
ptg18144483

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

Begin
to Code
with
C#

Rob Miles

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Rob Miles.
All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number: 2015942036
ISBN: 978-1-5093-0115-7

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide.
If you need support related to this book, email Microsoft Press Support at mspinput@micro-
soft.com. Please tell us what you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the authors’ views and opinions. The views,
opinions, and information expressed in this book, including URL and other Internet website
references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious.
No real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks”
webpage are trademarks of the Microsoft group of companies. All other marks are the
property of their respective owners.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: John Pierce
Editorial Production: Rob Nance and John Pierce
Technical Reviewer: Lance McCarthy; Technical Review services provided by Content

Master, a member of CM Group, Ltd.
Copyeditor: John Pierce
Indexer: Christina Palaia, Emerald Editorial Services
Cover: Twist Creative • Seattle

www.allitebooks.com

http://aka.ms/tellpress
http://www.microsoft.com
http://www.allitebooks.org

ptg18144483

To Mary

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

Contents at a glance
Part 1: Programming fundamentals

Chapter 1 Starting out . 2

Chapter 2 What is programming? . 18

Chapter 3 Writing programs . 42

Chapter 4 Working with data in a program . 68

Chapter 5 Making decisions in a program . 100

Chapter 6 Repeating actions with loops . 134

Chapter 7 Using arrays . 172

Part 2: Advanced programming
Chapter 8 Using methods to simplify programs 212

Chapter 9 Creating structured data types . 246

Chapter 10 Classes and references . 288

Chapter 11 Making solutions with objects . 336

Part 3: Making games
Chapter 12 What makes a game? . 374

Chapter 13 Creating gameplay . 394

Chapter 14 Games and object hierarchies . 416

Chapter 15 Games and software components 446

iv iv

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

Contents
Introduction . xvi

Part 1: Programming fundamentals

1 Starting out . 2
Building a place to work . 4
Getting the tools and demos . 4
Using the tools . 5

Visual Studio projects and solutions . 6
Running a program with Visual Studio 7
Stopping a program running in Visual Studio 10
The MyProgram application . 11

What you have learned . 15

2 What is programming? . 18
What makes a programmer? . 20

Programming and party planning . 20

Give us feedback
Tell us what you think of this book and help
Microsoft improve our products for you. Thank
you!
http://aka.ms/tellpress

vi vi

www.allitebooks.com

http://aka.ms/tellpress
http://www.allitebooks.org

ptg18144483

Programming and problems . 21
Programmers and people . 22

Computers as data processors . 23
Machines and computers and us . 23
Making programs work . 26
Programs as data processors . 27

Data and information . 35
What you have learned . 39

3 Writing programs . 42
C# program structure . 44

Identify resources . 44
Start a class defi nition . 45
Declare the StartProgram method 46
Set the title and display a message 47

Extra Snaps . 50
SpeakString . 50

Creating new program fi les . 52
Extra Snaps . 61

Delay . 61
SetTextColor . 61
SetTitleColor . 62
SetBackgroundColor . 63

Creating your own colors . 63
What you have learned . 66

4 Working with data in a program 68
Starting with variables . 70

Variables and computer storage . 71

viivii

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

Declaring a variable . 71
Simple assignment statements . 73

Using a variable in a program . 74
Assigning values in a declaration . 76
Adding strings together . 77

Working with numbers . 80
Whole numbers and real numbers . 80
Performing calculations . 83

Working with different types of data . 85
Converting numbers into text . 86

Whole numbers and real numbers in programs 89
Variable types and expressions . 89
Precision and accuracy . 91
Converting types by casting . 92
Using casting on operands in an expression 93
Types and errors . 94

Extra Snaps . 95
Weather snaps . 95
ThrowDice . 96

What you have learned . 97

5 Making decisions in a program 100
Understanding the Boolean type . 102

Declaring a Boolean variable . 102
Boolean expressions . 103

Using if constructions and operators . 104
Relational operators . 106
Equality operators . 107
Comparing strings . 109

Creating blocks of statements . 110

viii viii

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

Local variables in blocks of code . 111
Creating complex conditions using logical operators 113

Working with logic . 116
Adding comments to make a program clearer 117
Funfair rides and programs . 119

Reading in numbers . 122
Building logic using if conditions 124
Completing the program . 125

Working with program assets . 127
Asset management in Visual Studio 127
Playing sound assets . 128
Displaying image content . 129

What you have learned . 132

6 Repeating actions with loops 134
Using a loop to make a pizza picker . 136

Counting selections . 136
Displaying the totals . 139
Getting user options . 139
Adding a while loop . 142

Performing input validation with a while loop 149
Using Visual Studio to follow the execution of your programs . . 151
Counting in a loop to make a times-table tutor 157
Using a for loop construction . 160
Breaking out of loops . 163
Going back to the top of a loop by using continue 165
Extra Snaps . 168

Voice input . 168
Secret data entry . 169

What you have learned . 170

ixix

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

7 Using arrays . 172
Have an ice cream . 174

Storing the data in single variables . 175
Making an array . 176

Using an index . 177
Working with arrays . 179
Displaying the contents of the array by using a
for loop . 184
Displaying a user menu . 186
Sorting an array using the Bubble Sort 187
Finding the highest and lowest sales values 194
Working out the total and the average sales 196
Completing the program . 198

Multiple dimensions in arrays . 199
Using nested for loops to work with two-dimensional
arrays . 201
Making test versions of programs . 203
Finding the length of an array dimension 204

Using arrays as lookup tables . 206
What you have learned . 208

Part 2: Advanced programming

8 Using methods to simplify programs 212
What makes a method? . 214

Adding a method to a class . 215
Feeding information to methods by using
parameters . 217
Returning values from method calls 222

x x

ptg18144483

Making a tiny contacts app . 224
Reading in contact details . 227
Storing contact information . 228
Using Windows local storage . 229
Using reference parameters to deliver results from a
method call . 231
Displaying the contact details . 237

Adding IntelliSense comments to your methods 241
What you have learned . 243

9 Creating structured data types 246
Storing music notes by using a structure . 248

Creating and declaring a structure 250
Creating arrays of structure values 252
Structures and methods . 253
Constructing structure values . 256
Making a music recorder . 260
Creating preset arrays . 262

Objects and responsibilities: Making a SongNote play itself . . . 263
Protecting values held in a structure . 264
Making a drawing program with Snaps . 267

Drawing dots on the screen . 268
Using the DrawDot Snap to draw a dot on the screen . 269
The SnapsCoordinate structure . 270
Using the GetDraggedCoordinate Snap to detect
a drawing position . 272
Using the SetDrawingColor Snap to set the
drawing color . 274
Using the ClearGraphics Snap to clear the screen . . . 276
The SnapsColor structure . 277

Creating enumerated types . 278

xixi

ptg18144483

Making decisions with the switch construction 280
Extra Snaps . 282

GetTappedCoordinate . 282
DrawLine . 283
GetScreenSize . 284
PickImage . 285

What you have learned . 285

10 Classes and references . 288
Making a time tracker . 290

Creating a structure to hold contact information 290
Using the this reference when working with objects . 292
Managing lots of contacts . 294
Making test data . 296
Designing the Time Tracker user interface 297
Structuring the Time Tracker program 298
Creating a new contact . 299
Finding customer details . 300
Adding minutes to a contact . 302
Display a summary . 304

Structures and classes . 306
Sorting and structures . 306
Sorting and references . 307
Reference and value types . 308
References and assignments . 311
Classes and constructors . 316
Arrays of class references . 317

From arrays to lists . 319
Working through lists of data . 321
Lists and the index value . 322

xii xii

ptg18144483

Lists of structures . 322
Storing data using JSON . 323

The Newtonsoft JSON library . 324
Storing and recovering lists . 326

Fetching data using XML . 329
What you have learned . 334

11 Making solutions with objects 336
Creating objects with integrity . 338

Protecting data held inside an object 338
Providing Get and Set methods for private data 341
Providing methods that refl ect the use of an object . . . 343

Using properties to manage access to data 346
Using properties to enforce business rules 349

Managing the object construction process . 351
Catching and dealing with exceptions 353
Creating user-friendly applications 355

Saving drawings in fi les . 356
SaveGraphicsImageToFileAsPNG 357
SaveGraphicsImageToLocalStoreAsPNG 358
LoadGraphicsPNGImageFromLocalStore 358
The DateTime structure . 359
Getting the current date and time 360
Fading date and time displays . 360
Using the date and time to make a fi le name 361
Creating a Drawing class . 362
Creating a list of drawings . 364
Making the drawing diary methods 365

What you have learned . 368

xiiixiii

ptg18144483

Part 3: Making games

12 What makes a game? . 374
Creating a video game . 376

Games and game engines . 376
Games and sprites . 378

What you have learned . 392

13 Creating gameplay . 394
Creating a player-controlled paddle . 396
Adding sound to games . 401
Displaying text in a game . 403

Making a complete game . 408
What you have learned . 414

14 Games and object hierarchies 416
Games and objects: Space Rockets in Space 418

Constructing a star sprite that moves 419
Allowing methods to be overridden 427
Creating a moving star fi eld . 428
Creating a rocket based on a MovingSprite 430
Adding some aliens . 432

Designing a class hierarchy . 440
What you have learned . 443

xiv xiv

ptg18144483

15 Games and software components 446
Games and objects . 448

Creating cooperating objects . 448
Objects and state . 456
Interfaces and components . 465

What you have learned . 471

Index .474

xvxv

ptg18144483

 Introduction
I think that programming is the most creative thing you can learn how
to do. If you learn to paint, you can make pictures. If you learn the violin,
you can make music. But if you learn to program, you can create experi-
ences that are entirely new (and you can make pictures and music too if
you want to). Once you have started on the programming path, there’s
no limit to where you can go. There are always new devices, technologies,
and marketplaces where you can use your programming skills.

You can think of this book as your first step on a journey to programming
enlightenment. The best journeys are undertaken with a destination in
mind, and this one is no different. I’d like to describe the destination as
“usefulness.” By the end of this book you won’t be the best programmer
in the world (unless I retire, of course), but you will have enough skills and
knowledge to write properly useful programs. And maybe you can have
at least one of your programs available worldwide for download from the
Microsoft Store.

However, before we start off, I’d like to issue a small word of warning. In
the same way that a guide would want to tell you about the lions, tigers,
and crocodiles that you might encounter if you went on a safari adven-
ture, I feel that I must let you know that our journey might not be all
smooth sailing. Programmers have to learn to think slightly differently
about problem solving because a computer just doesn’t work the same
way that we do. Humans can do complex things rather slowly. Computers
can do simple things really quickly. It is the job of the programmer to har-
ness the simple abilities of the machine to solve complicated problems.
This is what we are going to learn how to do.

The key to success as a programmer is pretty much the same as for lots of
other endeavors. If you want to become a world-renowned violin player,
you will have to practice a lot. The same is true for programming. You
will have to spend quite a bit of time working on your programs to get
code-writing skills. But the good news is that, just as a violin player really
enjoys making the instrument sing, making a computer do exactly what
you want turns out to be a really satisfying experience. And it gets even
more enjoyable when you see other people using programs that you
have written and finding them useful and fun to use.

xvi Introduction

ptg18144483

How this book fits together
I’ve organized this book in four parts. Each part builds on the previous
one with the aim of turning you into a successful programmer. We start
off considering the low-level programing instructions that programs use
to tell the computer what to do, and we finish by looking at professional
software practices.

Part 1: Coding fundamentals
The first part gets you started. It points you to where you will install and
use the programming tools that you will need, and it introduces you to
the fundamental elements of the C# programming language that are
used by all programs.

Part 2: Advanced programming
Part 2 describes the features of the C# programming language that are
used to create more complex applications. It shows you how to break
large programs into smaller elements and how you can create custom
data types that reflect the specific problem being solved. You’ll also
find out how programs can maintain data in storage when they are not
running.

Part 3: Making games
Making games is great fun. And it turns out that it is also a great way to
learn how to use object-oriented programming techniques. In this part,
you’ll build some playable games and at the same time learn the funda-
mentals of how to extend programming objects through inheritance and
component-based software design.

Part 4: Creating applications
Part 4 is where you find out how to create fully fledged applications.
You’ll discover how to design graphical user interfaces and how to con-
nect program code to the elements on the display. You’ll also learn how
modern applications are structured. Part 4 doesn’t appear in this printed

Introduction xvii

ptg18144483

book but is available as an ebook, free to download from this book’s
webpage at https://aka.ms/BeginCodeCSharp/downloads.

How you will learn
In each chapter, I will tell you a bit more about programming. I’ll show
you how to do something, and then I’ll invite you make something of
your own by using what you’ve learned. You’ll never be more than a page
or so away from doing something or making something unique and
personal. In each chapter we will use Snaps, prebuilt bits of functionality
that I’ll show you how to use. After that, it’s up to you to make something
amazing!

You can read the book straight through if you like, but you’ll learn much
more if you slow down and work with the practical parts along the way.
This book can’t really teach you how to program, any more than a book
about bicycles can teach you how to ride a bike. You have to put in the
time and practice to learn how to do it. But this book will give you the
knowledge and confidence to try your hand at programming, and it will
also be around to help you if your programming doesn’t turn out as you
expected. Here are the elements in the book that will help you really
learn, by doing!

Yes, the best way to learn things is by doing, so you’ll find “Make Something
Happen” elements throughout the text. These elements offer ways for you to
practice your programming skills. Each of them starts with an example and
then introduces some steps you can try on your own. Everything you create will
run on a Windows PC, tablet, or phone. You can even publish your creations to
the whole wide world via the Windows Store.

A great way to learn how to program is by looking at code written by other
people and working out what it does (and sometimes why it doesn’t do what
it should). In this book’s “Code Analysis” challenges, you’ll use your deduc-
tive skills to figure out the behavior of a program, fix bugs, and suggest
improvements.

MAKE SOMETHING HAPPEN

CODE ANALYSIS

xviii Introduction

https://aka.ms/BeginCodeCSharp/downloads

ptg18144483

If you don’t already know that programs can fail, you will learn this hard lesson
very soon after you start writing your first program. To help you deal with this
in advance, I’ve included “What Could Go Wrong?” elements, which antici-
pate problems you might have and provide solutions to those problems. For
example, when I introduce something new, I’ll sometimes spend some time
considering how it can fail and what you need to worry about when you use the
new feature.

PROGRAMMER’S POINTS

I’ve spent a lot of my time teaching programming. But I’ve also written many
programs and sold a few to paying customers. I’ve learned some things the
hard way that I really wish I’d known right at the start. The aim of “Program-
mer’s Points” is to give you this information up front so that you can start
taking a professional view of software development as you learn how to do it.

“Programmer’s Points” cover a wide range of issues, from programming to
people to philosophy. I’d strongly advise you to read and absorb these points
carefully—they can save you a lot of time in the future!

Programs and Snaps
Nobody builds programs from scratch any more. All software is built
using pieces of software that have already been built. If one program
wants to display text, make a sound, or play some video, it simply asks
another program to do it. Every popular computer language is under-
pinned by a huge library of existing code, and one of the things that a
programmer needs to understand is how to use these libraries and soft-
ware written by other people.

I’ve created the Snaps library specially for this book. It provides a set of
functional behaviors that are easy to use and fit together. You will use
the Snaps library in your first programs. Later in the book you’ll discover
other libraries of functionality that you can use to build programs.

Programs that use Snaps run inside the Snaps engine, which is a self-
contained environment in which programs can speak messages, get
input from a user, draw images, make sounds, and even find out what the
weather is like.

WHAT COULD GO WRONG

Introduction xix

ptg18144483

I’ll provide examples of how the Snaps work and then leave it up to you
to see what you can come up with. The principle we’ll follow is this: “If
you can’t use programming to impress your friends and family, what’s the
point of it?” I really hope you’ll come up with some impressive programs
of your own and maybe even publish them for other people to enjoy.

PROGRAMMER’S POINT

Everything is built on someone else’s code
It seems fitting that the first Programmer’s Point is about how “creatively
lazy” a good programmer can be. They’ll never write a program if they
can find a way to use one that has already been written. (Why reinvent the
wheel?) The Snaps that I’ve provided are an example of this. You’ll take a
look inside some of them later in the book and discover that they themselves
make use of other libraries.

Software and hardware
You’ll need a computer and some software to work with the programs in
the book. I’m afraid I can’t provide you with a computer, but in the first
chapter you will find out where you can get Visual Studio 2015 Commu-
nity Edition, the free software that you’ll use to create your programs.
You’ll also learn where to download the Snaps library and the demonstra-
tion code we’ll examine and use.

The computer you use must run the 64-bit version of the Windows 10
operating system. Here are the other requirements:

 ● A 1 Ghz or faster processor, preferably an Intel i5 or better.

 ● At least 4 gigabytes (GB) of memory (RAM), but preferably 8 GB or
more.

 ● The full Visual Studio 2015 Community installation takes about 8 GB
of hard disk space.

There are no special requirements for the graphics display, although a
higher resolution screen will enable you to see more when you are writ-
ing your programs. The Snaps library works with touchscreens, a mouse,

xx Introduction

ptg18144483

pen input devices, and the Xbox One and Xbox 360 controllers for the
games you’ll develop in Part 3.

Visual Studio 2015 Community Edition is a freely available applica-
tion that can be used to create C# programs on a Windows 10 PC. If
you have an earlier version of Visual Studio on your computer already
(Visual Studio 2013, for example), I’m afraid that you can’t use it with this
book. However, the 2015 version of Visual Studio will work quite happily
alongside existing installations. In Chapter 1, I provide a link to detailed
instructions for how to install Visual Studio and get it going. To make use
of Visual Studio, it’s best to have a Microsoft account so that a develop-
ment license can be assigned to you.

Downloads
In every chapter in this book, I’ll demonstrate and explain programs that
teach you how to begin to program—and that you can then use to create
programs of your own. You can download the Snaps library, this book’s
sample code, installation and setup instructions for Visual Studio, and the
ebook for Part 4, “Creating applications,” from the following page:

https://aka.ms/BeginCodeCSharp/downloads

Follow the instructions you’ll find in Chapter 1 and in the setup document
to install the sample programs and code.

Acknowledgments
I really like to write books. Huge thanks to Devon Musgrave and the
folks at Microsoft Press for giving me the chance to write another one,
to Rob Nance for the wonderful artwork, and to John Pierce and Lance
McCarthy for doing such fantastic work on the text. It turns out that the
acknowledgment is the olny part of the buk that they don’t see, and I
must give them both greatful thanks for making sure that all my text
reads rightly.

Introduction xxi

https://aka.ms/BeginCodeCSharp/downloads

ptg18144483

Errata, updates, & book
support
We’ve made every effort to ensure the accuracy of this book and its com-
panion content. You can access updates to this book—in the form of a list
of submitted errata and their related corrections—at:

https://aka.ms/BeginCodeCSharp/errata

If you discover an error that is not already listed, please submit it to us at
the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware
is not offered through the previous addresses. For help with Microsoft
software or hardware, go to http://support.microsoft.com.

You’ll also find “author’s notes” about this book, including other projects
and information about the Snaps library at:

http://www.robmiles.com/begintocode

Free ebooks from Microsoft
Press
From technical overviews to in-depth information on special topics, the
free ebooks from Microsoft Press cover a wide range of topics. These
ebooks are available in PDF, EPUB, and Mobi for Kindle formats, ready for
you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

xxii Introduction

https://aka.ms/BeginCodeCSharp/errata
http://support.microsoft.com
http://www.robmiles.com/begintocode
http://aka.ms/mspressfree

ptg18144483

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback
our most valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions.
Your answers go directly to the editors at Microsoft Press. (No personal
information will be requested.) Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/
MicrosoftPress.

Introduction xxiii

http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://twitter.com/MicrosoftPress

ptg18144483

ptg18144483

Part 1
Programming
fundamentals

Let’s begin traveling toward programming enlightenment. You’ll start by
installing the programming tools you need. Next you’ll discover what a
computer actually does and what a programming language is. You’ll also
take your first small steps in using the C# language to tell a computer
to do things for you, and you’ll find out how to work with Snaps,

small helpers I’ve created for you to use in your first programs.

The aim of Part 1 is to introduce you to fundamental elements of the C#
programming language that are used by all programs. Then, in Part 2,
you’ll look at how a modern programming language like C# builds on these

programming fundamentals to make it easier to create applications.

1

ptg18144483

1
Starting out

ptg18144483

What you will learn
Programmers have a set of tools and techniques they use when they create
programs. In this chapter, you’re going to learn what kind of computer you
need to write programs and how to fi nd and install the tools you’ll use in
this book to build your code. You’ll also take your fi rst actual coding steps
using the Begin to Code with C# sample apps.

Building a place to work .4

Getting the tools and demos. .4

Using the tools .5

What you have learned .15

3

ptg18144483

Building a place to work
If you were a truck driver who spends many hours in the cab hauling goods across the
country, you’d want a truck with a comfortable seat, a good view of the road, and con-
trols that were light to use. It would also help if your truck had enough power to climb
hills at a reasonable speed and was easy to handle on twisty mountainside roads.

In the same way, if you expect to spend any amount of time at a keyboard writing
programs, you should have a decent place to work. If you can, find somewhere to set
up a computer, a keyboard, and a screen and then pull up a chair that you don’t mind
spending quite a few hours sitting in.

You don’t need a particularly fancy computer to write programs, but your machine will
need a reasonable amount of memory and processor performance to handle the tools
we’re going to use. I suggest that you find a Windows 10 device with at least an Intel
i5 or equivalent processor, 4 gigabytes of memory, and 256 gigabytes of hard-disk
space. You can use smaller computers than this, but they can make the development
process somewhat frustrating because they will take a while to update your program
after you make any changes to it.

One thing that is very important is that you must have a computer that is running the
64-bit version of Windows 10. Very small devices run a 32-bit version of Windows 10.
This works fine for most applications, but it cannot be used to build Windows 10 appli-
cations with Visual Studio, the tool we’ll be using.

Getting the tools and demos
All the tools we’re going to use are free to download and install. I find it astonishing
and wonderful that such powerful software is available for free for anyone to use. The
Visual Studio program makes it very easy to create applications and games. It even
helps you make your programs available for sale in the Windows Store.

I strongly advise anyone starting to program that they should take at least one of their
programs to market. It’s lovely to think that software you have made is available in the
Store to everyone.

However, before you can start sharing or selling your programming wares, you have
to download and install the tools that will make this possible. Installation will take a
little while, depending on how fast your network connection is. There will be a few
occasions when you’ll just have to sit and wait while things are fetched from the Inter-
net and installed. While Visual Studio is downloading and installing, you’ll probably
have enough time to tidy things up and do a little housekeeping. One note, though:

4 Chapter 1 Starting out

ptg18144483

it’s important to perform the actions in the order I give you. The good news is that you
have to do this installation only once for each computer that you want to use.

The steps you follow to install Visual Studio change from time to time, and they might
vary depending on whether you have a Microsoft account or other factors. Instead of
including the detailed steps here, I’ve provided that information online (so that I can
update it whenever necessary).

If you haven’t already downloaded the sample code and the other online content
described in the “Downloads” section in this book’s introduction, go to the following
website and download the files now:

https://aka.ms/BeginCodeCSharp/downloads

Open the file named GettingStarted.pdf, and follow the instructions it provides to
install Visual Studio Community 2015 and extract and set up the sample code and
applications.

Once you’ve finished the installation, just to make sure you’re ready to start, use File
Explorer to open the folder with the demo code. You should see the files and folders
shown in Figure 1-1. You’re now ready to open Visual Studio and begin to code with
C#, which we’ll do in the next section!

Figure 1-1 The contents of the BeginToCodeWithCSharp folder. You’ll start from here in just
a moment.

Using the tools
You’ve reached a significant point in the process of learning how to program. You’re
about to open Visual Studio and start working with this book’s demo code. This is a bit
like opening the front door of a new apartment or house or getting in a shiny new car
you’ve bought.

5Using the tools

www.allitebooks.com

https://aka.ms/BeginCodeCSharp/downloads
http://www.allitebooks.org

ptg18144483

Visual Studio projects and solutions
As you’ll learn, Visual Studio organizes your programming work as projects and solu-
tions. When you use Visual Studio to develop an app, an application, a website, a Web
App, a script, a plug-in, or something else, you create a new project. A project is a set
of resources (code files, images, and so on) that are used in the program you’re devel-
oping. When you create the project, Visual Studio also creates a solution and includes
the project in that solution. A solution can contain a single project, but you can add
additional projects to a solution when your program needs the resources another
project contains. All the projects in a solution are combined by Visual Studio to make
the solution work.

Visual Studio is automatically associated with solution files (.sln files) in the same way
that a word processor is associated with a document file. This means that when you
open the BeginToCodeWithCSharp solution, shown selected in Figure 1-2, the
Visual Studio environment and the solution are opened automatically. Go ahead and
open that solution file (by double-clicking it, for example) now.

Figure 1-2 Open the solution by double-clicking the solution file.

Visual Studio is a protective sort of program that doesn’t automatically trust projects
that have been downloaded from the Internet, so it asks you to confirm that the proj-
ects in the solution are okay, as you can see in Figure 1-3. In this case the projects are
fine (after all, I wrote them), so select OK.

Figure 1-3 Visual Studio makes sure that you trust the file you’ve chosen to open.

6 Chapter 1 Starting out

ptg18144483

Visual Studio provides Solution Explorer, a tool that you can use to browse the
projects in a solution and to look at each of the files in the solution and its projects.
Solution Explorer provides an organized view of your solutions and projects, so let’s
start using it. Figure 1-4 shows what you should see when Visual Studio opens the
BeginToCodeWithCSharp solution. (Your display might look slightly different
depending on what options you have installed.)

Figure 1-4 The main page in Visual Studio. Solution Explorer is at the top right of the page.

The solution contains two projects. One is the BeginToCodeWithCSharp project,
and the other is the Snaps project, which contains a set of tools that are used by the
sample applications. (The Snaps project provides facilities that can be used by any
program, including ones that you will create later. You’ll learn a lot more about Snaps
later in this book.)

Running a program with Visual Studio
Visual Studio is called an integrated development environment (or IDE). It’s a place
where programmers can not only write their program code but also see their pro-
grams running. Let’s begin to get to know Visual Studio by running some of the
 sample applications created by the demo code you downloaded for this book.

When you want to give control to a program, you tell Visual Studio to run it by using
the run button, which is the button with the green arrowhead I’ve pointed to in
 Figure 1-5 on the next page.

7Using the tools

ptg18144483

Figure 1-5 Visual Studio’s run button starts the program you are working on.

When you use the run button to start an application, Visual Studio actually does two
things. First it creates the application from the components that are managed within
the solution. This process is called building the application. After the application has
been built, Visual Studio then hands over control and lets it run. For our solution, the
build process requires an Internet connection in order to work.

Go ahead and press the run button now to make the application run. Visual Studio
displays the “Begin to Code with C#” window that’s shown in Figure 1-6. If you like,
you can move this window around the screen, minimize it, and display it full screen by
using the Maximize button (the square) in the top-right corner.

Figure 1-6 The BeginToCodeWithCSharp application is now running.

The BeginToCodeWithCSharp solution is an application I’ve created for you that
lets you navigate the book’s sample applications. Each of the book’s demonstration
programs, in other words, is included in the solution as a separate application, and
by running the solution you can then choose a particular sample application to run.
Some of the apps are fully fledged applications that you could use (or even sell in
the Windows Store), and others are simple demonstrations of specific programming
points that we will look at together.

8 Chapter 1 Starting out

ptg18144483

The buttons at the bottom of the window are the controls for running these sample
apps. To run an app, first select it by using the navigation panels above the buttons.
In the left panel, labeled Folder, you select a particular app folder, most of which are
named after the book’s chapters. In the right panel, you select an app from that folder.
When you select Run an app, the app you selected runs.

Select and run an application
This is our first “Make Something Happen” sidebar—welcome! Sometimes in these sidebars
I’ll ask you to make something, and at other times I’ll ask you to simply try something out.
In all cases you’ll be doing what developers do. This time I want you to just select and run
some of the apps in BeginToCodeWithCSharp. (Yes, this is the simplest “Make Something
Happen” in the book.)

Make sure that you have the solution running. Select a folder from the left panel and a
sample app in the right panel. There are lots of apps to choose from. You can start by looking
in the Chapter 03 folder for the Ch_03_03_Speaking app, which will make your computer
introduce itself to you via sound.

Select Run an app, and the app you selected runs. When the app finishes, the navigation
panels are displayed again. Have a go at selecting and running some more apps. If you fancy
playing a game, take a look at Ch_13_08_KeepUpGame in the Chapter 13 folder.

MAKE SOMETHING HAPPEN

9Using the tools

ptg18144483

Stopping a program running in
Visual Studio
After you finish trying out some of the apps, you need to stop the BeginToCode-
WithCSharp application. You need to do this because Visual Studio will not let you
change the contents of a program while it is still running. (Doing so would be like
performing maintenance on a plane while it’s still in the air.) And yes, you’re about to
do some coding to change a program!

When you want to stop the program, you can simply close the window by using the
Close button (the X) in the top-right corner, just like you would for any other appli-
cation. However, Visual Studio also provides a button (pointed to in Figure 1-7) that
you can use to stop a running program. You can use this in the unlikely event that your
program gets “stuck” in some way.

Figure 1-7 Use this button to stop a running program in Visual Studio.

Repeating an app
You can use the Run that app again button to rerun the last app you ran. The name
of that last app is remembered even if you shut down your computer and return to the
BeginToCodeWithCSharp solution at a later date.

Getting “stuck” in an app
Welcome to our first “What Could Go Wrong” sidebar. Here we look out for any pitfalls that
you might encounter as you work with the code. In this sidebar, we are going to consider how
you can move between the sample applications.

Some of the apps are simple demonstrations that run and then complete, allowing you to
select and run another app from the main application’s navigation panels. Other apps are
designed to run continuously, just like a “real” application. For example, you might have
discovered earlier that there is no way to stop the Keep Up! game; the program was designed
to run continuously.

WHAT COULD GO WRONG

10 Chapter 1 Starting out

ptg18144483

If you find yourself “stuck” in an app and want to run another one, simply stop the Begin-
ToCodeWithCSharp solution within Visual Studio (as shown earlier) or select the X in the
top-right corner of the running application to stop it. Although I showed you how to stop a
program a moment ago, I wanted to include a “What Could Go Wrong” sidebar here to show
you that I’ll be looking out for you as you learn.

The MyProgram application
As you’ve seen, when you first run the BeginToCodeWithCSharp solution, the appli-
cation displays a welcome message: "Welcome to the world of Snaps." This message
is displayed by a program that is, of course, built into the solution. Let’s take a look at
the C# code that does this.

Visual Studio lets you manage a program you are writing in the same way that the
Windows operating system lets you manage files. When you create a program, you
often bring together lots of different parts, as you can see in Figure 1-8. For example,
modern applications contain sounds and images, and all these items need to be kept
together so that they can be used to build the finished program.

Figure 1-8 The MyProgram.cs source file and other program resources in Solution Explorer.

In Visual Studio, Solution Explorer helps a programmer manage the different elements
that make up the completed program. You can think of Solution Explorer as a special
file browser. It provides a view of the folder that contains all the files that are used
when the application is built and run in Visual Studio. The BeginToCodeWithCSharp
project contains a number of folders that hold different files. You can navigate the
elements and folders in the solution by clicking the arrowhead near the item. Later in
the book, we’ll take a look inside more of the folders, but for now let me draw your
attention to the MyProgram.cs source file, which is stored inside the My Snaps apps

11Using the tools

ptg18144483

folder and which is shown selected in Figure 1-8. This file contains the program code
that runs when the BeginToCodeWithCSharp solution starts.

Double-clicking this file in Solution Explorer makes its code appear in Visual Studio's
editor window, shown in Figure 1-9.

Figure 1-9 Visual Studio shows the contents of the MyProgram.cs file in the editor window.

What you have done is something like opening a document in a word processor, but
instead of revealing a string of words that make up a story (or a poem or a report),
you’re looking at a sequence of instructions that the computer follows when it runs
the program—or, put another way, you are examining the program’s code. What you
see in Figure 1-9 is actual C#, so—congratulations!—you’re taking a look at your first
piece of C#.

PROGRAMMER’S POINT

Programming languages are not that special
If you were thinking that a programming language must be something complicated and
hard to understand, you’re mistaken. I think that many people (who can read English)
would be able to grasp that the program shown in Figure 1-9 displays the messages “Begin
to Code with C#” and “Welcome to the world of Snaps”.

Part of the clarity of the program comes from the C# language, which was designed to be
easy to follow, but the rest comes from carefully choosing names that describe the compo-
nents in the program. I could have used “xyzzy” instead of SetTitleString to name the
behavior that displays the title message in the window. The computer really doesn’t care
what I call things as long as I’m consistent and it can tell them apart. However, I wasn’t just
writing this program for the computer. I was also writing it for beginners like you, who will

12 Chapter 1 Starting out

ptg18144483

learn to code by working out what the program does and then begin to write your own
programs.

Modify the messages
Click the arrows in Solution Explorer to open the BeginToCodeWithCSharp project and
the My Snaps apps folder. Double-click the MyProgram.cs file to open it for editing (if it
isn't already open). You can create your very first program by changing this program so that
it works slightly differently. You can start by just changing the messages that the program
displays. The program code that we are running (which you can also see in Figure 1-9) looks
like this:

public class MyProgram

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code With C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps");

 }

}

Visual Studio has been specially written to display different parts of the code in different col-
ors. One convention is that text that will be displayed on the screen when a program runs—
this text is referred to as a string—appears as red text in the program’s code. You don’t have
to make the string text red; this happens automatically when the string is framed correctly
in the code. (More on this in a moment.) Make some changes to the strings, as I have below,
without changing any of the other code. Then run the program again by using the run button
in Visual Studio. The messages on the screen will change to reflect the changes you made to
the code. The screenshot on the next page, for example, shows the results of my changes.

public class MyProgram

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Rob Miles will one day rule the world");

SnapsEngine.DisplayString("...oh yes he will");

 }

}

MAKE SOMETHING HAPPEN

13Using the tools

ptg18144483

Be careful when you change the text that you don’t remove the double quotation mark char-
acters (“) that mark the start and end of the strings in the program. If you remove those, you’ll
find that the text no longer makes sense within a C# program, and you will get errors when
you try to run the program. If this happens, don’t worry: the Visual Studio editor has a pow-
erful undo feature that you can use to undo the changes that you made to the file. Just hold
down the Ctrl key and press Z to undo successive changes to a file. If you press Ctrl+Z several
times when you are in the editor (the window where the code appears), you will eventually
return to the original state of the program.

You’ve just written (or at least edited) your first program. Now, if you get asked to make
something that can display a message on a screen, you have a partial idea of how to do it.
I will, of course, explain the various other aspects of the code you just tweaked to help you
complete your understanding!

PROGRAMMER’S POINT

There’s no such thing as a “professional” program
What you are running here—after your edits to the MyProgram.cs file—is a “proper” pro-
gram. If you wanted, you could use tools built into Visual Studio to submit this program to
the Windows Store for anyone in the world to download and use (although, to be honest,
I’m not sure anyone would find it useful yet). People learning to program sometimes won-
der when they will reach the point where they are as good at programming as a “profes-
sional” developer. The answer is that as soon as someone pays you for writing a program,
you are a professional developer.

Of course, being given money to do something doesn’t automatically make you better at it,
but in this case it should provide a useful focus for your efforts. If you want people to give

14 Chapter 1 Starting out

ptg18144483

you money for your programs, you need to make sure that your programs are worth pay-
ing for. Throughout this book, we’ll be looking at examples of good programming practice
so that when someone says, “I’d pay money for that” when they see one of your programs,
you’ll give them something of good quality and value.

What you have learned
In this first chapter you’ve built yourself a place to work, installed the Visual Studio
tools that you’re going to use to write your programs, and taken a look at some of the
sample applications provided with the book.

You’ve discovered that Visual Studio is essentially a “word processor for program-
mers,” where programmers can create and test their software. You’ve also seen that
Visual Studio uses solutions and projects to organize the resources and program code
that are put together to make a modern application. And you have created your very
first application by changing the messages a program displays.

To reinforce your understanding of this chapter, you might want to consider the fol-
lowing questions about computers, programs, and programming.

What is the difference between a program and an application?

When people talk about software, you will find the words program and application
(or app) used interchangeably. When I talk about a program, I am describing some
code that tells the computer what to do. I regard an application as something larger
and more developed. An application brings together program code and assets such
as images and sounds to make a complete experience for a user. A program can be as
simple as a few lines of C#.

What is the difference between a project and a solution in Visual Studio?

A solution is the outermost container. A solution can contain projects and is frequently
used to create a complete application or product. A project can contain C# source files
and is frequently a complete subcomponent of a solution. For example, all the C# pro-
gram files that make up the Snaps framework are packaged as a project—the Snaps
project in the BeginToCodeWithCSharp solution—that can be used in any solution
that needs to make use of Snaps resources. You’ll be using the resources in the Snaps
project a lot as you begin to code your own applications in this book.

15What you have learned

ptg18144483

Why do we need a special language like C# to program a computer?

My favorite answer to this question is the pair of sentences “Time flies like an arrow.
Fruit flies like a banana.” A human being can work out that the first one refers to
something flying, whereas the second sentence is all about insects and what they like
to have for lunch. A computer would have a horrible time getting the correct meaning
from these two statements. The way that humans use language is packed with ambi-
guity and confusion. Fortunately, we have really powerful computers between our
ears that are hard-wired for languages, and we spend all our early years programming
them. By contrast, the poor computer has a very simple thinking machine that works
best only when given hard and fast rules. A programming language contains a set of
specific constructions that we can make the computer understand so that it can follow
our instructions correctly.

Is Visual Studio the only way to write programs?

No. There are a great many tools that you can use to create software. Some are tied to
one particular programming language, and others are more general purpose. Visual
Studio is one of the best, however.

What do I do if I break the program?

Some people worry that things they do with a program on the computer might
“break” it in some way. I used to worry about this too, but I’ve conquered this fear by
making sure that whenever I do something I always have a way back. You are currently
in that happy position. You know exactly how to put Visual Studio on a computer, and
you are using a copy of the demo code that you extracted from the .zip folder you
downloaded. Even if something goes horribly wrong and you end up breaking a pro-
gram so that it won’t work, you simply have to extract a clean copy of the demo code
from the .zip folder and start again.

16 Chapter 1 Starting out

ptg18144483

This page intentionally left blank

ptg18144483

2
What is

programming?

ptg18144483

What you will learn
In this chapter, you'll work with more C# programs. But before you do, we’re
going to take on some detective work and discover what makes a program-
mer and what a computer really does.

What makes a programmer?. .20

Computers as data processors .23

Data and information. .35

What you have learned .39

19

ptg18144483

What makes a programmer?
If you have not programmed before, don’t worry. Programming is not rocket sci-
ence—it is, well, programming. The hard part about learning to program is that you
get hit at the start with a lot of ideas and concepts, and this can be confusing.

However, if you think that learning to program sounds like hard work and that you
might not be able to do it, I’d strongly suggest that you put those thoughts aside.
Programming is as easy as organizing a birthday party for a friend.

Programming and party planning
If you were organizing a party, you’d have to decide who to invite. You’d have to
remember who wanted vegetarian pizza and which kids can’t sit next to each other
without causing trouble. You’d have to work out what presents the kids would take
home and what everyone would do when they were at the party. And you’d have to
organize the timing so that the magician or the band doesn’t arrive just as the food is
being served. To help, you’d organize the party using lists like those shown in Figure
2-1. Programming is just like this. It is all about organization.

Figure 2-1 Party planning is a lot like programming—you have to stay organized.

If you can organize a party, you can write a program. What happens in a program is a
little different, but the basic principles are the same. And because a program contains
elements that you create and manage (unlike unruly kids), you have complete control
over exactly what happens. What’s more, once you’ve done some programming, you
might start to approach all tasks in a systematic way, so a bit of programming experi-
ence can turn you into a better organizer overall.

Programming is defined by most people as “earning huge sums of money doing
something that nobody can understand.” I define programming as “determining a
solution to a given problem and expressing it in a form that a computer system can
understand and execute.” One or two things fall out of this definition:

20 Chapter 2 What is programming?

ptg18144483

 ● You need to be able to solve the problem yourself before you can write a program
to do it.

 ● The computer has to be made to understand what you are trying to tell it to do.

You can think of a program as a bit like a recipe. If you don’t know how to bake a cake,
you can’t tell someone else how to do it. And if the person you are talking to doesn’t
understand instructions such as “Fold the flour and sugar into the mix,” you still can’t
tell him how to bake the cake.

To create a program, you have to take a solution that you have worked out and then
write it down in simple steps that the computer can perform.

Programming and problems
I also like to think of a programmer as a bit like a plumber. A plumber arrives at a job
with a big bag of tools and spare parts. Having looked at the plumbing problem for a
while, he opens his bag, takes out various tools and parts, fits the parts together, and
solves your problem. Programming is like that. You are given a problem to solve, and
you have at your disposal a big bag of tools, in this case a programming language. You
look at the problem for a while, work out how to solve it, and then fit the bits of the
language together to solve the problem. The art of programming is knowing which
bits you need to take out of your bag of tools to solve each part of the problem.

The art of taking a problem and breaking it down into a set of instructions you can
give to a computer is the interesting part of programming. However, learning to
program is not simply a matter of learning a programming language. Nor is program-
ming simply a matter of coming up with a program that solves a problem. You must
consider many things when writing a program, and not all of them are directly related
to the problem at hand.

To start, let’s assume that you’re writing your programs for a customer. He or she has
a problem and would like you to write a program to solve it. We’ll also assume that
the customer knows even less about computers than we do. Initially, you’re not even
going to talk about the programming language, the type of computer, or anything
like that; you are simply going to make sure that you know what the customer wants.
Because programmers pride themselves on their ability to come up with solutions,
as soon as they are given a problem, they immediately start to think of ways to solve
it—this is almost a reflex action. Unfortunately, many software projects have failed
because the problem that they solved was the wrong one. Coming up with a per-
fect solution to a problem the customer doesn’t have is something that happens
surprisingly often in the real world. The developers of the software quite simply did
not find out what was required or desired. Instead, they created what they thought
was required. The customers assumed that because the developers stopped asking

21What makes a programmer?

ptg18144483

questions, the right solution was being built. Only at the final handoff was the awful
truth revealed. It is very important that a programmer should hold off making some-
thing until she knows exactly what is required.

The worst thing you can say to a customer right away is “I can do that.” Instead, you
should first think, “Is that what the customer wants? Do I really understand what the
problem is?” Asking these questions is a kind of self-discipline. Before you solve a
problem, you should be sure that you have a watertight definition of what the prob-
lem is, which both you and the customer agree on.

In the real world such a definition is sometimes called a functional design specification,
or FDS. An FDS tells you exactly what the customer wants. Both you and the customer
sign it, and the bottom line is that if you provide a system that behaves according
to the design specification, the customer must pay you. Once you have your design
specification, you can think about ways of solving the problem.

You might think that having a specification isn’t necessary if you are writing a program
for yourself, but this is not true. Writing some form of specification forces you to think
about your problem at a very detailed level. It also forces you to think about what your
system is not going to do. You need this clarity when building something for yourself
as much as when you are working with a customer. The specification sets expectations
right at the start.

PROGRAMMER’S POINT

The specification must always be there
I have written many programs for money. I would never write a program without getting a
solid specification first. This is true even (or perhaps especially) when I do a job for a friend.

Modern development techniques put the customer at the heart of development and
involve them in the design process in an ongoing way. These techniques reflect the
assumption that it is very hard to get a definitive specification at the start of a project.
As a developer, you don’t really know much about the customer’s business, and the
customer doesn’t know the limitations and possibilities of the technologies that can
be used to solve the problem. With this in mind, it’s a good idea to make a series of
versions of the solution and discuss each version with the customer before moving on
to the next one. This is called prototyping.

Programmers and people
Finding out what the customer wants is one of the most important aspects of any
programming task. However, communication with other people is important in lots of

22 Chapter 2 What is programming?

ptg18144483

other situations, too. Perhaps you want to convince a wealthy backer that you have the
idea for the next big thing or persuade a customer that you have the best solution to
his problems.

Not all programmers are great communicators at the start. But the important thing to
remember is that communication skills can be learned, just like a new programming
language. This might mean going outside your comfort zone—nobody likes standing
in front of an audience for the first time—but with practice you can master communi-
cation skills and vastly increase your chances of going a long way in this business.

Effective communication also extends to writing. Being able to create text that other
folks can read is a very useful skill, and again, the best way to do this is with practice.
My advice is to start writing a blog or a diary. It doesn’t matter that only your mom
reads your blog at first; the important thing is that you write regularly. If you write
about something you are interested in (I write about programing—surprise, sur-
prise—at www.robmiles.com), you will quickly become much better at it.

PROGRAMMER’S POINT

Programmers who can communicate well get the most money and
the interesting work
It’s possible to make a good living from programming even if you can communicate only
in single words and grunts—as long as you can write code quickly that meets the given
requirements. But the really interesting tasks go to developers who can communicate well.
They are the ones who can sell their ideas and are best at talking to customers to find out
what the customer wants.

Computers as data processors
Now that you know what programmers do, we can start to consider what a computer
is and what makes it so special.

Machines and computers and us
The human race is a race of toolmakers. We invent things to make our lives easier, and
we’ve been doing it for thousands of years. We started with mechanical devices, like
the plough, which made farming more efficient, but in the last century we’ve moved
into electronic devices. Figure 2-2 offers a quick summary.

23Computers as data processors

http://www.robmiles.com

ptg18144483

Figure 2-2 Machines that do things for us.

Machines usually involve something going into them, or inputs, and they produce
things or events that we want as outputs. A plough, with human effort and steering
as inputs, provides a field that will grow more crops. Given coal and a track to follow,
a train takes us where we want to go. A computer is given power, a program to tell it
what to do, and some data to work on. It then outputs data that is useful.

As computers became smaller and cheaper, they found their way into things around
us, and many devices—the mobile phone, for example—are possible only because
we can put a computer inside to make them work. But we need to remember what
the computer actually does; it automates operations that used to need brain power.
There’s nothing particularly clever about a computer; it simply follows the instructions
that it’s given. In this respect, a computer has a lot in common with a plough—it’s not
conscious in any way. It is simply something that we can use to make our lives easier.

A computer works on data in the same way that a sausage machine works on meat:
something is put in one end, some processing is performed, and something comes
out the other end. You can think of a computer program as similar to the instructions
that a coach gives to a football or soccer team before a play. The coach will say some-
thing like, “If they attack on the left, I want Jerry and Chris to run back, but if they kick
the ball down the field, I want Jerry to chase the ball.” Then, when the game unfolds,
the team will respond to events in a way that should let them outplay their opponents.

However, there is one important distinction between a computer program and the
way a team might behave in a football game. A football player would know that some
instructions make no sense. If the coach says, “If they attack on the left, I want Jerry to

24 Chapter 2 What is programming?

ptg18144483

sing the first verse of the national anthem and then run as fast as he can toward the
exit,” the player would raise an objection.

Unfortunately, a program is unaware of the sensibility of the data it is processing, in
the same way that a sausage machine is unaware of what meat is. Put a bicycle into a
sausage machine, and the machine will try to make sausage out of it. Put meaningless
data into a computer, and it will do meaningless things with it. As far as computers are
concerned, data is just a pattern of signals coming in that has to be manipulated in
some way to produce another pattern of signals. A computer program is the sequence
of instructions that tell a computer what to do with the data coming in and what form
the data sent out will have.

Examples of typical data-processing applications include the following (and are shown
in Figure 2-3):

 ● Mobile phone A microcomputer in your phone takes signals from a radio and
converts them into sound. At the same time, it takes signals from a microphone
and makes them into patterns of bits that will be sent out from the radio.

 ● Car A microcomputer in the engine takes information from sensors telling it the
current engine speed, road speed, oxygen content of the air, setting of the accel-
erator, and so on and produces voltages that control the setting of the carburetor,
the timing of the spark plugs, and other things to optimize the performance of the
engine.

 ● Game console A computer takes instructions from the controllers and uses
them to manage the artificial world that it is creating for the person playing the
game.

Figure 2-3 Many different devices use computers.

25Computers as data processors

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

Most reasonably complex devices created today contain data-processing components
to optimize their performance, and some exist only because we can build in such
capabilities. It is into this world that you, as a beginning programmer, are moving. It is
important to think of data processing as much more than working out the company
payroll—calculating numbers and printing out results (the traditional uses of comput-
ers). As a software engineer, you will inevitably spend a great deal of your time fitting
data-processing components into other devices to drive them. These embedded sys-
tems mean many people will be using computers even if they’re not even aware of it!

PROGRAMMER’S POINT

Software might be a matter of life and death
You should also remember that seemingly innocuous programs can have life-threatening
possibilities. For example, a doctor may use a spreadsheet you have developed to calculate
doses of drugs for patients. In this case a defect in the program could result in harm. (Note
that I don’t think that doctors actually do this—but you never know.)

Making programs work
Inside every computer is hardware—physical machinery, that is—that actually does
the data processing I’ve been describing. This hardware is called the central process-
ing unit, or CPU. The programs that directly control the CPU, telling it what to do, are
called machine code. Different kinds of CPUs have different designs of machine code,
in the same way that humans communicate by using many different languages.

Machine code contains the individual steps that tell the CPU what to do. Simple oper-
ations—for example, adding one number to another—are performed by a sequence
of machine-code instructions. To write machine code, you have to know exactly how
the hardware works and the particular instructions that it understands. To understand
what this means, take a look at Figure 2-4, which shows part of a program that totals
up what a customer buys at a supermarket. This program adds the price of an item to
the customer’s total bill.

Figure 2-4 A single step in a high-level program is broken down by a low-level program.

26 Chapter 2 What is programming?

ptg18144483

The instructions on the right are the lower-level instructions that the computer is
actually able to perform. These describe the individual steps that the computer has to
go through to perform the action, adding the price of an item to a bill. Writing low-
level programs is rather tedious because an action, as you can see, needs to be broken
down into a number of smaller ones.

The good news, however, is that programmers over the years have thought about
this and invented new languages that can be used to tell a CPU what to do. These
languages are “higher level” than machine code. A program written in a high-level
language doesn’t provide the individual machine-code steps required to perform a
particular action. It just contains an instruction such as, “Add this number to another.”
A special program called a compiler takes this high-level program and generates the
machine code required for the computer to be able to perform the task. After you
have written your high-level program (in C#, for example), it will be compiled to pro-
duce the machine code that runs inside the computer.

A useful side effect of using a high-level language is that by changing the compiler
you can generate machine-code programs for different hardware platforms. The C#
programs you are going to write over the course of this book can be made to work
on Windows, Android, and Apple devices because compilers are available that will
convert the high-level statements into machine code for those devices. If anyone asks
you which type of computer you are learning to program, you can correctly reply “All
of them.”

Programs as data processors
Figure 2-5 shows what every computer does. Data goes into the computer, which
does something with it, and then data comes out of the computer. What form the data
takes and what the output means is entirely up to us, as is what the program does.

 Figure 2-5 A computer as a data processor.

As I quickly mentioned earlier, another way to think of a program is as a recipe, which
is illustrated in Figure 2-6.

27Computers as data processors

ptg18144483

Figure 2-6 Recipes and programs.

In this example, the cook plays the role of the computer and the recipe is the program
that controls what the cook does with the ingredients. A recipe can work with lots of
different ingredients, and a program can work with lots of different inputs, too. For
example, a program might take your age and the name of the movie you want to see
and provide an output that determines whether you can go see that particular movie.

Mystery program investigations
Welcome to our first “Code Analysis” section. In these sections, you’ll take a look at some
program code and consider questions posed by it. In this first case, you’re going to take the
idea of what a computer is and consider what happens when a particular program runs—
you’re going to try to work out what the program does with the input to produce the output.
This is a bit like detective work, where a great detective arrives at the scene of a crime and
then uses the available evidence to deduce what happened. The following screenshot shows
the window that you saw when you ran the first program in Chapter 1. The program displays a
welcome message and a list of folders and Snaps applications, as you see here.

CODE ANALYSIS

28 Chapter 2 What is programming?

ptg18144483

Question: What are the inputs and the outputs from this program?

Answer: Identifying the output is very easy. It’s the display the user sees on the screen.
The inputs to the program are slightly trickier to identify, but it turns out that they were
put into the program when it was written. In the previous chapter, you saw how to use
Visual Studio to look at the contents of a program. Here is the program code that you
found when you opened the file MyProgram.cs.

public class MyProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps!");

 }

}

I’ve called out the two strings in the program that provide the input to the program. In this
case, the inputs are built into the program code in the form of the text strings that are dis-
played when the program runs. You can tell that these are the inputs because if you changed
these strings, the program would do something different when it runs. In fact, we actually

"Begin to Code with C#")

Built-in title string

"Welcome to the world of Snaps!") Built-in
display

string

29Computers as data processors

ptg18144483

did this at the end of Chapter 1, when I made some alterations that reflect my urge for world
domination.

Some programs are entirely self-contained like this, with all their information built into their
code. But it is much more likely that a program will receive data from the outside and work
on that. So now let’s look at a program that receives data from the program’s user.

This program is one of the Snaps apps that are supplied with the sample code. Each chap-
ter presents a number of sample programs, and you can run any of these by selecting the
chapter folder in the list on the left, selecting the program in the list on the right, and then
selecting the Run an app button. The first sample application we’re going to run is called
Ch02_01_MysteryProgram1, which you see selected in this screenshot.

If you do this for our mystery program, you are presented with a request to enter a number,
as shown here:

30 Chapter 2 What is programming?

ptg18144483

The data going into the program is a number; here I’ve entered the value 1. When you select
Enter, the program takes the number, does something with it, and then returns a result:

31Computers as data processors

ptg18144483

It turns out that when you enter 1, the output from the Mystery Program is 2. You might
have a theory about what happens to the input to produce this output. Here are a couple of
theories that fit what we see:

 ● The program might always output 2.

 ● The program might add 1 to the input.

You can use the Run that app again button to run the Mystery Program again and try differ-
ent numbers. I’ve tried it with a few more numbers and received the following results:

 ● 1 produces 2.

 ● 2 produces 4.

 ● 3 produces 6.

 ● 0 produces 0.

From these results I think that we can deduce that the behavior of the program is to take the
number coming in and double it.

Programmers call this form of program examination black-box testing. The program is being
treated as a black box that we can’t look inside of. Input values are fed into the black box, and
the outputs are checked to see whether they match what we think the program should do.

The idea behind black-box testing is to build confidence that the program actually does what
we want. If someone offered to pay us large sums of money to produce a program that would
double the value of the number that was entered, from the tests we have performed it looks
like we have something here that would do the job.

The tests we’ve done seem fairly convincing, but there is no way that we can be sure that the
program always produces an output that is double the input unless we try every possible
number. This illustrates a problem with this form of testing: it can prove that there is a fault in
the program, but it can’t prove the absence of faults.

As an illustration of the limits of black-box testing, try entering 40 to see what the program
does when it is given that value:

32 Chapter 2 What is programming?

ptg18144483

It turns out that for every input value apart from 40, the program produces double the input.
But for the input value 40, the Pirate King message is displayed. It is as if the program is spe-
cifically looking for the value 40 and behaving in a different way if it is given that value. This
turns out to be exactly what is happening. If you want to find out how this code works, open
the sample program in Visual Studio and take a look. Use Solution Explorer to find the source
file, as shown here, in the same way that you opened the MyProgram.cs file in Chapter 1.

33Computers as data processors

ptg18144483

When you do this, you find the following program code:

public class Ch02_01_MysteryProgram1

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Mystery Program 1");

double inputNumber = SnapsEngine.ReadFloat("Enter a number please");

if (inputNumber == 40)

SnapsEngine.DisplayString(@"'Arr. That be my age.' said the

Pirate King");

else

{

inputNumber = inputNumber + inputNumber;

SnapsEngine.DisplayString("Output: " + inputNumber);

}

 }

}

For now, don’t worry too much about the curly brackets and the different colored words in
the program text; just consider the elements that have been called out. You can see that the
code has some form of test (performed by an if construction, which you’ll learn more about
in Chapter 5) and a statement that appears to double a value by adding it to itself.

If you want to guard against faults in your programs, you have to take a look at the actual
program code. Programmers call this form of program evaluation white-box testing or code
review. Instead of looking at the outputs produced by the program in response to particu-
lar inputs, you look at the actions that are called for by the code and make sure that these
match the behaviors that you want. You do this by pretending to be a computer and working
through the program statements to see what happens.

PROGRAMMER’S POINT

Testing is really hard to do—but you must try
One of the dangerous things about black-box testing is that all it can do is prove that a
program has faults. If we feed a bunch of inputs into the program and all the outputs are
correct, this does not mean that the program is fault free; it just means that we haven’t
found a test that the program fails. The only way to really be sure that the program will
work is to take a look at the actual code itself.

Test for
the value

40.

 Double the input.

34 Chapter 2 What is programming?

ptg18144483

Please don’t confuse testing with “that thing I’ve done to see whether the program looks
like it works.” In the case of the number-doubling machine in Mystery Program 1, we could
put a few numbers in and see whether it generated results that look okay, but that’s not
testing. That’s just seeing whether the program looks like it works.

If I was serious about testing a program like this, I’d create a set of specific tests. I’d make
sure the tests included very large and very small numbers, as well as negative values and
the value 0, and I’d formalize the tests so that when they’ve been performed successfully
the program is “signed off” as tested. If I was really clever, I’d create a program that did the
testing for me. This program could feed in many millions of values and check that each
matching output is correct. Of course, if my tests never fed in the “pirate value” of 40, then
the program would be passed as tested but still have the potential to fail when it's used.
But as I said, tests prove only the existence of faults, not that there aren’t any.

The good news is that a combination of black-box and white-box testing can produce
programs that are reliable enough. But please remember that proper tests are planned,
managed, and documented and not just “this thing I did to see whether it works.”

Get rid of the pirate
This exercise is not really programming as such, but you should be able to make a version
of the doubling program that works correctly for every value that is input. You can do this
by removing the code that checks for the value 40 and the code that runs if the value 40 is
found. You can do this by editing the chapter example itself (in which case, you can be said to
have “personalized” your copy of the sample code).

Data and information
Now that you understand computers as machines that process data and that pro-
grams tell computers what to do with the data, let’s delve a little bit deeper into the
nature of data and information. People use the words data and information inter-
changeably, but I think it’s important to make a distinction between the two because
the way that computers and humans consider data is completely different. Take a look
at Figure 2-7.

MAKE SOMETHING HAPPEN

35Data and information

ptg18144483

Figure 2-7 Data on the left; information on the right.

The two items in the figure contain exactly the same data, except that the image
on the left is closer to how the document would be stored in a computer. The com-
puter uses a numeric value to represent each letter and space in the text. If you work
through the values, you can figure out what each of them are, starting with the value
87, which represents an uppercase W.

Because of the way that computers hold data, another layer sits underneath the map-
ping of numbers to letters. Each number is held by the computer as a unique pattern
of on and off signals, or 1s and 0s. In the realm of computing, each 1 or 0 is known as
a bit. (For a wonderful explanation of how computers operate at this level and of how
these workings form the basis for all coding, see Charles Petzold’s Code: The Hidden
Language of Computer Hardware and Software.) The value 87, which we know means
“uppercase W,” is held as the following bit pattern:

1010111

I don’t really have the space to go into precisely how this works (and Charles Petzold
already did this!), but you can think of this bit pattern as meaning “87 is made up of a 1
plus a 2 plus a 4 plus a 16 plus a 64.”

Each of the bits in the pattern tells the computer hardware whether a particular power
of two is present. Don’t worry too much if you don’t fully understand this, but do
remember that as far as the computer is concerned, data is a collection of 1s and 0s
that computers store and manipulate. That’s data.

36 Chapter 2 What is programming?

ptg18144483

Information, on the other hand, is the interpretation of data by people to mean
something. Strictly speaking, computers process data and humans work on informa-
tion. As an example, the computer could hold the following bit pattern somewhere in
memory:

11111111 11111111 11111111 00000000

You could regard this as meaning “You are $256 overdrawn at the bank” or “You are
256 feet below the surface of the ground” or “Eight of the thirty-two light switches are
off.” The transition from data to information is usually made when a human reads the
output.

So why am I being so pedantic? Because it is vital to remember that a computer does
not “know” what the data it is processing actually means. As far as the computer
is concerned, data is just patterns of bits; it is the user who gives meaning to these
patterns. Remember this when you get a bank statement that says that you have
$8,388,608 in your account!

Mystery program investigations
You are now going to run another mystery program to take a look at how data is stored in a
computer. This program has the rather unoriginal name of Ch02_02_MysteryProgram2. You
can select and run it by using the same steps as before. (You can also use Visual Studio to
look at the code right at the start if you like, but I’d call that cheating.)

When you run the program, you’re asked to enter something. Type the word hello, select the
Enter key, and the program displays what you see here:

CODE ANALYSIS

37Data and information

ptg18144483

The program displays the word you just typed in, followed by a list of mysterious codes. If
you look carefully, you can start to work out what the codes mean. The program displays five
code values, which is the same number of letters contained in the word “hello.” What’s more,
the third and fourth codes are the same number, just like in “hello,” in which the third and
fourth letters are the same.

It turns out that these “codes” are actually the numbers that are used by your computer to
represent those letters of text. Modern digital devices use a standard called Unicode that
provides a mapping of character codes to particular numeric values. This mystery program
just takes each character in the word you type in, converts it to a number, and then displays
the number. Let’s take a look at exactly how it works by analyzing the code.

public class Ch02_02_MysteryProgram2

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Mystery Program 2");

// Read a string from the user

string inputText = SnapsEngine.ReadString("Enter something please");

// Only display the first 10 characters from the string

if (inputText.Length > 10)

inputText = inputText.Substring(0, 10);

SnapsEngine.AddLineToDisplay(inputText);

// Get each character in the string

foreach (char ch in inputText)

{

// Get the number that represents this character and

// display it

int chVal = (int)ch;

SnapsEngine.AddLineToDisplay("code = " + chVal);

}

 }

}

This is a more complex program than the first mystery program. It contains a loop—a kind
of programming device that lets a program repeat an instruction—that is applied to each
character in the word you type, converting the character to an integer and then displaying it.
There are some quite advanced C# constructions used in this code, which we will get to later
in the book, but you should be able to pull out some elements that make sense. And for the
moment, that’s enough.

38 Chapter 2 What is programming?

ptg18144483

PROGRAMMER’S POINT

It is useful to be able to “read” program code
Over the years I’ve looked at a great many programs. Some were programs that I wrote,
and some were written by other people. Some programs were written by using a program-
ming language that I know, while others were written in a language I’d never seen before.

I’ve learned not to be distracted by the bits of the program I don’t understand yet and to
focus on the parts that make sense to me. You might not know what the public class bit
of the program listing means, but the line string inputText = SnapsEngine
.ReadString("Enter something please"); should kind of make sense and leave you
thinking this might be where the program gets a string of text.

Americans use the term “spelunking” to describe the hobby of exploring underground
caves. The term is also used to describe the “hobby” of exploring unfamiliar program
code. You should try to get good at spelunking the programs in this book. You can start
by looking for landmarks that you know are there and then work from those, refining your
understanding of the program’s behaviors. For example, you know that somewhere in the
program it performs an action for each character in the string. Knowing that, you should be
able to work out where in the code this action happens.

What you have learned
In this chapter you’ve learned a bit about how computers actually work and what pro-
gramming is about. You have discovered that a computer views the entire universe as
patterns of ons and offs (1s and 0s), which represent the data the computer is working
with. The computer performs data processing by transforming one pattern of bits—
the input—into another pattern of bits—the output.

When human beings take a look at the data output and act on it, the data becomes
information. Computers are unaware of the meaning that we place on the patterns
of bits that they process, which means that a computer will do things with data that
make no sense.

A program tells the computer what to do with the pattern of bits. The computer itself
understands only very simple instructions, but programs called compilers can take
in a higher-level description of the actions that are required and produce the simple
instructions for the computer to perform.

39What you have learned

ptg18144483

The job of the programmer is to create a program as a sequence of instructions that
describes the tasks to be performed. To solve a problem successfully, the programmer
must not only write a good program but also make sure that the program actually
does what the user wants. This means that before a programmer can write any code,
she will have to make sure that she has a good understanding of exactly what is
required. Talking to people and finding out what they want is a very valuable skill and
worth acquiring if you want to be a successful programmer.

To reinforce your understanding of the content, you might want to consider the fol-
lowing questions about computers, programs, and programming.

Would a computer “know” that it is nonsensical for someone to have an age
–20?

No. As far as the computer is concerned, the age value is just a pattern of bits that
represents a number. If we want a computer to reject ages that are negative, we have
to actually build that understanding into the program ourselves.

If the output from a program is the settings for the fuel-injection system on a
car, is the output data or information?

As soon as something starts acting on data, I think it becomes information. A human
being is not doing anything with these values, but they will cause the speed of the
engine to change, which might well affect humans, so I reckon this makes this infor-
mation rather than data.

Is the computer unintelligent because it can’t understand English?

It is very hard to write something in English that is completely unambiguous. Large
parts of the legal profession are built on precise interpretation of the meaning of texts
and how they are applied in particular situations. Since we humans can’t agree on how
to understand something, I don’t think it is fair to call a computer stupid because it
can’t do this either.

If I don’t know how to work out the answer, can I write a program to do it?

No. You can put some statements together and see what happens when they run,
but this is very unlikely to make what you want. It is rather like throwing a bunch of
wheels, gears, and an engine against a wall and expecting them to land and form a
working car. In fact, the best way to write a program is frequently to get away from the
keyboard for a while and just think about what the program is supposed to do.

40 Chapter 2 What is programming?

ptg18144483

Is it sensible to assume that the customer measures everything in inches?

It is never sensible to assume anything about a project. A successful programmer
needs to make sure that everything he is doing is built on a solid understanding. Every
assumption that you make increases the potential for disaster.

If the program does the wrong thing, is it my fault or the customer’s fault?

It depends:

 ● Specification right, program wrong: programmer’s fault

 ● Specification wrong, program right: customer’s fault

 ● Specification wrong, program wrong: everyone’s fault

41What you have learned

ptg18144483

3
Writing programs

ptg18144483

What you will learn
Now that you know a bit about computers, programs, and programmers,
you can start to think about writing program code.

In this chapter, you’ll closely examine some C# programs to fi nd out how
they run. I call these programs “Snaps applications” because they use the
Snaps library, a simple collection of programming resources that help you
get things done “in a snap.” By analyzing how these programs use various
Snaps—discrete pieces of programming functionality or behaviors provided
by the library—you’ll learn some fundamentals of C# programming. Along
the way you’ll learn more about using Visual Studio to create and manage
the code elements in the BeginToCodeWithCSharp solution and what to
do when the compiler complains that your program doesn’t make sense as
far as it is concerned.

At the end of this chapter, you will be creating programs that provide simple
solutions to some realistic problems.

C# program structure .44

Extra Snaps. .50

Creating new program files .52

Extra Snaps. .61

Creating your own colors .63

What you have learned .66

43

ptg18144483

C# program structure
Let’s take a very detailed look at some Snaps applications to understand their ele-
ments and the organization of those elements. The welcome that you witness when
you first run the BeginToCodeWithCSharp solution isn’t complicated, but it’s a
good place for us to start. We quickly examined the code that creates that experience
when we analyzed MyProgram.cs in Chapter 2. Take a look now at the file named
Ch03_01_WelcomeProgram.cs. (In case you’ve forgotten: use Solution Explorer to
navigate through the solution’s chapter folders to find the file, and then select the file
to show its code in the editor window.)

Notice that the code is almost exactly the same as the code as in MyProgram.cs, so
this program should give us the same experience, right? Let’s check that. Go ahead
and run the solution again, select Chapter 03 in the Folder list and Ch03_01_Wel-
comeProgram is the Snaps apps list, and then run the app. Yep, same experience,
which makes perfect sense. Now let’s really break down this program to figure out
how it’s working. Its code is shown next, and I’ve indicated each part of the program
with a callout. We’ll examine these parts line by line in the following sections.

using SnapsLibrary;

public class Ch03_01_WelcomeProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps");

 }

}

Identify resources
using SnapsLibrary;

I described the C# compiler in Chapter 2. This is a program that converts a high-level
C# program (like the one we’re analyzing) into machine code that can run inside your
computer. When you run your C# code, the compiler built into Visual Studio converts
the program into machine code so that it can be run. A C# program can contain lines
called directives that give the compiler instructions. This first line of the program is a
using directive.

 Identify resources.

 Start a class defi nition.

 Declare the
StartProgram method.

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps"); Set the title
and display
a message.

44 Chapter 3 Writing programs

ptg18144483

As a programmer, you will frequently want to use prebuilt pieces of software, in the
same way that a cook will sometimes use readymade pastry. Readymade C# programs
are packaged as libraries of components that can be added to a Visual Studio solution.
As I’ve mentioned, the Snaps library is an example of such a library that I’ve provided
to help you get started. The using directive here identifies the library as a resource
that has been added to our solution and, as you’ll see in a moment, this program is
going to use something from it, specifically the SnapsEngine. This using directive
says to the compiler, “If I mention something you haven’t seen before, go and look in
SnapsLibrary to see if you can find it there.” This is a bit like saying to our cook, “If you
need to use some pastry, take a look in the fridge.” The first programs that we’re going
to write in this book use only items in SnapsLibrary. Later on we will create programs
that use other libraries.

Using the using directive
In some “Code Analysis” sections, like this one, you don’t need to look at any code to consider
some code-related questions.

Question: Does the using directive actually fetch the library that a program wants to use?

Answer: No. This might sound confusing, but the using directive just tells the compiler
where to look for the items that are available for use in a program. The resources avail-
able to a program are set up in the Visual Studio project. We can change the using direc-
tive to direct the compiler to use code from different places. This would be like telling the
cook, “If you need to use some pastry, check by the sink” so that he would use a resource
from a different location.

Question: If I add lots of using directives, will this make my program bigger?

Answer: No. The directive just tells the compiler where to look for things. It doesn’t add
anything to the size of the program.

Start a class definition
public class Ch03_01_WelcomeProgram

C# can be called an object-oriented programming language. This is because, in the
universe of C#, everything is an object. Objects in a C# program can be as simple as
a single number or as complex as an entire video game. An object can contain other

CODE ANALYSIS

45C# program structure

ptg18144483

objects. Anything that is contained within another object is called a member of that
object.

We can express an object design in the form of a C# class definition. A C# class
definition can describe data members (values that the object can hold) and behavior
members (things you can ask the object to do for you). When you design an object,
you write C# that specifies these two things. This line of the program tells the compiler
that we are expressing the design of a class named Ch03_01_WelcomeProgram.

You’ll find out much more about classes and objects later in the book.

Classes and objects
Question: Is a class definition the only way to define an object?

Answer: No. There are other kinds of C# objects, which you will see later.

Question: Does defining a class actually create an object?

Answer: No. Think of the class as the blueprint or design of an object, just like you might
have plans for a treehouse. In the same way as having the plans for a treehouse doesn’t
actually give you a treehouse, having a class definition doesn’t actually give you an
object.

Question: Do all classes have to contain both data and behaviors?

Answer: No. Some classes contain just data members, and others contain only behavior
members. For example, the Math library, which we haven’t seen yet, contains classes that
can perform mathematical functions.

Question: When does the program actually make an object based on the class
Ch03_01_WelcomeProgram?

Answer: This happens automatically. The sequence goes like this: The user is running the
BeginToCodeWithCSharp application and then selects Ch03_01_WelcomeProgram
and runs it. The BeginToCodeWithCsharp application creates an object based on the
Ch03_01_WelomeProgram class and then runs the StartProgram behavior inside this
object.

Declare the StartProgram method
public void StartProgram()

CODE ANALYSIS

46 Chapter 3 Writing programs

ptg18144483

Behaviors in an object are expressed in the form of methods. A method is a piece of C#
code that is given a name. A program can run the code in a method simply by giving
the name of the method—this is known as calling the method. You are going to start
by calling methods that have already been written (by me), but later you will create
methods of your own.

This program’s single class—Ch03_01_WelcomeProgram—has just a single behavior, a
method called StartProgram. The declaration public void StartProgram() marks
the beginning of the StartProgram method. (The method modifier public and the
return type void tell us about the nature of this method, but these are details we don’t
need to get into at the moment.) The StartProgram method is special. It is the entry
point for a Snaps application. In other words, to start running a Snaps application, the
StartProgram method is called.

This program’s class does not contain any data members but later we will design some
objects that do contain data.

Declaring methods in classes
Question: What is the difference between a behavior and a method?

Answer: A behavior is an action that an object can perform. The method is the actual C#
code that delivers that behavior.

Question: Can a class contain more than one method?

Answer: Yes. A programmer decides how many behaviors a class should provide, and she
writes a method for each one. The demo program we’ve been looking at has only one
behavior: to start the demo. Later on we’ll create classes with many methods in them.

Question: How does the StartProgram method get used?

Answer: StartProgram is a special method, in that it defines the starting point for any
Snaps application. While we’re working in the Snaps environment provided by the Snaps
library, we will always call the StartProgram method to start a program running.

Set the title and display a message
SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString("Welcome to the world of Snaps");

CODE ANALYSIS

47C# program structure

ptg18144483

The first of these two lines of code is the first C# statement in the StartProgram
method. Statements are the parts of a program that get things done. A statement
might call a method, make a decision, or manipulate some data. Statements are held
inside methods and are performed when the method is used. The StartProgram
method contains only two statements; larger programs will contain many more. The
two statements within the StartProgram method do indeed call other methods.

Each statement in a method is performed in sequence, starting with the first one and
then moving on to the next. There are several types of statements that you can use,
and you’ll find out about these as you learn the C# language. The semicolon (;) char-
acter marks the end of each statement.

This first statement sets the title of our program to “Begin to Code with C#”. It uses the
SnapsEngine class to do this. The SnapsEngine class is part of the Snaps library—the
resource we identified in the first line of this program—and the class provides lots of
behaviors that we can use in our programs. You can think of SnapsEngine as a kind of
“program butler” that can do things for programs that you write.

Each SnapsEngine behavior is provided as a C# method that our programs can call. In
this example, you can see how to use the SetTitleString method in the SnapsEngine.
Then, in the same way that a “Get me a drink” command to a butler needs to be
accompanied by the type of drink you want, the SetTitleString method needs to be
given the string of text to be used as the title of the program. A C# string is given in
parentheses after the name of the method that we’re calling. Information added to a
call of a method is called an argument to the method.

Regarding the string itself, the double quotation mark characters (") in the statement
mark the start and end of the string—the string starts immediately after the first dou-
ble quotation mark and ends immediately before the second one. It’s a convention in
C# that whenever you want to specify a string of text, you enclose it in double quota-
tion marks like this. If we added spaces in the string text—for example, " Welcome to
Snaps "—those spaces would also be displayed in the program’s title (although a user
might not notice them).

The second statement works in the same way as the previous one. It calls a method in
the SnapsEngine class that displays a string as a message on the screen of the Snaps
application (rather than setting a string as a title on the screen). When you saw the
DisplayString method name, did you expect to see quotation marks and string text
within the method’s parentheses? Good!

48 Chapter 3 Writing programs

ptg18144483

Calling methods in classes
Question: Where is the SetTitleString method declared?

Answer: The SetTitleString method is declared in the SnapsEngine class in exactly
the same way as the StartProgram method is declared in the Ch03_01_WelcomePro-
gram class. Later you will discover how to create your own methods in classes.

Question: What happens if I don’t give SetTitleString a string to work on?

Answer: The design of SetTitleString specifies that a string will be supplied when
it is called. The compiler will complain that a program is invalid if the program doesn’t
provide a string argument to the method call.

Question: Why do we have to put parentheses around the string that we're providing to
SetTitleString? Surely the compiler can figure out that the string to be displayed will start
with a double quotation mark character.

Answer: The reason why we need to include the parentheses is to tell the compiler the
start and end of the list of arguments being fed into the method. SetTitleString has
only one item being fed into it, but other methods might have lots of items. If you look at
the text of the program, you’ll find that the StartProgram method has been specified to
accept an “empty” list of arguments, which means that it doesn’t work on any items. The
designers of the C# language have used different characters to define the limits of (or
delimit) different elements of the program. As we’ve seen, strings are delimited by double
quotation mark characters. Lists of arguments are delimited by open and close paren-
theses: (and). The contents of a class and the body of a method are delimited by curly
brackets: { and }. As you might expect, the compiler is very careful to make sure that the
use of these delimiters “makes sense,” and it will reject any program that has mismatched
delimiters.

You can think of the two statements we just analyzed—which set the screen’s title
and display a message—as the “payload” of the sample program. The rest of the code
around those statements provides the structure around those actions. To write larger
programs, you just have to replicate this structure and add more statements. Now that
you know how a simple program fits together, you can start to make your own, using
the Snaps applications as a starting point. For example, you could make a program
that displays two message strings rather than a title and a message, like I’ve done with
Ch03_02_MoreStatements.cs:

using SnapsLibrary;

CODE ANALYSIS

49C# program structure

ptg18144483

public class Ch03_02_MoreStatements

{

 public void StartProgram()

 {

SnapsEngine.DisplayString("Hello world");

SnapsEngine.DisplayString("Goodbye chickens");

 }

}

In this program, SetTitleString isn’t called and two statements call the Display-
String method so that the program displays one message followed by a second
message. You can put a very large number of statements in a program. You could
write a program that displays the Gettysburg Address (or any other long text) one
string at a time simply by adding more statements. It’s important to remember that
each statement is obeyed in order when the program runs. The preceding program
will always display “Hello world” before it displays “Goodbye chickens”. (Let me point
out just one more time that the program doesn’t display the double quotation marks
you see in the previous sentence because no quotation marks appear in the string's
text itself between the double quotation marks that delimit it. The double quotation
marks I use in this paragraph are there only for clarity’s sake, as I describe the text the
program displays.)

So when you display a string via the DisplayString method, it replaces the string that
was displayed by a previous call of DisplayString, if any. In our example, this is why
“Hello world” is replaced by “Goodbye chickens”. Later you‘ll discover how to build up
multiple lines of text on the screen. Also, you can use DisplayString to display very
long messages if you want to; the text is automatically wrapped if it extends over the
edge of the screen. If you display a message that is extremely long, you’ll find that it
extends off the bottom of the screen and the user won’t be able to read all of it.

Extra Snaps
Every now and then I will introduce other Snaps—behaviors enabled by the Snaps
library—that you can play with. You can use these in your programs just like the pro-
grams we’ve been analyzing use DisplayString.

SpeakString
You can make programs that speak text instead of displaying it. Here’s an example:

First statement
Second statement

50 Chapter 3 Writing programs

ptg18144483

using SnapsLibrary;

class Ch03_03_Speaking

{

 public void StartProgram()

 {

SnapsEngine.SpeakString("Hi there. I'm your friendly computer.");

 }

}

The SpeakString method is used in the same way as the DisplayString method, but it
causes the computer to speak the text provided instead of displaying it on the screen.
This is a useful method because it makes it easy to create programs that can talk.

Speak and display
Let’s take a look at some code and try to work out why it doesn’t do what it should. Let’s say
that your younger brother wrote this program. He wanted something that displays “Com-
puter Running” and then says “Computer Running,” but he complains that the visual message
doesn’t appear until after the computer has finished speaking.

using SnapsLibrary;

class Ch03_04_DoubleOutput

{

 public void StartProgram()

 {

SnapsEngine.SpeakString("Computer Running");

SnapsEngine.DisplayString("Computer Running");

 }

}

Question: Why does the message appear on the screen after the computer finishes
speaking?

Answer: When you are trying to work out what a program does, it is often useful to
“behave like the computer” and work through the statements one at a time in sequence.
The computer speaks before the message is displayed because it strictly follows the
sequence of the statements. The DisplayString method doesn’t run until after the
SpeakString method has completed. This problem is fixed by reversing the order of the
statements. Take a look at Ch03_05_DoubleOututFixed.cs in Visual Studio to see that.

CODE ANALYSIS

51Extra Snaps

ptg18144483

Creating new program files
Programming is very creative, and you’ll create your own programs as we go through
the book. What I’m really hoping is that you’ll have your own ideas for programs and
build those along with the ones that I suggest. Each new program that you create will
be a new Snaps application that other learners can analyze or use.

You can create a new Snaps app by using the MyProgram.cs program file as a start-
ing point. Begin (like we always do) by opening the BeginToCodeWithSharp solution
file, and then in Solution Explorer find the file in the My Snaps apps folder in the
BeginToCodeWithCSharp project. Right-click the file in Solution Explorer to open
the context menu, and then select Copy, as shown in Figure 3-1.

Figure 3-1 Copying a program.

Now paste this copy into the My Snaps apps folder by right-clicking the folder and
selecting Paste, as shown in Figure 3-2.

52 Chapter 3 Writing programs

ptg18144483

Figure 3-2 Pasting the program.

Figure 3-3 shows the copy, called MyProgram - Copy.cs, in the folder.

Figure 3-3 The copied program appears in the folder.

53Creating new program fi les

ptg18144483

Let’s rename this new file to reflect the new Snaps app you’re going to build. Right-
click the file (the one that includes “Copy” in its name) in Solution Explorer to open the
context menu again, and select Rename. (I won’t show this step because I’m sure you
know what to do!) Now you can enter the new name for your application, as shown in
Figure 3-4.

Figure 3-4 Entering the new name.

Change the name of the program to “Countdown”. Be very careful not to remove “.cs”
at the end of the name. If you remove this part of the file name, Visual Studio will not
know the file is a C# program and will not work correctly when you try to run the pro-
gram. When you have finished entering the name, press Enter. You now have a copy of
the original program in a file called Countdown.cs. The reason I chose this name will
become apparent soon.

The next thing we need to do is rename the class that holds our program. Click the
Countdown.cs file in Solution Explorer so that its code appears in the editor window,
as shown in Figure 3-5.

54 Chapter 3 Writing programs

ptg18144483

Figure 3-5 The Countdown.cs file open in the Visual Studio editor.

Looking at Figure 3-5, you can see that Visual Studio is trying to tell us something.
The wavy red lines indicate that Visual Studio thinks some elements of the program’s
code are wrong. Visual Studio is unhappy in this case because our BeginToCode-
WithCSharp solution contains two versions of the MyProgram class—the original
in MyProgram.cs and now another in Countdown.cs. We can fix this problem by
giving the class a new name.

In Figure 3-6, I’ve changed the name of the class to Countdown and also changed
what the program does by altering one statement (the one that calls SetTitleString)
and by deleting the other statement (the one that was calling DisplayString). The
program now just sets its title to “Countdown”. You can put whatever you want in the
string, of course, but be sure that it has a double quotation mark at each end; other-
wise, your program won’t compile.

Figure 3-6 Defining a Countdown class.

Visual Studio is happy now because we removed the duplicate of the MyProgram class.
You should now be able to run the program by using the run button (the green arrow).

55Creating new program fi les

ptg18144483

Class names and file names
A C# solution can be spread over a large number of separate program files. It is worth giving
some thought to how this works.

Question: Why do we have to change the name of the class when we have already changed
the name of the file?

Answer: To answer this question, you have to understand the difference between logical
and physical names in a program. You can think of the names of the files that hold our
programs as physical names because a file name is connected to an actual file that is
stored on the computer. However, the names of the elements in a program are not tied to
the physical file that holds the program’s text. They exist in a “logical” namespace that is
defined by the programmer.

When the C# compiler is compiling a program, it reads all the source files and builds up a
list of all the different items that are defined in the program. This is the logical namespace
of the program. Each of the items in this logical namespace must have a unique name.
If we create two items with the same name, the compiler will complain, and that is what
happened earlier when we copied the MyProgram.cs file. After the copy, there were two
classes with the name MyProgram. We fixed the problem by changing the name of one of
the items to a new, unique name.

Question: Does the name of a program’s source file (the physical name) and the name of a
class (the logical name) in that source file have to match?

Answer: No. It is often convenient to make the two names match because it can make it
easier to find particular items, but the C# compiler does not enforce this.

Question: What would have happened if the program already contained a class named
Countdown and we added another one?

Answer: You can probably guess what would happen. The compiler would complain
because it doesn’t like having two items with the same name.

By the way, perhaps you were expecting the Countdown app to run immediately
when you clicked the run button? Whenever the BeginToCodeWithCSharp applica-
tion is first run, the Snaps environment looks for a class named MyProgram and then
calls the StartProgram method in that class. This means that whenever you start the
BeginToCodeWithCSharp application, it will first run the original program: MyPro-
gram.cs. Then you use the Folder and Snaps apps lists to select other apps you want
to run.

