
Beginning
Platino Game
Engine

—
Abhishek Nandy
Debashree Chanda

www.allitebooks.com

http://www.allitebooks.org

 Beginning Platino
Game Engine

 Abhishek Nandy

Debashree Chanda

www.allitebooks.com

http://www.allitebooks.org

Beginning Platino Game Engine

Abhishek Nandy Debashree Chanda
Kolkata, West Bengal, India Kolkata, West Bengal, India

ISBN-13 (pbk): 978-1-4842-2483-0 ISBN-13 (electronic): 978-1-4842-2484-7
DOI 10.1007/978-1-4842-2484-7

Library of Congress Control Number: 2016959663

Copyright © 2016 by Abhishek Nandy and Debashree Chanda

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Pramila Balan
Technical Reviewer: Sumitra Bagchi
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Teresa F. Horton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter. .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 Th is book is dedicated to my Mom and Dad. (Abhishek Nandy)

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors .. xi

About the Technical Reviewer ... xiii

Acknowledgments ...xv

Forward ..xvii

 ■Chapter 1: Introduction to the Game Engine.. 1

 ■Chapter 2: The Platino Game Engine ... 19

 ■Chapter 3: Installing and Setting Up Platino Game Engine 29

 ■Chapter 4: Getting into Development with Platino Game Engine 41

 ■Chapter 5: Creative Coding and Processing .. 69

 ■Chapter 6: Extending Processing for UWP and IoT with Temboo 107

Index ... 139

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors .. xi

About the Technical Reviewer ... xiii

Acknowledgments ...xv

Forward ..xvii

 ■Chapter 1: Introduction to the Game Engine.. 1

We Start Here ... 1

What Is a Game Engine? .. 1

Audio Engine ... 2

Rendering Engine ... 2

Physics Engine.. 7

Artifi cial Intelligence in Games ... 8

Blend Trees in the Unity Game Engine .. 9

Making a Game Engine .. 10

Different Game Engines .. 11

Unity Game Engine ... 11

Unreal 4 Game Engine .. 13

Some Special HTML5 and JavaScript Libraries .. 16

Box2D ... 16

MatterJS ... 16

Summary .. 17

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

 ■Chapter 2: The Platino Game Engine ... 19

 Platino Game Engine .. 19

 Download .. 20

 Learn .. 21

 Build ... 21

 Platino and Titanium SDK ... 22

 How the Engine Has Evolved .. 26

 Core Features of Platino Game Engine ... 26

 People Behind the Game Engine ... 27

 John Gould .. 27

 Peach Icaza Pellen .. 27

 Joseph Austin ... 27

 Carlos Manuel Icaza (1966–2016) .. 27

 Summary .. 28

 ■Chapter 3: Installing and Setting Up Platino Game Engine 29

The Content ... 29

The Platino Store and the Process of Getting Platino ... 29

Installation of Platino Game Engine .. 31

Summary ... 40

 ■Chapter 4: Getting into Development with Platino Game Engine 41

Let’s Make an App .. 41

Building a Core Platino App .. 54

Physics JS .. 60

Summary .. 68

 ■Chapter 5: Creative Coding and Processing .. 69

Creative Coding and Processing ... 69

What Is Creative Coding? ... 69

Art Installations ... 69

Projection Mapping ... 70

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Sketching to Reality .. 75

Different Frameworks ... 76

Processing .. 100

Summary .. 106

 ■Chapter 6: Extending Processing for UWP and IoT with Temboo 107

Extending Processing ... 107

UWP .. 107

Device Families .. 109

Making a Simple Hello World App with Visual Studio 2015 .. 109

WinJS.. 112

Processing JS ... 113

Including the Processing JS library .. 114

How Processing JS Works .. 114

Processing JS and Windows 10 UWP ... 115

P5.js .. 124

IoT .. 130

Processing IoT and Temboo .. 131

Temboo ... 131

Summary .. 138

Index ... 139

www.allitebooks.com

http://www.allitebooks.org

xi

 About the Authors

 Abhishek Nandy is the second individual from India to earn the
prestigious Intel Black Belt Developer designation. He is also a Microsoft
MVP and Intel Software Innovator.

 He writes at CodeProject, and he is also a Featured Developer at the
Devmesh Intel site (https://devmesh.intel.com/). He has proposed
two whitepapers for Intel (RealSense with Windows UAP and Windows 10
UWP Integration). He is the founder of Geek Monkey Studios. His startup
was among the top 50 at the Digital India Innovate Challenge and Intel’s
IoT Ultimate Coder Challenge.

 He can be contacted at abhishek.nandy81@gmail.com . His
YouTube Channel can be found at https://www.youtube.com/channel/
UCD1IBC7l6QNpPNMYjubi0tg .

 Debashree Chanda is a designer at Geek Monkey Studios. She is learning
Platino and she plans to build lot of apps on it. She has also won several
challenges at TopCoder. She writes at C# Corner with the profile
http://www.c-sharpcorner.com/members/debashree-chanda4 . She is
also a premium instructor at Udemy.

www.allitebooks.com

https://devmesh.intel.com/
https://www.youtube.com/channel/UCD1IBC7l6QNpPNMYjubi0tg).Founder
https://www.youtube.com/channel/UCD1IBC7l6QNpPNMYjubi0tg).Founder
http://www.c-sharpcorner.com/members/debashree-chanda4.She
http://www.c-sharpcorner.com/members/debashree-chanda4.She
http://www.allitebooks.org

xiii

 About the Technical Reviewer

 Sumitra Bagchi has a Master’s in Computer Application and has worked
in Web development and software development for more than six years,
working as an individual contributor for the last three years. Her current
focus is on Docker, PHP7, IOT, Xamarin, and IBM Bluemix. She has won
worldwide challenges through Spiceworks and she also won an award at
the worldwide Flir Camera Challenge. She has also worked on Windows
365 development projects. She is a premium instructor with Udemy Online
Tutorials.

www.allitebooks.com

http://www.allitebooks.org

xv

 Acknowledgments

 I would like to acknowledge my mom, dad, my brother, and my co-author Debashree Chanda. Thanks go to
the entire Intel Software Innovator Team, Intel Black Team, and Microsoft MVP community. Special thanks
go to Bob Duffy who showed me the path to contribute to Intel, Ujjwal Kumar, Abhishek Narain, my friend
Sourav Lahoti, and one of my fellow innovators Rupam Das, as well as the CEO of Platino, Peach Icaza
Pellen, and also to the CEO of Black Gate Games, John Gould.

 —Abhishek Nandy

 I would like to acknowledge Peach Icaza Pellen, whom I admire a. I admire the way she has become so well
known in the game developer community and I would like to follow in her footsteps.

 —Debashree Chanda

xvii

Forward

 About Platino

 Platino is the perfect game engine for developers because it was created from the ground up by experts in
app development, in engineering, in OpenGL and, critically, by people who had already shown success in
creating SDKs for mobile platforms.

 Two of the engineers, Carlos Icaza and Peach Icaza Pellen, were previously part of the team behind
a popular SDK used, in its prime, by over 100,000 developers. They found that this SDK, although good,
was not powerful enough for game developers and while great for beginner, it was far too rigid for more
experienced programmers who needed more flexibility.

 With those things in mind they teamed up with Kota Iguchi and other industry experts and set
about making Platino easy enough for new developers but also so powerful and flexible for experienced
programmers; they knew they had succeeded when in the same month a class of high school students
adopted Platino for their course work, while elsewhere it was being used to develop a mobile game for
Disney which went on to reach the top 10 on several stores.

 Utilizing Javascript means that Platino is very easy to pick up for anyone with development experience,
regardless of how familiar they are with the mobile technology; but it also grows with the developer, who can
work with the engine at a high or low level depending on what is required. If a developer wants to include
native code, such as Obj-C or Java, they are able to do so without any limitations.

 From a single codebase, developers can then build their applications for iOS and Android, with more
platforms to be added in the future.

 Beginning Platino Game Engine is a book which gives an insight into Platino Game Engine. Good
beginners content.

 About Peach Icaza Pellen

 Peach is a Platino expert, having been involved with the engine since its inception. Originally Head of
Developer Relations at Ansca Mobile, where she worked with Carlos Icaza, creator of Corona SDK, she
moved to Lanica when the Platino engine was created in 2012. As Senior Technical Writer, she wrote the
majority of the engine’s tutorials and documentation, and is well-known as the go-to community for
Platino’s many developers, from indies to large studios.

 When not evangelizing Platino, she contributes resources to websites devoted to helping new
developers learn how to create apps on a variety of platforms and works on her apps, along with contributing
to applications other developers are building; she had directly worked on over 200 mobile applications and
libraries of her creation are used in over 50,000 apps all around the world. As if that weren’t enough, she is
also a regular contributor to App Developer magazine, continuing to share her knowledge and passion for
app-creation, and works closely with Intel as one of their few female investors.

 Peach is now continuing her devotion to quality software and app development, directing the Platino
Studio team as well as overseeing Platino Inc.’s Professional Software Consulting division.

1© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7_1

 CHAPTER 1

 Introduction to the Game Engine

 The game engine has become an essential part of creating a game. The game engine helps developers bring
the game to life. The important aspects include audio, video rendering, camera positioning, scene creation,
and use of a physics engine in a game.

 Every top game company now tries to adapt its own game engine so that they can optimize it for its entire
game creation. It is said a good game engine and knowledge are critical to the successful creation of a game.

 We Start Here
 In this book we cover the basics of game engines, then we introduce the Platino game engine. We go through
the steps for installing the engine and then examine the architecture of the engine to see what it is based
on. We then start developing apps on the Platino game engine. The focus then moves to creative coding
and the different languages and frameworks that support it. We then move on to processing, and we see
how Processing JS and also an extension of Processing named P5.js is used to build Windows 10 UWP apps.
In the last section, we extend Processing for IoT using Temboo and then we conclude. The journey will be
awesome!

 In this first chapter we cover the following topics:

• What is a game engine?

• Making a game engine.

• How a game engine works.

• Different game engines.

• Some special HTML 5 physics libraries.

 What Is a Game Engine?
 Let’s start this way: We are playing Prince of Persia and want to figure out how rewind works in the game.
We start to see the depth of development of the game. The awesome physics in the game give us an idea of
just how difficult it is to complete a game with such detailed effects. There are visuals, graphics rendering,
and high-quality audio. After going through the analysis, we find that a game engine is made up of different
 components , as shown in Figure 1-1 . A game engine is a framework for developing games based on some
core areas. Let’s take a closer look.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2484-7_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0397-2_1

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

2

 We next break down the terms that are important for understanding game engines.

