones. Lists like DIR , CONFIG , and DATA will frequently be excluded from cleanup. By default, we
will use CONFIG to store function objects used in multicore rollapply() calls.

 Users will want to again edit file paths in this section if they differ from my defaults. The root directory
can change without consequence, but you need to keep the same directory structure to ensure functionality.

 DIR <- list ()
 DIR[["root"]] <- "~/Platform/"
 DIR[["data"]] <- "~/Platform/stockdata/"
 DIR[["function"]] <- "~/Platform/functions/"
 DIR[["load"]] <- "~/Platform/load/"
 DIR[["compute"]] <- "~/Platform/compute/"
 DIR[["plan"]] <- "~/Platform/plan/"
 DIR[["model"]] <- "~/Platform/model/"

http://dx.doi.org/10.1007/978-1-4842-2178-5_2

APPENDIX A ■ SOURCE CODE

168

 CONFIG <- list ()

 # Windows users should set to FALSE

 CONFIG[["isUNIX"]] <- TRUE

 # Set to the desired number of multicore
 # processes. Windows users need to be conscious
 # of memory requirements of these processes.
 CONFIG[["workers"]] <- 4

 # Max assets to be held in simulation, optimization,
 # and potentially trade execution.
 CONFIG[["maxAssets"]] <- 10

 # Max iterations in optimization function
 # for MODEL job. All users need to be conscious of
 # time constraints.
 CONFIG[["maxIter"]] <- 100

 # Range or scalar value of years
 # to train strategy on for MODEL job
 CONFIG[["y"]] <- 2016

 CONFIG[["minVal"]] <- c (n1 = 1, nFact = 1, nSharpe = 1, shThresh = .01)
 CONFIG[["maxVal"]] <- c (n1 = 150, nFact = 5, nSharpe = 200, shThresh = .99)

 CONFIG[["PARAMnaught"]] <- c (n1 = -2, nFact = -2, nSharpe = -2, shThresh = 0)

 setwd (DIR[["root"]])

 Platform/load
 This section will cover all scripts pertaining to fetching, updating, storing, and preparing data for analysis. It
will include most of the content from Chapters 2 and 3 .

 Platform/load.R
 This is the delegating script for loading our data into memory and preparing it for analysis. Top-level
delegating scripts called from the command line will run this script to load data.

 setwd (DIR[["load"]])
 cat ("initial.R\n\n")
 source ("initial.R")

 setwd (DIR[["load"]])
 cat ("loadToMemory.R\n\n")
 source ("loadToMemory.R")

http://dx.doi.org/10.1007/978-1-4842-2178-5_2
http://dx.doi.org/10.1007/978-1-4842-2178-5_3

APPENDIX A ■ SOURCE CODE

169

 setwd (DIR[["load"]])
 cat ("updateStocks.R\n\n")
 source ("updateStocks.R")

 setwd (DIR[["load"]])
 cat ("dateUnif.R\n\n")
 source ("dateUnif.R")

 setwd (DIR[["load"]])
 cat ("spClean.R\n\n")
 source ("spClean.R")

 setwd (DIR[["load"]])
 cat ("adjustClose.R\n\n")
 source ("adjustClose.R")

 setwd (DIR[["load"]])
 cat ("return.R\n\n")
 source ("return.R")

 setwd (DIR[["load"]])
 cat ("fillInactive.R\n\n")
 source ("fillInactive.R")

 cat ("\n")

 Platform/update.R
 This is the job script for the UPDATE job. This job updates data in our stock data directory. Running this script
in advance of analysis will allow the load.R script to skip update steps and load stock data straight into
memory.

 source ("~/Platform/config.R")

 setwd (DIR[["load"]])
 cat ("initial.R\n\n")
 source ("initial.R")

 setwd (DIR[["load"]])
 cat ("loadToMemory.R\n\n")
 source ("loadToMemory.R")

 setwd (DIR[["load"]])
 cat ("updateStocks.R\n\n")
 source ("updateStocks.R")

 cat ("\n")

APPENDIX A ■ SOURCE CODE

170

 Platform/functions/yahoo.R
 You can skip this if you have already used the dump() function in Listing 2-2 to save the function yahoo() as
an R object. Here we will save the function declaration as an R script. It will work the same either way when
called by source() in other scripts.

 # Listing 2-2

 yahoo <- function(sym, current = TRUE,
 a = 0, b = 1, c = 2000, d, e, f,
 g = "d")
 {

 if(current){
 f <- as.numeric (substr (as.character (Sys.time ()), start = 1, stop = 4))
 d <- as.numeric (substr (as.character (Sys.time ()), start = 6, stop = 7)) - 1
 e <- as.numeric (substr (as.character (Sys.time ()), start = 9, stop = 10))
 }

 require (data.table)

 tryCatch (
 suppressWarnings (
 fread (paste0 ("http://ichart.yahoo.com/table.csv",
 "?s=", sym,
 "&a=", a,
 "&b=", b,
 "&c=", c,
 "&d=", d,
 "&e=", e,
 "&f=", f,
 "&g=", g,
 "&ignore=.csv"), sep = ",")),
 error = function(e) NULL
)
 }

 Platform/load/ initial.R
 This script makes the initial request for complete stock history of symbols that are without a .csv file in the
data directory. It also checks for invalid symbols in a vector of symbols S and stores them to prevent repeated
failed HTTP requests to Yahoo!

 # Listing 2-3 and 2-4

 setwd (DIR[["function"]])
 source ("yahoo.R")

 setwd (DIR[["root"]])
 if("S.R" %in% list.files ()) {
 source ("S.R")

APPENDIX A ■ SOURCE CODE

171

 } else {
 url <- "http://trading.chrisconlan.com/SPstocks.csv"
 S <- as.character (read.csv (url, header = FALSE)[,1])
 dump (list = "S", "S.R")
 }

 invalid <- character (0)
 if("invalid.R" %in% list.files ()) source ("invalid.R")

 setwd (DIR[["data"]])
 toload <- setdiff (S[! paste0 (S, ".csv") %in% list.files ()], invalid)

 if(length (toload) != 0){
 for(i in 1: length (toload)){

 df <- yahoo (toload[i])

 if(! is.null (df)) {
 write.csv (df[nrow (df):1], file = paste0 (toload[i], ".csv"),
 row.names = FALSE)
 } else {
 invalid <- c (invalid, toload[i])
 }

 }
 }

 setwd (DIR[["root"]])
 dump (list = c ("invalid"), "invalid.R")

 rm (list = setdiff (ls (), c ("CONFIG", "DIR", "yahoo")))
 gc ()

 Platform/load/ loadToMemory.R
 This script loads the data directory into memory, making sure they are in date-ascending order in memory.
This script will take less than ten seconds if the data is stored in the data directory in date-ascending order.
You may want to investigate the data directory for incorrectly formatted files if this script takes unduly long.

 # Listing 2-5

 setwd (DIR[["data"]])
 S <- sub (".csv", "", list.files ())

 library (data.table)

 DATA <- list ()
 for(i in S){
 suppressWarnings (
 DATA[[i]] <- fread (paste0 (i, ".csv"), sep = ","))
 DATA[[i]] <- (DATA[[i]])[order (DATA[[i]][["Date"]], decreasing = FALSE)]
 }

APPENDIX A ■ SOURCE CODE

172

 Platform/load/ updateStocks.R
 This script updates data in memory and in the data directory. It will attempt to update using the YQL
method introduced in Listing 2-7 but will default to the CSV method introduced in Listing 2-6 if the data has
not been updated for more than 20 days to avoid receiving incomplete XML requests from YQL.

 This differs from the original scripts in Chapter 2 in that it includes a verification mechanism for the
adjusted close. If the adjusted close has been retroactively changed because of dividends or splits, we
download the entire history of the symbol again from Yahoo! Finance. About 350 of our stocks are regular

dividend distributors, so this should trigger a re-download of an average of
350

252 4/
 stocks per day.

 # Listing 2-7

 setwd (DIR[["data"]])
 library (XML)

 batchsize <- 51

 redownload <- character (0)

 for(i in 1:(ceiling (length (S) / batchsize))){

 midQuery <- " ("
 maxdate <- character (0)

 startIndex <- ((i - 1) * batchsize + 1)

 endIndex <- min (i * batchsize, length (S))

 for(s in S[startIndex:(endIndex - 1)]){
 maxdate <- c (maxdate, DATA[[s]][[1]][nrow (DATA[[s]])])
 midQuery <- paste0 (midQuery, "'", s, "', ")
 }

 maxdate <- c (maxdate, DATA[[S[endIndex]]][[1]]
 [nrow (DATA[[S[endIndex]]])])

 startDate <- max (maxdate)

 useCSV <- FALSE
 if(startDate <
 substr (strptime (substr (Sys.time (), 0, 10), "%Y-%m-%d")
 - 20 * 86400, 0, 10)){
 cat ("Query is greater than 20 days. Updating with csv method.")
 useCSV <- TRUE
 break
 }
 startDate <- substr (as.character (strptime (startDate, "%Y-%m-%d") + 86400), 0, 10)
 endDate <- substr (Sys.time (), 0, 10)

 isUpdated <- as.numeric (difftime (Sys.time (), startDate, units = "hours")) >= 40.25

http://dx.doi.org/10.1007/978-1-4842-2178-5_2

APPENDIX A ■ SOURCE CODE

173

 weekend <- sum (c ("Saturday", "Sunday") %in%
 weekdays (c (strptime (endDate, "%Y-%m-%d"),
 c (strptime (startDate, "%Y-%m-%d"))))) == 2

 span <- as.numeric (difftime (Sys.time (), startDate, units = "hours")) < 48

 runXMLupdate <- startDate <= endDate & !weekend & !span & isUpdated

 # Push back query date to validate extra days against adj. close
 startDateQuery <- substr (as.character (
 strptime (startDate, "%Y-%m-%d") - 7 * 86400
), 0, 10)

 if(runXMLupdate){
 base <- "http://query.yahooapis.com/v1/public/yql?"
 begQuery <- "q=select * from yahoo.finance.historicaldata where symbol in "
 midQuery <- paste0 (midQuery, "’", S[min (i * batchsize, length (S))], "’) ")
 endQuery <- paste0 ("and startDate = ’", startDateQuery,
 "’ and endDate = ’", endDate, "’")
 endParams <- "&diagnostics=true&env=store://datatables.org/alltableswithkeys"

 urlstr <- paste0 (base, begQuery, midQuery, endQuery, endParams)

 doc <- xmlParse (urlstr)

 df <- getNodeSet (doc, c ("//query/results/quote"),
 fun = function(v) xpathSApply (v,
 c ("./Date",
 "./Open",
 "./High",
 "./Low",
 "./Close",
 "./Volume",
 "./Adj_Close"),
 xmlValue))

 if(length (df) != 0){

 symbols <- unname (sapply (
 getNodeSet (doc, c ("//query/results/quote")), xmlAttrs))

 df <- cbind (symbols, data.frame (t (data.frame (df, stringsAsFactors = FALSE)),
 stringsAsFactors = FALSE, row.names = NULL))

 names (df) <- c ("Symbol", "Date",
 "Open", "High", "Low", "Close", "Volume", "Adj Close")

 df[,3:8] <- lapply (df[,3:8], as.numeric)
 df <- df[order (df[,1], decreasing = FALSE),]