You can follow this copy, paste, and revise process each time you want to make
a new application and add it to our Snaps environment. Or, now that you know

CODE ANALYSIS

56 Chapter 3 Writing programs

ptg18144483

that MyProgram is the app that runs automatically when the Snaps environment
starts up, here’s a tip that can make things easier: start by editing the content of the
 MyProgram.cs file. This way, the code you’ve created will run without you having
to find and select the new app in the environment (like we just had to do to run the
Countdown app).

Remember: as long as the class in MyProgram.cs is called MyProgram, this pro-
gram will run first in the environment. When you finish building your new app in the
MyProgram.cs file, you can copy and paste the program code into a new source
file (a new .cs file), give that new source file a unique name, and rename the new
program’s class so that Visual Studio won’t wave red lines at you and prevent your
program from compiling. And, at this point, if you really want the MyProgram app to
function as it has in these first three chapters—setting the same title and displaying
the same message we’ve seen in these chapters—you know how to get it back to that
state.

Is it obvious now why I’ve called this source file MyProgram.cs? It’s ready for you to
use to build lots of programs!

Build a Countdown announcer
This “Make Something Happen” is quite momentous. It represents a very important mile-
stone on your journey toward programming enlightenment. Up until now you’ve been
modifying or fixing existing programs, which is a great way to get started, but at some point
you’re going to have to create your own program from scratch. That time is now. If you think
about it, even Bill Gates had to start somewhere. But I’m fairly sure that his first program
wasn’t able to speak to its users. Making computers speak was very difficult at the time Bill
Gates was learning to write code, but he would have felt the same sense of excitement as you
are about to.

After you build this application, you’ll have written your first program. You can make the pro-
gram more personal by using whatever messages you want to, and in the next section you’ll
discover some more Snaps that you can use to make the program even more interesting.

You should already have an “empty” app named Countdown. At the moment it does almost
nothing—it only sets a title string in the state we last saw it—but now you’re going to write
your own statements to give it life. You can use the SpeakString, DisplayString, and Set-
TitleString methods provided by the SnapsEngine class to create your program.

All you have to do is make a program that counts down from 10 to 0. A clue: your program
will contain at least 10 statements. Improve the program so that it displays the numbers on
the screen as well as speaks them. This should double the number of statements in your
program.

MAKE SOMETHING HAPPEN

57Creating new program fi les

ptg18144483

Compilation errors
Before a program can run, it must be checked by the compiler. You can think of this process
as a bit like the preflight checks performed on aircraft. Before a flight, the captain must walk
around the plane, count the wings, ensure that all the tires have air in them, and be sure that
the craft is safe to fly. In the same way, the compiler performs preflight checks on a program
before it can run. If the program doesn’t adhere to the rules of C#, the compiler will generate
errors that you, the programmer, need to fix.

Unfortunately, the compiler is much pickier about errors than humans are. I can walk up to
someone and ask “What you doing?” I’ll get an answer, even though the question I asked is
not properly formed English. However, if I try to compile the following program, I will get
errors:

using SnapsLibrary;

public class BadBrackets

{

 public void StartProgram()

 (

SnapsEngine.SpeakString("Hello world");

SnapsEngine.SpeakString("Goodbye chickens");

)

}

This code looks very similar to a program that we know works, but there are two tiny mistakes
in the text. The bad news is that they generate 11 highly confusing errors, as shown in this
screenshot.

The hard part about this state of affairs is that none of these messages actually tell you what
you did wrong (and some of them look really scary). The compiler is a very clever program,
but it’s not smart enough to say, “You’ve used parentheses where you should have used curly

WHAT COULD GO WRONG

58 Chapter 3 Writing programs

ptg18144483

brackets.” Update this code so that the statements are preceded by an open curly bracket ({)
and followed by a closed curly bracket (}), and the program will run. When you mark the start
and end of parts of a program, you must always use curly brackets. Parentheses are used for
something else.

PROGRAMMER’S POINT

A good programmer has to be able deal with details
Humans are incredibly good at dealing with noise. We can pick out our name from back-
ground chatter and recognize our mother in a sea of faces. Computer programs have to
work very hard to extract meaning from data. The compiler will become confused by one
tiny, incorrect detail in a program. This means that to become a great programmer, you’ll
need to learn how to examine things in great detail, in some cases character by character,
to discover what is wrong with them.

The best way to deal with mistakes like this is, of course, not to make them in the first place.
But because we are human, this is impossible. Here are my tips for dealing with compilation
errors:

1. Start from a program that compiles, or runs successfully. (Remember: compilers take our
high-level code and generate the machine code that enables a computer to perform the
actions we want it to perform. This is why we say that a program that runs successfully
without errors compiles.) Visual Studio provides software wizards that can be used to
make a program that doesn’t do much but that does compile.

2. Compile often (in Visual Studio with the run button). If the number of changes you have
made since the last successful compilation is small, you can isolate the error to just a few
places.

3. Look for the three classic compilation mistakes:

a. Missing something—for example, not putting a semicolon at the end of a statement.

b. Using the wrong character—for example, using [rather than }.

c. Spelling something incorrectly—for example, writing “startProgram” rather than
“StartProgram”. In the world of C#, it matters whether you use capital letters or
lowercase letters.

4. Don’t expect the error to be where the compiler has detected it. Some mistakes—for
example, a missing curly bracket—may be detected many lines further down the
program.

5. Use the color highlighting to help you. Words that are part of C# are shown in blue.
Strings of text are red. If a word is not the color you think it should be, you might have
typed it incorrectly.

6. Fix all the errors that you can see, and then compile again. Sometimes the compiler
becomes confused and reports errors on lines that are sensible. Once you have fixed all
the errors you can see, compile again and see if that works.

59Creating new program fi les

ptg18144483

7. Use Undo and Redo. Visual Studio contains a very powerful editor with an Undo button
(or Ctrl+Z) and a Redo button (Ctrl+Y), which you can use to step backward and forward
through the changes you have made to your code. You can use these commands and the
wavy red lines Visual Studio uses to highlight errors to find out where the mistakes are.

Find the compilation errors
This program produces 20 errors when it is compiled. See if you can find all the mistakes.

using SnapsLibrary;

public Class MyProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString(Welcome to the world of Snaps");

 }

}

Here are the errors:

using SnapsLibrary;

public Class MyProgram

{

public void StartProgram()

 {

SnapsEngine.SetTitleString("Begin to Code with C#");

SnapsEngine.DisplayString(Welcome to the world of Snaps");

 }

}

If you fix these two mistakes, we have a program that compiles just fine.

CODE ANALYSIS

Class Class should use a
lowercase c

Welcome Missing
the double
quotation

mark
before

Welcome

60 Chapter 3 Writing programs

ptg18144483

Extra Snaps
At the end of some chapters, I will introduce extra Snaps that you can play with. You
can use these in your programs just like you used the SpeakString Snap earlier.

Delay
You might want to make your program delay for a while with the Delay Snap:

using SnapsLibrary;

class Ch03_06_TenSecondTimer

{

 public void StartProgram()

 {

SnapsEngine.DisplayString("Start");

SnapsEngine.Delay(10);

SnapsEngine.DisplayString("End");

 }

}

This program displays “Start”, pauses for 10 seconds, and then displays “End”. The
Delay method is different from DisplayString in the type of data you provide to it.
You give the DisplayString method the string that you want the program to display.
You give the Delay method the number of seconds you want the program to pause.
This number can be a fraction if you want the program to pause for less than a second:

SnapsEngine.SpeakString("Tick");

SnapsEngine.Delay(0.5);

SnapsEngine.SpeakString("Tock");

You can use Delay to make a program look like it is thinking about something or to
give the user time to read some information on the screen.

SetTextColor
This Snap lets you set the color of the text in the message on the screen:

 Delays 10 seconds

Delays the program
for half a second

61Extra Snaps

ptg18144483

using SnapsLibrary;

class Ch03_07_BlueText

{

 public void StartProgram()

 {

SnapsEngine.SetTextColor(SnapsColor.Blue);

SnapsEngine.DisplayString("Blue Monday");

 }

}

You can also call this method to change the color of the text already on the screen.

using SnapsLibrary;

class Ch03_08_DelayedBlueText

{

 public void StartProgram()

 {

SnapsEngine.DisplayString("Blue Monday");

SnapsEngine.Delay(2);

SnapsEngine.SetTextColor(SnapsColor.Blue);

 }

}

This program displays “Blue Monday” in the default color to start with. After two
 seconds, it changes the text’s color to blue.

SetTitleColor
This Snap lets you set the color of the text in the title message on the screen:

using SnapsLibrary;

class Ch03_09_GreenSystemStarting

{

 public void StartProgram()

 {

SnapsEngine.SetTitleColor(SnapsColor.Green);

Built-in Snaps color
that represents the

color blue

62 Chapter 3 Writing programs

ptg18144483

SnapsEngine.SetTitleString("System Starting");

 }

}

This program sets the title text to green and then displays “System Starting” as the
title of the page. Generally, it’s best to set the color of titles and messages before they
are displayed; otherwise, they will “flick” into the requested color once they come into
view. Reverse the order of the statements in Ch03_09_GreenSystemStarting.cs to
see what I mean. This effect was minimized in Ch03_08_DelayedBlueText.cs because
of the delay.

SetBackgroundColor
This Snap lets you set the background color of the screen. You can use this to indicate
alarms or other conditions.

using SnapsLibrary;

class Ch03_10_RedScreen

{

 public void StartProgram()

 {

SnapsEngine.SetBackgroundColor(SnapsColor.Red);

 }

}

Creating your own colors
The Snaps library includes a number of built-in colors that you can use in your pro-
grams. You can see these SnapsColor values in the examples we've been looking at:
SnapsColor.Blue, SnapsColor.Green, and SnapsColor.Red. However, you might want
to use colors that are not in the library. For example, I like the color lilac. When you
describe a color to a computer, you have to use numbers because, as we know, com-
puters only really work with numeric values. To describe a particular color, we can use
three values: the amount of red, the amount of green, and the amount of blue in that
color. In the case of Snaps (and lots of other computer platforms, including Windows),
each of the numbers that describes a color level is in the range 0 to 255.

63Creating your own colors

ptg18144483

You can go online and look up the amount of red, green, and blue in particular colors.
It turns out that lilac is made up of 200 red, 162 green, and 200 blue. Here’s how you
use these kinds of values in the Snaps that deal with colors:

using SnapsLibrary;

class Ch03_11_LilacScreen

{

public void StartProgram()

 {

SnapsEngine.SetBackgroundColor(red:200,green:162,blue:200);

 }

}

The SetBackbroundColor method can be given one or three items to work on. It can
be given one SnapsColor value, or it can be given values for red, green, and blue.
Each of the color intensity values are identified by name, which makes it easier for the
programmer to see which of the values is being used for which purpose.

When a method is designed, the programmer has to decide how much information
the method needs to do its work and what form the information should take. In the
case of SetBackgroundColor, this version of the method needs to be told the amount
of red, green, and blue to be used. The items supplied to the method are given as a list
in which each item is separated from the next by a comma. If you omit an item or list
too many, the compiler will complain when it tries to create the program.

SnapsEngine.SetBackgroundColor(red:255,green:255);

Error 1 No overload for method 'SetBackgroundColor' takes 2 arguments

The compiler doesn’t like this statement because SetBackgroundColor in the Snaps
library hasn’t been created (by me) to accept only two items.

Bad color schemes
You will not get any errors if you write a program that displays red text on a red background,
but what will your program’s users say? I personally like using default colors (that is, the ones
that you get when you start the program running). If you want to show your creative side, you

(red:200,green:162,blue:200) Amount of
red, green,
and blue to

make the
color lilac.

WHAT COULD GO WRONG

64 Chapter 3 Writing programs

ptg18144483

can pick other colors, but make sure you test your color scheme on many different devices
because some machines can display colors much better than others. You should also make
sure to check your proposed color scheme with your customer, if you have one, because
colors are one thing that customers have very strong opinions about. Also, different people
see different colors with varying degrees of success. Don’t assume that others see colors the
way you do!

Build an egg timer
You can now use your programming skills to make a program that will time how long to cook
an egg. By using the Delay method from the Snaps library, you can make the program pause
while the egg is cooking and then announce when the egg is ready. My tests indicate that to
get a perfect egg, you should cook it for five minutes (or 300 seconds). This code serves as
a good starting point—copy this code rather than copying or editing MyProgram.cs when
you make your egg timer:

using SnapsLibrary;

class Ch03_12_EggTimerStart

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Egg Timer");

SnapsEngine.DisplayString("There are five minutes left");

SnapsEngine.Delay(60);

SnapsEngine.DisplayString("There are four minutes left");

 }

}

I think this is another important milestone for you as a developer. Unlike the countdown
timer you created before, this program has all the makings of a proper product. Your mom
would find this program useful. The Windows Store has quite a few products that work as
timers, and there’s no reason why a timer that you’ve made could not be one of them.

You could add extra features to your timer to do things like change the screen color when the
egg is nearly ready and even provide a 30-second warning before the timer expires—and
maybe a “ten, nine, eight” style countdown right at the end. You could also make the timer
speak how much time is left as well as display it.

MAKE SOMETHING HAPPEN

65Creating your own colors

ptg18144483

You can also use this design to make timers that could be useful in lots of other situations.
Here are four that I can think of:

 ● Your best friend has discovered a passion for developing her own photographs and
wants a timer she can use in the dark. The timer should just announce how many seconds
have gone by every five seconds.

 ● You and your coworkers have started a quiz club and want to control how long each
team has to answer a question. Each team gets 10 seconds.

 ● Your brother has a game where each player has to use a toothpick to eat as many baked
beans as they can in thirty seconds (I didn’t say it was a sensible game), and he needs a
timer for that.

 ● Your mom is into exercise and needs something to time each stage of her workout and
tell her what the next activity is. There are five activities: jogging in place, push-ups,
jumping jacks, stand and sit, and squat thrusts. Each activity should be performed for 30
seconds, followed by a 10-second rest period.

Try your hand at making these timers and any other ones that you might think of. In the next
chapter, you’ll discover how a program can get input from a user so that you can make even
better timers that allow the user to set the length of time the timer should run.

What you have learned
In this chapter, you’ve become more familiar with the Visual Studio environment in
which you’re creating your programs. You’ve seen that a C# program is expressed as a
sequence of statements that are performed in order when the program runs. You’ve
also seen the high-level C# that you and I have written converted into lower-level
computer instructions by a program called the compiler. Sometimes the code has
compiled, so the program runs successfully, and sometime the code hasn’t compiled
because of errors.

You’ve seen that the compiler ensures that the program conforms to the rules of the
C# language. The compiler will reject programs that don’t have statements that are
completely correct. Whereas a human reader will tolerate missing or incorrect punc-
tuation, the compiler will reject anything that does not obey the rules of the program-
ming language.

The programs that we have written so far make use of a set of Snaps provided by the
Snaps library that let us do things such as speak messages, display colors, and delay
the execution of the program for a while. These components are provided as methods

66 Chapter 3 Writing programs

ptg18144483

that are passed data to tell them what to do. For example, the SpeakString method is
given the text of the string that is to be spoken.

Here are some questions you might like to ponder about programs, statements, and
compilers.

Does the user of the program need to have a copy of Visual Studio to run the
program?

No. Visual Studio can produce a program file that users can run without Visual Studio.

Do I have to know how every Visual Studio command works?

No. You can get along by working with just a few of the buttons to start with. You will
discover more features as you go through the book.

Is the compiler incompetent because it is confused by invalid program code?

You might think that the compiler is a bit silly, because sometimes it does things like
complain when it has seen the wrong character. You would be forgiven for wondering
why the compiler doesn’t just substitute the right character and keep going. However,
it turns out there is a very good reason for the compiler not to do this. If the compiler
inserts things that it thinks are missing, it is making an assumption about what you,
the programmer, were actually trying to do. We have already seen that assumptions
are dangerous. It is much safer for the compiler to insist that you express exactly and
correctly what you want the program to do.

Can any C# method accept any number of things to tell it what to do?

No. Each method is custom-made to accept a specific set of information. The Delay
method needs to be told how many seconds to delay for. The SpeakString method
needs a string of text to speak. The compiler knows what a method was built to
accept, and it will feed only that kind of data into it. If you attempt to feed a string to
Delay, the program will not compile.

Are the statements in a program always performed in the order they are writ-
ten in the program?

Yes. You can think of a program as a story or recipe or a sequence of instructions. It
would be meaningless for the steps to be performed in any order other than the one
that has been set out.

Are the Snaps part of the C# language?

No. The Snaps library and these methods have been provided to help you learn how
to program and to create simple applications. They are not part of C#, but they were
created with C#. You will learn about other library classes and methods supplied with
C# a little later in the book.

67What you have learned

ptg18144483

4
Working with data

in a program

ptg18144483

What you will learn
In the previous chapter, you learned how a program is a sequence of
instructions that the computer follows. You saw this in the programs we
created that use some of the Snaps. In this chapter, you are going to fi nd out
how a computer program manipulates data. You will discover the different
forms that data can take—the difference between text data and numeric
data, for example, and the two kinds of numeric data, whole numbers and
real numbers. You’ll also learn how to create your own data storage in a C#
program and how to work with this data by using expressions.

Starting with variables .70

Using a variable in a program .74

Working with numbers .80

Working with different types of data .85

Whole numbers and real numbers in programs. .89

Extra Snaps. .95

What you have learned .97

69

ptg18144483

Starting with variables
The programs we’ve worked with up until now used data that was built in. For exam-
ple, the following statement takes data (the text “Hello world”) and then does some-
thing with it—in this case, converting it to words the computer speaks.

SnapsEngine.SpeakString("Hello world");

Lots of programs have data built in in this way—a video game, for example, includes
images and sounds alongside the program code. This data comes from values that are
“hard wired” into the program’s code. These values are known as literal values.

Literal values are fine for the fixed data in a program, but you need to do something
else if you want your code to be flexible. To change a literal value in a program, you
have to change the actual code (change “Hello world” to the new message you want,
for example) and then recompile the program. To make your code more flexible, you
use variables. Variables accept input from the user, and the program can then work
with this input.

Literal values
Question: What is the literal value in the statement SnapsEngine.SpeakString("Hello
world");?

Answer: The literal value is the string "Hello world".

Question: Is the method named SpeakString a literal value?

Answer: No. To understand why, consider the difference between the code in a program
that provides instructions (things that do the work) and the data in a program (things
that the work is done on). SpeakString is the identifier of a method that enables the
computer to speak a text string. "Hello world" is the literal string of text that we want
the program to speak.

Question: Are strings the only kind of literal values?

Answer: No. Later in this chapter, you will learn about numeric literal values.

CODE ANALYSIS

70 Chapter 4 Working with data in a program

ptg18144483

Variables and computer storage
For a program to be fully useful, it must be able to accept and work with data from an
external source. Every time you press a key, tap the screen of your mobile phone, or
move your mouse, you provide input to a program that is stored in a variable of some
kind. But where is that variable stored?

When a computer owner says proudly, “My computer has 16 gigabytes of RAM,” what
she is really saying is that the random access memory (RAM) in her computer contains
a huge number (16 thousand million) of individual memory locations, each of which
can hold a tiny piece of data called a byte. Each memory location is numbered, and
the computer can access any location at any time (which is why this is called random
access memory). These memory locations are used to store the instructions given to
the computer (the program) and the data that the program works on. As an example,
when you use a word processor, some of the RAM in your computer is holding the
word-processor program, and some of the RAM is holding the text being worked on.

There is a difference between data that is held in RAM and data stored on devices
such as disk drives or thumb drives. When you use a word processor, the program
loads your document from the disk drive and copies it to RAM. When you save a
document, it is copied from RAM back to the disk storage. Programs and data are held
in RAM while you work with them because that lets the data be accessed extremely
quickly. But RAM is also volatile. When you exit a program or the computer is switched
off, the contents of RAM are destroyed. (Later in this book, you’ll find out how to make
a program store data on storage devices, but for now we are going to consider how
programs can work with data held in RAM.)

You can think of a variable as a named location in memory that stores something that
the program is “thinking about.” While a program is running, it works on the vari-
ables to generate a result, which the program then outputs. Another way to think of
a variable is as a “box with a name.” In a program, the box is used to store stuff. The
programmer provides a name for the variable and also specifies the kind of data (such
as text or a number) that can be stored in it.

Declaring a variable
Let’s say we want to create a program that’s used to announce people who arrive at a
posh party we are organizing. Using the program, each guest would enter his or her
name. The person’s name would be stored in a variable defined in the program, and
the program would then announce the person’s arrival by retrieving the variable from
memory.

71Starting with variables

ptg18144483

To make this program work, we need a variable that can be used to store the name
that the guest enters. A name is a string of text, so we need a variable that can hold a
string.

string guestName;

This code is a declaration that tells C# to reserve space in memory for a variable that
can store a string of text. The C# compiler understands that the word string is the
beginning of the declaration. The word string is followed by the name of the variable
to be created, in this case guestName.

The name you use for a variable is called the identifier for that variable. The C# com-
piler makes sure that you don’t declare two items that have the same identifier. It also
enforces some rules for identifiers:

 ● An identifier can contain letters, digits, and the underscore (_) character.

 ● An identifier must start with a letter or an underscore.

 ● You can’t use an identifier that matches any of the keywords that are built into C#.
The word string, for example, is a keyword, so you can’t use string as an identi-
fier. Each keyword has a specific meaning in the context of the programming
language.

Identifiers
Question: Would my$name be a good identifier?

Answer: No. It contains a dollar sign, which is not allowed in an identifier. It would be
okay to use MyName or my_name.

Question: Would 2ndInningsScore be a valid identifier?

Answer: No. It starts with a number, which is not allowed.

Question: Would x29zog be a good identifier?

Answer: Yes, this is a legal identifier—C# would not object to it. But even though it is
valid, it is not meaningful. The identifier for a variable should indicate what it is being
used for, and this name doesn’t do that.

Question: Would textstring be a good identifier?

string guestName

Tells the compiler the name (identifi er) for the
variable being created.

Tells the compiler the variable will store a string.

CODE ANALYSIS

72 Chapter 4 Working with data in a program

ptg18144483

Answer: This is a valid identifier. It contains the word string, which is a keyword, but the
compiler doesn’t mind in this situation because string is part of a larger word. However,
I’m not keen on identifiers like this because they don’t really tell me much about what is
being stored. I’d much prefer something like nameString.

Simple assignment statements
After a variable is declared, a program can give the variable a value. Here’s an
example:

guestName = "Rob";

This type of statement is called an assignment. The variable on the left is assigned the
value on the right. The result of a program running this statement is that the variable
guestName would be made to hold the string “Rob”.

The equal sign between the variable and the value is not performing a comparison.
Instead, it says that we want to make the variable on the left equal to the value on the
right. I call this a gozzinta operation, in that the value “goes into” the destination on
the left.

Assignment statements are a very important part of a program. Whenever a program
is processing data, it does so by assigning values to variables. We will take a more
detailed look at assignments later in the book.

Assignment issues
An assignment statement is how a program gives a value to a variable. However, things can
go wrong, and here are a few ways in which assignments can fail:

newKidInTown = "Nowhere";

This is a perfectly legal statement, as long as the variable newKidInTown has been declared.
If it has not been declared, the compiler will generate an error. In C#, you must declare a
variable if you are going to assign a value to it.

guestName "Rob"

 . . . a literal string value.

The name of the variable being assigned to . . .

WHAT COULD GO WRONG

73Starting with variables

ptg18144483

string Name;

name = "Rob";

On the face of it, this code looks quite legal. But if you look carefully, you’ll see that the
variable declared has the identifier Name, whereas the one that’s used has the identifier name.
The C# language makes a distinction between uppercase and lowercase letters in identifiers.
The fact that the case of n is different here means that the compiler will complain that the
variable name has not been declared.

string age;

age = 21;

This code looks legal, but the compiler will complain because in C#, strings of text must be
enclosed in double quotation marks—“21” is a string, but 21 (without the quotation marks) is
a number.

Using a variable in a program
In your programs, you can use a string variable everywhere you can use an actual
string. For example, when we used SpeakString in previous chapters, we gave the
method the literal string value that we wanted the computer to speak. But you can
also give SpeakString or DisplayString the value of a variable that contains a string,
as here:

guestName = "Rob";

SnapsEngine.DisplayString(guestName);

Using a variable’s identifier in a program (guestName in this example) makes the pro-
gram use the value that’s held (assigned to) that variable. By putting the lines of code
we’ve been looking at together, you can see how this works. Here’s a program that
runs and displays “Rob”:

using SnapsLibrary;

Set the variable guestName to “Rob”

DisplayString guestName

A variable that contains a string value.

A method that accepts a string.

74 Chapter 4 Working with data in a program

ptg18144483

class Ch04_01_SimpleVariable

{

public void StartProgram()

 {

string guestName;

guestName = "Rob";

SnapsEngine.DisplayString(guestName);

 }

}

But what have we achieved by doing this? Why not just put the literal string “Rob” in
the call to DisplayString as we’ve done in programs in earlier chapters? Well, things
get much more exciting when you get the value of guestName from the user instead of
setting it to a fixed value.

To see how this works in more detail, we’ll use another Snap method, the ReadString
method. It does what you might expect—it reads a string that is entered by the user.

guestName = SnapsEngine.ReadString("What is your name?");

In this statement, the ReadString method is given a string that is used as a prompt for
the user—“What is your name?” When this statement is obeyed, the program displays
the prompt and a text box for user input. It then pauses and waits for the user to type
in his or her name, as shown in Figure 4-1.

Figure 4-1 This program stores the name you enter in the text box as a string variable.

Declare the variable.
Put a value in the variable.

Display whatever is in the variable.

guestName ReadString "What is your name?

Destination for the assignment.

Prompt displayed
by ReadString.

Put a value in the variable.

75Using a variable in a program

www.allitebooks.com

http://www.allitebooks.org

ptg18144483

When the user presses the Enter button, the ReadString method returns whatever the
user entered as a string, so the string assigned to guestName is read from the user’s
input rather than being fixed to the value “Rob” as it was in the previous example. You
can use the ReadString method any time you want to get some information from the
user. Here’s a more complete example.

using SnapsLibrary;

class Ch04_02_ReadingAString

{

 public void StartProgram()

 {

string guestName;

guestName = SnapsEngine.ReadString("What is your name?");

SnapsEngine.DisplayString(guestName);

 }

}

Reading data from the user makes this program into a “proper” data processor that
accepts information in one form (the text that the user types in) and produces output
in another form (the screen display).

Create an announcer
You can try out this program right now. Just run the Snaps app named Ch04_02_Reading-
AString. The Snaps methods will take the name you enter and then display it. You can add
a call to the SpeakString method to make the program also announce the user by name. If
you want to display the name in large letters, you could use the SetTitleString method as
well.

Assigning values in a declaration
C# lets you assign a value to a variable at the same time that you declare it. Here is a
single statement that replaces the two you have just seen:

string guestName = Snaps.ReadString("What is your name?");

Declare the variable.

Read the value
from the user.

Display whatever is in the variable.

MAKE SOMETHING HAPPEN

76 Chapter 4 Working with data in a program

ptg18144483

This statement gets a string from the user and stores it in a string variable with the
identifier guestName. This kind of statement makes programs slightly shorter, and
makes it less likely that a program will try to use a variable that has not been given a
value.

Adding strings together
Earlier in this chapter, we set out to make a program that will announce people’s
names as they arrive at a party. Now we want to make the announcement a little fan-
cier. In my case, I want the program to say “The honorable Mister Rob Miles.” I could
try doing this by using the following C# code:

string guestName;

guestName = SnapsEngine.ReadString("What is your name?");

SnapsEngine.SpeakString("The honorable Mister");

SnapsEngine.SpeakString(guestName);

Ch04_04_StiltedAnnouncer

This code snippet (which you can find in the Snaps app called Ch04_04_StiltedAn-
nouncer) runs correctly, but because the two parts of the message are produced by
separate statements, the speech output process treats them as separate items and
they sound a bit stilted. What we want is to assemble a single greeting for the pro-
gram to speak. To do this, we need to combine the introduction and the name in a
single string, like this:

string fullMessage = "The honorable Mister " + guestName;

This is the first expression that we have seen for a C# program. An expression is some-
thing that expresses an action to be performed. It is made up of operands, which are
the items to work on, and operators, which denote the particular action to be per-
formed. The elements of the expression in the announcer program are illustrated in
Figure 4-2. This expression has two operands and one operator. One operand is the
string “The honorable Mister,” and the other is the variable guestName. The operator
is the plus sign (+), and the result of this expression is placed in the variable called
fullMessage.

Get the name to be
announced.

Speak the introduction.
Speak the name.

77Using a variable in a program

ptg18144483

Figure 4-2 Anatomy of an expression.

Expressions are a fundamental part of the way that C# works with data. You will see
more of them in future chapters.

Invalid operators
The C# language provides lots of operators. Programs can not only combine strings or add
numbers with the plus sign, they can also subtract, multiply, and divide, among other things,
and you will see examples of this soon. But for now, take a look at this statement:

string fullMessage = "The honorable Mister " - guestName;

This statement looks like it is trying to subtract guestName from the introductory string. This
operation will not work because C# does not allow one string to be subtracted from another.
It is only meaningful for a program to add strings to each other. The compiler always checks
the context of an operator. While it is fine to subtract one number from another, it is not
possible to subtract one string from another. When you write a program (and particularly
when the compiler complains about an operation you are performing), be sure to consider
the context of the actions you are performing.

Speak the day: Using patterns
The announcer program gets a string from the user and then displays it. You can use the
same pattern to make a program that tells you the day of the week—and then you can run
this program and decide whether you need to get out of bed in the morning. To make this
program, you can use a Snaps method named GetDayOfWeekName. When you call the

WHAT COULD GO WRONG

MAKE SOMETHING HAPPEN

78 Chapter 4 Working with data in a program

ptg18144483

method, it reads the clock in the computer and works out what day of the week it is. It returns
this value as a string.

string day = SnapsEngine.GetDayOfWeekName();

The best way to construct this program is to base it on an existing one, and the approach for
using this Snap method is identical to the announcer program. Here is what the announcer
program does:

string guestName = Snaps.ReadString("What is your name?");

Snaps.DisplayString(guestName);

A program that speaks the day of the week would be very similar. The main difference is
where the message comes from.

string dayName = SnapsEngine.GetDayOfWeekName();

SnapsEngine.SpeakString(dayName);

You can use the announcer program pattern everywhere you want to create a program that
asks a method a question and gets a response. When you are faced with a new problem, it is
a very good idea to consider whether you have already solved that problem with a particular
pattern. The full version of a program that tells you which day it is would look like this.

using SnapsLibrary;

class Ch04_04_SpeakingDay

{

 public void StartProgram()

 {

string dayName = SnapsEngine.GetDayOfWeekName();

SnapsEngine.SpeakString(dayName);

 }

}

You can make the program display the day of the week as well as announce it. You could also
add a title display so that the user knows what the program is doing for them. By adding
strings together, you could even make the program greet you and say “Good day, Rob. And
how are you doing this fine Thursday?”

 Set up guestName
 Display the contents of guestName

Get the day of the
week as a string.

Speak the day of the week.

79Using a variable in a program

ptg18144483

Working with numbers
We have worked mainly with strings of text to this point in our programming. Now it’s
time to learn how a program can represent and manipulate numeric values.

Whole numbers and real numbers
As far as C# is concerned, there are two kinds of numbers, whole numbers and real
numbers. Whole numbers have no fractional part. A computer stores the value of a
whole number exactly. Real numbers, on the other hand, have a fractional element. As
a programmer, you need to choose which kind of number you want to use to store a
particular value.

Whole numbers vs. real numbers
You can learn about the difference between whole numbers and real numbers by looking at
a few situations when they might be used.

Question: I’m building a device that can count the number of hairs on your head. Should I
store this value as a whole number or a real number?

Answer: This should be a whole number, since there is no such thing as half a hair.

Question: I want to use my hair-counting machine on 100 people and work out the aver-
age number of hairs on all their heads. Should I store this value as a whole number or a real
number?

Answer: When you work out the result, you’ll find that the average has a fractional part,
which means that you should use a real number to store it.

Question: I want to keep track of the price of a product in my program. How should I do it?

Answer: This is actually very tricky. You might think that the price should be stored as a
real number—for example, $1.50 (one and a half dollars). However, you could also store
the price as the whole number, 150 cents. The type of number you use in a situation like
this depends on what you are using the number for. If you are just keeping track of the
total amount of money you take in selling your product, you can use a whole number
to hold the price and the total. However, if you are also lending money to people to buy
your product and you want to calculate the interest to charge them, you would need a
fractional component to hold the number more precisely.

CODE ANALYSIS

80 Chapter 4 Working with data in a program

ptg18144483

PROGRAMMER’S POINT

The way you store a variable depends on what you want to do with it
It seems obvious that you would use a whole number to count the number of hairs on your
head. However, one could argue that we could also use a whole number to represent the
average number of hairs on 100 people’s heads. This is because the calculated average
would be in the thousands, and fractions of a hair would not add much useful information.
When you consider how you are going to represent data in a program, you have to take
into account how it will be used.

C# whole number types
As I mentioned, whole numbers have no fractional part. They are frequently used in
programs for counting things. Also, the value of a whole number is stored exactly by
a computer program. In other words, every whole number value is mapped into the
computer’s memory in a way that perfectly preserves the value.

When I use a whole number in a program, I tend to use the int type, which has a
range up to 2,147,483,647. If the number I want to store is larger than this, I can use
the long type, which has a range as large as 9,223,372,036,854,775,807. And if I want
to count only as far as 32,767, I can use a type called short. All of these types have an
equivalent negative range.

Each type takes up a different amount of space in RAM. The long type takes up eight
memory locations, whereas the short type takes up only two. In most of my C#
programs I tend to use the int type because I am confident that I will never exceed its
range.

Be careful that you don’t exceed the range of
whole number types
You might think that the computer would detect that the range of a particular type is
exceeded. In other words, you might expect a program to stop if it tries to put the value
32,768 into variable that is of type short (which can store values only up to 32,767). How-
ever, this is not guaranteed to happen. Instead, you might find that the value in the variable
becomes completely incorrect and the program continues on its way. This can lead to the
most awful problems. The main reason I use the int type instead of the short type is that I
can think of situations where I might want to store values that are more than 32,000, but it is
very unlikely that I will exceed a value of 2,000,000,000.

WHAT COULD GO WRONG

81Working with numbers

ptg18144483

When you are picking a type for a variable, it is important to consider the range of the type
you are using. If you’re in doubt, pick a type with plenty of room. In a world where computers
routinely have enormous amounts of RAM, it is unlikely that you need to save storage space
by taking a risk with the size of the variable types you are using.

C# real number types
Real number types have a fractional part, which is the part of the number after the
decimal point. Real numbers are not always stored exactly. A particular real number is
mapped to computer memory in a way that stores a value that is as close as possible
to the original. You can increase the accuracy of the storage process by using larger
amounts of computer memory, but you are never able to hold all real values precisely.

This is actually not a problem. We are used to the fact that values such as pi can never
be held exactly because they “go on forever.” (I’ve got a book that contains the value
of pi to 1 million decimal places, but I still can’t say that this is the exact value of pi. All
I can say is that the value in the book is many more times as accurate as anyone will
ever need.)

When you create a variable to hold a whole number, you should start by considering
what the variable will be used for. Do the same thing when considering how to store
real numbers in a program. Start by thinking about the range and precision that your
application needs from the variable.

Precision sets out how precisely the number is stored. As an example, C# provides
a real number type called float that holds a number with seven digits of precision.
A float variable could store the value 1234567.0 or 0.1234567, but it could not store
1234567.1234567 because it does not have enough precision to hold 14 digits. The
range of a real-number type tells you the largest and smallest values that it can store.
In the case of the float type, it can hold a number with 38 digits (that’s a 1 followed
by 38 zeroes).

If I want to store a value very precisely, I use the double type. (The name is short for
double precision.) This type gives me 15 or so digits of precision and is able to store
numbers with over 300 digits. There is also a type called decimal, which has a lower
range than double (it can handle 28 digit values), but it provides 28 digits of precision.

Most of the time, I use the float data type, which is accurate enough for my needs. I
would use the double precision type if my program was using a particular variable in
calculations that were repeated many millions of times a second. In such a program,
the float type would be unsuitable because calculation errors might accumulate over
time and become noticeable. I would use the decimal type if I was performing interest
calculations on amounts of money. The high precision of the decimal type would be
able to hold even very tiny amounts of interest very accurately.

82 Chapter 4 Working with data in a program

ptg18144483

Variables are not perfect, but they are good
enough
You might think that your all-powerful computer should be able to hold all values precisely.
It comes as a bit of a shock to discover that this is not true, and that a simple 10-digit pocket
calculator can outperform your powerful PC.

However, this lack of accuracy is not really a problem in programming because we don’t
usually have incoming data that is particularly precise anyway. For example, if I refine my
hair-counting device to measure hair length, it would be very difficult for me to measure hair
length with more than a tenth of an inch (2.4 millimeters) of accuracy. This means that there
is no point in storing hair length in a variable of type double because the data is simply not
there in the first place.

The important thing to remember is that with whole numbers, as well as real numbers, you
should pick the type that you are going to use by considering what it will be used for.

Performing calculations
You have seen how a program can manipulate strings by creating expressions that
join them together. You can also create statements that contain expressions involv-
ing numbers. The expressions can be evaluated to produce a result, and you can
then use the result as you need to in your program. Expressions can be as simple as a
single value or as complex as a large calculation. Here are a few examples of numeric
expressions:

2 + 3 * 4

-1 + 3

(2 + 3) * 4

These expressions are worked out (evaluated) by the computer working from left to
right, just as you would read them yourself. Again, just as in traditional math, multi-
plication and division are performed first in an expression, followed by addition and
subtraction.

C# achieves this order by giving each operator a priority. When C# works out an
expression, it finds all the operators with the highest priority and applies them first. It
then looks for the operators next in priority and so on, until the final result is obtained.
The order of evaluation means that the expression 2 + 3 * 4 will calculate to 14, not 20.

WHAT COULD GO WRONG

83Working with numbers

ptg18144483

If you want to force the order in which an expression is worked out, you can put
parentheses around the elements of the expression you want to evaluate first, as
in the final example above. You can also put parentheses inside parentheses if you
want—provided you make sure that you have as many opening parentheses as closing
ones. Being a simple soul, I tend to make things very clear by putting parentheses
around everything.

It is probably not worth getting too worked up about expression evaluation (as people
in the know call it). Generally speaking, things tend to be worked out how you would
expect them.

Here is a list of some other operators, what they do, and their precedence (priority).
The operators are listed with the highest priority first

OPERATOR HOW IT’S USED

–
Unary minus, the minus that C# finds in negative numbers, e.g. –1. Unary
means applying to only one item.

*
Multiplication; note the use of the asterisk (*) rather than the more
mathematically correct but confusing x.

/
Division; because of the difficulty of drawing one number above another
during editing, we use this character instead.

+ Addition.

– Subtraction. Note that we use exactly the same character as for unary minus.

This is not a complete list of the operators available, but it will do for now. Because
these operators work on numbers, they are often called numeric operators. However,
one of them, the + operator, can be applied between strings, as you’ve already seen.

Work out the results
Question: See if you can work out the values of a, b, and c when the following statements
have been evaluated:

int a = 1;

int b = 2;

int c = a + b;

CODE ANALYSIS

84 Chapter 4 Working with data in a program

ptg18144483

c = c * (a + b);

b = a + b + c;

Answer: a=1, b=12, c=9. The best way to work this out is to behave like a computer would
and work through each statement in turn. When I do this, I write down the variable values
on a piece of paper and then update each as I go along. This is actually a useful thing to
do. It means that you can predict what a program will do without having to actually run
it.

Dumb calculations
One of the operators that can be used in an expression is the division operator. This means
that you can write silly code such as this:

int factor = 0;

int kaboom = 1 / factor;

This code tries to divide 1 by 0, giving a result that is not sensible. You might think that this
would cause the computer itself to crash. In the old days, this might have happened. I have
fond memories of a calculator I used to own. If I tried to divide 1 by 0, it would just keep
counting up, trying to reach a result of infinity. In the case of a C# program, what will happen
is that the C# run-time system will simply stop your program from going any further.

Working with different types of
data
You’ve already discovered that in the C# language, every variable has a characteristic
type, such as string or int. Now we are going to explore matters of type in a bit more
detail. You can think of a type as something like a garage that will fit only one partic-
ular kind of car. The C# compiler enforces type checking to make sure that a program
doesn’t try to combine types in a way that is not meaningful. Just as you can’t put a
stretch limo into a garage made for a compact car, you can’t directly put variables

WHAT COULD GO WRONG

85Working with different types of data

ptg18144483

of one type into another. However, programs often have to move values between
types—for example, to display numeric values in text form—so how do you do this?

Converting numbers into text
C# lets you write programs that can manipulate text and numbers so that you can
represent numbers as text or convert text into numeric values. We’ll explore how to
do this by making a digital clock. Earlier, we used a Snap that gets the day of the week.
There’s also one that obtains the date and time. The Snap method GetHourValue
returns the hour value of the current time as an integer. The following statement
declares a variable of type int with the identifier hourValue. It then sets this variable
to the result of the GetHourValue method.

int hourValue = SnapsEngine.GetHourValue();

Now that you have the hour value, you can make the program output it. You might
make part of the digital clock by using the DisplayString method to display the hour
value, like this:

SnapsEngine.DisplayString(hourValue);

But unfortunately, this doesn’t work. Visual Studio generates an error when you try to
run the program.

Error CS1503 Argument 1: cannot convert from 'int' to 'string'

Here, it looks like the compiler wants to have an argument with us, but this is not
actually what the message means. An argument is what C# calls the bit of data you
provide to a method to tell it what you want it to do. In the case of the DisplayString
method, the argument is the string that you want the program to display. This error
occurs because we are not giving DisplayString an argument of the string type.
We are giving it an int, which contains a numeric value. The error message tells you
that DisplayString has been given the wrong type of input and that the C# compiler
doesn’t automatically convert an int to a string. To make this program work, we
need to convert the number in hourValue into a string that the program can feed to
DisplayString. (You would see the same problem if you tried to use SpeakString
because that method also expects to be given a string of text to speak.)

A program can obtain a string version of any type of variable by asking the variable to
provide a string version of itself. Every type in C# provides a method named ToString,
which returns a string that describes the contents of that type.

86 Chapter 4 Working with data in a program

ptg18144483

string hourString = hourValue.ToString();

This statement creates a new string variable called hourString that holds the hour
value as a string of text. Now the program can provide the time. Here’s the complete
program that displays the hour when we run it.

using SnapsLibrary;

class Ch04_05_DisplayHour

{

 public void StartProgram()

 {

int hourValue = SnapsEngine.GetHourValue();

string hourString = hourValue.ToString();

SnapsEngine.DisplayString(hourString);

 }

}

Display the full time
The time-telling program we started earlier would be improved if it displayed the minute
value along with the hour. For this, we have the Snaps method GetMinuteValue. By adding
this method to the program, you can create a complete time message by joining the hour
and minute strings together, which turns out to be very easy:

int hourValue = SnapsEngine.GetHourValue();

int minuteValue = SnapsEngine.GetMinuteValue();

SnapsEngine.DisplayString(hourValue + ":" + minuteValue);

Ch04_06_TimeDisplay

The above statements fetch the hour and minute values and then display them with a colon
in between, as shown here:

Get the hour as a number.

Ask the hour to give us its
string version.

Display the hour as a
string.

CODE ANALYSIS

87Working with different types of data

ptg18144483

But if you look at the code that displays hours and minutes, you should notice something
strange about it. Previously we had to convert the numbers into strings when we wanted to
display them.

Question: Why does DisplayString now work with the values of hourValue and
minuteValue with no problems?

Answer: The reason this code works has to do with a quirk in the way that the + operator
handles strings in a program. If one of the operands being applied to the + operator is
not a string, the operand is automatically converted to a string by the C# compiler. I really
do not like this behavior. I can see that it has been added to make it slightly easier to write
programs, but when you are learning to write code, you can find this behavior very hard
to understand. It implies that a program can use number values (in this case, hours and
minutes) everywhere that it can use a string. But we know that this is not the case.

Speak the time, and grow it
One simple enhancement you can make to the clock is to have it speak the time as well as
display it on the screen. But it might also be fun to make a clock that gives an indication of
the time by enlarging the size of the letters on the screen. The Snaps method SetDisplay-
StringSize can be used to set the size of the text that is displayed. It is given a single num-
ber to work on, and it uses the value supplied to set the size of the text on the screen.

SnapsEngine.SetDisplayStringSize(20);

MAKE SOMETHING HAPPEN

88 Chapter 4 Working with data in a program

ptg18144483

This statement sets the size of the text in the display string to 20, which is the text’s size when
the program starts. If you want larger text, you can put a larger value in. You can experiment
with your system to see which values work best for you. (You will learn exactly how the size of
objects is expressed in a program a bit later in the book.) I got good results by multiplying the
hour value by 20 and setting the text size to the result, but you might like to try some other
values. If you multiply by a number that is too large, you might find that the program display
“pushes” the Snaps control panel off the bottom of the application window, and you will have
to stop the program in order to select another Snaps application to run.

Whole numbers and real
 numbers in programs
C# also enforces type checking when real numbers and whole numbers are used in a
program. We can look at what happens by working with a simple program that con-
verts a temperature expressed in Fahrenheit to the corresponding value in centigrade.

Variable types and expressions
To convert a temperature from Fahrenheit to centigrade, you subtract 32 from the
Fahrenheit value and then divide the result by the value 1.8. You could write a C#
expression to work out this result:

int tempInFahrenheit = 54;

int tempInCentigrade = (tempInFahrenheit - 32) / 1.8;

I quite like this code. It calculates the centigrade temperature for 54 degrees Fahr-
enheit. It makes good use of parentheses to make sure that the program subtracts
32 from the Fahrenheit value before the division is performed. Unfortunately, the
program produces an error when it is compiled:

Error 1 Cannot implicitly convert type 'double' to 'int'. An explicit
conversion exists (are you missing a cast?)

This error occurs because the result of the calculation is a number with a fractional
part, and we are trying to store this result in a variable that was declared as an integer,
a type used with whole numbers. The C# compiler won’t allow this.

89Whole numbers and real numbers in programs

ptg18144483

Losing data
It is not obvious which statement in the temperature-conversion code is causing the prob-
lem. This raises some questions:

Question: Where is the “double” value coming from?

Answer: The double-precision element in this program is the literal value 1.8. When the
compiler sees a whole number literal value, it regards it as an integer. When the compiler
sees a literal value that contains a decimal point, it regards it as a double-precision real
number. When C# evaluates an expression, the result has the type of the “largest” type
used in the expression. This means that an expression with a double-precision value will
return a double-precision result.

Question: Why is the compiler complaining?

Answer: Converting a value from double precision to an integer isn’t a problem for the
computer. It’s a simple operation for a program. However, the compiler is concerned
that the programmer (that’s you) might lose valuable data in the conversion because the
fractional part of the real number will be discarded. It is essentially saying, “I won’t just do
this conversion; you have to explicitly tell me you want the program to do it.”

Question: What is this “cast” the error message refers to?

Answer: If you cast a play, you have the job of deciding which actor will play which role.
Once you decide, you can tell Kevin that he is playing the role of Macbeth—and the best
of luck to him. In programming terms, casting is rather similar. It is like saying, “I know
that this value is a double-precision value, but for this statement I’d like it to play the role
of an integer.” The compiler is happy that you are aware that a conversion is taking place
and allows the operation to go forward. You’ll see how to perform casting later in this
section.

We can fix the error by using double to change the type of the variable that holds the
temperature in centigrade:

int tempInFahrenheit = 54;

double tempInCentigrade = (tempInFahrenheit - 32) / 1.8;

Ch04_07_CentigradeAndFahrenheit

CODE ANALYSIS

90 Chapter 4 Working with data in a program

ptg18144483

Precision and accuracy
When I run the temperature-conversion statements we’ve been studying, I get the
following results:

tempInFahrenheit = 54

tempInCentigrade = 12.222222222222221

At first sight, it looks like the temperature in centigrade is being stored much more
accurately than the temperature in Fahrenheit. But this is not really the case; this is just
how the numbers worked out. When the program does the calculation, it generates a
result that is stored with this high level of precision, but this doesn’t mean that there is
more detail in the data.

For most of my programs I don’t use the double-precision type because I don’t need
its level of precision. Instead, I use the float type, which is short for floating-point
number. As I mentioned earlier, this type holds numbers less accurately than double,
but the values take up half as much space in memory, and they are much faster to
calculate. These considerations can be important if you are thinking of running your
programs on small devices such as mobile phones.

PROGRAMMER’S POINT

Don’t confuse precision with accuracy
It is very important to remember that numbers don’t become more accurate just because
they are stored with more precision. Scientists in a laboratory measuring the length of ant
legs will not be able to do this to more than a few digits of accuracy (unless they have some
amazing technology), so there is no point in them using much higher precision to store and
process their results. Using higher precision has the effect of slowing down the program
and also means that the variables take up more space in memory.

I could change the temperature-conversion program so that the variable tempInCen-
tigrade is held in a floating-point variable instead of the double-precision one, like
this:

int tempInFahrenheit = 54;

float tempInCentigrade = (tempInFahrenheit - 32) / 1.8;

But, unfortunately, these statements will not compile:

91Whole numbers and real numbers in programs

ptg18144483

Error 1 Cannot implicitly convert type 'double' to 'float'. An explicit
conversion exists (are you missing a cast?)

This is the same problem we had when we tried to put a double-precision value into
an integer. If you think about it, the error makes perfect sense. Moving a double-
precision result into a floating point variable may result in a loss of data because float-
ing point values aren’t held as precisely as double-precision ones.

PROGRAMMER’S POINT

The compiler is on our side, really
As you write more programs, you’ll get used to the compiler being fussy like this. The
annoying thing is that in the case of our program, it doesn’t really make any difference
whether we use float or double. However, one day you might find yourself writing pro-
grams that do rocket-guidance calculations, where a tiny error in the results could result in
a disaster. The compiler must make sure that all programs are as safe as possible, and so the
best thing you can do is just get better at dealing with these errors and try not to introduce
them in the first place.

Converting types by casting
We can solve the problem of mismatched number types by casting. You use a cast to
explicitly inform the compiler that you are aware an action might lose data, but you
know that it won’t affect the behavior of the program. Look at this line of code:

float tempInCentigrade = (float) ((tempInFahrenheit - 32) / 1.8);

Here, I’ve wrapped the entire expression in parentheses and then used a cast to tell
the compiler, “I don’t care what the type of this value is. I want you to regard it as a
floating-point value.” The statement instructs the compiler to perform an explicit
conversion and, if necessary, to discard some of the detail in the result.

Casting is strong magic. You can also use casting to convert from real numbers to
integers:

int tempInCentigrade = (int) ((tempInFahrenheit - 32) / 1.8);

(float) ((tempInFahrenheit - 32) / 1.8)

Double-precision expression

Cast

92 Chapter 4 Working with data in a program

ptg18144483

This cast is actually quite a dangerous one. It tells the compiler to convert a real
number to an integer by discarding the fractional part. In other words, the value 0.999
would be converted to 0, losing a lot of data in the process. Here is a better way to
perform this conversion:

int tempInCentigrade = (int) (((tempInFahrenheit - 32) / 1.8) + 0.5);

Adding 0.5 to the value before we cast it ensures that 0.999 is rounded up to 1.

Using casting on operands in an
expression
Another way to fix the type problem is to give the compiler more information about
the values it is working with. If we tell it that the value 1.8 is actually a floating-point
value, it will generate a floating-point version of the expression. You can do this by a
bit of cunning casting:

float tempInCentigrade = (tempInFahrenheit - 32) / (float) 1.8;

Ch04_08_FloatCentigrade

Now the value 1.8 has been cast to a floating-point value, leading to a floating-point
result for the calculation.

Casting and program performance
The type of a variable in an expression can have an effect on performance. This is worth
exploring.

Question: Casting the value of 1.8 to a floating-point value makes the program more effi-
cient. Why do you think this might be?

Answer: If we cast the double-precision result of the calculation to a floating-point
value, we are effectively performing a high-precision calculation and then doing work
to discard some detail. It is much more efficient to just perform the calculation by using
floating-point values and then not have to convert the value at all. In an ordinary pro-
gram this might not make much difference, but it is the kind of issue that programmers
concerned with performance (for example, games developers) worry about a lot.

CODE ANALYSIS

93Whole numbers and real numbers in programs

ptg18144483

It turns out that the designers of C# have provided a quick way of saying that an oper-
and is a floating-point value—you just have to put an f after the value in the program
code:

float tempInCentigrade = (tempInFahrenheit - 32) / 1.8f;

The value 1.8f is a literal value in the program; it is not a variable. There are actually
two literals in this statement—the values 1.8 and 32. Unless we give the compiler more
information, it will assume that literals with no decimal point are integers and ones
with a decimal point are double precision. However, if we put an f after a value, this
tells the compiler it is really a floating point.

Types and errors
Errors that occur when you convert one type to another are some of the hardest ones
for a programmer to deal with. The intent of the program may be correct—there is, in
fact, nothing wrong with what you are telling the computer to do—but the realization
of the program (the statements that implement this intent) may result in data loss. The
compiler will notice this and refuse to compile the program unless you explicitly take
responsibility for the conversion.

Type checking
Sometimes, finding problems in programs involves a bit of detective work. You have to work
with the clues to work out just what is happening.

Say a friend of yours has decided to write a program that will work out the average of three
temperatures, held in variables called t1, t2, and t3. The program compiles and runs just
fine. It contains the following statement:

int average = (t1 + t2 + t3) / 3;

Question: What does this tell you about the variables t1, t2, and t3?

Answer: They must be integers. If they were float or double, the compiler would not
allow the result of the calculation to be stored in an integer variable.

Putting f at the end
of a literal value

casts that value to
the fl oat type.

CODE ANALYSIS

94 Chapter 4 Working with data in a program

ptg18144483

Question: Your friend would like to get fractional parts in the results. He’s tried the following
statement, but it doesn’t seem to add any more detail, although it compiles and runs fine.
What’s the problem?

float average = (t1 + t2 + t3) / 3;

Answer: The calculation is producing an integer result because all the operands in the
expression are integers, and the compiler always works with the highest precisions of the
operands.

Question: You’ve told your friend that he needs to make sure that the expression that works
out the average produces a floating-point result. He changed the code to the following state-
ment, but it doesn’t compile, and now he’s angry. How do you fix this?

float average = (t1 + t2 + t3) / 3.0;

Answer: The problem is that the compiler regards the literal value 3.0 as a double-
precision value. The calculation generates a double-precision value, which then can’t be
placed in a floating-point variable. The best way to fix the problem is to tell the compiler
that 3.0 is a floating-point value by putting an f after the value (3.0f)

Extra Snaps
Before you go on to the next chapter, you might want to exercise your programming
skills by using some more Snaps. Here are a few you can try:

Weather snaps
Converting from Fahrenheit to centigrade is even more useful if you actually have
some weather data to work from. The Snaps method named GetTodayTempera-
tureInFahrenheit returns the temperature of a location in the United States. (The
information is provided by the US National Weather Service, www.weather.gov). You
must supply the method with the latitude and longitude of the location for which
you want the temperature. Here’s an example that gets the temperature for Seattle,
Washington.

95Extra Snaps

http://www.weather.gov

ptg18144483

int temperature = SnapsEngine.GetTodayTemperatureInFahrenheit (latitude: 47.61,

 longitude: -122.33);

Ch04_09_TemperatureDisplay

You can find the latitude of a town or city in the United States by using the Bing search
engine. Just search for “MyLocation Latitude,” and you will get the values you need to
use. The latitude and longitude items in the call to the method are named argu-
ments. You first saw examples of these in Chapter 3, in the description of how to create
color values. Here we are giving two arguments that describe a location.

If you want a brief description of the weather conditions at a location, you can use the
GetWeatherConditionsDescription method, which returns a short string describing
the conditions.

string conditions =

 SnapsEngine.GetWeatherConditionsDescription(latitude: 47.61,

longitude: -122.33);

Ch04_10_WeatherConditionsDisplay

I’ve just run the method, and it returned the message “Partly cloudy” for Seattle.

Keep in mind that these methods provide weather information only for locations in
the United States. If you try to use latitude and longitude values for other countries
or regions, you will get a rather silly temperature (1000 degrees) or a message that
indicates the weather information is not available.

ThrowDice
So far, our programs have worked in a totally consistent way. When we run the pro-
gram with the same inputs, we get the same outputs. But sometimes it’s useful for a
program to obtain some random data to work with. You can use randomness to make
games more interesting. The Snaps library provides a method named ThrowDice that
simulates a single throw of the dice. There is no need to feed any information into the
method; a program can just use the result that is provided. The next three statements
show how the method is used:

96 Chapter 4 Working with data in a program

ptg18144483

int spotCount = SnapsEngine.ThrowDice();

SnapsEngine.SetTitleString(spotCount.ToString());

SnapsEngine.SpeakString("You have rolled a " + spotCount.ToString());

Ch04_11_Dice

The first statement sets the integer variable spotCount to the result of a throw of the
dice. The second statement sets the title string of the page to the dice throw (convert-
ing the integer to a string), and the third statement speaks the result.

You could create a program that you could use in place of the dice in a game. You
could also use it to create a random delay. The random dice throw could be the basis
of a “nerves of steel” game. The program picks a random time by getting a random
dice throw and then multiplying it by another random dice throw. This produces a
number between 1 and 36. The program then pauses for that number of seconds
before saying “Nerves of steel.” Everybody stands, and the program runs. The last
person who sits down before the program speaks the message is the winner.

What you have learned
In this chapter you have learned that programs use random access memory (RAM)
to hold program data and code. RAM is a series of numbered locations, each of
which stores one byte. You don’t need to worry where in memory your data is stored
because C# allows you to create named variables that are managed automatically.

Each variable is created with an identifier that is chosen by the programmer. The iden-
tifier should reflect the purpose of the variable. Variables can have values assigned
to them, and a variable can be used within expressions in a program. An expression
is made up of operands (variables and literal values) and operators (like the plus and
minus signs). Expressions can contain multiple operators and operands, and the order
in which operators are applied is defined in C# so that results tend to work out the
way you would expect them to. If a calculation is performed that will generate an
invalid result—for example, dividing 1 by 0—a program will fail at that point.

A given variable is defined as being able to hold a particular type of data, like an
integer or a string. C# forces the programmer to be explicit when moving variables
from one type to another so that data is never lost unintentionally by the conversion
process.

97What you have learned

ptg18144483

Here are some questions you might like to ponder about types, variables, and
expressions.

Are values held in the computer to unlimited accuracy?

No. Each numeric type has a particular range (the highest and lowest values avail-
able) and precision (the number of significant digits). You can increase the accuracy of
stored data by selecting a type that uses more bytes of memory to hold each value.
For example, a double variable is held in 8 bytes, whereas a float variable is held in
only 4.

Can I can get more accuracy by using double-precision values?

This really depends on the accuracy of the numbers coming in. If you are measuring
the length of your desk with a ruler and using that value in your program, it is unlikely
that you could improve anything by using double precision, as the precision of the
input value is not that great.

Does adding parentheses to an expression make the program go faster?

No. It might help the compiler make sense of your program, but it does not affect the
speed at which the program actually runs.

Does the type of a variable really matter?

Yes. If you try to store text in a location that has been created to store a number, this
will obviously not work. But you can get even worse problems if you use a numeric
type that has an insufficient range for the value you want to put in it. For example, you
might declare a variable of type byte (in an attempt to save memory) and then store
the value 10,000 in that variable. This will not fit (the biggest value you can put in a
byte is 255), and your program will do very strange things as a result.

98 Chapter 4 Working with data in a program

ptg18144483

This page intentionally left blank

ptg18144483

5
Making decisions

in a program

ptg18144483

What you will learn
I’ve described a computer as a sausage machine, which accepts an input,
does something with it, and then produces an output. This is a great way
to start thinking about computers, but a computer actually does a lot
more than that. Unlike a real-life sausage machine, which simply tries to
create sausage from anything you put in it, a computer is able to respond
to different inputs in different ways. In this chapter, you’ll discover how to
make your programs respond to different inputs. You’ll also learn about the
responsibility that comes with making the computer work in this way—you
have to be sure that the decisions your programs make are sensible ones.

With this information in hand, we’ll build an application that behaves
according to the user’s selection. As we build this application, you’ll learn
more about the logical expressions you can use to control a program. Then,
at the end of the chapter, we’ll expand on your newfound programming
skills by exploring how to incorporate images and sounds in your programs.

Understanding the Boolean type .102

Using if constructions and operators .104

Creating blocks of statements .110

Creating complex conditions using logical operators 113

Adding comments to make a program clearer .117

Funfair rides and programs .119

Working with program assets .127

What you have learned .132

101

ptg18144483

Understanding the Boolean
type
You’ve seen that C# provides different types, such as string and float, that you can
use to represent data in a program. I like to think that you will forever associate the
number of hairs on your head with whole numbers (integers) and the average length
of your hair with real numbers (floating-point and double). Now it’s time to meet
another type, the Boolean type. Unlike the numeric types, which provide a range of
values, the Boolean type has only two possible values: true or false.

Declaring a Boolean variable
A program can declare and assign a Boolean variable in the same way as for any other
type of variable. The following statement declares a Boolean variable called ItIs-
TimeToGetUp and sets its value to true. (In my world, it seems that it is always time to
get up.) Note that the designers of C# decided to shorten the program text slightly by
giving the Boolean type the name bool.

bool ItIsTimeToGetUp = true;

In the highly unlikely event of me ever being allowed to stay in bed, we could change
the assignment to set the value to false:

bool ItIsTimeToGetUp = false;

Boolean values
Question: What happens if I try to set a Boolean variable to a number rather than to true or
false?

Answer: I think we both know the answer to this one. The compiler enforces type rules
on Boolean values as it does for all other types. The keyword true in a C# program is
actually a literal Boolean value that means true, just like the value 12 is a literal integer
value that means the value 12.

CODE ANALYSIS

102 Chapter 5 Making decisions in a program

ptg18144483

Question: Why do we need Boolean variables?

Answer: If you think about it, we don’t really need Boolean variables. We could simply
use an integer and adopt a convention that 0 means false and any other value means
true. However, we’d have to rely on all programmers understanding the convention and
using it correctly. If we were ever interested in storing only true or false (for example,
I am either handsome or I am not handsome), then it makes sense to use a type that can
represent just those two states. Another good reason to have Boolean types is to perform
logic in a program, which you will be doing later in this chapter.

Question: What are true and false?

Answer: The words true and false are literal values in the program that mean true or false.
You’ve seen literal values before. A program can contain the literal integer 1 or the literal
string “Rob”. If we use false in a program, the C# compiler regards it as a Boolean value
that is false. The C# compiler will make sure that we assign these literal values only to
Boolean variables.

Boolean expressions
A Boolean variable can be assigned to any expression that returns a value that is true
or false. As an example, each day I need to get up at 7 a.m. We can use a Boolean
expression involving the hour value of the current time to see whether I need to get
up:

int hourValue = SnapsEngine.GetHourValue();

bool ItIsTimeToGetUp = hourValue > 6;

The first statement creates an integer variable called hourValue and sets it to the
current hour of the time by using the Snaps method GetHourValue. The second
statement sets the value of ItIsTimeToGetUp to the result of a Boolean expression that
evaluates to true if the value in hourValue is greater than 6.

You can invert the value of any Boolean expression (converting true to false and vice
versa) by using the ! (not) operator. This statement creates a Boolean variable called
ICanStayInBed that holds the inverse of ItIsTimeToGetUp.

bool ICanStayInBed = !ItIsTimeToGetUp;

 Get the hour value from the clock.
 Set ItIsTimeToGetUp to true if the

hour is greater than 6.

103Understanding the Boolean type

ptg18144483

Boolean expressions
Question: What does the > character mean?

Answer: If you’ve done any math in school, you’ll be familiar with the > character. It
means greater than. In the same way that the + operator adds two operands together
and returns their sum, the > operator compares two values and returns true if the value
on the left of the operator is greater than the value on the right.

Question: Why is the test “greater than 6” rather than “greater than 7”?

Answer: We use this test because I need to get up at 7. Therefore, the expression must
evaluate to true when hourValue is 7. If we used the test “greater than 7,” the expression
would not become true until the hour value reached 8 (because 7 is not greater than 7).

I think the best way to test your Boolean expressions is to say them out loud, replacing
the variable with the actual value. If you say that the result of the expression would be
true if “7 is greater than 7,” you can tell that it is wrong because it sounds wrong. Of
course, it turns out that I’m all in favor of software bugs that let me have an extra hour in
bed.

Question: Can a program compare real numbers as well as whole ones?

Answer: Yes. For example, the greater-than (>) operator will work between two float
values.

Question: How would I make a test to determine whether I can stay in bed?

Answer: C# provides a logical operator called “less than” (<) that can be used to perform
this test.

bool ICanStayInBed = hourValue < 7;

Using if constructions and
operators
Let’s say I want to make a program that displays a message to tell me whether I need
to get out of bed just yet. We can use a Boolean variable to control the execution of
this program by using the if construction provided by C#. In a C# if construction, the
if keyword is followed by a Boolean value enclosed in parentheses. This is often called

CODE ANALYSIS

104 Chapter 5 Making decisions in a program

ptg18144483

the condition. The condition controls what the program does. If the condition is true,
the statement after the condition is obeyed. If the condition is false, this statement is
ignored when the program runs.

Here is a program that uses an if construction to display the message “Time to get
up” only if you run it at 7 o’clock or later.

using SnapsLibrary;

class Ch05_01_GetUpAlarm

{

 public void StartProgram()

 {

int hourValue = SnapsEngine.GetHourValue();

bool ItIsTimeToGetUp = hourValue > 6;

if (ItIsTimeToGetUp)

SnapsEngine.DisplayString("Time to get up");

 }

}

We can simplify the program by including the logical expression inside the if
construction, like this:

if (SnapsEngine.GetHourValue() > 6)

 SnapsEngine.DisplayString("Time to get up");

Ch05_02_SimplifiedGetUpAlarm

Adding an else part to an if construction
Many programs want to perform one action if a condition is true and another action if
the condition is false. An if construction can include an else element that identifies a
statement to be performed if the condition is false.

The message the following program displays depends on the time of day the user runs
it. In the morning, before 7:00 a.m., it displays “Go back to sleep.” After 7:00 a.m., it
displays “Time to get up.”

if (SnapsEngine.GetHourValue() > 6)

 SnapsEngine.DisplayString("Time to get up");

else

 Get the hour value.

Set ItIsTimeToGetUp to true
if it is time to get up.

 Start of the if condition.
 Statement that is

obeyed when the if
condition is true.

 Get the hour value and test it
using a Boolean expression.

 Condition that controls this if construction.
 Statement performed if the

condition is true.

105Using if constructions and operators

ptg18144483

 SnapsEngine.DisplayString("Go back to sleep");

Ch05_03_GetUpDeciderWithElse

If constructions
Question: Does an if construction have to have an else part?

Answer: No. Including an else part is very useful sometimes, but it depends on the
problem that the program is trying to solve.

Question: Does the condition in an if construction control what the compiler does?

Answer: No. Remember that the compiler is the tool that converts your C# program
text into machine code that can run on the computer. When the C# compiler compiles
an if construction, it creates the machine code that makes the decision and then runs
the selected statement. The decision is made when the program runs, not when it is
compiled.

Question: What happens if a condition is never true?

Answer: If a condition is never true, the statement controlled by the condition never gets
to run. The compiler will give you the warning “Unreachable code detected” if it detects
this situation.

Question: Why is the statement underneath the if condition indented a few spaces?

Answer: This statement doesn’t need to be indented. The C# compiler would be able
to understand what we want the program to do even if we put everything on one line.
The indentation is there to make the program easier to understand. It shows that the
statement underneath the if construction is being controlled by the condition above
it. Indenting code like this is such a common practice that the behavior is baked into the
Visual Studio editor. In other words, when you type an if construction and then press the
Enter key at the end of the condition part, Visual Studio automatically indents the next
line.

Relational operators
The less-than operator (<) is called a relational operator because it measures the rela-
tionship between two values. There are other relational operators you can use. The
operator you choose depends on what you want the program to do.

 Statement performed if the
condition is false.

CODE ANALYSIS

106 Chapter 5 Making decisions in a program

ptg18144483

RELATIONAL OPERATOR NAME BEHAVIOR

< Less than Evaluates to true if the value to the left of the operator
is less than the value to the right.

> Greater than Evaluates to true if the value to the left of the operator
is greater than the value to the right.

<= Less than or equal to Evaluates to true if the value to the left of the operator
is less than or equal to the value on the right.

>= Greater than or equal to Evaluates to true if the value to the left of the operator
is greater than or equal to the value on the right.

Relational operators
Question: Two of the operators, the ones with or equal to, are expressed as two characters.
How does this work?

Answer: When the C# compiler goes through your program, it looks for character
combinations and converts them to symbols that represent the elements in the pro-
gram. These elements are then used to build your program. Some of the symbols are
keywords, such as if and int. Other symbols are elements such as strings of text (which
are enclosed in double quotation marks) and literal values. The character sequence <= is
recognized and converted into the less-than-or-equal-to symbol.

Question: How do I remember which symbol is which?

Answer: When I was learning to program, I used the way that less than looks a bit like an
L to remember which is which.

Equality operators
In addition to the relational operators, C# also provides a couple of equality operators
that a program can use to test equality.

OPERATOR NAME BEHAVIOR

== Equal to Evaluates to true if the value to the left of the
operator is equal to the value on the right.

!= Not equal to Evaluates to true if the value to the left of the
operator is not equal to the value on the right.

CODE ANALYSIS

107Using if constructions and operators

ptg18144483

Here is an example of using the equal-to operator to display a message if the hour
value of the time is 9.

if (SnapsEngine.GetHourValue() == 9)

 SnapsEngine.DisplayString("Nine hours, and all is well");

Ch05_04_IsItNineOclock

The == operator can be a bit confusing. You saw that you use the = operator when you
want to assign a value to a variable. C# uses the == symbol to indicate a test for equal-
ity so that programmers don’t get confused between these two actions. The equality
operator is used to generate true or false answers, while the assignment operator
moves data around. The behaviors of the operators are quite different, so it makes
sense to identify them with different symbols.

Comparing real numbers
In Chapter 4, we started working with real numbers, which have a fractional part as well as a
whole part. For example, the value 1.1 has a whole part (1) and a fractional part (.1, or one-
tenth). C# programs can hold real values in the float, double, and decimal types. You dis-
covered that the value of a real number is not always held precisely by the computer; instead,
it holds a number that is close enough to the actual value. This can lead to problems if you try
to compare two numbers.

using SnapsLibrary;

class Ch05_05_NumberCompare

{

 public void StartProgram()

 {

double calculatedPoint3 = (0.1 + 0.2);

if (calculatedPoint3 == 0.3)

SnapsEngine.DisplayString("Calculation works");

 }

}

Compare the hours
with the value 9.

 Display the
message if

the hours
value is 9.

WHAT COULD GO WRONG

Calculate the value
0.3 by adding 0.1

and 0.2.

Compare the
calculated value with

the literal value 0.3.
This statement is not

performed because
the calculation is

inaccurate.

108 Chapter 5 Making decisions in a program

ptg18144483

We know that 0.1 + 0.2 should be 0.3, so the message should be displayed. But because the
computer does not hold values completely accurately, the value of 0.1 + 0.2 works out to be
0.30000000000000004. This is an extremely small difference, but as far as the equality test is
concerned, the two numbers are not the same, so the message is not displayed.

Note that this does not reflect a problem with the computer or the programming language;
it is just a consequence of the way that numbers are stored using digital systems. Some num-
bers—for example, one-third—can’t be accurately represented as a decimal number. The
same is true for some numbers stored by computers, and your programs must allow for this.
If you want to compare floating-point values, your program should subtract one from the
other and see whether the difference is very small.

Comparing strings
A program can use the equality operators to compare two strings. This program gets
the name of the day of the week and then displays the message if it’s Saturday.

if (SnapsEngine.GetDayOfWeekName() == "Saturday")

 SnapsEngine.DisplayString("Yay! It's Saturday");

Ch05_06_IsItSaturday

You can use similar code to make a program that recognizes people by name:

using SnapsLibrary;

class Ch05_07_HelloGreatOne

{

 public void StartProgram()

 {

string name;

name = SnapsEngine.ReadString("What is your name?");

if (name == "Rob")

SnapsEngine.DisplayString("Hello, Oh great one");

 }

}

 Compare the name of the
day of the week with the

string “Saturday”.
 Display the message

if it is Saturday..

Variable that holds
the name of the user.

Read the name
entered by the user.

 Test to see if the name matches “Rob”.
 Display the message
if the name matches.

109Using if constructions and operators

ptg18144483

Big and little characters
If you tried to show off by using the Great One program, you might have a problem,
depending on how you type your name. The equality test regards uppercase and
lowercase characters as different; in other words, if you enter the string “ROB”, you will
not get special treatment.

As a way around this, you can ask any string to provide the uppercase version of itself.
A string value provides a ToUpper method that returns a version of a string that has
all the lowercase letters replaced by uppercase characters. You can use the ToUpper
method like this:

using SnapsLibrary;

class Ch05_08_GreatOneUpperCase

{

 public void StartProgram()

 {

string name;

name = SnapsEngine.ReadString("What is your name");

string upperCaseName = name.ToUpper();

if (upperCaseName == "ROB")

SnapsEngine.DisplayString("Hello, Oh great one");

 }

}

This version of the program will work whether the user enters “rob”, “Rob”, or “ROB”.
Whenever you write a program that accepts string input, you need to decide how
the program should behave if the user enters text that is case sensitive. There is also
a method called ToLower that you can use to convert uppercase letters in a string to
lowercase ones.

Creating blocks of statements
The if condition controls the execution of a C# statement. Sometimes, however, you
want to perform multiple statements if a condition is true. For example, you could
write an announcer program that asks for the user’s name and then offers a person-
alized greeting in that person’s favorite color. To do this, a program needs to control
multiple statements from a single condition.

Variable that holds the name of the user.

Read the name entered by the user.

 Obtain an uppercase
version of the name and
assign it to the variable.

 Compare the name with an all uppercase version.
 Display the message if

the names match.

110 Chapter 5 Making decisions in a program

ptg18144483

You write code for a task like this by creating a block of statements. A block of state-
ments is a sequence of C# statements enclosed in a pair of curly braces—the { and }
characters. You have already seen blocks of statements in the programs we’ve exam-
ined and written; in those programs, the statements in the StartProgram method are
enclosed in a block. You can create a block anywhere in a program, and it is equivalent
to a single statement.

using SnapsLibrary;

class Ch05_09_ColorfulGreeter

{

 public void StartProgram()

 {

string name;

name = SnapsEngine.ReadString("What is your name?");

string upperCaseName = name.ToUpper();

if (upperCaseName == "ROB")

{

string dayOfWeek = SnapsEngine.GetDayOfWeekName();

string fullMessage = "Hello Rob. Hope you are having a great " +

dayOfWeek;

SnapsEngine.SetTextColor(SnapsColor.Blue);

SnapsEngine.DisplayString(fullMessage);

}

 }

}

This program would recognize me by name and then display an uplifting message in
my favorite color. All the statements in the block are controlled by the single condition
defined in the if construction.

Local variables in blocks of code
If you take a look at the ColorfulGreeter program, you’ll notice that the variables
dayOfWeek and fullMessage are declared inside the block of code controlled by the
if condition. C# programmers say that these variables are local to this block of code,
which means that these variables exist only inside this block. Once the last statement
in the block has completed and the program has moved out of the block of state-
ments controlled by the if condition, these two variables are discarded automatically.
If the program reenters the block at a later time, the variables will be created again.
The part of a program within which it’s valid to use a particular variable is called the
scope of that variable.

 Marks the start of a block of statements.

 Marks the end of a block of statements.

111Creating blocks of statements

ptg18144483

The C# compiler will not allow you to use a variable outside the block—the scope—in
which it is declared because as far as the compiler is concerned, the variable does not
exist at that point in the program. This is a very sensible way to organize the use of
variables. It makes programs clearer in that a programmer can declare variables much
closer to the point in a program where they are being used. Also, if two programmers
are working on the same program and each of them want to use a variable named
count, they can do that, as long as they declare it inside separate blocks of code.
(Discarding variables when they are not being used also saves memory, although you
usually have plenty of memory to spare when you write programs these days.)

Considering variable scope
Take a look at the following statements:

{

 int i=99 ;

}

{

 int i = 100;

}

Question: How many variables are being used in the above snippet of code?

Answer: There are two variables. Both are named i, and both are local variables in the
blocks where they appear. In the first block, the value of i is set to 99; in the second
block, the value of a different variable i (one local to the second block) is set to 100.

{

 int i=99 ;

}

{

 string i = "I am i";

}

Question: Is this code legal?

Answer: Yes. The integer variable i has been discarded (it is out of scope) before the
string variable i is declared.

CODE ANALYSIS

112 Chapter 5 Making decisions in a program

ptg18144483

{

 int count=99 ;

}

count = 100;

Question: Is this code legal?

Answer: No. The scope of the variable count is restricted to the block of code in which
it’s declared, which means that an attempt to set count to 100 outside the block will not
work. The compiler will complain if you try to use a variable outside the block in which it
is declared. Programmers say that the variable is “out of scope.”

{

 int i;

 {

int i;

i = 99;

 }

}

Question: Is this code legal?

Answer: No. The C# compiler does not let you create nested blocks that contain a
variable with the same name as a variable in an enclosing block. Doing so might lead to
confusing code. In this example, it is not necessarily clear whether the statement i = 99
refers to the version of i declared in the inner block or the outer one.

Creating complex conditions
using logical operators
A program sometimes needs to make a more complicated decision than just a simple
relational test. C# provides logical operators that you can use to do this. For example,
on Saturday I’m allowed to stay in bed until 9:00 rather than 7:00, so if the day of the
week is Saturday, I need to perform a different test to see whether I need to get up.
This program must test whether the day of the week is Saturday and the time is 9
o’clock. The critical word in this requirement is “and”—which means both conditions
need to be true.

113Creating complex conditions using logical operators

ptg18144483

C# provides a logical operator, a single ampersand (&), that works with two logical
operands. The & operator evaluates to true if the operand on its left and the operand
on its right are both true. Here’s a program that displays the message if the day is
Saturday and the hour value is larger than 8.

if (SnapsEngine.GetDayOfWeekName() == "Saturday" & SnapsEngine.GetHourValue() > 8)

 SnapsEngine.DisplayString("It is time to get up");

Ch05_10_WeekendAlarm

There are several logical operators that you can use to combine logical values.

LOGICAL OPERATOR NAME BEHAVIOR

& AND Evaluates to true if the value to the left of the operator and the
value on its right are true.

&& “short circuit”
AND

Evaluates to true if the value to the left of the operator and the
value on its right are true. This operator does not evaluate the
value on the right if the value on the left is false.

| OR Evaluates to true if the value to the left of the operator or the value
on its right is true.

|| “short circuit” OR
Evaluates to true if the value to the left of the operator or the value
on its right is true. This operator does not evaluate the value on
the right if the value on the left is true.

^ Exclusive OR
Evaluates to true if the value to the left of the operator or the value
on its right is true, but it evaluates to false if they are both true or
both false.

Logical operators
Making decisions using logic is a huge part of being an effective programmer. We can
explore this by looking at some more code. Take a look at this code, to which I have added an
else part.

if (SnapsEngine.GetDayOfWeekName() == "Saturday" & SnapsEngine.GetHourValue() > 8)

 SnapsEngine.DisplayString("It is time to get up");

else

 SnapsEngine.DisplayString("When is this message printed?");

CODE ANALYSIS

114 Chapter 5 Making decisions in a program

ptg18144483

Ch05_11_WhenIsThisMessagePrinted

Question: When is the else part of the if construction actually performed?

Answer: To work out the answer, you have to think logically. The “It is time to get up”
message is produced when the day is Saturday and the hour value is greater than 8. So
the else part must be performed whenever this is not the case. This means that the else
statement is performed on every other day of the week and on Saturday up to 8 o’clock.

Question: Would this code display “When is this message printed?” at 6:00 a.m. on Friday?

Answer: Yes. 6:00 is before my get-up time, but because the day is not Saturday, the first
condition is false. The AND operator (&) needs both operands to be true, so it will not
trigger the message “It’s time to get up.”

Question: What would happen if I replaced the & operator in the above statement with the
“short circuit” version, &&?

Answer: The behavior of the program would be exactly the same, except that it would
run slightly faster in some situations. If the weekday was not Saturday, the && operator
would not bother testing the hour value because for an & operation to be true, both
operands have to be true, and if the first operand is false, there is no point testing the
second.

Question: Your friend has tried to make an alarm program that will tell you to get up at 9:00
a.m. on Saturday and 7:00 a.m. on all the other days of the week. However it doesn’t work.
This is his code:

if (SnapsEngine.GetDayOfWeekName() == "Saturday")

 if (SnapsEngine.GetHourValue() > 8)

SnapsEngine.DisplayString("It is time to get up");

else

 if (SnapsEngine.GetHourValue() > 6)

SnapsEngine.DisplayString("It is time to get up");

Answer: The logic of the code is correct. If the day of the week is Saturday, the program
tests for an hour greater than 8. For any other day of the week, the program tests for an
hour greater than 6. However, your friend has made a mistake in his coding. The else
statement is associated with the second if condition (an else always associates itself
with the nearest if). You can see the effect of this by changing the layout to reflect the
way the code actually behaves:

115Creating complex conditions using logical operators

ptg18144483

if (SnapsEngine.GetDayOfWeekName() == "Saturday")

 if (SnapsEngine.GetHourValue() > 8)

SnapsEngine.DisplayString("It is time to get up");

 else

if (SnapsEngine.GetHourValue() > 6)

SnapsEngine.DisplayString("It is time to get up");

This shows that the test for an hour greater than 6 is actually performed if the hour is
not greater than 8. The layout of the above code shows which part of the program is
controlled by which condition. We can fix the problem by putting the statements into
blocks.

if (SnapsEngine.GetDayOfWeekName() == "Saturday")

{

 if (SnapsEngine.GetHourValue() > 8)

SnapsEngine.DisplayString("It is time to get up");

}

else

{

 if (SnapsEngine.GetHourValue() > 6)

SnapsEngine.DisplayString("It is time to get up");

}

Working with logic
Writing code that makes logical decisions like this is one of the hardest parts of
learning to program. It is like solving a logic puzzle, because that is just what you’re
doing. The best advice I can give you is to write down what you want the program to
do and then work through it, converting that description to a logical expression. For
example: “I want to pay overtime when the hours worked are more than 40 or the day
of the week is Saturday.” Even after many years of programming, I still resort to this
technique sometimes. And once I’ve written some code that I think will work, I test it
by trying some values and observing what the decision would do.

116 Chapter 5 Making decisions in a program

ptg18144483

Make the “time to get up program” work with
minutes
You now know quite a bit about making programs that tell you when you need to get up.
However, the programs we’ve made up to now have a serious limitation in that they work
only with the hour value. See if you can make a version that will tell me to get up after 7:15
rather than after 7:00.

Hint: You can tie yourself in knots trying to combine conditions that test the hour and the
minute values and decide when to trigger the alarm. My strong advice is to make the clock
work with the minute value only. You can calculate the minute of the day by multiplying the
hour value by 60 and then adding the time—for example, 7:15 is (7*60) + 15 = minute 435 of
the day. Using the “minute of the day” means that your tests become a lot simpler.

Adding comments to make a
program clearer
It is very important that you write programs in a way that makes it easy for people
reading your code to understand what’s going on. You’ve seen that in choosing names
for variables, you need to be sure that the name describes what the variable is being
used for. You can also make programs clearer by adding explanatory comments,
and as soon as you start directing your program to make decisions, you should add
comments that explain what your program is doing. You don’t write comments for the
computer; you write comments for someone reading your program. You can also use
comments to indicate the particular version of the program, when it was last modified
and why, and the name of the programmer who wrote it—even if it was you.

A single-line comment starts at the character sequence // and finishes at the end of
that line, like this:

string name;

name = SnapsEngine.ReadString("What is your name?");

string upperCaseName = name.ToUpper(); // Convert name to uppercase

MAKE SOMETHING HAPPEN

 Single-line
comment

117Adding comments to make a program clearer

ptg18144483

You can add single-line comments to the end of a statement or on a line by them-
selves. In Visual Studio, comments are displayed in green to make them stand out.

You can write a comment that spreads over several lines by enclosing your comment
with /* and */, like this:

string name;

name = SnapsEngine.ReadString("What is your name?");

string upperCaseName = name.ToUpper();

/* Check the name to provide the personalized greeting;

 change "ROB" to the name of the person you want to greet */

if (upperCaseName == "ROB")

{

 // Personal greeting code goes here

}

The comment in this program makes it very clear what the code does and how to work
with it. When the compiler sees the character sequence /* in a program, it ignores the
text that follows up to the point where it sees */, which ends the comment’s text. You
can put comments anywhere in your program. The compiler will completely ignore
them.