 Audio Engine
 The audio engine is very important because sounds play an important role in games. If our playable
character is fighting with an enemy, and the fighting mechanism is a sword, when the player makes contact
with an enemy’s sword we need to produce a sound effect. That work is done by the audio engine. Also, to
make the ambience interesting, we add background music and sound effects.

 Rendering Engine
 The rendering engine helps to determine what is shown as output to users. It is a visual treat for a user when
he or she is taken into a game. Rendering helps bring the graphical content of a game to life exactly the way
we intended. Generally with the help of software, we get the desired effect.

 Let’s take a look at the mechanism (Figure 1-2). We don’t want to overstress the graphics processing unit
(GPU). Because at times the graphics rendered are very high quality, it requires a great deal of processing
power and can result in degraded performance. Hence we add a software layer abstraction with the help of
appplication programming interfaces (APIs) so that the software base does not have a direct interaction with
the GPU. The final result output is shown to the users and they are able to interact accordingly. The WebGL
is the new standard for rendering cool graphical user interface (GUI) effects at the browser. We describe each
API next, as they hold the graphics part together.

 Figure 1-1. Details of game engine components

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

3

 Direct X
 Direct X (Figure 1-3 ; see https://support.microsoft.com/en-in/kb/179113) is a combination of APIs
especially for handling rendering the best multimedia from the perspective of game programming on
Microsoft platforms. The Microsoft Direct X Software Development Kit (SDK) allows a combination of APIs
targeting it for both 32-bit and 64-bit platforms. The SDK is used to create graphic-intensive applications for
Windows platforms. Direct X is a combination of APIs such as direct 3D, Direct Draw, and so on. The latest
version of Direct X is Direct X 12.

 Figure 1-2. Software abstraction over the GPU

 Figure 1-3. Microsoft Direct X

https://support.microsoft.com/en-in/kb/179113

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

4

 Some important versions of Direct X are shown in Figure 1-4 .

 Figure 1-4. Important versions of Direct X

 Figure 1-5. Open GL

• Direct X 10 : This version was available from Windows Vista. Backward compatibility
was also maintained. It featured improved graphics rendering.

• Direct X 11 : The major update for this version was multithreading for multicore
support.

• Direct X 12 : This version was launched alongside Windows 10. For better resolution
of graphics, low-level APIs were introduced.

 Open GL
 Open GL (Figure 1-5 ; see https://www.opengl.org/) is a cross-platform API that helps in rendering 2D and
3D vector graphics. The most important current introduction to the Open GL standard is Vulkan. Vulkan
(Figure 1-6 ; see https://www.khronos.org/vulkan/) is a next-generation OpenGL initiative. The API targets
high performance with lower optimization and less pressure on the GPU or CPU for processing the rendered
output.

https://www.opengl.org/
https://www.khronos.org/vulkan/

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

5

 The following are the main advantages of the Vulkan API:

• It is not restricted to a specific operating system (OS), so it can be scaled up and
scaled down accordingly, including support meant for mobile OS, too, such as Tizen,
Linux (Ubuntu Mobile), and so on.

• Better multicore utility.

• Low CPU overhead.

 As soon as the Vulkan API was released, Intel was ready with graphics drivers for Vulkan, and over time
the industry has moved toward Vulkan.

 At GDC 2016, Intel shared their benchmark for Vulkan API at their booth on devices ranging from
tablets to PCs, and so on. The demo showcased DOTA 2 running on Valve’s source engine (see Figure 1-7),
and had already started porting it using the Linux open source driver (Figure 1-8 ; see https://01.org/
linuxgraphics/blogs/jekstrand/2016/open-source-vulkan-drivers-intel-hardware).

 Figure 1-6. Vulkan API for graphics

 Figure 1-7. Vulkan API running DOTA 2 using Valve’s source engine

https://01.org/linuxgraphics/blogs/jekstrand/2016/open-source-vulkan-drivers-intel-hardware
https://01.org/linuxgraphics/blogs/jekstrand/2016/open-source-vulkan-drivers-intel-hardware

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

6

 Figure 1-8. The Intel Graphics for Linux web page where we obtain the open source Vulcan drivers

 Figure 1-9. WebGL logo

 Another internal demo was shown running on Windows. That demo showcased some of the cool
features of the Vulkan API , and the frame rate obtained was around 40 frames per second (fps). The Android
demo showcased the same features with nearly 30 fps.

 WebGL
 WebGL (Figure 1-9) is specially designed for rendering 3D graphics processing at the web browser level. It is
entirely based on JavaScript. Some important WebGL libraries are Threes, D3.js, and so on.

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

7

 Physics Engine
 Thinking of physics conjures up thoughts of Newton’s laws of motion. These laws balance the world’s activity
pertaining to gravity in everyday scenarios. If we need to replicate the same condition and logic in terms of
games, therefore, we have to use physics engine.

 Some important physics-related aspects of game engines are the following:

• Collision detection.

• Soft body dynamics.

• Brownian motion, and so on.

 One of the most important game engines is Havok’s game engine, so let’s take a look.

 Havok Engine
 The Havok engine (Figure 1-10 ; see http://www.havok.com/) is a suite of software using Havok’s
technology specifically targeting games. It produces life-like effects in games. Its collision detection,
dynamics of rigid bodies, and physics simulation are unique and very accurate. The features of the
engine are shown in Figure 1-11 .

 Figure 1-10. Havok engine logo

http://www.havok.com/

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

8

 The different Havok engine options are as follows:

• Havok physics (P).

• Havok destruction (D).

• Havok cloth (C).

• Havok artificial intelligence (AI).

 Artificial Intelligence in Games
 AI plays a pivotal role in games. This logic provides building blocks for key player engagements in the game.
The logic between our player character and the surroundings can be highly engaging if we implement a
good AI logic.

 Figure 1-11. Different Havok options available

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

9

 AI is nothing but a set of algorithms implemented to get our logics implemented in a game. The A*
algorithm (Figure 1-12) is one of the most popular algorithms implemented in games to help us with path
finding and graph traversals.

 Figure 1-12. A* algorithm depiction

 Generally in different game engines, A* algorithms helps in character tracking to a point. In the Unity
game engine (which we describe briefly later on), it helps with nemeses and also proper guidance of a
character to a destination.

 Blend Trees in the Unity Game Engine
 Blend trees in games are similar to a state automata where the machine goes through specified steps. In the
Unity engine, it is the state of animations that reflect the same (see Figure 1-13).

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

10

 Making a Game Engine
 Creating a game engine of our own is a very tedious job. It requires a lot of hard work, time, energy, and
brain power to get the perfect logic within which your game will work. It usually requires an input and the
output. The input is the game and the output is the result, or how the game works. Creating a game engine
involves several implementations of the logic defined previously with the included framework for our game
environment.

 Figure 1-14 shows how the development of game engine logic works.

 Figure 1-13. Blend state in Unity

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

11

 Different Game Engines
 In this section we discuss the game engines that are available on the market and are useful for making
games. These game engines will give you an idea about what is the best game engine available.

 Unity Game Engine
 Unity (Figure 1-15l see https://unity3d.com/) is one of the most versatile game engines being used in this
industry today. It supports 21 platforms. Figure 1-16 shows the flow of Unity for some common platforms.

 Figure 1-14. Game engine development logic

https://unity3d.com/

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

12

 Figure 1-16. Unity and its acceptance across platforms

 Figure 1-15. Unity logo

 As per Figure 1-16 , Unity uses Direct 3D for Windows-based application, Open GL for Linux platforms,
and Open GL ES for Android applications.

 Unity is full of features. The following are some of the most important ones.

• Life-like animation.

• Scripting with C#, JavaScript, or Boo.

• Unmatched import pipeline.

• Fully extensible editor.

• State machines.

• Blend trees.

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

13

 Figure 1-17. Unreal4 logo

• Inverse kinematics.

• Physics-based shading.

• Shuriken-based particle system.

• 2D physics.

• Sprite packer.

• Automatic sprite animation.

• Multithreaded simulation.

• Advanced vehicle physics.

 Unreal 4 Game Engine
 Unreal 4 (Figure 1-17 ; see https://www.unrealengine.com/what-is-unreal-engine-4) is a game engine
developed by Epic Games. The most important part of the engine is that its scripting option is C++, which
is very fast for compilations. The Unreal Development Kit and Unreal script have evolved as Blueprints in
Unreal 4. Access for Unreal 4 across major platforms is shown in Figure 1-18 .

https://www.unrealengine.com/what-is-unreal-engine-4

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

14

 Blueprints
 Blueprints are the newly introduced visual scripting tool in Unreal 4. It is completely a node-to-node-based
logic that adds the game logic to the game you are building. It supports the object-oriented paradigm.
The scripting mechanism can be interlinked with C++-based programming techniques. Figure 1-19 is an
example of how Blueprints look.

 Figure 1-18. Platform accessibility for Unreal 4

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

15

 Figure 1-19. Blueprints in Unreal 4 engine.

 Features of Unreal 4 Engine
 The following are some important features of Unreal 4 engine.

• Supports advanced Direct X 11 and Direct X 12 features.

• Cascade visual effects.

• New material pipeline.

• Blueprint visual scripting.

• Live Blueprint debugging.

• Content browser.

• Persona animation.

• Matinee cinematics.

• Terrain and foliage.

• Postprocess effects.

• Simulate and immersive views.

• Instant game preview.

• Artificial intelligence.

• Audio.

• Learning middleware integration.

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

16

 Some Special HTML5 and JavaScript Libraries
 Box2D
 Box2D is a physics engine that helps in simulating rigid body physics in 2D. Box2D generates continuous
collision detection between objects. It is fast and easy to implement. An example is shown in Figure 1-20 .

 Figure 1-20. Box2D example

 MatterJS
 MatterJS (Figure 1-21 ; see http://box2d.org/) is essentially a 2D physics engine for the Web.

http://box2d.org/

CHAPTER 1 ■ INTRODUCTION TO THE GAME ENGINE

17

 Some important features of MatterJS are rigid body simulation, component body simulation, and much
more. It helps in bringing the physics simulation into a browser-based environment.

 Summary
 In this chapter we have covered what game engines are, the components of a game engine, major game
engines, and the physics related to game engines. This chapter gives you a basic idea of how a game engine
works. We continue on to explore the future of game engines and their continuously evolving nature.