APPENDIX A ■ SOURCE CODE

174

 sym <- as.character (unique (df$Symbol))

 for(s in sym){

 temp <- df[df$Symbol == s, 2:8]
 temp <- temp[order (temp[,1], decreasing = FALSE),]

 # Check if the Adj. Close data is equal for matching dates
 # if not, save symbol to redownload later
 if(any (!DATA[[s]][DATA[[s]][["Date"]] %in% temp[,1]]$"Adj Close" ==
 temp[temp[,1] %in% DATA[[s]][["Date"]],7]))
 {

 redownload <- c (redownload, s)

 } else {

 startDate <- DATA[[s]][["Date"]][nrow (DATA[[s]])]

 DATA[[s]] <- DATA[[s]][order (DATA[[s]][[1]], decreasing = FALSE)]
 DATA[[s]] <- rbind (DATA[[s]], temp[temp$Date > startDate,])
 write.table (DATA[[s]][DATA[[s]][["Date"]] > startDate],
 file = paste0 (s, ".csv"), sep = ",",
 row.names = FALSE, col.names = FALSE, append = TRUE)
 }

 }
 }
 }
 }

 # Listing 2-6

 if(useCSV){
 for(i in S){
 maxdate <- DATA[[i]][["Date"]][nrow (DATA[[i]])]
 isUpdated <- as.numeric (difftime (Sys.time (), maxdate, units = "hours")) >= 40.25
 if(isUpdated){

 maxdate <- strptime (maxdate, "%Y-%m-%d") + 86400

 weekend <- sum (c ("Saturday", "Sunday") %in%
 weekdays (c (maxdate, Sys.time ()))) == 2

 span <- FALSE
 if(weekend){
 span <- as.numeric (difftime (Sys.time (), maxdate, units = "hours")) < 48
 }

 # Push back query date to validate extra days against adj. close
 startDateQuery <- maxdate - 7 * 86400

APPENDIX A ■ SOURCE CODE

175

 if(!weekend & !span){
 c <- as.numeric (substr (startDateQuery, start = 1, stop = 4))
 a <- as.numeric (substr (startDateQuery, start = 6, stop = 7)) - 1
 b <- as.numeric (substr (startDateQuery, start = 9, stop = 10))
 df <- yahoo (i, a = a, b = b, c = c)
 if(! is.null (df)){
 if(all (! is.na (df)) & nrow (df) > 0){

 df <- df[nrow (df):1]

 if(any (!DATA[[i]][DATA[[i]][["Date"]] %in% df[["Date"]]]$"Adj Close" ==
 df[["Adj Close"]][df[["Date"]] %in% DATA[[i]][["Date"]]]))
 {

 redownload <- c (redownload, i)

 } else {
 write.table (df, file = paste0 (i, ".csv"), sep = ",",
 row.names = FALSE, col.names = FALSE, append = TRUE)
 DATA[[i]] <- rbind (DATA[[i]], df)
 }
 }
 }
 }
 }
 }
 }

 # Re-download, store, and load into memory the symbols with
 # altered adj. close data
 setwd (DIR[["data"]])
 if(length (redownload) != 0){
 for(i in redownload){

 df <- yahoo (i)
 if(! is.null (df)) {
 write.csv (df[nrow (df):1], file = paste0 (i, ".csv"),
 row.names = FALSE)
 }

 suppressWarnings (
 DATA[[i]] <- fread (paste0 (i, ".csv"), sep = ","))
 DATA[[i]] <- (DATA[[i]])[order (DATA[[i]][["Date"]], decreasing = FALSE)]

 }
 }

 rm (list = setdiff (ls (), c ("S", "DATA", "DIR", "CONFIG")))
 gc ()

APPENDIX A ■ SOURCE CODE

176

 Platform/load/ dateUnif.R
 This script will organize the data as date-uniform zoo objects, ensuring all data is numeric with dates stored
as order.by attributed in zoo data frames. Additionally, it reorganizes the data into six data frames (Open,
High, Low, Close, Adjusted Close, Volume) instead of one data frame for each symbol.

 # Listing 2-8

 library (zoo)

 datetemp <- sort (unique (unlist (sapply (DATA, function(v) v[["Date"]]))))
 datetemp <- data.frame (datetemp, stringsAsFactors = FALSE)
 names (datetemp) <- "Date"

 DATA <- lapply (DATA, function(v) unique (v[order (v$Date),]))

 DATA[["Open"]] <- DATA[["High"]] <- DATA[["Low"]] <-
 DATA[["Close"]] <- DATA[["Adj Close"]] <- DATA[["Volume"]] <- datetemp

 for(s in S){
 for(i in rev (c ("Open", "High", "Low", "Close", "Adj Close", "Volume"))){
 temp <- data.frame (cbind (DATA[[s]][["Date"]], DATA[[s]][[i]]),
 stringsAsFactors = FALSE)
 names (temp) <- c ("Date", s)
 temp[,2] <- as.numeric (temp[,2])

 if(! any (!DATA[[i]][["Date"]][(nrow (DATA[[i]]) - nrow (temp)+1): nrow (DATA[[i]])]
 == temp[,1])){
 temp <- rbind (t (matrix (nrow = 2, ncol = nrow (DATA[[i]]) - nrow (temp),
 dimnames = list (names (temp)))), temp)
 DATA[[i]] <- cbind (DATA[[i]], temp[,2])
 } else {
 DATA[[i]] <- merge (DATA[[i]], temp, all.x = TRUE, by = "Date")
 }

 names (DATA[[i]]) <- c (names (DATA[[i]])[-(ncol (DATA[[i]]))], s)
 }
 DATA[[s]] <- NULL

 # Update user on progress
 if(which (S == s) %% 25 == 0){
 cat (paste0 (round (100 * which (S == s) / length (S), 1), "% Complete\n"))
 }

 }

 DATA <- lapply (DATA, function(v) zoo (v[,2: ncol (v)], strptime (v[,1], "%Y-%m-%d")))

 rm (list = setdiff (ls (), c ("DATA", "DIR", "CONFIG")))
 gc ()

APPENDIX A ■ SOURCE CODE

177

 Platform/load/ spClean.R

 # Listing 3-1

setwd (DIR[["root"]])

 if("SPdates.R" %in% list.files ()){
 source ("SPdates.R")
 } else {
 url <- "http://trading.chrisconlan.com/SPdates.csv"
 S <- read.csv (url, header = FALSE, stringsAsFactors = FALSE)
 dump (list = "S", "SPdates.R")
 }

 names (S) <- c ("Symbol", "Date")
 S$Date <- strptime (S$Date, "%m/%d/%Y")

 for(s in names (DATA[["Close"]])){
 for(i in c ("Open", "High", "Low", "Close", "Adj Close", "Volume")){
 Sindex <- which (S[,1] == s)
 if(S[Sindex, "Date"] != "1900-01-01 EST" &
 S[Sindex, "Date"] >= "2000-01-01 EST"){
 DATA[[i]][index (DATA[[i]]) <= S[Sindex, "Date"], s] <- NA
 }
 }
 }

 Platform/load/ adjustClose.R

 # Listing 3-6

 MULT <- DATA[["Adj Close"]] / DATA[["Close"]]

 DATA[["Price"]] <- DATA[["Close"]]
 DATA[["OpenPrice"]] <- DATA[["Open"]]

 DATA[["Open"]] <- DATA[["Open"]] * MULT
 DATA[["High"]] <- DATA[["High"]] * MULT
 DATA[["Low"]] <- DATA[["Low"]] * MULT
 DATA[["Close"]] <- DATA[["Adj Close"]]

 DATA[["Adj Close"]] <- NULL

 Platform/load/ return.R

 # Listing 3-8

 NAPAD <- zoo (matrix (NA, nrow = 1, ncol = ncol (DATA[["Close"]])), order.by =
 index (DATA[["Close"]])[names (NAPAD) <- names (DATA[["Close"]])

 RETURN <- rbind (NAPAD, (DATA[["Close"]] / lag (DATA[["Close"]], k = -1)) - 1)

 OVERNIGHT <- rbind (NAPAD, (DATA[["Open"]] / lag (DATA[["Close"]], k = -1)) - 1)

APPENDIX A ■ SOURCE CODE

178

 Platform/load/ fillInactive.R

 # Listing 3-7

 for(s in names (DATA[["Close"]])){
 if(is.na (DATA[["Close"]][nrow (DATA[["Close"]]), s])){
 maxInd <- max (which (! is.na (DATA[["Close"]][,s])))
 for(i in c ("Close", "Open", "High", "Low")){
 DATA[[i]][(maxInd+1): nrow (DATA[["Close"]]),s] <- DATA[["Close"]][maxInd,s]
 }
 for(i in c ("Price", "OpenPrice")){
 DATA[[i]][(maxInd+1): nrow (DATA[["Close"]]),s] <- DATA[["Price"]][maxInd,s]
 }
 DATA[["Volume"]][(maxInd+1): nrow (DATA[["Close"]]),s] <- 0
 }
 }

 Platform/compute
 This directory will hold files associated with multicore wrappers, indicator functions, and simulation functions.