Some people say that writing a program is a bit like writing a story. I’m not completely
convinced that this is true, but I think that although a program is not a story as such, a
good program does have some of the characteristics of good literature:

 ● It should be easy to read. At no point should a hapless reader be forced to back-
track or brush up on knowledge that the writer assumes is there. All the names in
the text should impart meaning and be distinct from one another.

 ● It should have good punctuation and grammar. The various components should
be organized in a clear and consistent way.

 ● It should look good on the page. A good program is well laid out. The different
blocks of code should be indented, and statements should be spread over the
page in a well-formed manner.

 ● It should be clear who wrote a program and when it was last changed. If you write
something good, you should put your name on it. If you change what you wrote,
you should add information about the changes that you made and why.

Comments that the programmer adds are a big part of a well-written program. A pro-
gram without comments is a bit like an airplane that has an autopilot but no windows:
there is a chance that it might take you to the right place, but it will be very hard to tell
where it is going from the inside.

 Comment

118 Chapter 5 Making decisions in a program

ptg18144483

Comments help make your program much easier to understand. You will be very sur-
prised to find how quickly you can forget how you got your program to work. Be gen-
erous with your comments, but you should not add too much detail. Remember that
the person who is reading your program can be expected to know the C# language
and doesn’t need everything explained to them:

goatCount = goatCount + 1; // add one to goatCount

This comment is simply insulting to the reader, I reckon. If you choose sensible names,
you should find that quite a lot of your program will express what it does directly from
the code itself. From now on, the sample code that you see will have what I consider
an appropriate level of comments.

Funfair rides and programs
Now that you know how to make decisions in your programs, you can start to make
more useful software. Let’s say that your next-door neighbor is the owner of a theme
park and he has a job for you. Some rides at the theme park are restricted to people
by age, and he wants to install computers around his funfair so that people can find
out which rides they are allowed to go on. He needs some software for the computers,
and he’s offering a season pass to the park if you can come up with the goods, which
is a very tempting proposition. He tells you the following information about the rides:

RIDE NAME MINIMUM AGE INFORMATION

Scenic River Cruise None

Carnival Carousel At least 3 years old

Jungle Adventure Water Splash At least 6 years old

Downhill Mountain Run At least 12 years old

The Regurgitator (a super roller coaster) Must be at least 12 years old and less than 70

You discuss with him the design of the program. What he’d like is for users to select
the ride they want from a menu. The program will then ask for the user’s age and
display a message indicating whether they can go on the ride.

To create this program, we’ll use a Snaps function that displays just the kind of menu
required. It’s a method named SelectFrom5Buttons.

119Funfair rides and programs

ptg18144483

using SnapsLibrary;

class Ch05_12_SelectFunfairRide

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Super Funfair Rides");

string ride;

ride = SnapsEngine.SelectFrom5Buttons(

"Scenic River Cruise",

"Carnival Carousel",

"Jungle Adventure Water Splash",

"Downhill Mountain Run",

"The Regurgitator");

SnapsEngine.SetTitleString(ride);

 }

}

The SelectFrom5Buttons method displays five buttons on the screen and then waits
for the user to select one of them. When the user selects a button, the method returns
with the name of the button selected. The program then sets the page’s title to the
name of the ride that was selected. Figure 5-1 shows the display when the program
runs.

F igure 5-1 The menu used to select a funfair ride.

 Selects from fi ve buttons.

 Displays the selected ride.

120 Chapter 5 Making decisions in a program

ptg18144483

Here, the user is about to select The Regurgitator item. You can use the Select-
FromButtons method anywhere you want a user to select something from a range of
options. The Snaps framework includes versions of the method for two and up to six
buttons.

Now let’s add an if construction to the program to make it behave differently
depending on which ride is selected:

using SnapsLibrary;

class Ch05_13_HandleRiverCruise

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Super Funfair Rides");

string ride;

ride = SnapsEngine.SelectFrom5Buttons(

"Scenic River Cruise",

"Carnival Carousel",

"Jungle Adventure Water Splash",

"Downhill Mountain Run",

"The Regurgitator");

SnapsEngine.SetTitleString(ride);

if (ride == "Scenic River Cruise")

{

SnapsEngine.DisplayString("There are no age restrictions on this

ride. Enjoy.");

}

 }

}

This code handles the case when a user selects the Scenic River Cruise ride, displaying
the message shown in Figure 5-2.

Figure 5-2 The message confirming that the river cruise has no age restrictions.

121Funfair rides and programs

ptg18144483

With the information you received from the theme park’s owner, you know that if
the user selects any ride other than the Scenic River Cruise, the program must obtain
the age of the user. You can add an else statement to the code to meet this need.
Remember that the if construction will perform the else part of the code if the ride
selected is one other than Scenic River Cruise, which is exactly what we want. Here
I’ve put a comment in the code at the point where the program needs to read the age
value.

if (ride == "Scenic River Cruise")

{

 SnapsEngine.DisplayString("There are no age restrictions on this ride.

Enjoy.");

}

else

{

 // We need to get the age of the user

}

Reading in numbers
The selection of the Scenic River Cruise is easy to handle because anyone can go on
this ride. For the other rides, the program has to get the age of the person wanting to
go on it. Fortunately, there is a Snaps method, named ReadInteger, that we can use to
do this. The ReadInteger method reads a number entered by the user. It's similar to
the ReadString method you have seen before:

using SnapsLibrary;

class Ch05_14_ReadAge

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Super Funfair Rides");

string ride;

ride = SnapsEngine.SelectFrom5Buttons(

"Scenic River Cruise",

"Carnival Carousel",

"Jungle Adventure Water Splash",

"Downhill Mountain Run",

"The Regurgitator");

122 Chapter 5 Making decisions in a program

ptg18144483

SnapsEngine.SetTitleString(ride);

if (ride == "Scenic River Cruise")

{

SnapsEngine.DisplayString("There are no age restrictions on this

ride. Enjoy.");

}

else

{

// These rides have age restrictions - read the age

int ageInt = SnapsEngine.ReadInteger("What is your age?");

SnapsEngine.DisplayString("You are " + ageInt + " years old");

}

 }

}

The ReadInteger method displays a prompt asking for the user's age and then returns
the integer value that the user types in. Figure 5-3 shows how the age value is read
in when the user selects the Carnival Carousel ride. If the user doesn’t type in a valid
integer value (perhaps the user types in the string “twenty-five”), the ReadInteger
method will display an error message and then ask the user to try again.

Fig ure 5-3 Getting the age of a user.

 Read in
the age of

the user.

123Funfair rides and programs

ptg18144483

Building logic using if conditions
Once our funfair program knows the age of the user, it can decide whether the user
can go on the ride. The program has two items of data to work with.

 ● The selected ride, held in a string variable named ride.

 ● The age of the user, held in an integer variable named ageInt.

The program can use a sequence of if...else constructions to make its decision:

if (ride == "Carnival Carousel")

{

 if (ageInt >= 3)

SnapsEngine.DisplayString("You can go on the ride.");

 else

SnapsEngine.DisplayString("I'm sorry. You are too young.");

}

These conditions work for the Carnival Carousel. The first (outer) if statement is used
to determine the ride selected. The inner if statement makes the appropriate deci-
sion based on the age of the user.

Now that you have code that works for the Carnival Carousel, you can use it as the
basis for the code that handles some of the other rides. To make the program work
correctly for the Jungle Adventure Water Splash, you need to check for a different ride
name and confirm or reject the user based on a different age value. Remember that
for this ride, a visitor needs to be at least six years old. You could check whether the
visitor is older than five (ageInt > 5) or use the greater-than-or-equal-to operator
when you test for the value of ageInt.

if (ride == "Jungle Adventure Water Splash")

{

 if (ageInt >= 6)

SnapsEngine.DisplayString("You can go on the ride.");

 else

SnapsEngine.DisplayString("I'm sorry. You are too young.");

}

124 Chapter 5 Making decisions in a program

ptg18144483

Completing the program
You can implement the Downhill Mountain Run very easily by using the same pattern
as for the previous two rides. But the final ride, the Regurgitator, is more difficult. The
ride is so extreme that the owner of the funfair is concerned for the health of older
people who use it and has added a maximum age restriction as well as a minimum
age. The program must test for users who have an age greater than 70 as well as for
those with an age less than 12. We have to design a sequence of conditions to deal
with this situation.

The code that deals with the Regurgitator is the most complex piece of the program
that we have to write. To make sense of how it needs to work, you need to know more
about the way that if constructions are used in programs. Consider the following
code:

if (ride == "The Regurgitator")

{

 // If we get here we are dealing with the Regurgitator

}

The comment makes it clear that all the statements we add inside this block will run
only if the selected ride is the Regurgitator. In other words, there is no need for any
statement in that block to ask the question, “Is the selected ride the Regurgitator?”
because the block is run only if this is the case. The decisions leading up to a state-
ment in a program determine the context in which that statement will run. I like to add
comments to make it clear what the context is, like this:

if (ride == "The Regurgitator")

{

 // If we get here we are dealing with the Regurgitator

 if (ageInt >= 12)

 {

// If we get here the age is not too low

if (ageInt > 70)

{

// If we get here the age is too high

SnapsEngine.DisplayString("I'm sorry. You are too old.");

}

else

{

// If we get here the age is in the correct range

SnapsEngine.DisplayString("You can go on the ride");

125Funfair rides and programs

ptg18144483

}

 }

 else

 {

// If we get here the age is too low

SnapsEngine.DisplayString("I'm sorry. You are too young.");

 }

}

These comments make the program slightly longer, but they also make it a lot clearer.
This code is the complete construction that deals with the Regurgitator. The best way
to work out what it does is to work through each statement in turn with a particular
value for the user’s age. I’ve used the layout to make it clear where the blocks are and
which else and if parts are matched. You can run the entire program from the sample
Ch05_15_CompleteFunfairProgram.

Fortune teller
The ThrowDice method from the Snaps framework, which I introduced in Chapter 4, can be
used in if constructions to make programs that perform in a way that appears random.

if (SnapsEngine.ThrowDice() < 4)

 SnapsEngine.SpeakString("You are going to meet a tall, attractive stranger");

else

 SnapsEngine.SpeakString("You are not going to meet anyone at all");

The if construction tests the value produced by a call to the ThrowDice method. If the value
returned by the method is less than 4 (in other words, 1, 2, or 3), the program tells the user
that she is going to meet a tall, handsome stranger. Otherwise, it tells the user that she is not
going to meet anyone interesting at all. You could use a sequence of such conditions to make
a fun fortune-teller program.

MAKE SOMETHING HAPPEN

126 Chapter 5 Making decisions in a program

ptg18144483

Working with program assets
There is more to an application than just program code. Programs also often contain
images and sounds. When the application is built, the images and sounds are incor-
porated into the program and can be used by it. We can refer to images, sounds, and
things like them as assets. Some applications will contain additional kinds of assets. For
example, a game might contain maps of the game area.

Asset management in Visual Studio
You can manage the assets in your programs by using Solution Explorer, the com-
ponent in Visual Studio that we’ve been using to manage the C# source code we’ve
written. Assets are added to a project in the same way as program code. You can also
create folders that you use to organize your program’s assets.

Figure 5-4 shows some of the assets that have been added to the BeginToCode-
WithCSharp project. The storage structure you see in Solution Explorer is mirrored
in the folders and files on your computer that are used to store the project. You may
have noticed that there is already a folder named Assets in the solution. You could
put asset files in that folder, but it is reserved for specific program assets managed by
Visual Studio, so it is better to create your own folders to store your own assets.

 Figure 5-4 Assets in a Visual Studio solution.

127Working with program assets

ptg18144483

Each of the sound effects (beep.wav, ding.wav, and so on) are files that are identified
in the Visual Studio solution and stored in the SoundEffects folder on your computer.
When Visual Studio builds the application, it finds each of these files and incorporates
them into the application. You can then use methods in the Snaps library to use these
assets in your programs. Let’s start by playing some sounds.

Playing sound assets
Computer programs are greatly improved by sound effects. Some simple ones
are included in the BeginToCodeWithCSharp solution. With the PlaySoundEffect
method, you provide a string that identifies the sound to be played. The following
statement causes the ding sound to be played:

SnapsEngine.PlaySoundEffect("ding");

You can also use the strings “beep”, “gameOver”, and “lose”. If you use any other name
to specify a sound effect, the program will not make any sound. But you can add
sound-effects files of your own if you want to. The PlaySoundEffect method works
with .wav and .mp3 sound files and looks in the SoundEffects folder for sounds to
play. Just drag a sound file from the folder where it’s stored on your computer to the
SoundEffects folder in the BeginToCodeWithCSharp Visual Studio solution. You can
then use the sound in your program by using the name of the asset file. Here’s a small
program that lets a user select from the four built-in sound effects by pressing a but-
ton. You could easily modify this to make a sound-effects application of your own.

using SnapsLibrary;

class Ch05_16_SoundEffects

{

 public void StartProgram()

 {

string effectName = SnapsEngine.SelectFrom4Buttons("beep", "ding",

"gameOver", "lose");

SnapsEngine.PlaySoundEffect(effectName);

 }

}

128 Chapter 5 Making decisions in a program

ptg18144483

Make some noise
You might go back at this point and add sound effects to the programs that you have already
written. The egg-timer program would benefit from an alarm sound, for example. If you
can find some suitably eerie background sounds, you could add these to the fortune-teller
program.

Displaying image content
You can also display images in your programs. You can display images from the Inter-
net and by using files that are built into the application. The Snaps library provides a
method that will fetch and display images from either location. Here is the form of the
method that displays an image that is stored with an application:

using SnapsLibrary;

class Ch05_17_CityImage

{

 public void StartProgram()

 {

string url = "ms-appx:///Images/City.jpg";

SnapsEngine.DisplayImageFromUrl(imageURL: url);

 }

}

Ch05_17_CityImage

I’ve called the string variable that holds the name of the image url (short for uniform
resource locator). You may have heard the term URL in the context of webpages. For
example, my world famous (in my world) blog has the URL http://www.robmiles.com.
The first part of a URL (the part before the // character sequence) is called the scheme
and describes how to access the data. The scheme “ms-appx” means “look in the con-
tent for this asset.” The second part of the URL is the actual address of the resource,
which in this case is “/Images/City.jpg”. If you use Solution Explorer to look in the
Images folder, you will find that the folder does contain a file named City.jpg. If you
want to add your own images to your applications, you can store them in this folder
and then display them by using the DisplayImageFromUrl method.

MAKE SOMETHING HAPPEN

Create a URL that
identifi es where the
asset can be found.

 Display the image

129Working with program assets

http://www.robmiles.com

ptg18144483

The schemes http and https mean “look on the Internet and use World Wide Web
protocols to find the asset.”

string url = "https://farm9.staticflickr.com/8713/16988005732_7fefe368cc_d.jpg";

SnapsEngine.DisplayImageFromUrl(url);

Ch05_18_BridgeImage

Here you can see how to display an image held in my Flickr account. You can use a
statement like this to incorporate pictures from the Internet in your programs (but
remember that you must observe any copyright restrictions).

The DisplayImage method can use most of the popular image file types, including
the JPEG, PNG, GIF and TIFF formats. Keep in mind that if you add a large number of
images to your program, it will become larger, because the image files are stored as
part of the application. One way to reduce the size of the application is to resize the
images. Don’t use images directly from your digital camera. Resize these so that they
are no more than 1,500 or so pixels wide. This should provide you with enough detail
in almost all cases. The best program that I have found for resizing images (and doing
lots more besides) is the free image-processing program called Paint.Net, which you
can download from http://www.getpaint.net/index.html.

Missing files
The DisplayImageFromUrl method is prone to failure. It might not be able to load an image
because the device the program is running on doesn’t have a network connection. Alterna-
tively, the programmer might have mistyped the address of the image in the program. In
these situations, the method will not be able to display a picture, which is a problem.

However, the method has been written so that it will not stop the program; instead, it displays
a placeholder image to the user that indicates that something went wrong in fetching the
image, as you can see here:

WHAT COULD GO WRONG

130 Chapter 5 Making decisions in a program

http://www.getpaint.net/index.html

ptg18144483

You can change this to a message image of your own by replacing the file named ImageNot-
Found.png in the Images folder in the BeginToCodeWithCSharp solution.

The DisplayImage method returns a bool value that indicates whether it was able to display
the image that was requested. Here is the code.

bool displayedOK = SnapsEngine.DisplayImage(url);

if(displayedOK == false)

{

SnapsEngine.DisplayString ("Please check your internet connection.");

}

If the image is not displayed correctly, the program displays a message prompting the user
to check his or her Internet connection. This illustrates an important point about methods
when you use them in C# programs: a program does not have to use the result that a method
returns. The DisplayImage method always returns whether it worked or not, but the first
times we used it we ignored this result.

We can simplify the code a bit by using the result from DisplayImage directly:

if(!SnapsEngine.DisplayImage(url))

{

SnapsEngine.DisplayString("Please check your internet connection.");

}

! DisplayImage

The ! character inverts the
Boolean value that follows it.

The DisplayImage method
returns true if the image is

displayed successfully.

131Working with program assets

ptg18144483

If you think about it, we want the program to display a message if the image is not dis-
played—in other words, if DisplayImage returns false. We therefore take the result that
DisplayImage returns and then use the ! operator (not) to invert this.

Display some pictures
You can now make programs that display pictures. You can use the Delay method to provide
a pause between each picture. You could even add some sound effects and use buttons to
let the user select the pictures that they want to see. If you display text on the screen, you will
find that it is drawn on top of the picture, so you can use this to add captions to the pictures
as they are displayed.

What you have learned
In this chapter, you’ve learned that the C# if construction lets you change a program’s
behavior depending on the data that it is given to work with. This allows a program-
mer to make software that might be considered “sensible” in that it can respond to
input in a useful way.

You also learned that the decision process in C# is based on the Boolean type, which
allows programs to work with values that can only be true or false. C# conditions are
controlled by the value of Boolean expressions, and the language provides a set of
logical operators that can be used in programs to manipulate Boolean values. You can
make things happen if two Boolean values are true by using the logical AND operator
(&). You can also make things happen if one or the other of two values is true by using
the logical OR operator (|).

You discovered how to write useful programs that work with logical conditions to
create code that makes decisions. The best way to implement complex logic is to tran-
scribe a plain description of the decision into C# conditional statements. For example,
“If it is Saturday or Sunday and it is after 9:00 a.m., I must get out of bed” could be
converted to a single logical expression that makes that decision.

Finally, you have seen how to add and use assets in a program, making use of Visual
Studio to manage the asset files and Snaps methods that let you use the images and

MAKE SOMETHING HAPPEN

132 Chapter 5 Making decisions in a program

ptg18144483

sound files. You have also seen how a unified resource locator string allows a program
to load assets from the Internet.

Here are some questions that you might like to ponder about the process of making
decisions in programs:

Does the use of Boolean values mean that a program will always do the same
thing given the same data inputs?

It is very important that, given the same inputs, the computer does exactly the same
thing each time. If the computer starts to behave in an inconsistent way, this makes
it much less useful. When we want random behavior from a computer (for exam-
ple, when we are playing a game against a computer opponent), we have to obtain
values that are explicitly random and make decisions based on those. Nobody wants
a “moody” computer that changes its mind (although, of course, it might be fun to try
and program one by using random numbers).

Will the computer always do the right thing when we write programs that make
decisions?

It would be great if we could guarantee that the computer will always do the right
thing. However, the computer is only ever as good as the program that it is running.
If something happens that the program was not expecting, this can cause it to do the
wrong thing in response. For example, if a program was working out the cooking time
for a bowl of soup and the user entered 10 servings rather than 1, the program would
set the cooking time to be far too long (and probably burn down the kitchen in the
process). In that situation, you can blame the user (because he put in the wrong data),
but there should probably also be a test in the program that checks to see whether
the value entered was sensible. If the cooker can’t actually hold more than three serv-
ings, it would seem sensible to perform a test that limits the input to three. When you
write a program, you need to anticipate what the user might do and create decisions
that make your program behave sensibly in each situation.

133What you have learned

ptg18144483

6
Repeating actions

with loops

ptg18144483

What you will learn
In this chapter, you’ll learn another step in how to control what a program
does. Until now, we’ve written programs that run once and then stop when
they’re complete. But you often need to make a program repeat a sequence
of actions. For example, if a user enters an invalid value, you want the pro-
gram to reject that value and repeat the sequence to ask for another value.
To repeat a series of actions, programs use what’s known as a loop. In a video
game, for example, the “game loop” continuously reads the positions of the
game controllers, updates the variables that refl ect the status of the players
and the game world, and then draws the game world on the screen. In this
chapter, you’ll discover the C# constructions that you can use to create
loops.

Using a loop to make a pizza picker .136

Performing input validation with a while loop .149

Using Visual Studio to follow the execution of your programs151

Counting in a loop to make a times-table tutor .157

Using a for loop construction .160

Breaking out of loops. .163

Going back to the top of a loop by using continue 165

Extra Snaps. .168

What you have learned .170

135

ptg18144483

Using a loop to make a pizza
picker
The Pizza Picker will be the first program we make that we can actually think about
selling to the public. You can use it when a group you’re with wants to order some
pizzas. With this program, a user presses a button to select a piece of pizza with a
particular topping. The program keeps count of how often each button is pressed
and displays the totals on request. This program will also work on a Windows Mobile
device, so you could pass your device around and get each person to tap the button
that identifies the topping he or she wants. Figure 6-1 shows what the program’s main
menu will look like.

Figure 6-1 The Pizza Picker app.

Each time a user presses a button, the count for that type of topping is increased.
Then, the user can press the Show Totals button to see how many portions for each
topping have been ordered. We’ll build the Pizza Picker program in two stages. We’ll
start by writing the code that counts one pizza-topping selection. After that, we’ll add
a loop so that the program can accept multiple selections. As we build the program,
you’ll get a chance to use some of the C# constructions you’ve learned about in earlier
chapters.

Counting selections
If you think about it, the Pizza Picker’s menu shown in Figure 6-1 tells us the first thing
we need to do in this program. We need a variable for each pizza topping that counts
the number of requests for that topping. The following statements create four int
variables, with sensibly named identifiers, and set each of the variables to the value 0.

int cheeseAndTomatoCount = 0;

int pepperoniCount = 0;

136 Chapter 6 Repeating actions with loops

ptg18144483

int chickenCount = 0;

int vegetarianCount = 0;

Each time a topping is selected, the count for that particular topping must increase by
one. The following statement increases the value in the counter for pepperoni pizza:

pepperoniCount = pepperoniCount + 1;

If this code looks a bit confusing, remember that when the program obeys this state-
ment, it works out the value on the right side of the equal sign and assigns this result
to the variable on the left side. Adding 1 to the value of a variable, which is what this
statement does, is a behavior that’s called an increment operation.

At this point, we have code that stores pizza selections and increments them when
someone makes a choice. Next we need a way to display the buttons and determine
which topping a user has selected. This part of the program is easy to create thanks
to the Snaps button-selection methods that you used in Chapter 5 for the funfair ride
application. Here’s the statement that creates the pizza-picker menu by using the
SelectFrom5Buttons method:

string toppingChoice = SnapsEngine.SelectFrom5Buttons(

"Cheese and Tomato",

"Pepperoni",

"Chicken",

"Vegetarian",

"Show Totals");

Remember that the SelectFrom5Buttons method displays five buttons and waits for
the user to select one of them. When the user selects a button, the method returns
the string that refers to that button as the result. We can use an if construction to test
the result and then increment the selected topping choice. The following statement
increments the counter for pepperoni when the user chooses that button:

if(toppingChoice == "Pepperoni")

 pepperoniCount = pepperoniCount + 1;

toppingChoice

A string variable that holds
the choice.

 Labels for the buttons.

toppingChoice "Pepperoni"

 Literal value we are
comparing.

Selected button string.

 Increment the counter for
this pizza topping.

137Using a loop to make a pizza picker

ptg18144483

Bug swatting
The Pizza Picker program needs an if statement to test for each topping type. If I asked you
to write this program, you might write the first statement, like the preceding one, and then
copy that block of code to set up the other condition tests. However, copying blocks of code
like this can be dangerous. Take a look at this code:

if (toppingChoice == "Cheese and Tomato")

 cheeseAndTomatoCount = cheeseAndTomatoCount + 1;

if (toppingChoice == "Pepperoni")

 pepperoniCount = pepperoniCount + 1;

if (toppingChoice == "Chicken")

 chickenCount = chickenCount + 1;

if (toppingChoice == "Vegetarian")

 vegetarianCount = chickenCount + 1;

The programmer who wrote this code is very proud of how quickly he managed to write the
program, but it has a serious problem—it contains a bug, which means that users will hate it.
A bug is something in a program that makes it do the wrong thing. (One story is that the first
time the term “bug” was used, an insect had flown into the circuitry of an early computer and
caused it to fail. The programmer dutifully wrote in her laboratory log book that she’d found
a bug in the program, and the name stuck.)

Question: Can you find the bug?

Answer: The bug is in the very last statement. Rather than incrementing the vegetarian
counter, the program sets this variable to the number of chicken pizzas plus 1. Depending
on who you are with, this could mean that you get a lot more or a lot fewer vegetarian
pizzas than you expected.

Question: How would you find the bug?

Answer: The only way to spot this bug is to methodically work through the options and
check the counter values each time you add to one of them. If you never add a vegetarian
pizza during testing, you’ll never know that the program contains a bug. This is another
cause of many bugs: the programmer knows exactly what the code is supposed to do,
but he made a typing mistake when he entered the code. But since he knows exactly
what the code is supposed to do, he assumes that the code is perfect and doesn’t bother
testing all the possibilities.

CODE ANALYSIS

138 Chapter 6 Repeating actions with loops

ptg18144483

Question: How did the bug arise?

Answer: It is hard to imagine someone typing chickenCount rather than vegetarian-
Count while writing the program one line at a time. It is much easier to imagine some-
one putting together this block of code by copying and pasting and then forgetting to
change chickenCount to vegetarianCount. Copying and pasting code is a bad habit
to get into. If you want to reuse a program’s behavior, you should really use a method.
You’ll discover more about how to use them in Chapter 8.

Displaying the totals
We’ve got the Pizza Picker program to the point that it can update the counter values
for each pizza topping. Now we need a way to display the totals. The user will request
this action by selecting the Show Totals button rather than a pizza topping.

When the user selects Show Totals, we want the program to display the current
count for each of the pizza toppings. To do this, we’ll use a couple of other Snaps
methods that allow you to build up a display line by line. We’ll use the Snaps method
named ClearTextDisplay to clear the text display area and the AddLineToTextDisplay
method to add another line to the display. Here’s the code:

if (toppingChoice == "Show Totals")

{

 SnapsEngine.ClearTextDisplay();

 SnapsEngine.AddLineToTextDisplay("Order Totals");

 SnapsEngine.AddLineToTextDisplay(cheeseAndTomatoCount.ToString() +

" Cheese and Tomato");

 SnapsEngine.AddLineToTextDisplay(pepperoniCount.ToString() + " Pepperoni");

 SnapsEngine.AddLineToTextDisplay(chickenCount.ToString() + " Chicken");

 SnapsEngine.AddLineToTextDisplay(vegetarianCount.ToString() + " Vegetarian");

}

Getting user options
There are two things that a user can do after she has read the current totals. She can
continue to accept and count topping choices, or she can reset the counters to 0 for
the next time she needs to run the program. We can create these options by display-
ing two buttons under the totals display, as you can see in Figure 6-2.

 If the Show Totals option is selected.

 Clear the text display.

 Add a heading.

 Add the cheese and tomato count.

139Using a loop to make a pizza picker

ptg18144483

Figure 6-2 The Done and Reset buttons provide options for the program’s users.

The user can press the Done button when she has viewed the total counts and wants
to return to entering topping choices. The Reset button is used to reset the count
values to 0. You can use the following code to do this—and by now, most of it should
be familiar:

string reply = SnapsEngine.SelectFrom2Buttons("Done", "Reset");

if(reply == "Reset")

{

 cheeseAndTomatoCount = 0;

 pepperoniCount = 0;

 chickenCount = 0;

 vegetarianCount = 0;

}

Remember that the Snaps library has button-selection methods for two to six but-
tons. This code uses the two-button version. With the Snaps library, these buttons are
always displayed underneath any text, so the screen appears as you see it in Figure
6-2.

At this point, the user has viewed the total values and can use the Reset button to set
the counters back to 0. Here’s all the code that runs when the user selects the Show
Totals option from the menu. As you read it, consider what the program needs to do
when the user asks for the totals to be displayed:

 ● Display the totals

 ● Find out whether the user wants to clear the totals

 ● Reset the totals if requested

 ● Clear the display of the totals from the screen

 Get the
command

to perform.

 Code performed if
the user selects Reset.

140 Chapter 6 Repeating actions with loops

ptg18144483

if (toppingChoice == "Show Totals")

{

 SnapsEngine.ClearTextDisplay();

 SnapsEngine.AddLineToTextDisplay("Order Totals");

 SnapsEngine.AddLineToTextDisplay(cheeseAndTomatoCount.ToString() +

" Cheese and Tomato");

 SnapsEngine.AddLineToTextDisplay(pepperoniCount.ToString() + " Pepperoni");

 SnapsEngine.AddLineToTextDisplay(chickenCount.ToString() + " Chicken");

 SnapsEngine.AddLineToTextDisplay(vegetarianCount.ToString() + " Vegetarian");

 string reply = SnapsEngine.SelectFrom2Buttons("Done", "Reset");

 if (reply == "Reset")

 {

cheeseAndTomatoCount = 0;

pepperoniCount = 0;

chickenCount = 0;

vegetarianCount = 0;

 }

 SnapsEngine.ClearTextDisplay();

}

Back at the start of this book, I said that programming was about organization more
than anything else, and I compared writing a program to planning a party. What we
have written with this code is very similar to party planning. If you were organizing a
party, you would be sure that everything happened in the right sequence. You would
not serve the food until everyone had arrived. And you’d hand out the thank-you gifts
just as the guests were leaving.

In the same way, the sequence in our code clears the totals after the user has read
them, and not before. And it clears the totals only if it is asked to. If you are not clear
how to write a program to solve a problem, the best way to start is by writing down
the actions that need to be performed, in the order they must happen. You can do
this in your own language first and then “debug” the sequence by working through it
to make sure it makes sense. Then you can take the description of your solution and
create the C# statements that will tell the computer how to solve the problem.

141Using a loop to make a pizza picker

ptg18144483

Add some comments
You saw in Chapter 5 how to add comments to a program. Up until now in the Pizza Picker
program, I’ve not added any comments to the code because the variable names are clear and
the flow of the code is easy to follow. But we’ve arrived at a point where adding a comment
would be a really good idea. Consider this statement:

SnapsEngine.ClearTextDisplay();

A programmer reading through the code might take a look at this statement and be a bit
confused. What is the point of displaying nothing on the screen? Help other programmers
understand the purpose of this statement by adding a comment. You might do something
like this:

// Clear the total display from the screen, ready for the more choices

SnapsEngine.ClearTextDisplay ();

Now programmers can understand that you are clearing text from the screen to prepare for
more choices.

Adding a while loop
The Pizza Picker program now has the behaviors it needs to process a single button
press and select a pizza topping for one person. However, the statements we’ve writ-
ten must be repeated for each person who wants to select a topping. We can achieve
this by adding a loop construction to the program.

The C# language provides several ways of creating loops. The first one we are going to
look at is the while loop, which is constructed as shown in Figure 6-3. In a while loop,
a statement is repeated while the condition specified by a logical expression is true.

Figure 6-3 The structure of a while loop.

MAKE SOMETHING HAPPEN

142 Chapter 6 Repeating actions with loops

ptg18144483

You could use a while loop to make a really annoying program. Here’s a program that
repeatedly says “Rob will rule the world” until the user gets bored with it and stops it.
Remember that in this context, true means a logical value that is always true.

while (true)

SnapsEngine.SpeakString("Rob will rule the world");

Or you could just as easily write the following:

while (1==1)

SnapsEngine.SpeakString("Rob will rule the world");

This while loop will also run forever. The conditional expression that controls it is
always true because 1 is equal to 1.

In a C# program, you can put a block of statements everywhere you can put a single
statement. If you want the program to repeat more than one inspiring message, you
can use the while construction to repeat a block of statements. Here, both statements
in the block will be repeated by the while loop:

while (1==1)

{

SnapsEngine.SpeakString("Rob will rule the world");

SnapsEngine.SpeakString("Oh yes he will");

}

Looking at loops
You can learn more about loops by considering what the following bits of program code
would do:

while (false)

 SnapsEngine.SpeakString("Rob will not rule the world");

Question: Would this code speak the message? How many times would it speak it?

(true) Logical expression controlling the loop.
"Rob will rule the world" Statement controlled

by the loop.

CODE ANALYSIS

143Using a loop to make a pizza picker

ptg18144483

Answer: The loop is controlled by the Boolean expression given after the while key-
word. (The statement controlled by the loop is obeyed while the condition is true.) Since
this condition is false at the start, the statement in the loop is never performed, so the
code will never speak the message.

bool flag = true;

while(flag)

{

 SnapsEngine.SpeakString("Hello again");

 flag = false;

}

Question: How about this code? Would it speak the message? If so, how many times would it
speak it?

Answer: This code is completely legal and would compile just fine. The quick answer to
this question is that the program would say the message only once. But work through the
statements one by one to understand why. To make this easier, I’ve added line numbers
to this listing. (I’ll follow this practice from time to time to help you understand what each
lines does as the program runs.)

 1 bool flag = true;

 2 while(flag)

 3 {

 4 SnapsEngine.SpeakString("Hello again");

 5 flag = false;

 6 }

 ● Line 1 creates a Boolean variable called flag and sets the value of flag to true.

 ● Line 2 starts the while loop. The keyword while is followed by the logical expression
that will be tested before the loop is repeated. If this expression has the value true, the
code in the body of the loop will be performed.

 ● Line 3 is the curly bracket that marks the start of the block that is controlled by the while
loop. Because flag is true, the while loop performs the loop statement, so it moves to
line 4.

 ● The statement at line 4 speaks the message “Hello again,” and then the program moves
to line 5.

 ● Line 5 is an assignment that sets the value of the flag variable to false.

144 Chapter 6 Repeating actions with loops

ptg18144483

 ● Line 6 is the curly bracket that marks the end of the block controlled by the while loop.
At the end of this block, the program loops back to line 2, which is the while construc-
tion controlling the loop.

 ● At line 2, the while loop tests the value of flag. Remember that the body of the loop is
performed only if the test is true. Because the flag variable now has the value false (set
at the statement at line 5), the loop is not performed any more.

Question: Here’s some code that looks similar to the previous example, but it uses an integer
rather than a Boolean variable. What does it do?

 1 int count = 0;

 2 while(count < 10)

 3 {

 4 SnapsEngine.SpeakString("tick");

 5 count = count + 1;

 6 }

Answer: I’ve numbered the lines again so that you can work it out for yourself. Remem-
ber that the less than (<) logical operator means that a logical expression is true if the
value on the left (in this case, the variable count) is less than the value on the right (in this
case 10). This means that the loop will repeat while the value in the count variable is less
than 10.

A loop in the pizza picker
Let’s add a while loop to the Pizza Picker to make the program repeatedly ask for
toppings and display totals when requested. Here is the code for the complete Pizza
Picker program. Note that I’ve used the simplest form of loop construction here
because we simply want the program to repeatedly ask for pizza selections. The user
will quit the program when she wants to do something different.

using SnapsLibrary;

class Ch06_01_PizzaPicker

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Select Pizza");

int cheeseAndTomatoCount = 0;

145Using a loop to make a pizza picker

ptg18144483

int pepperoniCount = 0;

int chickenCount = 0;

int vegetarianCount = 0;

// repeatedly ask for pizza selections

while (true)

{

string toppingChoice = SnapsEngine.SelectFrom5Buttons(

"Cheese and Tomato",

"Pepperoni",

"Chicken",

"Vegetarian",

"Show Totals");

if (toppingChoice == "Cheese and Tomato")

cheeseAndTomatoCount = cheeseAndTomatoCount + 1;

if (toppingChoice == "Pepperoni")

pepperoniCount = pepperoniCount + 1;

if (toppingChoice == "Chicken")

chickenCount = chickenCount + 1;

if (toppingChoice == "Vegetarian")

vegetarianCount = vegetarianCount + 1;

if (toppingChoice == "Show Totals")

{

SnapsEngine.ClearTextDisplay();

SnapsEngine.AddLineToTextDisplay("Order Totals");

SnapsEngine.AddLineToTextDisplay(cheeseAndTomatoCount.ToString() +

" Cheese and Tomato");

SnapsEngine.AddLineToTextDisplay(pepperoniCount.ToString() +

" Pepperoni");

SnapsEngine.AddLineToTextDisplay(chickenCount.ToString() +

" Chicken");

SnapsEngine.AddLineToTextDisplay(vegetarianCount.ToString() +

" Vegetarian");

string reply = SnapsEngine.SelectFrom2Buttons(item1: "Done",

item2: "Reset");

146 Chapter 6 Repeating actions with loops

ptg18144483

if (reply == "Reset")

{

cheeseAndTomatoCount = 0;

pepperoniCount = 0;

chickenCount = 0;

vegetarianCount = 0;

}

// clear the total display from the screen ready for more choices

SnapsEngine.ClearTextDisplay();

}

}

 }

}

PROGRAMMER’S POINT

The same code can have lots of uses
You can use the basic logic of the Pizza Picker program in lots of different situations. You
could count votes at a school council meeting, count the number of people who come
to your party, or let the audience pick the winners at a talent show. All you have to do is
change the text strings in the program, and you can use it for just about anything. When
you get asked to write a program, try to remember whether you have ever written anything
that does the same kind of thing.

Doing more with Snaps and loops
The Pizza Picker works fine, but at the moment it’s a bit boring, as it just has a plain display.
You can make it much more interesting by adding an image of a pizza as a background for
the display. See if you can use the DisplayBackground method in the Snaps library to liven
up the program. You can take a picture of your favorite pizza with your phone, extract the
image, and add it to your program. (Look back at the example in Chapter 5 to tell you how to
do this).

One thing to remember though: you need to be sure that your program is both good looking
and still useable, so be sure that the color scheme of your background doesn’t interfere with
the display. You can change the color of the text and the program title if you want to get
really artistic.

MAKE SOMETHING HAPPEN

147Using a loop to make a pizza picker

ptg18144483

You could also make the program calculate how many pizzas of each type to order. If you
work on the basis of one pizza for every two people, it is a simple calculation to convert the
number of orders into the number of pizzas that are to be ordered. However, remember that
it is not possible to order less than one pizza, and your program must behave sensibly if only
one person in the group orders a particular type.

You could also use speech output to make the program comment on choices people make.
By putting conditions in (by using if statements), you could make the program say things
like, “So, you all like vegetarian pizza“ or “Chicken wins” as the program is being used.

Here are some other ideas to try out:

 ● The funfair ride age checker we created in Chapter 5 would benefit from a loop con-
struction. At the moment, the user has to run the program each time he wants to use it.
You could add a while loop so that the program repeatedly asks for ride selections and
requests ages.

 ● A neighbor of yours wants to open a diner for truck drivers. He is doing research on the
traffic in the area because he wants to know how many trucks pass his site each day. He
wants a way of counting cars, vans, trucks, and bikes as they go past, and wants to simply
press a button for each different kind of vehicle that he sees go by. Write a program that
will do this for him. You can use the Pizza Picker as a starting point for the code.

 ● Your fame is spreading, and another friend of yours wants your help. She works at the
local observation tower as a guide. She has to make sure that no more than 10 people
at a time get into the elevator to the top of the tower. She wants a program that she can
run to count people as they enter the elevator. The program should display the count
for each person in turn, and when 8 people are in the elevator, the program should say
“Room for two more”; when 10 people are in the elevator, the program should say “Eleva-
tor full, enjoy your trip up.” Provide a Reset button your friend can use to clear the count,
set it back to 0, and start with the next set of passengers. Here, too, you can use the Pizza
Picker program as a starting point, but you will need to add some extra logic to speak the
messages. Remember that you can use an if condition in the loop to determine when
your program should speak a message.

Never-ending loops
The never-ending loop in the Pizza Picker program is perfectly correct. It would be a problem
for the user if the loop stopped repeating because this would prevent the program from
accepting input. However, consider the following loop:

WHAT COULD GO WRONG

148 Chapter 6 Repeating actions with loops

ptg18144483

while (true)

{

}

This is completely legal C# that is also highly dangerous. It does nothing, repeatedly. You
might think that the computer would be clever enough to work out that the loop does noth-
ing, and therefore ignore it, but this is unfortunately not the case. What would happen here
is that the computer would try to run this code as fast as it can. If this code ran on a desktop
PC, you would find that the processor usage would go up (and maybe the fans would start
running after a few seconds). If this code ran on a mobile device, you would find that the
case would warm up and the battery would start to drain very quickly. It is interesting to note
that this kind of code has actually been used to create “hand-warmer” apps for some mobile
phones. These programs don’t actually do anything useful, but they do make the phone get
nice and warm to the touch, at least for a short while, until the battery goes flat.

As you learn to program, you will probably make this kind of mistake a few times and create
programs that never stop. Remember that in Visual Studio, you can use the stop button to
end a program that gets stuck in this way.

Performing input validation with
a while loop
Let’s look again at the format of one of the loop constructions we examined earlier:

while (false)

 SnapsEngine.SpeakString("Rob will rule the world");

This statement performs the test for the loop’s condition at the start of the loop. This
code will not speak the message because the logical expression that controls the loop
is explicitly set to the value false, and this value is tested before the code in the loop
is obeyed.

Sometimes, however, you need a loop construction that performs the test at the end
of the code in the loop rather than at the beginning. C# also provides a loop construc-
tion that will do this:

149Performing input validation with a while loop

ptg18144483

do {

 SnapsEngine.SpeakString("Rob will rule the world");

} while (false);

This is a slightly different arrangement of the while construction. Here, the test is per-
formed after the code in the block has been obeyed. This code would speak the mes-
sage “Rob will rule the world” even though the value of the expression controlling the
loop is set to false. However, the loop would speak the message only once because
the value false means that the loop would not be repeated again.

This form of a while loop can be used when a program needs to validate input. Vali-
dation is a big part of building a program. It is how you ensure that a program never
does anything that’s not smart. When you design a program, you need to think about
the valid range that a value can have. For example, if you are asking for the age of a
user, you might accept ages in the range 1 to 100 as valid.

This type of loop is useful when you need to get a value from the user before you can
decide whether the value is valid or not. You can design the program so that it loops
around if the value entered by the user is not valid—in other words, the program will
repeatedly ask for a value until the user gives one that is valid. Here’s an example that
shows how this works. Remember that if the age entered is less than 1 or greater than
100, the input must be rejected and the program must ask for the age value again.

 1 int age;

 2 do

 3 {

 4 age = SnapsEngine.ReadInteger("Enter your age");

 5 } while (age < 1 | age > 100);

The best way to work out what is going on here is to work through the statements as a
computer would.

 ● At line 1, the program creates an integer variable called age. This variable will hold
the value that the program gets from the user.

 ● Line 2 marks the start of the loop.

 ● Line 3 is the open curly bracket that marks the start of the block of code that is
controlled by the loop. This loop contains only one statement, but I’ve added the
brackets to show that you could run many statements in the loop’s body.

 ● Line 4 contains the statement that reads in the age entered by the user.

 Block controlled
by the loop.

 Logical expression.

150 Chapter 6 Repeating actions with loops

ptg18144483

 ● If the number is read successfully, the program moves to the end of the while con-
struction, at line 5. The while keyword is followed by a logical expression that will
evaluate to true or false depending on the value in the age variable. If age is less
than 1 or greater than 100, the expression will be true, which will cause the loop to
repeat. This turns out to be exactly what we want—we want the program to keep
asking for age values until a valid one is entered.

It is worth reading through this description very carefully to be sure that you under-
stand what is going on. Remember that here the code controlled by the loop is always
performed at least once because the repeat condition appears at the end of the loop.
This makes perfect sense because we need to have a value before we can test it. This
also means that the condition in the loop must evaluate to true if the value is not valid
so that the loop will go around again.

Using Visual Studio to follow the
execution of your programs
You can check your programs by working through them on your own, one line at a
time, as we’ve done a couple of times already. But you can also use Visual Studio to
view the actions of a program as it runs. To do this, you use the Visual Studio debug-
ger. As the name implies, the debugger is a tool that helps you find and remove bugs
from your programs. You can use a debugger to track the path that your program is
actually following, rather than the one that you think it is following.

Adding breakpoints
We’ll start by adding a breakpoint to our program. A breakpoint doesn’t cause the
program to break; it causes the program to “take a break.” When a program reaches
a statement designated as a breakpoint, Visual Studio pauses the program and hands
control back to the programmer, who can then check that each variable has the con-
tent that it should have.

A program can contain many breakpoints. The first breakpoint that the program
reaches is the one that will pause the program. You can even set and remove break-
points as the program itself is running. You can create a breakpoint in any of your
code or in any of the samples that are part of the BeginToCodeWithCSharp solution.

We’ll use a breakpoint to investigate the behavior of the loop that we just
worked through. You can find the code we’ve been looking at in the file

151Using Visual Studio to follow the execution of your programs

ptg18144483

Ch06_02_AgeReader. Locate that file by using Solution Explorer, and then open it in
Visual Studio, as shown in Figure 6-4. You set a breakpoint by clicking in the margin
at the left of the statement where you want the program to pause.

Figure 6-4 Add a breakpoint in the margin to the left of a statement.

Breakpoints are represented by a red circle on the left of the page, and the statement
containing the breakpoint is highlighted in brown. You can’t put a breakpoint on the
declaration of the age variable or the do keyword that starts the loop. Here, I’ve put a
breakpoint on the while part of the loop, as shown in Figure 6-5.

 Figure 6-5 Setting a breakpoint.

152 Chapter 6 Repeating actions with loops

ptg18144483

Hitting a breakpoint
To start debugging, run the BeginToCodeWithCSharp solution as usual, select the
Ch06_02_AgeReader demo application, and select Run an app. The program will
ask for your age. Then, when the program reaches the breakpoint, Visual Studio will
pause the program and wait for a command from you. Figure 6-6 shows what you see
when a breakpoint is reached. Note that the statement at the breakpoint has not been
obeyed yet.

F igure 6-6 Hitting a breakpoint.

Viewing the contents of variables in the program
You can view the contents of a variable by resting the pointer over the variable’s name.
Figure 6-7 shows the content of the age variable after I entered a rather optimistic
value. The display is removed if you move your pointer away from the variable. If you
want the age value to remain visible, click the pushpin to the right of the displayed
value.

Figure 6-7 Viewing the age value.

153Using Visual Studio to follow the execution of your programs

ptg18144483

Stepping through program statements
When a program is paused, you can tell Visual Studio to step through the program’s
statements by using a set of buttons that control this activity. These buttons appear
on the Visual Studio toolbar only when the program is paused. I’ve identified them in
Figure 6-8, along with the function key assigned to them. (You can press the function
key instead of clicking the button.)

Figure 6-8 Use these buttons to step through a program in Visual Studio.

If you select Step into a method or press F11 when the program is paused at a state-
ment that is about to call a method, Visual Studio will open the file that contains that
method and navigate to the statements inside that method. Doing this is useful if you
want to investigate the contents of methods that your program is using. We’ll cover
exactly what a method is in Chapter 8, but for now consider the ReadInteger method.
It contains code that returns an integer. If we want to step through each statement
in the ReadInteger method, we can press F11 to enter it. When you want to leave a
method that you are stepping through and return to the one that called it, you can
use the Step out of a method button (or hold Shift and Press F11).

The most useful button at the moment is Step over a method (F10). This command
lets you step through the program and follow the path of execution. Each time you
enter this command, Visual Studio performs one statement and then pauses the pro-
gram again. In our program, what happens when you perform a step depends on the
value of age. If you entered a valid age (one in the range 1 to 100), the loop will end
and the program will move on to the call of DisplayString. If you entered an invalid
age, the program will loop around again.

Continuing the program
When you want to stop stepping through a program and run it normally, press the
Continue button (or F5) to resume. The program will stop at the next breakpoint it
reaches (if it finds one). Visual Studio also has a breakpoint window that you can use
to see the breakpoints you have created. You can display this window by going to the
Debug, Windows menu in Visual Studio and selecting the Breakpoints option. You

154 Chapter 6 Repeating actions with loops

ptg18144483

can do some very interesting things with breakpoints. For example, you can make
them take effect only when certain conditions are true (so that you make the program
break only when age is invalid). I’ll let you find out more about how to do this on your
own. For now, use breakpoints and single stepping to get a feel for how a program
executes.

PROGRAMMER’S POINT

Design your code for debugging
Single stepping through code is a great way to find out what it is doing. When you write
code, it’s useful to design it so that you can easily step through it and find out what’s going
on. I am a great believer in spreading my code over a number of statements and even using
extra temporary variables when it runs. This makes debugging easier and doesn’t cost your
program more memory since in the “smaller” version of the code above, the compiler will
still have to create some internal temporary variables to perform the calculation. The only
difference with the “more efficient” version above is that you can’t take a look at them.

When good loops go bad
You can learn a bit more about how loops work by taking a look at another one. At first
glance, the following code might seem identical to the previous code. And if you actually run
this program, it seems to work fine. If you give a valid age, the program says thank you.

 1 public static void StartProgram()

 2 {

 3 SnapsEngine.SetTitleString("Age between 1 and 100");

 4 int age;

 5 do

 6 {

 7 string ageString = SnapsEngine.ReadString("Enter your age");

 8 age = int.Parse(ageString);

 9 } while (age < 1 & age > 100);

 10 SnapsEngine.DisplayString("Thank you for entering your age of " + age);

 11 }

Ch06_02_BadAgeReader

CODE ANALYSIS

155Using Visual Studio to follow the execution of your programs

ptg18144483

Question: What is the fault in the program?

Answer: The fault is in line 9. We have seen this problem before. The logical expression
used here is slightly different from the one used earlier. This expression says, “while age is
less than one and age is greater than 100.” When you read it out loud, it sounds silly. How
can a number be less than one and greater than 100? No such value exists. But it turns out
that the compiler is quite happy to compile a program that contains a mistake like this.

Question: What will the fault cause the program to do?

Answer: Since there is no number that is both less than 1 and greater than 100, this
means that the expression controlling the while loop can never be true, which means
that the loop will never repeat. In other words, it will regard every age value as a correct
one. This is very dangerous because if you don’t test the program with invalid values, you
will never notice this problem.

Always test failure behaviors along with successful
ones
This is a really important point to consider when you write software. You need to test the
code you write that is supposed to deal with errors. Software engineers talk about the “happy
path” through a program, where the user enters the right values, the network connection
works, there’s enough space on the disk drive, and the printer doesn’t jam. When program-
mers write software, they tend to focus on this happy path without giving too much thought
to the depressingly large number of ways that a program can go wrong. However, this is a
dangerous way to write code. A great programmer will proactively look for things that can
go wrong, build in the code to deal with the error conditions, and then—crucially—take the
trouble to test that this code works.

In the case of the age-reading program we’ve been looking at, I’d insist on testing it with the
ages 0,1,50,100, and 101. These values should let me be sure that the invalid ages (0 and 101)
are rejected and that all the other ages (including the values on the boundaries) are accepted.
In fact, I would find a way that I could test the code automatically so that I can perform the
tests at regular intervals.

WHAT COULD GO WRONG

156 Chapter 6 Repeating actions with loops

ptg18144483

Counting in a loop to make a
times-table tutor
The loop in the Pizza Picker program was the simplest kind of loop. It repeats forever
because the logical expression that controls it is the Boolean value true. However, you
can also make loops that repeat a particular number of times. This is achieved by using
a variable to count the number of times the loop has been performed. The program
can set the counter variable to a starting value, and each time around the loop, the
variable can be updated until it reaches the limit, which causes the loop to stop.

You could use this kind of loop to create a times-table tutor to help you (or someone
else) with multiplication, which can be one of the tedious parts of learning arithmetic.
You could use the loop to make the program say, “One times two is two, two times
two is four,” and so on. Here is the entire program. It uses a while loop that produces
each successive output as it runs.

using SnapsLibrary;

class Ch06_04_TalkingTimesTables

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Talking Times Tables");

int count = 1;

int timesValue = 2;

while (count < 13)

{

int result = count * timesValue;

string message = count.ToString() +

" times " + timesValue.ToString() +

" is " + result.ToString();

SnapsEngine.DisplayString(message);

SnapsEngine.SpeakString(message);

count = count + 1;

}

 }

}

Create a counter.
Set the times value.

 Stop the loop at 13

 Calculate the
result.

 Assemble the
message.

 Update the count.

157Counting in a loop to make a times-table tutor

ptg18144483

There are two parts of this program that you really must understand. The first is the
loop and the expression that controls it:

while(count < 13)

The while loop is controlled by a logical expression that becomes false when the value
of the count variable reaches the value 13 (this is because the value 13 is not less than
13, it is equal to 13).

The second important part of the program is the assignment statement that updates
the counter:

count = count + 1;

This is the same pattern we used to update the pizza-topping counters in the Pizza
Picker. Each time this statement runs, it calculates the value of count plus 1 and then
stores this in the variable count.

Counter intelligence
Here is the times-table code with line numbers. Let’s take a closer look:

 1 using SnapsLibrary;

 2

 3 class Ch06_04_TalkingTimesTables

 4 {

 5 public void StartProgram()

 6 {

 7 SnapsEngine.SetTitleString("Talking Times Tables");

 8

 9 int count = 1;

 10

 11 int timesValue = 2;

 12

 13 while (count < 13)

 14 {

 15 int result = count * timesValue;

 16

CODE ANALYSIS

158 Chapter 6 Repeating actions with loops

ptg18144483

 17 string message = count.ToString() +

 18 " times " + timesValue.ToString() +

 19 " is " + result.ToString();

 20

 21 SnapsEngine.DisplayString(message);

 22 SnapsEngine.SpeakString(message);

 23

 24 count = count + 1;

 25 }

 26 }

 27 }

Question: Which statement would you have to change if you wanted to generate the times
table for 3 instead of 2?

Answer: You would change the assignment statement at line 11. If you set the variable
timesValue to 3, this will cause the times table to display multiples of 3.

Question: What would happen to the program if I changed the statement at line 24 to the
following statement?

count = count - 1;

Answer: This statement makes the variable count smaller each time the statement is
obeyed. The code in the times-table loop would calculate and display negative multiples,
and the loop would never stop because the count variable would always be less than 13.

Question: What would I have to do if I wanted the program to produce another times table?

Answer: The best way to do this would be to put the entire program inside another loop.
It is perfectly okay to nest one loop inside another. If you did this, you would have to add
some code that would allow the user to restart the program; otherwise it would just carry
on forever, which users might not like.

using SnapsLibrary;

class Ch06_05_RepeatingTimesTables

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Talking Times Tables");

while (true)

{

Outer loop that
continues forever.

159Counting in a loop to make a times-table tutor

ptg18144483

int count = 1;

int timesValue = 2;

while (count < 13)

{

int result = count * timesValue;

string message = count.ToString() +

" times " + timesValue.ToString() +

" is " + result.ToString();

SnapsEngine.DisplayString(message);

SnapsEngine.SpeakString(message);

count = count + 1;

}

SnapsEngine.WaitForButton("Press to continue");

}

 }

}

This version of the program uses an outer loop that never ends. The times-table loop is inside
this loop. The code uses another Snaps method, WaitForButton, that waits for a button to
be pressed. This allows the user to select when the times table is to be presented.

Allow the user to select the times value
You can improve the times-table program to make one that asks the user what value to work
with. You could allow the user to hear multiples of 25 if you like, or you could use validation
so that the only times tables that can be produced are in the range 2 to 12.

Using a for loop construction
You have seen that you can manage perfectly well with while loop constructions. The
times-table program works fine. However, the designers of C# decided to make it

The same code
inside the loop.

Waits for the user
to press a button

MAKE SOMETHING HAPPEN

160 Chapter 6 Repeating actions with loops

ptg18144483

even easier to create loops that perform counting. To do this, they created a construc-
tion called the for loop. Its general structure is illustrated in Figure 6-9.

Figure 6-9 The structure of a for loop.

A for loop lets a programmer create the setup, test, and update elements of a repeat-
ing loop in a single statement. Each element of the loop is a C# statement.

 ● The setup element is performed once when the for loop is started

 ● The test element is performed before the execution of the loop. Just as in the
while construction you saw earlier, the loop statement is performed only while
the logical expression that is the test returns true.

 ● The update element is performed after each execution of the loop.

You could use this form of loop to make the times-table tutor program a lot simpler:

for (int count = 1; count < 13; count = count + 1)

{

int result = count * timesValue;

string message = count.ToString() +

" times " + timesValue.ToString() +

" is " + result.ToString();

 SnapsEngine.DisplayString(message);

 SnapsEngine.SpeakString(message);

}

Ch06_06_ForTimesTable

The for loop at the top of this block does all the work that is spread over three
statements in the previous version of the program. Any time that a program needs to
repeat something a particular number of times, you should think about using a for
loop.

count count < 13; count + 1

Set up the counter variable.

Test the counter.

Update the counter.

161Using a for loop construction

ptg18144483

PROGRAMMER’S POINT

For loops don’t make anything new possible; they just make things
easier
It turns out that we really need only one loop construction to write every program that
has ever been written. The programs might be a bit longer and harder to understand, but
they would work. The reason we have two different forms of the do loop and the for loop
constructions is that they make writing programs easier. If you want to make a program
count a particular number of times, a for loop is easier and quicker to write than a while
loop. It is also more expressive, in that anyone seeing a for loop in your program will know
exactly what you are trying to do. Later in the book, you will see other kinds of loops that
you can use.

Unpacking loops
We can learn more about how for loops work by unpacking some loop designs.

Question: What does this program do?

for (int countdown = 10; countdown >= 0; countdown = countdown - 1)

{

 SnapsEngine.SpeakString(countdown);

 SnapsEngine.Delay(1);

}

Answer: This program performs a 10-second countdown. It will speak the numbers 10, 9,
8, and so on over 10 seconds.

Question: Will this program speak the number zero?

Answer: Yes. The terminating condition (the condition that must be true for the for loop
to continue) is countdown >= 0 (countdown greater than or equal to zero). When the
counter has the value 0, the condition is still true, so the loop will continue working.

Question: How many times will the loop go around?

Answer: You might think that the answer is simple: 10. But you’d be wrong. The loop will
go around 11 times. The first time around the loop, the value in countdown will be 10,
and the last time around the loop, the value will be 0. If you write out the values, you can
count them: 10,9,8,7,6,5,4,3,2,1,0. There are 11 values, so the loop must go around 11 times.
You need to be very careful when designing loops that you make sure that you check that
the terminating condition makes the loop stop at the right time. The first time I wrote

CODE ANALYSIS

162 Chapter 6 Repeating actions with loops

ptg18144483

this loop, I used the end condition countdown > 0, and I was confused as to why the
program did not speak the value zero.

PROGRAMMER’S POINT

Don’t be too clever
Some people like to show how clever they are by doing cunning things with the setup, con-
dition, and update statements, which can actually do things other than simple assignments,
increments, and tests. Some programmers think they are very clever if they can do all the
work “inside” the for part at the top and have an empty statement after it.

I think these people are too clever for their own good. There is rarely a need for such con-
voluted code. When you are writing programs, the two things that you should worry about
are “How do I prove this works?” and “How easy is this code to understand?” Complicated
code does not help you do either of these things.

Breaking out of loops
Sometimes you’ll need your program to escape from a loop while you are in the mid-
dle of it—in other words, your program might decide that there is no need or point
to going on and want to leap out of the loop and continue the program from the
statement after it.

You can do this with the break statement, which is a command to the program to
leave the loop immediately. Your program will usually make some kind of decision
before quitting in this way. I find the break statement useful when I need to provide a
“get the heck out of here” option in the middle of something.

As an example, suppose we want to let a user stop the times-table tutor in the middle
of its operation. It could be annoying for the user if there is no way to stop the pro-
gram once it has started. To do this, we can use a Snaps method, named ScreenHas-
BeenTapped, that lets a program detect when the user taps on a touchscreen or clicks
on the screen with a mouse.

if (SnapsEngine.ScreenHasBeenTapped())

 // statement that we perform if the screen has been tapped

163Breaking out of loops

ptg18144483

The ScreenHasBeenTapped method returns true if the screen has been tapped. The
Snaps framework maintains a flag (a type of indicator) that is set when the framework
detects that the screen has been tapped. If you want your program to detect a further
screen-tap event, the program must call ClearScreenTappedFlag to clear the flag and
be ready for the next tap.

SnapsEngine.ClearScreenTappedFlag();

The flag is cleared by a call of ClearScreenTappedFlag and will be set again when
the screen is tapped again. You can use these Snaps methods along with the break
keyword to allow the user of the times-table program to tap the screen to stop the
program from producing output. Here is the code:

using SnapsLibrary;

class Ch06_07_TapScreenToStop

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Talking Times Tables");

while (true)

{

int timesValue = 2;

// Make sure that the screen tapped flag is clear

SnapsEngine.ClearScreenTappedFlag();

for (int count = 1; count < 13; count = count + 1)

{

int result = count * timesValue;

string message = count.ToString() +

" times " + timesValue.ToString() +

" is " + result.ToString();

SnapsEngine.DisplayString(message);

SnapsEngine.SpeakString(message);

Clear the tapped
fl ag and make it

ready for use.

164 Chapter 6 Repeating actions with loops

ptg18144483

// If the screen is tapped, break out of the for loop

if (SnapsEngine.ScreenHasBeenTapped())

break;

}

SnapsEngine.WaitForButton("Press to continue");

}

 }

}

This version of the times-table tutor displays and speaks the times table for 2 from 1 to
12. If the user taps the screen while the program is running, the program breaks out of
the inner for loop and goes to the next statement after it—in this case, the statement
that calls the WaitForButton method.

A program can break out of any of these loops. In every case, the program contin-
ues running at the statement after the last statement in the loop. If the loop is inside
another loop (as with this example), the break takes the program out of only one loop.
In other words, obeying the break statement inside the for loop that is speaking the
times table does not cause the program to exit the outer while loop, just the inner for
loop.

Going back to the top of a loop
by using continue
Every now and then you will write a program that needs to go back to the top of a
loop and run the loop again. You’ll do this when you have gone through the state-
ments as much as you need to for a particular pass around the loop. To perform this
operation, C# provides the continue keyword, which says something along the lines
of “Please do not go any further this time around the loop. Go back to the top of the
loop, do all the updating and other work (if there is any), and then go around again if
you are supposed to.”

As an example, imagine that a user of the times-table program has a thing about the
number 4. They don’t know why, but they don’t want to hear the program announce
the times-table value for that number. We can use the continue keyword to control
this behavior.

Test the fl ag, and
exit the loop if
the screen has
been tapped.

165Going back to the top of a loop by using continue

ptg18144483

for (int count = 1; count < 13; count = count + 1)

{

 if (count == 4)

continue;

 // Rest of the times-table program here

}

Ch06_08_MissOutFour

The effect of the continue keyword is to send the program back to the top of the
loop, increment the count value to make it 5, test the end condition (the loop will
continue because count is less than 13), and then go around again. If you run the pro-
gram, you will see that the times-table announcement for the value 4 is omitted.

PROGRAMMER’S POINT

You don’t use continue as often as you use break
There are quite a few situations in programs where the break keyword is useful. However,
the continue keyword is used much less frequently. Don’t feel like you aren’t a proper
programmer if you don’t find yourself using continue very often.

Loops, break, and continue
You can improve your understanding of the way that break and continue are used by tak-
ing a look at a couple of simple programs.

 1 for (int count = 1; count < 13; count = count + 1)

 2 {

 3 if (count == 5)

 4 break;

 5 SnapsEngine.SpeakString(count.ToString());

 6 }

 7 SnapsEngine.SpeakString("Done");

Question: What would this code actually say?

Test the count value to see if it is 4.
Continue the loop if count is 4.

CODE ANALYSIS

166 Chapter 6 Repeating actions with loops

ptg18144483

Answer: It would say “1,2,3,4” and then “Done.” When the value of count reaches 5, the
logical expression in the if condition at line 3 becomes true (because count is now
equal to 5). The break statement would cause the program to exit the loop immediately
and continue running the program at line 7. The program would not speak the value 5
because it breaks out before it reaches the SpeakString method that speaks that value.

 1 for (int count = 1; count < 13; count = count + 1)

 2 {

 3 if (count == 5)

 4 continue;

 5 SnapsEngine.SpeakString(count.ToString());

 6 }

Question: What would this code say?

Answer: It would say “1,2,3,4,6,7,8,9,10,11,12”. Note that it would not say “5” because when
the value of count is 5, the conditional statement at line 3 will cause the program to
continue back at the start of the loop, which means that the SpeakString method is not
called for the value 5.

 1 while (true)

 2 {

 3 break;

 4 SnapsEngine.SpeakString("Looping");

 5 }

Question: Would this program run forever?

Answer: No. It is true that the logical expression controlling the loop is set to true, which
means always repeat the loop, but the content of the loop body contains a break state-
ment that would cause the loop to exit.

Question: Would this program say the message “Looping”?

Answer: No. This statement is never reached because the program breaks out of the
loop first.

 1 while (true)

 2 {

 3 continue;

 4 SnapsEngine.SpeakString("Looping");

 5 }

167Going back to the top of a loop by using continue

ptg18144483

Question: Would this program run forever?

Answer: Yes. The continue keyword does not cause a loop to end. Instead, it causes the
end condition to be tested, and the loop repeats if the condition is found to be true.

Question: Would this program say the message “Looping”?

Answer: No. This statement is never reached because the program continues back to the
top of the loop first.

Extra Snaps
Here are a couple of extra snaps that you might find useful as you write more pro-
grams of your own.

Voice input
The Snaps framework provides a set of methods that you can use to make your
programs respond to voice input. They work in a similar way to the button-selection
methods you have already seen. The only difference is an additional string that is pro-
vided as a prompt displayed to the user. In the following code, I’ve used voice input
to get a pizza choice from the user. (Here I have used named arguments in the call of
the SelectFromFiveSpokenPhrases method. You’ll learn more about using named
arguments in Chapter 8. In this code, the named arguments make it easy to tell the
difference between the prompt and the phrases to be used.)

string toppingChoice = SnapsEngine.SelectFromFiveSpokenPhrases(

prompt: "What pizza topping do you want",

phrase1: "Cheese and Tomato",

phrase2: "Pepperoni",

phrase3: "Chicken",

phrase4: "Vegetarian",

phrase5: "Show Totals");

Ch06_09_VoicePizzaPicker

When this program runs, it displays the Windows 10 voice-input panel, shown in
 Figure 6-10.

168 Chapter 6 Repeating actions with loops

ptg18144483

Figure 6-10 Voice-input panel.

The voice-input methods return the phrase that was detected, but if the user doesn’t
say anything recognizable or presses the Cancel button on the dialog box, the
method returns an empty string.

The following code checks to see whether the pizza topping was recognized. If it was
not, and the result returned was an empty string, the program tells the user that the
choice was not recognized and then uses the continue keyword to continue looping
and get a pizza choice.

if (toppingChoice == "")

{

 SnapsEngine.SpeakString("Sorry, choice not recognized");

 continue;

}

I’ve included versions of the voice-input method that you can use to select between
two and six phrases. You can use these methods to make voice-controlled versions
of many of the applications we have already built. You could make a voice-controlled
egg timer in which the user speaks the delay required. You could also change the fun-
fair ride programs to work with voice response, or you could make a completely new
voice-controlled program.

Secret data entry
The Snaps ReadString method lets a program read a string, but anyone able to watch
the program will be able to see what is being entered. The ReadPassword method
is used in exactly the same way as ReadString, but the characters are replaced with
dots as they are typed. This statement sets the string password to a secret password
entered by the user.

169Extra Snaps

ptg18144483

string password = SnapsEngine.ReadPassword("Enter your secret password");

You can use the ReadPassword method to make password-protected versions of your
apps.

What you have learned
In this chapter, you have learned how to create programs that contain statements that
are repeated when the program runs. To learn this, you have worked with three differ-
ent looping constructions that are provided by C#.

The first of these, the “while(condition) statement” construction, repeats the state-
ment as long as the logical expression in the condition is true. If you simply put the
Boolean value true as the condition, the loop will never end. In some cases this is a
reasonable thing to do because many programs (games, for example) contain behav-
iors that must be repeated while they run.

The second loop configuration, “do statement while condition,” is very similar to the
first one, with the important difference that the statement is always performed at
least once. In the “while(condition) statement” construction, the test that determines
whether the loop repeats is performed at the start of the loop. This means that if the
condition controlling the loop is false at the start, the loop code is never performed. In
the second configuration, “do statement while condition,” the test is performed after
the code in the loop has been executed once. This second configuration is useful in
situations where you are reading in a value and then testing its validity.

The third loop configuration is completely different from the other two. The “for
(setup; test; update) statement” construction is designed for situations in which the
programmer wants to manage a loop by setting up a counter of some kind, testing for
when it reaches its limit, and using a third statement to update the counter. This con-
figuration is especially useful in situations where a program must perform an action a
particular number of times.

The C# language also provides a way for a program to break out of a loop by using
the break keyword. This is useful if the program has reached a state where it is not
meaningful for the loop to be repeated. And there is also the continue keyword,
which causes a loop to continue from the start of the loop statements, once the end
condition has been tested.

170 Chapter 6 Repeating actions with loops

ptg18144483

Here are some points to ponder about loops.

Do we really need loops?

No. In theory, we could write every program by using a sequence of statements and
conditions. Loops could be “unrolled” into sections of repeated code. A loop that per-
forms an action 10 times could be replaced by 10 copies of the code in the loop. Doing
without loops would make programs much larger, but it would work.

Are loops dangerous?

In a way. An “unrolled” loop is guaranteed to run through to completion. There is no
way it can get stuck or execute the wrong number of times. However, you have seen
several times that if you get the end conditions wrong or update a counter incorrectly,
you can have loops that get stuck looping forever or go around the wrong number of
times. In other words, using loops in a program introduces the potential for new kinds
of errors. It is interesting to note that in some absolutely critical programs, such as
ones controlling aircraft or nuclear reactors, programmers sometimes avoid loops for
just this reason.

171What you have learned

ptg18144483

7
Using arrays

ptg18144483

What you will learn
You might fi nd this surprising, but you’ve already learned most of what you
need to know to tell a computer what to do. You can write a program that
stores items of data, makes decisions based on data values, and repeats be-
haviors as long as particular conditions are true. These are the fundamentals
of programming, and all programs are built on these core capabilities.

However, there is one more thing you need to know before you can write
most any kind of program. You have to understand how to manage large
amounts of data in your programs. In this chapter, you’ll learn how to work
with “collections” of data by using arrays and how to use loops to work
through them.

Have an ice cream .174

Making an array .176

Multiple dimensions in arrays .199

Using arrays as lookup tables .206

What you have learned .208

173

ptg18144483

Have an ice cream
Your fame as a programmer is beginning to spread far and wide. Now the owner of a
group of ice-cream stands comes to you and asks that you write a program to help her
track sales results. She has 10 ice-cream stands around the city, and each day they sell
a different number of ice-cream treats. What she wants is quite simple—she wants to
enter the sales value from each stand and then view the data in different ways: sorted
from lowest to the highest, sorted from highest to the lowest, just the highest and the
lowest numbers, the total number of sales, and the average sales value. She can use
this information to help plan the location of her stands and reward the best sellers. If
you get this right, you might be getting some free ice cream, so you agree to help.

PROGRAMMER’S POINT

Getting the specification right: Storyboarding
It’s important to agree on a specification with your customers. There are lots of ways that
you can develop a specification. I find that the best way is to sit down with your user and a
large pad of paper—as far away from the computer as you can get—and draw up a “story-
board.” Storyboards are used in moviemaking to show everyone how the film will tell the
story. Programs can have storyboards, too.

Whereas a movie storyboard describes one sequence—the narrative of the film—the
storyboard for a computer program has branches that show how the user follows different
paths through the application. For example: When the ice-cream sales program starts, it
asks for 10 sales values, one after the other. It then moves to the menu screen. The menu
screen has options to view data (lowest to highest, highest to lowest, and so on) and an
option to read in a new set of numbers. If the user selects High to Low, the program will
show the sales numbers with the highest value first and provide a button the user can use
to return to the menu screen. You would list and describe all the other operations in this
way as well.

In a storyboard, you can also draw up how the screens are supposed to look and agree with
the customer what users must do to move from one screen to the next. You could even
decide what color scheme to use. Remember that one of the worst things is for the user to
say, “I’m really not that bothered about how it should work. I’ll leave that to you. I’m sure it
will be fine.” No it won’t. Designing a program must be done by working with the customer.
That way, you can be sure you are delivering exactly what is required. What’s more, doing
the design like this means that when you start writing the program, you’ll know exactly
what you need to do, since the storyboard will tell you what happens first. And if there is
anything the customer hasn’t thought of, these will most likely be spotted as you build the
storyboard. Building an understanding of how programs fit together can be a big help
when you get to the point of creating them.

174 Chapter 7 Using arrays

ptg18144483

With the information you’ve gathered, all you have to do now is write the actual pro-
gram itself. The program will use variables to hold the sales values entered by the user,
and it can use a logical expression to compare two sales values and choose the bigger
of the two (so that it can sort values and find the biggest sales). You also know from
earlier chapters how to display results to the user.

Storing the data in single variables
When you write a program, a good place to start is to declare all the variables that the
program will use. This program needs to store 10 sales figures, so start by declaring
10 variables, one for each of the values you want to store in the program. You can use
integers (the int type) to hold the number of sales because you can’t sell half an ice
cream.

int sales1, sales2, sales3, sales4, sales5, sales6, sales7,

 sales8, sales9, sales10;

Now we need to get the sales figures from the user. We’ve used the ReadInteger
method before to do this. (It is how the funfair rides program in Chapter 5 reads in the
age of customers wanting to go on a ride.) In this program we are going to use the
method to read in sales values. Using this approach, we could write 10 statements that
read in the sales values for each ice-cream stand:

sales1 = SnapsEngine.ReadInteger("Enter the sales for stand 1");

sales2 = SnapsEngine.ReadInteger("Enter the sales for stand 2");

sales3 = SnapsEngine.ReadInteger("Enter the sales for stand 3");

sales4 = SnapsEngine.ReadInteger("Enter the sales for stand 4");

sales5 = SnapsEngine.ReadInteger("Enter the sales for stand 5");

sales6 = SnapsEngine.ReadInteger("Enter the sales for stand 6");

sales7 = SnapsEngine.ReadInteger("Enter the sales for stand 7");

sales8 = SnapsEngine.ReadInteger("Enter the sales for stand 8");

sales9 = SnapsEngine.ReadInteger("Enter the sales for stand 9");

sales10 = SnapsEngine.ReadInteger("Enter the sales for stand 10");

Now that we have the data in our program, we can start to work with it. First, we could
create an if condition to decide whether the sales from stand 1 are the largest. Also,
as you saw in Chapter 5, we can combine conditions to make complicated logical
expressions. The output from the following condition is true only if sales1 is larger
than all the other sales values:

175Have an ice cream

ptg18144483

if(sales1>sales2 && sales1>sales3 && sales1>sales4 &&

 sales1>sales5 && sales1>sales6 && sales1> sales7 &&

 sales1>sales8 && sales1>sales9 && sales1>sales10)

{

SnapsEngine.DisplayString("Stand 1 had the best sales");

}

Ch07_01_UnworkableSales

The problem (as you may have already spotted) is that this program would have to
repeat this condition 10 times to display the correct message for all the ice-cream
sellers. The problem would become worse if your customer added another 20 sales
stands, because the program would become even more complex—it would require 20
more variables, 20 more read statements, and 20 more complex conditions. That’s not
the path we want to follow to manage this volume of data.

Making an array
Storing and working with large amounts of data is actually quite easy, but you need
something better than single variables. You need to create a collection, and the sim-
plest form of a collection is the C# array, so let’s take a look at that.

Arrays have one or more dimensions. A one-dimensional array is something like a list.
A two-dimensional array is more like a table or a grid (where each element is identi-
fied by what you might think of as a row and a column position).

An array will let us do what we really want to do to manage the data in our ice-cream
application: create a single variable that can hold all 10 sales values at once. To declare
an array variable for our program, you use the following statement, which creates an
array called sales that can hold 10 sales values, each of which is of type int:

int [] sales = new int[10];

This statement looks a bit like an assignment—for example, int age = 21;—which is
a type of statement you’ve seen before. It creates an integer variable called age and
then puts the value 21 in it. The array declaration is the same kind of thing. It creates
a variable (called sales) that can refer to arrays of integers and then makes the sales
variable refer to a brand-new array that can hold 10 integer values. (This is the first

sales int[10]

An array that can hold 10 integers.

A variable called sales that can refer to arrays of integers.

176 Chapter 7 Using arrays

ptg18144483

reference variable that we have seen in our C# programs. You will learn a lot more
about references later in the book.)

If you think of a single variable as a box that can hold one value, you can think of an
array as a row of boxes, each of which can hold a value. In C# terminology, each of the
boxes in an array is called an element—an array is made up of a number of elements.
When an array of integers is created, each element is initially set to the value 0.

You can create arrays that hold values of any type. And you can use an array element
everywhere you can use a variable of that particular type.

Using an index
A program addresses a particular element in an array by using an index, which is a
number that identifies the element in the array. (Some programmers call indexes
subscripts.) The index value is given in square brackets after the array reference (such
as [5]). The following statement sets the element at the start of the array (which is at
index 0) to hold the value 99. Figure 7-1 shows the effect of this statement.

sales[0] = 99;

Figure 7-1 A set of array elements. The first element has the index 0 and the value 99.

It is very important to understand that array indexes start at 0. In other words, the first
element has the index 0. This can be confusing for two reasons.

 ● It’s not how humans number things. We never say, “I’ll have the zeroth item on the
menu” or “I live at house number zero at the top of the street.” There is a natural
human tendency to link “first” with the number one.

 ● It’s not how some other programming languages work. Some other languages—
for example, Basic—number their array elements starting at 1.

I find it best to think of the index as the distance down the array that you have to
travel to get to the element that you want. The initial reference to the array takes you
to the start of the array, so an index of 0 must be how you refer to that element.

177Making an array

ptg18144483

Falling off the end of an array
When a program runs, it allocates exactly the right amount of memory needed for an
array of a particular size. This can lead to problems. The next statement is trying to set
the sales for the last ice-cream stand to 50.

sales[10] = 50;

Ch07_02_ArrayExceptions

At first glance this looks okay. The array contains 10 elements, and we are accessing
the tenth one. How can this fail? It turns out that this statement fails because the first
element of the array has the index 0, which means the tenth element has the index
9. (If you don’t believe me, count the array elements in Figure 7-1, and you’ll see
that you have 10 of them, numbered 0 to 9). There is no element in the array with an
index value of 10 for the program to use. So it does the only thing it can. It throws an
exception.

Throwing an exception is the software equivalent of kicking over the table if you are
losing in a game of chess. The current activity is abandoned. If you are using Visual
Studio to develop the program, you might see a scary description of what just hap-
pened. Figure 7-2 shows you the kind of information you see in Visual Studio if your
program throws an exception.

F igure 7-2 Exception details displayed by Visual Studio for an IndexOutofRange exception.

If the program is running outside Visual Studio, the user won’t see this message, but
there is a very good chance that the program will just stop running when the excep-
tion is thrown.

You might think that this behavior is a bit extreme. All we did was get an index value
wrong. Why such a fuss? The answer is very important. When a program goes wrong,

178 Chapter 7 Using arrays

ptg18144483

it is crucial that the user knows this as soon as possible. There is only one thing worse
than a broken program, and that is a broken program that the user doesn’t know is
broken. It is one thing for a word processor to give you an error when you try to save
a file. It is quite another thing (and much worse) for a word processor to leave you
thinking the file was saved when it wasn’t.

In Chapter 11, you will find out how to capture and deal with exceptions that may arise
when a program runs.

Working with arrays
At the moment you might not be very impressed. You’ve learned how to declare a
large number of variables using a single statement, but how does this help us process
the ice-cream sales figures? Well, consider the following code:

using SnapsLibrary;

class Ch07_03_ForLoopStorage

{

 public void StartProgram()

 {

int[] sales = new int[10];

for (int count = 0; count < 10; count = count + 1)

{

sales[count] = SnapsEngine.ReadInteger("Enter the sales value");

}

 }

}

Arrays become very useful when you index their elements by using a variable rather
than a fixed value. The preceding code uses a for loop to repeat a block of code.
The for loop uses a counter called count. The first time around the loop, the count
variable holds the value 0. Next time around the loop, the value of count is 1. The loop
ends when count reaches the value 10, which is the end of the array.

Here is the statement in the loop that reads each sales value:

sales[count] = SnapsEngine.ReadInteger("Enter the sales value");

In this statement, the variable count is used to index the array and tell the program
where to put the number it reads. The first time around the loop, the counter is 0, so

179Making an array

ptg18144483

the integer entered by the user goes into the element at the start. Then the value of
count is increased to 1. This means the next value entered will be read into the ele-
ment with the index of 1, and so on.

Investigating arrays
Here is an array that is being filled with data as the program runs, part way through the data
entry.

Question: The program has just stored a value in an element in the array. What is the value of
count at this instant? What is the value of the most recently entered sales?

Answer: You learned that an array element is filled with 0 when it is created. This means
that the first element in the array that is not 0 must be the one whose value is most
recently entered. If you look at the array, that element is the one at index 4. This element
contains 22. So count is 4, and the most recently entered sales value is 22.

Question: How many ice creams did the third ice-cream stand sell?

Answer: It sold 29 ice creams. If you think the answer is 33, remember that array ele-
ments are indexed starting at 0. The first stand sold 50 (that element has the index 0), the
second stand sold 54 (that element has the index 1), and the third sold 29.

Question: If I wanted to store the sales from 100 ice-cream stands, what would I have to
change in the program?

Answer: This is where using arrays starts to really pay dividends. It turns out that all I
would have to change is the size of the array so that it can hold 100 values and make the
loop go around 100 times. C# has a feature that makes this easier. A program can deter-
mine the length of an array. The length value can be used to control the for loop so that
it automatically works for an array of any size.

int [] sales = new int[100];

for (int count = 0; count < sales.Length; count = count + 1)

{

 sales[count] = SnapsEngine.ReadInteger("Enter the sales value");

}

CODE ANALYSIS

sales.Length

Uses the array’s
length to count

through the array.

180 Chapter 7 Using arrays

ptg18144483

This version of the program would work for 100 sales figures. You can make it work for any
number of sales simply by changing 100 to a different value. You could even ask the user how
many ice-cream stands she has:

int noOfStands = SnapsEngine.ReadInteger("How many ice cream stands?");

int [] sales = new int[noOfStands];

Ch07_04_VariableArraySizes

This code allows the user to decide just how much data he or she wants to process.

Flexibility can be dangerous
It is a great idea to allow a user to change the size of the storage that they want to use. But
this might also be very dangerous. Take a look at this screenshot:

Data entry like this is going to end very badly. The program will try to make an array that will
hold 100 million sales values. If that succeeds, it will then ask the user to enter each value in
turn, which will take a very long time.

To stop this from happening, you must discuss the feature with the user and agree that she
will never have less than 10 stands or more than 100. The program can then reject values
outside the agreed range.

WHAT COULD GO WRONG

181Making an array

ptg18144483

Index issues
Sometimes, trying to be helpful can give you new problems. The original version of the
program asked the user for the details of each ice-cream stand in turn. The present version
doesn’t do this, and the user would very much like to know which particular value is being
entered. The good news is that the program can use the count value in the prompt.

for (int count = 0; count < sales.Length; count = count + 1)

{

 sales[count] = SnapsEngine.ReadInteger("Enter the sales for stand " + count);

}

Ch07_05_BadlyNumberedStand

Question: But the bad news is that this program doesn’t actually work properly. Can you spot
the problem and how to fix it?