 Figure 1-21. MatterJS example

19© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7_2

 CHAPTER 2

 The Platino Game Engine

 In this chapter, we go through what exactly the Platino game engine does and how it has evolved. We also
take a look at the people behind the game engine.

 Platino Game Engine
 Platino is a cross-platform game engine.The main purpose for creating the game engine was to use JavaScript
to build native mobile games and apps.

 The Platino Internet home page is shown in Figure 2-1 .

 Figure 2-1. The Platino home page

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE PLATINO GAME ENGINE

20

 The content in the web site is divided into three parts, shown in Figure 2-2 : Download, Learn, and Build.

 Download
 As the name suggests, clicking the Download icon takes you to another page where you can try Platino for a
30-day trial or purchase a yearly license for $199 (see Figure 2-3).

 Figure 2-2. The Platino page web site categories

 Figure 2-3. The Download page

CHAPTER 2 ■ THE PLATINO GAME ENGINE

21

 Learn
 The Learn section provides a lot of options (see Figure 2-4), including resources and code samples to get a
grip on Platino.

 Build
 In the Build section (Figure 2-5), there are plenty of samples that you can and adapt and modify to your
liking.

 Figure 2-4. The Learn page

CHAPTER 2 ■ THE PLATINO GAME ENGINE

22

 Platino and Titanium SDK
 The Platino game engine has been developed hand in hand with Titanium. The features of the Titanium SDK
added to the capabilities of the Platino game engine result in a powerful combination to work with. Coding
in Platino is done entirely using JavaScript and the result is a very robust application.

 Figure 2-5. The Build page

 Figure 2-6. Titanium SDK logo

CHAPTER 2 ■ THE PLATINO GAME ENGINE

23

 Titanium SDK
 The Titanium SDK (Figure 2-6 ; see http://builds.appcelerator.com/#master) allows usage of native
capability through JavaScript for iOS and Android. Titanium uses hardware-specific features such as
the Android menu button. We can use OS-specific controls for iOS such as COCOA UI controls. It uses a
platform-oriented notification mechanism (Figure 2-7).

 Alloy Framework
 The Alloy framework (Figure 2-8) is based on a Model View Controller architecture and has built-in support
for Backbone.js as well as Underscore.js. These three combinations works perfectly with each other, so a
build consisting of Titanium and Platino, and implemented over an Alloy framework template, shapes up the
app very well, and it is easy to use and robust, too.

 Figure 2-7. The Titanium SDK platform

http://builds.appcelerator.com/#master

CHAPTER 2 ■ THE PLATINO GAME ENGINE

24

 When we use a template from Platino Studio that involves the Titanium SDK Platino game engine
capability, we can build very good looking apps. The flow is shown in Figure 2-9 .

 Figure 2-8. The Alloy framework

CHAPTER 2 ■ THE PLATINO GAME ENGINE

25

 Figure 2-9. The flow of a combined template

CHAPTER 2 ■ THE PLATINO GAME ENGINE

26

 How the Engine Has Evolved
 The latest version of Platino game engine, release 3.0.0, has come a long way. It was originally Lanico’s
Platino engine and was available from the Web directly from Lanico’s web site. With the recent acquisition of
the Platino game engine by Black Gate Games , the entire Platino engine has been revamped and the newly
available Platino engine is available from at https://platino.io/ .

 Currently the Platino game engine is powered by Black Gate Games (http://www.blackgategames.com/).
The web site appears as shown in Figure 2-10 .

 Core Features of Platino Game Engine
 Let’s take a look at the core features of the Platino game engine.

• Because Platino uses the widely accepted Titanium SDK, we can create native games
and apps using JavaScript.

• Being cross-platform, we can target different OS.

• Platino engine supports Open GL.

 Figure 2-10. Black Gate Games web site

https://platino.io/
http://www.blackgategames.com/

CHAPTER 2 ■ THE PLATINO GAME ENGINE

27

• It has complete Sprite Sheet support.

• It uses an isometric tile engine, producing the best effect for achieving the optimum
performance of the GPU.

• Platino uses a Physics JS module to produce very realistic physics effects in games.

 People Behind the Game Engine
 Let’s take a detailed look at people who are behind the Platino game engine.

 John Gould
 John Gould is the CEO of Black Gate Games, the company that now powers the Platino game engine. Gould
founded Avatar Software in 2003 with the aim of becoming the premier boutique software development firm
in the Nashville area. He has more than 15 years of experience developing software and managing successful
projects for companies from 5 employees up to 50,000. Gould started developing mobile applications in
2010. As he saw the increasing need for outstanding mobile app developers, he cofounded Codex Labs to
offer mobile development training for Appcelerator’s Titanium Studio. He is immensely talented and holds
the entire Black Gate Games team together.

 Peach Icaza Pellen
 Peach Icaza Pellen an Intel Software Innovator and CEO of Platino Game Studio. She is immensely talented
and is skilled at teaching and sharing with the development community. She helps fellow developers to
master concepts, participates regularly at meetups, and speaks about Platino game engine and helps others
adapt to the new features of the game engine. She is a Platino expert, having been involved with the engine
since its inception. Originally Head of Developer Relations at Ansca Mobile, creator of the Corona SDK, she
moved to Lanica when the Platino engine was created in 2012. As a senior technical writer, she wrote the
majority of the engine’s tutorials and documentation, and is well-known as the go-to community contact for
Platino’s many licensees.

 When not evangelizing Platino, Pellen found time to create Techority, a web site devoted to helping new
developers learn how to create apps on a variety of platforms. If that weren’t enough, she is also a regular
contributor to App Developer magazine, continuing to share her knowledge and passion for app creation.

 She is now continuing her devotion to quality software and app development, directing the Platino
Studio team as well as overseeing Platino, Inc.’s Professional Software Consulting division.

 Joseph Austin
 Joseph Austin is a lead developer for the Platino game engine and adds stability and impetus to the game
engine.

 Carlos Manuel Icaza (1966–2016)
 Although he is no longer with us, Carlos Manuel Icaza’s willingness to help the community of developers has
been always rich. He was immensely talented as an individual and he had the ability to inspire others.

 He had 20 years of engineering and management experience, including managing various teams at
Adobe such as the Flash Lite team, Flash Mobile Authoring, Flash Cast, and Adobe Illustrator. He was also
responsible for creating and developing Adobe’s entire mobile authoring strategy, now deployed across the
entire Adobe Creative Suite.

CHAPTER 2 ■ THE PLATINO GAME ENGINE

28

 Aside from managing experience, Icaza shipped leading and award-winning, industry-standard
applications such as Flash Lite (deployed in over 2 billion devices), Flash Authoring, Adobe Creative Suite,
Adobe Mobile Device Central, Adobe Illustrator, SVG, Adobe Pagemill, Micrografx Windows Draw, and
Deneba Canvas.

 In 2007 he founded and was the CEO of Ansca, Inc, which makes the Corona SDK and successfully
closed a $1.5 million series a round. In 2014, he cofounded RCTSports, a wearable sensor company,
providing tracking and analytics for college and professional teams and athletes to provide insights into their
performance.

 He successfully attended numerous meetups in the United States targeting the swift programming.
A man of such knowledge and strength will be deeply missed.

 Summary
 In this chapter we have seen all the details of the Platino game gngine. We have given a brief introduction to
it and covered details of the core features of the game engine.

29© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7_3

 CHAPTER 3

 Installing and Setting Up Platino
Game Engine

 In Chapter 2 we had an introduction to the Platino game engine and the people behind it. This game engine
is based on Titanium SDK, as we discussed. The process of integrating Platino game engine is handled via
Titanium SDK, so this chapter covers how to install the Platino game engine within a Windows environment.

 The Content
 In this chapter we cover the dependencies and the installation process for the Platino game engine. The
content of the chapter is given here.

• The Platino Store and the process of getting Platino

• Installation of the Platino game engine

 The Platino Store and the Process of Getting Platino
 The way to get the Platino game engine is online. The Platino game engine is available for download from
the Platino Store (http:/platino.io/store).

 In the store, there are two options for downloading Platino. A Platino Studio 30-day trial version has no
limitations on features and functionality. The other version, of the full version of Platino, is available for $199
per year. The store looks like Figure 3-1 .

http://dx.doi.org/10.1007/978-1-4842-2484-7_2

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

30

 Make your selection and click Add to Cart. Figure 3-2 shows how the cart is updated.

 Figure 3-1. Platino Store download options

 Figure 3-2. Adding a product to the cart

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

31

 Click Proceed to Checkout to move to the checkout page. There you need to fill in all the details to
continue the download. The checkout page looks like Figure 3-3 .

 When you fill in the details and create an account, you can then place your order. The download link
will then be sent to your e-mail. From the download link, choose your operating system and start your
download.

 Installation of Platino Game Engine
 Once you downloaded the linked file, the compressed file is saved on your computer. You need to unzip it.
Once you do, the installation file (Figure 3-4) is ready to be updated and installed to get you started with
Platino.

 Figure 3-3. The checkout page

 Figure 3-4. Platino Studio setup file

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

32

 Double-click the .exe file to start the installation process, then click Next to continue, as shown in
Figure 3-5 .

 As the installation starts, the Platino package able to detect dependencies and prompts the user to
install the dependencies. The first dependency is node.js: If it is not on your computer, it will start installing
from the Web as shown in Figure 3-6 . Click Next to proceed with the installation. The Node.js dependency
is a very powerful and very useful open source cross-platform JavaScript runtime environment for creating
tools and applications that are easy to use. Node.js uses event-driven architecture for its development
and packaging, with a wonderful usage of asynchronous I/O. Node.js allows useful operation of creating
web servers and networking tools using JavaScript that can handle various amounts of core functionality
that evolves the architecture quickly. The installation process is shown in Figure 3-7 , where the Node.js
installation wizard starts.

 Figure 3-5. Starting the installation process

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

33

 Figure 3-6. Installing the first dependency

 Figure 3-7. The process of installation continues

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

34

 The Node.js Setup Wizard continues on its own. Just click Next as shown in Figure 3-8 .

 The setup configures the path and adds the details of Node.js to the environment variable. The path
configuration and all the steps for a custom setup are shown in Figure 3-9 .

 Figure 3-9. The setup configures the path of Node. js

 Figure 3-8. Continuing the Node.js installation

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

35

 In the next step, shown in Figure 3-10 , we see that the setup for Node.js is complete, and the other
dependencies for Paltino are installed next.

 Figure 3-10. Node.js installation complete

 The next step works on getting the configuration scripts ready. You will see a console window or
 command prompt (see Figure 3-11) that will guide you through the steps.