 Platform/compute/MCinit.R

 if(CONFIG[["isUNIX"]]){
 library (doMC)
 workers <- CONFIG[["workers"]]
 registerDoMC (cores = workers)
 } else {
 library (doParallel)
 workers <- CONFIG[["workers"]]
 registerDoParallel (cores = workers)
 }

 Platform/compute/functions.R

 # Listing 6-9

 library (foreach)

 delegate <- function(i = i, n = n, k = k, p = workers){
 nOut <- n - k + 1
 nProc <- ceiling (nOut / p)
 return (((i - 1) * nProc + 1) : min (i * nProc + k - 1, n))
 }

 # Listing 6-12

 mcTimeSeries <- function(data, tsfunc, byColumn, windowSize, workers, …){

 args <- names (mget (ls ()))
 export <- ls (.GlobalEnv)
 export <- export[!export %in% args]

APPENDIX A ■ SOURCE CODE

179

 SERIES <- foreach (i = 1:workers, .combine = rbind,
 .packages = loadedNamespaces (), .export = export) %dopar% {
 jRange <- delegate (i = i, n = nrow (data), k = windowSize, p = workers)

 rollapply (data[jRange,],
 width = windowSize,
 FUN = tsfunc,
 align = "right",
 by.column = byColumn)

 }

 names (SERIES) <- gsub ("\\..+", "", names (SERIES))
 if(windowSize > 1){
 PAD <- zoo (matrix (nrow = windowSize-1, ncol = ncol (SERIES), NA),
 order.by = index (data)[1:(windowSize-1)])
 names (PAD) <- names (SERIES)
 SERIES <- rbind (PAD, SERIES)
 }

 if(is.null (names (SERIES))){
 names (SERIES) <- gsub ("\\..+", "", names (data)[1: ncol (SERIES)])
 }

 return (SERIES)

 }

 equNA <- function(v){
 o <- which (! is.na (v))[1]
 return (ifelse (is.na (o), length (v)+1, o))
 }

 # Listing 7-1

 simulate <- function(OPEN, CLOSE,
 ENTRY, EXIT, FAVOR,
 maxLookback, maxAssets, startingCash,
 slipFactor, spreadAdjust, flatCommission, perShareCommission,
 verbose = FALSE, failThresh = 0,
 initP = NULL, initp = NULL){

 # Step 1
 if(any (dim (ENTRY) != dim (EXIT)) |
 any (dim (EXIT) != dim (FAVOR)) |
 any (dim (FAVOR) != dim (CLOSE)) |
 any (dim (CLOSE) != dim (OPEN)))
 stop ("Mismatching dimensions in ENTRY, EXIT, FAVOR, CLOSE, or OPEN.")

 if(any (names (ENTRY) != names (EXIT)) |
 any (names (EXIT) != names (FAVOR)) |
 any (names (FAVOR) != names (CLOSE)) |
 any (names (CLOSE) != names (OPEN)) |

APPENDIX A ■ SOURCE CODE

180

 is.null (names (ENTRY)) | is.null (names (EXIT)) |
 is.null (names (FAVOR)) | is.null (names (CLOSE)) |
 is.null (names (OPEN)))
 stop ("Mismatching or missing column names in ENTRY, EXIT, FAVOR, CLOSE, or OPEN.")

 FAVOR <- zoo (t (apply (FAVOR, 1, function(v) ifelse (is.nan (v) | is.na (v), 0, v))),
 order.by = index (CLOSE))

 # Step 2
 K <- maxAssets
 k <- 0
 C <- rep (startingCash, times = nrow (CLOSE))
 S <- names (CLOSE)

 P <- p <- zoo (matrix (0, ncol= ncol (CLOSE), nrow= nrow (CLOSE)),
 order.by = index (CLOSE))

 if(! is.null (initP) & ! is.null (initp)){
 P[1:maxLookback,] <-
 matrix (initP, ncol= length (initP), nrow=maxLookback, byrow = TRUE)
 p[1:maxLookback,] <-
 matrix (initp, ncol= length (initp), nrow=maxLookback, byrow = TRUE)
 }

 names (P) <- names (p) <- S

 equity <- rep (NA, nrow (CLOSE))

 rmNA <- pmax (unlist (lapply (FAVOR, equNA)),
 unlist (lapply (ENTRY, equNA)),
 unlist (lapply (EXIT, equNA)))

 for(j in 1: ncol (ENTRY)){
 toRm <- rmNA[j]
 if(toRm > (maxLookback + 1) &
 toRm < nrow (ENTRY)){
 FAVOR[1:(toRm-1),j] <- NA
 ENTRY[1:(toRm-1),j] <- NA
 EXIT[1:(toRm-1),j] <- NA
 }
 }

 # Step 3
 for(i in maxLookback:(nrow (CLOSE)-1)){

 # Step 4
 C[i+1] <- C[i]
 P[i+1,] <- as.numeric (P[i,])
 p[i+1,] <- as.numeric (p[i,])

APPENDIX A ■ SOURCE CODE

181

 longS <- S[which (P[i,] > 0)]
 shortS <- S[which (P[i,] < 0)]
 k <- length (longS) + length (shortS)

 # Step 5
 longTrigger <- setdiff (S[which (ENTRY[i,] == 1)], longS)
 shortTrigger <- setdiff (S[which (ENTRY[i,] == -1)], shortS)
 trigger <- c (longTrigger, shortTrigger)

 if(length (trigger) > K) {

 keepTrigger <- trigger[order (c (as.numeric (FAVOR[i,longTrigger]),
 - as.numeric (FAVOR[i,shortTrigger])),
 decreasing = TRUE)][1:K]
 longTrigger <- longTrigger[longTrigger %in% keepTrigger]
 shortTrigger <- shortTrigger[shortTrigger %in% keepTrigger]

 trigger <- c (longTrigger, shortTrigger)

 }

 triggerType <- c (rep (1, length (longTrigger)), rep (-1, length (shortTrigger)))

 # Step 6
 longExitTrigger <- longS[longS %in%
 S[which (EXIT[i,] == 1 | EXIT[i,] == 999)]]

 shortExitTrigger <- shortS[shortS %in%
 S[which (EXIT[i,] == -1 | EXIT[i,] == 999)]]

 exitTrigger <- c (longExitTrigger, shortExitTrigger)

 # Step 7
 needToExit <- max ((length (trigger) - length (exitTrigger)) - (K - k), 0)

 if(needToExit > 0){

 toExitLongS <- setdiff (longS, exitTrigger)
 toExitShortS <- setdiff (shortS, exitTrigger)

 toExit <- character (0)
 for(counter in 1:needToExit){
 if(length (toExitLongS) > 0 & length (toExitShortS) > 0){
 if(min (FAVOR[i,toExitLongS]) < min (-FAVOR[i,toExitShortS])){
 pullMin <- which.min (FAVOR[i,toExitLongS])
 toExit <- c (toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else {
 pullMin <- which.min (-FAVOR[i,toExitShortS])
 toExit <- c (toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }

APPENDIX A ■ SOURCE CODE

182

 } else if(length (toExitLongS) > 0 & length (toExitShortS) == 0){
 pullMin <- which.min (FAVOR[i,toExitLongS])
 toExit <- c (toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else if(length (toExitLongS) == 0 & length (toExitShortS) > 0){
 pullMin <- which.min (-FAVOR[i,toExitShortS])
 toExit <- c (toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 }

 longExitTrigger <- c (longExitTrigger, longS[longS %in% toExit])
 shortExitTrigger <- c (shortExitTrigger, shortS[shortS %in% toExit])

 }

 # Step 8
 exitTrigger <- c (longExitTrigger, shortExitTrigger)
 exitTriggerType <- c (rep (1, length (longExitTrigger)),
 rep (-1, length (shortExitTrigger)))

 # Step 9
 if(length (exitTrigger) > 0){
 for(j in 1: length (exitTrigger)){

 exitPrice <- as.numeric (OPEN[i+1,exitTrigger[j]])

 effectivePrice <- exitPrice * (1 - exitTriggerType[j] * slipFactor) -
 exitTriggerType[j] * (perShareCommission + spreadAdjust)

 if(exitTriggerType[j] == 1){

 C[i+1] <- C[i+1] +
 (as.numeric (P[i,exitTrigger[j]]) * effectivePrice)
 - flatCommission
 } else {
 C[i+1] <- C[i+1] -
 (as.numeric (P[i,exitTrigger[j]]) *
 (2 * as.numeric (p[i, exitTrigger[j]]) - effectivePrice))
 - flatCommission
 }

 P[i+1, exitTrigger[j]] <- 0
 p[i+1, exitTrigger[j]] <- 0

 k <- k - 1

 }
 }

APPENDIX A ■ SOURCE CODE

183

 # Step 10
 if(length (trigger) > 0){
 for(j in 1: length (trigger)){

 entryPrice <- as.numeric (OPEN[i+1,trigger[j]])

 effectivePrice <- entryPrice * (1 + triggerType[j] * slipFactor) +
 triggerType[j] * (perShareCommission + spreadAdjust)

 P[i+1,trigger[j]] <- triggerType[j] *
 floor (((C[i+1] - flatCommission) / (K - k)) / effectivePrice)

 p[i+1,trigger[j]] <- effectivePrice

 C[i+1] <- C[i+1] -
 (triggerType[j] * as.numeric (P[i+1,trigger[j]]) * effectivePrice)
 - flatCommission

 k <- k + 1

 }
 }

 # Step 11
 equity[i] <- C[i+1]
 for(s in S[which (P[i+1,] > 0)]){
 equity[i] <- equity[i] +
 as.numeric (P[i+1,s]) *
 as.numeric (OPEN[i+1,s])
 }

 for(s in S[which (P[i+1,] < 0)]){
 equity[i] <- equity[i] -
 as.numeric (P[i+1,s]) *
 (2 * as.numeric (p[i+1,s]) - as.numeric (OPEN[i+1,s]))
 }

 if(equity[i] < failThresh){
 warning ("\n*** Failure Threshold Breached ***\n")
 break
 }