Answer: The array is indexed starting at 0, which means that the first time around the
loop, the program will display the prompt “Enter the sales for stand 0.” This will confuse
the user because she wants to count starting at 1. So you change the program as follows:

sales[count] = SnapsEngine.ReadInteger("Enter the sales for stand " + count + 1);

The idea here is that the program will add 1 to count so that it displays 1,2,3,4 instead of
0,1,2,3. However, when you run the “fixed” program, the output doesn’t look right:

And after you have added the details of the first sales stand, things get even worse:

CODE ANALYSIS

182 Chapter 7 Using arrays

ptg18144483

What’s happening here? It turns out that the problem is in the prompt statement:

sales[count] = SnapsEngine.ReadInteger("Enter the sales for stand " + count + 1);

The program is constructing the string to be displayed by adding items together using the +
operator. When an expression contains the + operator between strings values, it concatenates
the items (it strings them together). So, rather than adding 1 to the value of count, the code
+ 1 causes the value 1 to be concatenated to the end of the string that is displayed. To make
the program work properly, you have to force it to work out the sum first and then display
this result as an integer. You can use parentheses to tell the compiler that you want one part
of the expression to be evaluated first, so you can do this:

sales[count] = SnapsEngine.ReadInteger("Enter the sales for stand " +

(count + 1));

When the program builds the string now, it calculates count + 1 before it does anything
else, which means that the program displays the stand number correctly. But I would make
one more change and write the code like this:

for (int count = 0; count < sales.Length;count = count + 1)

{

 // User likes to count from 1, not zero

 int displayCount = count + 1;

 sales[count] = SnapsEngine.ReadInteger("Enter the sales for stand " +

displayCount);

}

Ch07_06_ProperlyNumberedStand

183Making an array

ptg18144483

This version explicitly creates a counter (displayCount) for use in the display message. The
code also contains a comment that explains why it is doing this. I would consider this to be
much more professional-quality code. Some programmers might say that this code is less
efficient, in that I’m making a new variable each time around the loop, but this is probably
not the case. Compilers today are very good at optimizing how they create the program. And
anyway, I’m very happy to trade a tiny amount of computer power for a huge improvement in
readability.

Displaying the contents of the array by
using a for loop
We can create a loop that lets us display the contents of the array on the screen so that
we can see the sales values.

using SnapsLibrary;

class Ch07_07_ReadAndDisplay

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Ice Cream Sales");

// Find out how many sales values are being stored

int noOfStands = SnapsEngine.ReadInteger("How many ice cream stands?");

int[] sales = new int[noOfStands];

// Loop round and read the sales values

for (int count = 0; count < sales.Length; count = count + 1)

{

// User likes to count from 1, not zero

int displayCount = count + 1;

sales[count] = SnapsEngine.ReadInteger("Enter the sales for stand " +

displayCount);

}

// Got the sales figures, now display them

SnapsEngine.ClearTextDisplay();

184 Chapter 7 Using arrays

ptg18144483

// Add a line to the display for each sales figure

for (int count = 0; count < sales.Length; count = count + 1)

{

SnapsEngine.AddLineToTextDisplay("Sales: " + sales[count]);

}

 }

}

Ch07_07_ReadAndDisplay

The count variable is used to index elements in the array so that each element in turn
is displayed. Figure 7-3 shows the output when the program displays the sales values.

Figure 7-3 List of ice-cream sales.

You can use this pattern in other programs when you need to read some data in and
then display it.

Read the names of guests for a party
Arrays can hold any type of data that you need to store, including strings. You could change
the ice-cream sales program to read and store the names of guests for a party or an event
you are planning.

Make a modified version of the sales program that reads in some guest names and then
displays them. Make your program handle between 5 and 15 guests.

This loop
displays the

sales fi gures.

Get
element
from the

array and
display

it on the
screen.

MAKE SOMETHING HAPPEN

185Making an array

ptg18144483

Displaying a user menu
After the program has read in the sales data, it must determine what the user wants to
do with it. The program can use the SelectFromButtons methods we’ve used in other
chapters to get a command from the user. The following code should be familiar to
you. Remember that this method displays a set of buttons (here we are displaying six)
and then waits for the user to select one. Figure 7-4 shows the menu the statement
creates.

string command = SnapsEngine.SelectFrom6Buttons(

 "Low to High",

 "High to Low",

 "Highest and Lowest",

 "Total sales",

 "Average sales",

 "Enter figures");

Figure 7-4 Ice-cream sales analysis menu.

The user can press the button that matches the data she wants, and then the program
can test the result that comes back and decide which function to perform. In the fol-
lowing example, the code inside the block is obeyed if the command is Low to High.
I’ve added a comment that tells someone reading the code what the code will do.

if (command == "Low to High")

{

 // Need to display the contents of the sales array

 // sorted lowest to highest

}

186 Chapter 7 Using arrays

ptg18144483

Sorting an array using the Bubble Sort
As the comment in the preceding code block tells you, the next thing we need to do
is write code that does some sorting. Sorting is something that computer programs
spend a lot of time doing, but as with other operations, you have to tell a computer
exactly how to do it. A computer can’t sort the whole array at once. It can work on
only one item at a time. Examining how sorting programs work is a good idea because
it helps you understand how a complex problem can be broken down to a series of
smaller steps.

Computer scientists talk a lot about algorithms. An algorithm is a way of doing
something. Programming is really about taking an algorithm and converting it to a
sequence of instructions that tells the computer what to do. This brings into focus one
of the most important points of programming: if you don’t have the algorithm, you
can’t write the program. In other words, if you don’t know the sequence of steps that
solves the problem, you can’t make a program to solve the problem.

When it comes to sorting collections of data, there are a number of different algo-
rithms. Bubble Sort is one of them. Bubble Sort works in a way that progressively
makes an array a little bit more sorted (one step at a time) by comparing adjacent
elements and swapping elements that are in the wrong order. Next, we’ll look in detail
at how bubble sorting works and then convert the algorithm into C# programming.
(Bubble sorting works well for small data sets, but it is not always the best way to sort
large amounts of data. If you are interested in how computers do sorting, you can find
lots of resources online to look at.)

Let’s start with the sales data that we’ve been working with, which is shown in
Figure 7-5.

Figure 7-5 The contents of the sales array, waiting to be sorted.

To sort the array, we can start by comparing the elements at the beginning of the
array:

if(sales[0]>sales[1])

{

 // The elements are in the wrong order, need to swap them round

}

187Making an array

ptg18144483

The if construction is controlled by a logical expression that compares sales[0] with
sales[1]. If sales[0] is larger than sales[1], it’s in the wrong order (we want the larg-
est at the bottom), and the two elements need to be swapped because we’re sorting
from lowest to highest.

Swapping two numbers
As it happens, the first two elements in our sales array are in the right order, but we will need
to swap values at some point further down the array, so take a look at this code:

if(sales[0]>sales[1])

{

 // The elements are in the wrong order, need to swap them around

 sales[0] = sales[1];

 sales[1] = sales[0];

}

Question: This code looks like it might work, but in fact it is broken. Any idea why?

Answer: What the code actually does is put a copy of sales[1] into sales[0]. Here’s
why:

 ● The first statement puts the value of sales[1] into sales[0]. Both array elements
now contain sales[1] (in our case, 54).

 ● The second statement puts the value of sales[0] (which is 54, remember) back into
sales[1].

 ● So both elements end up with the same value in them, which is bad.

The way to fix this is to store the value of sales[0] temporarily so that we don’t lose the
value when we put sales[1] into it:

if(sales[0]>sales[1])

{

 // The elements are in the wrong order, need to swap them around

 int temp = sales[0];

 sales[0] = sales[1];

 sales[1] = temp;

}

CODE ANALYSIS

188 Chapter 7 Using arrays

ptg18144483

The variable temp is created to hold this temporary value. It exists only within the block of
code that is obeyed if the elements are in the wrong order.

By swapping two elements that are in the wrong order, we make the array a bit less
out of order. Our program can now move on to the next pair of numbers and repeat
the process to improve things still more.

if(sales[1]>sales[2])

{

 // The elements are in the wrong order, need to swap them around

 int temp = sales[1];

 sales[1] = sales[2];

 sales[2] = temp;

}

We could repeat this construction all the way to the end of the array, but it would be
rather time-consuming to write the program. And when your customer with the ice-
cream stands comes to you and says that she now has 50 sales outlets, you would be
forgiven for bursting into tears.

However, if you take a careful look at the code used for swapping elements, you’ll
notice something interesting. The action the code performs is the same for each pair
of numbers; it is just that we move one position down the array to perform the second
test. This means we can use a loop to count through the array and work through it
with just a single if construction:

for (int count = 0; count < sales.Length - 1; count = count + 1)

{

 if (sales[count] > sales[count + 1])

 {

// The elements are in the wrong order, need to swap them around

int temp = sales[count];

sales[count] = sales[count + 1];

sales[count + 1] = temp;

 }

}

The first time through the loop, the count variable will contain the value 0, so the test
will compare sales[0] and sales[1]. Next time around the loop, count will contain
the value 1, so the test will compare sales[1] and sales[2]. The loop will continue
through the array until it reaches the end.

189Making an array

ptg18144483

This loop has been written so that it can sort an array of any size. It also has one other
bit of cleverness: it terminates when the counter reaches the value length - 1. I did
this because we are always comparing an element with the one after it, and I don’t
want to go off the end of the array.

Run the Snaps app Ch07_08_BubbleSortDemo to see the first pass of the sorting.
This demo contains the sales values that we’ve been working with in the text. Once the
loop has been completed, the array is sorted as you can see in Figure 7-6.

Figure 7-6 A slightly more sorted array

You can see in the figure that some values have not moved while others have moved
quite a bit. The value 54 moved down the array until it met up with the value 100,
which then went to the end of the array. This is how the Bubble Sort technique gets
its name. While the array is sorted, the smaller values bubble up to the top as they are
swapped with the larger values that move toward the bottom. After one pass through
the array, we can be absolutely sure that the largest value is now at the end of the
array, and we can now make another pass to push the next largest value into position.
In a worst-case scenario, where the smallest value was at the “wrong” end of the array,
it would take nine (or length – 1) passes to bubble this value to the top. The smallest
value would be swapped with a value in the array each time a pass was made.

Here is the code that performs multiple passes by using a loop to repeat the sort.
The outer loop causes the program to make multiple passes through the code. The
variable pass is used to count the passes through the array. When the loops finish, the
numbers will be sorted as you can see in Figure 7-7.

for (int pass = 0; pass < sales.Length - 1; pass = pass + 1)

{

 for (int i = 0; i < sales.Length - 1; i = i + 1)

 {

if (sales[i] > sales[i + 1])

{

// The elements are in the wrong order, need to swap them around

int temp = sales[i];

sales[i] = sales[i + 1];

sales[i + 1] = temp;

}

190 Chapter 7 Using arrays

ptg18144483

 }

}

Ch07_09_BubbleSortWorking

Figure 7-7 The fully sorted array, lowest to highest

This is a good demonstration of how repeating a simple action (swapping two
 adjacent numbers) can solve a complex task (sorting a set of numbers).

Improving performance
The sorting process works correctly, but it might be possible to improve the efficiency of the
program.

Question: Is the program doing more comparisons than it needs to?

Answer: Yes. If you think about it, once the program has made one pass through the
array, the largest number is guaranteed to be at the bottom of the array. It’s now a waste
of time to check to see whether this value needs to swapped, as it never will be. We can
use the pass counter to make the program go down the array only as far as it needs to
with each pass:

CODE ANALYSIS

191Making an array

ptg18144483

for (int pass = 0; pass < sales.Length - 1; pass = pass + 1)

{

 for (int i = 0; i < sales.Length – 1 - pass; i = i + 1)

 {

if (sales[i] > sales[i + 1])

{

// The elements are in the wrong order, need to swap them around

int temp = sales[i];

sales[i] = sales[i + 1];

sales[i + 1] = temp;

}

 }

}

Take a careful look at this code. The crucial statement is the one controlling the inner loop:

for (int i = 0; i < sales.Length – 1 - pass; i = i + 1)

This statement uses the value of pass to shorten the distance down the array that each pass
travels. This simple change roughly halves the number of comparisons that the program
does.

Question: Is the program doing more passes through the array than it needs to?

Answer: The answer is probably. The outer loop has been written to handle the worst-
case scenario, in which the smallest number is right at the bottom of the array and needs
to be bubbled all the way to the top. If the smallest value is somewhere else in the array,
the program will be making passes through the array when it is already sorted, which is a
waste of computer time. It would be best if the sorting stopped as soon as the array was
in the correct order. But how can the program detect that?

If the program makes a pass through the data and doesn’t make any swaps, then the array
must be in the correct order. We can add a flag to the program that is set when two elements
are swapped. If this flag is still clear after a pass, it means that the array is in order:

for (int pass = 0; pass < sales.Length - 1; pass = pass + 1)

{

 // clear the swap flag for this pass

 bool doneSwap = false;

 // Make a pass down the array swapping elements

 for (int i = 0; i < sales.Length - 1; i = i + 1)

 {

192 Chapter 7 Using arrays

ptg18144483

if (sales[i] > sales[i + 1])

{

// The elements are in the wrong order, need to swap them around

int temp = sales[i];

sales[i] = sales[i + 1];

sales[i + 1] = temp;

doneSwap = true;

}

 }

 if (!doneSwap)

// Quit the sort if we didn't do any swaps

break;

}

Ch07_10_BubbleSortPerformance

The program uses a Boolean variable called doneSwap. This variable is set to false before
we make a pass through the data. It is set to true if a swap occurs. This flag is checked after
the pass, and if it is still false, no swap happened, and the program breaks out of the loop that
controls the passes through the array.

Sort the party guests
The Bubble Sort algorithm works for strings as well as for integers, but a program needs a
way of comparing two strings alphabetically. In C#, the string type provides a Compare
method that compares two strings and produces an integer that is less than 0 if the first
string precedes the second in alphabetical order. The integer returned is greater than 0 if the
first string follows the second. If the two strings are the same, the Compare method returns 0.
The following program shows how this works. It displays the message because “Rob” comes
before “Simon” in an alphabetical list.

public static void StartProgram()

{

 string n1 = "Rob";

 string n2 = "Simon";

 if (string.Compare(n1, n2) < 0)

 {

SnapsEngine.DisplayString(n1 + " is first");

MAKE SOMETHING HAPPEN

193Making an array

ptg18144483

 }

}

Ch07_10_StringCompare

See if you can make your party-guest program display the guest names for your party in
alphabetical order. You could use this program anytime you want to use sorting to put some
words (or anything) in order.

Our program also needs to display sales data in the order highest to lowest. Imple-
menting this request turns out to be quite easy. We just need to change the great-
er-than operator to the less-than operator in the statement in the middle of the loop
that compares values as the loop works through each of the elements.

if (sales[i] < sales[i + 1])

{

 // The elements are in the wrong order, need to swap them round

 int temp = sales[i];

 sales[i] = sales[i + 1];

 sales[i + 1] = temp;

 doneSwap = true;

}

Finding the highest and lowest sales values
Another request the customer made was for the program to find the highest and low-
est sales in the set of results. Before you write the code to do this, it’s worth thinking
about the algorithm to use. In this case, the program can implement an approach very
similar to one that a human would use. If you gave me some numbers and asked me
to find the highest value, I would compare each number with the highest value I had
seen so far and replace the current highest value each time I found a larger one. In
programming terms, this algorithm would look a bit like the following. (This is not C#
as such; a description like this is sometimes called pseudocode. It looks something like
a program, but it is there to express an algorithm, not to run inside a computer.)

if(new value > highest I’ve seen), highest I’ve seen = new value

When the program starts, we can set the “highest I’ve seen” value to the value of
the first element in the array (since this is the highest we’ve seen at the start of the
process). We can then use the counter in a for loop to index each element of the
array and test each value in turn. Programmers have given a name to this process

194 Chapter 7 Using arrays

ptg18144483

of working through each item in a collection. They call this behavior enumeration.
Humans do this, too. When we go shopping, we enumerate—that is, we work through
each item in our shopping list. C# provides an additional kind of loop that can be used
to enumerate items in an array. It’s called a foreach loop.

int highest = sales[0];

foreach (int sale in sales)

{

 if(sale > highest)

highest = sale;

}

The foreach construction enumerates each element of an array in turn, and the array
must contain elements of the type given. In the preceding code, the first time around
the loop, the variable sale holds the sales value at the start of the array. Next time
around, it holds the value of the next element, and so on to the end. The largest value
is compared with each successive sales value, and the highest is found. Figure 7-8
shows the general structure of this type of loop.

Figure 7-8 The general structure of a foreach loop.

The foreach construction is a lot easier to write than code that creates and manages
a counter. However, it can be used only to read items out of an array; it is not possible
to store values in an array by using foreach. The loop will always go through the array
from the start to the end.

We can use the same approach to find the smallest value. This time, we’re looking for
values that are smaller than the smallest one we have seen so far.

int lowest = sales[0];

foreach (int sale in sales)

{

if (sale < lowest)

lowest = sale;

}

foreach int sale sales

foreach keyword

Element type

Item name

Array name

195Making an array

ptg18144483

But since we are already making a pass through the array to find the largest value, we
can make the program slightly more efficient by using the same loop to find the high-
est and lowest in a single pass through the data. (Note that at the start of the loop, the
initial element in the array is both the highest and lowest value.)

int highest = sales[0];

int lowest = sales[0];

foreach (int sale in sales)

{

 if (sale > highest)

highest = sale;

 if (sale < lowest)

lowest = sale;

}

Ch07_11_HighestAndLowest

Working out the total and the average
sales
To work out the total of the sales, the program must add up all the elements in the
array. You can do this by using another foreach loop—or by adding code to the loop
that we also use to find the highest and lowest sales values.

int total = 0;

foreach (int sale in sales)

{

 total = total + sale;

}

Ch07_12_TotalSales

Once we have the total sales, we can calculate the average sales value. Of course, the
average of a set of numbers is the total of the numbers divided by the count of how
many numbers. With the total number of sales calculated, working out the average is
very easy.

if (command == "Average sales")

{

 SnapsEngine.SetTitleString("Average sales");

196 Chapter 7 Using arrays

ptg18144483

 int total = 0;

 foreach (int sale in sales)

total = total + sale;

 float average = total / sales.Length;

 SnapsEngine.DisplayString("Average sales " + average);

}

The code to work out the total is the same as the code you have already seen. The
floating-point variable average is set to the total sales divided by the number of sales
values, which we can get from the length of the sales array.

This code looks fine, so we run it with some test data. To keep things simple, we just
use three data values:

 ● Stand 1 - 50

 ● Stand 2 - 30

 ● Stand 3 - 20

The total number of sales is 100. This means that the average should be 100 divided by
3, which is the value 33.33333. But when we run the program, we don’t see that value
appear, as shown in Figure 7-9.

Figure 7-9 The average here is represented as an integer.

The integer portion of the result is there, but the fractional part is missing. We’ve
encountered this problem before. The C# language has versions of operators for
different types of operands. If you use the + operator between integers, it adds the
values together. If you use the + operator between two strings, it concatenates them.
If you use the / operator between two integers, it produces an integer result, which is
why the average sales value is 33 and not 33.33333. To get a floating-point result, we
have to change the code so that at least one of the operands is a floating-point value.
We can do this by using casting:

197Making an array

ptg18144483

float average = (float)total / sales.Length;

Here, the value of total is converted to a floating-point value before the average
is calculated. The program now gives the right result, as you can see in Figure 7-10.
There are probably more decimal places there than we really want, but the answer is a
lot more accurate.

Figure 7-10 After casting, the correct average is displayed.

Completing the program
We now have all the features we need to create the finished application, but we still
need to complete the logic. At this point, we can go back to the storyboards that we
created with the customer. They give us the sequence that we want. Essentially, the
program breaks down into two loops, an outer and an inner one. The outer loop runs
forever. When it starts running, it first allows the user to enter some data. Once the
program has some data to work with, it performs the inner loop. This loop repeatedly
reads in a command and acts on it. If the user selects the command to enter more
data, this causes the inner loop to end, and the program goes back to the outer loop
and reads in some more data. The following code shows the structure of the nested
loops.

while(true)

{

 // Enter some sales data

 while(true)

 {

// Read in a command from the user

// Act on the command

// If the command is "Enter Figures"

// break out of this while loop

198 Chapter 7 Using arrays

ptg18144483

 }

}

Ch07_13_CompleteProgram

PROGRAMMER’S POINT

This configuration is a very common pattern
This arrangement is worth careful study, as it is how a great many programs work, from
word processors to spreadsheets and even video games. Lots of programs let the user
enter something and work on it. You could use the pattern above to create any program
that works on data, whether it is football scores or putting team names into order.

Multiple dimensions in arrays
All the arrays we have created up to this point have been one dimensional—in other
words, they have only a length. However, sometimes a program needs to store more
than one dimension of data. For example, let’s say that the customer for the ice-cream
sales analysis program has come back and told you how pleased she is with the code
and that she’s thought of some improvements. She would like to be able to store sales
for different days of the week so that she can keep track of sales over time. She has
drawn out a table that shows how the data would look.

MONDAY TUESDAY WEDNESDAY …

Stand 1 50 80 10

Stand 2 54 98 7

Stand 3 29 40 80

…

You can think of the program you’ve written to this point as one column in the table
(for example, the sales for Monday). The user can enter sales figures for that day, but
what the customer now wants is a way for the program to store successive columns of
sales figures for subsequent days.

199Multiple dimensions in arrays

ptg18144483

One way to do this would be to have multiple arrays, called Monday, Tuesday,
Wednesday, and so on. However, this arrangement seems a bit like using individual
variables for each sales figure, the problem we addressed earlier by using a one-
dimensional array. Working with the data in this way would be difficult. For example, it
would be very hard for a program to find the highest sales for the week. Fortunately,
C# lets a program create a two-dimensional array by using a statement such as this:

int[,] weeklySales = new int[7, 10];

You can think of a two-dimensional array as a grid. The first dimension specifies the
number of columns (you can regard this as the x value if you like), and the second
dimension specifies the number of rows (you can regard this as the y value). With a
two-dimensional array, a program must give two index values to specify the required
element. This statement would set the Monday sales for stand 1 to 50. (Remember that
array indexes always start at 0.)

weeklySales[0, 0] = 50;

Dodgy index values
Question: Which of the following statements would fail when the program runs?

Statement 1: weeklySales[0, 0] = 50;

Statement 2: weeklySales[8, 7] = 88;

Statement 3: weeklySales[7, 10] = 100;

Answer: Statement 1 is completely correct (as it should be; it is used in the text). State-
ment 2 will fail because the first index (the day of the week) has the value 8. The array,
however, contains seven elements, with index values that go from 0 to 6, so this state-
ment is trying to access a nonexistent element. Statement 3 is also invalid. Because ele-
ments are indexed starting at 0, this statement attempts to go beyond both dimensions,
and the program will fail as a result. If we want to access the element at the bottom-right
corner of the array, we should access element weeklySales[6,9].

[,] 7, 10

A comma indicates two dimensions.

First dimension: day of the week;
second dimension: number of stands

CODE ANALYSIS

200 Chapter 7 Using arrays

ptg18144483

Using nested for loops to work with
two-dimensional arrays
At the start of this chapter, we wrote some C# code such as the following, which reads
a single set of sales figures:

for (int stand = 0; stand < 10; stand = stand + 1)

{

 // User likes to count from 1, not zero

 int displayCount = stand + 1;

 sales[stand] = SnapsEngine.ReadInteger("Enter the sales for stand " +

displayCount);

}

This code uses a for loop construction to work through the array, storing the sales
values. The variable stand is used to count each sales stand. To read a whole week’s
worth of figures, we simply need to run this code inside another loop that is executed
for each day of the week:

using SnapsLibrary;

class Ch07_14_WeeklySalesProgram

{

 public void StartProgram()

 {

int[,] weeklySales = new int[7, 10];

for (int day = 0; day < 7; day = day + 1)

{

for (int stand = 0; stand < 10; stand = stand + 1)

{

// User likes to count from 1, not zero

int displayCount = stand + 1;

weeklySales[day, stand] =

SnapsEngine.ReadInteger("Enter the sales for stand " +

displayCount);

}

}

 }

}

201Multiple dimensions in arrays

ptg18144483

Using a loop like this is called nesting. (We’ve put loops inside one another before,
which is how the program repeatedly reads and acts on commands.) Here we have an
outer loop that goes around seven times (once for each day) and an inner loop that is
performed 10 times (once for each ice-cream stand). When the loop has completed,
the program will have put all the values into the array.

Loop counting
Question: How many times will the statements inside the two loops be obeyed?

Answer: They will be obeyed 70 times. The outer loop is obeyed 7 times, the inner loop is
obeyed 10 times. To get the total number of times around the loop, you multiply one by
the other, giving 70 times around the loop.

Question: How would you change this program so that it could handle more than a week’s
worth of sales?

Answer: We can add more days to the array. From the point of view of the table, this
would be equivalent to adding more columns.

Question: How would we work out the total sales for the entire week?

Answer: To do this, we would have to work through all the elements and add them
together, using code like this:

int totalSales = 0;

for (int day = 0; day < 7; day = day + 1)

{

 for (int stand = 0; stand < 10; stand = stand + 1)

 {

totalSales = totalSales + weeklySales[day,stand];

 }

}

Ch07_15_WeeklySalesProgramTotal

To work through all the elements in the array, we use the same nesting technique we used to
read the values in. The totalSales variable starts at 0, and then each sales value from the
array is added to this.

CODE ANALYSIS

 Set the total sales to zero.
 Loop for each day

 Loop for each stand

 Add to the total.

202 Chapter 7 Using arrays

ptg18144483

Making test versions of programs
When I wrote the program to read in the sales values, my heart sank a little bit
because I knew I’d have to test the total sales calculation and that would mean typing
in 70 numbers. What’s worse, if I found a fault in the program, I’d have to type the
values in all over again. And if I got a test value wrong, my total would be wrong, and
I’d probably have to do it a third time.

Fortunately, I’ve acquired a bit of cunning in the time I’ve been writing programs,
so I slightly changed the program that reads in the data by adding a Boolean value
that can be set to make the program automatically generate a test value for the sales
figures rather than reading in the values from the user.

int[,] weeklySales = new int[7, 10];

bool testMode = true;

for (int day = 0; day < 7; day = day + 1)

{

 for (int stand = 0; stand < 10; stand = stand + 1)

 {

// User likes to count from 1, not zero

int displayCount = stand + 1;

if (testMode)

weeklySales[day, stand] = day;

else

weeklySales[day, stand] =

SnapsEngine.ReadInteger("Enter the sales for stand " +

displayCount);

 }

}

Ch07_16_WeeklySalesProgramTotalTest

The test value at the moment is just the number that corresponds to the day of the
week—in other words, all the sales for Monday will be 0, all the sales for Tuesday will
be 1, and so on to the end of the week. This gives me some data that I can use to test
the addition behaviors with.

 Test fl ag

 If the test fl ag is set,
use the day of the
week as the sales.

203Multiple dimensions in arrays

ptg18144483

PROGRAMMER’S POINT

Make it really easy to test your programs
My experience as a programmer has been that if testing your program is really hard, you
just don’t do it. Unless the tests are really easy, or better yet completely automatic, you
won’t bother with them. Making things easy to test even extends as far as video games.
Rather than having to play for half an hour to get to the level you want to test, you should
have some way of skipping levels.

Whenever you find yourself repeating an action in order to test your program, you should
consider how you can automate this action.

Finding the length of an array dimension
A program can get the number of elements in a one-dimensional array by using the
Length property of the array. Here is the code we originally used with a single set of
figures in the array called sales.

for (int count = 0; count < sales.Length; count = count + 1)

{

 // Count through the elements in the array

}

You can use a similar technique to get the length of the two dimensions in the weekly-
Sales array:

for (int day = 0; day < weeklySales.GetLength(0); day = day + 1)

{

 for (int stand = 0; stand < weeklySales.GetLength(1); stand = stand + 1)

 {

// Count through the elements in the array

 }

}

Ch06_17_WeeklySalesProgramTotalAutoSize

The GetLength method is given the dimension that the program wants the length
of. In C# programing tradition, this number starts from 0, so the length of the first
dimension (the number of days in a week) is obtained by calling GetLength(0). You
can use the GetLength method to ensure that a program works correctly with arrays
of different sizes.

204 Chapter 7 Using arrays

ptg18144483

More than two dimensions
If you ever need to represent a large number of tables, you can move up to a three-
dimensional array. The best way to visualize this type of array is as a pile of pages,
with one page for each week. The third dimension would be the number of the page
containing the results for that week.

The next statement shows how the 3-D array would be created. You need to add
another comma to specify that the location of an element is specified by three index
values. Then you need to give dimensions for each of these values when you create
the array itself. The code here creates an array that can hold 52 weeks of data.

int[,,] yearSales = new int[52, 7, 10];

If the customer wants to keep track of different weeks of data, you might think this
would be a good time to use a three-dimensional array like this, but I’m not con-
vinced. I think it would be much more sensible just to extend the two-dimensional
array so that it can contain more columns:

int[,] yearSales = new int[365, 10];

This would create a two-dimensional array that can hold a set of readings for each day
in the year.

PROGRAMMER’S POINT

Keep your dimensions low
In all my years of programming, I’ve never had to use anything more than three dimen-
sions, and I’ve only ever used three dimensions a couple of times (and one of those occa-
sions was to create a 3-D Noughts and Crosses game).

If you find yourself having lots of dimensions in your arrays, I would suggest that you are
trying to do things the wrong way and that you should step back from the problem and
think about how your data fits together. Later in the book, you’ll see ways to build struc-
tures that contain a number of related data items. It is often much easier to make a one-
dimensional array from such structures rather than move into multiple dimensions.

The computer is quite happy to work in very large numbers of dimensions as long
as it doesn’t run out of memory. However, I’ve found that the same can’t be said for
programmers.

int[,,] 52, 7, 10

Commas indicate three dimensions.

First dimensions: Week;
second dimension: Day;
third dimension: Stand.

205Multiple dimensions in arrays

ptg18144483

Using arrays as lookup tables
Now that you know how to store the data in the program, you can discuss with the
customer again how the program is supposed to be used. The customer is quite
impressed with the data-storage plans, but she raises an interesting issue. She is con-
cerned that when the sales figures are entered, the program doesn’t show the user the
day the sales figures are for. The program will work perfectly correctly, but it might be
confusing to use. What she would like is for the program to show the day that is being
entered, as in Figure 7-11.

Figure 7-11 The program improved to show the day of the week.

To do this, the program must display a message that identifies the day of the week.
The program uses a variable called day to count through the days as they are read.
The variable starts at 0 for Monday and then counts to 6 for Sunday. We could display
the day number, but the user has specifically asked for the name of the day. You might
use a collection of if conditions to convert the day number to a string:

string dayName;

if (day == 0) dayName = "Monday";

if (day == 1) dayName = "Tuesday";

if (day == 2) dayName = "Wednesday";

if (day == 3) dayName = "Thursday";

if (day == 4) dayName = "Friday";

if (day == 5) dayName = "Saturday";

if (day == 6) dayName = "Sunday";

This code would work fine, but it would be tedious to type in, and there is a good
chance that you would make a mistake. C# provides a much easier way to do this
through a feature that we haven’t seen yet. You can create a preset array and use it as
a lookup table.

206 Chapter 7 Using arrays

ptg18144483

string[] dayNames = new string []

{

"Monday", "Tuesday", "Wednesday","Thursday","Friday", "Saturday", "Sunday"

};

When the program runs, the array is created with the preset contents. There will be an
element for each day of the week, as shown in Figure 7-12.

Figure 7-12 Name array for lookups.

The program can now directly convert a day value in the range 0–6 to the matching
day.

for (int day = 0; day < 7; day = day + 1)

{

for (int stand = 0; stand < 10; stand = stand + 1)

 {

// User likes to count from 1, not zero

int displayCount = stand + 1;

weeklySales[stand,day] =

SnapsEngine.ReadInteger("Enter the sales for stand " +

displayCount + " on " + dayNames[day]);

 }

}

Ch07_18_DayNames

Lookup tables are very useful. They can be used to make data-driven applications—
programs that work by using built-in data rather than hard-wired behaviors.

string[] []

Array declaration.

C# counts the elements.
"Monday", "Tuesday", "Wednesday","Thursday","Friday", "Saturday", "Sunday"

A comma-separated list of
items to store in the array.

 Look up the day in
dayNames.

207Using arrays as lookup tables

ptg18144483

What you have learned
In this chapter, you’ve learned how to store large amounts of data in a C# program
through the use of arrays. An array is an area of computer storage of a fixed size. A
programmer can create an array of any C# type. The array contains a particular num-
ber of elements. Each element is equivalent to a single variable of the same type as
the array. In other words, you can regard an integer array as a large number of integer
variables held in one place.

A program can specify which particular element is to be used by adding an index
value to the array. The element at the start of the array has the index 0, and succes-
sive elements are numbered sequentially up to the limit of the array. For example, a
five-element array would have elements numbered 0,1,2,3,4. The index of an array ele-
ment can be expressed as a fixed value or by using the value of a variable. This makes
it easy to use a loop construction to work through the elements in an array. The array
provides a Length property that can be used in a program to determine the number
of elements in the array. The C# language provides an additional loop construction,
called foreach, that can be used to enumerate the elements in an array.

Arrays can have multiple dimensions. A one-dimensional array has size only in one
direction. A two-dimensional array can be visualized as a table of values. One index
of a two-dimensional array can be regarded as specifying the row in the table and
the other index the column. The C# language is capable of supporting arrays of many
dimensions, although in general programming, it is very unlikely that more than three
dimensions will be used.

Here are some points to ponder about arrays.

Do we really need arrays?

Yes. There are many situations where it would be impossible to create the program if
arrays were not available. Very simple programs can use single variables, but to pro-
cess large amounts of data you need to have an array.

How does an array actually work?

When the program creates an array, a block of memory is reserved that is just the right
size for all the data elements in the array. When a program accesses an array element,
the program first checks to see whether the requested element is in that memory
block (that is, it makes sure that you are not trying to use an element that does not
exist). If the element can’t be found, the program is terminated with an exception. If
the element is inside the array’s bounds, the program finds the base of the array block
and then moves down the block to find the selected element.

208 Chapter 7 Using arrays

ptg18144483

Why can’t array index errors be detected before the program runs, when it is
being compiled?

The compiler can only perform static analysis of the program code. This means that
the compiler can make a few assumptions based on the program that you have
written, but it can’t know everything that will happen to values in variables when the
program runs. For example, the compiler has no idea what number a user might type
in when the program runs. Since array accesses happen when the program runs, there
is no chance that the compiler can flag these errors.

209What you have learned

ptg18144483

ptg18144483

Part 2
Advanced

programming
In Part 1, you learned that the basic behavior of a program is to take data
in, do something with it, and output it again. You saw how programs
store different kinds of data, how a program can make decisions based
on the values that data has, how to use loops, and how to use lists and
arrays to store large amounts of data. These are really the only things you

need to know to write every program you can imagine.

In Part 2, you’ll build on the programming abilities you’ve learned so far
by exploring some advanced features of the C# language that make it
easier to create larger programs and fit a program to a specific problem.
You’ll also find out how the Snaps framework is constructed and how you

can add your own elements to customize it.

211

ptg18144483

8
Using methods to
simplify programs

ptg18144483

What you will learn
Methods are an essential part of program design. You can use methods to
break a large solution into individual components and to create libraries of
behaviors that your programs can use. The programs we’ve created to this
point have worked with methods in the Snaps library (the DisplayString
method, for example) to interact with users. In this chapter, you will learn
how to create and use methods of your own. You’ll fi nd out how to give
methods data to work on and how a program can receive results from a
method’s work. Methods are a great way to make programs more concise
and easier to manage.

What makes a method?. .214

Making a tiny contacts app .224

Adding IntelliSense comments to your methods. .241

What you have learned .243

213

ptg18144483

What makes a method?
A method is a block of C# code that you give a name to. When the C# compiler finds a
method, it takes the statements that define the method and stores them away, ready
for use. Take a look again at the declaration of the StartProgram method that we
examined in Chapter 3. The declaration of a method is also known as the method’s
header. Compare it to Figure 8-1, which describes the general structure of a method’s
header.

public void StartProgram()

Figure 8-1 The structure of a method header.

Let’s examine these elements in turn:

The method modifier public means that the method is available outside the class in
which it’s declared. You make methods in a class public when you want programs
outside the class to be able to use them. The StartProgram method must be pub-
lic because it needs to be called to start the program running. (If the StartProgram
method were not visible outside the class, there would be no way to start the pro-
gram.) Later in the book, we will look at the way a programmer can control the level of
access to methods and other elements in a class.

The method’s return type is identified as void in this case. This means that the method
doesn’t return any information when it is called. Some methods return values, while
others just perform a task—the StartProgram method is one that just performs a task.
The Snaps ThrowDice method is an example of a method that returns a value. In the
following example, you can see how ThrowDice is declared as a method that returns
an integer value—the keyword void has been replaced with the type int to indicate
this.

public int ThrowDice()

The method identifier is the name given to the method. Methods are often named as
verbs because they describe an action that the method will perform.

214 Chapter 8 Using methods to simplify programs

ptg18144483

The parameters to a method define the data the method needs to do its work when
it runs. In the method header, the method’s parameters are enclosed in parentheses.
The StartProgram method doesn’t accept any parameters because it doesn’t need
any information to do its job. If there are no parameters, the parentheses are empty.

The Snaps SpeakString method is declared as a method that accepts a string that
contains a message. The parentheses after the method identifier now contain the
definition of this parameter—a string named message.

public void SpeakString(string message)

A method also has a body. The body of a method is a block of statements enclosed
in curly brackets. These statements run when the method is called. Here’s a sim-
ple method that says “Hello.” The body of this method calls the Snaps method
SpeakString.

void SayGreeting()

{

 SnapsEngine.SpeakString("Hello");

}

Adding a method to a class
A program can make use of many methods. You can add another method to a class
simply by declaring it above the StartProgram method, as you see here:

using SnapsLibrary;

class Ch08_01_GreetingMethod

{

 void Greeting()

 {

SnapsEngine.SpeakString("Hello");

 }

 public void StartProgram()

 {

Greeting();

 }

}

 Method header
 Start of method body.

 Call the Greeting method.

215What makes a method?

ptg18144483

The class Ch08_01_Greeting now contains two methods, one named Greeting and
the other named StartProgram. We place the new method in the Ch08_01_Greeting
class and then call it from the StartProgram method. If you run this program, you’ll
hear the program say “Hello”. If you use the Visual Studio debugger to step through
the code, you will find that when the call to the Greeting method is reached within
the body of StartProgram, the execution of the program transfers to the Greeting
method.

Program pathfinder
It is perfectly correct C# for one method to call another, as you’ve seen in some earlier exam-
ples similar to this one:

using SnapsLibrary;

class Ch08_02_ProgramPathfinder

{

 void M1()

 {

M2();

SnapsEngine.SpeakString("cat");

M3();

SnapsEngine.SpeakString("mat");

 }

 void M2()

 {

SnapsEngine.SpeakString("The");

 }

 void M3()

 {

SnapsEngine.SpeakString("sat on");

M2();

 }

 public void StartProgram()

 {

M1();

 }

}

CODE ANALYSIS

216 Chapter 8 Using methods to simplify programs

ptg18144483

Question: What would this program display when it runs?

Answer: The best way to determine this is to work through the program a statement at
a time, just like the computer does when it runs the program. Remember that when a
method is complete, the program’s execution continues at the statement following the
call of that method. The output from this program is exactly what you would expect—
“The cat sat on the mat.”

Question: What happens if a method calls itself; for example, if the StartProgram method
called StartProgram?

Answer: The effect is similar to what you see if you arrange two mirrors so that they face
each other. In the mirrors, you see reflections going off into infinity. When the Start-
Program method calls itself, your computer will go very quiet for a few seconds and
then produce an error message indicating that it has run out of “stack space.” The stack
overflow is caused because each time a method is called, it stores the return address (the
place it must go back to) on a data structure inside the computer (called a stack). When
a running program reaches the end of a method, it grabs the address on top of the stack
and heads back to where the address points. This means that as methods are being called
and returned, the stack grows and shrinks.

However, when a method calls itself, the program repeatedly adds return addresses on
the stack. Each time the method calls itself, another return address is added to the top of
the stack. Eventually the stack grows too large for the memory space it was allocated, and
the program is halted.

Computer scientists have a name for a method that works by calling itself. They call it recur-
sion. It is occasionally useful in programs, particularly when the program is searching for
values in large data structures. However, I’ve been programming for many years and have
used recursion only a handful of times. I advise you to regard recursion as strong magic that
you don’t need to use just now. You should hardly ever need to use recursion. It is usually best
to use a loop to repeat blocks of code

Feeding information to methods by using
parameters
The Greeting method shows how methods can be used, but it isn’t really that useful—
it simply has the computer speak “Hello” each time it’s called. To make a method truly
useful, we need to give the method some data to work on. You’ve already seen lots of
methods that are used in this way. The SpeakString method and the DisplayString
method accept a string that the methods speak or display, respectively. Let’s build on
this to create a method that can both speak and display a message on the screen.

217What makes a method?

ptg18144483

Making an Alert method with a single parameter
If we want to make a program that displays and speaks a message, we could do this by
calling the DisplayString method and the SpeakString method one after the other,
like this:

SnapsEngine.DisplayString("Reactor going critical.");

SnapsEngine.SpeakString("Reactor going critical.");

These two statements mean that the rather important message is both spoken and
displayed on the screen, but it would be hard work to keep using both statements
each time we wanted to send a message. To make things easier, we can create
a method named Alert that displays and speaks the string it’s given by using a
parameter:

void Alert(string message)

{

 SnapsEngine.DisplayString(message);

 SnapsEngine.SpeakString(message);

}

Remember that the parameters that a method accepts are given in the parentheses
that follow the method identifier. The Alert method accepts a string as its parameter
and then displays and speaks that string. You can think of a parameter as a variable
that is set to a particular value when the method is called. The method uses the
value in the parameter to do its job. When a program calls the Alert method, it must
include the string that the method will work on. This string is called an argument to
the method call and is passed to the method just as we have passed strings to other
methods we’ve used.

Here is a complete program with the Alert method in place:

using SnapsLibrary;

class Ch08_03_Alert

{

 void Alert(string message)

 {

SnapsEngine.DisplayString(message);

SnapsEngine.SpeakString(message);

 }

 Alert method with a
single parameter.

 Display the alert message.
 Speak the message.

218 Chapter 8 Using methods to simplify programs

ptg18144483

 public void StartProgram()

 {

Alert("Reactor going critical.");

 }

}

PROGRAMMER’S POINT

Methods let you create layers in your programs
If you think about it, using a method like this gives you a lot of flexibility. If you want to
change the program so that the user can select whether alerts are spoken or displayed, you
can put this behavior into the Alert method, and all the other parts of the program that
use the method will just keep working. If you have a need to save alerts in a log file, you
could add some code to the Alert method that will save the alerts.

You can think of the Alert method as providing a connection to an alert layer that takes
alerts and does things with them. If the alert handling has to change, you can achieve this
by modifying the method that implements the behavior for that layer.

Methods with multiple parameters
The Alert method is given a single item to work on—the string that contains the alert
message. Sometimes we want to write methods that can work on more than one item
of data. For example, you might want to add an urgent flag to our alerts. If the alert is
an important one, the method is designed to play a warning sound before speaking
the message. You can write methods to use any number of parameters, depending on
what information the method needs to complete the task it’s been written to perform.

void Alert(string message, bool urgent)

{

 if (urgent)

SnapsEngine.PlaySoundEffect("ding");

 SnapsEngine.DisplayString(message);

 SnapsEngine.SpeakString(message);

}

The new Alert method has two parameters. The first is the string that specifies the
alert text. The second parameter is a bool value that indicates whether the alert is an

 Call Alert to deliver the
message.

 Method header for the Alert method.

 Test the value of the urgent parameter.
 If urgent is true, play the alert sound.

219What makes a method?

ptg18144483

urgent one. When you design a method, you need to decide what inputs it must work
on and create parameters to receive these inputs.

By defining the Alert method with two parameters , you can use it as follows. Here,
the first call of the method displays just the message, and the second call plays the
sound effect first:

Alert("Time for a coffee break.", false);

Alert("Reactor going critical.", true);

Ch08_04_AlertLevel

The C# compiler matches the order in which arguments are given with the order of
the parameters defined in the method. For the Alert method, that’s how the compiler
knows which value is for the message and which is for the sound effect. But this can
lead to problems if you make a mistake. Consider this method call:

Alert(false, "Donuts have arrived");

This call has the arguments in the wrong order, which confuses the compiler and pro-
duces errors when the program is compiled.

Error 2 Argument 1: cannot convert from 'bool' to 'string'

Error 1 Argument 1: cannot convert from 'string' to 'bool'

The first error says essentially, “You’ve given me a Boolean value, and I wanted a
string.” The second error says the reverse. You would get similar errors if you tried to
make incorrect calls to Snaps methods.

One way to avoid this problem is not to put the parameters in the wrong order.
Another way is to use named arguments, like this:

Alert(urgent:false, message:"Donuts have arrived");

In this version of the call, I added the name of each argument before the value. This
approach has two big advantages. First, now it doesn’t matter in which order I give the
arguments. Second, it means that the program is much clearer to someone reading it.
It is very obvious from the method call what values the method will be using when it
runs.

 Message is not that important, no alert.
 Message is very important, play the alert.

 Named arguments make
the method call clearer.

220 Chapter 8 Using methods to simplify programs

ptg18144483

PROGRAMMER’S POINT

Why I use named arguments
I love the named arguments feature of C#. It makes programs clearer and it also means that
you don’t have to scratch your head and wonder what on earth a method call actually does.
It also removes the possibility of a situation where you get the parameters the wrong way
around but the compiler doesn’t notice because both arguments have the same type.

Parameters as values
When a method is called, the value of the argument is passed into the method parameter.
This is a great thing to say, but what exactly does it mean?

Consider the following program. It contains a method with the interesting name WhatWould-
IDo. The method accepts an integer as a parameter. The method doesn’t do much; it just sets
the value of the parameter to 99 and then returns. The method is then called using the value
of a variable named test as an argument.

using SnapsLibrary;

class Ch08_05_WhatWouldIDo

{

 void WhatWouldIDo(int input)

 {

input = 99;

 }

 public void StartProgram()

 {

int test = 0;

WhatWouldIDo(test);

SnapsEngine.DisplayString("Test is: " + test);

 }

}

Question: What would the program display when it runs? 0 or 99?

Answer: When the code runs, it follows this sequence:

1. Sets the value of test to 0.

CODE ANALYSIS

221What makes a method?

ptg18144483

2. Calls the WhatWouldIDo method, passing the value of test as an argument.

3. When the WhatWouldIDo method starts, the parameter called input is assigned this
value (0).

4. The WhatWouldIDo method sets the value of the parameter called input to 99.

5. The WhatWouldIDo method now ends, and execution returns to the calling
statements.

6. The value of test is displayed on the screen.

Remember that an argument is the item actually fed into the method call. If the argument is
a value, this means that when we use a variable as an argument, the value of that variable is
used, not the variable itself. So the value that is displayed by this program is 0.

Returning values from method calls
As I mentioned earlier, a method can return a value. You have seen this in many of
the programs that we’ve written. Here’s an example that uses the ReadString method
from the Snaps library. The method accepts an argument (the prompt to be shown to
the user) and returns a value (the string that the user types in). :

string guestName = SnapsEngine.ReadString("What is your name?");

Now take a look at this method header:

int GetValue(string prompt, int min, int max)

This method is named GetValue. It has three parameters: a string that gives the
prompt to be displayed for the user and two int parameters for the minimum and
maximum values of the number that GetValue can return. The method itself is of type
int, which means that somewhere in the method there must be a statement that
returns an integer result.

int GetValue(string prompt, int min, int max)

{

 return 1;

}

This version of GetValue is pretty simple—it always returns the value 1. However, it
also shows you how return is used.

 Method header for GetValue.

 This version of the method
always returns 1.

222 Chapter 8 Using methods to simplify programs

ptg18144483

Methods and return
Let’s take a closer look at how return is used in a program.

int GetValue(string prompt, int min, int max)

{

 return 1;

 return 2;

}

Question: What would this version of GetValue return?

Answer: It would return the value 1. The second return statement would not be reached
because execution of a method ends when it reaches a return statement.

Question: Can a method contain multiple return statements?

Answer: Yes. The program will return when it reaches the first return statement.

Question: Must the return keyword return a value?

Answer: If the method has a type (in other words, if it is not void), then the method must
use the return keyword to return a value of that type. It is also possible to use return
in a void method. In this case, the return statement does not contain a value to return,
and return is just a way of making an early exit from a method.

Now take a look at the complete GetValue method. It repeatedly reads integers until
supplied with one that is in the required range—in other words, a value of result that
is less than min or larger than max will cause the loop to repeat. The loop ends when a
valid value is entered, at which point the return statement is reached and the method
returns.

int GetValue(string prompt, int min, int max)

{

 int result;

 do

 {

result = SnapsEngine.ReadInteger(prompt);

 } while (result < min || result > max);

CODE ANALYSIS

 Method header

 Variable to hold
the method result.

 Start a loop.

 Get an integer, and
store it in result.

 Loop while the result
is too low or too high.

223What makes a method?

ptg18144483

 return result;

}

We can use this method to make programs much simpler. These two statements get
the age and the height of a person.

int age = GetValue(prompt:"Enter your age in years", min:0, max:100);

int height = GetValue(prompt:"Enter your height in inches", min:30, max:96);

Ch08_06_GetValue

PROGRAMMER’S POINT

Designing with methods
Methods are a very useful part of the programmer’s toolkit and form an important part of
the development process. Once you have worked out what a customer wants the applica-
tion to do, you can start thinking about how you are going to break down the program into
methods. Often you find that as you write the code, you repeat a particular action. If you
do this, you should consider taking that action and turning it into a method. There are two
reasons why this is a good idea: first, it saves you writing the same code twice; second, if a
fault is found in the code, you have to fix it in only one place.

Programmers call this kind of change refactoring a program. Refactoring occurs during
development because your understanding of your program will improve as you write it.
You might think of a better name for a variable, for example, in which case you can use the
refactoring tools in Visual Studio to rename the variable for you.

Making a tiny contacts app
Let’s put what we’ve learned about methods to use by building an application. You’ll
learn more about how to use methods to help design an application and about how
parameters and arguments are used. You’ll also learn a bit about how to store data for
when a user needs to retrieve that data from storage.

You are now gaining a reputation as a person who gets things done. Your friend the
lawyer gets in touch because she needs someone to create a personal, confidential
contacts app. All your friend wants is a quick way of storing contact details—names,
addresses, and telephone numbers—for her super-important clients. She’s keen for

 Return the result.

224 Chapter 8 Using methods to simplify programs

ptg18144483

you to write the program because she trusts you. As usual, you start by drawing up a
storyboard for the program and settle on the first screen that the program will display,
shown in Figure 8-2.

Figure 8-2 The Tiny Contacts start screen.

If the user selects New Contact, the program asks for the contact’s name, address,
and phone number by using three successive screens. Figure 8-3 shows the screens
used to get these items.

Figure 8-3 Contact data-entry screens

If the user selects Find Contact, the program displays the screens shown in Figure
8-4. The program asks her to type in the name of the contact, and then the details for
that contact are displayed.

225Making a tiny contacts app

ptg18144483

Figure 8-4 Searching for and displaying contact details.

When the user has read the details, she can use the Continue button to return to the
main menu. If the contact details are not found, the program will display a message
(shown in Figure 8-5), and the user can press the Continue button to return to the
main menu.

Figure 8-5 This message is displayed if a contact can’t be found.

The lawyer agrees that the program can work like this, and you start building it. The
first thing the program needs to do is determine whether the user wants to enter a
new contact or find an existing one. You can use the SelectFrom2Buttons method
from the Snaps library to set up this screen:

string command = SnapsEngine.SelectFrom2Buttons("New Contact", "Find Contact");

The command string will hold either the text “New Contact” or “Find Contact” once the
user has selected what she wants to do. If the command selected is New Contact, the
program must get the name, address, and phone number for the new contact. We can
put these behaviors in a method named NewContact, which will actually do the work.

if (command == "New Contact")

{

 NewContact();

}

This is a first-class example of designing with methods. Now we just have to fill in the
NewContact method. (Note that the name of the method and the name of the com-
mand are essentially the same. This is not accidental. It means that anyone who reads
the program’s code has a good chance of being able to find the parts of the program
that make it work.)

226 Chapter 8 Using methods to simplify programs

ptg18144483

Reading in contact details
The NewContact method must get the contact’s details from the user, but it also
needs to store these details for when the user searches for the contact later. The Snaps
method ReadString can be used to read a single line of text, and a single line is fine
for the name and the phone number of the contact. For the address, however, we
need to read multiple lines.

Fortunately, the Snaps library contains the ReadMultiLineString method, which will
read a string that contains more than one line. Figure 8-3 earlier shows the display
produced when the method is called.

string address = SnapsEngine.ReadMultiLineString("Enter contact address");

A user can press the Enter key to mark the end of each line of text as she types in an
address. The ReadMultiLineString method then returns a string that contains control
characters that mark the end of each line. To understand how this works, you have to
learn a little more about how string and characters work in a C# program.

Strings and characters
C# provides the string type to hold text. The C# language also provides a type
named char, which can hold a single character.

char ch = 'R';

The previous statement would create a character variable called ch, which contains
the letter R. The compiler can tell that the value ‘R’ is a character and not a string
through the use of single quotation mark characters (‘) to identify the start and end of
the value.

You can think of a string as containing a collection of char values. The string “Rob
Miles” contains nine characters. Note that the space between “Rob” and “Miles” is also
a character, even though nothing appears on the screen when it is displayed.

Many of the characters that can be held in a char are visible—for example letters,
numbers, and punctuation—but some are control characters, which are not visible
but instead control the behavior of the display. Individual lines of an address read by
ReadMultiLineString are separated from each other by two control characters. The
first is a carriage return, which moves the display position back to the start of the line.
The second control character is a line feed, which moves the display position down
one line.

227Making a tiny contacts app

ptg18144483

C# represents a control character by using the backslash character followed by a
letter. This is called an escape sequence. The backslash means “escape from the normal
rules of character values and use a new set of rules.” The escape sequence \r means
carriage return, and \n means new line. The address entered in Figure 8-3 could be
written in a program as follows:

address = "House of Rob\r\nStreet of Rob\r\nTown of Rob" ;

You can use the sequence \r\n in a string if you want to insert a new line at that point.

Storing contact information
Once the NewContact method has acquired the name, address, and phone number
strings, it needs to store these strings for this particular contact. Here again we can use
methods to help us build our program. In the following code, the NewContact method
reads in the contact information and then calls a method named StoreContact to
store the contact details.

void NewContact()

{

 SnapsEngine.DisplayString("Enter the contact");

 string name = SnapsEngine.ReadString("Enter new contact name");

 string address = SnapsEngine.ReadMultiLineString("Enter contact address");

 string phone = SnapsEngine.ReadString("Enter contact phone");

 StoreContact(name: name, address: address, phone: phone);

}

PROGRAMMER’S POINT

Placeholder methods can be a great idea
At the moment, we don’t know how to make the StoreContact method, but you can
always add an empty method to a program so that you can still test the rest of the code.
You could make this method display a message to tell you that it is not available yet:

void StoreContact(string name, string address, string phone)

{

 SnapsEngine.DisplayString("Store contact to be completed");

}

228 Chapter 8 Using methods to simplify programs

ptg18144483

The program will build and run perfectly, but if the user tries to store a contact, the mes-
sage tells him that the feature is not available yet. Programmers talk about adding ToDo
comments to their programs in this situation. Methods that are incomplete are called
placeholder methods or method stubs. They are a great way to get something running that
you can show to the customer to make sure that you are building the program in the way
the customer likes.

Using Windows local storage
Up until now, the data in our programs has existed only while a program actually runs.
As soon as the program stops, the data disappears. But to make the StoreContact
method work, we need to store and retain data when the program stops so that it can
be retrieved later.

The Windows 10 operating system provides local storage as a way for us to save data
such as contact details. Windows assigns each application an area of local storage on
the host device. You don’t need to know precisely how this works, but local stor-
age does provide a place where a program can store things. I’ve created two Snaps
methods that deal with local storage. One saves a string in local storage, and the other
fetches it back.

The Snaps method SaveStringToLocalStorage is given two parameters. One is the
name of the item to be stored, and the other is the actual string of text to be stored.

SnapsEngine.SaveStringToLocalStorage(itemName:"password", itemValue:"12345");

This call would store the string "12345" in a location named "password". To get the
password back from local storage, you would use FetchStringFromLocalStorage:

string myPassword = SnapsEngine.FetchStringFromLocalStorage(itemName:"password");

When the FetchStringFromLocalStorage method runs, Windows finds the “pass-
word” item in local storage and returns the contents of that item. This would result in
the variable myPassword being set to 12345.

"password" "12345"

Item to be stored.

 String
to save
in local

storage.

229Making a tiny contacts app

ptg18144483

Storing a contact in local storage
We need to store the address and phone number for each contact listed in the contact
app, and each stored item needs a name to identify it. The program can use the name
of the contact being stored as an item name. The following statement shows how this
works:

SnapsEngine.SaveStringToLocalStorage(itemName: name + ":address",

itemValue: address);

Remember that the name and address of the contact have been entered by the user of
the program, and this statement is using the name of the contact to create the name
of the stored item. If the name entered is “Rob”, then the address would be stored in
the location called “Rob:address”.

Here is the method that I created to save a contact. It’s given the name, address, and
phone information to be stored. Note that the program doesn’t need to store the
name of the contact; the user will enter the name when they want to find the contact
details. The name will then be used to create the item names that the system must
find.

void StoreContact(string name, string address, string phone)

{

 name = name.ToLower();

 SnapsEngine.SaveStringToLocalStorage (itemName: name + ":address",

itemValue: address);

 SnapsEngine.SaveStringToLocalStorage (itemName: name + ":phone",

itemValue: phone);

}

Loading contact details from local storage
When the user enters the name of the contact, the program can construct the item
to search for by using that name. The following statement builds up an item name to
look for by adding “:address” to the end of the name of the contact. The FetchString-
FromLocalStorage method then finds the address information that was stored in this
location. The method can do the same thing to obtain the contact’s phone number.

 Construct the
item name for

the address.

Convert the name to lowercase.

Create a name to store the address.
 The

address to
be stored.

 Create a
name to

store the
phone

number.

 String to save in local storage.

230 Chapter 8 Using methods to simplify programs

ptg18144483

address = SnapsEngine.FetchStringFromLocalStorage(itemName: name + ":address");

Using reference parameters to deliver
results from a method call
The StoreContact method will save a contact in local storage. The program also
needs a FetchContact method that will fetch the address and phone number for a
contact. FetchContact will have three parameters: the name of the contact to search
for, the address of that contact, and the phone number of that contact. An early ver-
sion of such a method might look like this:

void FetchContact(string name, string address, string phone)

{

 address = SnapsEngine.FetchStringFromLocalStorage(itemName: name +

":address");

 phone = SnapsEngine.FetchStringFromLocalStorage(itemName: name + ":phone");

}

The method is given the name of the contact to search for and sets the address and
the phone number parameters to the address and phone number fetched from local
storage. A program might try to use the FetchContact method like this:

string contactAddress;

string contactPhone;

string name = SnapsEngine.ReadString("Enter contact name");

FetchContact(name: name, address: contactAddress , phone: contactPhone);

This code snippet uses the ReadString method to get the contact name from the user
and then calls the FetchContact method to get the address and the phone number
for that contact and set them to the values of the parameters contactAddress and
contactPhone. Unfortunately, this doesn’t work. The contactAddress and contact-
Phone variables will never be updated by FetchContact. The reason is that in C#,
each method parameter is passed by value. This means that when the FetchContact
method is called, it’s given copies of the values of the name, contactAddress, and
contactPhone arguments and then uses those copies in the method body.

But the program must use parameters in a different way. Rather than giving the
FetchContact method the value of a parameter variable, we want to give the method
a reference to that variable.

231Making a tiny contacts app

ptg18144483

Humans use references all the time. When someone brings you a cup of coffee, you
say something like “Put it over there, please,” pointing to a clear, flat surface (which
might be your mouse pad). You are effectively making a reference. In C# terms, a ref-
erence parameter refers to a variable in the program. When that reference is used, the
program follows the reference to the variable the reference indicates.

We can turn the address and phone parameters into reference parameters by adding
ref in front of their names when the method is declared:

void FetchContact(string name, ref string address, ref string phone)

{

 address = SnapsEngine.FetchStringFromLocalStorage(itemName: name +

":address");

 phone = SnapsEngine.FetchStringFromLocalStorage(itemName: name + ":phone");

}

When the code in the method makes an assignment to the address and phone
parameters, this now changes the value of the variable given as an argument. When
we make a call to the FetchContact method, we now have to pass references into the
method call rather than the values themselves. We do this by putting the keyword ref
in front of the arguments in the call:

FetchContact(name: name, address: ref contactAddress, phone: ref contactPhone);

When FetchContact is called, it is passed references to the address and phone vari-
ables. After the method completes, it will have set the address and phone variables to
the values it has loaded.

References and parameters
The use of references is one of the hardest things to get your head around, so let’s consider
some questions about it.

Question: If you look closely at the definition of FetchContact, you will notice that only the
address and phone parameters are reference parameters. Why is the name parameter to the
FetchContact method not a reference parameter?

Answer: The reason is that the method does not change the name of the contact it is
fetching. The method just needs the name to perform the search.

CODE ANALYSIS

232 Chapter 8 Using methods to simplify programs

ptg18144483

Question: When should I use a reference parameter?

Answer: You should use a reference parameter only if you want to allow the method
to make changes to a variable. In the case of FetchContact, the method must find the
address and phone number information and deliver those values to the caller, so it is
appropriate to use reference parameters.

Question: Reference parameters seem a lot more flexible than ones passed by value. Why
can’t I use them all the time?

Answer: There’s no technical reason why not. The C# compiler will not complain. How-
ever, I use references only when I have to because they give the method slightly more
control over the variables passed as parameters. If I pass a parameter by value, all that a
method can do is read that value. But if I pass the parameter by reference, the method
can change the value of that variable, and I might not want that to happen.

Using out parameters
A reference parameter lets a method have full access to the parameter that is sup-
plied. However, the designers of C# decided to define a slightly more fine-grained
level of control when using references. They added an out type of parameter. A
method must store a value in a parameter declared as an out parameter.

If you think about it, there is no reason why the FetchContact method should ever
read the contents of the address and phone numbers that it is being asked to set. It is
also very important that both the address and phone numbers are set by the method.
Flagging a parameter as an out parameter, which is shown in the next code example,
means that the compiler will refuse to compile the method if the parameter is not set.
The compiler will also produce an error if the method tries to read the contents of the
variable.

void FetchContact(string name, out string address, out string phone)

{

 address = SnapsEngine.FetchStringFromLocalStorage (itemName: "addr" + name);

 phone = SnapsEngine.FetchStringFromLocalStorage (itemName: "phone" + name);

}

When FetchContact is called, the arguments to the call must now be marked as out-
puts from the method:

FetchContact(name: name, address: out contactAddress, phone: out contactPhone);

233Making a tiny contacts app

ptg18144483

When you design methods and parameters, you should decide how the method
is going to use the information that is being delivered to the method and choose
whether to pass in the value or pass in a reference.

Method headers
Just to build your understanding of these parameter types and method headers, here are a
few scenarios that you might like to consider.

Question: I’ve written a method that will generate two integer dice throw values for use in a
board game. What kind of parameter should I use?

Answer: Each of the two parameters should be out parameters, which can be set by the
method when it is called. The method itself will not return a value.

void ThrowTwoDice(out int dice1, out int dice2)

Question: How would I call ThrowTwoDice?

Answer: When the program calls the method, it must provide out references to integer
variables as parameters.

int d1, d2;

ThrowTwoDice(out d1, out d2);

Question: I want to provide my age to a method that will then decide whether I am old
enough to see a movie. What should the method header look like?

Answer: The method only needs the value of my age, so I can pass the age as a value.
The method could return a bool value that indicates whether I can see the movie or not:

bool AllowedToSeeMovie(int age)

CODE ANALYSIS

234 Chapter 8 Using methods to simplify programs

ptg18144483

Reading a nonexistent contact
The principle of the contacts app should be that the user stores something before they try
to load it back. However, we need to consider what would happen if the user tries to fetch a
nonexistent item. This will happen in the case where the user types in the name of a contact
that is not stored in the app.

It turns out that C# provides a value just for this purpose. The value is called null. The value
null is a setting that we can give a C# variable if it is not sensible for the variable to refer to
anything. For example, the following statement sets the string variable name to refer to the
string “Rob” :

string name = "Rob";

If we want to represent the situation where the name has not been set, we can write the
following:

string name = null;

If a program tries to use a null reference, it will fail with an exception. Here are some state-
ments that try to display a string that has been set to null. When they run, the program will
be abandoned, and the exception in the following screenshot will be generated.

string name = null;

SnapsEngine.DisplayString(name);

Whenever you create a behavior in a program, it is very important that you consider how
it could fail and the best thing for it to do if it does. In the case of FetchStringFromLo-
calStorage, the method returns null if it’s asked to find an item that does not exist. This

WHAT COULD GO WRONG

235Making a tiny contacts app

ptg18144483

means that if the user of our contact app tries to look for a name that does not exist, she runs
the risk of seeing an exception like the one above, which would be bad. You can address this
by making the FetchContact method return a Boolean value that indicates whether or not
it was able to fetch a contact. If either the name or the address for a contact is not found, the
method can return false to indicate this:

bool FetchContact(string name, out string address, out string phone)

{

 address = SnapsEngine.FetchStringFromLocalStorage(itemName: name +

":address");

 phone = SnapsEngine.FetchStringFromLocalStorage(itemName: name + ":phone");

 if (address == null || phone == null) return false;

 return true;

}

When the FetchContact method is used, the value it returns should be checked to make
sure that data was found:

if (FetchContact(name: name, address: out address, phone: out phone) == true)

{

 // Got the contact - display it

}

else

{

 // Display an error message

}

This sequence of statements shows how the result of FetchContact should be used.

PROGRAMMER’S POINT

Make good use of the values that methods return
There is no obligation for a programmer to write code that checks on the value returned
by a method. The C# compiler would be quite happy if our program ignored the value of
FetchContact. However, I would not be. Ignoring the result of FetchContact means that
the program will fail with an exception if it ever tries to use the address and phone details
that FetchContact was supposed to deliver. The program won’t commit the ultimate

236 Chapter 8 Using methods to simplify programs

ptg18144483

sin, which is displaying invalid data to a user, but it does crash in front of the user. A good
programmer makes sure that no information is lost by a program, and this includes making
proper use of the values that methods return when they run.

Displaying the contact details
The FetchContact method is used by the FindContact method, which runs when the
user wants to find a contact. The FindContact method calls FetchContact to get the
contact details and displays them if they are available. If the details can’t be found, the
FindContact method displays an appropriate message.

void FindContact()

{

 // Get the name of the contact to search for

 string name = SnapsEngine.ReadString("Enter contact name");

 // Variables to hold the address and phone number being fetched

 string contactAddress, contactPhone;

 if (FetchContact(name: name, address: out contactAddress, phone: out

contactPhone))

 {

// Got the contact details - display them

SnapsEngine.ClearTextDisplay();

SnapsEngine.AddLineToTextDisplay("Name: " + name);

SnapsEngine.AddLineToTextDisplay("Address: " + contactAddress);

SnapsEngine.AddLineToTextDisplay("Phone: " + contactPhone);

 }

 else

 {

// Tell the user the name was not found

SnapsEngine.DisplayString("Name not found");

 }

 // Give the user a chance to view the details

 SnapsEngine.WaitForButton("Continue");

 // Clear the display

 SnapsEngine.ClearTextDisplay();

}

 Ask the user
for the name to

search for.

 Fetch the contact.

 If the contact is
found, display it.

 Tell the user that the
name was not found

 Wait for the Continue
button to be pressed

237Making a tiny contacts app

ptg18144483

Input sanitizing
This contact application is so simple that your mother could use it. Although she might not
like it very much if the program doesn’t always find people that she knows are in the list. One
reason for this might be that she is trying to find contact information for “Rob” when the
information was stored under the key “rob”. Remember that C# regards these two strings as
completely different (even though a human would work out that they are the same person).
The user has to enter the name exactly as it was originally entered, otherwise the program
fails to find the contact.

You can fix this by using something we’ve seen before. You can ask a string to return a version
of itself converted to lowercase by using a method named ToLower. The ToLower method
converts any alphabetic characters in a string to their lowercase version so that contact
details will now be found successfully.

name = name.ToLower();

At this point, you’re rather proud of your program, so you show it to your younger brother
and invite him to try and break it—and he succeeds. He finds a way to enter a name that
looks okay, but the name can’t be found by the program. You both know there is a contact
stored for this person, but the program doesn’t find it. You ask him to show you how he does
it, and he shows you the following search screen.

If you look carefully at the screenshot, you’ll see that your brother broke the program by add-
ing a space in front of “Rob”, so the program is searching for “ Rob”, with a leading space in
front of the R. C# is a stickler for accuracy, so these searches will fail. Fortunately, we can use
another method to attack this problem. You can ask a string to “trim” itself by removing any
leading and trailing spaces. This would change “ Rob” to “Rob” and make the program work.

The best way to solve these problems is to write a helper method that will use Trim and
ToLower to tidy up text that the user enters:

string TidyInput(string input)

WHAT COULD GO WRONG

238 Chapter 8 Using methods to simplify programs

ptg18144483

{

 input = input.Trim();

 input = input.ToLower();

 return input;

}

The TidyInput method takes in a string and cleans it up ready for a search. It trims off any
leading and trailing spaces and then converts any letters in the string to lowercase text. The
StoreContact and the FetchContact methods can use this method to tidy up any strings
that they are asked to store or search for:

void StoreContact(string name, string address, string phone)

{

 name = TidyInput(name);

 SnapsEngine.SaveStringToLocalStorage(itemName: name + ":address",

itemValue: address);

 SnapsEngine.SaveStringToLocalStorage(itemName: name + ":phone",

itemValue: phone);

}

bool FetchContact(string name, out string address, out string phone)

{

 name = TidyInput(name);

 address = SnapsEngine.FetchStringFromLocalStorage(itemName: name +

":address");

 phone = SnapsEngine.FetchStringFromLocalStorage(itemName: name + ":phone");

 if (address == null || phone == null) return false;

 return true;

}

Creating the TidyInput method is a really good idea. It makes our program slightly shorter,
but it also means that all the tidying up of names takes place in one part of the program.
Otherwise, I could make a mistake such as using ToLower in the StoreContact method and
ToUpper in the FetchContact method. Furthermore, if we decide to make changes to the
tidy-up behavior—for example, to use only the first 10 characters of a name as the search
item—we have to change the behavior only once in the program.

239Making a tiny contacts app

ptg18144483

Professional programmers call this part of a program input sanitizing. It’s the process of
making sure that what the user types cannot be used to upset the proper behavior of the
program. As a budding developer, you need to remember that whenever you give the user a
chance to type something into your program, you are giving them a chance to break it, and
you should treat all inputs with a proper amount of suspicion.

Storing contact information in the cloud
Your lawyer customer is very impressed with the contact manager application and
promptly installs it on all her Windows devices. And then she notices a problem. She
discovers that she has to enter contact details on each device, and she frequently finds
that the details she wants are on a device she doesn't have with her. What she really
wants is a way to synchronize contact details over all the Windows devices she owns.

This sounds like a really tricky thing to do, and it is. But fortunately, it’s also my favorite
kind of problem—one that somebody else has already solved. The Windows system
provides what is called roaming storage. This is managed by the operating system in
each Windows device. An amount of networked storage is linked to each Windows
account, and each time the user of that account logs in to a Windows device, his or her
roaming information is downloaded to that machine from Microsoft server systems.

This is a very good example of what is called the cloud. The Microsoft systems are
somewhere “out there in the Internet,” and the Windows operating system connects
to them and makes the storage available to programs that run on Windows devices.

To make an application store things in the cloud, you simply have to use different
Snaps methods to save and load the strings that make up the contact information.
Rather than using SaveStringToLocalStorage, the program has to call SaveStringTo-
RoamingStorage instead. There is a corresponding FetchStringFromRoamingStorage
method to bring the data back.

The roaming storage mechanism works very well. It can take a little while for the stor-
age to synchronize, and if a machine is not connected to the network, the synchroni-
zation can’t take place. There are also some limitations placed on the amount of data
that can be stored in roaming storage. It is fine for a program to store a small amount
of information, such as a small number of contacts or settings information, but this is
not a good way to synchronize your music collection across multiple machines.

This kind of storage is organized on a per-application basis, which means that if you
create two different applications, they will not be able to view the contents of each
other’s storage. Your lawyer friend is a bit concerned about the security of the data
that is held, but the data is sent securely between devices and the cloud.

240 Chapter 8 Using methods to simplify programs

ptg18144483

Improve the Tiny Contacts app
The Tiny Contacts application can be used as the basis of any application that needs to store
and retrieve text. You could use it to store recipes or just as a general purpose note jotter.
Here are some things you could do to make it even more interesting:

 ● Improve the application so that users can edit the details of the contacts. A user could
activate the edit behavior after he has viewed a contact.

 ● Add a password to the program. You could even add a menu option to let the user set
the password. The password could be stored along with the contact information.

 ● Make the program speak the information as well as display it, or allow users to choose
which form of output they want.

 ● Change the program to use roaming storage so that contact information is synchronized
across all your Windows devices.

Adding IntelliSense comments
to your methods
Modern software is rarely written by one person alone. One person might write the
first version of the code, but many other programmers follow in that person’s foot-
steps, adding features and tracking down bugs. As you’ve learned, comments add a
huge value to a program. They make it easier for other programmers to understand
how the code works.

You can also add special comments to a code file that can be displayed by Visual Stu-
dio and greatly improve the experience of developers. The feature you use to do this
is called IntelliSense. You may have already seen how IntelliSense can help you when
you write a program. For example, when I was writing the TidyInput method, I could
point to the name of a C# method, and a description of the method would appear, as
shown in Figure 8-6. It turns out that it is really easy to add comments to our methods
to enable this behavior.

MAKE SOMETHING HAPPEN

241Adding IntelliSense comments to your methods

ptg18144483

Figure 8-6 Intellisense displayed for the ToLower method.

You start by finding the line above the method header and typing the forward slash
character (/) three times. Visual Studio takes a look at the method header and builds a
template for adding comments to the method:

/// <summary>

///

/// </summary>

/// <param name="input"></param>

/// <returns></returns>

string TidyInput(string input)

{

 input = input.Trim();

 input = input.ToLower();

 return input;

}

The template is written in a language called XML (for Extensible Markup Language),
which you can use to format a comment that describes what the method does. You
can now add some details to this template:

/// <summary>

/// Tidies up a contact name for use in a search

/// </summary>

/// <param name="input">name to be tidied up</param>

/// <returns>tidied contact name</returns>

string TidyInput(string input)

{

 input = input.Trim();

 input = input.ToLower();

 return input;

}

242 Chapter 8 Using methods to simplify programs

ptg18144483

The clever thing that happens next is that Visual Studio will use the text you enter to
offer help if you start to use the method later in the program. Whenever you use the
TidyInput method in a program, you’ll get back the comment information that you
entered, making it much easier to use. You can add these comments to every method
in your program. The comments also provide information about the number and type
of the parameters to the method and any values that are required, as you can see in
Figure 8-7.

Figure 8-7 Intellisense for TidyInput parameters.

I think there is something quite magical about the way that code you create suddenly
becomes part of the system. Whenever I create a method, I add these comments as a
matter of course, and I’d like to think that you will too. In the BeginToCodeWithCSharp
solution, if you open the final version of the Tiny Contacts manager (in the Chapter
08 folder, the file Ch08_08_TinyContactBookLocalStore.cs), all the methods are
properly commented and will show up in IntelliSense when you use Visual Studio.

What you have learned
In this chapter, you have learned how to take a block of code and turn it into a method
that can be used from other parts of the program. You’ve seen that a method contains
a header, which describes the method, and a block of code that is the body of the
method. The method header gives the name of the method and specifies what type
of data the method returns, if any. The header also gives the names and types of any
parameters that are accepted by the method. When a method is called, the program-
mer supplies an argument that matches each parameter.

Parameters are items that the method can work on. They are usually passed by value,
in that a copy is made of the argument given in the method call. If the method body
contains statements that change the value of the parameter, this change is local to the
method body.

A method can return a single value, which can be of any type. If a method must return
multiple values, it can make use of reference parameters. A reference parameter is
connected to the variable used as an argument, and it allows code in the body of the
method to read and write the parameter variable. If the method is only required to

243What you have learned

ptg18144483

output values into a parameter, there is a variant of the reference parameter called an
out parameter. Code in the body of the method can only write to an out parameter,
and it must set a value in the parameter before the method body completes.

Here are some questions that you might like to ponder about the use of methods in
programs:

Does using methods in a program slow the program down?

Not normally. There is a certain amount of work required to create the call of a
method and then return from it, but this is not normally an issue. The benefits of
methods far outweigh the performance issues.

Can I use methods to spread work around a group of programmers?

Indeed you can. This is a very good reason to use methods. There are several ways that
you can use methods to spread work around. One popular way is to write placehoder
methods and build the application from them. A placeholder method will have the
correct parameters and return value, but the body will do very little. As the program is
developed, programmers fill in and test each method in turn.

How do I come up with names for my methods?

The best methods have names that are given in a verb-noun form. FetchContact is
a good name for a method. The first part indicates what it does, and the second part
indicates what it works on. I find that thinking of method names (and variable names,
for that matter) can be quite hard at times. The good news is that you can use Visual
Studio (and other tools) to rename the methods in your program if you think of better
names for them later. This process is called refactoring, which is an important part of
programming.

244 Chapter 8 Using methods to simplify programs

ptg18144483

This page intentionally left blank

ptg18144483

9
Creating structured

data types

ptg18144483

What you will learn
Programs can work with many different types of data, including integers,
fl oating-point numbers, and strings of text. They can also create arrays of
a particular data type. However, the data that programs need to work with
is often more complex than single values. In this chapter, you’ll learn how
to build structured data types that can bring together a number of related
items into a single variable. Knowing how to do this lets you design data
storage that matches the specifi c needs of an application.

Storing music notes by using a structure .248

Objects and responsibilities: Making a SongNote play itself.263

Protecting values held in a structure .264

Making a drawing program with Snaps. .267

Creating enumerated types. .278

Making decisions with the switch construction .280

Extra Snaps. .282

What you have learned .285

247

ptg18144483

Storing music notes by using a
structure
You can use Snaps to make music with the PlayNote method. You give the method
a number that identifies the pitch of the note to be played and another number that
sets the duration of the note in seconds. Figure 9-1 shows the numbers for the notes
that are available. There is an octave of notes to work with, providing 13 possible
values for a pitch.

Figure 9-1 Numbered keys to use with the PlayNote method.

When a program performs the following statement, it plays the note with pitch 0 (C)
by using the speaker for your device. The note will be played for 0.4 seconds.

SnapsEngine.PlayNote(pitch:0,duration:0.4);

After the note has been played, the program continues to the next statement. A
program can play a sequence of notes by making a sequence of calls to the PlayNote
method. When the following program runs, the second note plays for twice as long as
the first one.

using SnapsLibrary;

class Ch09_01_PlaySomeNotes

{

 public void StartProgram()

248 Chapter 9 Creating structured data types

ptg18144483

 {

SnapsEngine.SetTitleString("Play Three Notes");

SnapsEngine.PlayNote(pitch:0,duration:0.4);

SnapsEngine.PlayNote(pitch:2,duration:0.8);

SnapsEngine.PlayNote(pitch:4,duration:0.4);

 }

}

From the point of view of this program’s data, we can say that a note in a tune is repre-
sented by two values: the pitch of the note that we play and the duration of the note.
If we want to store a larger number of notes so that we can play a more complicated
tune, we can use arrays to hold the pitch and duration values. One array would hold
the pitch value, and another the duration of the note.

int [] notePitches = new int[3];

double [] noteDurations = new double[3];

notePitches [0] = 0; noteDurations [0] = 0.4;

notePitches [1] = 2; noteDurations [1] = 0.8;

notePitches [2] = 4; noteDurations [2] = 0.4;

I’ve put two statements on each line of the program above. Each line sets the pitch
and the duration for one note.

We can use a for loop to work through the pitch and duration arrays and play each
note in turn. We could create a longer tune just by adding more elements to the note
and duration arrays.

for (int i = 0; i < 3; i = i + 1)

{

 SnapsEngine.PlayNote(pitch: notePitches [i], duration: noteDurations[i]);

}

Ch09_02_PlayNotesWithArrays

This tune-storage mechanism relies on the two arrays remaining “in step”—in other
words, notePitches[2] must match up with noteDurations[2]. If the arrays get out
of step, the tune will sound wrong as notes are played for the wrong lengths. What we
really want is a way for a program to create a single variable type that holds both data
items required to make a note. C# provides a way to do this—it is called a structure.

Play C for 0.4 seconds.
Play D for 0.8 seconds.
Play E for 0.4 seconds.

Array to hold the note values.
Array to hold the duration values.

Statements that set pitch
value and duration.

Loop around each element in the array.

Play the corresponding note.

249Storing music notes by using a structure

ptg18144483

Creating and declaring a structure
A structure brings together a number of separate data items. Each data item is called
a field or member of the structure. You design the composition of the structure, and
the compiler can then create variables of the structure’s type. In other words, making
a structure adds a new data type to your programs. We could create a SongNote struc-
ture like this to hold information about one note in a song:

public struct SongNote

{

 public int NotePitch;

 public double NoteDuration;

}

You’ve seen the public modifier before when you looked at methods in Chapter 8.
Later in this chapter, you’ll see how the C# language provides security for members
of a structure by declaring them as private. This lets a programmer protect objects
and their contents from other code. You could use this object security to protect the
NotePitch and NoteDuration values, and you could also make the SongNote struc-
ture itself usable only in certain parts of a program. But for now, we’re going to make
everything public.

It’s important to remember that we have not stored any note data to this point. What
we have done is told the C# compiler how to make a SongNote structure when we
declare a variable of that type. We do that by using a statement such as the following,
which creates a variable named myNote of type SongNote.

SongNote myNote;

When the C# compiler sees the name of a type (for example, int or string or Song-
Note), it goes off and looks in the list of “things I know how to make” for instructions
on how to make this particular type of variable. When the compiler finds the instruc-
tions, it creates the variable. In the case of a SongNote variable, the compiler will
reserve space for two values: an integer NotePitch and a double precision NoteDura-
tion. (The names of structures, like other C# elements, are case sensitive. You’ll get an
error if you type songNote instead of SongNote.)

Programs can extract the members of a structure variable and use them as they would
any other variable of that type. The following statements set up a SongNote variable
that represents C (note number 0) being played for 0.4 seconds.

250 Chapter 9 Creating structured data types

ptg18144483

SongNote myNote;

myNote.NotePitch = 0;

myNote.NoteDuration = 0.4;

Using structure variables
Structure variables are a new way of holding data. It is worth thinking about how they work in
some detail.

Question: What does the period character do in a statement like myNote.NotePitch = 0;?

Answer: The period separates the name of the variable (myNote) from the name of the
member (either NotePitch or NoteDuration in this case) of the variable of that struc-
ture. This is how a program can access elements inside an object.

Question: Is there anything special about members of a structure value?

Answer: No. They can be used in the same way as variables of that type. In other words, a
program can use the NoteDuration member of a SongNote value as a double-precision
floating-point value.

Question: What are the initial values of the members of a brand-new structure variable?

Answer: The compiler will complain if a program tries to use a variable before it has been
given a value. The following code will not compile:

int newInt;

int i = newInt;

The error “Use of unassigned local variable ‘newInt’” would be produced because the
program is trying to use the value of the variable before it has been assigned one. Struc-
tures behave in the same way. The initial values of all of the items they hold are set to
“unassigned.”

SongNote newNote;

int r = newNote.NotePitch;

These statements would also fail to compile because the value of NotePitch in the
newNote variable has not been assigned.

Question: What happens when I assign one structure variable to another?

CODE ANALYSIS

251Storing music notes by using a structure

ptg18144483

Answer: When structures are assigned, the program copies the value of each member of
the structure into the destination.

SongNote originalNote;

originalNote.NotePitch = 0;

originalNote.NoteDuration = 0.4;

SongNote noteCopy = originalNote;

In the code above, the variable noteCopy would end up with a NotePitch value of 0 and
a NoteDuration of 0.4

Creating arrays of structure values
We started using structures because we wanted a way of safely storing song informa-
tion. The SongNote structure gave us a way to bring together the information needed
to play a note by holding both the note number and the duration the note should play
for.

Remember that the SongNote structure is a new type of data. You can use a SongNote
(or another structure you define) everywhere you use other C# types. This means that
a program can contain arrays of SongNote values.

In Chapter 7, you saw that when a program creates an array, each element is set to the
default value for that type. This behavior extends to the elements of the song array,
which means that the NotePitch member of each element would be set to 0, as would
the NoteDuration. This statement creates an array that can hold three song notes.