 Figure 3-11. Command prompt starts its scripting process

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

36

 In the next step the command prompt installs the Titanium SDK and also configures the setup for
installing the Alloy framework, which is necessary for getting the Platino game engine installed. Figure 3-12
shows you this step.

 Figure 3-12. Installing Titanium SDK

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

37

 The next step installs the dependencies of Titanium SDK step by step, as shown in Figure 3-13 .

 In the next step, you will see that all the dependencies have been installed. That download of the
Titanium SDK dependencies is complete and you will get a 100% completion message in the command
prompt window. This process is shown in Figure 3-14 .

 Figure 3-13. Dependencies getting downloaded

 Figure 3-14. The completed download process

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

38

 After the dependencies are installed, if installation was successful, the Platino Studio Setup Wizard will
reach the final step . Simply click Finish, as shown in Figure 3-15 .

 Figure 3-15. Completing installation of the Platino game engine

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

39

 Now you can start the Platino game engine from the desktop. Once a workspace opens, click OK, as
shown in Figure 3-16 , to continue to use the engine.

 Figure 3-16. Starting the engine

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ INSTALLING AND SETTING UP PLATINO GAME ENGINE

40

 The Platino game engine opens (Figure 3-17) and you are ready to work with your first project.

 Summary
 This chapter has provided the basic steps for setting up the Platino game engine. Wizards run the
configuration scripts and install the Platino game engine. In the next chapter, we will start the development
process.

 Figure 3-17. Platino Studio

41© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7_4

 CHAPTER 4

 Getting into Development with
Platino Game Engine

 In Chapter 3 we saw how to install the Platino game engine. In this chapter, we work on developing apps
with it. Our primary target is to see the features of the engine and how we can take advantage of them.

 Let’s Make an App
 We will start working on a web app first with Platino, in terms of gamification only.

 When we open Game Studio, it looks like Figure 4-1 .

 In the top left corner, click File. Click New, and then click Mobile App Project , as shown in Figure 4-2 .

 Figure 4-1. Platino Studio open in Windows

http://dx.doi.org/10.1007/978-1-4842-2484-7_3

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

42

 Within the mobile app project, there are several project templates. Select web and then select HTML-
based Application, as shown in Figure 4-3 , and then click Next.

 Figure 4-2. Opening a new mobile project

 Figure 4-3. Starting with a web project

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

43

 The next step is to name the project . In the example in Figure 4-4 , the name is Debashree2. Click Finish.

 Let’s take a look at Figure 4-5 , which displays the file structure of the project.

 If you just go through the directory of the project, you can see we have these files within it.

• I18n

• Resources

 Figure 4-4. Naming the project

 Figure 4-5. The file structure of the project

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

44

• App.js

• Readme

• Tiapp.xml

• Connections

 I18n is used for localization and is very useful for translation. Resources is the main location where we
have definitions targeted for different operating systems. Here you get the detailed files that are required to
make your app cross-platform.

 Let’s take a look in Listing 4-1 at how the Android cross-platform utility works and how the task is
handled in the background by ApplicationWindowPlatform.js .

 Listing 4-1. The Code for Handling Android Activity

 // Application Window Component Constructor, Android specific
 function ApplicationWindowPlatform(/*TiUIWindow*/self, /*TiUIView*/webView, /*boolean*/
titleBarOn, /*boolean*/drawerOn) {
 // A note about the NavBar:
 // - We use the nav bar along with some navigation buttons on iOS.
 // - We use the menu on Android to handle forward/back
 // - For mobile web, we rely on the forward/back button in the browser

 if(titleBarOn) {
 // When the webview loads, set the title and enable the left/right nav button
 webView.addEventListener('load', function(e) {
 self.title = webView.evalJS('document.title');
 });
 }

 // Handle Android back button.
 self.addEventListener('android:back', function() {
 if(webView.canGoBack()) {
 webView.goBack();
 } else {
 self.close();
 }
 });

 if (drawerOn) {
 // Create the Android menu.
 var FORWARD = 1, BACK = 2;
 var activity = self.activity;
 activity.onCreateOptionsMenu = function(e) {
 var menu = e.menu;
 var menuItem = menu.add({
 title : L('back'),
 itemId : BACK
 });
 menuItem.setIcon('/images/LeftArrow.png');
 menuItem.addEventListener('click', function(e) {
 webView.goBack();
 });

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

45

 menuItem = menu.add({
 title : L('forward'),
 itemId : FORWARD
 });
 menuItem.setIcon('/images/RightArrow.png');
 menuItem.addEventListener('click', function(e) {
 webView.goForward();
 });
 };
 activity.onPrepareOptionsMenu = function(e) {
 var menu = e.menu;
 var menuItem = menu.findItem(BACK);
 menuItem.enabled = webView.canGoBack();
 menuItem = menu.findItem(FORWARD);
 menuItem.enabled = webView.canGoForward();
 };
 }
 }

 module.exports = ApplicationWindowPlatform;

 This is autogenerated code when we create the project. You see in the code that it creates the main
menu and also handles the back button.

 For handling phone events, you can see there are two JavaScript files generated by the project:

• ApplicationPlatformWindow.js

• Drawer.js

 All are handled on the UI files of the project because the result is how the UI looks within an iOS device
(see Listing 4-2).

 Listing 4-2. The Code for Handling iOS Flow of an App

 // Application Window Component Constructor, platform specific features
 function ApplicationWindowPlatform(/*TiUIWindow*/self, /*TiUIView*/webView, /*boolean*/
titleBarOn, /*boolean*/drawerOn) {

 if (titleBarOn) {
 // When the webview loads, set the title
 webView.addEventListener('load', function(e) {
 self.title = webView.evalJS('document.title');
 });

 }

 if (drawerOn) {
 // Put a back/forward button into a drawer at the bottom of the screen that can be
 // opened when needed.
 var Drawer = require('/ui/Drawer');
 var drawer = new Drawer(self);
 var backButton = Ti.UI.createButton({
 backgroundImage: '/images/LeftArrow.png' ,
 width: 48,

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

46

 height: 48
 });
 backButton.addEventListener('click', function (e) {
 webView.goBack();
 });
 drawer.buttonBar.add(backButton);
 var forwardButton = Ti.UI.createButton({
 backgroundImage: '/images/RightArrow.png' ,
 width: 48,
 height: 48
 });
 forwardButton.addEventListener('click', function (e) {
 webView.goForward();
 });
 drawer.buttonBar.add(forwardButton);

 self.add(drawer.view);
 }
 }

 module.exports = ApplicationWindowPlatform;

 The drawer.js file adjusts itself for different screen sizes of an iOS device, as given in Listing 4-3 .

 Listing 4-3. The Code for Handling iOS Device Screens

 / Drawer containing a button bar to drag up from the bottom of the screen by pressing the
pull tab.
 var pullTabSize = { width: 48, height: 16 };
 var iconSize = { width: 48, height: 48 };
 var opacity = 0.75;
 var speed = 500;

 // Gets all the applicable sizes based on the current size of the screen, used for initial
layout and handling rotation
 // @opened boolean Indicates whether the tray should be opened or closed when determine
dimensions.
 function DrawerGetLayout(/*boolean*/opened, /*boolean*/titleBarOn) {
 var screenSize = { width: Ti.Platform.displayCaps.getPlatformWidth(), height:
Ti.Platform.displayCaps.getPlatformHeight() };
 var layout = {};

 // Account for the status bar
 var offset = 20;
 // Nav bar size is the same on iPhone portrait and all iPad orientations, shorter on

iPhone landscape
 if (titleBarOn) {
 offset += (Ti.Platform.osname == 'iphone' && screenSize.width > screenSize.height ?

32 : 44);
 }

 layout.pullTabButton = {

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

47

 left: (screenSize.width - pullTabSize.width) / 2,
 top: 0,
 width: pullTabSize.width,
 height: pullTabSize.height
 };
 layout.buttonBar = {
 left: 0,
 top: 0,
 width: 'auto',
 height: 'auto'
 };
 layout.view = {
 left: 0,
 top: screenSize.height - pullTabSize.height - offset,
 width: screenSize.width,
 height: pullTabSize.height + iconSize.height
 };

 if (opened) {
 layout.view.top -= iconSize.height;
 }

 return layout;
 }

 function DrawerRelayout() {
 // Relayout all elements for the drawer.
 var self = this;
 var layout = DrawerGetLayout(self.opened, !self.parent.navBarHidden);

 for (var i in layout) {
 if (layout.hasOwnProperty(i)) {
 for (var j in layout[i]) {
 if (layout[i].hasOwnProperty(j)) {
 self[i][j] = layout[i][j];
 }
 }
 }
 }
 }

 function Drawer(/*TiUIWindow*/parent) {
 var self = this;

 self.parent = parent;
 self.opened = false; // Start out with the drawer closed

 // The user clicks on the pull tab to open/close the drawer.
 self.pullTabButton = Ti.UI.createButton({
 backgroundImage: '/images/PullTab.png',
 opacity: opacity
 });

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

48

 self.pullTabButton.addEventListener('click', function PullTabClick(e) {
 if (self.opened) {
 self.close();
 } else {
 self.open();
 }
 });

 // Button bar below the pull tab
 self.buttonBar = Ti.UI.createView({
 backgroundColor: 'black',
 opacity: opacity,
 layout: 'horizontal'
 });

 // High level container
 self.view = Ti.UI.createView({
 layout: 'vertical'
 });
 self.view.add(self.pullTabButton);
 self.view.add(self.buttonBar);

 // Layout all of our elements.
 self.relayout();

 // Handle orientation.
 function relayout(e) {
 self.relayout();
 }
 parent.addEventListener("close", function parentClose(e) {
 Ti.Gesture.removeEventListener("orientationchange", relayout);
 });
 Ti.Gesture.addEventListener("orientationchange", relayout);

 return self;
 }

 function DrawerOpen() {
 this.fireEvent('open', {source: this, type: 'open'});

 if (this.opened) {
 return; // Already opened.
 }
 this.opened = true;

 // Slide up
 var layout = DrawerGetLayout(this.opened, !this.parent.navBarHidden);
 var animation = Ti.UI.createAnimation({
 top: layout.view.top,
 duration: speed
 });
 this.view.animate(animation);

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

49

 }

 function DrawerClose() {
 this.fireEvent('close', {source: this, type: 'close'});

 if (!this.opened) {
 return; // Already closed
 }
 this.opened = false;

 // Slide down
 var layout = DrawerGetLayout(this.opened,!this.parent.navBarHidden);
 var animation = Ti.UI.createAnimation({
 top: layout.view.top,
 duration: speed
 });
 this.view.animate(animation);
 }

 function DrawerAddEventListener(name, func) {
 Ti.App.addEventListener('drawer.'+ name, func);
 }

 function DrawerRemoveEventListener(name, func) {
 Ti.App.removeEventListener('drawer.'+ name, func);
 }

 function DrawerFireEvent(name, obj) {
 Ti.App.fireEvent('drawer.'+ name, obj);
 }

 Drawer.prototype.open = DrawerOpen;
 Drawer.prototype.close = DrawerClose;
 Drawer.prototype.addEventListener = DrawerAddEventListener;
 Drawer.prototype.removeEventListener = DrawerRemoveEventListener;
 Drawer.prototype.fireEvent = DrawerFireEvent;
 Drawer.prototype.relayout = DrawerRelayout;
 module.exports = Drawer;

 If we want to check for dependencies, as in Listing 4-4 , we have to mention it in the app.js file.
Currently it checks for the minimum Titanium version to run the application. If we have specific
dependencies, we can mention them here.