 # Step 12
 if(verbose){
 if(i %% 21 == 0){
 cat (paste0 ("################################## ",
 round (100 * (i - maxLookback) /
 (nrow (CLOSE) - 1 - maxLookback), 1), "%",
 " ##################################\n"))
 cat (paste ("Date:\t", as.character (index (CLOSE)[i])), "\n")
 cat (paste0 ("Equity:\t", " $", signif (equity[i], 5), "\n"))
 cat (paste0 ("CAGR:\t ",

APPENDIX A ■ SOURCE CODE

184

 round (100 * ((equity[i] / (equity[maxLookback]))^
 (252/(i - maxLookback + 1)) - 1), 2),
 "%"))
 cat ("\n")
 cat ("Assets:\t", S[P[i+1,] != 0])
 cat ("\n\n")
 }
 }

 }
 # Step 13
 return (list (equity = equity, C = C, P = P, p = p))

 }

 Platform/plan
 This directory will hold files associated with the PLAN job. Much of the code in this section is meant to be
modified for production use by you. We randomly initialize some trading and indicator data for the sake of
example.

 Platform/plan.R
 This is the job script for the PLAN job.

 source ("~/Platform/config.R")

 setwd (DIR[["root"]])
 cat ("load.R\n\n")
 source ("load.R")

 setwd (DIR[["compute"]])
 cat ("MCinit.R\n\n")
 source ("MCinit.R")

 cat ("functions.R\n\n")
 source ("functions.R")

 setwd (DIR[["plan"]])
 cat ("decisionGen.R\n\n")
 source ("decisionGen.R")

 cat ("\n")

APPENDIX A ■ SOURCE CODE

185

 Platform/plan/decisionGen.R
 This is the main script called by the PLAN job. In this script or another, users should declare necessary
variables through their trading strategies and information from their brokerages. The default in this code is
for the long-only MACD.

 # Listing 9-1

See Chapter 9
 setwd (DIR[["plan"]])

 # Normally declared by your strategy.
 # Long-only MACD is computed with rollapply()
 # here for sake of example.
 n1 <- 5
 n2 <- 34
 nSharpe <- 20
 shThresh <- 0.50

 INDIC <- rollapply (DATA[["Close"]][nrow (DATA[["Close"]]) - n2:0,],
 width = n2,
 FUN = function(v) mean (v[(n2 - n1 + 1):n2]) - mean (v),
 by.column = TRUE,
 align = "right")

 FAVOR <- rollapply (DATA[["Close"]][nrow (DATA[["Close"]]) - nSharpe:0,],
 FUN = function(v) mean (v, na.rm = TRUE)/ sd (v, na.rm = TRUE),
 by.column = TRUE,
 width = nSharpe,
 align = "right")

 entryfunc <- function(v, shThresh){
 cols <- ncol (v) / 2
 as.numeric (v[1,1:cols] <= 0 &
 v[2,1:cols] > 0 &
 v[2,(cols+1):(2*cols)] >
 quantile (v[2,(cols+1):(2*cols)],
 shThresh, na.rm = TRUE)
)
 }

 cols <- ncol (INDIC)

 ENTRY <- rollapply (cbind (INDIC, FAVOR),
 function(v) entryfunc (v, cols),
 by.column = FALSE,
 width = 2,
 align = "right")

 # ***IMPORTANT***
 # The quick version used in the PLAN job accepts named vectors
 # representing the most recent single row of ENTRY, FAVOR, and EXIT.
 # These lines convert the zoo/data frame/matrix objects computed
 # in the above lines to named vectors of the last row of data.

APPENDIX A ■ SOURCE CODE

186

 FAVOR <- as.numeric (FAVOR[nrow (FAVOR),])
 names (FAVOR) <- names (DATA[["Close"]])

 ENTRY <- as.numeric (ENTRY[nrow (ENTRY),])
 names (ENTRY) <- names (DATA[["Close"]])

 EXIT <- zoo (matrix (0, ncol= ncol (DATA[["Close"]]), nrow = 1),
 order.by = index (DATA[["Close"]]))
 names (EXIT) <- names (DATA[["Close"]])

 # Normally fetched from brokerage.
 # These are arbitrarily declared here.
 # Users need to fetch this information from the brokerage
 # for production use.
 currentlyLong <- c ("AA", "AAL", "AAPL")
 currentlyShort <- c ("")
 S <- names (DATA[["Close"]])
 initP <- (S %in% currentlyLong) - (S %in% currentlyShort)
 cashOnHand <- 54353.54

 names (initP) <-
 names (FAVOR) <-
 names (ENTRY) <-
 names (EXIT) <-
 names (DATA[["Close"]])

 # At this point we have established everything normally
 # taken care of by your strategy.
 # Given named vectors of length ncol(DATA[["Close"]])
 # initP, FAVOR, ENTRY, and EXIT

 maxAssets <- CONFIG[["maxAssets"]]

 K <- maxAssets
 k <- 0
 C <- c (cashOnHand, NA)
 S <- names (DATA[["Close"]])
 P <- initP

 # Normally declared by your strategy
 FAVOR <- rnorm (ncol (DATA[["Close"]]))
 ENTRY <- rbinom (ncol (DATA[["Close"]]), 1, .005) -
 rbinom (ncol (DATA[["Close"]]), 1, .005)
 EXIT <- rbinom (ncol (DATA[["Close"]]), 1, .8) -
 rbinom (ncol (DATA[["Close"]]), 1, .8)

 # Normally fetched from brokerage
 currentlyLong <- c ("AA", "AAL", "AAPL")
 currentlyShort <- c ("RAI", "RCL", "REGN")
 S <- names (DATA[["Close"]])
 initP <- (S %in% currentlyLong) - (S %in% currentlyShort)

APPENDIX A ■ SOURCE CODE

187

 names (initP) <-
 names (FAVOR) <-
 names (ENTRY) <-
 names (EXIT) <-
 names (DATA[["Close"]])

 # At this point we have established everything normally
 # taken care of by your strategy.
 # Given named vectors of length ncol(DATA[["Close"]])
 # initP, FAVOR, ENTRY, and EXIT

 maxAssets <- 10
 startingCash <- 100000

 K <- maxAssets
 k <- 0
 C <- c (startingCash, NA)
 S <- names (DATA[["Close"]])
 P <- initP

 # Step 4
 longS <- S[which (P > 0)]
 shortS <- S[which (P < 0)]
 k <- length (longS) + length (shortS)

 # Step 5
 longTrigger <- setdiff (S[which (ENTRY == 1)], longS)
 shortTrigger <- setdiff (S[which (ENTRY == -1)], shortS)
 trigger <- c (longTrigger, shortTrigger)

 if(length (trigger) > K) {

 keepTrigger <- trigger[order (c (as.numeric (FAVOR[longTrigger]),
 - as.numeric (FAVOR[shortTrigger])),
 decreasing = TRUE)][1:K]

 longTrigger <- longTrigger[longTrigger %in% keepTrigger]
 shortTrigger <- shortTrigger[shortTrigger %in% keepTrigger]

 trigger <- c (longTrigger, shortTrigger)

 }

 triggerType <- c (rep (1, length (longTrigger)), rep (-1, length (shortTrigger)))

 # Step 6
 longExitTrigger <- longS[longS %in% S[which (EXIT == 1 | EXIT == 999)]]

 shortExitTrigger <- shortS[shortS %in% S[which (EXIT == -1 | EXIT == 999)]]

 exitTrigger <- c (longExitTrigger, shortExitTrigger)

APPENDIX A ■ SOURCE CODE

188

 # Step 7
 needToExit <- max ((length (trigger) - length (exitTrigger)) - (K - k), 0)

 if(needToExit > 0){

 toExitLongS <- setdiff (longS, exitTrigger)
 toExitShortS <- setdiff (shortS, exitTrigger)

 toExit <- character (0)

 for(counter in 1:needToExit){
 if(length (toExitLongS) > 0 & length (toExitShortS) > 0){
 if(min (FAVOR[toExitLongS]) < min (-FAVOR[toExitShortS])){
 pullMin <- which.min (FAVOR[toExitLongS])
 toExit <- c (toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else {
 pullMin <- which.min (-FAVOR[toExitShortS])
 toExit <- c (toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 } else if(length (toExitLongS) > 0 & length (toExitShortS) == 0){
 pullMin <- which.min (FAVOR[toExitLongS])
 toExit <- c (toExit, toExitLongS[pullMin])
 toExitLongS <- toExitLongS[-pullMin]
 } else if(length (toExitLongS) == 0 & length (toExitShortS) > 0){
 pullMin <- which.min (-FAVOR[toExitShortS])
 toExit <- c (toExit, toExitShortS[pullMin])
 toExitShortS <- toExitShortS[-pullMin]
 }
 }

 longExitTrigger <- c (longExitTrigger, longS[longS %in% toExit])
 shortExitTrigger <- c (shortExitTrigger, shortS[shortS %in% toExit])

 }

 # Step 8
 exitTrigger <- c (longExitTrigger, shortExitTrigger)
 exitTriggerType <- c (rep (1, length (longExitTrigger)),
 rep (-1, length (shortExitTrigger)))

 setwd (DIR[["plan"]])

 # First exit these
 write.csv (file = "stocksToExit.csv",
 data.frame (list (sym = exitTrigger, type = exitTriggerType)))

 # Then enter these
 write.csv (file = "stocksToEnter.csv",
 data.frame (list (sym = trigger, type = triggerType)))

APPENDIX A ■ SOURCE CODE

189

 Platform/trade
 This directory will hold files associated with the PLAN job. Much of the code in this section is meant to be
modified for production use by you. We randomly initialize some trading and indicator data for the sake of
example.