SongNote[] song = new SongNote[3];

A program can then use an index value to get hold of a particular note in the array
and access the NotePitch and NoteDuration values held within it. These statements
set the note and duration values for the note at the start of the array.

song[0].NotePitch = 0;

song[0].NoteDuration = 0.4;

The next program creates an array of SongNote values and then plays the tune stored
in them. Because each note is now stored in a structure, there’s no chance that the

252 Chapter 9 Creating structured data types

ptg18144483

NotePitch and NoteDuration properties of a note can get out of step because the
two values are stored inside a single item.

using SnapsLibrary;

class Ch09_03_PlayNotesFromStructureArray

{

public struct SongNote

 {

public int NotePitch;

public double NoteDuration;

 }

public void StartProgram()

 {

SongNote [] notes = new SongNote[3];

notes[0].NotePitch = 0; notes[0].NoteDuration = 0.4;

notes[1].NotePitch = 2; notes[1].NoteDuration = 0.8;

notes[2].NotePitch = 4; notes[2].NoteDuration = 0.4;

for (int i = 0; i < 3; i = i + 1)

{

SnapsEngine.PlayNote(pitch:notes[i].NotePitch,

duration:notes[i].NoteDuration);

}

 }

}

Structures and methods
The value of a structure variable can be used as a parameter to a method call. You use
the type of the structure as a parameter in the same way that you passed strings to
the Alert method in the previous chapter. Here, the method PlaySongNote accepts a
SongNote as a parameter. When the method is called, it extracts the pitch and dura-
tion values from the parameter supplied to the call and plays the note.

public void PlaySongNote (SongNote noteToPlay)

{

 SnapsEngine.PlayNote(pitch:noteToPlay.NotePitch,

duration:noteToPlay. NoteDuration);

}

noteToPlay) Note to be played.

 Play the note.

253Storing music notes by using a structure

ptg18144483

A program can call PlaySongNote and pass it a SongNote as a parameter. These state-
ments create a note and then call PlaySongNote to play it.

SongNote myNote;

myNote.NotePitch = 0;

myNote.NoteDuration = 0.4;

PlaySongNote(myNote);

Structures as method parameters
Question: What would happen if PlaySongNote changed the pitch of a note passed as a
parameter?

Answer: In Chapter 8 you saw that unless you specify otherwise, parameters to a method
are passed by value—in other words, the value of an argument is copied into the method
when it is called. Exactly the same thing happens with structures. In the example above,
if the PlaySongNote method changed the NotePitch of the myNote passed into it as a
parameter, the NotePitch member of the myNote variable would not be changed. In this
respect, structure values behave exactly as integers or any other type.

A method can also return a structure as a result. The RandomSongNote method shown
next is of type SongNote. It returns a SongNote value that is set to a random pitch and
duration. It uses the dice value (which returns a number between 1 and 6) to pick a
random pitch and another dice value to select a random duration for the SongNote
that it returns.

public SongNote RandomSongNote()

{

 SongNote result;

 result.NotePitch = SnapsEngine.ThrowDice();

 result.NoteDuration = SnapsEngine.ThrowDice() / 10.0;

 return result;

}

We can use this method to play random note sequences. Here’s a program that uses
both the RandomSongNote and PlaySongNote methods to play a twenty-note random
song that sounds almost exactly like a cat walking along a piano keyboard.

CODE ANALYSIS

 Pick a note between 1 and 6.
Pick a duration.

254 Chapter 9 Creating structured data types

ptg18144483

for (int i = 0; i < 20; i = i + 1)

{

 SongNote note = RandomSongNote();

 PlaySongNote(note);

}

Ch09_04_RandomMusic

Improve the keyboard cat alarm
You can use the random music code to make a really annoying alarm that plays a sequence of
notes randomly when it goes off. The notes will continue until the user taps the screen:

public void StartProgram()

{

 SnapsEngine.SetTitleString("Keyboard Cat Alarm");

 SnapsEngine.DisplayString("Tap the screen to stop the alarm");

 SnapsEngine.ClearTextTappedFlag();

 while (true)

 {

SongNote note = RandomSongNote();

PlaySongNote(note);

if (SnapsEngine.TextHasBeenTapped())

break;

 }

 SnapsEngine.DisplayString("Alarm cleared");

}

Ch09_05_KeyboardCatAlarm

The program uses the screen-tap methods introduced in Chapter 6 to detect when the user
taps the screen to silence the alarm. You can improve the program by adding a delay so that
it waits a few minutes before sounding. You can further improve it by making the program
flash the screen in random colors as it plays each note.

Go around the loop 20 times.

Pick a random note and play it.

MAKE SOMETHING HAPPEN

 Loop forever.

 Pick a random note and play it.

 If the screen has been tapped, exit the loop.

255Storing music notes by using a structure

ptg18144483

Constructing structure values
Structures can contain methods as well as data members. This means that structure
types can contain code that will perform tasks, and one of the tasks that it can per-
form is to set itself up.

So far in our tune-playing program, we are setting the values of structure variables
“the hard way.” A program needs to use three statements to create a new SongNote
and set its NotePitch and NoteDuration members:

SongNote note;

note.NotePitch = 0;

note.NoteDuration = 0.4;

Fortunately, C# provides a way of creating a new structure object and setting its val-
ues at the same time. You do this by giving the SongNote type a constructor method. A
constructor is a method that is itself a member of a structure. The constructor method
for an object has the same name as the object, in this case SongNote. An object can
have lots of different constructors, each of which reflect a different way of setting the
initial values in that structure.

public struct SongNote

{

 public int NotePitch;

 public double NoteDuration;

 public SongNote(int pitch, double duration)

 {

NotePitch = pitch;

NoteDuration = duration;

 }

}

This constructor for the SongNote takes pitch and duration parameter values and
uses them to set up the members of the structure. We can use the constructor when
we create a new SongNote value:

SongNote note = new SongNote(pitch: 0, duration: 0.4);

 Data members

Constructor method member

 Copy parameters
to the members of

the structure.

256 Chapter 9 Creating structured data types

ptg18144483

This single statement creates a new SongNote and then sets the variable note to this
value. The note and the duration are set by the constructor when it is called. I’ve used
named arguments to the constructor to make it clear which value is the pitch and
which is the duration.

This is a much cleaner way to create a SongNote value. It ensures that when a variable
is created, it holds values for all the members of the structure. It also provides a way
for us to ensure that our notes contain valid information.

Programs never actually call the constructor method; it is called automatically when
a note is created. In the following example, I’ve added a message that is displayed by
the SongNote constructor.

using SnapsLibrary;

class Ch09_06_ConstructingSongNotes

{

 static SnapsEngine snaps;

 public struct SongNote

 {

public int NotePitch;

public double NoteDuration;

public SongNote(int note, double duration)

{

NotePitch = note;

NoteDuration = duration;

SnapsEngine.DisplayString("Hello from the SongNote constructor");

}

 }

 public void StartProgram()

 {

SongNote note = new SongNote(note: 0, duration: 0.4);

 }

}

When this program runs, the message appears when the new SongNote value is cre-
ated. Note that you would not normally do this; a constructor should just run silently.

257Storing music notes by using a structure

ptg18144483

What’s special about the constructor method?
Question: We’ve seen methods in objects before, but there’s something special about the
constructor method for the SongNote structure. What’s special about it?

Answer: It doesn’t have any return type. When we’ve considered methods before, we
saw that C# insists that a method return a value—for example, the GetNumber method
returns an integer—or we have to use the void keyword to explicitly state that a method
does not return anything. The constructor doesn’t seem to have any information about
the type of a result it might return. This is because the method doesn’t ever return
anything. The constructor method is called automatically, just as an object is coming into
existence. When the constructor is complete, the object has been created.

Invalid data in a constructor call
The Snaps framework uses pitch numbers that range from 0 to 12. A pitch value
outside that range can’t be played. However, there’s nothing stopping a programmer
from trying to construct a SongNote that contains invalid values:

SongNote note = new SongNote(pitch: -99, duration: 0.4);

This creates a SongNote with a pitch value of –99, which is outside the allowed range.
If this note is ever played, it will not work correctly. You might wonder why someone
would try to create a note like this. One reason is to attack our system. The word
“hacker,” once an honorable term describing someone who is good at making things
work, now also means someone who tries to break into computer systems. One way
to break into a system is to use invalid inputs and see what happens. If the hacker is
lucky, the program might crash or otherwise misbehave when it is given invalid data.

To counter this problem, a constructor can check the values that are being used to
set up the object, and it can reject any invalid values that it finds. The constructor can
reject invalid values by throwing an exception.

Throwing exceptions in constructors
You first encountered exceptions in Chapter 6 when you saw that if a program tries
to access a nonexistent element in an array, an exception is thrown that prevents this.
The constructor for the SongNote object is going to create and throw an exception to

CODE ANALYSIS

258 Chapter 9 Creating structured data types

ptg18144483

stop the program because it would not be sensible to continue and make an invalid
SongNote value.

The C# keyword throw is used to throw an Exception object. The exception can be
given a message that describes what has gone wrong.

throw new Exception("Invalid note pitch value");

As the name implies, exceptions should be thrown only in exceptional circumstances.
If a user enters invalid data, for example an age of 1,000, this is not exceptional; it is
more likely that the user pressed a key more times than he meant to. You have seen
how to deal with errors like this; a program can use a loop to repeatedly ask for values
until the user enters one that is valid. However, if a constructor detects an invalid
input, there is nothing it can do. The constructor must not allow a SongNote that con-
tains an invalid pitch value to be created.

public SongNote(int pitch, double duration)

{

 if (pitch < 0 || pitch > 12)

throw new Exception("Invalid pitch value");

 if (duration < 0.1 || duration > 1)

throw new Exception("Invalid duration value");

 NotePitch = pitch;

 NoteDuration = duration;

}

This version of the SongNote constructor method will refuse to create a SongNote that
has an invalid pitch number or a duration of less than one-tenth of a second or greater
than 1 second. If anyone tries to make an invalid SongNote, they will find that their
program is stopped by an exception. I call this technique defensive programming. I try
to make sure that my programs can’t be upset, even by invalid inputs. I also try very
hard to make sure that my programs fail at the point the mistake is made rather than
later on. This program should fail when it tries to create an invalid SongNote, not some
time later when it tries to play one. Later in the book you will discover how to catch
and deal with exceptions.

Test for invalid note.
Throw exception if invalid.

Test for invalid duration.
Throw exception if invalid.

 Statements that set pitch value and duration.

259Storing music notes by using a structure

ptg18144483

The Exception type?
Question: What is the purpose of the Exception type?

Answer: The Exception type contains a description of the state of the program at the
point at which the error occurred, along with a description of the error itself. You will see
later that a program can catch this information and use it to provide information to the
user (and the programmer) about what has gone wrong.

Question: Where does the Exception type come from?

Answer: The Exception type is defined in the System namespace. (You first saw name-
spaces in Chapter 3 when you learned that all the Snaps methods are defined the Snaps-
Library namespace.) To directly access types from the System namespace, a program
must contain a using directive to tell the compiler to look in the namespace for those
types. This means that a program that uses both Snaps and System types must contain
two using directives.

using SnapsLibrary;

using System;

Making a music recorder
Earlier, you saw how an array can hold a set of ice-cream sales figures. Next you are
going to use an array to hold a tune as an array of SongNote values. The program will
repeatedly ask the user for pitch and duration values, use them to create new note
values, and store them in an array called tune.

SongNote[] tune = new SongNote[100];

int tuneLength = 0;

for (int tunePos = 0; tunePos < tune.Length; tunePos = tunePos + 1)

{

 string command = SnapsEngine.SelectFrom2Buttons("New Note", "Play Tune");

 if (command == "Play Tune")

 {

tuneLength = tunePos;

CODE ANALYSIS

The tune can contain up to 100 notes.

Holds the length of the tune entered by
the user.

Loop to read and
store notes.

Ask the user what to do.
Check if Play Tune

is selected.

Record how far user got through the loop.

260 Chapter 9 Creating structured data types

ptg18144483

break;

 }

 int notePitch = SnapsEngine.ReadInteger("Note Pitch");

 float noteDuration = SnapsEngine.ReadFloat("Note Duration");

 SongNote newNote = new SongNote(pitch: notePitch, duration: noteDuration);

 tune[tunePos] = newNote;

}

This loop could sit in the middle of a music-recorder program. The user can enter as
many notes as he wants up to the size of the array. Each time around the loop, the
program asks whether the user wants to add a new note or exit the loop. If the user
wants to enter a new note, the program requests the pitch of the note to play and the
duration value. These are then used to create a new note that is copied into the array.
When the user has finished entering the tune, he selects the Play Tune button and
the program stops recording notes and plays the entire tune. Here is the code that will
play all the notes that the user has entered.

// Play the tune

for (int tunePos = 0; tunePos < tuneLength; tunePos++)

{

 SnapsEngine.PlayNote(pitch:tune[tunePos].NotePitch,

duration:tune[tunePos].NoteDuration);

}

Ch09_07_MusicRecorder

Examining the music recorder
Question: How does the music-recorder program know how long the tune is?

Answer: The recording program uses a counter variable called tunePos to keep a record
of where in the array to place the next note to be stored. Each time around the storage
loop, the value in tunePos is increased by one. When the user selects the Play Tune
command, the program records the value of tunePos in a variable called tuneLength,
which is then used to control the for loop that plays the tune.

Question: What would happen if the user entered an invalid pitch or duration value into the
note recorder?

If we get here, we are entering a new note,
so get the pitch

Get the note
duration.

Create a new note.

Store the new note in the tune.

Work through each note
up to the end of the tune.

Play the note.

CODE ANALYSIS

261Storing music notes by using a structure

ptg18144483

Answer: The constructor for the note would throw an exception and the note-entry
program would stop. This is not very friendly behavior for the music recorder. You might
like to think about changing the program so that it checks the pitch and duration values
before it tries to create the note.

Creating preset arrays
You could use the music recorder program to enter and play the notes of your favorite
song, perhaps “Twinkle, Twinkle Little Star.” However, it would soon become tedious to
enter all the values each time you wanted to hear the same song. What you might like
to do is create a preset array of notes for this song.

In Chapter 7, you saw how to create preset arrays. The ice-cream sales program used a
preset array that contained the names of each day of the week so that it could convert
a day number into the name of that day. We can also create a preset array of notes.
This allows us to build song data into our program. Many programs have data built
into them in this way. A game might have preset data that describes the various levels
of the game; a currency conversion program could have the names of the different
kinds of currency it works with. A program can also create preset structure values. The
twinkleTwinkle array of SongNote values is created as shown here.

SongNote[] twinkleTwinkle = new SongNote[] {

new SongNote(pitch:0, duration:0.4), new SongNote(pitch:0, duration:0.4),

new SongNote(pitch:7, duration:0.4), new SongNote(pitch:7, duration:0.4),

new SongNote(pitch:9, duration:0.4), new SongNote(pitch:9, duration:0.4),

new SongNote(pitch:7, duration:0.8), new SongNote(pitch:5, duration:0.4),

new SongNote(pitch:5, duration:0.4), new SongNote(pitch:4, duration:0.4),

new SongNote(pitch:4, duration:0.4), new SongNote(pitch:2, duration:0.4),

new SongNote(pitch:2, duration:0.4), new SongNote(pitch:0, duration:0.8)

};

We can then use a loop to work through each note in the array and play it. This will
work for an array of any length.

foreach(SongNote note in twinkleTwinkle)

{

 SnapsEngine.PlayNote(pitch:note.NotePitch), duration:note.NoteDuration);

}

Ch09_08_PresetMusic

Start of the array initializer.
new SongNote(pitch:0, duration:0.4), new SongNote(pitch:0, duration:0.4),

new SongNote(pitch:7, duration:0.4), new SongNote(pitch:7, duration:0.4),

new SongNote(pitch:9, duration:0.4), new SongNote(pitch:9, duration:0.4),

new SongNote(pitch:7, duration:0.8), new SongNote(pitch:5, duration:0.4),

new SongNote(pitch:5, duration:0.4), new SongNote(pitch:4, duration:0.4),

new SongNote(pitch:4, duration:0.4), new SongNote(pitch:2, duration:0.4),

new SongNote(pitch:2, duration:0.4), new SongNote(pitch:0, duration:0.8)

The note values to put into the new array.

Fetch each note in turn

Play the note.

262 Chapter 9 Creating structured data types

ptg18144483

Examining the preset tune
Question: How does the foreach loop play the preset tune?

Answer: A program uses foreach to work through each item in an array. Each time
around the loop, the variable note is set to the next successive item in the twinkleTwin-
kle array.

Question: How would you add extra notes to the tune?

Answer: The program will automatically accommodate extra notes if they are added to
the program text.

Objects and responsibilities:
Making a SongNote play itself
At the moment, the program is using the SongNote structure just as a way of bringing
together the note and duration values that describe a note in a song. However, users
of the SongNote structure need to know what a SongNote structure contains to use
it. In other words, if I want to write a program that plays songs, I need to know how
the NotePitch and NoteDuration members of the SongNote are used with the Snaps
methods that play music.

It would be much easier if we could just ask a SongNote value to play itself. It turns that
you can do this because structures can contain methods.

public struct SongNote

{

 public int NotePitch;

 public double NoteDuration;

 public void Play()

 {

SnapsEngine.PlayNote(pitch:NotePitch, duration: NoteDuration);

 }

}

CODE ANALYSIS

263Objects and responsibilities: Making a SongNote play itself

ptg18144483

The Play method is part of the SongNote structure. In the same way that we can access
data members of a structure, a program can also call methods that the structure
contains:

foreach (SongNote note in tune)

{

 note.Play();

}

Ch09_09_NotePlay

This version of the song playback loop asks each note to play itself by calling the Play
method inside the SongNote structure. This means that other programmers can use
the SongNote structure to play tunes without knowing how the note works. This is an
extremely powerful feature.

PROGRAMMER’S POINT

Self-contained objects are a good thing
A coder using the SongNote structure will know she has to specify a NotePitch and a
NoteDuration to create a note, but she won’t need to know how to use the PlayNote
method in the Snaps framework to play the note. This is because the SongNote structure
provides a Play method that takes care of how the music is played. It’s a bit like driving a
car with an automatic transmission versus a manual transmission. In the automatic car, you
just have to press a pedal to make the car go faster. In the manual car, you have to know
how to select gears, when to shift gears, and so on. When designing the elements that are
going to make up a complex system, try to make each element as self-contained and as
easy to use as possible.

Protecting values held in a
structure
As you’ve seen, we made the SongNote structure’s values public so that our program
can store data in the note. The public in front of the declarations of the NotePitch
and NoteDuration members means that these members are visible to programs that
use the SongNote structure:

264 Chapter 9 Creating structured data types

ptg18144483

public struct SongNote

{

public int NotePitch;

public double NoteDuration;

}

This is how we created and set up our first SongNote value:

SongNote note

note.NotePitch = 0;

note.NoteDuration = 0.4;

The note is declared, and then the values in it are set. However, the fact that these val-
ues have been marked with public means that they can be changed by the program
at any point in the future. In the case of a SongNote, this is probably not a problem; it
just means that a nasty programmer could make a tune sound wrong. However, if we
were writing a program for a bank, it would be much more dangerous if programmers
were able to change the amount of money in an account.

The C# language lets you mark members of a structure as private. A private member
of a structure is not visible to code running outside the structure:

public struct SongNote

{

 private int notePitch;

 private double noteDuration;

 public void Play ()

 {

SnapsEngine.PlayNote(notePitch, noteDuration);

 }

 public SongNote(int pitch, double duration)

 {

notePitch = pitch;

noteDuration = duration;

 }

}

 Put values into the NotePitch and
NoteDuration members of the structure.

 Make the notePitch
and noteDuration
members private.

SnapsEngine.PlayNote(notePitch, noteDuration); This code can
use the member

variables because
it is part of

the SongNote
structure.

 Sets the initial
values of the note.

265Protecting values held in a structure

ptg18144483

The preceding code shows a more secure version of the SongNote structure. The
notePitch and noteDuration values have been made private, which means that only
statements in methods that are members of the SongNote structure are able to use
these variables. Once we have created a SongNote value, it is not possible for any pro-
gram to change the value or duration of that note.

SongNote note

note.notePitch = 0;

Public and Private
Question: Look closely at the code for the more secure and the original SongNote structures
and you should notice something slightly different. What is different about the more secure
version of SongNote?

Answer: The two data members, notePitch and noteDuration, now have identifiers
that start with a lowercase letter: for example, NotePitch has become notePitch. This
is a C# convention that coders use to make programs easier to understand. If an identifier
starts with an uppercase letter, the member is public and can be seen by code running
outside the structure. If an identifier starts with a lowercase letter, it is private.

Question: Can we make member methods private, too? What would happen if we made the
Play method in SongNote private? Would this be a good idea?

Answer: It is possible to make methods private. The effect of doing so is that the method
can’t be called from code outside the structure. This would not be a sensible thing to
do in the case of Play because it is used by code external to the structure. If Play were
private, the external code would not be able to call it, and the note could not be played.

PROGRAMMER’S POINT

Consider “active” and “passive” safety in your program design
A data member of a class that is public can be regarded as a potential failure point. This
is because you have no control over the value in that variable. Another program could
change the value at any time. When you design a large program, you should decide how
you are going to make sure that all the values that the program works with are valid at all
times.

This statement would not compile
because notePitch is now private.

CODE ANALYSIS

266 Chapter 9 Creating structured data types

ptg18144483

This is part of making software of good quality. Car designers talk about “active” and “pas-
sive” safety. Active safety features (good brakes and steering) help prevent a driver from
getting into trouble, and passive ones (airbags and seat belts) help prevent a driver from
being injured if there is trouble. Likewise, good software has active and passive elements.
Private and public elements contribute to active safety—they make it harder for values in
the program to be damaged by mistakes in the code. (You can’t corrupt the settings for a
note in a song because the data members have been made private.) Exceptions in pro-
grams contribute to passive safety. If a program detects that it is dangerous to continue, it
can throw an exception and fail in a managed way.

Making a drawing program with
Snaps
A program like the one shown in Figure 9-2 seems like a complicated thing, but let’s
try to build one anyway. You’ll learn more about data structures as we go!

Figure 9-2 A drawing program in the hands of an expert.

The user of this program will be able to draw on the screen with a finger, mouse, or
pen. The first version of the program will be simple. It will find out where the pen is
and then draw a colored dot at that position. If the program repeats these two actions
in a loop, we have a simple drawing program. We’ll add more advanced features, such
as color selection, once the basics are in place.

267Making a drawing program with Snaps

ptg18144483

Drawing dots on the screen
Before we code our program, we have to work out how we’re going to express the
drawing positions we’re going to use. In computer graphics, the position values
for drawing are frequently expressed in pixels. A pixel is an addressable dot on the
screen of the device that you are using. Display manufacturers talk about displays
that are 1280 pixels by 768 pixels, for example, and the resolution of a digital camera
is also expressed in pixels. The more pixels a screen has, the more details it can show,
although this is, of course, affected by the size of the screen, too.

As shown in Figure 9-3, for a given position on the screen, the value of X specifies
how far the position is from the left edge, and the value of Y specifies how far down
the screen from the top edge. A specific location is expressed as (X, Y).

Figure 9-3 Screen coordinates.

Making sense of coordinates
Question: Where on the screen is the coordinate (0,0)?

Answer: This position is sometimes called the origin of the coordinate system. When we
draw on a computer screen, the origin is usually the top-left corner of the screen. Note
that this is different from most graphs you draw on paper, which have their origin at the
bottom-left corner.

Question: If I increase the value of Y, which way do I move my position on the screen?

Answer: This is very important. Increasing the value of Y moves the position down the
screen, not up, because the origin of the screen is the top-left corner.

CODE ANALYSIS

268 Chapter 9 Creating structured data types

ptg18144483

Using the DrawDot Snap to draw a dot on
the screen
The DrawDot method lets a program draw a dot on the screen. When the method is
called, it is given the position and the width of the dot to draw:

using SnapsLibrary;

class Ch09_10_DrawADot

{

 public void StartProgram()

 {

SnapsEngine.DrawDot(x:100, y:200, width:10);

 }

}

If you run this program, a 10-pixel-wide dot will appear on the screen. The dot will be
100 pixels from the left edge and 200 pixels down from the top edge. The color of the
dot will be a rather unimpressive gray, as you can see in Figure 9-4.

Figure 9-4 Drawing a dot.

269Making a drawing program with Snaps

ptg18144483

This version of the DrawDot method accepts two integers that express the drawing
position (in the form of X and Y values). However, the Snaps framework contains a
much better way to manage screen positions: the SnapsCoordinate structure.

The SnapsCoordinate structure
The drawing program we are going to create needs to manipulate positions on the
screen. The Snaps framework contains a data structure I created to make this possi-
ble. In fact, the Snaps framework contains a set of types I created so that it can work
with different types of data. These are held in the Snaps Types source code. In Visual
Studio, use Solution Explorer to open the SnapsCoordinate source code, as shown in
Figure 9-5.

Figure 9-5 Finding the Snaps types.

Take a look at the design of this structure:

namespace SnapsLibrary

{

 public struct SnapsCoordinate

270 Chapter 9 Creating structured data types

ptg18144483

 {

public int XValue;

public int YValue;

public SnapsCoordinate(int x, int y)

{

XValue = x;

YValue = y;

}

 }

}

I’ll say more about the namespace keyword later, when we start creating large pro-
grams. For now, focus on the SnapsCoordinate structure, which contains two data
members that specify a position on the screen. It also provides a constructor that we
can use to create a coordinate with a particular pair of X and Y values. We can create
our own values of the structure if we like:

SnapsCoordinate dot = new SnapsCoordinate(x:100,y:200);

SnapsEngine.DrawDot(pos:dot,width:10);

The first statement creates a variable named dot, which is a SnapsCoordinate. The
coordinate describes a position 100 pixels from the left edge and 200 pixels down the
screen. This coordinate is then used to draw a 10-pixel-wide dot on the screen at that
position. Note that the program uses an overloaded version of the DrawDot method.
A program overloads a method by providing multiple versions of the method, each of
which can accept a different set of arguments. In the case of DrawDot, we can specify a
dot position either by using separate X and Y values (which is sometimes useful) or by
using a SnapsCoordinate value (which is also sometimes useful).

Method overloading
The idea behind method overloading is that you can decide on a sensible name for the task
that the method performs and then create versions of the method that are used in different
ways, depending on the needs of the program using the method. In the case of DrawDot, it is
useful to be able to call the method with integers or coordinates. However, overloading can
also lead to confusion. Consider the following two methods:

 Data values held in
the coordinate.

 Constructor
method for the

coordinate.

CODE ANALYSIS

271Making a drawing program with Snaps

ptg18144483

public static void m1 (int x)

{

 SnapsEngine.DisplayString("integer method");

}

public static void m1(float x)

{

 SnapsEngine.DisplayString("floating method");

}

public static void m1(string title, int x)

{

 SnapsEngine.DisplayString("string and int overload");

}

All the methods are named m1 and have different parameter types.

Question: Will this code compile correctly?

Answer: Yes. The compiler says that they are all different methods because they have
different parameter types. The name m1 is being overloaded.

Question: Which method will be called by the following statement?

m1(x:3);

Answer: This will run the first version of the m1 method because the parameter is of type
integer. However, this form of overloading is potentially confusing because someone
reading the code might assume that the floating-point version will be used. I suggest that
each overloaded version of a method should have a different number of arguments, as in
the third version of the method. Then there is no potential for this kind of confusion.

Using the GetDraggedCoordinate Snap
to detect a drawing position
The next step is to find out where the user is drawing on the screen. The Snaps library
provides a method that will do this for us. You can use the GetDraggedCoordinate
Snaps method to find out where on the screen the user wants to draw something:

272 Chapter 9 Creating structured data types

ptg18144483

SnapsCoordinate draggedCoordinate = SnapsEngine.GetDraggedCoordinate();

The method will wait until the user performs a drawing action on the screen. If the
user has a touchscreen, the method waits for the user to touch the screen. If the user
has a pen, it waits for the user to move the pen across the screen. If the user has a
mouse, the user can click the left mouse button and move the mouse to draw on the
screen.

The result from GetDraggedCoordinate is the value of a structure variable of type
SnapsCoordinate. The coordinate values exactly match those that are used by the
DrawDot method. This means that a program can get a position from the user and
immediately use it to draw a dot on the screen.

SnapsCoordinate draggedCoordinate = SnapsEngine.GetDraggedCoordinate();

SnapsEngine.DrawDot(pos: draggedCoordinate,width:10);

These two statements are the heart of our drawing program. The first one waits for
the user to indicate where he wants to draw, and the second statement draws a dot
there. This is like me waiting for my wife to tell me where on the wall she wants me
to hang a picture. She says, “Two feet from the wall and five feet up,” and then I hold
the picture against the wall so that she can take a look. Then she will say, “Actually, I’d
prefer it six inches higher,” and we then adjust the height until we find a position that
we agree on.

To let the user draw freehand on the screen, we can just put these two statements in
a loop. This tiny program uses an infinite loop that lets the user draw on the screen by
dragging a finger, pen, or mouse across it. (You have to hold down the left button to
draw with the mouse.)

class Ch09_11_SimpleDraw

{

 public void StartProgram()

 {

while (true)

{

SnapsCoordinate draggedCoordinate = SnapsEngine.GetDraggedCoordinate();

SnapsEngine.DrawDot(pos: draggedCoordinate, width: 10);

}

 }

}

Get the draw position.

Draw a dot there.

Repeat the loop for ever

Get a dragged coordinate

Draw a
dot on the

screen at
the dragged

position

273Making a drawing program with Snaps

ptg18144483

Running out of dots
Play with the Ch09_11_SimpleDraw Snaps app. You’ll notice that after you draw for a while,
the program starts to erase dots from the screen. The dots that are erased are the first ones
that were drawn. The reason for this is that the Snaps framework’s drawing routines work
by adding dot objects to the display. The display has a limited capacity for dots, and after
3,000 have been drawn, it starts to erase the older ones. This is purely a limitation of the way I
coded the framework.

Using the SetDrawingColor Snap to set
the drawing color
At the moment, the drawing is performed in the default color (that rather boring
gray). The Snaps library provides a method that you can use to set the color to be used
by all subsequent drawing operations. It can be used just like the SetBackgroundColor
method that we’ve used before. You supply the method with three arguments: the
amount of red, green, and blue to be used to set the color. This statement sets the
drawing color to red (remember that the maximum value for any color is 255):

SnapsEngine.SetDrawingColor(red:255, green:0, blue:0);

Colors and dots
using SnapsLibrary;

class Ch09_12_MysteryImage

{

 public void StartProgram()

 {

SnapsEngine.SetBackgroundColor(red: 100, green: 100, blue: 100);

SnapsCoordinate pos = new SnapsCoordinate(100, 200);

SnapsEngine.SetDrawingColor(red: 255, green: 255, blue: 255);

WHAT COULD GO WRONG

CODE ANALYSIS

274 Chapter 9 Creating structured data types

ptg18144483

SnapsEngine.DrawDot(pos: pos, width: 100);

SnapsEngine.SetDrawingColor(red: 0, green: 0, blue: 0);

SnapsEngine.DrawDot(pos: pos, width: 80);

SnapsEngine.SetDrawingColor(red: 0, green: 0, blue: 255);

SnapsEngine.DrawDot(pos: pos, width: 60);

SnapsEngine.SetDrawingColor(red: 255, green: 0, blue: 0);

SnapsEngine.DrawDot(pos: pos, width: 40);

SnapsEngine.SetDrawingColor(red: 255, green: 255, blue: 0);

SnapsEngine.DrawDot(pos: pos, width: 20);

 }

}

Question: The above statements draw something on the screen. Any idea what it is?

Answer: The first thing that happens is that the screen is changed to a gray color. Then
an image is drawn on the screen. The image is made up of a sequence of dots. They are
all drawn at the same position, which is set at the start: (100, 200). Each successive dot is
drawn smaller than the one before it and is displayed on top of the others. If you are keen
on archery, you’ll know exactly what the program has drawn: an authentic archery target.

Question: What would happen if the program drew the white circle last rather than first?

Answer: All you would see would be a large white dot, because it would obscure the
circles underneath. We can use program code to create drawings by overlaying circles of
different colors.

Question: Can I stop the Snaps selection page from being displayed when my program
stops?

Answer: Yes. The display of the target is spoiled by the appearance of the Snaps program
menu when the program finishes. You can ask the Snaps framework not to display this
menu by setting a Snaps control flag:

275Making a drawing program with Snaps

ptg18144483

SnapsEngine.DisplayControMenuAtProgramEnd = false;

Ch09_13_MysteryImageNoControlMenu

This flag is normally true. If the flag is set to false, the user has to use Windows controls
to close the program, and he will not be able to select another Snaps program.

Using the ClearGraphics Snap to clear
the screen
So far we haven’t been able to clear the screen and start a new drawing, but the Snaps
framework provides a method for doing so, named ClearGraphics. We can write a
drawing program that clears the graphics when the user clicks or taps in the top-left
corner of the screen. The key to the behavior of this program is the if condition in the
middle. It uses two conditions that are combined by using the && (AND) logical oper-
ator. If the X position is less than 10 pixels from the edge and the Y position is less than
10 pixels from the top, the graphics are cleared away. (Using 10 pixels seems to work
okay, but it can be a bit tricky to clear the display if you are using touch input.) If the
drawing action is not in the top-left corner, the else part of the condition is obeyed,
which draws a dot on the screen.

using SnapsLibrary;

class Ch09_14_DrawingClear

{

 public void StartProgram()

 {

while (true)

{

SnapsCoordinate drawPos = SnapsEngine.GetDraggedCoordinate();

if (drawPos.XValue < 10 && drawPos.YValue < 10)

SnapsEngine.ClearGraphics();

else

SnapsEngine.DrawDot(pos: drawPos, width: 20);

}

 }

}

Get the draw position.
If the

position
is in the
top-left
corner,

clear the
graphics.

Else, draw the dot.

276 Chapter 9 Creating structured data types

ptg18144483

The SnapsColor structure
Up until now our graphics programs have manipulated color as three values that rep-
resent the red, green, and blue intensity values. However, it’s often useful to be able
to manipulate a color as a single value, and I created the SnapsColor structure to allow
this:

namespace SnapsLibrary

{

 public struct SnapsColor

 {

public byte RedValue;

public byte GreenValue;

public byte BlueValue;

public SnapsColor(byte red, byte green, byte blue)

{

RedValue = red;

GreenValue = green;

BlueValue = blue;

}

 }

}

The SnapsColor structure contains three byte values: the intensity of the red, green,
and blue values that represent the color being stored. We can construct new values by
giving the amounts of each color:

SnapsColor pink = new SnapsColor(red: 255, green: 192, blue: 203);

The constructor method for the SnapsColor structure accepts the red, blue, and green
values and then stores them in the object.

There are overloaded versions of all the color-selection methods that accept a Snaps
color rather than three integer values. This would set the drawing color to pink:

SnapsEngine.SetDrawingColor(pink);

277Making a drawing program with Snaps

ptg18144483

Creating enumerated types
Structures are very useful when we want to design data storage that can hold a set of
related values. But sometimes, rather than increasing the capacity of a data-storage
element, you want to restrict the range of possible values that a variable can have. For
example, we could improve the drawing program to let the user draw with different
shaped pens or even with an erasure pen that draws with the background color. One
way to address this would be to map some integer values onto the different kinds of
pens that are available:

int penType;

if (penType == 1)

{

 // round pen

}

if (penType == 2)

{

 // square pen

}

if (penType == 3)

{

 // erase pen

}

The variable penType is an integer. The code above uses the values 1, 2, and 3 to mean
round pen, square pen, and erase pen, respectively. Each time a drawing operation
is performed, the program can select the appropriate action based on the value in
the variable. This would work fine, but from a programming point of view, it’s a bit
dangerous. There’s nothing to stop a programmer from putting an invalid value into
the variable:

penType=99;

This would break the program. What we really want is to create a new data-storage
type that can hold only three possible values. It turns out that C# provides just this, the
enumerated type:

278 Chapter 9 Creating structured data types

ptg18144483

enum PenModes

{

 RoundPen,

 SquarePen,

 ErasePen

};

The enum keyword is followed by the name of the enumerated type being created.
That name is followed by a block containing a list of the possible values that this type
can hold. The PenModes type contains three entries, but you can use as many as you
need.

Once we have created the new type, we can create some variables of that type:

PenModes penType;

The variable penType can be set to any of the values available for this type:

penType = PenModes.SquarePen;

The statement above sets the value to represent drawing with the square pen. Enu-
merated types can be used in a C# program in the same way as other types. They can
be used as parameters to methods or return values from them. But it is not possible to
do arithmetic with them. The idea of adding 1 as a PenMode value does not have any
meaning. A program can test the value of an enumerated type by using a condition.
This code tests whether the pen type is set to the square pen:

if(penType == PenModes.SquarePen)

{

 // draw with the square pen

}

Another useful side effect of using enumerated types is that code becomes easier
to understand. If the program compares penType with the value 3, the reader has to
know, or find out, that 3 means erase. But if the program compares penType with Pen-
Modes.ErasePen, what’s going on is very obvious to someone reading the code. This is
a good thing!

Create an enum called PenModes.

 List of possible values

279Creating enumerated types

ptg18144483

Making decisions with the
switch construction
Our drawing program could use a sequence of if conditions to select the required
drawing behavior, but it turns out that C# has a much better way of using enumer-
ated types when making decisions. The enumerated value can be used in a switch
condition:

switch(penType)

{

 case PenModes.RoundPen:

SnapsEngine.SetDrawingColor(drawColor);

SnapsEngine.DrawDot(drawPos, 20);

break;

 case PenModes.SquarePen:

SnapsEngine.SetDrawingColor(drawColor);

SnapsEngine.DrawBlock(drawPos.XValue, drawPos.YValue, 20,20);

break;

 case PenModes.ErasePen:

SnapsEngine.SetDrawingColor(backgroundColor);

SnapsEngine.DrawBlock(drawPos.XValue, drawPos.YValue, 20, 20);

break;

}

Ch09_15_DrawEnum

The code above shows how the switch would be used. It is part of a drawing program
that displays a palette from which the user can select how they want to draw on the
screen. The penType value is used as the control value for the switch, and the program
will select the case that matches the control value. If the round pen is being used, the
program will set the drawing color and then draw a dot. If the square pen is being
used, it will set the drawing color and draw a block by using the Snaps DrawBlock
method. Finally, if the erase pen is being used, it will set the drawing color to the back-
ground color and draw a block that will erase the drawing on that part of the screen.

You can put as many statements as you like in a particular case, but you must make
sure that the last statement in the case is the break keyword, which ends the execu-
tion of the code for that case.

Start of the switch that specifi es
the control value

Case option

break that
ends this case

280 Chapter 9 Creating structured data types

ptg18144483

You can also use the switch statement with strings and integer numbers; it can be
a convenient way of selecting a particular option. A case statement can also have a
default behavior, which is obeyed if none of the cases match the selection value. This
program would display an "Invalid Command" message because the value of the com-
mand variable does not match any of the cases in the switch:

int command=0;

switch(command)

{

 case 1:

SnapsEngine.DisplayString("Command One");

break;

 case 2:

SnapsEngine.DisplayString("Command Two");

break;

 default:

SnapsEngine.DisplayString("Invalid Command");

break;

}

You can also have multiple elements to select a particular case. The following switch
statement selects a method depending on the command that is entered. The com-
mand strings “Delete”, “Del”, and “Erase” all result in the doDelete method being
called.

string commandName = readCommand();

switch(commandName)

{

 case "Delete":

 case "Del":

 case "Erase":

doDelete();

break;

 case "Print":

 case "Pr":

 case "Output":

doPrint();

break;

281Making decisions with the switch construction

ptg18144483

 default:

doInvalidCommand();

break;

}

PROGRAMMER’S POINT

Keep your case code small
Try not to have large amounts of code in a given case. The example above, where the
switch is used to select a particular method that performs the appropriate action, is the
best way to use the switch condition.

Extra Snaps
Here are a few more Snaps you can use to make interesting graphics.

GetTappedCoordinate
GetTappedCoordinate is similar to GetDraggedCoordinate, but it returns the position
where the user tapped rather than the position where the user dragged the screen.
The position is returned as a coordinate. The TapDraw program shows how this
works, drawing a dot on the screen at each position the user taps.

using SnapsLibrary;

class Ch09_16_TapDraw

{

 public void StartProgram()

 {

while (true)

{

SnapsCoordinate tappedPos = SnapsEngine.GetTappedCoordinate();

SnapsEngine.DrawDot(tappedPos, 20);

}

 }

}

282 Chapter 9 Creating structured data types

ptg18144483

DrawLine
The DrawLine method does exactly what you would expect: it draws a line. It accepts
a start position and an end position and draws a line between them. The sample code
draws an X made up of a red line in one direction and a blue line in the other:

using SnapsLibrary;

class Ch09_17_DrawLineDemo

{

 public void StartProgram()

 {

SnapsEngine.SetDrawingColor(red: 255, green: 0, blue: 0);

SnapsEngine.DrawLine(x1: 0, y1: 0, x2: 100, y2: 100);

SnapsEngine.SetDrawingColor(red: 0, green: 0, blue: 255);

SnapsEngine.DrawLine(x1: 0, y1: 100, x2: 100, y2: 0);

 }

}

There are two versions of the DrawLine method. One of them is given the start and
end positions of the line as separate X and Y values, as you can see above. The other
is given the start and end positions as a coordinate, which makes DrawLine more
flexible. Programs can call the method that works best for them. The program below
shows how this works. It draws a line from the top-left corner (0,0) to the position on
the screen tapped by the user. This is another example of method overloading. The
name of the method (in this case DrawLine) is used to represent a number of different
methods, each of which accepts a different set of parameters.

using SnapsLibrary;

class Ch09_18_TapLine

{

 public void StartProgram()

 {

SnapsCoordinate origin = new SnapsCoordinate(x: 0, y: 0);

SnapsEngine.SetDrawingColor(red: 255, green: 0, blue: 0);

while (true)

{

SnapsCoordinate lineEnd = SnapsEngine.GetTappedCoordinate();

SnapsEngine.DrawLine(p1: origin, p2: lineEnd);

}

283Extra Snaps

ptg18144483

 }

}

GetScreenSize
Your programs may have to run on a variety of different devices: a desktop PC, a
tablet PC, a mobile device, or maybe even a Raspberry Pi. Each of these will have a
different display resolution; the width and height of the screen will be different. The
GetScreenSize method returns a Snaps coordinate with the X value set to the width of
the screen and the Y value set to the height.

The StarMaker program shown next gets the screen size and then uses this to work
out the center of the display. The user can then draw a star by tapping different places
on the screen. The program draws a line from the center of the screen to the position
of each tap.

using SnapsLibrary;

class Ch09_19_StarMaker

{

 public void StartProgram()

 {

SnapsEngine snaps = new SnapsEngine();

SnapsCoordinate screenSize = SnapsEngine.GetScreenSize();

SnapsCoordinate center;

center.XValue = screenSize.XValue / 2;

center.YValue = screenSize.YValue / 2;

SnapsEngine.SetDrawingColor(red: 255, green: 0, blue: 0);

while (true)

{

SnapsCoordinate lineEnd = SnapsEngine.GetTappedCoordinate();

SnapsEngine.DrawLine(center, lineEnd);

}

 }

}

284 Chapter 9 Creating structured data types

ptg18144483

PickImage
In Chapter 5, you saw how to use DisplayImage to display images in your programs. A
program can use PickImage to select and display an image. The program will display
a file-selection menu so that the user can pick an image for display, and the image will
then be fitted to the screen.

using SnapsLibrary;

class Ch09_20_PickImage

{

 public void StartProgram()

 {

SnapsEngine.PickImage();

 }

}

What you have learned
In this chapter you’ve learned how to design and create new data types that act as
containers for a number of data members. These new types can be used in the same
way as data types that are built into the C# language. Programs can create variables
of these new types—for example, descriptions of musical notes—and these variables
can be passed into methods and returned as the result of a method call. A structure
can have a constructor method that is used to create a new structure and set the initial
values of the members inside the structure.

The data members inside a structure can be accessed individually, and they can
also be made private or public. Public data members can be used by program code
outside the structure. Making data public means that programs can have easy access
to the contents of a structure, but it also means that the structure cannot control the
content of the values that it holds. A program can contain arrays of structure values,
which can be preset inside the program. The structures themselves can also contain
methods that will allow a structure value to perform actions when requested.

You’ve seen a variety of contexts in which structures can be used to good effect.
You’ve seen how the data required to represent graphical coordinates, colors, and
even musical notes can be stored inside a single object. These structures can also

285What you have learned

ptg18144483

contain methods that allow a structure object to behave in a cohesive manner. For
example, a musical note structure can contain a method that can be used to make
the note play itself. We’ve also taken a look at the way that graphical displays and
user interfaces are created by computer programs in terms of how graphical objects
are displayed on the screen and how a program can be made to respond to a user’s
actions.

You have discovered how to make new types—enumerated types—that have a
limited number of particular values. You can use these in your programs to reduce
program errors because you are ensuring that the variable of an enumerated type
cannot be set to a meaningless value. Finally, you’ve seen how to use the C# switch
construction to select a particular option from a given range, and you’ve learned that
switches work extremely well with enumerated types.

Here are some questions to ponder about the topics in this chapter:

Does using structures in programs slow the program down?

We considered a similar question when looking at methods in Chapter 8. Structures
are similar to methods in that they make it much easier to manage large programs
that work on complex items of data. There is some processor overhead in working
with structures, but I think this is better than all the effort required to write a program
without structured data.

When should I use private in a structure?

Structures (and indeed objects) work best if they have total control over the data that
is stored within them. When you write programs, you should be concerned about
situations where your program starts to work with invalid data. We know that a music
program that contains invalid note information will sound wrong when it tries to play
those notes, so we make the data inside the notes private so that the data cannot be
changed by program code outside the note. You can also create a constructor method
that will not allow a note (or other data) to be created that contains invalid informa-
tion. This means that a given note value is guaranteed to have integrity, in that there is
no way the system can create an invalid note or corrupt an existing one.

Can structures contain other structures?

Indeed they can. This can be the basis of very good design. A graphics application
might have a need for a “dot” data structure that contains the coordinate where the
dot is to be drawn and the color of the dot. We could use values of color and coordi-
nate structures inside the dot structure. This would make our program easier to write
and also, because we would be using objects that had already been created and (we
hope) tested, make the program more reliable.

286 Chapter 9 Creating structured data types

ptg18144483

Should we store the color values as an enumerated type?

This is a good question. I think the answer is no. There are two reasons for this. The
first is that there are lots of possible color values because there are many millions of
ways of combining the possible values of red, green, and blue. There are a few partic-
ular colors that we might think of as special: for example, pure red, green, and blue,
along with black and white. However, many other colors exist for which we don’t have
specific names. The second reason why it would not be sensible to represent a color
as an enumerated type is that you can regard a color value as being made up of red,
green, and blue values, but an enumerated type holds only one value.

Do we have to use the switch construction in our programs?

The switch construction is definitely useful, but you can write successful programs
without using it. Programmers call this syntactic sugar. It’s something nice, but it
doesn’t make possible anything that you couldn’t already do.

287What you have learned

ptg18144483

10
Classes and
references

ptg18144483

What you will learn
In the previous chapter you saw how a programmer can create custom
designs for variables. If a program needs to manipulate musical notes,
graphical coordinates, or color values, you can create data structures for
these types of data and use those structures in the same way that you do
the built-in data types provided by C#.

In this chapter, you will expand on this knowledge and learn how to design
classes, which build on the abilities of structures and on the way a program
can work with very large and complex data items. You’ll fi nd out how to use
properties to manage access to data held inside objects and how C# uses
references to reduce the need to move data objects around in memory.
You’ll wrap up this chapter by learning how to store data using classes.

Making a time tracker .290

Structures and classes .306

From arrays to lists. .319

Storing data using JSON .323

Fetching data using XML .329

What you have learned .334

289

ptg18144483

Making a time tracker
Programs have a habit of growing bigger. Sometimes this occurs because you
underestimate the scope of the problem (which is bad), but it can also happpen
because your customer likes your first program and comes back to you with additional
requests (which is good). In this chapter, the news is good. We heard back from our
friend the lawyer, who’s been using the tiny contact book we created in Chapter 8. She
now asks you to add to the program the capability to track the amount of time she
spends with a client so that she has this information handy for billing. She would also
like to be able to discover which customers occupy most of her time.

Creating a structure to hold contact
information
A good start would be to improve the way that contact information for an individual
is stored. In the previous Tiny Contacts program, the information was stored in a num-
ber of different strings—one for each data item. For the updated program, we can
design a structure to hold contact information and then store a collection of objects
built from the structure.

Here is my design for a structure named Contact. The structure contains four member
values, which hold the name, address, phone number, and time spent with a specific
contact. The name, address, and phone number items are held as strings, and the
number of minutes spent with the contact is held as an integer. The structure also con-
tains a constructor method that a program can use to set up the values in the contact.
Note that the MinutesSpent value is set to 0 when the contact is created.

struct Contact

{

 public string ContactName;

 public string ContactAddress;

 public string ContactPhone;

 public int ContactMinutesSpent;

 public Contact(string name, string address, string phone)

 {

ContactName = name;

ContactAddress = address;

ContactPhone = phone;

ContactMinutesSpent = 0;

 }

}

290 Chapter 10 Classes and references

ptg18144483

This code gives us a template for the Contact structure, which the program uses when
it declares a variable of type Contact, like this:

public static void StartProgram()

{

 Contact rob = new Contact(name: "Rob", address: "Rob's House",

phone: "Rob's Phone");

 SnapsEngine.SetTitleString("Contact Structure Demo");

 SnapsEngine.ClearTextDisplay();

 SnapsEngine.AddLineToTextDisplay("Name: " + rob.ContactName);

 SnapsEngine.AddLineToTextDisplay("Address: " + rob.ContactAddress);

 SnapsEngine.AddLineToTextDisplay("Phone: " + rob.ContactPhone);

 SnapsEngine.AddLineToTextDisplay("Minutes: " +

rob.ContactMinutesSpent.ToString());

}

Ch10_01_ContactStructure

This program creates a new Contact value and uses the constructor method in the
structure to set the name, address, and phone number properties. These are then
displayed as you see in Figure 10-1.

Figure 10-1 Contact structure demonstration.

PROGRAMMER’S POINT

Use structured data everywhere you can
You now have a powerful skill. You can design structures to represent any kind of data that
you need to work with, from space aliens to chickens to toothbrushes. True confession: I
actually like to practice designing structures. When I’m shopping, I like to consider what
data the store holds about each of the objects in stock and how these could be managed.
You might like to do the same; it helps you become a better developer.

291Making a time tracker

ptg18144483

Using the this reference when working
with objects
The constructor method for the Contact structure has a set of parameters that are
passed into the method when it’s called. The parameters make it very easy to set the
contents of a new Contact structure value.

Contact rob = new Contact(name: "Rob", address: "Rob's House",

phone: "Rob's Phone");

The parameters to the constructor are called name, address, and phone, which makes
sense. However, these are very similar to the names of the member values stored in
the contact, which are called ContactName, ContactAddress, and ContactPhone.
There is a danger that a developer might confuse the constructor parameters and the
members of the object and create a program that doesn’t work properly.

It would be useful if there was a way that code running inside an object could explicitly
specify when it wants to use variables that are members of the object. It turns out that
we can do this by using a C# keyword that is confusingly called this.

public Contact(string name, string address, string phone)

{

 this.ContactName = name;

 this.ContactAddress = address;

 this.ContactPhone = phone;

 this.ContactMinutesSpent = 0;

}

In the preceding code, the keyword this makes it explicit that the members of the
structure are being initialized by using the constructor parameters.

Broken constructor problems
The best way to understand how this works is to take a look at a situation where it is not
used properly. The CupCake structure has been designed to hold cupcake recipes for a baker.
It holds the name, ingredients, and recipe.

CODE ANALYSIS

292 Chapter 10 Classes and references

ptg18144483

struct CupCake

{

 public string Name;

 public string Ingredients;

 public string Recipe;

 public CupCake(string Name, string Ingredients, string Recipe)

 {

Name = Name;

Ingredients = Ingredients;

Recipe = Recipe;

 }

}

Question: The constructor method shown above is supposed to use the values of its param-
eters to set the data members inside the CupCake value that is being created. Unfortunately,
this code is not correct and won’t compile correctly. What’s wrong?

Answer: The parameters to the constructor have the same names as the data members
inside the structure. This is quite legal C#. Within the CupCake constructor, the identifier
Name means the parameter to the method, not the Name property of cupcake. This is
called hiding because the member called Name has been hidden by the parameter with
the same name.

There is nothing to stop a programmer from “hiding” a member variable in this way.
However, in the constructor above, the result is that the data members of the structure
are not assigned by the constructor, which means that the compiler will refuse to compile
the code. We can fix this by using the this keyword to specifically identify the data
members inside the object as the target of the assignment.

struct CupCake

{

 public string Name;

 public string Ingredients;

 public string Recipe;

 public CupCake(string Name, string Ingredients, string Recipe)

 {

this.Name = Name;

this.Ingredients = Ingredients;

this.Recipe = Recipe;

 }

}

Ch10_02_CupCakeStructureWithThis

293Making a time tracker

ptg18144483

The compiler is now much happier. The parameter values are being copied into the data
members in the structure and the use of this has removed all ambiguity.

PROGRAMMER’S POINT

You can use this to add clarity to your code
I try to use this every time I access a data member from an object because it adds a lot
of clarity to the code. Some programmers use a naming convention so that it is obvious
which variables are members of a class. (A popular technique is to put the characters m_ in
front of the identifiers of member variables.) Whichever you use is fine by me, as long as
you’re consistent in what you do. If you get a job as a programmer, you may well be told
that the company uses particular conventions in situations like this so that code is easier to
understand.

Managing lots of contacts
The original Tiny Contacts manager stored details in special local storage on the
device. This works fine for storing individual items, but the lawyer wants to be able to
manipulate contact information as a whole—she wants the program to sort the list of
contacts by the amount of time she spends with them.

We have seen that we can use arrays to store collections of information. Our program
can contain an array of contacts such as this:

Contact[] contacts = new Contact[100];

This statement will create an array of “empty” contact structures. When C# makes an
empty structure variable, it sets numbers in the structure to the value 0 and strings in
the structure to a special value called null. We saw in Chapter 8 that the value null is
a way that a program can explicitly represent the situation where a variable does not
contain a value.

bool storeContact(Contact contact)

{

 // work through each element in the array using a for loop

 for (int position = 0; position < contacts.Length; position = position+1)

 {

if (contacts[position].ContactName == null) If the name is null, this
element is empty . . .

294 Chapter 10 Classes and references

ptg18144483

{

contacts[position] = contact;

return true;

}

 }

 return false;

}

The storeContact method is given a contact value to put in the array. It searches for
an empty element in the array to store the contact in. An empty element has a Con-
tactName member that is set to null. When the method finds an element with a null
ContactName member, the method copies the contact being stored into the array at
that position and returns the Boolean value true to mean that the contact was stored
successfully.

Filling up the array
Question: What happens when the array is completely full?

Answer: Each time a contact is stored in the array, the ContactName value in that array
element is no longer null. If the program continues to add items, at some point there are
no elements with an empty name. In this case, the loop that is searching for an empty
element will run to completion and the method will continue to the statement after the
for loop. This returns the value false so that the code that called the method can detect
that the save action failed and display an appropriate message:

Contact newContact =

 new Contact(name: name, address: address, phone: phone);

if(StoreContact(newContact))

{

 SnapsEngine.DisplayString("Contact stored");

}

else

{

 SnapsEngine.DisplayString("Storage failed");

}

. . . copy the contact
into the array

CODE ANALYSIS

295Making a time tracker

ptg18144483

The preceding code creates a new contact and attempts to store it. If the contact is stored
correctly, a message is displayed. If the StoreContact method returns false, the code will
display a different message—“Storage failed.”

Question: Why doesn’t the StoreContact method throw an exception if the storage fails?
That would guarantee that a programmer would have to deal with the situation where the
program runs out of storage space.

Answer: This is a very good question. My code is making the assumption that the
programmer who is storing a contact will make sure that the program deals with the situ-
ation when there is no room to store the contact. It seems obvious to me that a program-
mer would do this, so I don’t feel the need to stop the program if this foreseeable mistake
is made. Of course, there is an element of risk in this choice because if a programmer
does ignore the return from StoreContact, it means that there is a chance the user
might think that something has been stored successfully when it hasn’t.

Making test data
To test the Time Tracker, we are going to need a few contacts to track. I could add
these individually, but this is not really a good use of my time, particularly because I
could easily write a bit of code that will make the contacts for me.

void makeTestData()

{

 string [] testNames = {

 "Rob", "Mary", "David", "Jenny",

 "Simon", "Kevin", "Helen", "Chris",

 "Amanda", "Sally" };

 // the number of minutes for contacts

 int minutes = 0;

 foreach (string name in testNames)

 {

Contact newContact = new Contact(name: name,

address: name + "'s house",

phone: name + "'s phone");

newContact.MinutesSpent = minutes;

minutes = minutes + 30;

storeContact(newContact);

 }

}

296 Chapter 10 Classes and references

ptg18144483

The method makeTestData creates 10 contacts. It works through the array of names
and creates a contact for each of them. It uses the name of the contact to create fake
address and phone data and then adds the new contact to the array of contacts. A
contact is also given a particular number of minutes of contact time, each getting 30
minutes more than the previous one.

PROGRAMMERS POINT

You can get a lot of credibility by making good test data
Over the years I’ve watched a lot of demonstrations of software. Quite often someone will
show me a system that is designed to handle many thousands of customers, but their demo
will show only five or six because they “didn’t have time to enter lots of test data.” I find it
very hard to take such demonstrations seriously. I’m much more impressed by a demon-
stration that contains thousands of customers. You can create lots of names by combining
first names and surnames. Twenty first names and twenty surnames will give you four
hundred people to work with.

Our program can create a set of test data when it starts running. Of course, we will
need to be careful not to release the software with the test data in it. Later on in the
book, I’ll describe ways that you can instruct the compiler to ignore sections of source
text in a program file when it builds the program.

Designing the Time Tracker user interface
Now that you know how to store data in the Time Tracker, we can design the way
that the user will interact with the system. As usual, you sit down with the customer
and work out what the new program should look like when it runs. The program will
need four menu options. Two of them are the same as the previous contact-manager
application, but we now have time-tracking features that the user can select. These
are activated by using two new buttons on the main menu, as shown in Figure 10-2.

Figure 10-2 Time Tracker main menu.

297Making a time tracker

ptg18144483

Structuring the Time Tracker program
You have seen before that a good way to design a program is to create the user
interface and then create methods for each of the button behaviors. At the start of
development, the methods are empty, and the creation of the program boils down
to filling in the methods that perform each of the behaviors. In the case of the Time
Tracker, we have four methods to implement; newContact, findContact, addMinutes
and displaySummary.

void newContact()

{

 SnapsEngine.SetTitleString("New Contact");

 SnapsEngine.WaitForButton("Continue");

}

This is the starting code for the newContact method. All the others have the same for-
mat. We will fill out each of these methods to perform the required task. The program
uses a switch construction to select the method to run, depending on which com-
mand the user selects:

while (true)

{

 SnapsEngine.SetTitleString("Time Tracker");

 string command = SnapsEngine.SelectFrom4Buttons("New Contact", "Find Contact",

"Add Minutes", "Display Summary");

 switch (command)

 {

case "New Contact":

newContact();

break;

case "Find Contact":

findContact();

break;

case "Add Minutes":

addMinutes();

break;

case "Display Summary":

298 Chapter 10 Classes and references

ptg18144483

displaySummary();

break;

 }

}

PROGRAMMER’S POINT

Filling in the blanks is a good way to build systems
This is a really good way to build software. It means that right from the start you have a
program that does something. It might just show you the name of the selected function,
but at least it runs. I much prefer this to an approach where you write a thousand lines of
code and then run it to find out what it does. Once you have the empty methods, you can
decide which one to create first and then work through and implement each in turn.

Creating a new contact
The first method we should write is the one that creates a new contact. We’ve already
written the method that will store the contents of a contact in the array. Now we just
have to create a method that reads the information from the user and then stores it.

void newContact()

{

 SnapsEngine.SetTitleString("New Contact");

 string name = SnapsEngine.ReadString("Enter new contact name");

 string address = SnapsEngine.ReadMultiLineString("Enter contact address");

 string phone = SnapsEngine.ReadString("Enter contact phone");

 Contact newContact = new Contact(name: name, address: address, phone: phone);

 if (storeContact(newContact))

 {

SnapsEngine.DisplayString("Contact stored");

 }

 else

 {

SnapsEngine.DisplayString("Storage failed");

 }

}

299Making a time tracker

ptg18144483

This is the full implementation of the newContact method. It is called when the user
selects the command to create a new contact. It asks the user for content details, cre-
ates a new contact, and then adds the contact to the array.

Finding customer details
Now that we have a set of customers to work with, we can write the method that finds
the details of a customer and displays them:

void findContact()

{

 SnapsEngine.SetTitleString("Find Contact");

 string name = SnapsEngine.ReadString("Enter contact name");

 bool foundAContact = false;

 SnapsEngine.ClearTextDisplay();

 foreach (Contact contact in contacts)

 {

if (contact.ContactName == name)

{

SnapsEngine.AddLineToTextDisplay("Name: " + contact.ContactName);

SnapsEngine.AddLineToTextDisplay("Address: " + contact.ContactAddress);

SnapsEngine.AddLineToTextDisplay("Phone: " + contact.ContactPhone);

SnapsEngine.AddLineToTextDisplay("Minutes: " +

contact.ContactMinutesSpent.ToString());

foundAContact = true;

break;

}

 }

 if (!foundAContact)

SnapsEngine.AddLineToTextDisplay("Contact not found");

 SnapsEngine.WaitForButton("Continue");

 SnapsEngine.ClearTextDisplay();

}

300 Chapter 10 Classes and references

ptg18144483

The findContact method is called when the user wants to view the details of a con-
tact. It asks for the name of the contact and then works through the array of contacts
to find the one with the matching name. If it finds a matching contact, it will display
the contact details and set a flag, called foundAContact, to indicate that the contact
has been found. After the loop has completed, the value of foundAContact is checked,
and if it is false (that is, no contact was found) a message is displayed.

Duplicate names
There is actually a serious bug in the system that we’ve created. It is possible to create a new
contact with the same name as an existing one. And because the “duplicate” contact will
be stored further down the array than the original one, it will never actually be used. The
program will always find the original contact first. This would result in one of our array ele-
ments being wasted. You might like to consider how you could modify the program so that it
doesn’t have this problem.

PROGRAMMER’S POINT

Look for problems when you are defining the specification
When you talk to the lawyer about the Time Tracker application, there is no guarantee that
problems such as duplicate contact names will be discussed. It is the job of the program-
mer to consider the ways a system can go wrong and add the extra behaviors to deal with
these. There are a number of different ways to handle duplicate account names. You could
number names to create “Rob Miles1” and so on. You could make the system ask “Are you
the Rob Miles from Hull?” when searching for an account, or you could create a contact
number that is unique for each contact. Giving items in a system a unique name means
that they can be managed much more precisely and also can be used to handle situations
where the name of an item might change.

You need to find out how the lawyer wants to handle the problem. The worst thing you can
do in a situation like this is to assume you know what the customer would like the system
to do. This will almost certainly mean your solution will behave incorrectly when things go
wrong.

Of course, you must also make sure that your system can manage the situation when your
solution fails. Using a unique number for each contact is a great idea, but you will also
need to add a way of dealing with the situation when the lawyer forgets the number for a
particular contact.

WHAT COULD GO WRONG

301Making a time tracker

ptg18144483

Adding minutes to a contact
Now that we know how to make the program store and display contact details, we
need to write the method that will add the minutes that the lawyer spends with a par-
ticular customer. If the Add Minutes option is selected, the program allows the lawyer
to select a contact and then add a value to the number of minutes spent working for
that contact. Figure 10-3 shows the screen used to add minutes once we have found
a contact.

Figure 10-3 Adding minutes to a contact's details.

Once the user has added the minutes for that customer, the program displays a dialog
box to confirm what it has done, as shown in Figure 10-4.

Figure 10-4 Confirmation message that minutes have been added.

We might want to revisit this design in the future. The customer might ask for an
option to review the changes that are about to be made, but for now this looks like a
workable sequence.

We can implement this by using a method structure similar to the findContact
method, except in this case we won’t display the customer details but instead update
the minutesSpent value of the customer that we find.

302 Chapter 10 Classes and references

ptg18144483

void addMinutes()

{

 SnapsEngine.SetTitleString("Add Minutes");

 string name = SnapsEngine.ReadString("Enter contact name");

 int minutes = SnapsEngine.ReadInteger("Enter contact minutes");

 bool foundAContact = false;

 SnapsEngine.ClearTextDisplay();

 for (int position = 0; position < contacts.Length; position = position + 1)

 {

if (contacts[position].ContactName == name)

{

SnapsEngine.AddLineToTextDisplay("Added " + minutes + " minutes\n" +

"to " + name);

contacts[position].ContactMinutesSpent =

contacts[position].ContactMinutesSpent + minutes;

foundAContact = true;

break;

}

 }

 if (!foundAContact)

SnapsEngine.AddLineToTextDisplay("Contact not found");

 SnapsEngine.WaitForButton("Continue");

 SnapsEngine.ClearTextDisplay();

}

The first thing the addMinutes method does is request the name of the contact and
the number of minutes to be added. Then the method uses a loop to work through
the Contacts array, searching for a contact with the selected name. If the contact is
found, the MinutesSpent value is updated. The method uses the same flag technique
we used for the findContact method to display “Contact not found” if the contact
is not found. Note that, as you saw in Chapter 7, a foreach loop lets a program work
through the items in a collection, but the code in the loop is not allowed to change
the contents of the item that is extracted from a collection by the loop. This means
that the addMinutes method uses a conventional for loop with a counter to find the
contact that needs to be updated. To go into more detail about the reasons for this
behavior would fill up the rest of this chapter, so I’d be most grateful if you could be
happy with that explanation and just remember that if you want to work through

303Making a time tracker

ptg18144483

an array and make changes to the elements in it you have to use a for loop with a
counter variable.

Display a summary
The final option we have to add is one that lets the user see how much time has been
spent with each contact. The Display Summary menu option allows the lawyer to
view how much time she has spent with each of her contacts. Figure 10-5 shows a
summary of the contact times.

Figure 10-5 Summary of minutes spent with contacts.

We provide this behavior in the final method, which is named displaySummary.
This method displays the names of the top five clients and the time that they have
spent with the lawyer. We can create this output by sorting the contacts array into
descending order of minutes spent and then displaying the first five elements in the
array. The sorting can be performed by using a bubble-sorting routine that repeatedly
swaps elements in the array if they are in the wrong order:

for (int pass = 0; pass < contacts.Length - 1; pass = pass + 1)

{

 for (int i = 0; i < contacts.Length - 1; i = i + 1)

 {

if (contacts[i].ContactMinutesSpent < contacts[i + 1].ContactMinutesSpent)

{

// the elements are in the wrong order, need to swap them round

Contact temp = contacts[i];

contacts[i] = contacts[i + 1];

contacts[i + 1] = temp;

}

304 Chapter 10 Classes and references

ptg18144483

 }

}

We first used bubble sorting in Chapter 7 when we sorted ice-cream sales figures. This
is not a very efficient version of the sort, but it will put the largest values at the top.
The next thing to do is build a display of those values:

SnapsEngine.SetTitleString("Contact Times");

SnapsEngine.ClearTextDisplay();

for (int position = 0; position < 5; position = position + 1)

{

 if (contacts[position].ContactName == null)

break;

 SnapsEngine.AddLineToTextDisplay(contacts[position].ContactName +

":" + contacts[position].ContactMinutesSpent);

}

SnapsEngine.WaitForButton("Continue");

SnapsEngine.ClearTextDisplay();

This code looks at the first five elements in the array and adds them to a results string
that is then displayed. The code also checks to be sure that it is displaying a valid con-
tact by looking for a nonnull name at that position in the array. If it finds a null name,
it abandons the display.

Fix the Time Tracker program
The program that we have created works, but it is not all that good. I can think of several ways
in which it is less than perfect:

 ● The program allows the user to enter two contacts with the same name.

 ● When updating the minutes-spent value for a customer, if the user enters a contact name
that is not in the contact array, the program still asks for a number of minutes for that
contact, even though adding the minutes is bound to fail.

MAKE SOMETHING HAPPEN

305Making a time tracker

ptg18144483

 ● If the user enters a negative number of minutes, the program will add this to the number
of minutes and cause that value to go down.

 ● The program does not give the user a chance to confirm the action that is to be
performed.

Fix the program so that it works correctly. You might like to add a new command that also
clears out the contacts list. You can find a version to start from in Ch10_03_TimeTracker.

Structures and classes
We are now approaching the most important part of this chapter, where you’ll learn
the difference between structures (which we have been using for a while now) and
classes (which you are about to discover how to use). Structure variables are managed
by value, and class variables are managed by reference. In Chapter 8 you saw values
and references in the context of method parameters; now you are going to explore
them in the context of object design.

Sorting and structures
The updated time-tracking program is nearly finished. When you show it to the law-
yer, she’s very impressed, but then she makes another request. She’d like to be able to
see a summary list of her clients sorted in order of their names. From a programming
perspective this is not a hard thing to do. We can use the Bubble Sort technique to
perform the sort and compare the names of the contacts. However, you need to think
hard about the effect that sorting has on the data.

When you sort an array that contains the values of structure variables, the computer
has to do quite a lot of work. Here are the statements that swap the content of two
adjacent elements in the contacts array.

// The elements are in the wrong order, need to swap them round

Contact temp = contacts[i];

contacts[i] = contacts[i + 1];

contacts[i + 1] = temp;

Each time one contact is assigned to another, the entire contents of that contact
object are moved from one part of memory to another—and the program will

306 Chapter 10 Classes and references

ptg18144483

perform all the moving around of data each time we sort the contacts by name or by
the minutes spent.

In the case of the time-tracking program, this is not a huge problem because the
contact structures are quite small and there are not very many of them to be sorted.
But if we were working with lots of large data items, perhaps medical records or bank
accounts, this swapping process would be very slow, which would be a problem. Each
time we wanted to reorder data—for example, sort on customer name rather than the
amount of money in each account—the computer would have a lot of work to do.

Sorting and references
What we want is a more efficient way of moving variable values around in memory.
To understand this problem, consider how money used to be managed on the Pacific
Island of Yap. The currency on this island was once based on stones that were 12 feet
high and weighed several hundred pounds each. The value of a “coin” in the Yap
currency was directly related to the number of men who died in the arduous boat
journey bringing the rock to the island. The bigger and harder a rock was to move, the
more it was worth.

When you paid someone with one of these stones, you didn’t actually pick it up and
give it to them because the stone was too heavy. Instead, you said to them, “The stone
by the road on top of the hill is now yours.” In other words, the people on Yap used
references to manage objects that they didn’t want to have to move around. We can
also use references in our programs.

Figure 10-6 shows what happens when the Bubble Sort algorithm swaps adjacent
elements in an array until they are all in the right order. Remember that the program
has to move a lot of data around during the sorting as the values “bubble” into their
correct positions. When the sort has completed, the elements have been moved into
order.

Figure 10-6 Sorting by moving objects around

307Structures and classes

ptg18144483

Figure 10-7 shows how we could sort the information by using references. The objects
themselves never move. Instead, we have an array of references. Each reference in
the list refers to one object in memory, and during the sort we only have to exchange
the values of the references themselves, which are much smaller and easier to move
around in memory than the objects that they refer to.

Figure 10-7 Sorting by using references.

References get even more useful when you consider the possibility of multiple lists of
references that order the data items in different ways. To satisfy the requirements of
the updated contact app, we could have two lists—one ordered on customer name
and another ordered on the minutes spent.

Reference and value types
It is very important that you understand the distinction between reference and value
types because the distinction has a huge impact on the way that variables are used.
Consider this code:

struct ContactStruct

{

 public string ContactName;

 public string ContactAddress;

 public string ContactPhone;

 public int ContactMinutesSpent;

}

This is the Contact structure we’ve been using. A program can create a variable of
type ContactStruct simply by declaring something of that type:

308 Chapter 10 Classes and references

ptg18144483

ContactStruct structRob;

structRob.ContactName = "Rob";

SnapsEngine.DisplayString(structRob.ContactName);

These statements create a structure variable named structRob and then set the
ContactName property of the variable to the string “Rob”. When the statements are
performed, they do exactly what you would expect: the name “Rob” is displayed in
relation to the variable structRob. You can use the other data members of the Con-
tactStruct object in the same way because the ContactStruct structure contains
space to hold each data member.

Now let’s make a small change to the program and convert the contact structure to a
class:

class ContactClass

{

 public string ContactName;

 public string ContactAddress;

 public string ContactPhone;

 public int MinutesSpent;

}

The contact information is now being held in a class rather than a structure. You might
think that you can use ContactClass in exactly the same way as ContactStruct:

ContactClass classRob;

classRob.Name = "Rob";

But when we compile the program, we get an error:

Error CS0165: Use of unassigned local variable 'classRob'

What’s going on? To understand, you need to know what operation the following line
performs:

ContactClass classRob;

This statement looks like a declaration of a variable of type ContactClass named
classRob. However, what this statement creates is not the same as when a program
declares a variable of a structure type. What you actually get when the program obeys
the preceding statement is a reference named classRob. Such references are allowed

309Structures and classes

ptg18144483

to refer to instances of ContactClass. You can think of a reference being like a lug-
gage tag, in that it can be tied to a suitcase with a piece of rope or twine. If you have
the tag, you can follow the rope to the object it is tied to.

But when you create a reference, you don’t actually get one of the things that the
reference can refer to. The compiler knows this, so it displays an error, because the line

classRob.ContactName = "Rob";

is an attempt to find the object that is tied to the classRob tag and set the Contact-
Name property to “Rob”. But because the tag is not currently tied to anything (and the
compiler knows this), the program is not allowed to run. The compiler says, in effect,
“You are trying to make a program follow a reference that has not been set to refer to
anything. Therefore, I am going to give you a ‘variable undefined’ error.”

You solve this problem by creating an instance of the class and then connecting a tag
to it. You use a statement such as the following to do this:

ContactClass classRob;

classRob = new ContactClass();

classRob.Name = "Rob";

The highlighted statement creates a new ContactClass instance that is referred to by
the reference named classRob. This relationship is shown in Figure 10-8.

 Figure 10-8 Creating a new object.

You have seen the new keyword before. We used it to set up structure values by calling
the constructor for the structure. What the new keyword creates is an object, and an
object is an instance of a class. Let me repeat that on its own line:

An object is an instance of a class.

It is very important that you understand this.

Remember from Chapter 3 that a class definition provides the design of an object. The
new keyword asks that the class information be used, like a blueprint, to actually make
an object in the memory of your program, this object is the instance of the class.

310 Chapter 10 Classes and references

ptg18144483

Note in Figure 10-8 that I named the object ContactClass not classRob. I did this
because the object instance does not have the identifier classRob; that instance is
simply the one that classRob is connected to at the moment. Which particular object
a reference refers to can change as the program runs. This happens, for example,
when a program assigns a new value to a reference.

References and assignments
Using references to manage objects changes the behavior of the assignment opera-
tor—the operator that programs use to change the value of variables. Consider the
following statement:

ContactStruct s1;
ContactStruct s2;
s1.ContactName = "Rob";

s2 = s1;

s2.ContactName = "Jim";

We can regard the two variables (s1 and s2) as named boxes in memory, with each
box holding a particular value. When we perform an assignment, the program copies
the value from one box to the other. These statements would complete with two con-
tact structures, one containing the name “Rob” and the other the name “Jim”.

However, when the program starts using references, the situation changes.

ContactClass c1 = new ContactClass();

ContactClass c2 = new ContactClass();

c1.ContactName = "Rob";

c2 = c1;

c2.ContactName = "Jim";

This sequence of statements does exactly what the ones we just saw do. However,
these work with variables of type contactClass. At the end of the statements, we have
an arrangement such as is shown in Figure 10-9. Both of the tags are now tied to the
same object in memory, and the object originally assigned to c2 has nothing tied to
it at all. The name of the contact is now “Jim” because the final assignment overwrote
the value of “Rob” that was set earlier.

 Create contact structure s1
 Create contact structure s2

 Set the name of s1 to Rob
 Set the value of s2 to the value of s1

 Set the name of s2 to Jim

 Create a contact class reference called
c1 referring to a new contact

Create a contact class reference called
c2 referring to a new contact

Set the name of the contact referred to by c1 to “Rob”
 Make c2 refer to the same object as c1

 Set the name of the contact referred to by c2 to “Jim”

311Structures and classes

ptg18144483

Figure 10-9 Assigning references.

C# does not have a problem with programs that attach multiple reference tags to a
single object. But they do have an effect on what happens when the program runs.

When you work with references, you have to remember that the assignment operator
now works in this way. Rather than moving data from one variable to another, it makes
two references refer to the same object in memory. This is very useful if your program
has good reason to do this—for example, so that two documents in a word processor
can share a single dictionary—but it is also very confusing if you don’t plan for it.

PROGRAMMER’S POINT

References are tricky but vital
There is a trickiness with objects and references. There is no limit to the number of refer-
ences that can be attached to a single instance, so you need to remember that changing
the object that a reference refers to may well change that instance from the point of view
of other objects. This is terribly useful, but as they say in the comic books, “With great
power comes great responsibility.” Later on in this chapter we’ll take a closer look at how to
use references.

Objects that have no references to them
One other situation we need to consider is when an object in memory can end up
having nothing referring to it. We saw this in Figure 10-9, where the reference origi-
nally assigned to c2 ended up “hanging” in space, with nothing referring to it. As far as
making use of data in the instance is concerned, it might as well not be there.

The C# language implementation has a special process called the garbage collector
that is given the job of finding such useless items and disposing of them. Note that the
compiler will not stop us from writing code that releases references to objects; this all
happens when the program runs, not when it is compiled.

312 Chapter 10 Classes and references

ptg18144483

You should also remember that you can get a similar effect when a reference to an
instance goes out of scope:

{

 ContactClass localVar;

 localVar = new ContactClass();

}

The variable localVar is local to the block. When the program execution leaves the
block, the local variable is discarded. This means that the only reference to the Con-
tactClass is also removed, meaning another job for the garbage collector.

PROGRAMMER’S POINT

Try to avoid making work for the garbage collector
While it is sometimes reasonable to release items you have no further use for, you must
remember that creating and disposing of objects takes up processor time. When I work
with objects, I worry about how much creating and destroying I am doing. Just because
the objects are disposed of automatically doesn’t mean that you should abuse the facility.
One way to improve performance is to have a “free list” of objects that are not currently in
use. When the program needs a new object, it gets it from the list rather than by creating a
new one from scratch. Unwanted objects are put in the free list rather than discarded. The
Windows operating system itself makes use of this programming trick to manage many of
the objects that keep the system going.

Value types vs. reference types—Fight!
Given their confusing nature, you might think that using references is a bad idea. They add
complications to your program that you’d rather not have. But in the great tradition of video
games, let’s take a look at how value types and reference types can work together to solve
programming problems.

Value types

A value type is the kind of thing you’ll find holding the height of a football player, the amount
of money you have in the bank, the color of a pixel, or the date you were born. These are just
values that describe something. We never want to share these objects. They just represent
values that a program is interested in.

CODE ANALYSIS

313Structures and classes

ptg18144483

Value types: Special skills

 ● When assigned, all the content of the value type is copied to the destination.

 ● When you pass a value type into a method, the method is given a copy of the value and
can’t mess with the original.

 ● When a method returns a value type result, this is just a value and the user can’t mess
with the original.

Value types: Weaknesses

 ● It can be hard to move value types around in memory. A very large structure (which will
be managed by value) will take a lot of effort to copy when it is moved from one location
to another.

 ● If you want to make a method that changes the content of a value type, you have to copy
the contents of the value into the method when it is called and then copy the changed
version back into your program afterward, which is slow.

Reference types

A reference type refers to things like your bank account details. It is useful when a program
includes something that you really don’t want to move around much and you want programs
to be able to share. This can be something that is effectively read-only—for example, the
image file for a corporate logo that is used in lots of documents or a sound file that is played
to alert a user. A reference can also refer to a large data object—for example, a huge cus-
tomer account record—that you’d prefer not to move around in memory.

Reference types: Special skills

 ● Changing a reference so that it refers to a different object is very quick and is performed
at the same speed regardless of the size of the object.

 ● Using a reference to an object as a parameter is also very fast because only the location
of the object is passed into the method.

 ● Methods can return huge objects very quickly because they just have to return the
reference.

 ● A program can contain multiple lists of object references that give different views of
the data. For example, one list of bank accounts could be ordered by name, another by
account balance.

Reference types: Weaknesses

 ● Programmers need to be aware that creating a reference and creating the object that it is
connected to are two different steps.

314 Chapter 10 Classes and references

ptg18144483

 ● Programmers need to understand the effect of assigning one reference to another.

 ● If I give another program a reference to my object, I lose control of what happens to
that object. The other program can change that object in ways I might not expect, which
might lead to faults in my software that are hard to diagnose.

 ● To use references, we need some mechanism of tidying up objects that no longer have
references to them. This garbage collection can slow a program down or result in unpre-
dictable changes in performance as memory is tidied up during program execution.

Reference vs. value

I’m making a Space Invader game. I’ve designed an object that contains data of different
types that I’m going to create to manage the game. Which of the new types in the
 SpaceAlien class should be value types and which should be reference types?

public class SpaceAlien

{

 public Coordinate Position; // position of the alien on the screen

 public Damage Damage; // damage taken by the alien

 public Sound KillSound; // sound made when alien is killed

 public Image Image; // image of the alien

}

 ● Position Each alien will have its own unique position on the screen. There’s no benefit
in sharing position values among aliens, so the Position type should be a value type, in
this case a structure.

 ● Damage Each alien will have a Damage value that tracks how many hits they’ve had and
the number of hits that it takes to kill the alien. This should be a value type because each
alien will have its own specific amount of damage.

 ● KillSound This is the sound that an alien will make when it is destroyed. The sound
information is quite a large lump of data. We might have up to 100 aliens on the screen at
any time and we don’t want to store the sound information inside each alien. This means
that KillSound should be a reference type. Each SpaceAlien will have a variable that
holds the sound that it makes when it is destroyed. Note that this doesn’t mean that each
alien must have the same kill sound, but if two aliens do have the same kill sound, this
sound is stored only once in the game.

 ● Image This is the image of the alien. Just like the sounds, there are only a few images
that are to be shared for all the aliens, so this should be a reference type, too.

The fight over the SpaceAlien ends as a draw, with two data members each.

315Structures and classes

ptg18144483

Should the SpaceAlien itself be a value type or a reference type? I would say that the game
will want to work with these objects in many different ways. It might want to make a list of
dead aliens that have been removed from the game during gameplay. It might also want to
organize the aliens in different attack waves, which will mean placing them in lists. So a refer-
ence type would make sense to me. Chalk up a win for reference types on this fight.

Classes and constructors
Classes can have constructors in the same way that structures do.

class Contact

{

 public string ContactName;

 public string ContactAddress;

 public string ContactPhone;

 public int ContactMinutesSpent;

 public Contact(string name, string address, string phone)

 {

this.ContactName = name;

this.ContactAddress = address;

this.ContactPhone = phone;

this.ContactMinutesSpent = 0;

 }

}

This class-based Contact object has the same constructor code as the structure-based
version that we saw earlier. And we can make a new instance of a Contact by con-
structing it in exactly the same way:

Contact rob = new Contact(name: "Rob", address: "Rob's House",

phone: "Rob's Phone");

After you have given a class a constructor method, that is the only way that a program
can create instances of that object. In other words, the compiler will complain if you
write the following statement:

Contact rob = new Contact();

316 Chapter 10 Classes and references

ptg18144483

The compiler will insist that to create a new Contact, you must provide name, address,
and phone number arguments that match the parameters of the constructor method.

This is a very powerful feature of the C# language because it gives a programmer
control of exactly how an object is created and what information must be provided to
create one. We’ll take a more detailed look at constructors in classes a little bit later in
the book.

Arrays of class references
We can create an array of class references in the same way as we create any other kind
of array:

Contact[] contacts = new Contact[100];

If the Contact type is a class, this statement will create an array that can hold 100
references to Contact objects. Note that in the same way that we didn’t create any
instances when we created a single class reference, creating a 100-element array of
references doesn’t create any objects. Each reference in the array is set to null, mean-
ing that it is empty.