 Listing 4-4. The JS File for Checking Dependencies

 /*
 * HTML Application Template:
 * A basic starting point for your application. Mostly a blank canvas with a web view.
 *
 * In app.js, we generally take care of a few things:
 * - Bootstrap the application with any data we need
 * - Check for dependencies like device type, platform version, or network connection

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

50

 * - Require and open our top-level UI component
 *
 */

 //bootstrap and check dependencies
 if (Ti.version < 1.8) {
 alert('Sorry - this application template requires Titanium Mobile SDK 1.8 or
later');
 } else {
 //require and open top level UI component
 var ApplicationWindow = require('ui/ApplicationWindow');
 new ApplicationWindow().open();
 }

 The tiapp.xml file , shown in Listing 4-5 , contains all the definitions for the platform OS as well as
external libraries that we are implementing. Any external library should be mentioned here; otherwise, it
won’t match.

 Listing 4-5. The Tiapp.xml File

 <?xml version="1.0" encoding="UTF-8"?>
 <ti:app xmlns:ti="http://ti.appcelerator.org">
 <deployment-targets>
 <target device="mobileweb">true</target>
 <target device="iphone">true</target>
 <target device="ipad">true</target>
 <target device="android">true</target>
 <target device="blackberry">false</target>
 </deployment-targets>
 <sdk-version>4.1.1.GA</sdk-version>
 <id>com.appcelerator.htmltemplate</id>
 <name>HTML Template</name>
 <version>1.0</version>
 <guid>2ABF5A14-E804-4640-ADE9-773A3732ED53</guid>
 <publisher>appcelerator</publisher>
 <url>http://www.appcelerator.com</url>
 <description>not specified</description>
 <copyright>not specified</copyright>
 <icon>appicon.png</icon>
 <persistent-wifi>false</persistent-wifi>
 <prerendered-icon>false</prerendered-icon>
 <statusbar-style>default</statusbar-style>
 <statusbar-hidden>false</statusbar-hidden>
 <fullscreen>false</fullscreen>
 <navbar-hidden>false</navbar-hidden>
 <analytics>true</analytics>
 <iphone>
 <orientations device="iphone">
 <orientation>Ti.UI.PORTRAIT</orientation>
 <orientation>Ti.UI.UPSIDE_PORTRAIT</orientation>
 <orientation>Ti.UI.LANDSCAPE_LEFT</orientation>
 <orientation>Ti.UI.LANDSCAPE_RIGHT</orientation>

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

51

 </orientations>
 <orientations device="ipad">
 <orientation>Ti.UI.PORTRAIT</orientation>
 <orientation>Ti.UI.UPSIDE_PORTRAIT</orientation>
 <orientation>Ti.UI.LANDSCAPE_LEFT</orientation>
 <orientation>Ti.UI.LANDSCAPE_RIGHT</orientation>
 </orientations>
 </iphone>
 <android xmlns:android="http://schemas.android.com/apk/res/android"/>
 <modules/>
 </ti:app>

 Let’s run the default app on a web browser first. Figure 4-6 shows the app rendered in Mozilla Firefox.

 The output of the default app looks like Figure 4-7 .

 Figure 4-6. The app rendered in Firefox

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

52

 As you make changes, you have to remove the content in the index.html page. When you have added
the script tag within the HTML page, the Platino editor looks like Figure 4-8 .

 Figure 4-8. The script tag within the Platino editor

 Figure 4-7. The default app

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

53

 Now you will create a Matrix -like screensaver effect in our default app by making changes inside the
 index.html page. I was just hovering around and with a little bit of tinkering made some changes to the
initial code of the open source JavaScript available.

 First, take a look at the code in Listing 4-6 and then implement it inside the Platino engine.

 Listing 4-6. The 20 Lines of JavaScript for a Matrix-Like Effect

 <script>
 var d=document,a=255/2,el=d.createElement('canvas');
 el.width=800;el.height=600;d.body.appendChild(el);
 var columns=Array(300).join().split(','),draw=requestAnimationFrame;
 var ctx=el.getContext('2d'),random=Math.random,
 s=Math.sin,p=parseInt;ctx.translate(el.width, 0);ctx.scale(-1,1);
 function getColour(f){
 return 'rgb('+[p(s(3*f)*a+a),p(s(3*f+2)*a+a),p(s(3*f+4)*a+a)].join(',')+')';}
 // Apparently this algorithm is quite popular out there on the Internet
 function fill(now) {
 ctx.fillStyle='rgba(0,0,0,.05)';
 ctx.fillRect(0,0,el.width,el.height);
 ctx.fillStyle=getColour(now);
 columns.map(function(y, index){
 text = String.fromCharCode(12448+random()*96);
 ctx.fillText(text, (index * 10)+10, (y||0));
 columns[index]=(y||0) > 100 + random()*1e4? 0 : y+10;
 });
 draw(fill);
 }
 draw(fill);

 </script>

 After adding the code and then running the app in Firefox , it looks like Figure 4-9 .

 Figure 4-9. The app producing the effect

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

54

 The code works like this: The create element creates a canvas element and declares the width and
height of the canvas. It then appends a child node. The function getColour helps in generating random color
to the format and fill (now) generates the effect.

 Building a Core Platino App
 In this section you will build an app using the core Platino template. Open the Platino game engine, then
select a mobile project. Select the Platino template and then click Platino Classic (see Figure 4-10). Name the
project, and then you are ready to start. Then click Next.

 The project in the example shown in Figure 4-11 is named abhi2. Click Finish.

 Figure 4-10. The Platino Classic template

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

55

 Platino will go through the steps to create the file structure , as shown in Figure 4-12 .

 Figure 4-11. Give the project a name

 Figure 4-12. The project creating the necessary files

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

56

 Within the folder structure, you will be targeting the start scene or the main scene of the app.
 For this app, you download an Intel Software Innovator logo (Figure 4-13), which you will be using in

the app. Being an Intel Software Innovators, we always wanted to include the logo.

 To use Platino, you need to call the module ('io.platino'). Remember that with the new Platino
Studio, there have been many beneficial changes. When the game view function is launched, its first creates
a scene in the game. You declare the scene and then create the entire structure for the app.

 You need to create a folder (see Figure 4-14) where you will store the image you downloaded. Name the
folder Images (Figure 4-15).

 Figure 4-13. The Intel Software Innovator logo

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

57

 Figure 4-14. Creating a folder for storing images

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

58

 Let’s get the extra details of the app that we want to implement. You scale the Intel Software Innovator
image to the center of the screen. Declare the sprite as is and use the create sprite method. Next, declare
the path of the image and the size and width of it. Declare both as 100 , then center the Intel Software
Innovator icon and add the scene for rendering. The next logic is triggered when the user touches the screen:
The logo disappears and a text message is shown. For this text message we have used text sprite. Let’s take a
look at the code, shown in Listing 4-7 .

 Listing 4-7. The Code for the App

 // An example scene, which is a game state. This just puts the Intel Software Innovator
graphic on the screen until
 // there is a touch, then it converts to a text message.

 var Platino = require('io.platino');

 var ExampleScene = function(game) {
 var scene = Platino.createScene();
 var textsprite = null;
 //Construct a Intel Software Innovator Square Icon
 var is = null;
 is=Platino.createSprite({

 Figure 4-15. Naming the folder you created

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

59

 image:"Images/is.jpg",
 width : 100,
 height : 100

 });

 //Place Intel Software Innovator logo to center of the scene
 is.center = {
 x: game.screen.width * 0.5,
 y: game.screen.height * 0.5
 };Core Platino APPcode for app
 scene.add(is);

 // scene 'activated' event listener function (scene entry-point)
 var onSceneActivated = function(e) {
 Ti.API.info("HomeScene has been activated.");
 };

 // When the user touches the screen, replace the logo with a message
 game.addEventListener('touchstart', function(e) {
 if(textsprite == null) {
 textsprite = Platino.createTextSprite({
 text : 'Now you\'re gaming with Platino!',
 fontSize : 24
 });
 textsprite.color(1.0, 1.0, 1.0);
 textsprite.center = {
 x: game.screen.width * 0.5,
 y: game.screen.height * 0.5
 };
 scene.remove(is);
 scene.add(textsprite);
 }
 });

 // scene 'deactivated' event listener function (scene exit-point)
 var onSceneDeactivated = function(e) {
 Ti.API.info("HomeScene has been deactivated.");
 };

 // Scene activation events here
 scene.addEventListener('activated', onSceneActivated);
 scene.addEventListener('deactivated', onSceneDeactivated);

 return scene;
 }

 module.exports = ExampleScene;

 For the next app we build, you will be using the Alloy and Platino with Physics JS. To start with, let us see
what Physics JS does.

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

60

 Physics JS
 Physics JS (Figure 4-16) is a very easy-to-use, flexible physics engine for JavaScript with many capabilities.

 Let’s start the project template now. Choose the Platino with Alloy template as shown in Figure 4-17 .
Click Next and name the project abhi4.

 Figure 4-16. Physics JS

 Figure 4-17. Including the Platino with Alloy template

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

61

 Figure 4-18 provides a look at the folder structure .

 Okay
 The app that we created has a different folder structure than the previous apps we created to this point.

The folder structure and the details are given below.

• Assets

• Controllers

• Models

• Styles

• Views

• Alloy.js

• Plugins

• The other file structures are the same.