 Platform/trade.R

 # First exit these
 toExit <- read.csv (file = "stocksToExit.csv")

 # Then enter these
 toEnter <- read.csv (file = "stocksToEnter.csv")

 # This is open-ended...
 # This may be done inside or outside R depending on choice of brokerage and API

 Platform/model
 This directory will hold files associated with the MODEL job. Much of the code in this section is meant to be
modified for production use by you. The long-only MACD is shown here with generalized pattern search
optimization.

 Platform/model.R

 source ("~/Platform/config.R")

 setwd (DIR[["root"]])
 cat ("load.R\n\n")
 source ("load.R")

 setwd (DIR[["compute"]])
 cat ("MCinit.R\n\n")
 source ("MCinit.R")

 cat ("functions.R\n\n")
 source ("functions.R")

 setwd (DIR[["model"]])
 cat ("optimize.R\n\n")
 source ("optimize.R")

 cat ("\n")

APPENDIX A ■ SOURCE CODE

190

 Platform/model/optimize. R

 setwd (DIR[["model"]])

 minVal <- CONFIG[["minVal"]]
 maxVal <- CONFIG[["maxVal"]]
 PARAM <- CONFIG[["PARAMnaught"]]

 source ("evaluateFunc.R")
 source ("optimizeFunc.R")

 PARAMout <- optimize (y = CONFIG[["y"]], minVal, maxVal)

 setwd (DIR[["plan"]])

 write.csv (data.frame (PARAMout), "stratParams.csv")

 Platform/model/evaluateFunc.R

 # Listing 8-1

 # Declare entry function for use inside evaluator
 entryfunc <- function(v, shThresh){
 cols <- ncol (v) / 2
 as.numeric (v[1,1:cols] <= 0 &
 v[2,1:cols] > 0 &
 v[2,(cols+1):(2*cols)] >
 quantile (v[2,(cols+1):(2*cols)],
 shThresh, na.rm = TRUE)
)
 }

 evaluate <- function(PARAM, minVal = NA, maxVal = NA, y = 2014,
 transform = TRUE, verbose = FALSE,
 negative = FALSE, transformOnly = FALSE,
 returnData = FALSE, accountParams = NULL){

 # Convert and declare parameters if they exist on domain (-inf,inf) domain
 if(transform | transformOnly){
 PARAM <- minVal +
 (maxVal - minVal) * unlist (lapply (PARAM, function(v) (1 + exp (-v))^(-1)))
 if(transformOnly){
 return (PARAM)
 }
 }

 # Max shares to hold
 K <- CONFIG[["maxAssets"]]

APPENDIX A ■ SOURCE CODE

191

 # Declare n1 as itself, n2 as a multiple of n1 defined by nFact,
 # and declare the length and threshold in sharpe ratio for FAVOR
 n1 <- max (round (PARAM[["n1"]]), 2)
 n2 <- max (round (PARAM[["nFact"]] * PARAM[["n1"]]), 3, n1+1)
 nSharpe <- max (round (PARAM[["nSharpe"]]), 2)
 shThresh <- max (0, min (PARAM[["shThresh"]], .99))
 maxLookback <- max (n1, n2, nSharpe) + 1

 # Subset data according to year, y
 period <-
 index (DATA[["Close"]]) >= strptime (paste0 ("01-01-", y[1]), "%d-%m-%Y") &
 index (DATA[["Close"]]) < strptime (paste0 ("01-01-", y[length (y)]+1), "%d-%m-%Y")

 period <- period |
 ((1: nrow (DATA[["Close"]]) > (which (period)[1] - maxLookback)) &
 (1: nrow (DATA[["Close"]]) <= (which (period)[sum (period)]) + 1))

 CLOSE <- DATA[["Close"]][period,]
 OPEN <- DATA[["Open"]][period,]
 SUBRETURN <- RETURN[period,]

 # Compute inputs for long-only MACD as in Listing 7.2
 # Code is optimized for speed using functions from caTools and zoo
 require (caTools)

 INDIC <- zoo (runmean (CLOSE, n1, endrule = "NA", align = "right") -
 runmean (CLOSE, n2, endrule = "NA", align = "right"),
 order.by = index (CLOSE))
 names (INDIC) <- names (CLOSE)

 RMEAN <- zoo (runmean (SUBRETURN, n1, endrule = "NA", align = "right"),
 order.by = index (SUBRETURN))

 FAVOR <- RMEAN / runmean ((SUBRETURN - RMEAN)^2, nSharpe,
 endrule = "NA", align = "right")
 names (FAVOR) <- names (CLOSE)

 ENTRY <- rollapply (cbind (INDIC, FAVOR),
 FUN = function(v) entryfunc (v, shThresh),
 width = 2,
 fill = NA,
 align = "right",
 by.column = FALSE)
 names (ENTRY) <- names (CLOSE)

 EXIT <- zoo (matrix (0, ncol= ncol (CLOSE), nrow= nrow (CLOSE)),
 order.by = index (CLOSE))
 names (EXIT) <- names (CLOSE)

 # Simulate and store results
 if(is.null (accountParams)){

APPENDIX A ■ SOURCE CODE

192

 RESULTS <- simulate (OPEN, CLOSE,
 ENTRY, EXIT, FAVOR,
 maxLookback, K, 100000,
 0.001, 0.01, 3.5, 0,
 verbose, 0)
 } else {
 RESULTS <- simulate (OPEN, CLOSE,
 ENTRY, EXIT, FAVOR,
 maxLookback, K, accountParams[["C"]],
 0.001, 0.01, 3.5, 0,
 verbose, 0,
 initP = accountParams[["P"]], initp = accountParams[["p"]])
 }

 if(!returnData){
 # Compute and return sharpe ratio
 v <- RESULTS[["equity"]]
 returns <- (v[-1] / v[- length (v)]) - 1
 out <- mean (returns, na.rm = T) / sd (returns, na.rm = T)
 if(! is.nan (out)){
 if(negative){
 return (-out)
 } else {
 return (out)
 }
 } else {
 return (0)
 }

 } else {
 return (RESULTS)
 }

 }

 Platform/model/optimizeFunc. R

 # See Chapter 8
 # Example optimization function coded for
 # Generalized pattern search
 optimize <- function(y, minVal, maxVal){

 # Maximum iterations
 # Max possible calls to evaluator is K * (4 * n + 1)
 K <- CONFIG[["maxIter"]]

 # Restart with random init when delta is below threshold
 deltaThresh <- 0.05

 # Set initial delta
 delta <- deltaNaught <- 1

APPENDIX A ■ SOURCE CODE

193

 # Scale factor
 sigma <- 2

 # Vector theta_0
 PARAM <- PARAMNaught <- CONFIG[["PARAMnaught"]]
 np <- length (PARAM)

 OPTIM <- data.frame (matrix (NA, nrow = K * (4 * np + 1), ncol = np + 1))
 names (OPTIM) <- c (names (PARAM), "obj"); o <- 1

 fmin <- fminNaught <- evaluate (PARAM, minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- c (PARAM, fmin); o <- o + 1

 # Print function for reporting progress in loop
 printUpdate <- function(step){
 if(step == "search"){
 cat (paste0 ("Search step: ", k,"|",l,"|",m, "\n"))
 } else if (step == "poll"){
 cat (paste0 ("Poll step: ", k,"|",l,"|",m, "\n"))
 }
 names (OPTIM)
 cat ("\t", paste0 (strtrim (names (OPTIM), 6), "\t"), "\n")
 cat ("Best:\t", paste0 (round (unlist (OPTIM[which.min (OPTIM$obj),]),3), "\t"), "\n")
 cat ("Theta:\t", paste0 (round (unlist (c (PARAM, fmin)),3), "\t"), "\n")
 cat ("Trial:\t", paste0 (round (as.numeric (OPTIM[o-1,]), 3), "\t"), "\n")
 cat (paste0 ("Delta: ", round (delta,3) , "\t"), "\n\n")
 }

 for(k in 1:K){

 # SEARCH subroutine
 for(l in 1:np){
 net <- (2 * rbinom (np, 1, .5) - 1) * runif (np, delta, sigma * delta)
 for(m in c (-1,1)){

 testpoint <- PARAM + m * net
 ftest <- evaluate (testpoint, minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- c (testpoint, ftest); o <- o + 1
 printUpdate ("search")

 }
 }

 if(any (OPTIM$obj[(o-(2*np)):(o-1)] < fmin)){

 minPos <- which.min (OPTIM$obj[(o-(2*np)):(o-1)])
 PARAM <- (OPTIM[(o-(2*np)):(o-1),1:np])[minPos,]
 fmin <- (OPTIM[(o-(2*np)):(o-1),np+1])[minPos]
 delta <- sigma * delta
 } else {

APPENDIX A ■ SOURCE CODE

194

 # POLL Subroutine
 for(l in 1:np){
 net <- delta * as.numeric (1:np == l)
 for(m in c (-1,1)){
 testpoint <- PARAM + m * net
 ftest <- evaluate (testpoint, minVal, maxVal, negative = TRUE, y = y)
 OPTIM[o,] <- c (testpoint, ftest); o <- o + 1
 printUpdate ("poll")
 }
 }

 if(any (OPTIM$obj[(o-(2*np)):(o-1)] < fmin)){

 minPos <- which.min (OPTIM$obj[(o-(2*np)):(o-1)])
 PARAM <- (OPTIM[(o-(2*np)):(o-1),1:np])[minPos,]
 fmin <- (OPTIM[(o-(2*np)):(o-1),np+1])[minPos]
 delta <- sigma * delta

 } else {

 delta <- delta / sigma

 }

 }

 cat (paste0 ("\nCompleted Full Iteration: ", k, "\n\n"))

 # Restart with random initiate
 if(delta < deltaThresh) {

 delta <- deltaNaught
 fmin <- fminNaught
 PARAM <- PARAMNaught + runif (n = np, min = -delta * sigma,
 max = delta * sigma)

 ftest <- evaluate (PARAM, minVal, maxVal,
 negative = TRUE, y = y)
 OPTIM[o,] <- c (PARAM, ftest); o <- o + 1

 cat (paste0 ("\nDelta Threshold Breached, Restarting with Random Initiate\n\n"))
 }
 }

 # Return the best optimization in untransformed parameters
 return (
 evaluate (OPTIM[which.min (OPTIM$obj),1:np],
 minVal, maxVal, transformOnly = TRUE)
)
 }

195© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5_13

 APPENDIX B

 Scoping in Multicore R

 This book makes frequent use of the foreach package in R to parallelize computations. This package,
developed by Steve Weston of Revolution Analytics, allows users to write operating system–independent
(OS-independent) multicore code. It works by acting as a single OS-independent interface to different OS-
dependent parallel back ends.