To change the time-tracking program so that it uses classes rather than structures, we
have to change the storeContact method so that it looks for an array element that
contains a null reference rather than an empty name:

Contact[] contacts = new Contact[100];

bool storeContact(Contact contact)

{

for (int position = 0; position < contacts.Length; position = position + 1)

 {

if (contacts[position] == null)

{

contacts[position] = contact;

return true;

}

 }

return false;

}

Parameter to storeContact is
now a reference to a class

if (contacts[position] == null) If the reference is null,
this element is empty.

317Structures and classes

ptg18144483

Note that although the method looks very similar to the storeContact method that
we used to store a structure, there is one crucial difference. The parameter passed into
the storeContact method is a reference to the contact that is being stored because
Contact is now a class. Previously, the storeContact method was given the value (that
is, a copy) of the structure as a parameter.

Class references as parameters to a method call
Question: What would happen if the storeContact method changed the value of the
parameter?

bool storeContact(Contact contact)

{

 contact.ContactName = "I'm a chicken";

 return true;

}

This is a very silly implementation of the storeContact method, but the question remains:
What will be the effect of this code?

Answer: A “chicken coded” version of a storeContact that works on a class would
corrupt the name of any Contact object passed as a parameter.

Contact rob = new Contact(name: "Rob", address: "Rob's House",

phone: "Rob's Phone");

storeContact(rob);

In the preceding code, the Name property of the contact referred to by the variable rob
would be changed to “I’m a chicken” by the call of storeContact. This would not happen
if the Contact type was a structure because in that situation a copy of the contents of rob
would be passed into the call.

Question: Which is faster, a structure parameter or a class parameter?

Answer: When a structure is used as an argument to a method, the method actually
receives a copy of the values in the structure. This copying takes time. In the case of a
reference, the size of the argument is much smaller, as it just has to tell the method the
location of the object in memory. So it is much faster to pass classes into method calls.

CODE ANALYSIS

318 Chapter 10 Classes and references

ptg18144483

From arrays to lists
Arrays are great for storing a particular number of items. They are less useful when
you don’t know how many items you want to store at the time the program is being
built. For example, if your program used an array to store the names of guests arriving
at a party, you’d have to make the array really big. This statement creates an array that
can store 100 strings:

string [] guestNames = new string[100];

This will work fine, right up to the point that guest number 101 arrives, at which point
the array will run out of space and the program will fail. You could address this by
making the upper limit really, really big:

string [] guestNames = new string[100000];

Now we have space for 100,000 guests. However, we might also waste computer
memory by doing this, particularly if we have a lot of arrays in the program. What we
would really like is an “elastic” array that can grow automatically.

The designers of C# wanted one of these, too, so they created a class named List that
will look after lists for us. A list holds a collection of references to objects of a particu-
lar type, and it can grow as required. List is one of a number of helper classes that are
provided to help programs manage collections of data.

The full name of the List class is System.Collections.Generic.List. This name is
called a fully qualified name and provides a unique name for this particular class. Fully
qualified names are useful because they prevent confusion. If another programmer
creates a class named List (which is actually quite likely), that class cannot be con-
fused with the one that is part of the system because the class will have a different
fully qualified name.

We use a similar mechanism when we store files on our computer.

c:\2015\Jan\sales.txt

c:\2015\Feb\sales.txt

These files are both called sales.txt, but this does not cause a problem for the file
system because they are stored in different folders. When we organize files, we use
the complete path to specify a particular file. The C# language uses something similar

319From arrays to lists

ptg18144483

to allow programmers to identify specific classes. The C# mechanism is called a
namespace. When you create a class, you can place it in a particular namespace, and
one namespace can contain another. We will look at creating namespaces later in the
book.

We can use the fully qualified name for the List class, but this is rather tedious.
Instead we can tell the compiler to look in a particular namespace for things it can’t
find in our program. We do this by adding a using statement at the top of the
program.

using System.Collections.Generic;

In effect, this statement says, “If you can’t find something with a particular name, add
the namespace prefix System.Collections.Generic to the name and look again.” Now
we can write List in our program, and the compiler will automatically look for
System.Collections.Generic.List. You saw this in Chapter 9 when we wanted to use
the Exception object in the System namespace.

The statement that creates a List is similar to the statement that creates an array.
Note that a List is actually a list of references, so all the items in the list will be man-
aged by reference.

List<string> guestNames = new List<string>();

When you create a List, you ask for a list of a particular type, in this case string.
You can use the List mechanism to hold lists of any C# type, including classes and
structures that you create. The type of list that you want is given between the < and >
characters. If we want to store the contact information for the Time Tracker, we would
write this:

List<Contact> contacts = new List<Contact>();

The construction is exactly the same, only the type of the list has been changed.

When you create a list you don’t specify how many items the list will store. You can
add elements to the end of the list at any time.

List string guestNames

List

Element type

Variable name

320 Chapter 10 Classes and references

ptg18144483

void storeContact(Contact contact)

{

 contacts.Add(contact);

}

This is the code for the storeContact method when a List is used to store the contact
information. It has suddenly become a lot simpler. The original version of the method
would return true or false to indicate whether the contact was saved correctly. This
version does not need to return a result because the store operation will always work
correctly.

PROGRAMMER’S POINT

Single-line methods are still a good idea
You might wonder why we still bother with a storeContact method now that it is only
one statement long. The program might as well use the contacts list to store a data item
rather than call this method. However, I think that a single-line method is sometimes a
very good idea. If someone reading my program finds a call to a method with the name
storeContact, she is going to have a good idea about what is happening. But if she sees
contacts.Add, she has to know that we are storing our data in a list called contacts.

Furthermore, using a method like this gives me a lot of flexibility. If I decide to use a differ-
ent mechanism for storing the contact information—perhaps a database—then I can just
change the storeContact method and everything else would still just work.

Working through lists of data
A program can work through a List just as it works through an array. The List-based
version of the Time Tracker application uses the same code for the findContact
method as the array-based version does.

A program can find out how many elements a list contains by using the Count prop-
erty of the List. This program snippet prepares a string that tells how many contacts
are present in the list.

string contactNumbers = "There are " + contacts.Count + " contacts";

321From arrays to lists

ptg18144483

Count vs. Length
If you have a good memory, you’ll recall that a program can find out how many elements an
array contains by asking the array for its Length property. But with a list, the same informa-
tion is supplied as a Count property.

Question: Why have the designers of C# made things difficult by changing the name?

Answer: I think this is quite clever. In an array, the number of elements can never change.
So, when the array is created, the length is a fixed value. But when you use a list, the num-
ber of elements can change at any time. This means that you are not getting a fixed size
(as with an array), you are counting the elements in the list at a specific time. Since the
behavior is different, the designers of C# decided to make the name different, too.

Question: What would be the count value for a brand-new List?

Answer: A brand-new list would return a count of zero.

Lists and the index value
You use an index value to specify which particular element of an array you want to
work with. You can also access elements of a list by using an index value:

Contact startContact = contacts[0];

This statement sets the variable startContact to contain the name of the first contact
to be added to the list. If no contacts have been stored and the list is empty, the state-
ment would cause the program to fail with an “index out of range” exception. This is
the same error you get if your program falls off the end of an array by using an invalid
index value.

Lists of structures
Lists are much easier to use than arrays. However, they do have one or two interesting
foibles, particularly if you use a List to hold a collection of value types such as a struc-
ture. Because structures are managed by value and everything in a List must be man-
aged by reference, a C# program does some fancy footwork to make the structure

CODE ANALYSIS

322 Chapter 10 Classes and references

ptg18144483

values into reference types. The effect of this footwork is that structure values held in
a List are effectively read-only in that their contents cannot be changed.

My advice is to use a List in preference to an array if you are using classes, but to
think carefully about using lists with structures. The sample program Ch10_04_Time-
TrackerClass holds a version of the Time Tracker program that uses a class for the
contact information and a List to hold the data.

Storing data using JSON
You have seen before that variables in programs hold their value only while the
program is running. When the user stops running the program, all its variables are
discarded. The Tiny Contacts application used local storage in Windows to store the
strings of text that made up the contact information. But the Time Tracker has a list
of objects to store. We need something that takes data that we don’t know how to
save—the list of contacts—and converts it to something that we do know how to
save, such as a string of text. It turns out that we have exactly this technology at our
fingertips in the form of the JSON serialization library from Newtonsoft.

Serialization is a process that takes a collection of data and converts it to a sequence
of data items. This sequence can then be stored or sent to another computer and
deserialized to recover the data. It is a process that is used all over the Internet. The
data used by the Snaps method that delivers weather information is sent over the
Internet in the form of a serialized string. There are a number of ways to perform
serialization. Two popular ones are XML (Extensible Markup Language) and JSON
(JavaScript Object Notation). We are going to first use JSON in this chapter. We’ll take
a look at XML a little later.

JSON is very popular as a way of moving information between websites and programs
that run inside your Internet browser. You can see how it works by taking a look at the
output it produces. The following statement creates a new Contact instance:

Contact rob = new Contact(name: "Rob", address: "Rob's House",

phone: "Rob's Phone");

If we convert this object into JSON, we get the following string:

{"ContactName":"Rob","ContactAddress":"Rob's House",

"ContactPhone":"Rob's Phone","ContactMinutesSpent":0}

323Storing data using JSON

ptg18144483

The JSON conversion process creates a string that contains the value of each of the
members of the class, identifying the values by the names of the class members. The
curly brackets ({ and }) mark the start and end of the object, and the double quotation
marks (“) mark the start and end of the names of each member of the class and the
strings that form part of the data in the class. Note that the ContactMinutesSpent
member, which is a number, is stored as an integer value rather than a string of text.

Data and special characters
You might wonder what happens if the data you are storing contains double quotation marks
or curly brackets itself. The designers of JSON thought of this, too. If you look at the following
JSON, you can see that inside the address string (“House of Quotes”), the quotation mark
characters are preceded by an escape character—“\.

{"ContactName":"Rob",

"ContactAddress":"\"House of Quotes\"",

"ContactPhone":"Rob's Phone","ContactMinutesSpent":0}

This is the same technique that’s used in writing a program in which you want to include a
double quotation mark inside a string. We can allow users of the Time Tracker to include any
strange characters that they like, and these are always converted into safe versions.

PROGRAMMER’S POINT

Be aware of the possibility of injection attacks
So-called injection attacks occur when special characters like these are injected into pro-
gram inputs. These attacks have resulted in many security breaches over the years. When-
ever you create a solution that uses characters that have a special meaning, you must make
sure that the solution can handle these characters if they appear in the data the program is
processing.

The Newtonsoft JSON library
Now that you know a bit about how JSON works, you need to find a way of converting
program objects into JSON strings. It turns out that there is a library of classes that will

WHAT COULD GO WRONG

324 Chapter 10 Classes and references

ptg18144483

do this for us. We’ve already used one library in this chapter. The List class was sup-
plied as part of the C# library, and we’re using it to store all the customer information
in the Time Tracker.

The JSON library we want to use to help store the customer information was written
by James Newton-King, a programmer from New Zealand who has achieved world-
wide fame by writing some terribly useful software and sharing it with the world.
Visual Studio contains a tool that you can use to obtain shared libraries like this (called
NuGet), but the SnapsDemo solution already contains the Newtonsoft library, so for
now we just have to include the namespace where the library is located:

using Newtonsoft.Json;

To store a single contact, we can use the SerializeObject method provided by the
JsonConvert class, which is part of the Newtonsoft library:

Contact rob = new Contact(name: "Rob", address: "Rob's House",

phone: "Rob's Phone");

string json = JsonConvert.SerializeObject(rob);

These statements create an object and then make a JSON string from it. We can store
the string on our Windows computer or transfer it over the network to a remote
machine. If we want to convert a JSON string back to an object, we can use a method
that reverses this process:

Contact recoveredContact = JsonConvert.DeserializeObject<Contact>(json);

The DeserializeObject method is a generic method in that it works for a particular
type of object that is to be deserialized. In this case we want it to deserialize a Contact
object, so this type is added to the method call. The statement would create a Con-
tact from the contents of the string json.

You can experiment with the serializer (and even try it out with strange names and
addresses) by taking a look at the example in Ch10_05_JsonDemo.

Contact json

Data type

Input string

325Storing data using JSON

ptg18144483

Invalid JSON strings
You might wonder what happens if the string that is being deserialized doesn’t contain valid
JSON. In this situation, the DeserializeObject method does the only thing it can do, which
is to throw an exception. Of course, if the string was valid JSON, it is still possible that the con-
tent has no meaning—for example, the MinutesSpent value could be -100000. In the next
chapter, we’ll take a look at how we can make sure that our objects are always sensible.

Storing and recovering lists
It’s easy to store a single Contact item by using JSON, but what about our list of
contacts? Well, it turns out that JSON can take this in stride. The following statement
makes a string called json, which contains all the contacts in the list.

string json = JsonConvert.SerializeObject(contacts);

And here is how a JSON string can contain multiple objects; they are stored as a
comma-separated list of objects inside square brackets:

[{"ContactName":"Rob","ContactAddress":"Rob's house",

"ContactPhone":"Rob's Phone","ContactMinutesSpent":0},

{"ContactName":"Mary","ContactAddress":"Mary's house",

"ContactPhone":"Mary's Phone","ContactMinutesSpent":30},

{"ContactName":"David","ContactAddress":"David's house",

"ContactPhone":"David's Phone","ContactMinutesSpent":60},

{"ContactName":"Jenny","ContactAddress":"Jenny's house",

"PhoneContactPhone":"Jenny's Phone","ContactMinutesSpent":90}]

When the program wants to read back the collection, it can use the same method as
before, except that the destination type is now a list of Contact objects rather than a
single Contact:

contacts = JsonConvert.DeserializeObject<List<Contact>>(json);

WHAT COULD GO WRONG

326 Chapter 10 Classes and references

ptg18144483

The SerializeObject and DeserializObject methods can be used to store a list of
any kind of object. The save and load methods for the Time Tracker program turn out
to be very simple.

string SAVE_NAME = "TimeTracker.json";

List<Contact> contacts = new List<Contact>();

void storeAllContacts()

{

string json = JsonConvert.SerializeObject(contacts);

SnapsEngine.SaveStringToLocalStorage(itemName: SAVE_NAME, itemValue: json);

}

This is the storeAllContacts method. It creates a JSON string and then saves the
string in local storage.

void loadAllContacts()

{

string json = SnapsEngine.FetchStringFromLocalStorage(SAVE_NAME);

if (json == null)

 {

// If we get here, there is no string in local storage

SnapsEngine.WaitForButton("Created empty Time Tracker store");

contacts = new List<Contact>();

 }

else

 {

contacts = JsonConvert.DeserializeObject<List<Contact>>(json);

 }

}

The loadAllContacts method has to be slightly more complicated because it needs to
deal with the possibility that the contacts information might not be available. This will
be the case the very first time the program runs. This version of the method creates an
empty list and tells the user that is what it has done.

You can explore how these methods are used in the Ch10_06_TimeTrackerJson sam-
ple program, which uses a JSON-formatted string as storage for a fully working Time
Tracker application.

Name used to save the data.

Create the string.

Save the string in local storage.

Fetch the string from local storage.

If the string is null, no contacts were found

SnapsEngine.WaitForButton("Created empty Time Tracker store");

contacts = new List<Contact>(); Create an empty list and tell the user.

Deserialize the contacts from the string

327Storing data using JSON

ptg18144483

You can use JSON to add data storage to any of the applications that we have written
so far. Any data that is held as a list of class instances can be stored and retrieved using
serialization.

Add data storage to the Pizza Picker
We wrote the pizza picker a while back. It lets a bunch of people decide what pizza toppings
they want by pressing the matching button. Pressing the Show Totals button shows the total
number of orders for each kind of topping. .

One problem with this application is that it doesn’t “remember” the previous count values. If
the program is restarted, the counts for each topping are reset to 0. It works this way because
at the time we wrote it we didn’t know how to store the values. But now we do.

class PizzaDetails

{

 public int CheeseAndTomatoCount=0;

 public int pepperoniCount=0;

 public int chickenCount=0;

 public int vegetarianCount=0;

}

We can create a class named PizzaDetails to hold a value for each type of topping. These
are initially set to 0. Then, when the program starts, we can load an instance of this class from
a JSON string:

MAKE SOMETHING HAPPEN

328 Chapter 10 Classes and references

ptg18144483

string SAVE_NAME = “pizzaChoice.json”;

PizzaDetails pizzaDetails;

string json = SnapsEngine.FetchStringFromRoamingStorage(SAVE_NAME);

if(json == null)

{

 // No stored pizza details - make an empty one

 pizzaDetails = new PizzaDetails();

}

else

{

 // Read the pizza counts from last time

 pizzaDetails = JsonConvert.DeserializeObject<PizzaDetails>(json);

}

This sequence of statements tries to fetch a pizza-choice JSON string from roaming storage.
If there is no string found (this will happen when the program runs for the first time), an
empty details object is created. If the string is located, it is used to restore the pizza count.

After each command, the program can store the pizza-choice values:

json = JsonConvert.SerializeObject(pizzaDetails);

SnapsEngine.SaveStringToRoamingStorage(itemName: SAVE_NAME, itemValue: json);

There is a version of the pizza-picking program that uses storage in Ch10_07_PizzaPicker.
You can use this pattern to add data storage to many applications.

Fetching data using XML
JSON is a great way to convert complex objects into a simple string of text. XML is
another technology that is very popular for this type of work. As noted above, XML is
the abbreviation for Extensible Markup Language. You can use XML to design a lan-
guage that represents whatever data you want to work with. Unlike JSON, which is just
a lightweight way of representing the contents of a class, XML can be used to create

 Name used to store
the details.

 Variable that holds
the pizza details.

 Check if the string
was found.

 Make an empty
details store.

 Deserialize
the details

values.

 Create the JSON string.

Save the string in roaming
storage.

329Fetching data using XML

ptg18144483

structured XML documents. The design of a document can be expressed in an XML
schema, which formally expresses the information that the document must contain.
For example, the schema for the contact information in the Time Tracker system could
express the requirement that the name of a contact must be present but the address
can be omitted. The language of the World Wide Web—HTML, or Hypertext Markup
Language—is actually based on the design of XML, and I could spend the rest of this
book explaining how to structure and format XML documents (but I really don’t want
to do that).

XML is used to encode lots of information that we can download from the Internet.
The XML schema used for lots of news and blog sites is known by the name RSS, which
stands for either Really Simple Syndication or Rich Site Summary. Many information
sites provide what is called an RSS feed, which is really a web address from which the
XML-formatted data can be obtained.

The RSS schema defines an object called channel that contains a number of items. You
can think of a channel as a list of items. An item contains a number of members. One
member of item is the title of the post, another is called the description. In the case
of a blog post, the description contains the post itself. All these items are strings.

My blog host exposes an RSS feed that you can find at the address www.robmiles
.com/?format=rss. If you point your browser at this URL, you’ll get back a document
that contains a large chunk of XML. We can use the Snaps method GetWebPageAs-
String to fetch this text from my website:

string rssText =

 SnapsEngine.GetWebPageAsString("http://www.robmiles.com/?format=rss");

This statement creates a string called rssText that contains the RSS feed from my
blog. What we’d like to do next is convert this block of XML into an object that we can
work with to extract XML elements and work with them. We need the XML equivalent
of the Newtonsoft library that we used to convert JSON strings.

C# has a feature named Language Integrated Query, or LINQ (rhymes with “think”),
that will do this job for us. LINQ can be used for lots of jobs, but for now we are going
to use it to convert a string of XML text into an XML element that our program can
work with. To get easy access to the LINQ classes, we first need to add the LINQ
namespace:

using System.Xml.Linq;

330 Chapter 10 Classes and references

http://www.robmiles.com/?format=rss
http://www.robmiles.com/?format=rss

ptg18144483

Now our program can use a LINQ class that will read a string of XML and create an
XML element that holds that text:

XElement rssElements = XElement.Parse(rssText);

This statement takes the text that was obtained from my blog and converts it into an
XElement object that represents the blog’s structure. Now we can navigate down the
elements to find the title of the blog post:

string title =

 rssElements.Element("channel").Element("item").Element("title").Value;

This rather complicated statement drills down through the channel, item, and title
elements to get the value of the title element, which in this case is a string that pro-
vides the title of the blog post.

using SnapsLibrary;

using System.Xml.Linq;

class Ch10_08_RSSReader

{

 public static void StartProgram()

 {

snaps = new SnapsEngine();

string rssText =

SnapsEngine.GetWebPageAsString("http://www.robmiles.com/?format=rss");

XElement rssElements = XElement.Parse(rssText);

string title =

rssElements.Element("channel").Element("item").Element("title").Value;

SnapsEngine.SetTitleString("Headline from Rob");

SnapsEngine.DisplayString(title);

 }

}

This is the complete program that displays the title of my latest blog post. You can use
this program to get headline information from any RSS feed. Just replace the address
of my blog with a different website. Although I’ve no idea why you’d want to do this.

Get the contents of the RSS feed.

Convert the RSS feed
into an XElement.

331Fetching data using XML

ptg18144483

If you take a look at a complete RSS feed, you’ll discover that a channel actually
contains a sequence of items rather than just one. You can use a foreach loop to work
through these:

using SnapsLibrary;

using System.Xml.Linq;

class Ch10_09_RSSTitles

{

public static void StartProgram()

 {

snaps = new SnapsEngine();

string rssText =

SnapsEngine.GetWebPageAsString("http://www.robmiles.com/?format=rss");

XElement rssElements = XElement.Parse(rssText);

SnapsEngine.SetTitleString("Headlines from Rob");

SnapsEngine.ClearTextDisplay();

foreach (XElement element in

rssElements.Element("channel").Elements("item"))

{

SnapsEngine.AddLineToTextDisplay(element.Element("title").Value);

}

 }

}

This program uses the Elements property of the channel to get each item in turn. It
then uses the Snaps method AddLineToTextDisplay, which makes it easy to build up
multiline displays. When the program runs, it displays the headlines shown in Figure
10-10.

"item"

Get all the item
elements.

Value

Display
each
title

on the
screen.

332 Chapter 10 Classes and references

ptg18144483

Figure 10-10 Blog titles gathered through an RSS feed.

My blog host shows only a limited number of items. Some feeds provide a lot more of
them.

Read some feeds
It is very easy to make a program that can read feeds in this way. If you dig into the format of
the document, you can also extract the description text. You might even be able to make a
program that uses speech output to read you the news each morning. Here are some feeds to
get you started.

 ● http://feeds.bbci.co.uk/news/rss.xml

 ● http://www.nasa.gov/rss/dyn/breaking_news.rss

 ● http://www.theguardian.com/world/rss

MAKE SOMETHING HAPPEN

333Fetching data using XML

http://feeds.bbci.co.uk/news/rss.xml
http://www.nasa.gov/rss/dyn/breaking_news.rss
http://www.theguardian.com/world/rss

ptg18144483

What you have learned
In this chapter, you have learned the difference between structures, which are man-
aged by value, and classes, which are managed by reference. You know that when
using a value type, all the data in a variable is copied from one object to another when
assignment takes place, whereas when working with references, an assignment will
cause two references to refer to the same object.

You have seen how you can use value types to hold specific values about a particular
object—for example, the position of a space alien in a game. You have also seen how
reference types make it easy for programs to work with very large objects without
having to move them around in memory—for example, a reference to a very large
object that holds all the bank account information for a customer or an image to be
shared by many elements in a computer game.

You have also discovered the List class, which is part of a set of resources that are sup-
plied alongside the C# language. Lists work with reference types to provide a much
more flexible way of storing objects than arrays. You have seen how C# namespaces
allow programmers to give unique names to the objects that they create, and how the
List class is part of the Collections namespace.

Finally, you saw how JSON serialization makes it very easy to convert a list of objects
into a string of text that can be easily stored on the computer and how XML works in a
similar way to encode and transfer data.

Here are some questions that you might like to ponder:

Is it possible to write programs without using references?

References are one of the hardest things to understand when you are writing pro-
grams. At least I found them to be that way. It is tempting to “stay with what you
know” and try to write everything using structures. This is possible, but you will find
that your programs are harder to understand and sometimes slower and larger than
they need to be. Both references and value types have their place, and you need to
understand how and when they are to be used. Think of a value as being something
“about” an object—for example, the amount of money that is in a bank account.
Think of a reference as pointing to something that you’d rather not move around or
something you want to share—for example, a large sound effect that is being used for
the engine noise by many different spaceships in a game. If you make explicit choices
during the design stage of your application, you will find that these are much easier to
understand.

334 Chapter 10 Classes and references

ptg18144483

Does a namespace affect where your program files are stored?

A namespace is a “space where names have meaning.” In this way, you can think of it
as being structured a bit like a file store, where every file has a unique path that can be
used to locate the file on a physical storage system somewhere. However, a name in
a namespace is not physical. It is logical in that it exists only in the mind of the pro-
grammer and the C# compiler. Elements in a namespace can be spread across many
files in a C# application. We use namespaces to organize how we identify things, not
precisely where they are stored on a disk. It is important to start to think about things
in terms of their physical and logical properties when you create systems. A telephone
has a physical number that is hard-wired into the circuitry, but we prefer to refer to
a particular telephone as “Dad’s phone” rather than “0121 23432 3983”. To make this
work, the telephone contains a layer of software that looks up the physical number
of “Dad’s phone” whenever we need to call it. In the same way, the C# compiler will
search all the C# source files and libraries to find a class from a particular namespace.
As a programmer, you don’t have to know precisely where the code lives, you just
have to use the logical name of the item that you want to work with.

Can writing software really make you rich and famous?

Yes. We all know about Bill Gates and Mark Zuckerburg, who have built empires start-
ing with their software smarts, but there are also a lot of people who have achieved
fame and some fortune from their code-writing skills. Many systems that are used
every day by millions of companies have their roots in software that was written by
“ordinary” developers who started coding at home and gave their software away. One
of the best ways to start making a name for yourself is by contributing to an open-
source project run by volunteers. This might not lead to riches, but it is a great way to
practice and start to make a name for yourself. After all, you don’t need everyone to
recognize your genius, just the person who will give you that job you really want.

335What you have learned

ptg18144483

11
Making solutions

with objects

ptg18144483

What you will learn
You now know enough about programming to be useful—and dangerous. If
this book were teaching you how to drive, you would know how to steer the
car, what most of the pedals do, and how to start and stop, but you wouldn’t
yet know the rules of the road—how to drive safely and economically with
regard for other drivers.

In this chapter, you are going to learn some “rules of the code” (sorry about
that) that will allow you to create solutions that are more secure, robust, and
fl exible. You’ll discover how to use the features of C# that let you provide
integrity to the objects that you use in your programs. You’ll also discover
quite a few new C# features, including ones that let you create programs
that can manipulate dates and times and store photographs.

Creating objects with integrity .338

Using properties to manage access to data .346

Managing the object construction process .351

Saving drawings in files .356

What you have learned .368

337

ptg18144483

Creating objects with integrity
Integrity in a person is a prized quality. We prefer it when people turn up when they
say they are going to, remember that they owe us five dollars, and generally tell us
the truth. It’s the same with software objects. Programmers prefer objects that always
contain valid values—and don’t suddenly say that our bank balance has just become
$8,388,607.

The designers of C# also prize integrity in objects, and they provided some language
features that you can use to ensure that the classes and structures you create can be
made to behave with a degree of reliability. In this section, you’ll find out how these
features can be used to make objects that always hold values that make sense. We’ll
start by adding some integrity to the Time Tracker application.

Protecting data held inside an object
For the Time Tracker application, we needed to store four items about each contact:
name, address, phone number, and number of minutes the contact has spent with the
lawyer. To meet these requirements, we created a Contact object that contains a data
member for each of these items. The name, address, and phone number elements
can be stored in strings. The number of minutes spent with the contact is held in an
integer, which is set to 0 when the contact is created.

Each time the lawyer spends time with a contact, the number of minutes should be
increased to reflect this. It is very important to the lawyer that the minutes-spent value
is correct at all times. If these minutes are not properly recorded, it costs her money.
So what happens in our program when we run code such as this?

using SnapsLibrary;

class Ch11_01_PublicMenace

{

 class Contact

 {

public string ContactName;

public string ContactAddress;

public string ContactPhone;

public int ContactMinutesSpent;

public Contact(string name, string address, string phone)

{

338 Chapter 11 Making solutions with objects

ptg18144483

this.ContactName = name;

this.ContactAddress = address;

this.ContactPhone = phone;

this.ContactMinutesSpent = 0;

}

 }

 public void StartProgram()

 {

Contact insecure = new Contact("Rob", "Rob's House", "Rob's Phone");

insecure.ContactMinutesSpent = -99;

SnapsEngine.DisplayString("Minutes are " + insecure.MinutesSpent);

 }

}

This example demonstrates a dangerous defect in our design. Up until now we have
been marking all the members of our objects as public. However, the fact that these
elements are public means that their contents can be made invalid very easily.

When this example runs, it creates an instance of the Contact class and then modifies
the ContactMinutesSpent member of that object:

Contact insecure = new Contact("Rob", "Rob's House", "Rob's Phone");

insecure.ContactMinutesSpent = -99;

The first statement simply creates a contact entry for Rob, but the second statement
does something fairly dangerous. It sets the number of minutes spent for the contact
to –99, which is obviously invalid. The problem is that our solution doesn’t “know” that
it is impossible to spend –99 minutes with someone. As we have seen, programs just
follow the instructions that we give them, whether the instructions are sensible or not.

PROGRAMMER’S POINT

Build common sense into your objects
You might think that I’m worrying more than I should about my objects. After all, nobody
would be foolish enough to try to set the minutes-spent value to –99? Unfortunately, my
experience is that people are known to do this kind of thing. If you are working as part of a
team, the objects that you create may be used by many programmers over time. Some of
these programmers might use the objects incorrectly. This can happen through ignorance
of the way that the objects work, but there is also the threat of malware, which is code
written specifically to find and exploit weaknesses in other programs.

339Creating objects with integrity

ptg18144483

I’m a strong believer in defensive programming, which is making sure that, where appro-
priate, you take steps to ensure that your objects have some common sense built in. If I’m
writing a computer game, I tend to be fairly relaxed about the integrity of my objects.
But the Time Tracker program is quite different. Any corruption of the value of Contact-
MinutesSpent in the contact information could have a serious effect on the business of
my customer, so I’m going to be sure that I protect the integrity of this value to the best of
my ability.

The C# language lets you mark members of objects as public or private. You saw
this first in Chapter 9, when we made the data elements of our song notes private to
protect them from unwanted changes. You know that public means that code outside
the class can access the member. If the member of a class is marked private, code
outside the object is no longer allowed access to it.

How you do this is as simple as changing the method modifier public to private:

class Contact

{

 public string contactName;

 public string contactAddress;

 public string contactPhone;

 private int contactMinutesSpent;

 public Contact(string name, string address, string phone)

 {

this.contactName = name;

this.contactAddress = address;

this.contactPhone = phone;

this.contactMinutesSpent = 0;

 }

}

Once a member of a class has been made private, it can be used only by code running
inside the class.

Contact secure = new Contact("Rob", "Rob's House", "Rob's Phone");

secure.contactMinutesSpent = -99;

If we try to compile these two statements with the contactMinutesSpent value
marked private, the compiler will generate an error:

Class member
marked as private.

340 Chapter 11 Making solutions with objects

ptg18144483

‘Contact.contactMinutesSpent’ is inaccessible due to its protection level

This compilation error protects the MinutesSpent value from being changed by code
running outside the Contact object. As the creator of the object, you now have com-
plete control over how and when this data member is used.

Protection inside objects
Question: Why is it that the statement in the constructor for the Contact object can set
MinutesSpent but the other assignment statement can’t?

public Contact(string name, string address, string phone)

{

 this.contactName = name;

 this.contactAddress = address;

 this.contactPhone = phone;

 this.contactMinutesSpent = 0;

}

...

Contact secure = new Contact("Rob", "Rob's House", "Rob's Phone");

secure.contactMinutesSpent = -99;

Answer: This is all about context. Any piece of C# code will execute in a particular con-
text. In the case of code running within the constructor method for the Contact object,
this code runs in the context of the object itself and is therefore trusted, in that code
running inside an object is considered part of the object. The second statement is run-
ning in a different context, perhaps inside the StartProgram method, which is not inside
the Contact class. Because the code is not running in the context of the object, it is not
allowed access to private members of that object.

Providing Get and Set methods for
 private data
We now have protection around the precious data stored in the MinutesSpent vari-
able, but this level of protection is actually too strong. There is no way that any code
outside the Contact class can use the value that is stored there. You can solve this

CODE ANALYSIS

This statement
works fi ne.

Create a Contact object in another part of the program.

 This statement
will not compile.

341Creating objects with integrity

ptg18144483

problem by creating methods in the Contact class that are public and provide access
to the MinutesSpent value.

The following version of the Contact class contains two new methods, one called Get-
MinutesSpent and one called SetMinutesSpent. They manage access to the data.

class Contact

{

public string ContactName;

public string ContactAddress;

public string ContactPhone;

private int contactMinutesSpent;

public int GetMinutesSpent()

 {

return this.contactMinutesSpent;

 }

public void SetMinutesSpent(int newMinutesSpent)

 {

this.contactMinutesSpent = newMinutesSpent;

 }

}

The next group of statements shows how the methods can be used. The program
sequence gets the number of minutes that Rob has spent with the lawyer, adds 10 to
that value, and then stores the result back in the object. At no time is code outside the
Contact object able to interact directly with the contactMinutesSpent variable, but it
can call the public methods in the object that provide the access.

Contact moresecure = new Contact("Rob", "Rob's House", "Rob's Phone");

int robsMinutes = moresecure.GetMinutesSpent();

robsMinutes = robsMinutes + 10;

moresecure.SetMinutesSpent(robsMinutes);

As it’s written so far, however, the SetMinutesSpent method does not stop a pro-
gram from setting an invalid ContactMinutesSpent value. It simply copies the value
 supplied as a parameter into the Contact object. However, we can change the method
so that it performs some validation:

public int GetMinutesSpent()

{

return this.contactMinutesSpent;

}

Method to get the value.

public void SetMinutesSpent(int newMinutesSpent)

{

this.contactMinutesSpent = newMinutesSpent;

}

Method to set the value.

Get the value.
Add 10 minutes to the value.

Set the value.

342 Chapter 11 Making solutions with objects

ptg18144483

public void SetMinutesSpent(int newMinutesSpent)

{

 if(newMinutesSpent > 0)

// Only set a value that is greater than 0

this.contactMinutesSpent = newMinutesSpent;

}

Ch11_02_PrivateMinutesSpent

This version of the SetMinutesSpent method ensures that a Contact never contains
a value of minutesSpent that is less than 0. If a program tries to set a value that’s less
than 0, the new value will be ignored.

What happens if you leave off public and private?
Question: A programmer is not forced to mark a member of a class as public or private.
What happens if you leave them out?

Answer: In C#, the default protection of class members (that is, the protection that you
get if you don’t specify what you want) is private.

Providing methods that reflect the use of
an object
Providing get and set methods allows a programmer to control the changes that
can be made to the elements in an object. But for the Time Tracker application, it is
probably more sensible to create a method that allows a program to add minutes to
a contact than it is to provide a set behavior that can be used to put a new value into
the minutes-spent value.

public class Contact
{

 private int contactMinutesSpent;

 public int GetMinutesSpent()

 {

return contactMinutesSpent;

CODE ANALYSIS

343Creating objects with integrity

ptg18144483

 }

 public void AddMinutes(int timeValue)

 {

contactMinutesSpent = contactMinutesSpent + timeValue;

 }

}

Now all that users of the Contact class can do is add time. Our lawyer customer will
like this feature a lot because it means there is no way that a badly behaved program
can lose minutes that she has spent with a contact.

This statement adds 30 minutes to the time spent with Rob. This approach could be
the basis of a more secure solution—the only way to change the number of minutes
spent is to call the method that adds time to it:

rob.AddMinutes(30);

Using methods like this is a very popular programming pattern. The data in the object
(the values we really care about) is held in members that are private. This means that
the data items are not directly accessible to code that’s not running inside the object.
However, the methods that control access to the data are made public so that they
can be used to change the data and read the value back. Programmers love having
control, and this design pattern gives them control when changes are being made to
variables in the program.

Feeding invalid values into a method
The AddMinutes method is a good start at managing access to the minutes value, but it is
not quite perfect.

Question: What would be the effect of the following statement?

rob.AddMinutes(-30);

Answer: This would add the value –30 to the minutes spent for rob, which would reduce
the minutes value by 30 (which might save rob some money).

WHAT COULD GO WRONG

344 Chapter 11 Making solutions with objects

ptg18144483

Question: How do we prevent this corruption of the minutes value?

Answer: One way is to modify the AddMinutes method so that it updates the contact-
MinutesSpent value only if the value being added is positive.

public void AddMinutes(int timeValue)

{

 if(timeValue > 0)

contactMinutesSpent = contactMinutesSpent + timeValue;

}

This version of the method contains a condition that tests the value of the parameter and
adds the time only if the value being added is greater than 0.

PROGRAMMER’S POINT

You need to think of errors in the context of risk
You can use the public and private C# features to control what happens to a data
member in an object, but you need to consider the broader implications of their use. It
might seem very sensible to protect data in the way that you have just seen, but consider
what would happen if the lawyer entered a minutes value that was extraordinarily large,
perhaps because of problems with the keyboard. If the program was designed to prevent
the minutes value for a customer only from being reduced, there would be no way to fix
this problem.

This is all about managing risk. There is a risk that the user might enter an invalid min-
utes value, and there is also a risk that code in the application might attempt to set the
value incorrectly. As a developer, you need to consider the impact of these events and act
accordingly. This means asking the lawyer “What’s the longest meeting you could ever
have?” and then setting upper limits on the size of a session. It also means asking the ques-
tion “How much effort do you want me to put into making sure that rogue programs can’t
damage this data?” The lawyer may be keen that this data is protected, but she will also be
keen on getting her program written for the best possible cost.

You must also think about the ethical responsibility of a programmer toward his or her cus-
tomers, which is a bit beyond the scope of this simple programming book but is something
you really should think about whenever you write a program for a fee—even if the fee is
paid in ice cream or cupcakes.

345Creating objects with integrity

ptg18144483

Using properties to manage
access to data
You’ve seen that you can create methods to manage access to objects, and this can be
made to work very well. It allows programs to reduce the chances for objects to con-
tain invalid data. However, there is another technique that is used to manage access to
data in objects, and that is the C# property.

A property lets a program gain control when a member in an object is being read or
written to. Here’s an example of how a property can be used to store the name of a
contact:

using SnapsLibrary;

class Ch11_03_PropertyDemo

{

 class Contact

 {

private string contactName;

public string ContactName

{

get

{

SnapsEngine.DisplayString("Getting the value of the name");

return this.contactName;

}

set

{

SnapsEngine.DisplayString("Setting the name to " + value);

this.contactName = value;

}

}

 }

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Name Property Demo");

Contact rob = new Contact();

rob.ContactName = "Robert";

Private value managed
by the property.

Start of property declaration.

Get behavior (property is read).

Return the value.

Set behavior (program
writes to the property).

Set the private value
managed by the

property.

Use the set behavior to
set the name.

346 Chapter 11 Making solutions with objects

ptg18144483

SnapsEngine.WaitForButton("Continue");

string name = rob.ContactName;

SnapsEngine.WaitForButton("Continue");

 }

}

In this example, the value of the name is stored as a private string member called
contactName (note that the identifier for this variable starts with a lowercase c). This
variable is stored as a member of the Contact class, and because it is private, it cannot
be accessed by code that is not part of the Contact class.

The name is exposed to the outside world as a public property with the name Con-
tactName (which starts with a capital C). Programs running outside the Contact object
can access this property, and when they do the set or get behavior runs, depending
on whether the program is assigning a value to the property or reading the value
back. The next two statements show how this works:

Contact rob = new Contact();

rob.ContactName = "Robert";

The first of these statements creates an instance of the Contact class. The second sets
the Name property of the class to “Robert”. When the assignment is performed, the set
behavior inside the ContactName property will run:

set

{

 SnapsEngine.DisplayString("Setting the name to " + value);

 this.name = value;

}

The set behavior does two things. It displays a message so that we can watch it work,
and then it sets the value of the name member to whatever is being assigned to the
property. The set behavior uses a new C# keyword, value, which is the value that is
being assigned by the set operation. In the case of our sample program, the value
keyword is set to “Robert”, since that is the value being assigned. You can think of the
value keyword as being a bit like a parameter to a method call; it is given the value of
whatever is being fed into the assignment. This version of the set behavior uses this
value to set the name immediately, but we could add some validation to reject invalid
names—in fact, we will be doing this later.

When the get behavior is used, the process reverses:

Use the get behavior to
read the name.

347Using properties to manage access to data

ptg18144483

string name = rob.ContactName;

Reading from a property causes the get behavior to run. This behavior must return a
value of the type of the property, in this case a string.

get

{

 SnapsEngine.DisplayString("Getting the value of the name");

 return this.contactName;
}

As with the set behavior, I added a statement to display a message that shows what is
going on. In the final program, these messages would not be displayed, but you can
run the sample program and see how execution flows through it.

If this is a little confusing, remember that we added the Name property to make it easy
for other programs to get hold of the Name value of a contact, but we also wanted to
keep control of how the text in the name is changed. For example, we could modify
the set behavior so that it rejects names that are empty strings:

set

{

 if (value != "")

this.contactName = value;

}

This version will set the name only if there is a name to set; otherwise, the value of
the name is not changed. Users of the Contact class can read and write to the Name
property very easily, but changes to the value of the name are controlled so that the
Contact class always holds a name that can be regarded as valid.

Detecting invalid changes
Using properties to protect values held in an object stops bad things from happening to the
values. If we use the Name property set behavior shown above, we can be absolutely sure
that users of the Contact object can’t set the name of a contact to an empty string. How-
ever, the user of the object never knows that he's done something wrong. This statement
would run without any problems. It wouldn’t set the name correctly, but the program would
continue without incident.

WHAT COULD GO WRONG

348 Chapter 11 Making solutions with objects

ptg18144483

rob.ContactName = "";

I’m not a fan of this behavior. I don’t want the users of a program to think that an action they
performed has succeeded when, in fact, it has not. The snag here is that there is no way that
a set property can indicate that the value it’s been given is wrong. The only thing it can do is
throw an exception:

set

{

 if (value == "")

throw new Exception("Invalid name: " + value);

 this.name = value;

}

This is a set behavior with attitude. If the set behavior doesn’t like the name value that is
supplied, it rejects the value by throwing an exception. We first saw the Exception object in
Chapter 9, where we threw exceptions to prevent the creation of invalid song notes. Here we
are using it to reject invalid names. Throwing an exception has the result of stopping the pro-
gram flow; later in the book, you will find out how a program can catch exceptions and deal
with them, but for now we are going to regard exceptions as a way of preventing a program
from continuing if it detects that something is going wrong.

Using properties to enforce business rules
If you think about the art of software creation (and you should), you are designing a
system to behave in a way that makes sense to our lawyer customer. If you ask her, she
will have an opinion on what constitutes a valid name for a customer. She might say
something like, “A name cannot be an empty string,” which is useful because that is
what our Name property enforces.

I call these statements “business rules” because they are constraints that our system
must enforce. One of the most important parts of any project you work on with a
customer is to go out and find business rules and use them to build a specification for
what you are doing.

Once you have the business rules, you can create software that enforces them. I use a
particular pattern of methods to do this. My pattern starts with a validate method:

static public string ValidateName(string newName)
{

 if (newName == "")

349Using properties to manage access to data

ptg18144483

return "A name cannot be an empty string\n";

return "";

}

This method works on the basis that “no news is good news.” It returns an empty
string if it regards the input as valid and an error message (“A name cannot be an
empty string”) if it is asked to validate an empty name. Now any user of the Contact
class can check to see whether a name is invalid without generating an exception.

The next thing I do is use the validate method in my set behavior:

set

{

 string message = ValidateName(value);

 if (message != "")

throw new Exception(message);

 name = value;

}

If the validation fails, the set property behavior will throw an exception that contains
the reason why the name was rejected. My theory is that the exception will hardly ever
be produced because a thoughtful developer will use the ValidateName method first
to make sure that his change is going to work. Here is how the program would read a
valid name from the user by repeatedly asking for name values until the user enters
one that is valid. The loop would complete only when the name validated correctly.

string errorMessage;

string name;

do

{

 name = SnapsEngine.ReadString("Enter new contact name");

 errorMessage = Contact.ValidateName(name);

 if (errorMessage != "")

 {

SnapsEngine.DisplayString(errorMessage);

SnapsEngine.WaitForButton("Try again");

SnapsEngine.DisplayString("");

 }

} while (errorMessage != "");

Start the loop.

Read the name.
Validate the name.

if (errorMessage != "")

{

SnapsEngine.DisplayString(errorMessage);

SnapsEngine.WaitForButton("Try again");

SnapsEngine.DisplayString("");

}

If the name is
wrong, an error

occurs.

Repeat while there
is an error.

350 Chapter 11 Making solutions with objects

ptg18144483

Why is the ValidateName method static?
You might not have spotted this, but the ValidateName method was marked as a static
method. This means that it is a member of the Contact class, not part of an instance of the
class.

Question: Why is the ValidateName method static?

Answer: To understand this design choice, you first need to be sure that you know what
static means. The static keyword makes a member of a class “always there.” It is part
of the class rather than part of an instance of a class. Methods such as AddMinutes can’t
be made static because a program would call AddMinutes to add some minutes to a
particular instance of the Contact class. However, the ValidateName behavior is not
specific to any particular Contact instance, and it is very useful to be able to use this
method if you don’t happen to have a Contact instance in your program. For example,
a program might be acquiring the information it needs to build a new Contact, and
it would be very useful to be able to do this without having another Contact instance
around to perform the validation.

Managing the object
construction process
The pattern I just described can be used to make sure that changes to the data in an
object conform to the business rules required by the application. If the lawyer decides
that only people with four-letter names are allowed to be stored, we can change the
ValidateName method to enforce this requirement. However, there is one other place
where we need to think about validation, and that is when objects are constructed:

Contact badNews = new Contact(name: "", address:"", phone: "");

The statement above would create a Contact value with completely empty name,
address, and phone number members. This would be a bad thing and completely
break all our business rules. The way to fix this is to use the validation behaviors in the
constructor.

CODE ANALYSIS

351Managing the object construction process

ptg18144483

public Contact(string name, string address, string phone)

{

 // errorMessage contains the complete error message

 string errorMessage = "";

 // error contains the message produced by each validation

 string error;

 // validate the name

 error = ValidateName(name);

 // if the name is invalid, the error string holds the reason

 if (error != "")

 // if we get here, there is an error in the name

errorMessage = error;

 // validate the address

 error = ValidateAddress(address);

 // if the address is invalid the error string holds the reason

 if (error != "")

 // if we get here, there is an error in the address

// add it to the error report

errorMessage = errorMessage + error;

 // validate the phone number

 error = ValidatePhone(phone);

 // if the phone number is invalid, the error string holds the reason

 if (error != "")

// if we get here, there is an error in the phone number

// add it to the error report

errorMessage = errorMessage + error;

 // if the error message is not an empty string something went wrong

 if (errorMessage != "")

// Abandon construction by throwing an exception

throw new Exception(errorMessage);

 this.ContactName = name;

 this.ContactAddress = address;

 this.ContactPhone = phone;

 this.contactMinutesSpent = 0;

}

The constructor method for a class is called when a new instance of the class is being
created. In the code just above, the constructor uses validation methods for each of
the items being supplied to create a new contact. If any of the validation methods

352 Chapter 11 Making solutions with objects

ptg18144483

fail, the error that the validation created is added to a composite error message that
will describe exactly why the construction failed. This error message is then thrown in
an exception, to be picked up and used for error reporting by the program trying to
create the new contact.

Catching and dealing with exceptions
I’ve discussed throwing exceptions as a way of stopping a program from running, but
I have not yet covered how a program can deal with exceptions that may be thrown.
The C# language provides a try/catch construction that can be used to catch excep-
tions. You can use it to display an appropriate message when creating a new contact.

static void newContact()

{

 SnapsEngine.SetTitleString("New Contact");

 string name = SnapsEngine.ReadString("Enter new contact name");

 string address = SnapsEngine.ReadMultiLineString("Enter contact address");

 string phone = SnapsEngine.ReadString("Enter contact phone");

 Contact newContact;

 try {

newContact = new Contact(name: name, address: address, phone: phone);

storeContact(newContact);

storeAllContacts();

SnapsEngine.DisplayString("Contact stored");

 }

 catch (Exception e)

 {

SnapsEngine.SetTitleString("Could not create contact");

SnapsEngine.DisplayString(e.Message);

 }

 SnapsEngine.WaitForButton("Continue");

}

Ch11_04_CatchingExceptions

If the user types in valid contact information, the constructor for the Contact class
doesn’t throw an exception and the program does not obey any of the statements in
the catch block. Instead, it goes straight to the call of SnapsEngine.WaitForButton
at the end of the method. However, if one of the values passed into the constructor is
invalid, the exception is thrown, and execution transfers immediately to the block after
the catch keyword.

Code that might throw an exception goes in the try block.

Code that deals with the exception goes in the catch block.

Use the Message
property to get the

reason for the exception.

353Managing the object construction process

ptg18144483

Why isn’t the contact always stored?
A programmer on your team is keen to find out how exceptions work and has been studying
the code for the newContact method. She has a particular problem with the following part
of the code, however:

try

{

 newContact = new Contact(name: name, address: address, phone: phone);

 storeContact(newContact);

 storeAllContacts();

 SnapsEngine.DisplayString("Contact stored");

}

She thinks this program is wrong because if the name, address, or phone information sup-
plied to the constructor is invalid, the constructor will throw an exception. However, once the
exception has been dealt with, the program will then continue on to the next statement and
store an invalid contact.

Question: Why is your colleague wrong?

Answer: Once an exception has been thrown, all the statements after the point at which
the exception occurred are skipped. The program will transfer execution to the first state-
ment of the catch block, and when the catch block completes, the program will move
on to the next statement after the catch.

You explain to your teammate that an exception prevents the execution of any further
statements in a try block, but then she asks another question about the methods that
store a contact after a new one has been added.

Question: What happens if the storeContact or storeAllContacts method throws an
exception?

Answer: If either of these methods throws an exception, the program will transfer
execution to the catch block. The exception handler can use the Message property of
the exception to deliver a message that should describe what went wrong. For example,
if the storeContact method is not able to store the contact for some reason, it could
generate an exception that describes this situation. The message would then be picked
up by the exception handler and displayed for the user to see.

throw new Exception(message: "Contact could not be saved");

Your colleague is happy with this explanation, but then asks one final question.

CODE ANALYSIS

354 Chapter 11 Making solutions with objects

ptg18144483

Question: How can the exception handler know what has caused the exception?

Answer: It’s not possible for the exception handler to “know” what caused the exception
that it is catching. In the case of the newContact method, there are three possible causes
for an exception to be thrown. The name, address, or phone number for the new contact
might be invalid; it might not be possible to store the new contact in memory; or it might
not be possible to store all the contacts. The catch code is currently dealing with this
problem by just displaying the message inside the exception that is thrown. If you want
the program to take specific actions for different exceptions, you have to put each state-
ment in its own try block and catch the exceptions that it produces.

Creating user-friendly applications
At the moment, our contact-creation process makes sure that we never create an
invalid contact in the Time Tracker store. But it is not going to make many of its users
happy because if they enter an invalid name for the contact, they don’t find out until
they have entered all the other data as well. They would much prefer to be told they
have made a mistake at the time they make it. To achieve this, we can use a loop that
will repeatedly read a value:

string errorMessage;

string name;

do

{

 name = SnapsEngine.ReadString("Enter new contact name");

 errorMessage = Contact.ValidateName(name);

 if (errorMessage != "")

 {

SnapsEngine.DisplayString(errorMessage);

SnapsEngine.WaitForButton("Try again");

SnapsEngine. ("");

 }

} while (errorMessage != "");

Ch11_05_TimeTrackerFriendly

The only way to exit this loop is to enter a valid name. You can use the same program
structure to read in valid address and phone items, which can then be used to create a
contact. Of course, because we validate the items before we create the contact, there
is no need to handle exceptions that the Contact constructor might produce—there

Read a new name.
Validate the name.

If the name is
invalid, add the
error message.

Loop again if there is an error.

355Managing the object construction process

ptg18144483

can never be any. I think this is the correct way to write programs. You try to avoid
causing exceptions to be thrown by making sure that input is valid before you pass it
onto other methods.

PROGRAMMER'S POINT

Program friendliness is usually a lack of unfriendliness
Some software companies claim to produce user-friendly applications. I’ve always found
this rather confusing because I’m never quite sure what it is that they add to the software to
make the program friendly. Having thought about this for a while, I’ve concluded that I’m
not really sure what makes a program friendly, but I’m pretty sure what makes a program
unfriendly. So if you want to make your programs friendly, my advice is to try to remove
behaviors from your program that make it difficult to use.

The previous example is a case in point. From a programming point of view, displaying all
the errors when we fail to create something is a good idea, but from a user’s point of view,
they would prefer to have an error recognized much closer to the point that it was made.

One of the things that you need to do with a new system is force yourself to use it for a
while, or better yet, get your mom to test it for you. I frequently find that design decisions
I’ve made when I write code can make a program very hard to use in real life. I force myself
to spend an hour or two just using my new program to try and pick up and eliminate these
errors. If I can get other people to use the program, I get even better feedback because
they won’t know how the program works and will make mistakes that I can’t even imagine.
Of course, it turns out that I often have to add more code—just like we had to add extra
loops when we make a new contact. However, these changes make a huge difference to the
experience of your user, and this will ultimately reflect in higher ratings and more sales.

Saving drawings in files
The data that our programs has stored to this point has been based on C# variables.
We have stored integers, floating-point numbers, and strings in this way. However, a
picture is a much larger and more complex object, which is usually stored in a file.

The Snaps framework provides methods that a program can use to store a drawing as
an image. The image is stored in a file in the same way that your digital camera stores
a picture when you take it. The graphics file format used is PNG (short for portable
network graphics). A number of programs can work with PNG files.

356 Chapter 11 Making solutions with objects

ptg18144483

Let’s look at some methods that you can use to store the graphics from a drawing
program. By using these methods, you could start to create a drawing diary.

SaveGraphicsImageToFileAsPNG
The SaveGraphicsImageToFileAsPNG method saves the current drawing in a file on the
user’s computer. The user is prompted where the file should be stored.

The following program draws a gray dot and then saves the picture on the host com-
puter. The user is then asked where the file should be stored by using the standard File
Save dialog box, shown in Figure 11-1, where you can see the results from some of my
tests.

using SnapsLibrary;

class Ch11_06_SaveGraphics

{

 public void StartProgram()

 {

SnapsEngine.DrawDot(x: 100, y: 100, width: 50);

SnapsEngine.SaveGraphicsImageToFileAsPNG();

 }

}

Figure 11-1 Drawing files saved by using the Save As dialog box.

357Saving drawings in fi les

ptg18144483

You can use the SaveGraphicsImageToFileAsPNG method if you want to store individ-
ual drawings, but the idea behind a drawing diary is that the program will automati-
cally store files without the user having to select a destination. To do this, you have to
use a method that works with local storage.

SaveGraphicsImageToLocalStoreAsPNG
A Universal Windows Application, like the ones we have been writing, has its own
private space in the file store on the host computer. An application can write as many
files as it likes to this private storage area, but this storage area is specific to that one
application and not visible to any other programs on the device. In addition, an appli-
cation is not allowed to directly interact with files in any other part of the computer.

The Snaps library includes a method that stores the currently displayed graphic in a
file in local storage. The method, SaveGraphicsImageToLocalStoreAsPNG, is given the
name of the file to be created. Here’s a statement that saves an image in a local file
with the name test.png.

SnapsEngine.SaveGraphicsImageToLocalStoreAsPNG("test.png");

Ch11_07_SaveGraphicsLocal

The user will not be able to find this file in the normal file store on their computer, but
this isn’t a problem because the drawing application has access to these files and is
able to display them when required.

LoadGraphicsPNGImageFromLocalStore
When a Snaps application wants to display the contents of a local image, it uses the
LoadGraphicsPNGImageFromLocalStore method:

if (!SnapsEngine.LoadGraphicsPNGImageFromLocalStore("test.png"))

{

 SnapsEngine.DisplayDialog("Image not found");

}

Ch11_08_LoadGraphicsLocal

This program snippet opens the image in the file test.png and displays the image on
the screen. If the image cannot be found, the method returns the value false. In this

Try to load an
image from local

storage.

Display an error message if
the image isn’t found.

358 Chapter 11 Making solutions with objects

ptg18144483

program, we use the return value to trigger an error message. If you run this program
before you run Ch11_07_SaveGraphicsLocal, or use a file name different from
test.png, you’ll see the error behavior in action.

These methods provide the basics for how a drawing diary application can save and
view simple drawings, but each drawing to be saved needs to have a file name. One
good way to assign a unique file name is to use a data structure that we haven’t seen
before—the DateTime structure. This structure provides lots of useful behaviors that
you can use to work with dates and times. If you associate each drawing with the date
and time that it was made, you can find drawings that you made on particular days.

The DateTime structure
Lots of programs need to work with dates and times, so the designers of C# created
a structure that can represent a particular day and time. The structure provides day,
month, year, hour, minute, and second properties that a program can use.

Structures vs. classes: Repeat
Question: It’s important for you to understand the difference between a structure and a
class and when each should be used. Why is the DateTime object a structure and not a class?

Answer: A DateTime object should always be manipulated in terms of its value, not as an
object that is managed in terms of references. A given DateTime value describes a unique
point in time and will often be a property of another object—for example, the date and
time of an appointment or the date and time when a photograph was taken. We don’t
want these values to be managed by reference; they should be part of the object they are
helping to describe. The designers of C# made DateTime a structure to reflect this. When
you make your own objects, you need to think about this, too. Don’t make everything a
class. Think about how the values are going to be used.

The DateTime structure lives in the System namespace. Whenever you want to use the
structure, you can use the fully qualified name (System.DateTime), but it is simpler
to include a using statement to tell the C# compiler that you want to use the System
namespace:

using System;

CODE ANALYSIS

359Saving drawings in fi les

ptg18144483

Getting the current date and time
The DateTime structure provides a static property named Now that returns the current
date and time as a DateTime object. You can use this property to create a Snaps pro-
gram that displays a digital clock:

using SnapsLibrary;

using System;

class Ch11_09_DigitalClock

{

 public void StartProgram()

 {

SnapsEngine.SetTitleString("Snaps Clock");

while(true)

{

DateTime currentDateAndTime = DateTime.Now;

SnapsEngine.DisplayString(currentDateAndTime.ToString());

SnapsEngine.Delay(1);

}

 }

}

This program contains a while loop that will never end. Inside the loop, the program
reads the date and time and displays it on the screen. It uses the ToString method to
ask a DateTime value for a string that describes the contents of the date and time value
being displayed.

The loop also contains a call of the Snaps Delay method. This call delays the program
for one second each time the loop goes around. If there was no delay, the program
would go around the loop as fast as it could, which would provide quite a bit of work
for the computer running the program. Since the time display shows the ticking of
the seconds value, there is no point in updating the display more rapidly than once
a second. The program uses the Delay method to allow other programs to run until
the time needs to be updated. This means that the clock program does not cause the
computer to do more work than it needs to.

Fading date and time displays
If you run the clock program shown above, you will notice that, unless you specify
otherwise, the Snaps DisplayString method will gently fade in the text that is being

Get the current
date and time.

Display
the date

and time
as a string.

Wait for a second.

360 Chapter 11 Making solutions with objects

ptg18144483

displayed. This is fine in most situations because users don’t like sudden changes in
the display. However, if you want to display a ticking clock, you need the new date and
time to be displayed immediately rather than fade in. We can call a different version of
the DisplayString method and ask it not to fade in the text:

SnapsEngine.DisplayString(message:currentDateAndTime.ToString(),

 alignment: SnapsTextAlignment.center,

 fadeType: SnapsFadeType.nofade,

 size: 50);

Ch11_10_DigitalClockNoFade

This is an overloaded version of the DisplayString method that accepts another three
parameters that allow us to specify the alignment of the text, the fade type to use, and
the size of the text.

If you run the sample program Ch11_10_DigitalClockNoFade, you will find that the
seconds tick by in a most impressive manner. The text size of 50 gives a nice size for
the display, too, as you can see in Figure 11-2.

Figure 11-2 A simple digital clock built with Snaps.

Using the date and time to make a file
name
We want to use the date and time to create a unique file name for our drawings. This
is something that a digital camera does every time you take a picture. Unfortunately,
the ToString method provided by the DateTime structure returns a string description
of the time that contains colon characters, which are illegal in file names. Instead, you
can ask a DateTime value to give you a number that denotes that date and time. The
DateTime structure provides a method named ToFileTime that returns a long integer
value that is made up of the date information encoded as a single value. (The To
FileTime method is so-named because the format of the time data is the same as that
used in the Windows operating system to hold time stamps on files held in the file

361Saving drawings in fi les

ptg18144483

store.) It’s not really important how the value is constructed; all you need to know is
that if you convert this value to a string, you can use the string as the name of a file
you want to store.

DateTime fileTime = DateTime.Now;

string filename = fileTime.ToFileTime().ToString();

Creating a Drawing class
After creating a file name and saving each drawing, we next have to consider how
to get a saved file back again. One way to do this is to make a Drawing class that will
contain the DateTime value for a given drawing. The class could also manage saving
and loading drawings.

class Drawing

{

public DateTime date;

private string fileName

 {

get

{

return date.ToFileTime().ToString();

}

 }

public void StoreGraphicsNow()

 {

date = DateTime.Now;

SnapsEngine.SaveGraphicsImageToLocalStoreAsPNG(fileName);

 }

public void ShowStoredGraphics()

 {

SnapsEngine.LoadGraphicsPNGImageFromLocalStore(fileName);

 }

}

The Drawing class contains one data member, which is the DateTime value for this
drawing. The Drawing class has two public methods. One saves the current drawing,
and the other method is used to display a save drawing on the screen.

Get the current date and time.
Create a fi le name string.

DateTime of this
drawing.

private string fileName

{

get

 {

return date.ToFileTime().ToString();

 }

}

Property used in
the Drawing class to

get the fi le name.

public void StoreGraphicsNow()

{

 date = DateTime.Now;

SnapsEngine.SaveGraphicsImageToLocalStoreAsPNG(fileName);

}

Method that
saves the

drawing and
sets the time

stamp.
public void ShowStoredGraphics()

{

SnapsEngine.LoadGraphicsPNGImageFromLocalStore(fileName);

}

Method that
shows the

picture on the
screen.

362 Chapter 11 Making solutions with objects

ptg18144483

Here is how a program would create a new Drawing and then use it to store the
graphics.

Drawing record = new Drawing();

record.StoreGraphicsNow();

When the program wants a drawing to be displayed, it just has to call the ShowStored-
Graphics method.

record.ShowStoredGraphics();

Looking at the Drawing class
Question: How are we going to use the Drawing items to store pictures?

Answer: You can think of each Drawing item as a bit like a Contact in the Time Tracker
application. It contains a member that identifies a particular drawing. You could store a
list of drawings in a JSON string and use this to find drawings—like you stored a list of
contact items in the Time Tracker applications.

Question: If you are so concerned about the protection of data in objects, why is the date
member of the Drawing class not private?

Answer: If we want to use the JSON serializer to store the Drawing values, we have to
allow the date and time to be set during the serialization process. This means that the
data member has to be made public so that its value can be set when it is loaded. If I was
really serious about security, I’d use one class (perhaps called DrawingJson) to manage
saving and loading behaviors and another class (perhaps called SecureDrawing) that
had full protection of the data held inside it.

Question: Why is the file name of the drawing a property of the class? Wouldn’t it be quicker
to create the file name string from the date property each time it’s needed?

Answer: Experienced programmers try to make sure that they do a particular task in
one place only. This is not to improve performance but so that if we need to change the
behavior (perhaps to fix a bug), we have to make the change only in one place.

CODE ANALYSIS

363Saving drawings in fi les

ptg18144483

Creating a list of drawings
Storing a single drawing is great, but a drawing diary needs to account for many
drawings. We can do this by creating a list of Drawing values. Each time a new drawing
is saved, it is added to the list of drawings held in the program. A program can locate
each drawing in turn by working through the list.

List<Drawing> drawings;

The previous statement creates the list of drawings. When the program starts running,
this list is loaded into memory:

void LoadAllDrawings()

{

string json = SnapsEngine.FetchStringFromLocalStorage(SAVE_NAME);

if (json == null)

 {

// If we get here there is no string in local storage

SnapsEngine.WaitForButton("Created empty Drawing store");

drawings = new List<Drawing>();

 }

else

 {

drawings = JsonConvert.DeserializeObject<List<Drawing>>(json);

 }

}

The LoadAllDrawings method loads all the drawings. The first time the method runs,
there will be no drawings. If this happens, the program shows a message to the user
and then creates an empty list.

The program also needs a corresponding method to save all the drawings:

string SAVE_NAME = "MyDrawings.json";

void StoreAllDrawings()

{

string json = JsonConvert.SerializeObject(drawings);

Fetch
the JSON

string.if (json == null)

{

// If we get here there is no string in local storage

SnapsEngine.WaitForButton("Created empty Drawing store");

 drawings = new List<Drawing>();

}

If no string,
create an empty

drawing store
and tell the user.

Create the
drawing list from

the JSON string.

Create the JSON
string. . .

364 Chapter 11 Making solutions with objects

ptg18144483

 SnapsEngine.SaveStringToLocalStorage(itemName: SAVE_NAME, itemValue: json);

}

Making the drawing diary methods
Now that we have the methods to store and load graphics and drawings, we can cre-
ate the rest of the methods we need to save and display drawings.

The StoreDrawing method creates a new Drawing value, uses it to store the drawing,
and then clears the graphics screen ready for the next drawing.

private void StoreDrawing()

{

 Drawing record = new Drawing();

 record.StoreGraphicsNow();

 drawings.Add(record);

 StoreAllDrawings();

 SnapsEngine.ClearGraphics();

}

The DisplayDrawings method works through the list of drawings, asking each one in
turn to display itself. It pauses for a second between each drawing. When the draw-
ings have been displayed, the method clears the graphics screen, ready for the next
drawing.

void DisplayDrawings()

{

 foreach (Drawing d in drawings)

{

 d.ShowStoredGraphics();

SnapsEngine.Delay(1);

 }

 SnapsEngine.ClearGraphics();

}

The DisplayHelp method does just what the name implies. It tells the user how to use
the program. The idea here is that the user draws his drawing on the screen and then
touches the top-left corner when he wants to perform a command.

Save the string in
local storage.

Ask the new drawing to store the graphics.
Add the drawing to the list.

Store the drawing.

365Saving drawings in fi les

ptg18144483

void DisplayHelp()

{

 SnapsEngine.SetTitleString("Drawing Diary");

 SnapsEngine.DisplayString("Touch the top-left corner to display the menu");

 SnapsEngine.Delay(3);

 SnapsEngine.SetTitleString("");

 SnapsEngine.DisplayString("");

}

The DrawDotsUntilDrawInLeftCorner method is very similar to the drawing method
that we used in Chapter 9. It waits for the user to draw by touching the screen or click-
ing with the mouse. It then draws a dot at the draw position. If the user draws in the
top-left corner of the screen (within 50 pixels of the corner), the method returns.

void DrawDotsUntilDrawInLeftCorner ()

{

 while (true)

 {

SnapsCoordinate drawPos = SnapsEngine.GetDraggedCoordinate();

if (drawPos.XValue < 50 && drawPos.YValue < 50)

{

break;

}

SnapsEngine.DrawDot(pos: drawPos, width: 20);

 }

}

The ProcessCommand method takes a command from the user and calls the required
method to perform the command. The user can clear the screen, store the graphics
image as a drawing, and play all the current drawings.

void ProcessCommand()

{

 string command = SnapsEngine.SelectFrom3Buttons("Clear", "Save", "Play");

 switch (command)

 {

case "Clear":

SnapsEngine.ClearGraphics();

break;

Get a drag
event.

If draw position is the
top-left corner, break

out of the loop.

Draw a dot.

366 Chapter 11 Making solutions with objects

ptg18144483

case "Save":

StoreDrawing();

break;

case "Play":

DisplayDrawings();

break;

 }

}

Here is the complete program. It starts by loading the drawings, setting the drawing
color, and then repeatedly lets the user draw and enter commands. The final program
uses lots of tiny methods. I think this is a really good way to structure the code. It
makes it very easy to navigate. If a client asks you to add an extra command, perhaps
to allow her to select different drawing colors, it is obvious where that code should go.
Each of the methods has a sensible name that makes it very easy for another program-
mer to find their way around the program.

public void StartProgram()

{

 LoadAllDrawings();

 SnapsEngine.SetDrawingColor(SnapsColor.Blue);

 DisplayHelp();

 while (true)

 {

DrawDotsUntilDrawInLeftCorner();

ProcessCommand();

 }

}

Ch11_11_DrawingDiary

Make a Mustache Maker Rogues Gallery
You can now use what you learned to create a mustache editing program that lets you load
pictures that you have taken and annotate them, perhaps to add a mustache or even a full

MAKE SOMETHING HAPPEN

367Saving drawings in fi les

ptg18144483

beard. You can use the program to save the picture and provide a slide show of “wanted”
people. It would be really nice if you were able to use the camera on your device from your
Snaps application. It turns out that this is really easy:

SnapsEngine.TakePhotograph();

The TakePhotograph method will open the camera dialog box on your Windows 10 device
and allow you to take a photograph. When you’ve taken the photograph, it’s displayed on the
screen. If the program performs any drawing actions, these will be added to the image and
stored when the image is stored.

I’ve put a Mustache Maker program in the sample code for this chapter. You can find it in the
demo file Ch11_12_MustacheMachine. One thing you may find surprising is just how similar
it is to the drawing diary. Go ahead and add a “take picture” command to the drawing diary.

What you have learned
In this chapter, you’ve taken some solid steps toward becoming a “professional”
developer. You’ve seen how to use C# constructions to allow programs to manage
access to elements and behaviors held within objects. You have seen that by making
data private and providing public get and set methods, you can create an object that
will always hold valid content in the context of the business rules that apply to the
program.

You’ve also discovered C# properties, which make it very easy for others to have
access to data managed by an object but also allow you to ensure that the data held
inside the object always has integrity. You’ve also taken a look at exceptions and dis-
covered how a program can deal with exceptions that are thrown as a program runs.

You also built an entirely new application from scratch. In the Drawing Diary, you’ve
explored the relationship between data held in objects and that which is held in files
on the host computer. It also shows how to break a fairly complex program into a set
of small, easy to understand methods.

Here are some questions that you might like to ponder:

368 Chapter 11 Making solutions with objects

ptg18144483

Do we really need to protect data held in our objects?

It depends on the context of the program. If you are writing a trivial game or a
program that only you will ever use, you can probably dispense with data protection
and make everything in your program public. However, if you are working with other
programmers or creating something that will be used by other programmers, I think
you should pay attention to the integrity of your program objects. In my experience,
if someone does something foolish with one of your software objects that causes bad
things to happen, it will be seen as your fault if an application fails as a result. Saying
“That was a silly thing to do” is not a valid defense in this situation.

Which are better, properties or get and set methods?

We know that we can stop uncontrolled changes to the elements in an object by
making the member data private. However, once we have done that, we now have to
allow the outside world access to this member data in some way; otherwise, the data
is useless. There are essentially two ways to provide this access. You can create get
and set methods for the data or hide the private data behind a public property. This
is one of those subjects that people have strong opinions about. I like using get and
set methods because the set method can tell you why it didn’t like the value it was
given without having to throw an exception. However, I also like the ease of use of
properties.

However, in a given solution, I’d be more concerned about consistency of approach
(always using one or the other) rather than the advantages or disadvantages of each.

What’s to stop someone from changing the contents of an object of ours when
it is saved?

This is a good question. A malicious programmer could change the minutesSpent
value inside a contact record just by changing the text in the JSON string when it is
stored in local storage. There are, however, a couple of ways that a program can stop
this from happening.

The first way is to use some kind of encryption when you save the data. Encryption is
a mechanical process that takes in data—for example, “Helloworld”—and converts
it to data that is harder to understand—for example “Ifmmpxpsme”. This is actually
not very secure encryption because it just replaces each letter by the next one in the
alphabet. There are much better encryption technologies than this that you could use
to make it harder for someone to corrupt your data. When a program reads the data,
it decrypts the information by reversing the encryption process and recovers the valid
data.

369What you have learned

ptg18144483

The other way to deal with data corruption is to not perform any encoding, but to do
something to detect when the data in an object has been changed. If we combine all
the values in a Contact object in a particular way (for example, add up all the charac-
ter codes and data values and multiply by a few magic numbers on the way), we can
generate a check code that is stored with the data. If anyone changes the contents of
a Contact, our program will notice because it will recalculate the check value when it
loads the data and see whether the value matches the stored one.

If you think all this sounds like a game of cat and mouse, you are right. These games of
encryption and data validation are being played out all over the world as network and
computer designers battle hackers who are constantly trying to break and subvert the
digital systems that so much of our lives are based on. It’s a fascinating field, and one
which is a great place to get some very interesting (and well paid) work.

370 Chapter 11 Making solutions with objects

ptg18144483

This page intentionally left blank

ptg18144483

ptg18144483

Part 3
Making games

Games are a great place to develop your programming skills. They are
fun and immediate, and you can create them to impress your friends.
They also provide a fantastic framework within which you can build on
the fundamental principles of object-oriented software development.
You’ve already started using objects in your programs, so now let’s find

out how we can have some serious fun with them.

373

ptg18144483

12
What makes a

game?

ptg18144483

What you will learn
Programmers have been creating games for as long as we’ve had comput-
ers. I think that you should try your hand at writing some games even if you
don’t intend to go into game development. For one thing, getting good at
programing is all about practice, and games give you a great place to write
lots and lots of code. But the main reason is that developing games let you
“doodle” with code with no fear of failure.

When you create a game, you don’t have to worry about meeting a
specifi cation or implementing the “right” way to solve a problem. You can
just write something that might be fun and then fi nd out whether it is. If it
doesn’t work as you expected, that can be interesting too. Writing games
lets you experiment with coding, and that’s a lot of fun.

In this chapter, you’ll discover how games operate and start working with
the software elements that make up gameplay.

Creating a video game. .376

What you have learned .392

375

ptg18144483

Creating a video game
Today we are going to start writing a game. To keep things simple, we’ll work in two
dimensions—in other words, the objects in our game will be flat. Xbox One games
such as Halo provide vast, three-dimensional worlds that players can explore and
interact with. Our games will allow players only to work with images on a flat screen.

This is not actually a huge problem from a gameplay perspective. Some of the most
popular games ever, from Pong to Space Invaders to Angry Birds, are two-dimen-
sional. One of the lessons from this chapter will be just how compelling a simple game
can be.

We’ll start by drawing some game objects and getting them to move around and
interact with one another. Then we can branch out into different forms of gameplay.

Games and game engines
A game engine is the program code that sits underneath a computer game and pro-
vides a platform for the game to use. Major game studios spend millions developing
the game engines that underpin their products. The game engine is in charge of draw-
ing the display the player sees and updating the state of the objects in the game. It
performs drawing and update actions many times a second, giving players an engag-
ing gaming experience.

There are many different game engines. For our purposes, I’m going to use a tiny
game engine that I created that runs within the Snaps framework. It’s not the most
powerful engine in the world, but it will let you grasp the principles of game develop-
ment. Once you’ve cut your gaming teeth with the Snaps engine, you can move on to
other platforms. I’ll give some helpful hints about a framework you might like to use at
the end of this chapter.

The Snaps game engine does not run all the time. Instead, you turn it on when you
want to play a game. When the game engine starts, it makes the game full screen
(if requested) and sets up the input devices that are to be used. Here is the Snaps
method a program calls to start the game engine running:

using SnapsLibrary;

public class Ch12_01_EmptyGame

{

 public void StartProgram()

376 Chapter 12 What makes a game?

ptg18144483

 {

SnapsEngine.StartGameEngine(fullScreen: false, framesPerSecond: 60);

while (true)

{

SnapsEngine.DrawGamePage();

}

 }

}

Ch12_01_EmptyGame

A game can run in full-screen mode or in a window on the display. The Start-
GameEngine method is given a Boolean value to select which mode to use. The game
engine is also given the number of frames per second that the game is to run at. If
you run the Ch12_01_EmptyGame Snaps application, you won’t see anything on the
screen just yet. We’ll add some objects to the game in a moment.

Frames per second
The second parameter to the StartGameEngine method is the number of frames per second
that the game should aim to run at.

Question: What does frames per second actually mean?

Answer: The clue is in the name. The frames-per-second value is the number of times
that the screen should be redrawn each second. A game works by redrawing the entire
screen at regular intervals. Images on the screen appear to be moving because they are
drawn at different positions with each operation. If the time interval between successive
redraws increases, the images on the screen appear to move in larger steps, creating a
jerky display. Modern games usually try to run at 60 frames per second, although this
figure will vary depending on how many items are on the screen at one time. You can
experiment with this value to try and get a display that looks good to you. I find that 60 is
a good number to start with.

The game loop
If you look at the code in Ch12_01_EmptyGame, you’ll notice that it contains a loop
that will run forever but doesn’t seem to do much.

Start the game engine, run the game in a
window, update the screen 60 times per second.

Draw the game
display (currently

empty).

CODE ANALYSIS

377Creating a video game

ptg18144483

while (true)

{

 // Game update logic goes here

 SnapsEngine.DrawGamePage();

}

This loop is called the game loop. It runs continuously while the game is active. At the
moment, the loop just contains one statement, which calls the DrawGamePage method
in the Snaps library. This is the method that will update all the items on the screen.
If any game element has changed position, the method will redraw the item in the
updated position. This method also manages timing so that the game loop actually
updates the screen at the frame rate that was selected when the game engine was
created. At the moment, there is nothing on the screen, so I think we need to move on
and display some items.

Infinite loops
An infinite loop can be a bad thing for a program to perform because it means that the pro-
gram will never stop. However, we have one in our program now, which probably deserves
some discussion.

Question: When is an infinite loop a good thing?

Answer: An infinite loop is one that runs forever and doesn’t have any way of exiting it.
But for a game, this continuous update process is actually what you want. When you are
playing the game, you want the display to be continuously updated. However, you don’t
need to worry that this loop will run very quickly and tie up the computer unnecessarily.
The DrawGamePage method will pause the program so that the game updates only at the
frame rate that’s requested, which in this program is 60 times per second.

Games and sprites
We can call each element on the game display a sprite. A sprite contains an image
and has a position and an orientation. If you are playing a space-shooter game, it
uses sprites for the spaceships on the screen, the background picture, and the missiles
flying through space. We are going to start with a very simple yellow ball sprite.

CODE ANALYSIS

378 Chapter 12 What makes a game?

ptg18144483

Adding a sprite image to a game
You can add an image to a Snaps application by dragging it from where it is stored on
your PC to the Images folder in Visual Studio. This makes a copy of the image in the
game. We did this in Chapter 3, when we added images to be displayed by using the
Snaps method named DisplayImageFromUrl. Figure 12-1 shows how Visual Studio lets
you manage the ball image file (ball.png) in the Images folder for the sample code for
this book.

Figure 12-1 The ball image in the Images folder.

If you hover the mouse over one of the images in the Images folder, Visual Studio will
show you a thumbnail preview of the image in that file. I’ll be using this ball in my
examples, but you can add images of your own to the games. This makes it a lot more
interesting and personal.

Make a game image of your own
You can add an image of your own to the game by dragging it into the Images folder of your
Snaps Visual Studio project. The image can be a JPEG, GIF, or PNG image. I prefer to use PNG
files because these files support transparent images—in other words, parts of a PNG image
can be made to show another image behind them. You will see this when we start to use the
ball in our games. The image of the ball is a rectangular picture, but only the round part of
the ball obscures the image underneath. The rest of the ball image is transparent.

MAKE SOMETHING HAPPEN

379Creating a video game

ptg18144483

You can have a lot of fun working with images. If you need a good, free image editor that
supports layers and transparency, I would suggest you take a look at Paint.NET, which you
can download from www.getpaint.net.

PROGRAMMER’S POINT

Sprites and graphics are not just for games anymore
If you are reading this part of the book and wondering why I’m telling you how to make
a game when all you want to do is write useful applications, then I’d advise you to keep
reading. Modern applications now contain a lot of behaviors that are very close to game
elements. We have a generation of computer users who have grown up playing games, so
they expect that the systems they use will have the same slick graphics and animation as
the games that they play.

While you, as a programmer, might not be expected to design these graphics, you still need
to have a good understanding of how game-like behavior can be used to enhance the user
experience. And besides, it’s a lot of fun.

The Snaps ImageSprite class
Now that we have an image file in our project, we need to attach it to a software
object that will manage the image within the game. By now you should be familiar
with the idea that a programmer can create a software object to represent things that
their program will work with. We have created and used objects to represent musical
notes and address book contacts, to name just two.

Our games need a sprite on the screen that can display an image. I created an Image-
Sprite class that will represent an image on the screen. In your programs, you can
create a new ImageSprite instance at any time:

ImageSprite ball = new ImageSprite(imageUrl: "ms-appx:///Images/ball.png");

There is a constructor for the ImageSprite class that accepts a single parameter,
which is a string giving the location of the image to be displayed by the sprite. Once
this statement has completed, it has created a reference named ball that refers to an
ImageSprite instance that will produce the ball image when drawn in the game. The
ball on its own will not do much—it has to be added to the game engine so that it can
be displayed. The game acts as a container for all the sprites and manages how and
when they are drawn on the screen.

If you’d rather make sprites in your games from images on the Internet, you can do
this:

380 Chapter 12 What makes a game?

http://www.getpaint.net

ptg18144483

ImageSprite ball = new ImageSprite(imageURL:

"https://farm9.staticflickr.com/8713/16988005732_7fefe368cc_d.jpg");

You can think of the ImageSprite as a kind of carrier for an image. You can tell the
ImageSprite to place the image on the screen at any location you like. You can also
use it to scale and rotate the image in a variety of ways.

Adding an ImageSprite to the game engine
The game engine keeps a list of sprites that are currently in use. When you create an
ImageSprite, you have to tell the game engine to add the new sprite to this list.

SnapsEngine.AddSpriteToGame(ball);

This statement adds the ball to the game. Now, when the game loop runs, the sprite
will be drawn on the screen. If you reach a point in the game where a particular Image-
Sprite is no longer needed (perhaps the player has gone from level 1 to level 2), you
can remove the sprite by using the RemoveSpriteFromGame method.

Here is the simplest possible game:

using SnapsLibrary;

public class Ch12_02_BallSprite

{

 public void StartProgram()

 {

SnapsEngine.StartGameEngine(fullScreen: false, framesPerSecond: 60);

ImageSprite ball = new ImageSprite(imageUrl: "ms-appx:///Images/ball.png");

SnapsEngine.AddSpriteToGame(ball);

while (true)

{

SnapsEngine.DrawGamePage();

}

 }

}

Start the game engine.

Create a new ImageSprite
using the ball image.

Add the ImageSprite to
the game.

381Creating a video game

https://farm9.staticflickr.com/8713/16988005732_7fefe368cc_d.jpg"

ptg18144483

Actually, this is more an image-display program, in that nothing happens to the sprite
each time the game updates, so it doesn’t do anything—it just shows a nice large ball
on the screen. Figure 12-2 shows the ball as it is drawn when the Ch_12_02BallSprite
program runs.

Figure 12-2 Displaying the ball sprite.

The ball image is about 260 pixels in size and is being drawn with that dimension,
which is a bit large for our game. We need to find a way of making a ball that is a
better size.

Changing the size of an ImageSprite
In Chapter 11 you saw how a class can contain property behaviors that can be used to
manage access to data held inside the object. The Contact class had a Name property
that allowed a program to manipulate the name of the person the Contact value was
holding. The ImageSprite class provides properties that let a program manipulate the
width and height of a sprite when it is displayed.

using SnapsLibrary;

public class Ch12_03_SquishyBall

{

 public void StartProgram()

 {

SnapsEngine.StartGameEngine(fullScreen: false, framesPerSecond: 60);

ImageSprite squishyBall = new ImageSprite(imageURL:

"ms-appx:///Images/ball.png");

382 Chapter 12 What makes a game?

ptg18144483

SnapsEngine.AddSpriteToGame(squishyBall);

float maxWidth = 500;

float minWidth = 100;

float currentWidth = 100;

float widthUpdate = 1;

while (true)

{

currentWidth = currentWidth + widthUpdate;

if (currentWidth > maxWidth)

widthUpdate = -1;

if (currentWidth < minWidth)

widthUpdate = 1;

squishyBall.Width = currentWidth;

SnapsEngine.DrawGamePage();

}

 }

}

A program can set the width and height of a sprite by assigning values to the sprite’s
Height and Width properties. Changing the size of the sprite doesn’t instantly change
its size on the display, however; the size changes only when the DrawGamePage method
is called. When the preceding program runs, it makes a ball squish in and out, as you
can see in Figure 12-3.