 Assets
 The Assets folder contains all the important files for structuring the app. It also contains details for targeting
different versions. The important subfolder within the Assets folder is the Scene folder, where you write the
logic for how the scene looks and, if required, to perform transitions from one scene to other. Within the
sprites we keep the sprite sheets in place. The main JavaScript file contains the scene setup and the general
game flow. The file looks like Listing 4-8 .

 Figure 4-18. Project folder structure

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

62

 Listing 4-8. The main.js File

 // Start place of your application. Generally used for control of the scene setup and
general game flow.

 // Create and set up the game
 var game = Alloy.Globals.Platino.createGameView();
 game.fps = 30;
 game.color(0, 0, 0);
 game.debug = false; // disables debug logs (not to be used for production)
 game.enableOnDrawFrameEvent = false; // optimization: setting to 'false' disables
'enterframe' event
 game.screen = {width: 480, height: 320};

 // Load the scene and start the game
 game.addEventListener('onload', function(e) {
 var scene = require("scenes/ExampleScene");
 game.pushScene(new scene(game));
 game.start();
 });
 Module.exports = game;

 The Controllers folder contains two files: index.js and window.js . The index.js file , shown in
Listing 4-9 , redirects to the window controller for better naming conventions.

 Listing 4-9. The index.js File

 // Redirect to the window controller for better naming conventions
 var window = Alloy.createController('window').getView();
 window.open();

 The window.js file contains the logic that imports the main file (see Listing 4-10), which must return a
game object.

 Listing 4-10. The main.js File

 // Import the main file, which must return a game object. This is simply added to our window
and we start.
 // The window can be set up in window.tss

 var game = require('main');
 $.win.add(game);
 $.win.open();

 // Free up game resources when window is closed
 $.win.addEventListener('close', function(e) {
 game = null;
 });

 The next important file in the structure is the alloy.js file , shown in Listing 4-11 , which binds the
Platino API.

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

63

 Listing 4-11. The Content of the alloy.js File

 // The Platino API can be accessed via Alloy.Globals.Platino from any controller file. This
makes it an automatic
 // include. If you want to create other globals, the Alloy.Globals namespace is meant for
just that.

 Alloy.Globals.Platino = require('io.platino');

 Figure 4-19. The Platino background screen

 The demo that we are working on right now will first show the Intel Software Innovator logo. When we
touch the screen, the logo overlaps with the background of Platino and gives the count. We will be using the

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

64

 Platino background logo shown in Figure 4-19 for the app.
 First you need to add Physics JS inside the Tiapp.xml so you can use Physics JS within Platino (see

Listing 4-12).

 Listing 4-12. The Code for the Game

 var Physics = require('io.platino.physicsjs');

 var ExampleScene = function(game) {
 // Scene setup
 var scene = Alloy.Globals.Platino.createScene();
 var bg = Alloy.Globals.Platino.createSprite({image: 'sprites/bg.png'});
 var label = Ti.UI.createLabel({text: "Touch anywhere", height: 'auto', width:

'auto', color:'#fff', font:{fontSize:24}, top: 0, left: 5});
 var ballSpriteTemplate = Alloy.Globals.Platino.createSprite({image: 'sprites/1.

png'}); // For knowing its size
 scene.add(bg);
 game.add(label);

 // Physics
 Physics(function(world){
 // Gravity
 world.addBehavior(Physics.behavior('constant-acceleration'));

 // Bouncing
 world.add(Physics.behavior('body-impulse-response'));

 // Rigid bodies
 world.addBehavior(Physics.behavior('body-collision-detection',

{check:true}));

 // World boundaries
 world.add(Physics.behavior('edge-collision-detection', {
 aabb: Physics.aabb(0, 0, game.screen.width, game.screen.height),
 restitution: 0.99,
 cof: 0.99
 }));

 // The user can click anywhere on the background to drop a ball
 bg.addEventListener('touchstart', function(e) {
 // Create the ball as only a physics object
 var ball = Physics.body('circle', { radius: ballSpriteTemplate.width

/ 2 });

 // Position the physics object
 ball.state.pos.x = e.x;
 ball.state.pos.y = e.y;

 // Make sure the world acts upon the ball

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

65

 world.add(ball);

 // Set the label to balls total
 label.text = "Total Intel Software Innovator logos: " + world.

getBodies().length;

 // Associate a platino sprite with the physics body
 ball.sprite = Alloy.Globals.Platino.createSprite({image: 'sprites/1.

png', centerX: e.x, centerY: e.y});
 scene.add(ball.sprite);
 });

 // Once per frame, step the world and apply each physics object's position
to its referenced sprite

 game.addEventListener('enterframe', function(e) {
 world.stepDelta(e.delta);
 });
 });

 Figure 4-20. Compiling for Android

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

66

 Figure 4-21. Series of steps for compiling the project

 Figure 4-22. Runtime error

 return scene;
 };

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

67

 Figure 4-23. The app as it is shown on a mobile device

CHAPTER 4 ■ GETTING INTO DEVELOPMENT WITH PLATINO GAME ENGINE

68

 Figure 4-24. The app running on a mobile device

 module.exports = ExampleScene;

 Now let us compile the project for an Android build. Attach your Android phone with debugging mode
on, and then open Platino Studio. Click Run As, then select Android Device, as shown in Figure 4-20 .

 The compilation process will go through steps, as shown in Figure 4-21 .
 When the compilation is complete, you will see the app runs on the device. If there is an exception, you

will get an error message both on the phone as well as the integrated development environment (IDE). The
error might occur because we haven’t added the Physics JS module as shown in Figure 4-22 in runtime.

 The app when installed on a phone looks like Figure 4-23 .
 When it is running properly, the app looks something like Figure 4-24 .
 In this chapter, you have seen some simple use cases of the Platino engine. You can take it further by

adding more functionalities to the app.

 Summary
 In this chapter we have shown how to develop apps with Platino Studio. We have shown the templates and
how you can take advantage of them. We have also shown how to implement Physics JS within the module.

69© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7_5

 CHAPTER 5

 Creative Coding and Processing

 In Chapter 4 , we went through the process for developing games with the Platino game engine. You have
seen how we use the game engine features to work in different interactive ways in a game engine. We move
ahead in this chapter and introduce creative coding.

 Creative Coding and Processing
 In this chapter, we start with creative coding. We first define the term and then move ahead with different
frameworks for creative coding. We next focus on the creative coding language we are going to cover,
Processing. We provide an introduction to Processing and show how the language has evolved, detail
support for different platforms, and cover installing Processing in Windows.

 The following topics are covered in this chapter:

• Creative coding and different frameworks.

• Processing language.

• Different platform support and installation on Windows.

• We demonstrate with examples and build it for Android.

 What Is Creative Coding?
 Creative coding, as the name suggests, is an unusual way of representing our code. It is the combination of
arts with code. Creative coding helps us in several ways. The styles are as follows:

• Art installations in Billboards.

• Projection mapping.

• Special installation through interactive gestures.

 Art Installations
 Art installations are representations using 3D visualizing techniques and creative coding as the
programming base (see Figure 5-1). The programming language generally used in art installations is
Processing (which we introduce later). Art installation changes the perception of free space with projects
brought about by creative coding. Art installations can be temporary or permanent. Some art installations
that are permanent can be 3D printed after we have coded them with creative coding techniques.

http://dx.doi.org/10.1007/978-1-4842-2484-7_4

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

70

 Projection Mapping
 Projection mapping is a technique with which we turn an everyday object, say a wall or a building, into a
surface that displays different visualizations with an awesome effect.

 The general structure of projection mapping is shown in Figure 5-2 .

 Figure 5-1. Art installations

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

71

 A 3D Space
 A 3D space can be a wall or a building where we set up our projection tools and then analyze the space on
which we will perform the projection. This 3D space acts as carrier for producing the effect. Figure 5-3 shows
how a corridor of 3D space has been transformed by a sparkling art installation effect.

 Figure 5-2. Projection mapping flow

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

72

 Creative Coding Techniques
 Now, before we project visual arts and representations across a wall or building (see Figures 5-4 and 5-5), we
first must to find out which programming languages we need to work with to get our task done. We cover the
options, and then you have to choose which programming language suits your work best.

 Figure 5-3. Creative coding installations

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

73

 Figure 5-4. Unique styling effect

 Figure 5-5. Creative coding patterns

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

74

 Spatial Mapping
 As you can see, according to the space, you can create projections suitable for a particular geometric body
or bodies within the frame to be applied. This projection is made easy using algorithms that identify the
geometric body, and mapping helps the creative programming language to produce the desired effect.
Projection generally happens with powerful 3D projectors and uses cameras that support 3D scanning,
which helps in getting things in order.

 Figure 5-6 shows spatial mapping in Hololens.

 Projection Mapping
 Now with everything in place, you have to perform the projection with all the things just discussed to
produce a stunning effect. The virtual art piece is very engaging, and can also be triggered by voice or
gestures. Figure 5-7 shows an amazing art effect at the Sydney Opera House.

 Figure 5-6. Spatial mapping using Hololens

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

75

 Examples of Projection Mapping
 As we create different projection mapping patterns, there are different variants of them, such as optical
illusion, videos, and light and sound shows.

 Sketching to Reality
 In science fiction movies, we see a lot of objects and scenarios that are very eye-catching and very
extraordinary. Creative coding helps us bring those ideas to life. For example, Conway’s game of life ,
displayed in Figure 5-8 , can be brought into life with the help of creative coding.

 Figure 5-7. Amazing art installations at the Sydney Opera House

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

76

 This is an algorithm proposed by John Horton Conway based on cellular automata to give an overview
of how the biological functionalities of life occur. This is a perfect simulation that happens in a 2D grid and
provides a very close to life-like effect.

 As things get more intriguing, we now introduce you to different frameworks.

 Different Frameworks
 In this section we introduce you to different creative coding frameworks that are very useful in creative coding.

 Cinder
 Cinder (Figure 5-9) is a creative coding framework specially meant for C++. The best way to keep updated
with Cinder is through a combination of Cinder and GIT. In this case, you will always get updates very easily.
The platform support for Cinder is Windows and OSX.

 You can download Cinder from https://libcinder.org/download , as depicted in Figure 5-10 .

 Figure 5-8. Conway’s game of life

 Figure 5-9. Cinder logo

https://libcinder.org/download

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

77

 When you download Cinder, it generally comes in the form of a zip file , which is displayed in Figure 5-11 .

 Some helpful tools are available for Cinder that allow us to add additional libraries into the package.
These different tools are shown in Figure 5-12 .