 At face value, the package seems to implement this idea well. Windows users rely on doParallel for
a parallel back end, and UNIX users rely on doMC for a parallel back end. All of the examples in the official
package documentation run without problems.

 Before we discuss the problems associated with foreach and instance replication, we will have a
general discussion about scoping in R. The purpose of this discussion is to clarify how and why Windows
users face significant setbacks to extensibility in multicore R.

 Scoping Rules in R
 The R language follows easy-to-use scoping rules. In general, R is lexically scoped, meaning functions
have their own environments. In a stricter sense, scoping rules in R cannot be fully explained by labeling
them as lexical.

 A variable declared in a function cannot be then called from the global environment. At the end of
function execution, the variables in the function environment can no longer be accessed. The function
environment is disengaged and subject to overwriting or deletion according to the R language’s memory
management protocols .

 If a function calls for a variable x that is not present in the function environment, the function will
search for a variable named x in the next highest scope, whether that scope is in another function or the
global environment. In other words, when any process needs the variable x , it will start at its current scope
and move up until it finds it, throwing an error if it reaches the global environment and still cannot locate x .

 These are the major tenants of scoping in R. These are all standard behaviors of lexically scoped
languages. The R language cannot be classified as strictly lexical because it allows other means of traversing
environments in a nonlexical manner. These behaviors are typically obviously deliberate by the programmer.
This is important because it ensures that programmers will not accidentally encounter exceptions to lexical
scoping rules.

 Using Lexical Scoping
 We make great use of lexical scoping in this text. Listing B-1 gives a concrete example. This exhibit may
be rudimentary to skilled R developers, but we encourage you to follow along to better understand
comparisons to multicore scoping rules covered later in this appendix.

APPENDIX B ■ SCOPING IN MULTICORE R

196

 Listing B-1. Lexical Scoping

 # Declare global variables a and b
 a <- 2
 b <- 3

 # Declare functions
 f <- function(){
 a
 }

 g <-function(){
 f () + b
 }

 h <- function(b){
 f () + b
 }

 # a = 2 throughout.
 # b = 3 when not supplied as a parameter.
 f () # f() = 2
 g () # g() = 5
 h (5) # h(5) = 7

 Takeaways
 Throughout R literature, there are many examples of complicated scoping procedures and specific
exceptions to the lexical scoping paradigm . These are instructive in explaining the more technical semantics
of the R language, but the typical developer will not have to confront these issues in practice. More
important than the jargon and fringe exceptions that can dominate discussion is the notion that R scoping is
intuitive. Most R users will never have to think about it because it is logical.

 We present here the major tenants of scoping in R functions:

• If a function requires an object not supplied as a parameter, R will find it in the global
environment.

• If a function modifies an object from the global environment in the function scope,
the object will remain unchanged in the global environment.

• The only way a function can affect the global environment is through the single
object returned by the function.

 Exceptions to these rules can occur in the case where users modify system variables, options,
and working directories; intentionally fetch the global environment; and so on. In the vast majority of
cases, functions will not perform such operations and can be coded casually without much thought to
scoping.

 These rules have important implications for the way we modify, share, and extend R code. We have
taken them for granted in this text up to this point, because we only sacrifice the luxuries of lexical scoping
when performing multicore computations in Windows. As we will observe in the following sections,
Windows users who want to perform certain computations will need to follow stricter scoping rules.

APPENDIX B ■ SCOPING IN MULTICORE R

197

 The UNIX fork System Call
 We touched on some of the low-level differences between foreach in Windows and UNIX in Chapter 6 . The
main difference is that foreach in UNIX creates R instances with the system call fork . The UNIX fork call
is very powerful and has been standard in UNIX and UNIX-like OSs for at least 25 years. The call works at
the kernel level to give multiple memory address spaces to the same set of data and enforce copy-on-write
semantics.

 The kernel is the lowest-level interface between the OS and the hardware, including the RAM, disk,
I/O, and CPU. The kernel is specific to the OS. In many ways, the kernel is the bare-bones version of the
operating system.

 A memory address space is the range of binary values from which a program can access data in
memory. The fork call gives R instances access to the same data without copying the physical memory. In
this manner, programs can have explicitly defined nonoverlapping address spaces while accessing the same
data in the same physical memory.

 The fork Call and Memory Management
 The fork call enforces copy-on-write semantics to give programs flexibility while maintaining the efficiency
of shared physical memory. To copy on write is to create a copy of a variable if any process writes to it rather
than purely reads from it. With copy-on-write semantics, any variable that a forked process manipulates
will automatically get a process-specific copy made in physical memory on the address space of that forked
process. For example, if a foreach loop is computing an indicator based on DATA while continually changing
the value of an iterator i and a matrix indic , the forked process will share DATA , but each gets independent
copies of i and indic .

 If DATA is 110MB, indic is 3MB, and i is negligibly small, a four-process fork call would take 110MB
+ 4(3MB) = 122MB of memory. If forked processes were to inefficiently copy entire environments without
copy-on-write semantics, the call would take 4(110MB + 3MB) = 452MB to complete. Of course, this
is the theoretical case for a perfectly efficient language. In reality, both processes will take much more
memory because of scoping and copy semantics specific to the programming language. In any case, the
proportionality stands. A forked multicore program running n processes on large read-only data will take
just shy of n times less memory to complete.

 Scoping Implications for R
 There are no atypical scoping implications for multicore R in UNIX. This is logical considering the nature of
forked processes as described in this section.

 For our platform, this means mcTimeSeries() can be called liberally from any location and will follow
the same scoping rules as any normal R function. For reasons that will become apparent as we discuss
 foreach in Windows, the .packages and .exports arguments of foreach() are ignored in UNIX systems.
Our original declaration of mcTimeSeries() includes a handful of lines for Windows compatibility that are
not required in UNIX. Removing these lines will result in marginal performance increases in the function
and allow both Windows and UNIX users to better understand the content of it.

 Listing B-2 declares a pure UNIX version of mcTimeSeries() . It is the same as the OS-independent
version declared in Listing 6-12, less a few bells and whistles. We list and explain the differences here:

• The ellipsis (…) has been removed from the end of the argument list. This ellipsis is
unneeded for UNIX users because they can take advantage of lexical scoping rather
than explicitly passing extra values and functions.

http://dx.doi.org/10.1007/978-1-4842-2178-5_6

APPENDIX B ■ SCOPING IN MULTICORE R

198

• The first three lines of the function body are removed. These lines constructed a
character vector export of object names that existed in the global environment but
not the function environment. The vector was passed to foreach() in the .export
argument to enforce lexical scoping at a maximum of two levels. Performing this
calculation was a means of manually implementing lexical scoping in the case that
only the global and a single function environment mattered. The .export argument
is completely ignored in the UNIX implementation of foreach() .

• The .packages argument is removed. This argument was supplied with
 loadedNamespace() in order to export all packages loaded in the main environment.
The .packages argument is not ignored in UNIX foreach() but is altogether
redundant because R instances share the packages under fork . The R instances would
still attempt to load the existing packages every time mcTimeSeries() is run only to
find them already loaded, much in the same way running library() repeatedly would
have no effect. There is the possibility that conditional loading of a package across
instances can necessitate this argument in UNIX but would be unlikely and in poor
developmental style. There is a strong chance that reloading all of the active packages
in the order supplied by loadedNamespaces() can result in unintended masking in
packages that have conflicting function names. This is unlikely to hinder development
but is another nuisance that can be avoided with this version of our function.

 Listing B-2. Pure UNIX mcTimeSeries()

 mcTimeSeries <- function(data, tsfunc, byColumn, windowSize, workers){

 SERIES <- foreach (i = 1:workers, .combine = rbind) %dopar% {

 jRange <- delegate (i = i, n = nrow (data), k = windowSize, p = workers)

 rollapply (data[jRange,],
 width = windowSize,
 FUN = tsfunc,
 align = "right",
 by.column = byColumn)

 }
 names (SERIES) <- gsub ("\\..+", "", names (SERIES))

 if(windowSize > 1){
 PAD <- zoo (matrix (nrow = windowSize-1, ncol = ncol (SERIES), NA),
 order.by = index (data)[1:(windowSize-1)])
 names (PAD) <- names (SERIES)
 SERIES <- rbind (PAD, SERIES)
 }

 if(is.null (names (SERIES))){
 names (SERIES) <- gsub ("\\..+", "", names (data)[1: ncol (SERIES)])
 }

 return (SERIES)

 }

APPENDIX B ■ SCOPING IN MULTICORE R

199

 UNIX users are highly encouraged to adopt this as a pure replacement over Listing 6-12. It will allow for
smoother development, higher performance, and greater extensibility of our source code. The importance
of extensibility cannot be stressed enough. For example, in exploring the source code, we have programmed
a function called entryfunc() into many of our indicators, evaluators, and optimizers. Say a developer was
looking to extend our platform and wanted to program in his own new function, exitfunc() . He then found
that this function performed best run through mcTimeSeries() . A UNIX user can run an optimization with
this new function by simply declaring exitfunc() in the global environment and using it in the evaluator to
alter the EXIT object. Listing B-3 gives a nonexecutable outline of how this might look.