Figure 12-3 Squished ball as a result of changing height and width.

A program can scale an image to any height and width, but when you scale a sprite,
you need to be careful to preserve the ratio of height to width so that the display
looks “right.” If you get the ratio wrong, as I did above, you run the risk of objects
looking stretched in one direction or another.

Maximum ball width.
Minimum ball width.

Current ball width (start at 100).
Amount width changes each time around the

game loop.

Update the current width
by the update amount.if (currentWidth > maxWidth)

 widthUpdate = -1; If ball is wider than maximum width, change
update value so width narrows.if (currentWidth < minWidth)

 widthUpdate = 1; If the ball is narrower than
minimum width, change

the update value so it
counts up.

Set the width of the ball to
currently calculated width.

383Creating a video game

ptg18144483

When images go bad
When your program changes the size of an image, the Windows graphics system will scale
it to fit the size that you requested. Making an image smaller will result in some detail being
lost, but the image quality will still be good. However, if you take a very small image and
try to make it very large, you will notice that the scaled image looks blurry, and you might
start to see dots and other corruption of the picture. You can see this in the stretched ball in
 Figure 12-3, where the edges of the ball have “steps” in them as the original dots that make
up the picture are expanded to fill the space.

When I make a game, I try to be sure that all my images are larger than they need to be so
that when I scale them to fit on the screen, I am always making them smaller. This way I can
be sure that the items on the screen always look their best.

Get your images squeezing
You can have a lot of fun changing the shape of images. You can use this technique to zoom
in to an image or make it shrink to nothing. If you change the size of the update value, you
can make the image grow very slowly or flick up and down. Try this with some pictures of
your own. You can have quite a lot of fun “squishing” your family photos. Or at least, I did.

Scaling a sprite
We have seen the effect of getting the height and width of an image wrong, which
makes it look squished. We can use this to comic effect if we want. However, what we
really want is some way to scale a sprite and preserve its shape. It turns out that the
ImageSprite provides methods that will do this for us. We can set the width or the
height of a sprite, and the other dimension will be adjusted to keep the sprite looking
sensible.

The ScaleSpriteWidth method sets the sprite’s width as requested and automati-
cally adjusts the height so that the shape of the sprite is correct and does not appear
stretched. The ScaleSpriteHeight method does the same for the height of the sprite.

WHAT COULD GO WRONG

MAKE SOMETHING HAPPEN

384 Chapter 12 What makes a game?

ptg18144483

float maxWidth = 500;

float minWidth = 100;

float currentWidth = 100;

float widthUpdate = 1;

while (true)

{

 currentWidth = currentWidth + widthUpdate;

 if (currentWidth > maxWidth)

widthUpdate = -1;

 if (currentWidth < minWidth)

widthUpdate = 1;

 scaledCity.ScaleSpriteWidth(currentWidth);

 SnapsEngine.DrawGamePage();

}

Ch12_04_ScaledCity

This program snippet changes the width of a city picture between 100 and 500 pixels.
If you run the program, you will notice that the shape of the picture, shown in Figure
12-4, is preserved so that it looks right in both sizes.

Figure 12-4 Scaled city photograph.

The formal term for the relationship between the height and the width of an image is
the aspect ratio of the image, which is the ratio of the height and width of the picture.
You see this term used in discussions about video displays. A wide-screen video is
usually displayed with an aspect ratio of 16:9 (16 units wide to 9 units high), whereas an
older display, and some tablet PCs, have an aspect ratio of 4:3 (4 units wide to 3 units
high). One of the challenges for game developers is to make sure that their games
work on displays of any size and shape.

“Squeezing” code used in the previous example.
Scale the sprite to the

calculated width.

385Creating a video game

ptg18144483

What do the height and width values actually
mean?
We have been using numbers to specify the dimensions of our screen objects, and you may
have noticed that, quite sensibly, when the numbers get bigger, the objects on the screen get
bigger. But we need to consider just what these numbers mean and how they are used.

Question: What do the size values actually mean?

Answer: The position and size values are specified in pixels. In the first days of video
games, a pixel exactly equaled a single dot on the display. This would mean that the
stretched ball image in Figure 12-3 would be exactly 400 dots wide and 100 dots high.
Today, there are many different sizes and resolutions for displays, and it is not sensible to
work in dots anymore. On a Windows 10 display, a pixel is equal to around one ninety-
sixth of an inch, so the ball I showed earlier would be displayed slightly larger than an
inch in size, irrespective of the type of display on the device that is running the program.

If you intend to run your game only on one computer, you can use sprite sizes that work for
the display on that machine. However, if you want to make your game available for many
users, perhaps via the Windows Store, you need to be sure that players get a good experience
irrespective of the device they are using.

A ball size of around one inch would be perfect for a large-screen computer, but it would be
a very bad idea for a small tablet PC or a Windows Mobile device. The way to solve this is to
adapt the size of your sprites to fit the machine that the game is running on.

Adapting sprite size
We want to make the game adapt to different screen sizes. Snaps provides you with
properties that tell a program the dimensions of the viewport that the game is pres-
ently using. You can think of a game as being drawn on an infinitely large space. The
viewport is that part of the space that is visible to the person playing the game. The
top-left corner of this viewport is at coordinate 0,0, and the position of the bottom
and the edge at the right depends on the width of the viewport. Anything that is not
visible in the viewport is not drawn.

For a particular game, I might want the ball to be one-twentieth of the width of the
viewport. The following statements use the GameViewportWidth property to get the

CODE ANALYSIS

386 Chapter 12 What makes a game?

ptg18144483

width of the viewport and then calculate a value that is one-twentieth of this to use as
the ball’s width. There is also a corresponding height property.

ImageSprite scaledBall = new ImageSprite(imageUrl: "ms-appx:///Images/ball.png");

SnapsEngine.AddSpriteToGame(scaledBall);

double ballWidth = SnapsEngine.GameViewportWidth / 20.0;

scaledBall.ScaleSpriteWidth(ballWidth);

Ch12_05_BallSpriteTwentieth

Figure 12-5 shows a ball that is one-twentieth of the width of the screen. Most games work
by setting the size of the game’s objects when the game starts.

Figure 12-5 A smaller ball, drawn to scale.

Viewport widths and screen sizes
Question: If you are thinking I’ve told you about screen sizes before, you’re right. In Chapter
9, when we worked on the drawing program, we used a Snaps method named GetScreen-
Size, which a program can use to determine the width and height of the screen. The method
returns a SnapsCoordinate value that has the X value set to the width of the screen and the
Y value set to the height. Why do we have two versions of getting the screen size?

Answer: The GetScreenSize method returns the size of the window that the program
is running inside of. However, when we make a game that runs in full-screen mode, the
game takes over the entire screen display, and the window-size value is not correct in this
situation. So we have two size methods.

Create the sprite from the image.

Add the sprite to the game.

Calculate one-twentieth of
the width of the viewport.

Set the width of the sprite to this value.

CODE ANALYSIS

387Creating a video game

ptg18144483

Filling the screen with a sprite
If you want to make an image fill the entire screen, you can set the width and height
values of the sprite to match the screen dimensions. Here’s how:

scaledBall.Width = SnapsEngine.GameViewportWidth;

scaledBall.Height = SnapsEngine.GameViewportHeight;

Ch12_06_BallSpriteFullScreen

In the case of the ball image, filling the screen results in the image being badly
stretched out of shape. However, this technique is a great way to make a background
sprite that fills the entire screen. If the sprite contains a pattern—for example, a field
of grass or a concrete floor—rather than a recognizable object, it is unlikely that the
player will notice that the image is slightly distorted.

Positioning a sprite on the screen
The ImageSprite class provides properties that can be used to manage the position of
a sprite on the screen. These two statements place the ball at the top-left corner of the
screen:

ballSprite.X = 0;

ballSprite.Y = 0;

The values of X and Y give the position of the top-left corner of the sprite. In other
words, if we draw with both X and Y set to 0, the ball is drawn at the top-left corner of
the page. Unless you specify otherwise, the X and Y positions of an ImageSprite are
set to 0 when it is created, which is why all the sprites we have drawn so far have been
drawn at the top left.

A program can place a sprite anywhere on the screen by changing the values of X and
Y. As with the size of the sprite, the position of the sprite changes on the screen only
when the DrawGamePage method runs.

Making a sprite move
What we really want is a game in which elements move around on the screen. To
do this, the game can make changes to a sprite’s position during the game loop. To
understand how this works, take a look at the following code.

scaledBall.Width = SnapsEngine.GameViewportWidth;

scaledBall.Height = SnapsEngine.GameViewportHeight; Set width and
height of the sprite
to refl ect viewport.

ballSprite.X = 0;

ballSprite.Y = 0; Set the X and Y values of the sprite position to 0.

388 Chapter 12 What makes a game?

ptg18144483

while (true)

{

ball.X = 0;

 ball.Y = 0;

SnapsEngine.DrawGamePage();

SnapsEngine.Delay(0.5);

ball.X = 500;

 ball.Y = 500;

SnapsEngine.DrawGamePage();

SnapsEngine.Delay(0.5);

}

Ch12_07_FlickingSprite

When you run the program, the ball appears to flick between two different positions
on the screen. Of course, it isn’t really moving—it’s that your brain is fooled into think-
ing that it has moved from one place to another. If we update the sprite more fre-
quently, and we don’t move quite as far with each step, we can create the appearance
of smooth movement. Here’s some code that shows how this would work:

double XBallSpeed = 1;

double YBallSpeed = 1;

while (true)

{

ball.X = ball.X + XBallSpeed;

 ball.Y = ball.Y + YBallSpeed;

SnapsEngine.DrawGamePage();

}

Ch12_08_MovingSprite

This is a classic game loop. The first two statements in the game loop update the ball
position, and then the screen is drawn. The loop then repeats. If you run this program,
you will see the ball move smoothly down the screen. You see this structure in just
about every game you play.

The ball moves steadily because the pixel values are being increased by a ball-speed
value of 1 each time the loop goes around. The DrawGamePage method has been
told to draw new frames at a rate of 60 per second, so in one second, the ball moves
slightly more than half an inch over the screen (remember that there are around 96
pixels in an inch). If you want the ball to move twice as fast, you just have to change
the values of xBallSpeed and yBallSpeed to 2.

Repeat the loop forever.

ball.X = 0;

ball.Y = 0; Set the X and Y position of
the sprite to 0.SnapsEngine.DrawGamePage();

SnapsEngine.Delay(0.5); Update the game display and wait half a second.
ball.X = 500;

ball.Y = 500; Reset the X and Y position.
SnapsEngine.DrawGamePage();

SnapsEngine.Delay(0.5); Update the game display and wait half a second.

double XBallSpeed = 1;

double YBallSpeed = 1; Set the speed across (X direction) and down
(Y direction) the screen.

Loop forever.

ball.X = ball.X + XBallSpeed;

ball.Y = ball.Y + YBallSpeed; Update the X and Y positions by the speed.
Draw the game on the screen.

389Creating a video game

ptg18144483

Sprite movement
This code repays careful study and also raises some interesting questions.

Question: Why does the sprite move down the screen when Y is increased?

Answer: In computer graphics, the origin of the display (the point with the coordinate
0,0) is always the top left of the screen. This may have something to do with the way that
hardware displays are mapped into memory from the top of the screen, but I must admit
I’m not sure. For the purpose of this chapter, I think the answer has to be “because it
does,” and we just have to move on from this.

Question: What happens if the program tries to draw an image off the screen area?

Answer: The Windows management system doesn’t care if your program tries to draw
something that is not on the screen. You can regard the screen as a viewport onto an
infinitely large area that contains the objects being displayed. Windows will draw those
parts of the objects that are visible through the viewport; anything else is clipped. One
way to make an ImageSprite “disappear” is to move it off the visible area, but it is more
efficient to use the Hide method, which stops the sprite from being drawn at all.

Question: What would happen if we set one of the speed values to zero?

Answer: The program expresses the direction the ball is moving in terms of two values:
how far across the screen to move, and how far down the screen to move. If one of these
values is 0, it means that there was no movement in that direction. For example, if YBall-
Speed was 0, the ball would move horizontally but not vertically. If both speed values
were 0, the ball would be stationary.

Question: What would happen if we set one of the speed values to a negative number?

Answer: Negative speeds are perfectly okay; they make the ball move in the opposite
direction. On the X axis (left to right), a negative speed moves toward the left. In the Y
axis (up and down), a negative speed moves the ball upward.

Making a bouncing sprite
We now have movement, but it is not very useful movement. The ball travels down
the viewport and then vanishes off the bottom. What we would like is for the ball to
bounce off the bottom, top, and sides of the viewport.

If the ball tries to go off the bottom of the screen, the game must make the ball
change direction and move up. If the ball tries to go off the top of the screen, the
game must make it move down. The game must also make sure that the ball doesn’t

CODE ANALYSIS

390 Chapter 12 What makes a game?

ptg18144483

go off the left and right edges by making similar tests. We can express the algorithm
for our bouncing ball as follows:

“If the ball reaches the bottom of the viewport, it should bounce up. If the ball reaches
the top of the viewport, the ball should bounce down. If the ball reaches the left of the
viewport, it should bounce right, and if the ball reaches the right of the viewport, it
should bounce left.”

When something bounces, the direction of movement changes. Our program must
detect when the ball is moving out of the viewport and make the appropriate change
to direction. The ImageSprite class provides a Bottom property that gives the Y coor-
dinate of the bottom of the sprite. If this value ever exceeds the height of the view-
port, the ball must change its direction of movement and bounce upward. Here is the
code that makes the ball bounce off the bottom of the screen:

if(ball.Bottom > SnapsEngine.GameViewportHeight)

{

 // ball is going off the bottom edge

 if(YBallSpeed > 0)

 {

// ball is moving down the screen

// because the speed is positive

// make it bounce back into the viewport

// make the speed negative

YBallSpeed = -YBallSpeed;

 }

}

Ch12_09_BouncingSprite

There is also a Top property that gives the Y coordinate of the top of the sprite. If the
Top value ever becomes less than 0, the ball must bounce down. This is the second test
that must be made to make the ball bounce off the top.

if (ball.Top < 0)

{

 // ball is going off the top edge

 if (YBallSpeed < 0)

 {

// ball is moving up the screen

// because the speed is negative

// make it bounce back into the viewport

// make the speed positive

Has bottom of
the sprite moved

beyond viewport?

If we have gone beyond the bottom and are
still going down, we need to reverse.

The – operator negates a value in a variable.

391Creating a video game

ptg18144483

YBallSpeed = -YBallSpeed;

 }

}

There are also Left and Right properties that provide the X coordinate of the left and
right edges of an ImageSprite.

The sample code in Ch12_09_BouncingSprite has conditions that test for the ball
moving off the four edges. We can now make a ball bounce around the screen. What
we need next is a paddle to hit the ball with. But that’s in the next chapter.

Get some pictures bouncing around the screen
Now that you know how to scale images and position things on the screen, you can have
some serious fun with images. You can slowly pan around a sprite by moving it around the
viewport, or zoom in by changing the size of the sprite. Or you can just make your brother’s
or a friend’s face bounce around the screen. There is a lot of fun to be had combining multi-
ple images like this.

PROGRAMMER’S POINT

Sometimes very simple behaviors need quite a bit of code
Bouncing is something that seems very simple. After all, if a rubber ball can do it, how hard
can it be for a computer program? However, as you have seen, we actually have to do a fair
bit of work to get the bouncing behavior to work correctly. Fortunately, modern comput-
ers can perform thousands, if not millions, of such instructions every second, so it is not
a problem for our game to repeatedly test the position of the ball and update the speed
directions when required.

What you have learned
In this chapter you have learned the fundamentals of computer games, what a game
is, and how it actually runs. You’ve seen that a game works by repeatedly updating the
objects that make up the game environment and then redrawing these objects in their

MAKE SOMETHING HAPPEN

392 Chapter 12 What makes a game?

ptg18144483

new positions. You have also discovered that the fundamental element of a two-
dimensional game of the kind we are going to make (one in which all the game
objects are flat) is the sprite and that a sprite is a container for an image that can be
positioned and scaled by the game. Changes to the size and position of the sprite
give the player the impression of movement. The Snaps framework provides a game
engine and an ImageSprite class that can be used to manage sprites.

You have also learned more about how the coordinate system of computer displays
works, with the origin (the point where the values of X and Y are 0) at the top-left cor-
ner of the screen. You now know that dimensions on a Windows display are expressed
in pixels and that there are 96 pixels to the inch. This can lead to problems if a game
is to run correctly on a range of devices, so you have also seen that there are Snaps
methods that can be used to scale ImageSprites so that their shape is preserved
correctly.

Finally, you have found out that playing around with images and moving them around
the screen is a lot of fun.

Here are some questions that you might want to ponder about game development?

Do I really need a very powerful computer to run these games?

Not in my experience. The Snaps game engine has been tested on the most powerful
Surface Book and also on a lowly seven-inch tablet. In both cases it seems to work
fine. The key consideration is the number of sprites on the screen at any one time. It
seems that the system can cope with up to 500, which is plenty for the kinds of games
that we are going to write. The only device that does seem to struggle with the Snaps
game engine is the Raspberry PI device. The games actually run, but they update very
slowly. This is due to the fact that at the time of writing, the embedded version of
Windows 10 that runs on a Raspberry Pi does not support the graphics acceleration
that is needed to provide a good update speed.

Do all game engines work like the Snaps game engine?

The Snaps engine is massively simplified, and it actually runs on top of the graphical
environment that underpins Universal Windows Applications. That it works as well as
it does is a tribute to the skill of many engineers. Most games engines are much more
closely coupled to the underlying hardware, which means they can provide much,
much better performance.

This game development thing looks like fun. Where can I find a proper game
engine?

My favorite C# engine for writing games is called MonoGame. It is easy to learn and
use, makes good use of the C# language, and can be used to write games for
Windows 10, Android, and even Apple iOS. Once you have mastered the techniques in
this book, I strongly advise you to look for MonoGame in your favorite search engine.

393What you have learned

ptg18144483

13
Creating gameplay

ptg18144483

What you will learn
In this chapter, you’ll write your fi rst proper game, with a beginning, a
middle, and an end. You’ll fi nd out how a game gets input from players and
uses it to control objects in the game. You’ll also discover how games detect
when objects on the screen interact and how you can use these interac-
tions to generate gameplay. Games are not just about images, though, so
we’ll also consider how a game can produce sound output and display text
messages for its players. At the end of the chapter, we’ll take a look at a
complete game and consider how to use randomness, one of the greatest
allies of the computer gamemaker, to add interest to gameplay. All the way
through, I’ll highlight jumping-off points where you can take the sample
code we’re looking at and use it to make your own creations, whether they
are animated mood messages or games of your own. Computers are one of
the most creative devices you can work with, and I think games are one of
the best ways you can explore this potential for creativity.

Creating a player-controlled paddle .396

Adding sound to games .401

Displaying text in a game .403

What you have learned .414

395

ptg18144483

Creating a player-controlled
paddle
At the end of Chapter 12, we had a ball sprite that could bounce around the screen.
Now we’re going to add the player control that will be used to interact with the ball.
I’ve provided a purple paddle that you can use to hit the ball. (You can find the image
for this sprite—paddle.png—in the Images folder in the BeginToCodeWithCSharp
project. You can also add an image of your own.)

The following statements load the paddle sprite into the game and set it up. Its size is
set to one-tenth of the width of the viewport, and the bottom of the paddle is placed
10 pixels from the bottom of the screen. Figure 13-1 shows the paddle's position.

ImageSprite paddle = new ImageSprite(imageUrl: "ms-appx:///Images/paddle.png");

SnapsEngine.AddSpriteToGame(paddle);

double paddleWidth = SnapsEngine.GameViewportWidth / 10.0;

paddle.ScaleSpriteWidth(paddleWidth);

paddle.Bottom = SnapsEngine.GameViewportHeight - 10;

paddle.CenterX = SnapsEngine.GameViewportWidth / 2;

Ch13_01_SpriteAndPaddle

Figure 13-1 Ball and paddle together but without any interaction.

Load the paddle image into the sprite.

Add the sprite to the game.

 Calculate and set
the paddle width.

 Position the paddle.

396 Chapter 13 Creating gameplay

ptg18144483

If we add these statements to the bouncing-ball program we wrote at the end of
Chapter 12, we can see the ball and paddle on the screen together. Now we need to
allow the player to move the paddle. This turns out to be quite easy.

The Snaps gamepad
The Snaps framework provides methods that can be used to get the status of a “game-
pad” that is managed by the Snaps game engine. To control the game, players can
work with the Snaps gamepad in a variety of ways—with the keyboard, the touch-
screen, a mouse, or even an Xbox One or Xbox 360 controller.

The Snaps gamepad can detect five actions—Left, Right, Up, Down, and Fire. The
directions are mapped to the arrow keys on your keyboard, and the fire action is
mapped to the Spacebar. If you are using a controller, the directions are mapped to
the d-pad, and the fire action is the A button.

When the game is running, an on-screen gamepad is also displayed for mouse and
touchscreen use, as shown in Figure 13-2. You can activate the panels by resting the
mouse pointer on the one that you want to trigger or by touching a panel on your
touchscreen if you have one.

Figure 13-2 The on-screen gamepad.

The game can read the settings of the Snaps gamepad and update the objects in the
game appropriately. For example, the XPaddleSpeed variable holds the speed that the
paddle moves when the player moves it. I’ve made it 15 in the following statement,
which is quite a bit faster than the corresponding ball speed of 10. This is fair because
it gives the player a chance to catch up with the ball. The closer this speed is to the
speed of the ball, the more skillful the player must be.

double XPaddleSpeed = 15;

Of course, if you make the paddle move more slowly than the ball, the game becomes
unplayable because the player will never be able to catch up with the ball. This is a
rather nasty thing to do to a player, but it might be fun to try.

397Creating a player-controlled paddle

ptg18144483

A game program can check to see whether a player has triggered a particular
gamepad action by using one of five methods, which are named GetRightGamepad,
GetLeftGamepad, GetUpGamePad, GetDownGamePad, and GetFireGamepad. These
methods return true as long as the corresponding action is being selected. Note that
unlike keystrokes and mouse clicks, which detect events, these methods detect lev-
els—in other words, they don’t detect when a key on the keyboard is pressed; instead,
they let a game check whether the key is up or down.

if (SnapsEngine.GetRightGamepad())

{

 paddle.X = paddle.X + XPaddleSpeed;

}

if (SnapsEngine.GetLeftGamepad())

{

 paddle.X = paddle.X - XPaddleSpeed;

}

Ch13_02_SpriteAndMovingPaddle

The preceding code shows how a program can read the Snaps gamepad and update
the position of the paddle. If the GetRightGamePad method returns true, the program
moves the paddle to the right by the amount of the paddle speed. If the GetLeft-
GamePad method returns true, the program moves the paddle toward the left by the
amount of the paddle speed. (Remember that increasing the value of the X coordinate
moves items toward the right of the viewport.) This is all we need to allow the player
to move the paddle left and right.

Paddle movement
Question: Why does the paddle move continuously when the test is performed only once?

Answer: Looking at the statements above, it looks like the test for the paddle movement
is made only once in the program, but remember that this code is inside the game loop
and is repeated many times a second. This means that the paddle will move when the
player selects a direction and then stop when the player lets go. This turns out to offer a
very realistic and playable feel to the controls.

Question: How would I make the paddle move up and down the screen?

Answer: You can use the same technique to allow players to move the paddle all over the
screen. A game can use the GetUpGamepad and GetDownGamepad methods to detect

If the right pad is selected,
move the paddle to the right.

If the left pad is selected,
move the paddle to the left.

CODE ANALYSIS

398 Chapter 13 Creating gameplay

ptg18144483

when the player has selected Up or Down. It can then update the Y position of the paddle
to reflect the change.

Question: What happens if the player selects left and right movements at the same time?

Answer: Try it! The paddle moves to the left because Left is selected and then moves to
the right because Right is selected. The result is that the paddle doesn’t move at all, which
is just what should happen.

Question: How fast should the paddle move?

Answer: This is something you have to find out by trial and error. I’ve made the gamepad
move at a rate of 15 pixels per update, whereas the ball in my game moves at 10 pixels per
update. This gives players the edge because it means that they can always catch the ball
if they move the paddle fast enough. One very popular trick in game design is to increase
the speed of the objects in the game as the game progresses. Perhaps when a player
reaches a certain score, you could increase the ball speed to 12 and the paddle speed to
16. This speeds up the game and makes more demands on the skill of the player. Game
companies use armies of “playtesters” who are employed to play games before release
to make sure that any progression like this does not make the game unplayable. If you
are thinking of making a game available for sale, it is a very good idea to enlist as many
friends as you can to make sure that your game is fun to play as well.

Stopping the paddle moving off the screen
You might be quite happy moving the paddle left and right to chase the ball, although
at the moment the two objects don’t interact. However, you might have noticed one
flaw in the gameplay. It is very easy to move the paddle completely off the side of
the viewport. If you just hold down the Left arrow key, the paddle moves to the left
margin and then vanishes. This happens because, unlike for the ball, nothing in the
program stops the paddle from moving off the margins of the screen. Fortunately, we
can add some code to our game loop to fix this:

if (paddle.Left < 0)

{

 // Trying to move off the left edge - pull the paddle back

 paddle.Left = 0;

}

if (paddle.Right > SnapsEngine.GameViewportWidth)

{

 // Trying to move off the right edge - pull the paddle back

 paddle.Right = SnapsEngine.GameViewportWidth;

}

399Creating a player-controlled paddle

ptg18144483

Ch13_03_SpriteAndPaddleClamped

These two conditions are performed after the game has updated the position of the
paddle. They make sure that the paddle never leaves the viewport by resetting the
paddle’s position to the edge of the viewport when it goes beyond it. This is a very
common practice in video games. It is called clamping. A value is clamped inside a
particular range and not allowed to go outside it.

Hitting the ball with the paddle
At the moment, the ball and the paddle don’t interact; the ball just passes through the
paddle. What we want is to provide a behavior that causes the ball to bounce off the
paddle when the two objects intersect. The ImageSprite class provides a method that
can be used to check whether another sprite intersects with a particular sprite:

if (paddle.IntersectsWith(ball))

{

 if(YBallSpeed > 0)

 {

// ball is going down, make it bounce off the paddle

// and go up

YBallSpeed = -YBallSpeed;

 }

}

Ch13_04_HittingTheBall

When the ball and the paddle intersect, the game reverses the direction of the Y
speed, which causes the ball to appear to bounce off the paddle. The player of our
game can now “hit” the ball with the paddle. If you play with this for a while, you’ll
notice that sometimes the ball seems to hit the paddle when it really shouldn’t.
Figure 13-3 shows what is going on here.

The IntersectsWith method shown in the preceding code uses the width and height
of the objects on the screen to draw a box around each. If the boxes intersect, the
method returns true. In Figure 13-3, the paddle and the ball aren’t actually touching,
but the boxes around them intersect, so the ball is made to bounce off the paddle
even when it shouldn’t. Some games solve this problem by testing the intersection
area (the tiny rectangle that is shared by the ball and the paddle) to see whether any
of the pixels in each of them actually overlap. If they do, the sprites have collided.

Test whether ball and paddle are
intersecting.

Test to be sure that
the ball bounces
only if it is going
down the screen.

Reverse direction.

400 Chapter 13 Creating gameplay

ptg18144483

Other games solve the problem by making all the sprites rectangular so that they
actually seem to collide.

Figure 13-3 Ball and paddle boundary box.

PROGRAMMER’S POINT

Games are a great place for cheating
The wonderful thing about writing a game is that you control the entire game universe. In
this case we have a problem, which is that sometimes the ball and the paddle collide when
it doesn’t look like they should. We could write some fancy extra code to solve this problem
by checking to see whether pixels overlap, or we could change the shape of the ball and the
paddle so that they are rectangular. Another way would be to continue to use rectangles to
detect collisions around the sprites but make the rectangles smaller so that the ball has to
go a little farther into the paddle before it collides with it.

In this case, we are going to ignore the problem and hope that when the action is moving
quickly, players are so caught up in the game that they won’t notice. Games are full of small
cheats like this. The key test is whether the compromises you make get in the way of a good
gaming experience.

Adding sound to games
Sound effects can add a great deal to a game. The Snaps game engine contains a spe-
cial sound-effects method that you can use to play back sounds during gameplay.

if (paddle.IntersectsWith(ball))

{

 if (YBallSpeed > 0)

 {

// ball is going down, make it bounce off the bat

// and go up

401Adding sound to games

ptg18144483

YBallSpeed = -YBallSpeed;

// Play a sound

SnapsEngine.PlayGameSoundEffect("ding");

 }

}

Ch13_05_HittingTheBallWithSound

Remember that you can add your own sounds to a game. To refresh your memory
about adding sounds to a program, look back at Chapter 5, where we first saw the
PlaySoundEffect method.

Games and sounds
Question: Why do we need a special sound-effect method for games?

Answer: I’ve created a special sound-effect method for games because it is possible that
a game will try to play lots of sounds at once. This can have a bad effect on the way that
programs use memory and can cause the gameplay to “stutter” when this memory is
recovered as the program runs. The PlayGameSoundEffect method restricts the num-
ber of sound channels that a game uses by reusing sounds. This means that some sounds
might not play to completion, but it does ensure that the gameplay remains good.

Get some gameplay going
Now you can take all the images that you’ve been playing with and use them to create
gameplay. Perhaps you could move a soccer ball up the screen. Add some up and down
movement so that players can chase objects up the screen. You could use the gamepad
controls to change the draw position of an ImageSprite so that the player can pan
around a picture or change the image size so that the player can zoom into an image.

Play a sound when the
player hits the ball.

CODE ANALYSIS

MAKE SOMETHING HAPPEN

402 Chapter 13 Creating gameplay

ptg18144483

Displaying text in a game
Any game needs to display text messages. The Snaps framework provides a special
kind of sprite that can be used to display text.

TextBlockSprite tinyTextSprite = new TextBlockSprite(

 text: "Hello. I'm Tiny Text in the default font",

 fontSize: 20,

 color: SnapsColor.Blue);

SnapsEngine.AddSpriteToGame(tinyTextSprite);

You can use a TextBlockSprite everywhere you can use an ImageSprite. The major
difference between text and image sprites is how their size is set. For an image sprite,
you set the width and height values, but for a TextBlockSprite you have to use the
FontSize setting when the sprite is created. The FontSize value is the height of the
font in pixels. In this case, the height means the distance between the top of the tallest
character (perhaps the top of an A) and the bottom of the lowest character (perhaps
the bottom of a g). I usually use trial and error to get type sizes that look right.

If you don’t specify a font family, text is drawn using the default font, which is Segoe
UI. I like this font, but if you prefer a different one you can add a FontFamily string
that gives the name of a family of font designs. The giantTextSprite, shown next,
uses the Impact font family at the rather impressive size of 200 pixels.

TextBlockSprite giantTextSprite = new TextBlockSprite(

 text: "I'm Giant",

 fontSize: 200, fontFamily: "Impact",

 color: SnapsColor.Red);

SnapsEngine.AddSpriteToGame(giantTextSprite);

And here’s a program that displays the two text blocks on the viewport. You can see
how the text blocks appear in Figure 13-4.

Create a new
TextBlockSprite.

Specify text to
display and the text

size and color.

Add the sprite to the game.

403Displaying text in a game

ptg18144483

using SnapsLibrary;

public class Ch12_13_DisplayingText

{

 public void StartProgram()

 {

SnapsEngine.StartGameEngine(fullScreen: false, framesPerSecond: 60);

TextBlockSprite tinyTextSprite = new TextBlockSprite(

text: "Hello. I'm Tiny Text in the default font",

fontSize: 20, color: SnapsColor.Blue);

SnapsEngine.AddSpriteToGame(tinyTextSprite);

TextBlockSprite giantTextSprite = new TextBlockSprite(

text: "I'm Giant",

fontSize: 200, fontFamily: "Impact",

color: SnapsColor.Red);

SnapsEngine.AddSpriteToGame(giantTextSprite);

while (true)

{

tinyTextSprite.Top = 10;

tinyTextSprite.CenterX = SnapsEngine.GameViewportWidth / 2.0;

GiantTextSprite.Bottom = SnapsEngine.GameViewportHeight - 10;

GiantTextSprite.CenterX = SnapsEngine.GameViewportWidth / 2.0;

SnapsEngine.DrawGamePage();

}

 }

}

Ch13_06_DisplayingText

404 Chapter 13 Creating gameplay

ptg18144483

Figure 13-4 Displaying text in two sizes and positions.

A program can change the content of a TextBlockSprite at any time. The text dis-
played will change the next time the display is updated. Changing the content might
cause the width and height of the sprite to change, but you can easily center text or
position it on the left or right side of the display. This statement sets the center posi-
tion of tinyTextSprite to the center position of the display.

tinyTextSprite.CenterX = SnapsEngine.GameViewportWidth / 2.0;

For this positioning to work, it must be performed in the game loop so that the posi-
tion can be updated if the width or height of the text sprite changes.

Rotating text
If you want to display text going up the screen, have your words appear at an intrigu-
ing angle, or even make messages spin on the screen, you can set the RotationAngle
property of a TextBlockSprite. The angle is given in degrees:

GiantTextSprite.RotationAngle = 90;

This statement rotates the angle of the GiantTextSprite by 90 degrees clockwise. You
can update the rotation angle of a sprite during the game loop to make some awe-
some displays.

405Displaying text in a game

ptg18144483

using SnapsLibrary;

public class Ch13_07_HypnoticText

{

public void StartProgram()

 {

SnapsEngine.StartGameEngine(fullScreen: false, framesPerSecond: 60);

TextBlockSprite hypnoticTextSprite = new TextBlockSprite(

text: "You are feeling sleepy",

fontSize: 20, color: SnapsColor.Red);

SnapsEngine.AddSpriteToGame(hypnoticTextSprite);

double maxTextSize = 500;

double minTextSize = 10;

double textSizeUpdate = 0.2;

double textSize = minTextSize;

while (true)

{

hypnoticTextSprite.CenterX = SnapsEngine.GameViewportWidth / 2.0;

hypnoticTextSprite.CenterY = SnapsEngine.GameViewportHeight / 2.0;

hypnoticTextSprite.RotationAngle =

hypnoticTextSprite.RotationAngle + 1;

hypnoticTextSprite.FontSize = textSize;

textSize = textSize + textSizeUpdate;

if (textSize > maxTextSize || textSize < minTextSize)

{

// reverse the direction of the size update

textSizeUpdate = -textSizeUpdate;

}

SnapsEngine.DrawGamePage();

}

 }

}

Ch13_07_HypnoticText

 Maximum and
minimum size of

the text.

Rate at which the text’s size changes.
Keep track of

current text size.

hypnoticTextSprite.CenterX = SnapsEngine.GameViewportWidth / 2.0;

hypnoticTextSprite.CenterY = SnapsEngine.GameViewportHeight / 2.0;

Center text in
the viewport.

Rotate text one
degree clockwise.

Set the font’s size to currently
calculated value.

Update font size.
Check maximum

and minimum
limits.

406 Chapter 13 Creating gameplay

ptg18144483

The preceding program is similar to the squishy-ball program (Ch12_03_SquishyBall)
that you saw in the previous chapter. But rather than make a ball squish back and
forth, this program displays a rotating hypnotic message that zooms in and out of the
screen. It does this by changing the font size of the text each time the game updates.
Run the program to see these effects.

Make some awesome message displays
You can have great fun playing with the hypnotic text display program. Changing the rate
at which the text changes size is interesting, but you might also like to try displaying two
messages at the same time and have them change size at different rates. You could use the
gamepad to let the player change the speed of the message movement or select different
ones.

You should also remember that your program can move a TextBlockSprite around the
screen in the same way it does an ImageSprite (and you can rotate ImageSprites, too).
You could replace the ball and the paddle with words if you want to. You might display an
enormous message and then scroll it slowly across the viewport. You can also give text some
real impact by drawing multiple color versions of the same message on top of each other to
produce a shadow effect. I’ll demonstrate that effect in the next section for the title of our
first complete game.

Missing fonts can make your games look silly
A great way to make a game distinctive is to display game messages in an interesting font.
But don’t make the mistake of thinking that everyone has the same fonts available on their
computer as you do. Programs such as Microsoft Office and Adobe Photoshop add extra
fonts when they are installed. Some players of your games might not have these programs, so
they won’t have the fonts. A game won’t actually fail to run if it tries to use a font that is not
available on the host computer, but it might look rather silly. All the sample programs make
use of fonts that are supplied with Windows 10.

MAKE SOMETHING HAPPEN

WHAT COULD GO WRONG

407Displaying text in a game

ptg18144483

Making a complete game
You know how to do just about all the things needed to make a simple sprite-based
game. Now let’s fit these elements together and make a playable game. The game will
be a simple “keep up” game in which the player has to bounce the ball off the paddle
as many times as he or she can. Players get a point each time they bounce the ball. If
they miss the ball, however, and it hits the bottom of the screen, they lose a life. And if
the player loses three lives, the game is over.

To make the gameplay develop, we can also move the ball up the screen each time the
player scores a point, giving them less time to react. This game can form the template
for lots of other games that you might like to write. You can find the entire game in
the chapter’s demo code in the file Ch13_08_KeepUpGame. Figure 13-5 shows what
the game looks like when it is played by a particularly skillful player (me).

Figure 13-5 The Keep-Up! game being played.

Here is the complete game program. I’ve broken the code down into methods to
make it easier to understand. The game loop is in the middle of the program and
continues until the player has lost all of his or her lives. Each method plays its part in
making the game work, but they all use the behaviors that you have already seen.
When the player loses the game, the score is displayed for 10 seconds and the game
then restarts.

public void StartProgram()

{

 setupGame();

 while (true)

 {

waitForGameStart();

resetGame();

408 Chapter 13 Creating gameplay

ptg18144483

while (true)

{

positionMessages();

updateBall();

updateGamepad();

updateScoreDisplay();

SnapsEngine.DrawGamePage();

// If we have no lives left, we break out of the game loop

// and end the game.

if (lives == 0)

break;

}

// When we get here, the game is over

displayGameOver();

SnapsEngine.Delay(10);

 }

}

Ch13_08_KeepUpGame

Have a go at the game
It might seem strange for a book about programming to actually encourage you to have a go
at playing a game, but I really think that in this case it’s a good idea. I want you to understand
that really simple gameplay principles can make quite compelling games, particularly if you
are playing with a few friends around. The challenge of “beating the high score” and avoiding
that nasty sound you hear when you lose a life makes the game fun for at least a few minutes.

There is a market for disposable games such as this one, particularly if they are a bit silly. One
way to make them silly is to change the artwork, so the next thing I suggest you do is change
the images and messages and maybe add a background picture.

MAKE SOMETHING HAPPEN

409Displaying text in a game

ptg18144483

Adding some randomness to Keep Up!
At the moment, the Keep Up! game is very predictable. When the game starts, the ball
and the paddle are always in the same place, the top-left corner of the viewport. It
would make the game more interesting if there was a bit of variation, and one way to
add this is to make the ball begin in a different position each time the game starts. To
do this, we need to get a random number that is used to position the ball, and for this
we need to take a more detailed look at how to get random numbers into our game.

We considered randomness in the past when we used the Snaps ThrowDice method
to return a value in the range 1 to 6. Now we can take a look at how the ThrowDice
method works, with a view to using the same techniques to make random numbers of
our own.

Here is the ThrowDice method code from the Snaps library. You can find it in the
NativeSnaps folder in the Snaps project.

using System;

namespace SnapsLibrary

{

 public static partial class SnapsEngine

 {

static Random rand = new Random();

public static int ThrowDice()

{

return rand.Next(1, 7);

}

 }

}

The ThrowDice method uses a class named Random that is located in the System
namespace. The class provides a variety of methods that return random numbers for
use by programs. The ThrowDice method uses the Next method. The Next method is
provided with two numbers—a minimum value and an exclusive maximum value. This
means that the user of ThrowDice will get at least a 1, but the largest number they will
get will be 6 because the exclusive maximum is 7.

The Next method that’s used by ThrowDice can be used to generate an integer in any
range that you want. You just specify the required start and end values, but remember
that the end value is exclusive in that you will never actually get that value.

The SnapsEngine class holds all
the Snaps methods.

This is the Snaps random-number
generator.

The Next method returns a value
in the range given.

410 Chapter 13 Creating gameplay

ptg18144483

Taking a look at ThrowDice
There are some interesting questions raised by this look inside the Snaps framework.

Question: Why is the SnapsEngine class marked as a partial class?

Answer: Up until now, we have written all our classes as one single entity in the program
file. However, C# lets you spread the contents of a class over a large number of source
files. If you do this, each element of the class must be marked as partial to tell the com-
piler that it needs to assemble the whole class from all the separate elements.

Making parts of the class partial has no effect on how the class works, but it can make it
much easier for programmers to find their way around a very large program. Rather than
having to look through lots of files to find the ThrowDice method, they just have to look
through some files. It’s a good idea to do this for a class as large as the SnapsEngine
class, which provides all the Snaps behaviors.

The science of random-number generation
Although you might not think so, computers are not very good at truly random
behavior. The best that a program can do is start with a value (which is called the seed)
and then apply some cunning calculations to this number to compute the next num-
ber in the sequence. This process is repeated to provide each successive random value
in turn. The Next method is therefore aptly named, in that it provides the next number
in the sequence of random numbers managed by this random-number generator.
This technology is called a pseudo-random number generator because the numbers
you get will appear random, but they are actually completely predictable—as long as
you know the seed value and the cunning calculations that are being used.

At this point you might be asking yourself, “If the computer can’t make truly random
numbers, how does the random-number generator get the first seed number?” The
answer is that it uses the system clock for the host computer, which is constantly
updated many times a second. A program reads the time from the clock and uses
this as the seed value for the random-number generator. Each time a player runs the
program, she gets a different sequence of random numbers.

A program can also set a particular value as the seed for the random-number genera-
tor, like this:

Random repeatable = new Random(1);

CODE ANALYSIS

411Displaying text in a game

ptg18144483

This statement would result in a random-number generator that produces exactly the
same sequence of values each time it is used. This is a very useful facility. I happen to
know (because I’ve tried it) that if you use a seed value of 1, as in the code above, the
first throw of the dice will produce the value 2.

Some computer games use a technique known as procedural generation for parts of
their game worlds. For example, instead of having the game remember which parts of
the grass are green and which parts are brown, a fixed sequence of random numbers
is used, which means that the ground looks the same each time the program runs,
but the amount of data storage required is minimal. I’ve also used this technique to
make game characters behave in a manner that repeats each time the game is played,
which lets the players make progress by learning what the characters do. If we used
a fixed seed for our random positioning, it would mean that the start positions of the
ball would follow the same sequence each time the game was played. This might be
a good thing to do because it encourages the players to practice the game and learn
the sequence.

Generating a random ball start position
The Keep Up! game contains a method named resetGame that sets everything up for
a new game.

public void resetGame()

{

 lives = 3;

 score = 0;

 XBallSpeed = 10;

 YBallSpeed = 10;

 ball.Top = 0;

 ball.Left = 0;

 paddle.Bottom = SnapsEngine.GameViewportHeight - 10;

 paddle.CenterX = SnapsEngine.GameViewportWidth / 2;

 XPaddleSpeed = 15;

}

At the moment, this method sets the left edge of the ball to 0 so that the ball is in the
left corner of the screen at the start of the game. But we can use a random-number
generator to use a starting position that is less predictable.

Random ballPosition = new Random(1);

Resets the game, ready for another player.

 Give the player
three lives, and set

score to 0.

 Set the ball’s speed
and position.

 Position the
paddle, and set its

initial speed.

412 Chapter 13 Creating gameplay

ptg18144483

This is the random-number generator for the ball’s position. I’ve given it a fixed seed
so that the sequence of initial ball positions is the same each time the game is played.
Inside the resetGame method, we can use this random-number generator to calculate
a new start positon each time.

double availableWidth = SnapsEngine.GameViewportWidth - ball.Width;

double randomStartPosition = ballPosition.NextDouble() * availableWidth;

ball.Left = randomStartPosition;

Ch13_09_RandomStartKeepUpGame

We don’t want the game to place the ball over the edge of the screen, so the range of
possible positions is actually the width of the screen minus the width of the ball. Once
we have the available width, we can calculate a random width value by multiplying
this by a random number between 0 and 1, which is what the NextDouble method
provides. This then gives a starting position for the ball.

There are lots of other places you could add some randomness. You could make the
paddle start in a different positon for each game, or you could add some randomness
to the speeds of the paddle and the ball.

Make a “mash up” of Keep Up!
You can use the Keep Up! game as the starting point of a game of your own. The first step
could be to change the images that the game uses and perhaps add a background picture.
You could change the way that the ball and the player interact so that the player can hit the
ball in one direction or another depending on which part of the paddle the ball hits. You
could add a second ball that the player must avoid or lose the game instantly if they touch
it. The ball could appear once the player has achieved a particular score. You could make the
paddle shrink as the game progresses, or make it grow larger and have the player lose a life
if the paddle hits the edge of the screen. You can change the speed of the paddle and the
ball so that the paddle moves more slowly as the game progresses. You can take a look inside
the Keep Up! code and find the secret of creating an impressive score (like the one in Figure
13-5). There are lots of things you can do to make the game yours.

Remember that you can use all the other Snaps methods in your game, too, so you can make
it speak messages about the status of the gameplay when a game ends, or even run more
slowly (or change the screen color) later in the day.

Calculate the width of the
screen available.

NextDouble() * availableWidth

NextDouble
generates
a random

value
between 0

and 1.
Set the left edge of the ball

to the calculated position.

MAKE SOMETHING HAPPEN

413Displaying text in a game

ptg18144483

What you have learned
In this chapter you have learned how to make gameplay using a program, and how
even very simple game behaviors can create something fun and competitive to play.
You have discovered how to get user input into a game and use this to control the
position of an object within a game environment. You have seen the importance
of “clamping” to make sure that objects stay within particular boundaries and how
objects can be made to interact by detecting when two of them intersect. And you
can now add sounds to games to make the gameplay even more enjoyable.

You also discovered how to create and display text messages and use these as game
objects in themselves. And you have investigated how computers generate random
numbers and how these can be used in programs to create either random or predict-
able experiences for the game player.

Here are some questions that you might want to ponder about game development.

Is this all about games?

Absolutely not. To give just one example, the text manipulation that you saw in this
chapter will serve you well in a lot of situations that have nothing to do with games.
You could use this technique to display animated messages in any program. Users
now expect animated behaviors in the user interface, and what you have learned
provides a solid grounding in how a computer program can manipulate objects within
a graphical environment. This is something you can build on if you start to create user
interfaces with XAML (Extensible Application Markup Language) , which I introduce in
Chapter 16.

Does a game always have to look pretty?

There is no doubt that nice artwork makes a game more enjoyable to play. But it is
an undeniable fact that visuals alone do not make a game fun. The first computer
games had the smallest possible number of graphical elements, and they were played
by millions of people. And the history of computer games is littered with graphically
beautiful creations that nobody liked much because they weren’t very enjoyable.

How do I make a great game?

My strong suggestions are to make something that works and then tinker with it.
Always have a working version of your game for people to try, and listen carefully to
their comments. Instead of waiting until you finish creating all fifteen levels of your
game, get some people to play it when the first three are complete and then change
the rest of the game in line with what they say. And don’t rely just on the opinions of
your friends and your family. They’re going to say they like your game because they
like you. If your worst enemy has to concede that your game is quite fun to play, that’s
when you know you have a winner on your hands. And keep on trying.

414 Chapter 13 Creating gameplay

ptg18144483

This page intentionally left blank

ptg18144483

1 4
Games and object

hierarchies

ptg18144483

What you will learn
Over the past few chapters, our focus has changed from “how to tell the
computer to do stuff” to “how to manage complexity.” We started by con-
sidering the actions a program can perform and then moved on to work-
ing with collections of data and creating structures and classes that help
encapsulate data into meaningful objects. In this chapter, you’ll expand your
knowledge of object-oriented techniques by building a game. The tech-
niques you’ll learn can be applied far beyond games, but games are very
useful place to explore them.

We’ll fi rst look at inheritance, a technique that can save you from repeating
code elements inside classes. Then we’ll explore how complex games can be
created from a collection of cooperating objects.

Games and objects: Space Rockets in Space .418

Designing a class hierarchy .440

What you have learned .443

417

ptg18144483

Games and objects: Space
Rockets in Space
In this section, we’ll start building a new type of space-shooter game—Space Rockets
in Space. We’ll be ambitious and aim to include a moving star field in the background,
rockets, different kinds of attacking aliens, and all kinds of other things. This might
sound like a lot of work, but we’ll have fun and learn some new programming tech-
niques from doing it.

As you’ve learned, you can use objects to help manage large and complicated soft-
ware projects. Because our new game may turn out to be rather large and compli-
cated, we are going to use objects to make things a lot easier.

So far, we haven’t used objects in our game programs. In the Keep Up! game we
created in Chapter 12, the two game elements—the ball and paddle––were managed
as a collection of different variables. As a quick review, the ball is managed in terms of
the ImageSprite and the X and Y speed values that control the movement of the ball:

public ImageSprite sprite;

public double xSpeed, ySpeed;

If we wanted to put 20 balls on the screen, the program would have to store 20 image
sprites and 20 of each of the speed values. These details would be hard to manage
even if we used lists of each sprite element. Instead, we can keep these items together
by creating a class, which I’ve called MovingSprite, to contain them. The Moving-
Sprite class contains the image to be drawn (spriteValue) and the X and Y speed
values (xSpeedValue and ySpeedValue). You can think of a MovingSprite as a con-
tainer that will be used to move an ImageSprite around the viewport. The intention is
to use it for aliens, rockets, and even falling stars—we can use it for any sprite that has
movement.

public class MovingSprite

{

 public ImageSprite spriteValue;

 public double xSpeedValue, ySpeedValue;

 public MovingSprite(ImageSprite sprite, double xSpeed, double ySpeed)

 {

spriteValue = sprite;

xSpeedValue = xSpeed;

ySpeedValue = ySpeed;

Constructor for the sprite.

Set the sprite to the image for this sprite.

 Set the X and Y speed for the sprite.

418 Chapter 14 Games and object hierarchies

ptg18144483

 }

 public void Update()

 {

spriteValue.X = spriteValue.X + xSpeedValue;

spriteValue.Y = spriteValue.Y + ySpeedValue;

 }

}

The MovingSprite class contains two methods. The first is the constructor, which is
used when a new MovingSprite is created. We use it to set up the MovingSprite. The
second method is the Update method, which is called in the game loop each time the
game updates. This method moves the sprite around the screen. As you can see in the
preceding code, when Update is called, it adds the speed values to the position of the
image, causing it to move.

PROGRAMMER’S POINT

Sometimes it’s okay not to worry about security
When we’ve created classes that hold important information, I’ve mentioned the need to
think about the security of the data the classes hold. We’ve used private data elements and
public methods to control access to the data and ensure that it is always valid. However, in
the case of a game, I reckon it’s okay to make the elements in the game classes public. This
lets you write the code more quickly and makes the objects easier to use.

Whenever you create an application, you need to think about the context of the code. If
you are writing a silly space game for a customer, they might not appreciate having to pay
for the time you spend making all the classes in the game completely bulletproof by add-
ing get and set behaviors and an audit log of all the changes to the game objects. How-
ever, if you are writing a system to manage bank accounts, you’ll find that the customer
would be very happy to pay for these features.

Constructing a star sprite that moves
The first sprite we are going to create contains a star for the background of the game.
Stars take no part in the game; they are just there to make the game look good and
give the player the impression that their rocket is flying through space.

We’ll start by creating a MovingSprite that displays a single star, get the sprite moving
down the screen, and then look at how we can create the impression of many stars
zooming past the player. Figure 14-1 shows the image of the star we’ll use. This will

Update the sprite and make it move

 Update the X and Y
position of the sprite by

adding speed values.

419Games and objects: Space Rockets in Space

ptg18144483

be scaled down so that it is very small on the screen. The background of the image is
partly transparent so that a black background will show through it.

Figure 14-1 Star image that will be used as the game background.

The MovingSprite class’s constructor sets up the contents of the object. When we
create a MovingSprite, the program must give it the ImageSprite that will form the
display, the start position of the sprite on the screen, and the speed that the sprite
should move in each direction.

The following statements create the ImageSprite. It’s scaled to one-fiftieth (1/50) of
the width of the display and is added to the game so that it will be displayed on the
viewport. This program doesn’t set the X and Y values for a new ImageSprite. They
are left at 0, which means that the star is placed at the top-left corner of the screen, at
coordinate 0,0.

ImageSprite starImage = new ImageSprite(imageUrl: "ms-appx:///Images/star.png");

SnapsEngine.AddSpriteToGame(starImage);

starImage.ScaleSpriteWidth(SnapsEngine.GameViewportWidth / 50);

The next statement creates a MovingSprite called star.

MovingSprite star = new MovingSprite(sprite: starImage, xSpeed: 0, ySpeed: 1);

The ySpeed value (the vertical speed) is set at 1, which means the sprite will move one
pixel down the viewport each time the Update method is called. (Remember that
the sprite moves down the screen because the top-left corner of the viewport is the

Get the ImageSprite for the star.

Scale the star for
the viewport.

Construct a moving sprite.

420 Chapter 14 Games and object hierarchies

ptg18144483

position where the Y value is 0, and increasing the Y value moves an object down the
viewport.) The xSpeed value is set to 0 so that the star will not move across the view-
port. Instead, it will fall straight down the screen.

Updating a MovingSprite
The MovingSprite class’s Update method controls what happens to the sprite when
it’s updated. When the game is running, the Update method will be called at regular
intervals.

public void Update(SnapsEngine snaps)

{

 sprite.X = sprite.X + speedX;

 sprite.Y = sprite.Y + speedY;

}

In the case of the MovingSprite, the Update method moves the sprite by updating
the X and Y positions with their respective speeds, which makes the sprite move in the
directions set by the speed values. The following program shows how the Moving-
Sprite is used. If you run the program, a single star will move down the viewport and
disappear off the bottom.

public void StartProgram()

{

 SnapsEngine.SetBackgroundColor(SnapsColor.Black);

 SnapsEngine.StartGameEngine(fullScreen: false, framesPerSecond: 60);

 ImageSprite starImage = new ImageSprite(imageUrl:

"ms-appx:///Images/star.png");

 SnapsEngine.AddSpriteToGame(starImage);

 starImage.ScaleSpriteWidth(SnapsEngine.GameViewportWidth / 50);

 MovingSprite star = new MovingSprite(sprite: starImage, xSpeed: 0, ySpeed: 1);

 while (true)

 {

star.Update();

SnapsEngine.DrawGamePage();

 }

}

Ch14_01_MovingSprite

Start the
game

engine.

Create a MovingSprite that
moves 1 pixel per update.

Update the star.
Draw the game page.

421Games and objects: Space Rockets in Space

ptg18144483

A MovingSprite on its own is not very interesting, but it can serve as the basis for all
the moving objects on the screen. A MovingSprite object can move in any direction;
you just have to set the respective speed values and it will move that way. But we also
know that after a while, a MovingSprite object will move off the viewport and disap-
pear. To address this, we can create other classes that build on the simple abilities of
MovingSprite, which is what we’ll do next.

Creating a FallingSprite based on a MovingSprite
We want a moving star field behind the game’s action. The stars should fall continu-
ously down the screen as the game is played, giving the impression of stars whizzing
past the viewport. When a star moves off the bottom of the screen, it will place itself
back at the top, ready for another pass down the screen. We can use this trick to make
a rocket look like it is flying through a packed star field when in fact we just have a
fixed number of stars that are making repeated passes down the screen.

We will create a FallingSprite class to do the job for us. You can think of a Falling-
Sprite as much like a MovingSprite, but when a FallingSprite gets to the bottom of
the viewport, it moves back to the top at a random position and then falls down the
viewport again.

To create the FallingSprite class, we will use a programming technique called
inheritance, where a new type of object (a child) is created based on an existing type
(a parent). The child object inherits all the behaviors and properties of the parent and
can add new behaviors and customize existing ones as needed. This action is known
as extending the parent class.

PROGRAMMER’S POINT

Inheritance is all about making things less abstract
It is important that you understand what we are doing here. We have started with a fairly
abstract idea of a “sprite that moves,” and now we are making more-refined versions of
this sprite to play specific roles in the game. A falling sprite is a specialized moving sprite
that falls down the screen. The rocket sprite (when we create it) will be a specialized moving
sprite that the player can steer around the screen. The alien sprite will be a moving sprite
that chases the player, and so on.

The technique of inheritance works by making a fairly abstract parent class and then creat-
ing child classes that contain specific behaviors that fit the context of their use. In business,
for example, if you were building classes to implement a banking system, you would create
a class called Account, which would hold all the general details of a bank account—like
the name and address of the account holder and perhaps the balance value of the account.
Then you would create more specialized child classes—such as checking account, credit

422 Chapter 14 Games and object hierarchies

ptg18144483

card account, and mortgage account—that would contain the extra data and behaviors for
their particular purposes. All of these accounts would use the core behaviors of the parent.
If you find a bug in the code that manages the address of an account holder, you have to fix
that bug only in the parent Account class, and all the child classes that use that behavior
will be fixed as well.

If you find yourself confused about some of the terms and explanations, just keep coming
back to the reason why we are doing this. We want to implement shared behaviors in a
parent class and then have each child class provide a set of behaviors that are specific to its
purpose.

Here is how you make a class that is a child of a parent. The child class is Falling-
Sprite, and the parent class is MovingSprite. A FallingSprite can do all the things a
MovingSprite can do, plus it has the extra functionality that makes it return to the top
of the screen when it falls off the bottom. This is why we say that the FallingSprite
class extends its parent class.

public class FallingSprite : MovingSprite

{

}

But unfortunately, all that our shiny new child class can do at the moment is generate
errors when we try to compile it:

Error CS7036 There is no argument given that corresponds to the required
formal parameter 'sprite' of MovingSprite.MovingSprite
(ImageSprite, double, double)'

The error doesn’t make the issue very clear, but the problem is all about object con-
struction. Because the FallingSprite object is based on a MovingSprite, the process
of constructing a FallingSprite must involve constructing a MovingSprite first. This
means that the FallingSprite class must have a constructor that constructs a Mov-
ingSprite. And to make a MovingSprite, we need to supply an ImageSprite and the
speed the sprite is to move at.

If you find this confusing, then consider it from the point of view of baking. You can
think of the parent class as a bit like a cake, and the child class as icing you put on the
cake. We can’t have the icing on its own; we have to have a cake to put the icing on.
In the same way, constructing a FallingSprite must involve making a MovingSprite
first. We can do this by writing a constructor that creates a FallingSprite but also
calls the constructor in the parent class, MovingSprite.

: MovingSprite The colon is followed by the name
of the class being extended.

423Games and objects: Space Rockets in Space

ptg18144483

The constructor for the FallingSprite will be supplied with the information that is
needed to create a FallingSprite, and it will use this information to construct the
MovingSprite object that it is based on. The MovingSprite needs to know the
ImageSprite that is being moved, plus the X and Y speeds of movement. The Falling-
Sprite needs to know the ImageSprite that is being moved and the speed that the
sprite is falling down the screen. This information can be fed to the constructor for the
FallingSprite object.

The following version of the FallingSprite class allows the program to compile cor-
rectly. It contains a constructor that calls the constructor of the parent class.

public class FallingSprite : MovingSprite

{

 public FallingSprite(ImageSprite sprite, double ySpeed) :

base(sprite: sprite, xSpeed: 0, ySpeed: ySpeed)

 {

 }

}

C# calls the parent of a class its base class. The C# language provides a keyword, base,
that you can use to gain access to the constructor of the parent class. This is how we
make the cake in our baking analogy. The content of the FallingSprite class (which is
presently empty) is where the program configures any icing.

The base keyword and construction
Question: We’ve not used the base keyword before now, so it’s worth considering some
questions about it. When the program runs, what happens when it reaches the base
keyword?

Answer: When the program reaches the base part, it runs the constructor in the parent
class. In this case, because FallingSprite extends MovingSprite, the MovingSprite
constructor runs and sets up the MovingSprite contents.

Question: What do the arguments mean in the call base(sprite: sprite, xSpeed: 0,
ySpeed: ySpeed)?

Answer: Here, the call of the base constructor method (the one that makes the Mov-
ingSprite that FallingSprite is based on) is given the incoming sprite and ySpeed
values. Because the parameters have the same name in both the base and the parent
constructors, it looks like some are being passed into themselves, but the values are actu-
ally being passed into the parent.

Constructor for the
falling sprite.

The base keyword
makes a call to

the parent class’s
constructor.

CODE ANALYSIS

424 Chapter 14 Games and object hierarchies

ptg18144483

Question: Why is the xSpeed value sent to the base constructor set to 0?

Answer: A falling sprite falls straight down the screen, so it doesn’t have any movement
left or right, which is the movement that xSpeed would provide. The constructor for the
FallingSprite tells the constructor for the base class (MovingSprite) that the xSpeed
value is 0.

You can use a FallingSprite everywhere you can use a MovingSprite. This makes
sense because the FallingSprite has inherited the abilities of its parent class. It con-
tains X and Y speed values along with an Update method that can be called to update
the state of the sprite.

The constructor for the FallingSprite must place the sprite at a random starting posi-
tion somewhere on the screen. It does this by picking random values for the left edge
and bottom of the sprite that is being created. Each new sprite is placed in a different
position on the screen, giving a random star field when the game starts.

public class FallingSprite : MovingSprite

{

 static Random spriteRand = new Random();

 public FallingSprite(ImageSprite sprite, double ySpeed) :

base(sprite: sprite, xSpeed: 0, ySpeed: ySpeed)

 {

spriteValue.Left = (SnapsEngine.GameViewportWidth -

spriteValue.Width) * spriteRand.NextDouble();

spriteValue.Bottom = SnapsEngine.GameViewportHeight *

spriteRand.NextDouble();

 }

}

The FallingSprite constructor’s body
Question: What does the spriteRand variable do?

Answer: When the sprite is constructed, the spriteRand variable is used to pick a
random position on the screen for the sprite to start in. The random-number generator
is used again when the sprite is updated—when it picks a random position across the
screen where the sprite reappears.

FallingSprite
constructor
parameters.

 Set the
sprite’s

speed
and

position.

CODE ANALYSIS

425Games and objects: Space Rockets in Space

ptg18144483

The technique I’ve used here is very similar to the one I used in the Keep Up! game, when we
wanted to make the ball start at a different X position at the top of the screen each time the
game is played. It uses a random-number generator to generate random X positions for the
sprite.

Question: Why is the spriteRand variable static?

Answer: Remember that static means “part of the class, not part of an instance.” In other
words, there is only one spriteRand value for the entire FallingSprite class to use.
This actually makes very good sense. There is no need for each sprite to have its own
random-number generator. All the sprites can share the same one.

Customizing the FallingSprite behaviors
Now that the FallingSprite has all the required information at its fingertips, we can
create a customized Update behavior for falling sprites. We’ll make a more specific
(less abstract) version of the Update method that works for falling sprites. This is called
overriding the method in a parent class.

The new Update method won’t simply move the sprite around the screen; it will also
pick the sprite up and put it back at the top when the sprite reaches the bottom. The
Update method will use the GameViewportWidth and GameViewportHeight values that
are provided by the Snaps library. C# allows an overriding method to call the method
in the parent class (that is, the version of Update that just moves the sprite), and our
new method will use this technique.

public override void Update()

{

 base.Update();

 if (spriteValue.Top > SnapsEngine.GameViewportHeight)

 {

spriteValue.Left = (SnapsEngine.GameViewportWidth - spriteValue.Width) *

spriteRand.NextDouble();

spriteValue.Bottom = 0;

 }

}

override void Update() Overriding the method in the parent class.

Calls Update method in the parent class to move the star.

if (spriteValue.Top > SnapsEngine.GameViewportHeight)

{

 spriteValue.Left = (SnapsEngine.GameViewportWidth - spriteValue.Width) *

spriteRand.NextDouble();

If sprite has gone off the screen,
place it at a random X position.

Move sprite to the top of the screen.

426 Chapter 14 Games and object hierarchies

ptg18144483

Examining the Update method
Question: What does the base.Update() method call do?

Answer: It is often useful to call the method that is being overridden. In this case, the
Update method in FallingSprite can call the Update method in MovingSprite to
update the sprite position and then add its own behaviors after this has been performed.

Question: Why does the method check to see whether the top of the sprite has gone beyond
the height of the viewport?

Answer: The Top property of the sprite is the Y coordinate of the top line of the sprite.
The value of Y increases as we move down the screen. When the top of the sprite goes
above the viewport’s height value, this means that the sprite has just gone beyond the
bottom of the viewport. At this point the sprite is no longer visible and can be placed at
the top of the screen again.

Question: Why does the method set the bottom of the sprite to 0 when it places it again at
the top?

Answer: Here, too, this is because the top of the screen has a Y coordinate of 0. We want
the star to move into view from the edge of the screen, which places the sprite just above
the top of the screen, ready to move down into view.

Allowing methods to be overridden
To allow overriding to work, we need to make a tiny change to the MovingSprite
parent class. We have to make the Update method in the MovingSprite class a virtual
method.

public virtual void Update()

{

 spriteValue.X = spriteValue.X + xSpeedValue;

 spriteValue.Y = spriteValue.Y + ySpeedValue;

}

Adding the keyword virtual in front of a method declaration makes it possible for
a method in a child class to override that method and provide a different version of
it. And that’s what we want to do—we want a sprite that moves, but it must move in
a particular way, and we have created an Update behavior in a child class to get that
form of movement.

CODE ANALYSIS

void Update() Method fl agged as virtual.

Behaviors in MovingSprite to
override in FallingSprite.

427Games and objects: Space Rockets in Space

ptg18144483

Virtual methods
Inheritance seems to have brought with it a lot of new terms, and a couple of questions.

Question: What happens when a method is made virtual?

Answer: As far as users of the method are concerned, there is no change to the way the
method behaves. It works exactly the same. The difference occurs when the program is
running and the method is called. If the system knows it is calling a virtual method, it will
check to see whether there are any methods that might be overriding this method before
it runs it.

Question: Why can’t we make all our methods virtual for maximum flexibility?

Answer: You could make all your methods virtual so that they can be overridden at any
time by a child method. But there are a couple of reasons why you might not want to do
that. First, it takes a little bit more time to call a virtual method because the system has to
check for any overrides. Second, and more important, there may be some methods that
you never want a child class to override. For example, in a Bank class, you would want to
be sure that some methods, particularly those concerned with depositing and withdraw-
ing funds, could not be replaced in child classes. We don’t want programmers adding
their own behaviors to methods as important as these.

If you run the sample program in Ch14_02_SingleFallingStar, you will see a single
star fall down the screen. When it reaches the bottom of the screen, it is placed back
at the top.

Creating a moving star field
Your friends, family, and other potential customers probably won’t be that impressed
by a game that features a single star moving down the screen. They’ll want to see
at least a hundred of them. It turns out that doing this is quite easy. We just need to
create 100 falling stars and put them in a list:

List<MovingSprite> sprites = new List<MovingSprite>();

for (int i = 0; i < 100; i++)

{

 ImageSprite starImage = new ImageSprite(

imageURL: "ms-appx:///Images/star.png");

 SnapsEngine.AddSpriteToGame(starImage);

CODE ANALYSIS

List to hold many sprites.

Loop round creating 100 sprites.

428 Chapter 14 Games and object hierarchies

ptg18144483

 starImage.ScaleSpriteWidth(SnapsEngine.GameViewportWidth / 75);

FallingSprite star = new FallingSprite(sprite: starImage,ySpeed: 15);

 sprites.Add(star);

}

Once we have a list of moving sprites, we can then animate the list in the game loop.

while (true)

{

foreach (MovingSprite sprite in sprites)

 {

sprite.Update();

 }

SnapsEngine.DrawGamePage();

}

Ch14_03_Starfield

Lists of moving sprites
Question: Why do we use a list of MovingSprites and not FallingSprites?

Answer: If you understand the answer to this question, you are well on the way to under-
standing class hierarchies and objects. We know that a child class can do everything
that a parent class can do because it inherits all the parent’s behaviors and properties.
This means that a reference to a MovingSprite can also refer to a FallingSprite since
they are both able to behave like a MovingSprite (although when the Update method
is called on a FallingSprite, it will perform the Update method for that type, not the
Update method for the MovingSprite).

Next we are going to create a rocket sprite for the player to fly, and then we are going to
create a chaser alien that will chase the player. These will also be based on the Moving-
Sprite class, so they can also be added to a sprites list and updated by the game loop,
but they will all have their own particular Update behaviors.

Question: How much code do I have to add to handle 200 falling stars?

Answer: None. You only have to change the 100 value of the for loop limit to 200. This
will make the loop go around 200 times and make 200 stars.

FallingSprite star = new FallingSprite(sprite: starImage,ySpeed: 15);

sprites.Add(star);

Make a falling star and add it to the list.

Work through each sprite in the list.

Update one of the sprites in the list.

CODE ANALYSIS

429Games and objects: Space Rockets in Space

ptg18144483

Have fun with particle effects
The moving star field is our first “particle effect,” which refers to a game element that is
created from lots of small particles that have a particular lifetime and behavior. You can think
of each star as a particle that is created at the top of the screen, falls down to the bottom, and
is then re-created at the top again. Many computer games use particle effects to produce
things such as showers of sparks, smoke trails, and even fire. The particles are created with a
particular behavior, run through that behavior, and are then reset to go around again. You
could create a moving star field of your own face if you have an ego big enough.

You can also experiment with what are called “parallax effects.” Put simply, this is what we
experience when we are moving and objects close to us appear to move faster than those
farther away. You can use a parallax effect to make a star field with stars of different sizes,
where the larger stars move faster. This can provide a realistic effect of movement in three-
dimensional space.

Creating a rocket based on a
MovingSprite
Figure 14-2 introduces our rocket sprite against the field of stars we've created.

Figure 14-2 Rocket flying through stars.

MAKE SOMETHING HAPPEN

430 Chapter 14 Games and object hierarchies

ptg18144483

Our players will use a RocketSprite object to control the game. In Keep Up!, we had a
paddle that a player could move left and right, but for a rocket, we want the player to
be able to move it all around the screen. The figure shows the effect we’re looking for.
The player can control the rocket with the gamepad as it flies over the star field.

We can make a rocket by using the same sequence we followed to make the falling
sprite. First we need to work out what information the rocket needs to know. It turns
out that all the rocket needs to know is the X and Y speeds for movement.

public class RocketSprite : MovingSprite

{

 public RocketSprite(ImageSprite sprite

double xSpeed, double ySpeed) : base(sprite:sprite,

xSpeed:xSpeed, ySpeed:ySpeed)

 {

 }

}

This pattern is similar to the falling star, but because the rocket can move up and
down and left and right, we need to give speed values for each direction.

public override void Update()

{

 if(snapsValue.GetUpGamepad())

spriteValue.Y = spriteValue.Y - ySpeedValue;

 if (snapsValue.GetDownGamepad())

spriteValue.Y = spriteValue.Y + ySpeedValue;

 if (spriteValue.Top < 0)

spriteValue.Top = 0;

 if (spriteValue.Bottom > SnapsEngine.GameViewportHeight)

spriteValue.Bottom = SnapsEngine.GameViewportHeight;

}

The Update method for the rocket works the same way as for the paddle in Keep Up!
It uses the gamepad methods provided by the Snaps framework to determine which
pads are active and then updates the position of the rocket sprite accordingly. It also
uses the width and height of the viewport to clamp the rocket’s position and stop
it from moving out of the viewport. Note that the preceding code shows only the Y
behavior. The same behavior is repeated for the X position of the rocket.

Base constructor makes
the MovingSprite the

RocketSprite is based on.

Update method for
RocketSprite.

431Games and objects: Space Rockets in Space

ptg18144483

You don’t have to use the base method
Question: There is no call of base.Update() in the Update method for the Rocket-
Sprite class. Is this a mistake? Why doesn’t RocketSprite use the Update method from
MovingSprite?

Answer: A MovingSprite is a sprite that moves, but this is a rather general term. A
RocketSprite is more specialized because the rocket’s movement is controlled by
player input; the sprite doesn’t move all the time. Sprites that must move all the time can
use the Update method in MovingSprite and then add their own behavior to this. How-
ever, a RocketSprite should move only when the player selects the relevant direction
on the gamepad. It can’t use the “all the time” movement that the MovingSprite Update
method provides.

Once we create our RocketSprite, the only thing left to do is add the rocket to our
game. The sequence of these statements is the same as we used to add the moving
star. The program must create the ImageSprite, add it to the game, set the size of the
rocket to a sensible proportion of the screen, place it in the right place, and then use it
to create the RocketSprite instance.

ImageSprite rocketImage = new ImageSprite(

imageUrl: "ms-appx:///Images/SpaceRocket.png");

SnapsEngine.AddSpriteToGame(rocketImage);

rocketImage.ScaleSpriteWidth(SnapsEngine.GameViewportWidth / 15);

rocketImage.CenterX = SnapsEngine.GameViewportWidth / 2.0;

rocketImage.CenterY = SnapsEngine.GameViewportHeight / 2.0;

RocketSprite rocket = new RocketSprite(sprite: rocketImage,

xSpeed: 10, ySpeed: 10);

sprites.Add(rocket);

Ch14_04_FlyingRocket

Adding some aliens
Your younger brother has asked for lots of alien sprites, and the game must have
aliens with different personalities. He has already had ideas for six of them and is
working on more. He thinks he is helping the game develop, but you are not so sure.

CODE ANALYSIS

432 Chapter 14 Games and object hierarchies

ptg18144483

PROGRAMMER’S POINT

Having too many ideas can send you backward, not forward
I’ve spent a lot of time helping people write games. One of the most important lessons that
a budding game developer needs to learn is that ideas are not always your best friends.
When I’m chatting with teams that are developing games, I often have a conversation that
goes like this:

ME: “How’s the game coming along?”
TEAM: “It’s going great, thanks. We’ve just had a meeting, and we’ve had six new ideas for
the game. We’re going to have rabbits with laser eyes, flying monkeys, and deadly cheese.
It’s going to be great.”
ME: “How much of the game have you actually got working?”
TEAM: “Oh, nothing yet, but we can sort all that out later.”

At that point, I mark the team as doomed and move on. The most important thing about
writing a game (and many other types of applications) is to get something working that
you can build on. This way, you have a program that you can discuss and show people. If
you keep adding things to a game you’re developing, all you do is increase the height of
the mountain you are trying to climb. At some point you start to feel badly about having
made nothing so far, give up on that game, and start having ideas for the next one.

Adding features and behaviors doesn’t always make an application better. Some of the
most popular games in the world are incredibly simple in design. And anyway, if a player is
having a great time playing a version of your game, she isn’t going to care about the lack
of laser-eyed rabbits you intended to add. By all means have ideas, and by all means write
them down for later, but once you have an idea of what you are going to build, my advice is
to get that going and add to it later.

Given that we want different kinds of aliens, this is a good place to think more about
class hierarchies. From discussions with your younger brother, you’ve discovered that
all of his aliens have a target (the rocket they are trying to destroy) and they are either
alive or dead. If we went ahead and added a full set of new alien sprite classes, we
would repeat the target and status values for each of these types. Furthermore, we’d
need to have separate lists for each alien type in the game. Instead, we can create an
AlienSprite type that holds the information and behaviors that all aliens need:

public class AlienSprite : MovingSprite

{

 public bool AlienAlive = true;

 public RocketSprite rocketValue;

 public AlienSprite(ImageSprite sprite, double xSpeed, double ySpeed,

RocketSprite target) :

base(sprite: sprite, xSpeed: xSpeed, ySpeed: ySpeed)

This fl ag is set to true when the
AlienSprite is still alive.

Rocket the AlienSprite is chasing.

Constructor for AlienSprite.

433Games and objects: Space Rockets in Space

ptg18144483

 {

rocketValue = target;

 }

 public override void Update()

 {

// don't do anything if the alien is dead

if (!AlienAlive)

return;

// Update the position of the sprite

base.Update();

 }

}

All our alien types can now extend the AlienSprite type to add any extra elements
that they require. If we identify anything else that all aliens need, we can add that
to the AlienSprite class and all the child classes will pick these things up as well. For
example, you might decide later that each alien should be worth a particular number
of points when it’s killed. This property could be added to the AlienSprite class so
that any class based on AlienSprite can now have a value.

PROGRAMMER’S POINT

Adding intermediate types is a very good idea
Quite often when you are designing types, you’ll find a need for intermediate types like
AlienSprite. For example, in a document-management system, you might have a parent
Document class that is extended by an intermediate Letter class that holds the name and
address of the recipient, the date it was sent, and so on. Underneath Letter, you can have
Order, Receipt, Statement, and other kinds of letters that your system might need to work
with.

Adding a chasing alien
The first alien we will create is similar to the rocket. But while the rocket moves when
the player selects a movement direction, the alien moves all the time, and it chooses
its direction of movement by using a very simple algorithm, like this:

 ● If the rocket is above us, accelerate up.

 ● If the rocket is below us, accelerate down.

Remember the
rocket that we are

chasing.

Override the Update
method for the

MovingSprite class

If we are still alive,
update our position.

434 Chapter 14 Games and object hierarchies

ptg18144483

 ● If the rocket is to the right, accelerate left.

 ● If the rocket is to the left, accelerate right.

If you are not sure what acceleration means, and about the difference between accel-
eration and speed, then let’s have a look at some simple physics.

The speed of our alien is the distance it moves each time around the game loop. Each
time the game updates, we add this speed value to the alien position value to update
it. Speed changes distance over time. If we drive for an hour in a car doing 60 miles
per hour, we’ll travel 60 miles.

Acceleration is the rate at which speed is changing. If we press the accelerator in our
car, our car speeds up over time (the speed changes over time). We might say that our
car is traveling five miles per hour faster every 10 seconds. That would equate to a “0
to 60 miles an hour” time of 12 seconds.

We add an acceleration amount to the speed of the chasing alien to make it move in
the direction of the target. You could say that we “press the accelerator” in the direc-
tion of the rocket. The interesting thing is the way that acceleration makes it possible
for a player to dodge the alien.

The game will use these acceleration values, and the position of the rocket, when it
updates during the game loop. There is also a friction value that slows down the alien.
Each time around the loop, we multiple the speed of the alien by the friction value
(which is less than 1) to dampen the movement a bit. This is the Update method that
we’ll use.

public override void Update()

{

 if (AlienAlive)

 {

if (targetValue.spriteValue.CenterX > spriteValue.CenterX)

xSpeedValue = xSpeedValue + xAccelerationValue;

else

xSpeedValue = xSpeedValue - xAccelerationValue;

xSpeedValue = xSpeedValue * frictionValue;

spriteValue.X = spriteValue.X + xSpeedValue;

if (targetValue.spriteValue.CenterY > spriteValue.CenterY)

ySpeedValue = ySpeedValue + yAccelerationValue;

else

ySpeedValue = ySpeedValue - yAccelerationValue;

ySpeedValue = ySpeedValue * frictionValue;

Is the target on
the right of the
chasing sprite?

If the target is on the
right, accelerate right.

If the target is on the
left, accelerate left.

Reduce the speed by
the friction value.

Update the
position by the

speed.

435Games and objects: Space Rockets in Space

ptg18144483

spriteValue.Y = spriteValue.Y + ySpeedValue;

 }

}

The alien will chase the rocket by accelerating toward it each time the game loop
updates the sprite. Different values for the acceleration and friction values have a
marked effect on the behavior of the sprite. You could, for example, make an alien
that drifts slowly toward the player or one that attacks more quickly. These are new
kinds of aliens that you can add with no programming effort at all; you just have to
set different acceleration and friction values. You can spend many happy hours tuning
the behavior of different kinds of chasing sprites and adding them to the game. When
each alien is constructed, it must be given the acceleration and friction values that
will control how fast it moves around the screen after the target. These values will be
stored inside the alien and used to control how it behaves during the game.

Here is the constructor for a ChasingAlien instance. It stores the acceleration values
that this particular alien is going to use.

public double xAccelerationValue;

public double yAccelerationValue;

public double frictionValue;

public ChasingAlien(ImageSprite sprite, RocketSprite rocket,

 double xAcceleration, double yAcceleration, double friction, int score) :

base(sprite: sprite, xSpeed: 0, ySpeed: 0, target: rocket, score: score)

{

 xAccelerationValue = xAcceleration;

 yAccelerationValue = yAcceleration;

 frictionValue = friction;

}

Note that the constructor also sets the speed of the MovingSprite parent object to 0.
It does this because when the ChasingAlien “wakes up,” it will not be moving at all.

PROGRAMMER’S POINT

Use as much physics and artificial intelligence as you need in the
game
The Update method in the chasing alien is a tiny “physics engine” inside our game. A true
physicist will probably be deeply upset by the simplifications that we have made, but the
great thing about this code is that it works, and it works very well. There is really no need

Call the constructor for AlienSprite.
Set the initial speeds to 0.

 Store X and Y
acceleration and

friction values.

436 Chapter 14 Games and object hierarchies

ptg18144483

for any more accurate physics simulation because what we have created makes for great
gameplay. There is an important lesson here: start with something simple and, if that
works, stop.

This is also the first time we have used artificial intelligence (AI) in a game. There is nothing
special about AI in games. It is simply code to make the player think that the game is clever.
If you play this game (and you should), you really could think that there is a little pilot inside
the alien who is steering his craft toward you. You can even fool the opponent by letting
him head toward you and then dodging out of his way at the last minute. There is no need
to have the alien do anything more clever than the simplest possible behavior because that
works well enough to give a good experience.

The following code shows the construction of a chasing alien. The amount the alien
accelerates and the friction are values that I came up with from some testing. I think
they work very well. The sprite seems to chase the rocket like an angry wasp.

ChasingAlien chaser = new ChasingAlien(sprite: chasingAlienImage,

 target: rocket,

 xAcceleration: 0.3, yAcceleration: 0.3,

 friction: 0.99, score: 100);

Ch14_05_ChasingAlien

Fiddle with the physics in the game
If you look at the chasing alien code, you will find that it uses acceleration values of 0.3 and a
friction value of 0.99. You might find it fun to change these values (not by too much to start
with) and see what happens to the behavior of the alien as it goes after the player. For exam-
ple, if you make the acceleration values bigger, the alien will chase more aggressively. You
can create some really interesting gameplay by adding two aliens for the player to avoid and
giving them different physics settings to make the aliens behave differently.

Another interesting addition would be to make one alien chase another. My chasing alien
chases a rocket, but you could make another alien that follows aliens. If you add a number
of these to the game, you can make a “snake” of aliens. If you make the first alien chase the
player, you can develop some very interesting behaviors.

MAKE SOMETHING HAPPEN

437Games and objects: Space Rockets in Space

ptg18144483

Adding a target sprite
As friends start playing your game, they like dodging the chasing sprite, but they
also ask for some sprites to serve as targets that players can shoot at while they are
dodging the nasty chasing sprite. We can use the following pattern to add these new
elements to the game:

1. Create a new object that extends the parent we are basing it on.

2. Decide what the sprite needs to know to perform its behaviors.

3. Create a constructor for the new sprite type that receives and stores this
information.

4. Decide what the sprite needs to do when it updates.

5. Add these behaviors to an Update method in the new sprite type.

6. Create the sprite and add it to the sprites in the game when the game starts.

Here’s an example. The LineAlien moves slowly left and right between a maximum
and a minimum position on the screen:

public class LineAlien : AlienSprite

{

 public double xMaxValue, xMinValue;

 public LineAlien(ImageSprite sprite, double xSpeed, double ySpeed,

RocketSprite target, double xMax, double xMin) :

base(sprite: sprite, xSpeed: xSpeed, ySpeed: ySpeed, target: target)

 {

xMinValue = xMin;

xMaxValue = xMax;

 }

 public override void Update()

 {

base.Update();

if (AlienAlive)

{

Positions the alien moves between.

The max and
min values

are provided
when the

LineAlien is
constructed.

Override Update method in the AlienSprite.

438 Chapter 14 Games and object hierarchies

ptg18144483

if (spriteValue.X > xMaxValue)

{

spriteValue.X = xMaxValue;

xSpeedValue = -xSpeedValue;

}

if (spriteValue.X < xMinValue)

{

spriteValue.X = xMinValue;

xSpeedValue = -xSpeedValue;

}

}

 }

}

The great thing about this code is how little there is to it. The only part we had to
create from scratch is the Update method. Everything else is picked up from classes
higher in the hierarchy.