 Figure 5-10. Downloading Cinder

 Figure 5-11. The zip file for Cinder

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

78

 Tinderbox

 Tinderbox is a tool that is designed to create a simplified structure for creating new projects. It can create
both Visual Studio and Xcode projects and also integrate CinderBlocks.

 CinderBlocks

 CinderBlocks is a prepackaged collection of libraries and code that allows for third-party libraries.
 Let’s cover how to get started with CinderBlocks. Navigate to the Cinder folder and find the Tools folder,

as shown in Figure 5-13 .

 Figure 5-12. Cinder tools for adding libraries

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

79

 Open the Tools folder to find the TinderBox-Win folder , seen in Figure 5-14 .

 Figure 5-13. The Tools subfolder within the Cinder main folder

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

80

 Now launch the TinderBox .exe file to run the application, as shown in Figure 5-15 .

 Figure 5-14. The TinderBox-Win folder

 Figure 5-15. Opening the TinderBox .exe file

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

81

 Select the Basic template option with Visual Studio 2013 and click Next, as seen in Figure 5-16 .

 Now you can set up environment options for the project, as depicted in Figure 5-17 .

 Figure 5-16. The project options with TinderBox

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

82

 In the next step, shown in Figure 5-18 , you can add third-party libraries.

 Figure 5-17. Select the environment option here

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

83

 From the list of avalable libraries, select the one you want to install and then click Finish, as shown in
Figure 5-19 .

 Figure 5-18. Select a third-party library

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

84

 This results in a folder structure that you can open in Microsoft Visual Studio 2013, which is displayed in
Figure 5-20 .

 What Can We Do with Cinder?

 Cinder helps in several domains and brings the aspect of creative coding to its full potential. Figure 5-21
shows the wide variety of uses for which we can implement it.

 Figure 5-19. Selecting the Box2D library

 Figure 5-20. The file structure for Visual Studio 2013

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

85

 Let’s have a brief look at the details .

• Platform core : Stand-alone Mac and PC applications (platform-native Windows and
event handling done), C++ Core, screensavers, Internet I/O, multitouch, UI events,
and communication APIs.

• 3D graphics : Core classes (perspective and orthographic cameras, triangle meshes,
OBJ loading, and geometric primitives).

• OpenGL core, OpenGL classes, geometry synthesis, and GUI parameters.

• 2D graphics : Robust image I/O, image processing, HDR imaging, powerful 2D
rasterizer, fonts, and text.

• Media : Video capture, open CV, full-featured QuickTime, audio I/O, modular audio
nodes, and audio processing.

• Mathematics : GLM math primitives, utilities, and geometric primitives.

 Now that we’ve provided an introduction to Cinder, let’s move to the details about another C++
framework, openFrameworks.

 Figure 5-21. Cinder capabilities

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

86

 openFrameworks
 One of the most important frameworks and a good utility toolkit for creative coding is openFrameworks
(Figure 5-22).

 The openFrameworks home page (http://openframeworks.cc/) is shown in Figure 5-23 . All of the
details about downloading the framework are available from this page.

 Figure 5-22. openFrameworks

http://openframeworks.cc/

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

87

 An excellent feature of openFrameworks is that it is available in Windows, OSX, Linux, Android, and
JavaScript (through ECMA 6.0). The download options on the main page are shown in Figure 5-24 .

 Figure 5-23. The openFrameworks home page

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

88

 We will set openFrameworks to operate on a Windows platform using Microsoft Visual Studio 2015.
The download package is also available using the Visual Studio Gallery, shown in Figure 5-25 . It is the
openFrameworks plug-in that we have to download.

 Figure 5-24. openFrameworks download options

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

89

 You can now go through the steps to set up openFrameworks in Visual Studio 2015. First, launch Visual
Studio 2015, as shown in Figure 5-26 .

 Figure 5-25. Downloading the openFrameworks plug-in

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

90

 Click Tools and then select Extensions and Updates, as shown in Figure 5-27 .

 Figure 5-26. Visual Studio Start page

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

91

 Next you need to find openFrameworks within the Extensions and Updates list. Click Download to
download the plug-in, as depicted in Figure 5-28 .

 Figure 5-27. Extensions and updates in Visual Studio

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

92

 After the download is complete, you need to restart Visual Studio 2015. Click File, then select New, then
Project, as highlighted in Figure 5-29 .

 Figure 5-28. openFrameworks download plug-in option

 Figure 5-29. Opening a new project in Visual Studio 2015

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

93

 Select the openFrameworks template option from the C++ templates. This template allows us to create a
creative coding project within Visual Studio 2015. Name the project OpenFrame1, as shown in Figure 5-30 .

 Click OK to open the project. It will next look for openFrameworks that we have to install from the Web
(see Figure 5-31).

 Figure 5-30. Naming the project OpenFrame1

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

94

 After you extract the downloaded framework, you must select the correct path, as in Figure 5-32 .

 Figure 5-31. Checking for openFrameworks path

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

95

 When you click OK, you are presented with numerous add-on options , as depicted in Figure 5-33 .

 Figure 5-32. Select the right path for openFrameworks

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

96

 Select the desired add-ons and then click OK to create a simple project, as shown in Figure 5-34 .

 Figure 5-33. Selecting add-ons

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

97

 In the Solution Explorer for Visual Studio, shown in Figure 5-35 , the entire openFrameworks option is
available.

 Figure 5-34. Selecting the appropriate add-ons

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

98

 You can then run the app, as shown in Figure 5-36 .

 If the dialog box indicates that a project is out of date, click Yes to build it, as shown in Figure 5-37 .

 Figure 5-36. Running the app

 Figure 5-35. The openFrameworks option

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

99

 In the next, section we start discussing Processing as a creative coding language and also extend it
further. Add a window resizing option to the setup function (see Listing 5-1) so that when we run the app,
the app window resizes.

 Listing 5-1. Adding Window Resizing Logic

 void ofApp::setup(){
 ofSetWindowShape(500, 500);
 ofSetWindowPosition(10, 10);

 }

 We also add a logic for a key pressed event , as shown in Listing 5-2 .

 Listing 5-2. Key Pressed Event

 void ofApp::keyPressed(int key){
 char str[] = "Hello OpenFramework";

 cout << "Value of str is : " << str << endl;

 }

 The output for the project is displayed in Figure 5-38 .

 Figure 5-37. Building projects that are out of date

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

100

 Processing
 Processing (see Figure 5-39) is a programming language specially intended for creative coding. The most
important part of Processing as a language is that it brings visual arts to life with the help of coding. It helps
us to learn the fundamentals of computer programming by actually showing it visually.

 Figure 5-38. The output for the project

 Figure 5-39. Processing icon

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

101

 Processing is an open source language that can run on multiple platforms. We can easily get going
inside a processing environment in Windows, Linux, or Mac. It is an IDE in which we program and the
output is a visual interpretation of the code we write. Everything we code in Processing is considered a
sketch. The extension of a file that is saved in Processing is *.pde . Another important aspect of Processing is
its support for several additional libraries for our usage. More than 100 supportive libraries are available for
Processing. Let’s take a glimpse at important library options in Processing.

 From the IDE, click Sketch, then select Import Library and Add Library as shown in Figure 5-40 .

 Figure 5-41 shows the library options available from the Processing IDE.

 Figure 5-40. Adding a library to the Processing IDE

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

102

 The inspiration for developing the Processing language was Open GL. With an already active
community, Processing has been extended to support different programming language extensions , as
depicted in Figure 5-42 .

 Figure 5-42. Extended language support for Processing

 Figure 5-41. Libraries available in the Processing IDE

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

103

 The structure of a processing app is represented in Figure 5-43 .

 When you start working on a Processing project, two functions are particularly important. These
functions are setup () , where you declare the size of the screen window, and the draw () function, with
which we render the output.

 Let’s take a look at an example in Listing 5-3 . We will draw an ellipse and as the mouse is pressed it will
just move around.

 Listing 5-3. Simple Processing Example

 void setup() {
 size(1024, 768);
 noSmooth();
 fill(126);
 background(102);
 }

 void draw() {
 if (mousePressed) {
 stroke(255);
 } else {
 stroke(0);
 }
 ellipse(mouseX-30, mouseY, mouseX+30, mouseY);
 ellipse(mouseX, mouseY-30, mouseX, mouseY+30);
 }

 You need to click the Run button in the IDE, highlighted in Figure 5-44 , to view the output , which is
shown in Figure 5-45 .

 Figure 5-43. The programming structure for Processing

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

104

 Next we look at extending the Processing IDE for an Android extension. From the drop-down list at the
right side of the IDE, select the Android option for adding a mode (see Figure 5-46) .

 Figure 5-44. Running the program

 Figure 5-45. The output

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

105

 The next option you see, shown in Figure 5-47 , is for downloading the Android SDK (if it is not present)
or setting it up manually.

 If you click Download SDK Automatically, it will start the process. You can monitor the download
progress in the dialog box shown in Figure 5-48 .

 Figure 5-46. Add an Android mode

 Figure 5-47. Preparing the Android SDK

CHAPTER 5 ■ CREATIVE CODING AND PROCESSING

106

 Once the download is complete, the SDK is set up for Android on Processing (see Figure 5-49), so you
can compile the app for Android.

 Summary
 This chapter has covered creative coding and then gave an introduction to creative coding frameworks, in
addition to an introduction to Processing.

 Figure 5-49. Android option is available

 Figure 5-48. Downloading the Android SDK

107© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7_6

 CHAPTER 6

 Extending Processing for UWP
and IoT with Temboo

 In Chapter 5 we went through working with creative coding and started with Processing. In this chapter, we
show how Processing can be extended for the Universal Windows Platform and the Internet of Things (IoT)
with Temboo platform.

 Extending Processing
 This chapter starts with a brief introduction to UWP. Then we provide a brief introduction to Processing JS
and how to obtain it, followed by the procedure to build Processing JS UWP apps. We give examples and
then build it as a package for store. Finally, we cover Processing in terms of IoT with Temboo.

 UWP
 The Windows 10 UWP platform is an architecture that is specifically designed for coding once it is deployed
anywhere for Windows 10 device families. UWP apps run on all devices that run the Windows 10 OS , ranging
from phones and tablets to PCs. The apps are generally built with the Visual Studio 2015 IDE. UWP is special
because it is built in terms of a single API across all devices.