 Listing B-3. Multicore Extensibility in UNIX

 exitfunc <- function(v) {
 # Body of developer's new exit function
 }

 evaluate (…) <- function(…){

 # Body of the evaluate function

 EXIT <- mcTimeSeries (CLOSE, exitfunc, TRUE, 20, workers)

 # Remainder of the evaluate function

 }

 All the UNIX developer needs to do to extend our platform to optimize his strategy with multicore R is
declare his exit function and alter one line of code in the evaluator. This is the case for normal single-core
functions in R, and it is a major reason why R is great for research. As we will see, this is not the case for
multicore R in Windows.

 Instance Replication in Windows
 Windows does not have a native fork equivalent. The foreach package works with doParallel to create n
independent R instances to run an n -core process. In simple cases, the foreach package allows for OS-
independent development of multicore code. When we begin depending on lexical scoping for objects lying
in between the function scope and global scope, the R instances will see them as missing and throw errors.

 Instance Replication and Memory Management
 The foreach implementation in Windows creates n independent R instances for an n -core process. These
instances are GUI-less R run-time environments instantiated and maintained via calls to the Windows
command prompt through the R function system() . This creates problems because each R instance
contains a remotely maintained persistent global environment.

 The call to foreach() attempts to mimic UNIX’s fork and R’s lexical scoping by treating the global
environment of each R instance as the function environment of the foreach() call. This is confusing because
the environments claim to exist at the function level but do not the follow scoping protocol expected
from a temporary and subglobal R environment. This is additionally inefficient because large objects are
not subject to normal removal and garbage collection protocol. Function-level objects exported to these
instances persist in memory when unused, which can quickly lead to out-of-memory errors in systems that
are otherwise capable of handling multicore computations of similar size.

APPENDIX B ■ SCOPING IN MULTICORE R

200

 Scoping Implications for R
 As a means of maintaining efficiency under instance replication, the foreach() function has us explicitly
declare all packages and objects we would like loaded in our instances. This behavior is not an attempt
at mimicry of fork ; rather, it is a non-R programming paradigm introduced out of necessity for Windows
compatibility. We declare these packages and objects through the .packages and .export arguments to
 foreach() , respectively. Since the objects referenced in these arguments may not be present in the function
scope, we supply a character vector of object names. The requirement to supply a character vector of names
rather than a list of objects to .export prevents us from dynamically exporting objects that lie in between the
global environment and the mcTimeSeries() environment.

 The OS-independent declaration of mcTimeSeries() in Listing 6-12 contains an ellipsis (…) at the
end of the argument list to allow users to supply extra objects from in-between environments directly into
 mcTimeSeries() . If a user wants to dynamically declare a function within a call to mcTimeSeries() , as is
typically done with apply -style functions, he must pass constituent function objects through all nested
function calls. This is a technically viable solution but greatly inhibits extensibility when compared to the
standard lexical scoping protocol of R.

 We will take the example given in Listing B-3 where a user would like to incorporate his new exitfunc()
using multicore R into the optimizer. We will walk through this process for a Windows user.

 First, it must be noted that most functions need arguments other than just data, and this matters
for multicore in Windows. If the user wants to pass a parameter to his function, he must declare it as a
parameter to exitfunc() rather than relying on lexical scoping. Moving along, we see the repeated pains of
passing this function object from the highest function that depends on it, the optimizer, all the way down to
the lowest, mcTimeSeries() .

 Listing B-4. Multicore Extensibility in Windows

 # Declare parameter alpha as function parameter
 exitfunc <- function(v, alpha) {
 # Body of developer's new exit function
 }

 # Declare function object exitfunc as
 # function parameter to evaluator
 evaluate <- function(… , exitfunc){

 # Body of the evaluate function

 # alpha exists in the function scope
 # of the evaluator
 alpha <- 0.5

 # Dynamically declare function object in
 # mcTimeSeries. Pass exitfunc and alpha
 # in the ellipses of the call because
 # the second argument depends on them.
 EXIT <- mcTimeSeries (CLOSE,
 function(v) exitfunc (v, alpha),
 TRUE, 20, workers,
 exitfunc, alpha)
 # Remainder of the evaluate function

 }

APPENDIX B ■ SCOPING IN MULTICORE R

201

 optimize <- function(… , exitfunc){

 # Alter all calls to evaluate to include
 # new function object parameter exitfunc

 # Body of the optimizer

 evaluate (… , exitfunc)

 # Body of the optimizer

 evaluate (… , exitfunc)

 # And so on. There are typically many calls
 # to evaluate() within the optimizer.

 }

 Aside from extensibility issues as they pertain to our platform, there are a few behaviors developers
need to be aware of in regard to reproducibility, instance management, and development testing .

• By default, foreach() exports all required nonfunction data objects in the
environment from which it was called. This is a notable efficiency optimization. It
makes efforts to copy only the necessary objects.

• Once any function object is exported either explicitly or implicitly through
 foreach() , it persists in the global environment for an unspecified amount of time or
until terminated. This can cause reproduceability issues when exporting functions. If
two independent calls to foreach() need the same user-defined function exported,
the second call to be executed will run without error if the function is exported in
the first call. Once the user-defined function has been exported a single time, it is
available to all future functions as long as the instances are up.

• Once any data object is exported either explicitly or implicitly through foreach() , it
persists in the global environment for an unspecified amount of time. Letting large
data objects pile up will eventually cause an out-of-memory error.

 Windows users face significant setbacks to extensibility with regard to multicore R. Ultimately, many
production strategies will not depend on multicore R but rather the creative use of existing binaries.

203© Chris Conlan 2016
C. Conlan, Automated Trading with R, DOI 10.1007/978-1-4842-2178-5

 A
 Account data , 107
 Accumulators , 52, 61–62
 Adjusted close , 44–48, 172, 176
 Analytical optimization , 102–103
 API , 8, 23–30, 33, 130–132, 134–135, 140, 147,

151–152, 189
 Application-specifi c integrated circuit (ASIC) , 162
 Apply-style functions , 56, 71, 73, 200

 B
 Backtesting , 6, 83–99
 Bash scripts , 159–160
 BAT scripts , 157–158
 Bollinger Bands , 44, 51, 54–55, 81, 83–84, 94–96
 Brokerage , 61, 87, 93, 130–137, 139–140, 148–150,

152, 161–164, 185–186, 189

 C
 Cache , 68, 79, 161
 Career , 160–162, 165
 C/C++ , 68–70, 79, 136, 161–162
 Chaikin Money Flow , 56–57
 Closing price , 8, 26, 44–48, 56, 86, 92, 145
 Compiled languages , 69–71
 Computer hardware , 65–74, 197
 Correlation , 17, 55
 CPU , 66–69, 74–75, 79, 161–162, 197
 CRON , 159–160
 CRON jobs , 155–156, 159–160
 Cross validation , 20, 86–87, 101–102, 127–130

 D
 Database , 24, 28–29, 68
 Data processing , 23, 47, 77, 101

 Direct search optimization , 104, 120, 122
 Direct-to-market , 162, 164
 Disk , 68, 197
 Dividend , 44–47, 172
 doMC , 75–76, 195
 doParallel , 75–76, 195, 199
 Dynamic loading library (DLL) , 132–133, 136
 Dynamic scope , 200

 E
 Equity , 3, 12, 45, 85, 92–93, 131–132, 140
 Equity cuve , 3–14, 16–17, 19, 85, 87, 97–98, 128–130
 ETF , 3, 8
 Ethernet , 163–164
 Exchanges , 34, 134, 140, 148–149, 162–164
 Exhaustive search , 104, 110–114
 Export to CSV , 26–27
 eXtensible Markup Language (XML) , 136, 140–149,

165, 172

 F
 Feasibility , 24, 131, 135–136
 Field-programmable gate array (FPGA) , 162
 File paths , 30, 140, 157, 167
 Filters , 62–63, 69
 Finance , 17, 24–29, 33, 38, 44, 46, 92, 103, 133,

155, 172
 FIX engine , 132, 136, 148
 FIXML , 132, 140, 146, 148–151
 FIX protocol , 148–149
 Foreach , 75–81, 195, 197–201
 For loops , 71–73, 75, 76–78, 99
 Fundamental analysis , 3–20, 165

 G
 Gradient optimization , 15, 87, 103

 Index

■ INDEX

204

 H
 Hardware description language (HDL) , 162
 Heartbeat , 134–135
 High-frequency trading , 162, 164
 HTTP/HTTPS , 132–136, 148, 150, 170
 Hyperthreading , 66–67, 75

 I
 Indicators , 44, 51–59, 61, 77, 79–81, 83, 86, 105, 165,

178, 184, 189, 197, 199
 Instance replication , 195, 199–201
 Integer mapping , 75, 77–78
 Interpreted languages , 69–71, 75, 161–162
 IPO , 37–39

 J, K
 Java , 69–70, 131–132, 135, 161
 JavaScript Object Notation (JSON) , 29, 132, 140,

147–148

 L
 Latency , 52, 57, 136, 148–149, 163–164
 Lexical scope , 195–200
 Limit orders , 149, 163
 Linux , 79
 Logic processing unit (LPU) , 65–66

 M
 Machine learning , 52
 Market orders , 60, 87, 164
 Math processing uni (MPU) , 65–66
 Matrix , 48–49, 72–75, 78–79, 85, 92, 106, 137, 197
 Maximum drawdown , 7, 12–14
 Memory , 23, 24, 27–28, 44, 67–73, 75–76, 79, 155,

161, 168–169, 171–172, 195, 197, 199, 201
 Memory management , 161, 195, 197, 199
 Money management , 59, 61
 Moving average , 51–54, 61–62, 77, 79, 83
 Moving average convergence divergence oscillator

(MACD) , 51, 53, 61–63, 83, 93, 97–98, 105,
112–113, 126, 130, 185, 189

 Multicore computing , 65, 74–77

 N
 NA , 37–42, 44, 47–48, 69, 74, 77, 86, 105, 116
 NA-handling , 37–42
 NaN , 37, 116
 Natural language processing (NLP) , 165
 Nelder-Mead , 103–104, 120–127
 .NET , 69, 131–132, 136