A single LineAlien on its own is not that impressive, but we can use a for loop to
create a row of them across the screen, as shown in the following code. Figure 14-3
shows how the row of aliens looks in the work in progress. They move left and right in
a manner similar to another very popular video game.

int noOfAliens = 10;

double alienWidth = SnapsEngine.GameViewportWidth / (noOfAliens * 2);

double alienSpacing = (SnapsEngine.GameViewportWidth - alienWidth) / noOfAliens;

double alienX = 0;

double alienY = 100;

for (int i = 0; i < noOfAliens; i = i + 1)

{

ImageSprite alienImage =

new ImageSprite(imageURL: "ms-appx:///Images/greenAlien.png");

SnapsEngine.AddSpriteToGame(alienImage);

 alienImage.ScaleSpriteWidth(alienWidth);

 alienImage.CenterX = alienX;

 alienImage.Top = alienY;

double xMin = alienX;

double xMax = alienX + alienSpacing;

LineAlien alien = new LineAlien(sprite: alienImage, xSpeed: 2, ySpeed: 0,

 Check position and
set movement.

Change this value for
number of aliens.

double alienWidth = SnapsEngine.GameViewportWidth / (noOfAliens * 2);

double alienSpacing = (SnapsEngine.GameViewportWidth - alienWidth) / noOfAliens;

Calculate the width
and spacing for

alien sprites.

439Games and objects: Space Rockets in Space

ptg18144483

target: rocket, xMax: xMax, xMin: xMin);

 sprites.Add(alien);

 alienX = alienX + alienSpacing;

}

Ch14_06_ChasingAndTargetAliens

Figure 14-3 A line of target aliens.

Designing a class hierarchy
Adding classes like LineAlien to our game is the basis of object-oriented design. We
can reuse and customize existing program elements as the program develops. How-
ever, it is probably best to have a design before you start building your classes. Figure
14-4 shows the design for the game we’ve been building.

Construct the alien with
our calculated values.

 Move to the next alien
in the row.

440 Chapter 14 Games and object hierarchies

ptg18144483

Figure 14-4 Game objects class diagram.

This is called a class diagram. It shows a kind of family tree of the objects in the game.
Parent classes are at the top of the diagram, with child classes below them. The
MovingSprite class is the parent class of all the game objects. It holds the image and
position of the sprite. Each class beneath it builds on these items and adds extra data
as required.

Taking a look at class diagrams
Question: Which of the classes has the fewest abilities?

Answer: We’ve already considered this issue. The class at the top of the diagram is the
one that has the fewest abilities, although this is a bit counterintuitive because most
diagrams that show organizations put the most powerful person (the king or the boss)
at the top, with the less powerful people underneath. However, the way that abilities
accumulate as you move down the diagram means that the classes with the widest range
of behaviors will be at the bottom.

Question: How does the missile know who it can attack?

CODE ANALYSIS

441Designing a class hierarchy

ptg18144483

Answer: These diagrams are very useful when you consider how the program will work
and how objects in the system know enough to do their jobs. The missile contains a list
of all the alien sprites that it can kill, and each time it is updated, it checks through this
list of sprites to see whether it has hit any of them. If it has hit a sprite, it will call the Kill
method on that sprite to kill it and find out how much it has scored. It then increases the
score of the rocket that launched it.

Question: Why does the RocketSprite contain a list of missiles?

Answer: As the game progresses, you’ve been asked to add “power-up” elements that
allow the player to have multiple missiles. This means that the RocketSprite must con-
tain a list of missiles rather than just one.

Question: How would we handle different types of missiles?

Answer: It turns out that this is not that difficult to achieve. Just like we have an Alien-
Sprite that provides the basis for all the aliens, we could have a MissileSprite that
serves as the basis of all the missiles.

Figure 14-5 is a screenshot of the game as I’ve developed it so far. There are two kinds
of aliens on the screen—the nasty purple chasing alien and a line of green aliens that
just move back and forth. There is also a blue missile at the top of the screen that the
player has just fired (and missed with). You can use this to make any kind of space
shooter that you like.

Figure 14-5 Space Rockets in Space.

442 Chapter 14 Games and object hierarchies

ptg18144483

Make some games of your own
Now that you know how easy it is to add new game objects to a game, you can add sprites
with different behaviors very easily. You could make a sprite that chases the player only when
the player is close to the sprite or one that wakes up and starts chasing the player when they
get too near. You can make sprites that change in size during the game so that they slowly
take over the screen and become more difficult to dodge as time goes by. You could create
a cowardly sprite that runs away from the player. (In this case, you might change the way the
game works so that the aim of the game is for the player to catch things rather than avoid
them.) You could make chasing sprites that bounce off the sides of the viewport or ones that
“teleport” from one side to another. You can add randomness to the sprites to make them
chase players only sometimes. There are lots of different kinds of behaviors to investigate.

What you have learned
In this chapter you’ve learned how to create objects that can underpin all the elements
in a game. You have done this by creating a parent object that contains fundamental
elements that all the game objects need and then child objects that extend this parent
and provide more specific, less abstract behaviors. You have seen that by doing this,
you can reduce the amount of code that you have to write to create a new type of
game object—you can just focus on the difference between the parent and the child.

You discovered that in this kind of class hierarchy, the child objects that extend the
parent objects are actually based on a parent instance and that the parent instance
must be created during the construction of the child class. You have also seen that
a method that has been marked as virtual in the parent can be overridden in the
child class. The child can provide a version of the method that behaves in a way more
specific to the role of the child. If it is useful, the child class can also make use of the
method in the parent class by using the base keyword.

In our game, we used the MovingSprite type as the parent class for all the sprites in
the game that move. Underneath this parent are FallingSprite, RocketSprite, and
a number of other types of moving sprites. The game, which contains all the game
objects, manipulates the sprites as though they are all MovingSprites and is unware
of the customized behaviors of each. The status of a sprite is updated when the game
calls the Update method on that sprite. Update is a virtual method that is overridden
in the child class to provide behavior that is relevant to that sprite type. This gives

MAKE SOMETHING HAPPEN

443What you have learned

ptg18144483

game developers the ability to make many different kinds of game objects, each of
which has a behavior different from the others.

Here are some questions that you can ponder about class design.

Do I have to design all of my class hierarchy before I start?

Not necessarily. You should always attempt an initial design because this forces you to
think hard about how the elements in your solution fit together, but as you build your
program, you will get insights into how it should be structured. In many cases, it will
be necessary to add new classes to a working system as new scenarios are identified
during the lifetime of the project. One of the great benefits of an approach like this is
how easy it is to insert new elements into the design.

Do I always need a class hierarchy?

You need a class hierarchy if your program needs to manipulate a large number of
related items. For example, if you are creating a tool that collects evidence from the
scene of a crime, it would be very useful to make some kind of class hierarchy based
on a parent class called Evidence, which would hold the date, time, and location where
the evidence was collected. Underneath that parent you could have child classes that
contain images, sounds, details of samples collected, and so on. In that case you have
a strong family of types of evidence that your system will want to collect. As technol-
ogy advances, you might find different kinds of evidence that will need to be man-
aged. These could be added as the system evolves.

However, if your program is concerned with something that is going to remain funda-
mentally the same and there are not going to be different kinds of this item, you don’t
need a class hierarchy. For example, if you write a program that plays cards, there is
really only going to be one kind of playing card. The card will have a set of properties
that denote its color, suit, and value, and this will never need to be extended because
the program will never have to deal with new kinds of playing cards.

Is it possible to make bad designs using class hierarchies?

Oh, yes. There are a few common mistakes. The first is to have a very wide class
hierarchy. This means that you end up with classes like Car, SportsCar, PeopleCarrier,
PickupTruck, and so on. This breadth makes design very difficult. For example, is a
sports utility vehicle (SUV) descended from SportsCar or PeopleCarrier? In this case,
you really need only a CarType property in the Car object and you are good to go.
But you’d probably have a class named Truck since trucks are very different from cars.
When you are thinking about design, you need to consider whether the behavior of
the class needs to be different for this particular type. If the answer is yes, you can
think about making a new class; if the answer is no—if you are just storing something
about this particular instance of the class—then instead you can add a property that
holds this information.

444 Chapter 14 Games and object hierarchies

ptg18144483

Another mistake is to have a very deep class hierarchy. You create lots and lots of
child classes “just in case” they might be useful. You might have Car, TwoWheelDrive-
Car, FourWheelDriveCar, TwoWheelDriveConvertable, FourWheelDriveConvertable,
TwoWheelDriveSportsCar, and so on, all descending from each other. This makes the
program slower because when it runs, it takes longer to find the overridden methods
in the hierarchy. I try not to have more than three or four levels in my class designs.

The final mistake is to bring things into the class hierarchy that really should not be
there. You might think about adding a new kind of car called HiredCar, which has the
name and address of the person who hired the car stored inside the Car class. How-
ever, these items pollute the hierarchy by adding data to some class items that really
should not be there. If you want to manage a car-hire business, you should work in
terms of Hire objects that contain references to Car objects that are hired and Cus-
tomer objects that hire them. The Car class should hold information directly relevant
to cars and nothing else.

445What you have learned

ptg18144483

 15
Games and

software
components

ptg18144483

What you will learn
When you started to learn about programming, I said, “Anyone who can
organize a party can write a program.” You’ve now discovered that a lot of
programming is actually all about organization, which is why good orga-
nizers tend to make good programmers. In the last chapter you saw how to
create family trees of related objects to more easily organize complex appli-
cations. Instead of being made from scratch, a new version of an object has
to provide only those behaviors that are different from the object it extends.
This is an important principle that underpins many large-scale applications.

In this chapter, you are going to go further in understanding how objects
are used in programs and start to think of them as components that you
can fi t together to form a solution. You are going to discover how objects
can communicate by sending messages to each other and how an object
can maintain a sense of its own state. Then you are going to move on to
consider how to create template objects that can be used as the basis of
complex designs and how to turn objects into reusable and fl exible program
elements by using software interfaces. At the end of the chapter, we’ll have a
fully playable space-shooter game as well!

Games and objects .448

What you have learned .471

447

ptg18144483

Games and objects
The graphical elements for Space Rockets in Space are a good start. The game has an
object the player can control (the rocket) and attacking aliens. But to develop a com-
plete game, we need to let players shoot aliens, lose lives, and score points.

We’ve already created a set of objects that represent the game sprites on the screen,
as shown in Figure 15-1. Now we need to make these objects work together to create
a complete game experience. First we need to add some consequences for when
aliens manage to catch up to the rocket. In our game, each time the rocket is hit by an
alien, the rocket must lose one life. When the rocket has lost all its lives, the game is
over. To do this, the first step is to discover how the aliens and the rocket can be made
to interact.

Figure 15-1 Space Rockets in Space.

Creating cooperating objects
In the terms of video games, the rocket must “take damage” when it’s hit by an alien.
From a programming point of view, you can think of this as an alien sprite sending a
message to the rocket saying, “I just hit you.” The rocket can then decide what effect
this has.

When I was learning to program, I was very confused by what it meant for one object
to send a message to another. But it actually turns out to be very simple.

 ● The RocketSprite class will contain a method named TakeDamage.

448 Chapter 15 Games and software components

ptg18144483

 ● The AlienSprite class will call this method.

So you can boil down “message passing” to an arrangement between objects in which
one contains a method that receives the message, and the other calls this method to
send the message. Programs use messages all the time. When you click the mouse, the
active program receives a message to indicate that the mouse has been clicked. This
message is delivered in the form of a method call. When you write Windows Pre-
sentation Foundation (WPF) applications in the next part of this book, you’ll use this
mechanism.

PROGRAMMER’S POINT

Message passing is important
Deciding how the objects in your system are going to interact is an important part of the
design process. You might think that there is no need to send a message: perhaps the alien
sprite could just reduce the value of a variable somewhere that counts the number of lives
that the rocket has. However, “sending a message” is much better. The sender of the mes-
sage just needs to call the method to deliver the message, but the sender doesn’t need to
know how the recipient actually deals with the message.

Furthermore, a method call can trigger an action in the other object—for example, the
rocket could start an explosion animation, change its image to show that it’s been dam-
aged, or even send another message to the game to tell the game that the rocket has been
destroyed.

If you think about this, it makes a programmer into something like an electrician. Once you
have created your objects, you “wire them up” by connecting them via messages that are
passed from one to the other.

In the following code, you can see the behavior of the Update method in the Alien-
Sprite that detects whether the alien has hit the rocket. The Update method contains
some statements that check whether the alien and the rocket intersect, using the
IntersectsWith method that you saw in Chapter 13. When we wrote Keep It Up!, we
used IntersectsWith to check whether the paddle and the ball had collided. In this
game, we check whether the rocket and the alien have collided.

public class AlienSprite : MovingSprite

{

 // If false, the alien has no effect on gameplay

 public bool AlienAlive = true;

 // The rocket that the alien is chasing

449Games and objects

ptg18144483

 public RocketSprite rocketTarget;

 public AlienSprite(ImageSprite sprite, double xSpeed, double ySpeed,

RocketSprite target) :

base(sprite: sprite, xSpeed: xSpeed, ySpeed: ySpeed)

 {

rocketTarget = target;

 }

 // Called to tell the alien that is has been killed

 public void Kill()

 {

// If we are already dead, we don't need to do anything

if (AlienAlive)

{

// If we get here, we must kill ourselves

// Set the flag to indicate we are dead

AlienAlive = false;

// Hide the sprite for this alien

spriteValue.Hide();

}

 }

 public override void Update()

 {

// Don't do anything if the alien is dead

if (!AlienAlive)

return;

// Update the position of the sprite

base.Update();

// See if the alien and rocket target sprites intersect

if (spriteValue.IntersectsWith(rocketTarget.spriteValue))

{

// If we get here, the alien has hit the rocket

// Kill ourselves

Kill();

 // Tell the target that it must take damage

rocketTarget.TakeDamage();

return;

}

 }

}

450 Chapter 15 Games and software components

ptg18144483

If the IntersectsWith method returns true, that means that the alien has hit the
rocket. If this happens, the alien does a number of things. First, it calls a method called
Kill to remove itself from gameplay. Next, the TakeDamage method on the Rock-
etSprite is called to inflict damage on the rocket.

The code that follows shows the first version of the TakeDamage method, which is
part of the RocketSprite class. When the rocket takes damage, the Lives counter is
reduced by 1 and the method plays a sound effect.

public class RocketSprite : MovingSprite

{

 public int LivesLeft = 3;

 public void TakeDamage ()

 {

LivesLeft = LivesLeft - 1;

snapsValue.PlayGameSoundEffect('ding');

 }

}

Ch15_01_TakeDamage

If you run Ch15_01_TakeDamage, you’ll find that aliens disappear (and you hear a
ding sound) each time the rocket collides with an alien. If you look inside the program
as it runs, you’ll see that the Lives counter (the value of the variable Lives inside the
rocket) is reduced each time a collision occurs. This version of the method doesn’t end
the game just yet, mainly because we don’t know how the game should end. That’s
what we need to do next.

PROGRAMMER’S POINT

Think of each object in your program as a little person
If you were organizing a really large party, you’d probably put someone at the door to
check tickets. You might say to them, “If someone you don’t know turns up without a ticket,
call me and tell me who it is. I’ll tell you whether you can let them in.” In programming
terms, we have an object that receives the message “There’s someone here with no ticket,”
and then knows what to do—“Call Rob and ask whether they can come in.”

When you start to consider objects that are more active, as in the case of the sprites and
other elements in the game we’re writing, you can think of the objects as little people
who are all cooperating to make the game work. Each person can be sent messages (for

Counter for the lives that are left.

Called when an object
infl icts damage.

Reduce the LivesLeft counter.

451Games and objects

ptg18144483

example, “Update yourself”) and can generate other messages (“I’ve just caused you dam-
age”) when the program runs.

This principle builds on our understanding of a computer program as something that
“takes something in, does something with it, and then sends out something else.” You can
now regard a large system as a collection of components that do just this by receiving and
sending messages.

It helps to visualize what the program needs to do by putting yourself into the “head” of
each of these little people and regard them as separate components that make the pro-
gram work.

Turning the game into an object
We now consider all the game elements as items that take in messages, do something,
and then produce other messages. We can apply this to larger objects, too, includ-
ing the game we are writing. At the moment, all the gameplay has taken place in the
StartProgram method, which is called when a Snaps program starts running. Inside
this method, all the game elements are created and the game runs. However, if we
want to be able to send the game itself messages (perhaps to tell it that the game is
over), we need to create a game object. The game object contains all the sprites that
the game uses, and it provides methods that we can use to start the game running.

public void StartProgram()

{

 SpaceRocketsInSpaceGame game = new SpaceRocketsInSpaceGame();

 game.PlayGame();

}

Ch15_02_GameClass

The preceding code shows how this works. The StartProgram method is called when
a Snaps program starts to run. We have a new class, named SpaceRocketsInSpace-
Game. When the program runs, it simply makes an instance of this class and then calls
the PlayGame method on this instance. You can think of this as sending a message to
the game to make it start playing. The PlayGame method creates all the sprites and
then starts the game loop running—in other words, it does what the StartProgram
method used to do.

One nice thing about this arrangement is that we can use it to create a program that
lets a player choose from a menu of games. The StartProgram method could display
this menu and then create an instance of the selected game.

452 Chapter 15 Games and software components

ptg18144483

If you run the example Ch15_02_GameClass, you will not notice any difference in the
way the game works, but the program is now structured with the game in the form of
a class.

Telling the game when the game is over
When the RocketSprite has lost its last life, the game has to end. The rocket doesn’t
actually know how to end the game, but that’s fine. In fact, it is exactly how it should
be. The only object that should know how to end a game is the game itself. The Rock-
etSprite just has to generate the message to tell the game that it is now over. But for
this to work—for the RocketSprite to deliver the message—the RocketSprite has to
have a reference to the game that it is part of.

Here is the constructor for the rocket:

public class RocketSprite : MovingSprite

{

 SpaceRocketsInSpaceGame activeGame;

 public RocketSprite(ImageSprite sprite,

SpaceRocketsInSpaceGame game,

double xSpeed, double ySpeed) :

base(sprite, xSpeed, ySpeed)

 {

activeGame = game;

 }

}

When the rocket is created, it’s supplied with a reference to the Snaps game engine so
that it can play sounds. It is also supplied with a reference to the game that contains
the rocket. This is the game object that must be notified when the game is over.

Next is the TakeDamage method for the RocketSprite class.

public class RocketSprite : MovingSprite

{

 SpaceRocketsInSpaceGame activeGame;

 int LivesLeft = 3;

RocketSprite constructor.
Reference to the

game the rocket is
part of.

Store a reference to
the current game.

453Games and objects

ptg18144483

public void TakeDamage()

 {

LivesLeft = LivesLeft - 1;

snapsValue.PlayGameSoundEffect('ding');

if (LivesLeft == 0)

{

activeGame.EndCurrentGame();

}

 }

}

The TakeDamage method runs whenever our rocket takes damage. It reduces the
number of lives the rocket has left, and if there are no lives remaining, it tells the game
that the game is over by calling the EndCurrentGame method in the game the rocket is
part of.

Here is the actual construction of the RocketSprite in the game.

rocket = new RocketSprite(sprite: rocketImage, snaps: snaps, game: this, xSpeed: 10,

ySpeed: 10);

The statement above is called from the SpaceRocketsInSpaceGame class when the
game is setting itself up. The statement constructs the rocket that the player will
control. The rocket needs to be given a reference to the game it is part of so that the
rocket can tell the game that the game is over.

We have seen the this reference before. It is a reference to the object within which
the code is currently executing. The statement above is running inside a method
within an instance of the SpaceRocketsInSpaceGame class, so the value of this is a
reference to the game class. This is exactly what the RocketSprite needs, so we pass
the reference “this” into the RocketSprite when we call the constructor to make the
RocketSprite.

What does this mean again?
Question: What does the keyword this mean in the call to the RocketSprite constructor?

Answer: All this talk of objects, messages, and this can be confusing. The best way to
deal with the complexity is to keep in mind what we are trying to do. We are making a

If no lives left, the
game is over.

Tell the game that
the game is over.

this

Reference to
the currently
active game

CODE ANALYSIS

454 Chapter 15 Games and software components

ptg18144483

game that involves a rocket and an alien. If the alien collides with the rocket, the rocket
must take damage. If the rocket is destroyed, the game should end. So the alien needs a
way of telling the rocket that it is causing damage, and the rocket needs a way of telling
the game that the game is over. This is like me needing to know your phone number so
that I can call you and ask you out for a coffee.

In the case of programs, we are talking about object references instead of phone num-
bers. The rocket needs a reference to the game so that it can tell the game that it is over.
The programming keyword this in a human context means my phone number. If I want
to let you know how to contact me, I have to give you my phone number. In the case of a
method running inside an object, you can regard the reference this as a reference to the
object the method is running inside of. So a method can pass this into another object to
give that object a reference to (or the phone number for) itself.

Stopping the game from running
We now have a way to deliver a message to the game to tell it that the game is over.
We also need a way to stop the game when it receives this message.

public class SpaceRocketsInSpaceGame

{

 bool gameRunning = true;

 public void EndCurrentGame()

 {

gameRunning = false;

 }

}

The game contains a flag named gameRunning that is true when the game is running.
When EndCurrentGame is called to stop the game, it sets this flag to false. We can
end the game at any time by calling the EndCurrentGame method.

The following code shows the PlayGame method in the game. It sets the game up and
then repeatedly updates the game objects while the gameRunning value is set to true.
As soon as this value becomes false, the while loop ends and the game completes.

Class that contains the entire game.

Flag set to true when game is active.

Method called to end the current game.

When the method runs, set the fl ag to false.

455Games and objects

ptg18144483

public class SpaceRocketsInSpaceGame

{

 public void PlayGame()

 {

setupGame();

while (gameRunning)

{

foreach (MovingSprite sprite in sprites)

sprite.Update();

SnapsEngine.DrawGamePage();

}

 }

}

Ch15_03_GameOver

If you play this version of the game, you will discover that as soon as the rocket has
crashed into three aliens, the game will end. Now we need to make a game that can
be played repeatedly so that players can try to improve their score. To achieve this, the
game object can be made to occupy different states.

Objects and state
Everybody has their own favorite state of being. Mine is sitting in front of a computer
writing programs, but I do have other states—for example, eating, sleeping, and
(when I can’t avoid it) working. It is often very useful to allow software objects to have
a state, too. You have already seen that the aliens in Space Shooter have a state, in
that they are either dead or alive. What we want to do now is extend the idea of state
management into the game itself.

I’ve designed a title screen for the game, shown in Figure 15-2. I’m particularly proud
of the instruction Press SPACE to play. This screen should be displayed until the
player presses the Space bar (or the Fire button) to start the game. Then the game will
run until the rocket is destroyed, at which point a Game Over screen will be displayed
for a few seconds, and then the game should return to the title screen.

Method that sets
up game objects.

Loop through
sprites in the game.

456 Chapter 15 Games and software components

ptg18144483

Figure 15-2 Space Rockets in Space title screen.

In other words, the game must have three different states:

1. Title screen

2. Playing the game

3. Game Over screen

The best way to handle this is for the SpaceRocketsInSpaceGame object that manages
the game to contain a data member (a variable in the class) that holds the current
state of the game. However, before we create the variable, we have to decide what
type of variable will work best. Ideally, we want a variable type that can have only
three possible values, one for each game state. We can use the C# enumerated type
(see Chapter 9) to define a type that can hold the states that the game can have.

public class SpaceRocketsInSpaceGame

{

 enum GameStates

 {

TitleScreen,

GameActive,

GameOver

 }

 GameStates state;

}

 An enum type has
particular values
that we specify.

Variable that holds the state of the game

457Games and objects

ptg18144483

These statements show how to create and use an enumerated type called GameStates.
Variables of this type can have one of three values, one for each state. The type is
created inside the SpaceRocketsInSpaceGame class so that it can represent the state of
the game. When the game is running, its behavior depends on the current state of the
game.

while (true)

{

 switch (state)

 {

case GameStates.TitleScreen:

UpdateTitle();

break;

case GameStates.GameActive:

UpdateGame();

break;

case GameStates.GameOver:

UpdateGameOver();

break;

 }

 SnapsEngine.DrawGamePage();

}

Adding more game states
Just about all the objects in a program will have state of some kind that they will manage.

Question: How would we add a “High Score Display” state to the game?

Answer: The code for the game behavior is a really good template for the construction
of a state-based game. We can add a new state by adding a value that represents the
new state to the enum, adding a new method to update the game in that state, and then
adding the case to the switch statement so that the method is called when the game is
in that state.

Question: How would we add an extra level to the game?

Answer: Games like Space Rockets in Space often have several different levels, with
different background screens and different kinds of attacking aliens. You might think
that we could add more levels by adding more states to the game (for example, we could

 Decide what to do based on the
state of the game.

CODE ANALYSIS

458 Chapter 15 Games and software components

ptg18144483

have a state called Level1Active and another called Level2Active and so on). However,
this is not a good way to structure the code. A better way would be to add a property,
perhaps called LevelNumber, which is the number of the level being played, and have the
UpdateGame method deal with this. In other words, each of the methods that are called
to manage their state could in fact be mini state machines themselves.

PROGRAMMER’S POINT

Messages and states go hand in hand
The state of an object will determine how it responds to a message that it receives. Some
messages will cause a change in the state of an object, and some messages will be ignored
in certain states. For example, if the game is not in the GameActive state, it will ignore any
EndCurrentGame messages that come along because they are just not relevant. When
you design a solution made up of cooperating objects, you can also design the states that
the objects can occupy and the messages that will cause them to change from one state to
another.

If we go back to our “party doorman” situation, we might tell the doorman that as soon as
50 people have arrived, he must put up a Party Full sign and stop allowing any new arrivals.
In this case, the doorman will have changed state from “accepting arrivals” to “party full”
and respond to “incoming person” in a different way.

The main game loop for this version of Space Rockets in Space now calls a specific
update method for each of the possible game states.

public void UpdateTitle()

{

 if (SnapsEngine.GetFireGamepad())

 {

StartNewGame();

 }

}

Above is the method that runs to update the title screen. It checks to see whether the
Fire button has been pressed (this is the same as the Space bar on the keyboard). If
the button has been pressed, UpdateTitle calls a method to start the game. The idea
is that the StartNewGame method will then reset all the game objects and start the
game running. But there’s one problem: we don’t know how to reset all the game
objects.

459Games and objects

ptg18144483

Sometimes you get blindsided
We use blindsided to mean something that happens that you just did not see coming—like a
friend of mine who carefully made two copies of all his files on two separate hard disks so he
could be sure that he would not lose any data if one of his disks failed. Unfortunately, this did
not help him much when his computer, with both drives inside it, was stolen.

You can get blindsided in software projects when you suddenly discover that there is a whole
set of additional things that your program needs to do. I have had this happen to me a few
times when I’ve been creating an application, and the problem usually occurs because I didn’t
work through my solution before starting to build it.

If we had worked through what happens when the game is played, we would have quickly
discovered that we need a way of restarting the game, and to do this the game objects must
be able to reset themselves. We need to add this behavior or we won’t have a proper game.

You might think that if you carefully work through everything you will never get blindsided
like this. Unfortunately, this is not always the case. I’ve been caught out by the customer
forgetting to tell me about a whole bunch of things that the application needs to do, or
experienced the unhappy discovery that the hardware that I’ve been told I must use doesn’t
actually go fast enough.

Every time I’ve been caught like this I’ve made a careful note of what happened, and in my
next project I make sure that I do something to attack that problem, too. However, I still
recognize that every now and then I’ll have to deal with things I just wasn’t expecting. It
turns out that careful planning doesn’t remove all the risk from a project, just like a carefully
planned birthday party can be sent into turmoil if the birthday girl catches measles the day
before the event. You just have to make sure that you have planned for the all the events that
you can and be ready to respond to whatever else fate might send your way.

Game reset behavior and abstract classes
We just discovered an issue that we did not address in our design: what happens when
a game finishes and we want to start a new one? We don’t want to have to re-create
all the sprite objects each time we start a new game because that would be very slow.
What we need is to tell each sprite to reset itself to its starting position. We don’t
know precisely what a game object needs to do—for example, alien sprites will have
to come back to life if they have died—but we do know that each object must do
something.

We can use another C# feature to make this situation easier to manage: abstract meth-
ods. An abstract method is a statement of intent. It indicates a need for a behavior

WHAT COULD GO WRONG

460 Chapter 15 Games and software components

ptg18144483

without saying exactly what that behavior should be. In a program, this requirement is
expressed in the form of an “empty” method that is marked as abstract:

abstract public class MovingSprite

{

public ImageSprite spriteValue;

public double xSpeedValue, ySpeedValue;

public MovingSprite(ImageSprite sprite, double xSpeed, double ySpeed)

 {

spriteValue = sprite;

xSpeedValue = xSpeed;

ySpeedValue = ySpeed;

 }

public virtual void Update()

 {

spriteValue.X = spriteValue.X + xSpeedValue;

spriteValue.Y = spriteValue.Y + ySpeedValue;

 }

public abstract void Reset();

}

If the abstract method is in the class right at the top of the hierarchy, this effectively
says, “Any class that extends the MovingSprite class must provide a Reset method if
we are going to make an instance of that class.” Abstract methods are a great design
tool because they let you think about actions without having to describe exactly how
those actions are going to be performed.

As an example, you might be implementing a system to manage different kinds of
accounts for a bank. You know that the bank manages lots of different accounts—
checking accounts, credit card accounts, saving accounts, and so on. A sensible way to
address this would be to create a class hierarchy with an Account class at the top and
more specific classes (CheckingAccount, SavingAccount, and so on) underneath, pro-
viding more specific behaviors. Every account must have some fundamental behav-
iors, such as paying in and withdrawing funds, checking the balance, and so on. These
behaviors will be required by every account, but each account will perform them in
its own way. What you want to do is define a requirement that these methods must
be provided, without stating specifically how they are to be performed. You could do
this by creating abstract methods for all the methods that you want the child classes
to provide. These force the child classes to provide the required behaviors but without
specifying how these behaviors will work.

abstract public class MovingSprite The MovingSprite class now contains an
abstract method.

Defi nes an abstract method named Reset.

461Games and objects

ptg18144483

Abstract methods and classes
Question: The Update method is virtual, and the Reset method is abstract. What’s the
difference?

Answer: When we created the MovingSprite class, we decided that classes that extend
the MovingSprite class might want to build on the Update behavior that makes a sprite
move. Making a method virtual means that it can be overridden by a method in the
child class. We’ve done this in lots of the classes. The RocketSprite overrides Update
to provide a version that lets the player control the rocket, whereas the ChaserAlien
class overrides Update to provide a version that moves the sprite toward the player at all
times.

Abstract is different. It says, “You need to do this in your own way. I don’t know precisely
what you need to do, but I do know that you need to do it.” In the context of our game,
the declaration of an abstract Reset method is expressing the need for every sprite to
have some kind of reset behavior.

Question: Why is the MovingSprite class now abstract?

Answer: The MovingSprite class is now abstract because the system can’t ever make
an instance of this class. If we did make an instance and somebody tried to use the Reset
method on that object, the program would not know what to do.

Question: What does it mean if a class is made abstract?

Answer: Abstract means that the program can never actually create a class of this type.
The class now serves as a template for other classes, which will extend the abstract class
and provide implementations of the abstract elements.

Question: Why didn’t you just make a virtual Reset method that can be overridden?

Answer: The Update method runs inside a sprite to update it in the game. We made
the Update method virtual so that it can be customized in other classes that extend the
MovingSprite class. However, there is not always a need for a class to override a method
from a parent. In other words, there’s nothing forcing a child class to provide an Update
method. However, making a method abstract means that the child class must provide an
implementation of the Reset method, forcing the object’s developers to add one. I’m
very keen that people don’t forget the Reset method (like I did), so I’m forcing them to
remember it.

Providing reset behaviors in objects
If we add an abstract Reset method to the MovingSprite class, this will have the effect
of breaking the entire program. The compiler will now complain that none of the

CODE ANALYSIS

462 Chapter 15 Games and software components

ptg18144483

sprite classes in our game have a Reset method, so the program cannot be compiled
anymore. There is nothing to do at this point but take a deep breath (and probably
drink a cup of strong coffee), and then go through all the classes to add the required
Reset behavior. For some of the objects, we will also need to change the constructor
so that it stores the original position of the sprite when it was created. This way, the
Reset method can use this position to put the sprite back on the screen in the same
place.

PROGRAMMER’S POINT

A pinch of design effort can replace a ton of programming effort
If we had realized at the start that the game needs to be able to reset all the objects, we
could have saved a lot of rework. When I start work on a project, I draw a diagram like the
one in Figure 14-4, and then work through as may scenarios as I can. I’m particularly careful
to think about the program end to end. By that I mean I think through how the program
is going to be used from the first thing the user does with the code through all the ways
the program will be used over its lifetime. If we had done this at the very start of the game
development, we would have realized that something needs to happen when the game
finishes and needs to be restarted.

The very best way to perform this design is with the customer sitting next to you so that he
can ask questions like, “What happens at the end of the game?”

The following code shows the Reset behavior for the RocketSprite class. When the
sprite is created, the method stores the original X and Y values of the sprite. Then,
when the sprite is reset, Reset moves the rocket back to this position and sets the lives
and the score to the original values.

double originalXSpeed, originalYSpeed;

double originalX, originalY;

public int LivesLeft, Score;

public override void Reset()

{

 xSpeed = originalXSpeed;

 ySpeed = originalYSpeed;

 spriteValue.X = originalX;

 spriteValue.Y = originalY;

 LivesLeft = 3;

 Score = 0;

}

Storage for the original speed
and position of the rocket.

Reset method resets the
rocket for a new game.

463Games and objects

ptg18144483

public RocketSprite(ImageSprite sprite, SnapsEngine snaps, double xSpeed, double

ySpeed) :

 base(sprite, xSpeed, ySpeed)

{

 originalXSpeed = xSpeed;

 originalYSpeed = ySpeed;

 originalX = sprite.X;

 originalY = sprite.Y;

 snapsValue = snaps;

}

When the game wants to reset all the sprites, it simply has to do this:

public void ResetGame ()

{

 gameScore = 0;

 foreach (MovingSprite sprite in sprites)

 {

sprite.Reset();

 }

}

Ch15_04_CompleteGame

Remember that the variable sprites holds a list of all the sprites that the game is
using. The loop you see above is exactly the same as we use in the Update method for
each of the sprites. However, this time the Reset behavior is used. The Reset method
that’s called on each object is the one appropriate to that particular type. This method
will still work even if you add lots of new sprites to the game because they will all be
required to provide a Reset behavior that works for them.

The sample game Ch15_04_CompleteGame is a fairly complete game that uses the
reset behaviors of the sprites each time the game is completed. It also displays the
score and number of lives (which was borrowed from Keep It Up!) and will reset the
aliens each time they are all destroyed.

RocketSprite constructor

Store original rocket position
for when the rocket is reset.

Work through all
the sprites and

reset them.

464 Chapter 15 Games and software components

ptg18144483

Make your own complete game
You can use Ch15_04_CompleteGame as the basis for almost any sprite-based game that
you would like to make. You can modify the behaviors of the sprites or just change the art-
work. You can add more sounds to the game or make it completely silent. You can change the
way the game works so that you have to capture falling raindrops while being chased by an
angry wasp.

Interfaces and components
In the Space Rockets in Space game, all the sprites are based on the MovingSprite
type and all the objects on the screen are held in a list of sprites.

List<MovingSprite> sprites = new List<MovingSprite>();

The list contains references to all the stars, aliens, rockets, and missiles. This works
because MovingSprite is the parent for all these object types and a MovingSprite
reference can refer to any of them. Each time we add a new type of sprite to the game,
it is a child of the MovingSprite class and we can just add it to this list. Then, when we
want to update the game, we can update all the sprites by just working through all the
objects in the sprite list:

foreach (MovingSprite sprite in sprites)

 sprite.Update();

This works well, but it can be inflexible if we want to use other components in our
game. For example, a fellow developer might have made a set of game objects that
manipulate the game’s background images, and we want to use these in our game. In
a perfect world, these backgrounds would be based on the MovingSprite class, but it
turns out that the background designer has designed her classes differently. She has a
set of classes that are arranged like you see in Figure 15-3.

MAKE SOMETHING HAPPEN

465Games and objects

ptg18144483

Figure 15-3 Background sprite designs

The problem we will have with these backgrounds is that the parent class is Back-
groundSprite, so they are completely different classes from the ones in our game,
which are based on the MovingSprite class. We can’t easily add them to the list of
sprites in our game because they won’t fit with MovingSprite.

Adding abstraction
We have this problem because MovingSprite and BackgroundSprite are both sprites,
but they are not in any way related. We could solve this problem by making a new
parent class that both BackgroundSprite and MovingSprite extend. Our program can
then manipulate game objects in terms of this type. In other words, everything in the
game is a GameSprite, which can be either a MovingSprite or a BackgroundSprite.
Figure 15-4 shows how this would work.

Figure 15-4 Combined class diagram.

466 Chapter 15 Games and software components

ptg18144483

The GameSprite class holds the image that is displayed, and the MovingSprite and
BackgroundSprite classes are children of that class. Here is how the code would be
written for the three classes.

class GameSprite

{

 ImageSprite image;

}

class BackgroundSprite : GameSprite

{

}

class MovingSprite : GameSprite

{

 double xSpeed;

 double ySpeed;

}

The GameSprite would hold the image (which every sprite needs), and the Moving-
Sprite would hold the speed values and so on. The game would just contain a list of
GameSprite objects:

List<GameSprite> sprites = new List<GameSprite>();

The problem with this approach is that it would be very time-consuming to imple-
ment if we already have existing classes. It is unlikely that the classes would have much
in common. We need a way that we can use the abilities of these objects without our
program caring about the particular kind of object that is being used. C# provides this
in the form of the interface.

Make sure your most abstract class is abstract
enough
Programmers use abstraction as a way of stepping back from a problem. For example, if I was
creating an application to manage a clothes shop, I might talk to the shop manager about
clothing rather than dresses, trousers, shirts, socks, and ties. Once I’ve discovered what the

Parent class for all the sprites.

Root of the BackgroundSprite hierarchy.

Root of the MovingSprite hierarchy.

WHAT COULD GO WRONG

467Games and objects

ptg18144483

system needs to with the clothing items, I can then make child classes that are tailored (sorry)
to the specific requirements of the different clothing types. For example, a dress would have
a size value, whereas a pair of trousers would have a waist measurement and an inside leg
measurement. However, when designing like this you need to make sure that your top-level
class is abstract enough.

If the clothes shop sells handbags and purses (which it might do), these objects will not fit
into my clothing class hierarchy at all. What I should have done is start with a more abstract
class, perhaps called Stock, which holds all the information about an item in stock (for exam-
ple, price, stock level, supplier), and then I can have child classes that describe different kinds
of stock. This makes our application more “futureproof” because if the shop ever moves into
something like jewelry, we can just add another child class.

Our design for the sprites reflects a lack of abstraction in that a game also needs to have
sprites that don’t move. We should really have made GameSprite the parent class of all the
sprites from the very start. When you are picking the name and abilities of the top class in a
hierarchy, you need to make sure that it is sufficiently abstract.

Interfaces
Interface is a confusing word. It instantly makes people think of desktop computers
with mice, keyboards, and large flat-screen monitors. But in the case of a C# program,
an interface is a set of things that a class can profess that it’s able to do. When I think
of interfaces, I think of the interface that defines the connection between a power
socket and a plug. The interface defines the voltage that the socket will produce, the
shape and size of the pins in the plug, and the purpose of each pin.

The interface specification does not say how the electricity in the socket is to be
produced, and it doesn’t say what the plug is to be connected to. A power socket can
be driven by a nuclear power station or a battery-powered inverter, and the plug can
be connected to a kettle or a flat-screen TV. Each side of the connection has a view of
the other, which is entirely defined by the interface. They don’t know or care what is
actually producing the power or consuming it.

We want something similar for our software objects. We want a way that a single
game can use sprite objects without caring exactly what type of objects they are.
We can do this by identifying exactly what behaviors are required in a class and then
expressing this in a C# interface. In the case of our game, we want the sprites in the
game to be able to do two things: each sprite must be able to update itself (it must
contain an Update method), and each sprite must be able to reset itself for a new
game (it must contain a Reset method).

468 Chapter 15 Games and software components

ptg18144483

If an object can do those two things, we don’t really care what it is: we can use it in our
game. We can express these two abilities in the form of a C# interface:

interface IGameSprite

{

 void Reset();

 void Update();

}

This code creates an interface named IGameSprite, which specifies the two methods
that a class needs to provide to be a sprite in our game. Any class that contains Update
and Reset methods can tell the compiler that it implements the interface by adding
the interface name to the class name when it is declared:

abstract public class MovingSprite : IGameSprite

{

}

This tells the compiler that the MovingSprite class (and therefore any of its children)
implements the IGameSprite interface. It is a way of saying that objects in the hier-
archy must contain a Reset and an Update method or the program will not be able
to make an instance of that class. Any class that wants to be treated like an IGame-
Sprite can implement the interface. A program can also create references of type
IGameSprite, and the references can refer to any class instance that implements the
interface.

List<IGameSprite> sprites = new List<IGameSprite>();

My list of game objects is now a list of IGameSprite objects—that is, things that can
update and reset. When the program runs, it performs these actions on the objects
irrespective of what they are. All the background programmer needs to do is add a
Reset and an Update method to her background drawing classes, tell the compiler
that the classes implement the IGameSprite interface, and they can be used alongside
the classes in our system. The interface has defined precise ways in which completely
different objects can interact.

Interfaces allow you to regard objects in terms of what they can do, not what they
are. They allow a lot more flexibility in program design. They allow you to specify how
components can interact with each other and make it very easy for us to swap one
component for another, without the system complaining.

Name of the interface.

Methods in the interface.

Objects based on this
class will contain the

methods in IGameSprite.

469Games and objects

ptg18144483

Interfaces
Question: What do we mean by a list of interfaces?

Answer: The sprites list, which contains references to all the sprites in our program, is
now a list of IGameSprite interfaces. This looks a bit confusing because an interface is
not a “thing,” it is just a collection of behaviors. However, this is exactly what we want. It
is a bit like assembling a bunch of people who are all firefighters. We may have teachers,
writers, artists, and beauticians turning up, but as long as they implement the “fire-
fighter” interface (which is, basically, turn up, save people, and put out the fire) we don’t
care what they actually are. Remember, an interface provides a way of referring to an
object based on what it can do, not what it actually is.

Question: What if we try to make an interface reference refer to an object that doesn’t
implement the interface?

Answer: To go back to the firefighter example, you are asking what would happen if
we asked someone who isn’t a firefighter to put out the fire. The answer is that the C#
compiler keeps careful track of which classes implement which interfaces, and it checks
to make sure that when you try to use an interface reference that the thing the reference
refers to actually has the required behaviors.

Question: Can a class implement multiple interfaces?

Answer: Yes it can. Just like a beautician can be a firefighter and also a juggler. Each
interface that an object implements provides a different “view” of that object.

Question: Why does the interface name begin with the letter I?

Answer: It is a convention in C# programs that the name of an interface always starts
with I. This is so that a programmer can easily tell an interface from a class. An interface
is quite different from a class. An interface doesn’t actually tell the computer how to do
something; instead, it gives a list of things that class must do.

PROGRAMMER’S POINT

Interfaces and abstract classes are deep stuff, but worth knowing
about
Since you are just learning to program, you might find that abstract classes and interfaces
are very hard to understand completely. We started off with programs that made simple
decisions based on the contents of variables. Then we moved on to lumping data into

CODE ANALYSIS

470 Chapter 15 Games and software components

ptg18144483

objects so that we can manage related data more easily. Now we are moving on to making
objects based on other objects (class hierarchies), template objects (abstract classes), and
object-based components.

These are advanced programming and software design topics. You don’t need to under-
stand them completely right away. You can create awesome programs without using a
class hierarchy. However, if are designing large and complex solutions made up of lots of
different components, I’d strongly advise you to come back to the chapters in this part of
the book and look at the ways that we fit together the elements in our game.

What you have learned
In this chapter we completed our exploration of the object-oriented features in C#,
using the game Space Rockets in Space as the vehicle. You discovered how one object
in a program can send a message to another and how complex programs can be
made from a collection of cooperating objects. You have seen that a message is really
just a method call with an agreed meaning and that an object can send messages in
response to the ones that it receives. You have also investigated how objects can be
given state, and that the state of an object sets the context in which incoming mes-
sages will be dealt with.

Sometimes, the design process will identify a need for objects to provide a certain set
of behaviors in a manner appropriate to each specific object. You have seen how you
can use C# abstract classes to create “templates” that specify an abstract requirement
for a particular behavior without specifying exactly how the behavior should work in
each child of the abstract class.

Interfaces take the idea of abstract classes even further. Abstract classes let us design
templates that specify behaviors that all objects in a class hierarchy must implement.
Interfaces, in contrast, specify a set of behaviors that any class can implement. Classes
can implement the interface and then be managed in terms of this ability. Put simply,
abstract classes let us manage objects in terms of what they are, whereas interfaces let
us manage objects in terms of what they can do.

Programming is turning into an exercise in organization, and we can start to break
down very complicated systems into a set of objects that each play a particular part in
the implementation. It turns out that you can do a lot of your program design work by
stepping back from the keyboard and drawing some diagrams that show what each
element of the solution needs to do.

Here are some questions that you might want to ponder about software components.

471What you have learned

ptg18144483

What is the difference between an object and a component?

We started using objects as a way of gathering together data values to make them
easier to manage. We created objects to represent musical notes in a tune, contacts in
an address book, and similar things. You discovered that you can make objects more
useful by giving them behaviors so that a musical note could play itself or a contact
object could make sure that we never stored a contact with a missing name. You
move into components when objects start to cooperate to make a system work. In our
video game, the alien sprite sends a message to the rocket when it causes damage,
and then the rocket sends a message to the game if this means that the rocket has
been destroyed and the game has ended. As soon as you start to regard objects in
terms of their abilities—rather than what they are—you are talking about software
components.

Does using objects make my programs run more slowly?

Yes, but it doesn’t matter. One of the fundamental principles of computing is that
there are lots of ways to write a program. Every program that is constructed using
objects could instead be written as one enormous method. It would be very hard to
understand, and impossible to fix if it broke, but it would probably run slightly faster
than an object-based solution. The benefits of an object-based solution are so great
in terms of ease of construction, ability to test, and ease of modification that they are
definitely the best way to write large programs.

Do I know all I need to know about objects?

I have been programming for a very long time. For the first part of my programming
career I didn’t use objects for the very simple reason that they hadn’t been invented.
However, I found that I tended to structure my programs in an “object-ish” way, using
libraries of subroutines and data that I grouped together to make objects of my own.
I’ve been using objects now for a long time, and I still don’t consider my knowledge
complete. One of the wonderful things about learning to program is that if you are
programming you are always learning. The notes in this part of the text should give
you plenty to think about when it comes to designing large systems, but you will only
learn more if you write more code and make a habit of looking at code written by
other people.

In Part 4, the final part of this book, you take your programming skills and learn how
to use them to make fully fledged Universal Applications. You’ll move from the Snaps
framework to the world of user interface design, where you can create any kind of
application you like. You’ll also learn how modern applications are structured and
even pick up some software engineering skills.

The ebook for Part 4 is included in the companion content you can download from
https://aka.ms/BeginCodeCSharp/downloads.

472 Chapter 15 Games and software components

https://aka.ms/BeginCodeCSharp/downloads

ptg18144483

This page intentionally left blank

ptg18144483

Index
Symbols and numbers
/* and */ characters, 118
// characters, 117
& (ampersand), 114–115
&& (AND) logical operator, 114–115, 276
<> (angle brackets), 320
{} (curly brackets), 49, 58–59, 111, 215, 324
/ (division operator), 84–85
“ “ (double quotation marks), 48, 74, 324
= (equal), 73, 311–312
== (equal to), 107–108
\ (escape character), 228, 324
^ (exclusive OR) operator, 114
> (greater than operator), 104, 107
>= (greater than or equal to operator), 107
< (less than operator), 104, 106–107
<= (less than or equal to operator), 107
– (minus and unary minus sign), 84
* (multiplication operator), 84
! (not), 103–104, 131
!= (not equal to), 107–108
| (OR) operator, 114
() (parentheses), 48–49, 84, 98, 215
+ (plus sign), 77–78, 84, 88, 183
; (semicolon), 48
|| (short-circuit OR) operator, 114

A
abstraction, 460–462, 467–468
access to data, 346–351, 369
addition operator (+), 77–78, 84, 88, 183
AddLineToTextDisplay method, 139, 332
Alert method, 218–222
algorithms, 187
alphabetical sorting, 193–194
ampersand (&) logical operator, 114–115
AND (&&) logical operator, 276
angle brackets (<>), 320
animated behaviors in UI, 380, 414
announcer programs, 76–77, 79

applications (apps). See also programs
building, 8
continuously running, 10
data-processing, 25
game elements, 380, 414
images, displaying, 358–359
vs. programs, 15
running, 7–10
running again, 10
starting, 7–8
stopping, 10–11
user-friendly, 355–356

arguments, 48–49, 86, 218, 221–222
named, 96, 220–221
number of, 64
order of, 220

arrays, 176–179
of class references, 317–318
collections, storing, 294–296
contents, displaying, 184–186
elements, 177, 188–189, 294–295
error detection, 209
filling up, 295–296
functionality, 208
GetLength method, 204
highest and lowest values, 194–196
indexes, 177, 182–183, 200–201
Length property, 180–181, 204, 322
as lookup tables, 206–207
multiple dimensions, 199–205
multiple value types, 260–261
preset, 262–263
sizing, 319
sorting, 187–194
of structure values, 252–253
three-dimensional, 205
total value, 196–198
two-dimensional, 200
values, holding, 249

aspect ratio, 385
asset management, 127–132
assignment operator (=), 73, 311–312
assignment statements, 73–74, 158–159, 347
asterisk (*), 84, 118

474 Index

ptg18144483

B
backslash (/), 84–85, 117–118, 228
base classes, 424. See also inheritance
BeginToCodeWithCSharp folder, 5
BeginToCodeWithCSharp project, 7, 127
BeginToCodeWithCSharp solution, 11–15
behavior members of classes, 46–47. See also methods
bits and bit patterns, 36
black-box testing, 32–34
blocks of statements, 110–113

copying, 138–139
local variables, 111–113
in loops, 143–144
methods, 214. See also methods
repeat conditions, 149–151

Boolean expressions, 103–104
Boolean (bool) type, 102–104
break statements, 163–168, 280
breakpoints, 151–155
bubble sorting, 187–194, 307
bugs, 138, 151–155
business rules, enforcing, 349–350

C
C# language

case sensitivity, 59, 74
clarity of, 12–13
decision process, 102–104, 133
keywords, 72. See also keywords
program structure, 44–50

calculations, performing, 83–85
calling methods, 47, 49
camera, opening, 368
carriage return (\r) escape sequence, 228
case statements, 281
casting, 90, 92–94, 197–198
catch blocks, 353–354
catching exceptions, 353
central processing units (CPUs), 26
character codes, mapping to numeric values, 38
check codes, 370
child classes, 422–423. See also inheritance

customizing, 426–427
method overrides, 426–428

class definitions, 46
object design, 310
starting, 44–46

class diagrams, 441–442
class hierarchies, 429, 433–434. See also inheritance

designing, 440–444

width and depth, 444–445
class instances, 310. See also objects
class references as parameters, 318
class variables, managing by reference, 306
classes

abstract, 462
base, 424
constructors, 316–317
extending, 422. See also inheritance
fully qualified names, 319
helper, 319
interfaces, implementing, 469–470
methods, adding, 215–217
methods, declaring, 47
in namespaces, 320
naming, 55–56
partial, 411
property behaviors, 382–384
references, 311–318
structures and, 306–318

ClearGraphics method, 276
ClearScreenTappedFlag method, 164
ClearTextDisplay method, 139
clock programs, 87–88, 360–361
cloud storage, 240
code. See also programs

colored display, 14
comments, 117–119, 125–126, 142, 241–243
context, 341, 419
debugging, 151–155
indenting, 106
inputs, 29–32
low-level vs. higher-level instructions, 26–27
machine, 26
patterns, 78–79
personalizing, 35
pseudocode, 194
reading, 39
refactoring, 224, 244
reusability, 147

code blocks, 110–113, 138–139, 143–144, 149–151. See
also methods

code design, 463. See also design patterns
class hierarchies, 440–444
for debugging, 155
lots of methods, 367
object interaction, 448–456
object-oriented design, 440

code development. See programming
code review, 34
coding. See programming
collections, 195, 323. See also arrays; lists
Collections namespace, 319–320

 Index 475

ptg18144483

colors, 63
of code display, 13
creating, 63–66
drawing with, 274–276
of screen background, 63
storing values, 287
structure for, 277
of text, 61–62
of titles, 62–63

command processing, 366–367
comments, 117–119, 125–126, 142, 241–243
Compare method, 193
compilation errors, 58–60
compiler, 27, 39, 44, 67

precision of operands, 90, 95
static analysis, 209
type checking, 85, 89, 94–95

computers, 23–35
data processing, 23–29, 39–40
inputs and outputs, 24–25, 27–28
as machines, 24–25
system requirements, 4
understanding of data, 40
workings of, 39–40

concatenation, 183
conditional expressions

Boolean expressions, 103–104
logical expressions, 105, 142–143, 155–156
while loops, 142–151

conditions, 105, 110–113
constructors, 256–260, 290–291

in classes, 316–317
exceptions in, 258–259
invalid data in, 258
validation behavior, 351–353

context, code, 341, 419
context menus, 52
continue keyword, 165–169
Copy command, 52–53
Count property, 321–322
count variable, 179–180
counting, 136–139, 147–148, 261

with for loops, 161–163
resetting, 139–141
with while loops, 157–160

curly brackets ({}), 49, 58–59, 111, 215, 324
customer requirements, 21–22

business rules, 349–350
design specifications, 22, 174, 301

D
data

bits and bit patterns, 36
built-in, 70
defined, 36
fetching, 229–231, 235–236, 329–333, 357
vs. information, 35–40
loss in type conversions, 90, 92, 94
structured, 291. See also structures

data access, 346–351, 369
data members of classes, 46
data processing, 25, 27–28, 39–40
data protection, 264–267, 338–349, 369
data storage, 37–39, 71, 295–296. See also storage

in arrays, 176–207
enumerated types, 278–279
in lists, 319–323
in single variables, 175–176
in structures, 249–278

data-driven applications, 207
dates, 360–362
DateTime structure, 359–360
debugging, 151–155
decimal type, 82
declarations, 71–73, 76–77
defensive programming, 259, 340
Delay method, 61, 65, 132, 360
delimiters, 49
DeserializeObject method, 325–328
design patterns, 78–79, 185, 199, 298–299, 329, 344,

349–350. See also code design
design specification, 22, 301

storyboarding, 174
development. See programming
devices, 24–26, 240
directives, using, 44–45, 320, 359
display, 304–305. See also viewports

of array contents, 184–186
building, 139
fade in behavior, 360–361
of images, 129–130, 358–359
of messages, 44, 47–50
multiline, 332
origin, 390, 393
of strings, 48–50, 360–361

displayCount variable, 184
DisplayDrawings method, 365
DisplayHelp method, 365–366
DisplayImageFromUrl method, 129–131, 357
DisplayString method, 48–50, 360–361
divide by zero error, 85

476 Index

ptg18144483

division operator (/), 84–85
documents, XML schema, 330
double quotation marks (“ “), 48, 74, 324
double type, 82, 90–92, 98
DrawDot method, 269–270
DrawDotsUntilDrawInLeftCorner method, 366
DrawGamePage method, 378
drawing, 267–278

clearing screen, 276
in color, 274–276
coordinates, 272–273

Drawing class, 362–363
drawing program, 267–278
drawings diary, 356–368
DrawLine method, 283–284

E
egg timer, 65
elements in arrays, 177

null values, 294–295
swapping, 188–189

else statements, 105–106, 114–115, 122
encryption, 369
enum keyword, 279
enumerated types, 278–282, 457–458
enumeration, 195
equal sign (=), 73, 107–108, 311–312
equal to operator (==), 107–108
equality operators, 107–108
error detection, 209
error reporting, 353
errors

compilation, 58–60
divide by zero, 85
with loops, 171
stack overflow, 217
“unreachable code detected,” 106
“variable undefined,” 309–310

escape character (\), 324
escape sequences, 228
exception handlers, 353–355
Exception type, 259–260
exceptions, 178–179

catching, 353–354
in constructors, 258–259
error reporting, 353
index out of range, 322
invalid input, 258–259, 261–262, 349
null references, 235–236
prevention of execution, 349, 354

exclusive OR (̂) operator, 114

execution, path of, 151–155
expressions

evaluation, 84
numeric, 83–85
string, 77–78

F
fade-in behavior, 360–361
failure behaviors, 156
FallingSprite class, 422–427
false keyword, 103
faults, guarding against, 34
fetching data, 229–231, 235–236, 329–333, 357
FetchStringFromLocalStorage method, 229–231,

235–236
fields, structure, 250
file extensions, 54
file names, 56, 359, 361–362
finding data, 300–302
flags

setting, checking, and clearing, 164, 192–193
test, 203–204

float type, 82, 91–92, 94
floating-point values, 91, 197–198
FontFamily string, 403
FontSize value, 403
for loops, 160–163

displaying array contents, 184–186
for two-dimensional arrays, 201–203

foreach loops, 195–196, 262–263
fortune-teller program, 126
forward slash (/), 84–85, 117–118
fractional numbers, 80. See also real numbers
frames per second, 377, 381, 389, 404, 406, 421
fully qualified names, 319
functional design specification (FDS), 22
Funfair program, 119–126

G
game engines, 376–377

hardware and, 393
MonoGame, 393
sprites, adding to, 381–382

games
clamping values, 399–400
creation, 414
ending, 453–454
frames per second, 377, 381, 389, 404, 406, 421
game loop, 377–378, 389, 398

 Index 477

ptg18144483

games, continued
game object, 452–453
infinite loops, 378
intersection of sprites, 400–401, 449–451
Keep Up!, 408–413
methods controlling actions, 397–399
parallax effects, 430
particle effects, 430
physics, 434–437
player-controlled paddle, 396–401
procedural generation, 412
randomness, adding, 410–413, 425
rate of updating, 399
resetting, 460–462
screen mode, 377
Snaps gamepad, 397–399, 431
sound, adding, 401–402
Space Rockets in Space, 418–440, 448–471
sprites, 378–392
state management, 456–465
stopping, 455–456
text, displaying, 403–413

GameViewportWidth property, 386–387
garbage collector, 312–313
generic methods, 325
get method, 341–343, 347–348, 369
GetDayOfWeekName method, 78–79
GetDraggedCoordinate method, 272–273
GetHourValue method, 86
GetLength method, 204
GetMinuteValue method, 87–88
GetScreenSize method, 284, 387
GetTappedCoordinate method, 282
GetTodayTemperatureInFahrenheit method, 95–96
GetWeatherConditionsDescription method, 96
GetWebPageAsString method, 330
graphics. See also images

origin, 390, 393
saving in files, 356–368

greater than operator (>), 104, 107
greater than or equal to operator (>=), 107

H
hackers, 258
hardware, 26
help, displaying, 365–366
helper classes, 319
hiding member variables, 293

I
identifiers, 72–73, 266
identifying resources, 44–45
if constructions, 34, 104–110, 121, 124

else statements, 105–106, 114–115, 122
random data in, 126

images. See also drawing; graphics
adding to application, 379
aspect ratio, 385
displaying, 129–130, 358–359
fetching from Web, 357
file names, 359
placeholders, 130–131
resizing, 130
saving, 356–368
scaling, 383–384

ImageSprite class, 380–381, 420. See also sprites
increment operations, 137
indenting code, 106
index out of range exceptions, 322
index value for arrays, 177, 182–183, 200–201
index value for lists, 322
infinite loops, 378
information

vs. data, 35–40
defined, 37

inheritance, 422–427
base classes, 424
class diagrams, 441–442
intermediate types, 434
object construction and, 423–424
overriding methods, 426–428
virtual methods, 427–428

injection attacks, 324
input, invalid, 258–259, 261–262, 339, 345, 353
input sanitization, 238–240
input validation, 149–151, 342–345
inputs, 29–34
instances. See objects
int type, 81, 136–137
integers, 90, 410–411
integrity of objects, 338–345, 369
IntelliSense comments, 241–243
interfaces, 465–471
intermediate types, 434
IntersectsWith method, 400–401, 449–451
invalid input, 258–259, 261–262, 339

exceptions thrown, 353
managing risk, 345

inverting method results, 131–132

478 Index

ptg18144483

J
JavaScript Object Notation (JSON), 323–328

invalid strings, 326
lists, storing and recovering, 326–328
storing data, 323–329
storing lists, 363–364

JsonConvert class, 325

K
Keep Up! game, 408–413
keywords, 72

continue, 165–169
enum, 279
false, 103
new, 256–257, 310
throw, 259
true, 102–103
value, 347

L
Language Integrated Query (LINQ), 330–331
Length property, 180–181, 204, 322
less than operator (<), 104, 106–107
less than or equal to operator (<=), 107
libraries, 45
LINQ (Language Integrated Query), 330–331
List class, 319–323
lists, 319–323

animating, 429
counting items, 321–322
creating, 364–365, 428–429
index value, 322
of interfaces, 469–470
recovering, 326–328
storing, 326–327
structure values, 322–323

literal values, 70, 90, 94, 103
LoadGraphicsPNGImageFromLocalStore method,

358–359
local storage, 229–231, 358

fetching from, 229–231, 235–236
loading graphics from, 358–359

local variables, 111–113
logical expressions

faulty, 155–156
if constructions, 34, 104–110, 121, 124
in loops, 142–143

logical namespaces, 56

logical operators, 113–117
long type, 81
lookup tables, 206–207
loops, 38, 135–171

for, 160–163
breaking out, 163–165
for bubble sorting, 187–194, 307
continuing, 165–168
counting in, 157–160
errors with, 171
faulty expressions, 155–156
foreach, 195–196
infinite, 148–149, 378
nesting, 159–160, 198–199
while, 142–151, 157–160

M
machine code, 26–27
malware, 339–340
mathematical calculations, 83–85
members, 46, 250

hiding, 293
naming conventions, 292–294
private, 265–267, 338–345
specifying, 292

memory, random access, 71
menus, displaying, 275–276
message passing between objects, 448–456, 459
messages, displaying, 44, 47–50
method calls, 222–224
methods, 47, 214–243

abstract, 460–462
adding to classes, 215–217
arguments, 48, 67
body, 215
Boolean return values, 236
business rules, enforcing, 349–350
for button behaviors, 298–299
calling, 47, 49
calling other methods, 216–217
constructor, 256–260
counting, 302–304
designing with, 224, 226
displaying information, 304–305
finding stored data, 300–302
generic, 325
headers, 214, 234
identifiers, 214
modifiers, 214
naming, 244
overloading, 271, 283

 Index 479

ptg18144483

methods, continued
overriding, 426–428, 462
parameters, 215, 217–222
performance and, 244
placeholder, 228–229, 244
with private data, 343–344
results, inverting, 131–132
return types, 214–215
returning structures, 254
returning values, 222–224
single-line, 321
statements in, 48
static, 351
stepping into, over, and out of, 154
storing data items, 299–300
in structures, 256, 263–264
virtual, 427–428, 462

Microsoft Windows 10 64-bit version, 4
minus sign (-), 84
MonoGame, 393
moving objects, 380, 414, 418–427

direction, 390–392
speed, 389–390

MovingSprite class, 418–427
multiplication operator (*), 84
music recorder, 260–262
mustache editing program, 367–368
MyProgram application, 11–15
MyProgram.cs, 54–57

N
named arguments, 96, 168, 220–221
namespaces, 56, 271, 320, 325
naming conventions, 12–13

for classes, 55–56
for interfaces, 470
for members, 292–294
for methods, 244
for parameters, 292–294
for source files, 56

nested loops, 201–203
new keyword, 256–257, 310
new line (\n) escape sequence, 228
Newton-King, James, 325
Newtonsoft JSON library, 323–326
Next method, 410
nonexistent items, reading, 235
not equal to operator (!=), 107–108
not operator (!), 103–104, 131
NuGet, 325
null values, 235, 294–295

numbers, 80–84
reading in, 122–123
sorting, 187–194
whole and real, 80

numeric operators, 83–84
numeric types, 81–82. See also individual numeric type

names
accuracy and precision, 91–92, 98
character codes mapping, 38
converting between real and whole numbers,

89–90
converting to text, 86–87

O
object-oriented design, 440
object-oriented programming languages, 45
objects, 45. See also sprites

accessing data in, 382–384
vs. components, 472
construction, 423–424
constructor code, 316–317
cooperating, 448–456
creating, 46, 310, 351–356
defining, 46
for images, 380–381
integrity, 338–345, 369
interfaces, 465–471
managing with references, 311
members, 46
message passing, 448–456
moving, 388–392
multiple references, 311–312
with no references, 312–313
performance and, 472
private data, getting and setting, 341–343
private data with public methods, 343–344
protecting data, 338–345
releasing, 312–313
reset behaviors, 462–464
state, 456–465
strings, converting into, 323–328
this references, 454–455
XML, converting into, 330–331

open-source projects, 325
operands, 77–78, 93
operators

equality, 107–108
in expressions, 77–78
invalid, 78
logical, 113–117
numeric, 83–84

480 Index

ptg18144483

precedence (priority), 83–85
relational, 106–107

OR (|) operator, 114
out parameters, 233–234
outputs, identifying, 29
overloaded methods, 271, 283
override methods, 426–428, 462

P
Paint.Net, 130, 380
parallax effects, 430
parameters, 215, 217–222

class references, 318
hiding member variables, 293
multiple, 219–220
naming conventions, 292–294
out, 233–234
passing by value, 231, 233, 254
reference, 231–233
structure variables as, 253–255
value of arguments, 221–222

parent classes, 422–423. See also inheritance
parentheses (), 84, 98

for method parameters, 215
for strings, 48–49

partial classes, 411
particle effects, 430
password protection, 169–170
patterns, design, 78–79, 185, 199, 298–299, 329, 344,

349–350
performance

casting and, 93
methods and, 244
objects and, 472
structures and, 286

 PickImage method, 285
pixels, 268, 386
Pizza Picker program, 136–148, 328–329
placeholder methods, 228–229, 244
PlayGameSoundEffect method, 128, 402
PlayNote method, 248
PlaySoundEffect method, 128
plus sign (+), 77–78, 84, 88, 183
PNG (portable network graphics) files, 356–357
precision of numeric values, 82–83, 91–92, 98
preset arrays, 206–207, 262–263
private members, 250, 265–267, 286

get and set methods, 341–343
lowercase names, 266, 347
with public methods, 343–344

procedural generation, 412

ProcessCommand method, 366–367
professional development, 14–15. See also

programming
programmers

communication skills, 23
job of, 20–23, 39–40

programming
computer system requirements, 4
customer requirements, 21–22
defensive, 259, 340
design patterns, 78–79, 185, 199, 298–299, 329,

344, 349–350
making assumptions, 40
object-oriented design, 440
organizational tasks, 20
professional, 14–15
prototyping, 22
riches from, 335
risk management, 345
self-contained objects, 264

programming languages, 15–16
clarity of, 12–13
higher-level, 27
object-oriented, 45

programs. See also applications (apps); code
vs. applications, 15
asset management, 127–132
assumptions vs. understanding in, 40
breaking, 16
breakpoints, 151–153
comments, 117–119, 125–126, 142, 241–243
compilation errors, 58–60
compilers, 27. See also compiler
components, 12, 472
continuously running, 10
copying code into, 52–53
creating, 52–60
data processing, 27–28
delaying, 61, 360
error reporting, 353
logical and physical names, 56
managing, 11–12
patterns, 78–79. See also design patterns
refactoring, 224, 244
as sequential instructions, 25, 39, 67
as solutions to problems, 20–22
stopping, 10–11
stopping by exceptions, 349, 354
test versions, 203–204
testing, 32–35. See also testing
titles, setting, 48
tracking execution, 151–155
variables in, 74–79. See also variables

 Index 481

ptg18144483

programs, continued
viewing code, 12–13

projects
vs. solutions, 15
Visual Studio, 6

properties, 346–351, 369
protecting data, 264–267, 338–349, 369

check codes, 370
encryption, 369

prototyping, 22
pseudocode, 194
pseudo-random number generator, 411
public methods, 214

with private data, 343–344
uppercase names, 266

public modifier, 250
public properties, 347

Q
quotation marks, 13

R
\r (carriage return), 228
random access memory (RAM), 71
Random class, 410
randomness, 96–97, 126, 133, 410–413, 425
range of numeric values, 81–82
ReadInteger method, 122–123, 154, 175–176
ReadPassword method, 169–170
ReadString method, 75–76
real numbers, 80, 82

comparing, 108–109
converting to whole numbers, 89–90

Really Simple Syndication (RSS), 330–333
recursion, 217
refactoring, 224, 244
references, 176–177, 231–233, 308–310, 313–316, 334

arrays of, 317–318
assigning, 311–312
class variables, managing, 306
to interfaces, 469
lists of, 319–323
objects, managing, 311, 359
out of scope, 313
releasing, 312–313
sorting by, 308
this, 454–455
values, managing by, 311, 359

relational operators, 106–107
Rename command, 54

repeat conditions of loops, 149–151
rerunning programs, 10
reset behaviors, 462–464
resources, 6

identifying, 44–45
locating, 129

return statements, 222–224, 236–237
risk management, 345
roaming storage, 240
RotationAngle property, 405–407
RSS (Really Simple Syndication), 330–333
run button, 55–56
running programs, 7–10

S
sanitizing input, 238–240. See also validation
SaveGraphicsImageToFileAsPNG method, 357–358
SaveGraphicsImageToLocalStoreAsPNG method, 358
SaveStringToLocalStorage method, 229
ScaleSpriteHeight method, 384–386
ScaleSpriteWidth method, 384–386
scope of variables, 111–113
screen color, 63
screen coordinates, 268
screen size, 386–387
screen-tap methods, 163–165, 255
searches, sanitizing input for, 238–240
secret data entry, 169–170
security. See also data protection

active and passive, 266–267
private members, 250, 266–267

SelectFrom5Buttons methods, 119–120, 137
SelectFromButtons methods, 186
SelectFromFiveSpokenPhrases method, 168–169
self-contained objects, 264
semicolon (;), 48
serialization, 323, 363
SerializeObject method, 325–328
set method, 341–343, 369

invalid values, 348–349
on public properties, 347
validate method in, 350

SetBackgroundColor method, 63–64, 274
SetDisplayStringSize method, 88–89
SetDrawingColor method, 274–276
SetTextColor method, 61–62
SetTitleColor method, 62–63
SetTitleString method, 48
short type, 81
short-circuit AND (&&) operator, 114–115
short-circuit OR (||) operator, 114

482 Index

ptg18144483

ShowStored Graphics method, 363
single stepping through code, 151–155
64-bit version of Windows 10, 4
Snaps applications, 43, 47. See also individual method

names
Snaps game engine, 376–377, 393
Snaps gamepad, 397–399, 431
Snaps library, 45, 67
Snaps types, 270
SnapsColor structure, 277
SnapsColor values, 63
SnapsCoordinate structure, 270–272
SnapsEngine class, 48
software components, 12–13, 472
Solution Explorer, 7, 11–12
solutions, 6–7

Assets folder, 127
vs. projects, 15

SongNote structure, 250–267
sorting

arrays, 187–194
bubble sorting, 187–194, 307
efficiency of, 191–192
by references, 308
strings, 193–194
structure variables, 306–307

sound assets, 128–129
sound effects, 128, 401–402
source file naming, 56
Space Rockets in Space game, 418–440, 448–471
spaces, trimming, 238
speaking text, 50–51
SpeakString method, 50–51, 215
speed of moving objects, 389–390
spelunking, 39
sprites, 378–392

acceleration, 434–437
adapting to screen size, 386–388
adding, 379–380, 396
adding to game engine, 381–382
bouncing, 390–392
ImageSprite class, 380–381
interaction, 400–401, 449–451
lists of, 465
moving, 388–390, 418–427
positioning, 388, 396
removing, 381
reset behaviors, 462–464
scaling, 384–386
sizing, 382–384
speed, 420–421
updating position, 421–422
user-controlled, 396–401, 431–432

width, 396
stack overflow errors, 217
StarMaker program, 284
StartProgram method, 44, 46–47, 214, 452
state management, 456–465
statements, 48

blocks, 110–113, 143–144, 149–151
breakpoints, 151–153
controlling loops, 143–144
copying, 138–139
number of, 50
sequence, 51, 67, 141
stepping through, 151–155

static analysis of programs, 209
static methods, 351
static variables, 426
stopping loops, 163–165
stopping programs, 10–11, 354, 359
storage, 71

of data, 37–39
failures, 295–296
graphics, 356–368
JSON, 323–329
local, 229–231, 235–236, 358–359
roaming, 240
of variables, 71

StoreDrawing method, 365
storyboarding, 174, 225
strings, 48

case of characters, 110
combining, 77–78
comparing, 109–110
converting numeric types into, 86–87
double quotation marks, 13, 48
JSON, 323–328
as literal values, 70
lowercase versions, 238
parentheses, 48–49
sorting, 193–194
text size, 88–89
XML text to XML element conversion, 330–331

structure variables, 251–252
creating, 256–260
managing by value, 306
as parameters, 253–255
reference types, converting, 322–323
sorting, 306–307

structures, 249, 291, 359
arrays of values, 252–253
classes and, 306–318
constructor methods, 256–260
for contact information, 290–291
contents, setting, 292

 Index 483

ptg18144483

structures, continued
for counting, 302–304
Date/Time, 359
declaring, 250
empty, 294–295
fields, 250
members, 250
as method returns, 254
methods in, 256, 263–264
nesting, 287
null values, 294–295
performance and, 286
protecting values, 264–267
for screen positions, 270–272

subscripts, 177
swapping elements, 188–189
switch construction, 280–282, 287, 298
synchronization across roaming storage, 240
System namespace, 359, 410

T
TakePhotograph method, 368
temp variable, 189
temperature-conversion program, 89–91
test data, creating, 296–297
testing, 34–35, 138–139, 203–204

automating, 204
black-box, 32–34
enumerated type values, 279
failure behaviors, 156
white-box, 34

text. See also strings
color, 61–62
converting numeric types into, 86–87
displaying, 403–413
fonts, 407
positioning, 404–405
rotating, 405–407
size, 88–89
speaking, 50–51
type sizes, 403

TextBlockSprite sprite, 403–413
this references, 292–294, 454–455
three-dimensional arrays, 205
throw keyword, 259
ThrowDice method, 96–97, 126, 214, 410
TidyInput method, 238–240
time, 359–362
time display programs, 87–88
time trackers, 65–66, 290–305, 338–345
times-table tutor, 157–165

title messages, 62–63
titles, 44, 47–50
ToFileTime method, 361
ToLower method, 110, 238
ToString method, 86–87, 360
ToUpper method, 110
true keyword, 102–103
try/catch blocks, 353, 355
two-dimensional arrays, 200–203
type checking, 85, 89, 94–95
type conversion with casting, 92–94
types, 85–89, 98

Boolean, 102–104
decimal, 82
double, 82, 90–92, 98
enumerated, 278–282, 457–458
Exception, 259–260
float, 82, 91–92, 94
int, 81, 136–137
intermediate, 434
long, 81
numeric, 81–82
reference, 313–316
return, 214–215
short, 81
Snaps, 270
value, 136–139, 313–316, 334, 346–349
variable, 81–82, 85–90, 98, 102–104

U
unary minus sign (-), 84
Unicode, 38
uniform resource locators (URLs), 129
Universal Windows Applications, 358
“unreachable code detected” errors, 106
Update method, 421–422, 426–427, 431
user input, 70. See also inputs
user interface

animated behaviors, 414
designing, 297

user-friendly applications, 355–356
using directives, 44–45, 320, 359

V
validation, 349–350

check codes, 370
in constructor, 351–353
input, 149–151, 342–345
in set method, 350

484 Index

ptg18144483

timing of, 355–356
with while loop, 149–151

value, 347
objects, managing by, 359
parameters, passing by, 231, 233, 254
structures, managing by, 306, 359

value types, 313–316, 334
incrementing, 136–139
protecting, 346–349
resetting to zero, 139–141
totals, displaying, 139

variable types, 85–89, 98
Boolean, 102–104
casting, 90
converting, 86–87
numeric, 81–82

“variable undefined” errors, 309–310
variables, 70–79

assigning values, 73, 76–77
class, 306
contents, viewing, 153
declaring, 71–73, 175
enumerated types, 457–458
identifiers, 72–73
local, 111–113
null value, 235
in programs, 74–79
range and precision, 81–83
reference, 176–177
scope, 111–113
static, 426
storage, 71
string versions, 86–87
structure, 251–252, 256–260, 306

video games, 376–392
viewing code, 12–13
viewports

adapting programs to, 386–387
clamping values in, 399–400
visible area, 390
width, 387

virtual methods, 427–428, 462
Visual Studio

asset management, 127–132
building applications, 8
color display of code, 14
debugger, 151–155
editor, 12, 14
images, adding, 379
indenting code, 106
installing, 5
NuGet, 325
projects, 6

Redo button, 60
run button, 7–8
running programs, 7–10
64-bit version of Windows 10, 4
Solution Explorer, 7
solutions, 6
stop button, 10
Undo button, 60
wavy red lines, 55

voice input, 168–169

W
WaitForButton method, 160
while loops, 142–151

counting in, 157–160
input validation, 149–151

white-box testing, 34
whole numbers, 80–82

converting to real numbers, 89–90
Windows 10 64-bit version, 4
Windows local storage, 229–231, 235–236, 358–359
Windows Presentation Foundation (WPF) applications,

449
Windows Store, 4

X
XML (Extensible Markup Language), 323, 329–333

 Index 485

ptg18144483

 About the
author

Rob Miles has spent more than 30 years
teaching programming at the University of
Hull in the United Kingdom. He’s a Microsoft
MVP, with a passion for programming, C#,
and creating new things. If he had any spare
time, he’d spend it writing even more code.
He loves making programs and then running
them to see what happens. He reckons that
programming is the most creative thing you
can learn how to do. He also reckons that in a

battle between us and the Martians, we’d win, because we’ve got Visual
Studio and they don’t—and there isn’t anything better in the universe for
building software.

He claims to know a lot of really good jokes, but nobody has ever heard
him tell one. If you want an insight into the Wacky World™ of Rob Miles,
you can read his blog at www.robmiles.com and follow him on Twitter via
@RobMiles.

rob@robmiles.com

486 About the author

http://www.robmiles.com
http://www.rob@robmiles.com

ptg18144483

This page intentionally left blank

ptg18144483

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

http://aka.ms/tellpress

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Part 1: Programming fundamentals
	1 Starting out
	Building a place to work
	Getting the tools and demos
	Using the tools
	Visual Studio projects and solutions
	Running a program with Visual Studio
	Stopping a program running in Visual Studio
	The MyProgram application

	What you have learned

	2 What is programming?
	What makes a programmer?
	Programming and party planning
	Programming and problems
	Programmers and people

	Computers as data processors
	Machines and computers and us
	Making programs work
	Programs as data processors

	Data and information
	What you have learned

	3 Writing programs
	C# program structure
	Identify resources
	Start a class definition
	Declare the StartProgram method
	Set the title and display a message

	Extra Snaps
	SpeakString

	Creating new program files
	Extra Snaps
	Delay
	SetTextColor
	SetTitleColor
	SetBackgroundColor

	Creating your own colors
	What you have learned

	4 Working with data in a program
	Starting with variables
	Variables and computer storage
	Declaring a variable
	Simple assignment statements

	Using a variable in a program
	Assigning values in a declaration
	Adding strings together

	Working with numbers
	Whole numbers and real numbers
	Performing calculations

	Working with different types of data
	Converting numbers into text

	Whole numbers and real numbers in programs
	Variable types and expressions
	Precision and accuracy
	Converting types by casting
	Using casting on operands in an expression
	Types and errors

	Extra Snaps
	Weather snaps
	ThrowDice

	What you have learned

	5 Making decisions in a program
	Understanding the Boolean type
	Declaring a Boolean variable
	Boolean expressions

	Using if constructions and operators
	Relational operators
	Equality operators
	Comparing strings

	Creating blocks of statements
	Local variables in blocks of code

	Creating complex conditions using logical operators
	Working with logic

	Adding comments to make a program clearer
	Funfair rides and programs
	Reading in numbers
	Building logic using if conditions
	Completing the program

	Working with program assets
	Asset management in Visual Studio
	Playing sound assets
	Displaying image content

	What you have learned

	6 Repeating actions with loops
	Using a loop to make a pizza picker
	Counting selections
	Displaying the totals
	Getting user options
	Adding a while loop

	Performing input validation with a while loop
	Using Visual Studio to follow the execution of your programs
	Counting in a loop to make a times-table tutor
	Using a for loop construction
	Breaking out of loops
	Going back to the top of a loop by using continue
	Extra Snaps
	Voice input
	Secret data entry

	What you have learned

	7 Using arrays
	Have an ice cream
	Storing the data in single variables

	Making an array
	Using an index
	Working with arrays
	Displaying the contents of the array by using a for loop
	Displaying a user menu
	Sorting an array using the Bubble Sort
	Finding the highest and lowest sales values
	Working out the total and the average sales
	Completing the program

	Multiple dimensions in arrays
	Using nested for loops to work with two-dimensional arrays
	Making test versions of programs
	Finding the length of an array dimension

	Using arrays as lookup tables
	What you have learned

	Part 2: Advanced programming
	8 Using methods to simplify programs
	What makes a method?
	Adding a method to a class
	Feeding information to methods by using parameters
	Returning values from method calls

	Making a tiny contacts app
	Reading in contact details
	Storing contact information
	Using Windows local storage
	Using reference parameters to deliver results from a method call
	Displaying the contact details

	Adding IntelliSense comments to your methods
	What you have learned

	9 Creating structured data types
	Storing music notes by using a structure
	Creating and declaring a structure
	Creating arrays of structure values
	Structures and methods
	Constructing structure values
	Making a music recorder
	Creating preset arrays

	Objects and responsibilities: Making a SongNote play itself
	Protecting values held in a structure
	Making a drawing program with Snaps
	Drawing dots on the screen
	Using the DrawDot Snap to draw a dot on the screen
	The SnapsCoordinate structure
	Using the GetDraggedCoordinate Snap to detect a drawing position
	Using the SetDrawingColor Snap to set the drawing color
	Using the ClearGraphics Snap to clear the screen
	The SnapsColor structure

	Creating enumerated types
	Making decisions with the switch construction
	Extra Snaps
	GetTappedCoordinate
	DrawLine
	GetScreenSize
	PickImage

	What you have learned

	10 Classes and references
	Making a time tracker
	Creating a structure to hold contact information
	Using the this reference when working with objects
	Managing lots of contacts
	Making test data
	Designing the Time Tracker user interface
	Structuring the Time Tracker program
	Creating a new contact
	Finding customer details
	Adding minutes to a contact
	Display a summary

	Structures and classes
	Sorting and structures
	Sorting and references
	Reference and value types
	References and assignments
	Classes and constructors
	Arrays of class references

	From arrays to lists
	Working through lists of data
	Lists and the index value
	Lists of structures

	Storing data using JSON
	The Newtonsoft JSON library
	Storing and recovering lists

	Fetching data using XML
	What you have learned

	11 Making solutions with objects
	Creating objects with integrity
	Protecting data held inside an object
	Providing Get and Set methods for private data
	Providing methods that reflect the use of an object

	Using properties to manage access to data
	Using properties to enforce business rules

	Managing the object construction process
	Catching and dealing with exceptions
	Creating user-friendly applications

	Saving drawings in files
	SaveGraphicsImageToFileAsPNG
	SaveGraphicsImageToLocalStoreAsPNG
	LoadGraphicsPNGImageFromLocalStore
	The DateTime structure
	Getting the current date and time
	Fading date and time displays
	Using the date and time to make a file name
	Creating a Drawing class
	Creating a list of drawings
	Making the drawing diary methods

	What you have learned

	Part 3: Making games
	12 What makes a game?
	Creating a video game
	Games and game engines
	Games and sprites

	What you have learned

	13 Creating gameplay
	Creating a player-controlled paddle
	Adding sound to games
	Displaying text in a game
	Making a complete game

	What you have learned

	14 Games and object hierarchies
	Games and objects: Space Rockets in Space
	Constructing a star sprite that moves
	Allowing methods to be overridden
	Creating a moving star field
	Creating a rocket based on a MovingSprite
	Adding some aliens

	Designing a class hierarchy
	What you have learned

	15 Games and software components
	Games and objects
	Creating cooperating objects
	Objects and state
	Interfaces and components

	What you have learned

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the author
	Survey

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