 News , 45, 165
 Numerical optimization , 102–105, 117, 122

 O
 OAuth , 132–133, 135–136, 150–152
 Optimization , 15, 48, 59, 85–87, 101–130, 155, 165,

189, 199, 201
 Oscillators , 51, 53, 61
 Overlays , 40, 51, 61

 P
 Packet loss , 163–164
 Parallel backend , 76
 Parallel computing , 74–75
 Parameter space , 103–104, 110, 113–114, 116
 Pattern Search , 103–104, 114–120, 123, 126, 189
 Performance Metrics , 10–11, 16–20, 44, 93, 97–98,

101, 103, 105–107, 128, 130
 Portfolio management , 86, 139
 Precompiled binaries , 69, 72
 Prime brokerages , 164
 Process fl ow , 59, 69
 Python , 69–70, 161–162

 Q
 Quantmod , 8, 33–34

 R
 Random access memory (RAM) , 68–69, 79, 197
 Regression , 7, 16–20
 Relative Strength Index (RSI) , 51, 84, 85
 Retail brokerage , 131, 136, 148–149, 161–164
 Return series , 3–6, 8, 10–11, 18–19, 48, 97, 128
 Right to refuse , 134, 162–163
 Risk-adjusted return , 3, 6, 16, 20
 Risk-return metrics , 6–20
 RJSONIO , 136, 147–148
 ROAuth , 136, 150–152
 rollapply , 53–57, 73–74, 77–80, 105, 167

 S
 Scheduler , 65–66, 156, 158–159, 162
 Scope , 134, 148, 155, 195–201
 Scripting languages , 68–71, 161
 Secure connections , 133–135, 163
 Secure Sockets Layer (SSL) , 132–136, 150
 Sharpe ratio , 7, 10–16
 Simulation , 3, 5, 14, 19, 35, 37–38, 43–44, 46, 48, 75,

83–99, 101–103, 106, 127, 129–130, 155, 178
 Slope , 16, 55

■ INDEX

205

 Source , 23–25, 28, 30, 37–39, 47, 57, 69, 74, 106, 133,
135–136, 140, 155–156, 163, 167–194, 199

 S&P 500 , 3, 8, 10, 17, 26–27, 37–39
 SPY , 3, 8, 12, 18–20, 33
 Stock returns , 48
 Stock split , 44–46
 Stop limit , 60, 149
 Stop market , 60
 Strategy development , 6, 20, 58, 164
 Strategy optimization , 101, 103
 Summary statistics , 19, 93, 97–98
 Swap space , 68–69
 Swiss Currency Crisis , 163

 T
 Task scheduling , 155–160
 Time series , 8, 20, 33, 35, 48, 73, 77–81, 101–102, 128
 Trading strategy , 38, 51, 58, 99, 102–103, 131, 152, 185
 Triggers , 44, 52, 62–63, 75, 83, 85–86, 116–162, 172

 U
 UNIX , 30, 65, 74–76, 143–144, 152, 155–157,

159–160, 195, 197–199
 UNIX fork , 197–199
 URL encoding , 148–152

 V
 Volatility , 15–17
 Volatility metrics , 43–44

 W
 WiFi , 163–164
 Windows , 65, 74–77, 79, 136, 152, 155–159,

195–201

 X
 XML . See eXtensible Markup Language (XML)
 XPath , 30, 140–147

 Y
 Yahoo! Finance , 24–29, 33, 38, 44, 46, 92, 133,

155, 172
 Yahoo! Query Language (YQL) , 29–34, 133, 140–141,

144–145, 147, 172

 Z
 Zoo , 24, 34–35, 39, 56, 73, 86, 137, 176

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part 1: Problem Scope
	Chapter 1: Fundamentals of Automated Trading
	Equity Curve and Return Series
	Characteristics of the Equity Curve
	Characteristics of the Return Series

	Risk-Return Metrics
	Characteristics of Risk-Return Metrics
	Sharpe Ratio
	Maximum Drawdown Ratios
	Partial Moment Ratios
	Regression-Based Performance Metrics

	Optimizing Performance Metrics

	Part 2: Building the Platform
	Chapter 2: Networking Part I
	Yahoo! Finance API
	Setting Up Directories
	URL Query Building
	Data Acquisition
	Loading Data into Memory
	Note on Coding Style

	Updating Data

	YQL Web Service
	URL and Query Building

	Note on Quantmod
	Background

	Comparison
	Organizing as Date-Uniform zoo Object
	Note on zoo Objects

	Chapter 3: Data Preparation
	Handling NA Values
	Note: NA vs. NaN in R
	IPOs and Additions to S&P 500
	Merging to the Uniform Date Template
	Forward Replacement
	Linearly Smoothed Replacement
	Volume-Weighted Smoothed Replacement

	Discussion of Replacement Methods
	Real Time vs. Simulation
	Influence on Volatility Metrics
	Influence on Trading Decisions
	Conclusion

	Closing Price and Adjusted Close
	Adjusting for Stock Splits
	Adjusting for Cash Dividends
	Efficient Updating and Adjusted Close
	Implementing Adjustments

	Test for and Correct Inactive Symbols
	Computing the Return Matrix

	Chapter 4: Indicators
	Indicator Types
	Overlays
	Oscillators
	Accumulators
	Pattern/Binary/Ternary
	Machine Learning/Nonvisual/Black Box

	Example Indicators
	Simple Moving Average
	Moving Average Convergence Divergence Oscillator (MACD)
	Bollinger Bands
	Custom Indicator Using Correlation and Slope
	Indicators Utilizing Multiple Data Sets

	Conclusion

	Chapter 5: Rule Sets
	Our Process Flow as Nested Functions
	Terminology
	Example Rule Sets
	Overlays
	Oscillators
	Accumulators

	Filters, Triggers, and Quantifications of Favor

	Chapter 6: High-Performance Computing
	Hardware Overview
	Processing
	Multicore Processing
	Hyperthreading
	Memory
	The Disk
	Random Access Memory (RAM)
	Processor Cache
	Swap Space
	Software Overview
	Compiled vs. Interpreted
	Scripting Languages
	Speed vs. Safety
	Takeaways
	for Loops vs. apply Functions
	for Loops and Memory Allocation
	apply-Style Functions
	Use Binaries Creatively
	Note on Measuring Compute Time

	Multicore Computing in R
	Embarrassingly Parallel Processes
	doMC and doParallel
	The foreach Package

	The foreach Package in Practice
	Integer Mapping
	Computing the Return Matrix with foreach
	Computing Indicators with foreach

	Chapter 7: Simulation and Backtesting
	Example Strategies
	Our Simulation Workflow
	Listing 7-1: Pseudocode
	Listing 7-1: Explanation of Inputs and User Guide
	Discussion

	Implementing Example Strategies
	Summary Statistics and Performance Metrics
	Conclusion

	Chapter 8: Optimization
	Cross Validation in Time Series
	Numerical vs. Analytical Optimization
	Numerical Optimization Overview
	Parameter Transform for Unbounded Search Algorithms

	Declaring an Evaluator
	Listing 8-1: Pseudocode
	Listing 8-1: Explanation of Inputs and User Guide

	Exhaustive Search Optimization
	Pattern Search Optimization
	Generalized Pattern Search Optimization

	Nelder-Mead Optimization
	Nelder-Mead with Random Initialization

	Projecting Trading Performance
	Conclusion

	Chapter 9: Networking Part II
	Market Overview: Brokerage APIs
	Secure Connections
	Establishing SSL Connections
	Proprietary SSL Connections
	HTTP/HTTPS
	OAuth

	Feasibility Analysis for Trading APIs
	Feasibility of Custom R Packages
	HTTPS + OAuth Through Existing R Packages
	FIX Engines
	Exporting Directions to a Supported Language

	Planning and Executing Trades
	The PLAN Job
	The TRADE Job

	Common Data Formats
	Manipulating XML
	Generating XML Documents
	Manipulating JSON Data
	Note on URL Encoding

	The Financial Information eXchange Protocol
	The FIX eXtensible Markup Language
	OAuth in R

	Conclusion

	Part 3: Production Trading
	Chapter 10: Organizing and Automating Scripts
	Organizing Scripts into Jobs
	Calling Jobs with the Source Function
	Calling Jobs via Sourcing
	Task Scheduling in Windows
	Running R from the Command Line in Windows
	Setting Up and Managing the Task Scheduler

	Task Scheduling in UNIX
	Conclusion

	Chapter 11: Looking Forward
	Language Considerations
	Python
	C/C++
	Hardware Description Languages

	Retail Brokerages and Right to Refuse
	Right to Refuse in the Swiss Currency Crisis

	Connection Latency
	Ethernet vs. WiFi
	Proximity to Exchanges

	Prime Brokerages
	Digesting News and Fundamentals
	Conclusion

	Appendix A: Source Code
	Platform/config.R
	Platform/load
	Platform/load.R
	Platform/update.R
	Platform/functions/yahoo.R
	Platform/load/initial.R
	Platform/load/loadToMemory.R
	Platform/load/updateStocks.R
	Platform/load/dateUnif.R
	Platform/load/spClean.R
	Platform/load/adjustClose.R
	Platform/load/return.R
	Platform/load/fillInactive.R

	Platform/compute
	Platform/compute/MCinit.R
	Platform/compute/functions.R

	Platform/plan
	Platform/plan.R
	Platform/plan/decisionGen.R

	Platform/trade
	Platform/trade.R

	Platform/model
	Platform/model.R
	Platform/model/optimize.R
	Platform/model/evaluateFunc.R
	Platform/model/optimizeFunc.R

	Appendi B:Scoping in Multicore R
	Scoping Rules in R
	Using Lexical Scoping
	Takeaways

	The UNIX fork System Call
	The fork Call and Memory Management
	Scoping Implications for R

	Instance Replication in Windows
	Instance Replication and Memory Management
	Scoping Implications for R

	Index