 Figure 6-1 shows how UWP fits into a code once, deploy anywhere usage model.

http://dx.doi.org/10.1007/978-1-4842-2484-7_5

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

108

 The Windows Store experience has also changed. It used to be different stores for different platforms,
meaning different stores for mobile apps and Windows Store apps. Now it is one place where all the apps for
the devices can be seen on the Dashboard and the option for monetization is also seen in a common place.
Compatibilty has also changed, as now we can target different versions of Windows 10 the same as Android.
This is called binary compatibility across all versions and all device families.

 The speciality of UWP is that it can call all APIs across WinRT and also Win32 and .Net APIs, as depicted
in Figure 6-2 .

 Having one core API results in seamless API layer access for all devices. When we develop apps in
 Microsoft Visual Studio 2015 , the result is a single app package that can be installed onto a wide range of
devices. An adaptive UI and new features of the layout control help us to distribute a cool-looking app
consumed in same manner across all devices.

 Figure 6-2. UWP's capability

 Figure 6-1. Windows 10 UWP platform

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

109

 Device Families
 We know in the past, Windows 8 and Windows 8.1 used to target builds that were meant for either Windows
Store or mobile devices . Now in Windows 10, though, we build apps and target them for different families
that run Windows 10. When targeting an app, it is up to us to target which device we want to build it for.

 Figure 6-3 shows that a child device inherits properties of the parent device and also its own
functionality to the API, so this is an added combination that is felt across all devices on the platform.

 Consequence of Device Family Choice
 As we choose from available platforms, say we are developing an app for IoT. We see that the app works
perfectly if we install it on a Windows 10 IoT device, say Raspberry Pi3, and the host OS within the Pi3 device
is Windows 10 IoT core. Being a minified version of the core, Windows 10 OS works hassle free. Because the
development environment is the same, Visual Studio 2015, we can deploy the app to other sets of devices,
too. Our idea when we develop an app should be to keep requirements minimal so that it can be deployed
across all platforms. Restricting API access or including different functionality will not allow the app to work
freely across different devices.

 Making a Simple Hello World App with Visual Studio 2015
 First, open Visual Studio 2015. Click File, then select New Project, Templates, JavaScript, Windows,
Universal, and WinJS. Name the project app1, as shown in Figure 6-4 . Click OK to continue.

 Figure 6-3. Parent–child accessibilty UWP

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

110

 The next option we have is for targeting Windows 10 versions, as shown in Figure 6-5 . Select a different
version or keep this setting as it is, and then click OK.

 Let’s take a look at the file structure of the project in Figure 6-6 .

 Figure 6-5. Targeting the version of Windows 10

 Figure 6-4. UWP app using WinJS

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

111

 The most important file shown is the main.js file, which handles all the logic for Windows 10 activities.
Together with the WinJS file , this file also binds the project. Within the index.html page, we include a Hello
World within the body tag. Listing 6-1 shows the code part at index.html . This is the main page where we
include JavaScript libraries.

 Listing 6-1. The Coding Construct index.html Page

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <title>App1</title>
 <link href="lib/winjs-4.0.1/css/ui-light.css" rel="stylesheet" />
 <script src="lib/winjs-4.0.1/js/base.js"></script>
 <script src="lib/winjs-4.0.1/js/ui.js"></script>
 <link href="css/default.css" rel="stylesheet" />
 <script src="js/main.js"></script>
 </head>
 <body class="win-type-body">

 Figure 6-6. The file structure for the project

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

112

 <div>HELLO WORLD!!</div>
 </body>
 </html>

 Figure 6-7 shows the output when you run the program.Universal Windows Platform (UWP):devices:

 WinJS
 WinJS is an open source JavaScript library that helps us to build HTML5, Cascading Style Sheet (CSS), and
JavaScript applications for Windows Store with a consistent look and performance across all Windows
devices. It’s a boon for Windows 10 to use one API across all devices. The flow of WinJS is shown in Figure 6-8 .

 Figure 6-7. The output for the program

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

113

 Processing JS
 As the name suggests, Processing JS (Figure 6-9) is a JavaScript port of the Processing language. With the
booming web development scenario it is expected that it could be extended to HTML5 and JavaScript. It has
the same ability to represent visual art forms in terms of coding with the additional capability of JavaScript
bundled with the language support. The logic works this way: We write code in the Processing language,
include it in a web page, and Processing JS performs the transformation, giving us the output.

 Figure 6-8. WinJS flow

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

114

 Including the Processing JS library
 We can target the development scenario in the index.html page when we add the Processing JS file to the
header section of the web page.

 Within the body tag, we need to add reference to the Processing (*.pde) script within the canvas tag and
adddata-processing sources’ attributes.

 How Processing JS Works
 When the extension was created, it was essential to know how the parsing happens from Processing
language to Processing JS. Within the canvas, Processing scans the document with the data-processing
sources’ attributes, downloads the files using XMLHTTP Request, and finally turns it to the best usage as per
JavaScript (see Figure 6-10).

 Figure 6-9. Processing JS

 Figure 6-10. Processing JS working structure

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

115

 Processing JS and Windows 10 UWP
 This is the most important part of this chapter, where we include the concepts of creative coding and
Processing JS and bring them to Windows 10 UWP apps. Now that you have grasped the concept of core
Processing with respect to JavaScript, we can extend it to build Windows 10 UWP apps. Let’s start.

 Open Visual Studio 2015 , then click File and select New Project. Create a Windows 10 UWP project that
is WinJS based (see Figure 6-11).

 Next you need to download the Processing JS file and then include it in the project (see Figure 6-12).

 Figure 6-11. Processing JS UWP app creation

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

116

 Select the version you want or leave the default selection intact, then copy and paste the Processing JS
file into the JS folder of the project, as shown in Figure 6-13 .

 Figure 6-12. Downloading Processing JS

 Figure 6-13. Copy and paste the Processing JS file

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

117

 Next, create a folder, as demonstrated in Figure 6-14 . Name the folder PDE and store the Processing file.

 Next, start coding for the pde file . Let’s try some simple code. The Processing code in Listing 6-2 allows a
circle and a rectangle to move by mouse click.

 Figure 6-14. Creating a new folder

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

118

 Listing 6-2. Code for the Processing File

 float x, y;
 float dim = 80.0;

 void setup() {
 size(1024, 768);
 noStroke();
 }

 void draw() {
 background(102);

 x = x + 0.8;

 if (x > width + dim) {
 x = -dim;
 }
 float X =mouseX-dim/2;
 float Dim =dim*mouseX;

 translate(x, height/2-dim/2);
 fill(255);
 ellipse(X, X, Dim, Dim);

 // Transforms accumulate. Notice how this rect moves
 // with mouse click
 // parameter for the x-axis value
 translate(x, dim);
 fill(0);
 rect(X,X, Dim, Dim);
 }

 Now you need to add the Processing JS file within the index.html page and then add the data-
processing option and include the path to the folder where the Processing file is kept. The code inside the
 index.html page looks like Listing 6-3 .

 Listing 6-3. The Coding at index.html Page

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <title>procsJS1</title>
 <link href="lib/winjs-4.0.1/css/ui-light.css" rel="stylesheet" />
 <script src="lib/winjs-4.0.1/js/base.js"></script>
 <script src="lib/winjs-4.0.1/js/ui.js"></script>
 <link href="css/default.css" rel="stylesheet" />
 <script src="js/main.js"></script>
 <script src="js/processing.min.js"></script>
 </head>
 <body class="win-type-body">
 <canvas id="sketch" data-processing-sources="pde/move.pde"></canvas>
 </body>
 </html>

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

119

 Let’s run the app now. Figure 6-15 shows the app as it runs.

 Figure 6-15. The app runs and works well

 A Painting Processing JS App
 We next create a painting app that works with mouse movements; that is, we will be using mouseX (Processing
tracks mouse movements when the mouse cursor is across the screen area). We name the app ProcessingJS2.
The steps performed for creating the project remain the same as those we have followed before.

 The code for drawing the pattern is shown in Listing 6-4 . It uses mouseX , mouseY , pmouseX , and pmouseY
to draw lines.

 Listing 6-4. The Code for the Drawing App

 float d, dt;
 void setup() {
 background (240,240,240);
 size(1000, 800);
 smooth();
 strokeWeight(0);
 }
 void draw() {
 d=dist(mouseX, mouseY, pmouseX, pmouseY);
 dt=map(sin(d),-1,1, 2, 4);
 print(dt);

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

120

 if(mousePressed==true){
 stroke(180,0,0,180);
 strokeWeight(4+dt/2);
 line(mouseX, mouseY, pmouseX, pmouseY);

 stroke(90,90,0,180);
 strokeWeight((4+dt/2)/2);
 line(mouseX+(4+dt/2)/2, mouseY-(4+dt/2)/2, pmouseX+(4+dt/2)/2, pmouseY-(4+dt/2)/2);

 stroke(0,180,0,180);
 strokeWeight(4+dt/2);
 line(mouseX+(4+dt/2), mouseY-(4+dt/2), pmouseX+(4+dt/2), pmouseY-(4+dt/2));

 stroke(0,90,90,180);
 strokeWeight((4+dt/2)/2);
 line(mouseX-(4+dt/2)/2, mouseY+(4+dt/2)/2, pmouseX-(4+dt/2)/2, pmouseY+(4+dt/2)/2);

 stroke(0,0,180,180);
 strokeWeight(4+dt/2);
 line(mouseX-(4+dt/2), mouseY+(4+dt/2), pmouseX-(4+dt/2), pmouseY+(4+dt/2));

 }

 }

 When you run the app, the output will look something like Figure 6-16 .

 Figure 6-16. Running the app to allow drawing

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

121

 Let’s create an app package for the application you just created to validate that the Processing JS app
runs perfectly and creates a successful Windows 10 UWP package.

 Click Project, then select Store and click Create App Packages, as highlighted in Figure 6-17 .

 The Create App Package Wizard opens. You will not push the app to the Windows Store, so select No,
and then click Next, as shown in Figure 6-18 .

 Figure 6-17. Creating a package for the app

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

122

 The next wizard page gives you the option to configure the app package. Leave the settings as shown,
and click Create, as shown in Figure 6-19 .

 Figure 6-18. The Create App Packages Wizard

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

123

 On the final page of the wizard, shown in Figure 6-20 , you can see that the app package has been
created.

 Figure 6-19. Configuring and creating an app package

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

124

 The experiment with Processing JS and Windows 10 UWP has succeeded and you are ready to create
more apps for the Windows Store. You can take our imagination soaring and create creative coding apps for
the store.

 P5.js
 P5.js (Figure 6-21) is a pure JavaScript version of the Processing language, so we don’t have use any different
technique to get the code going. We write the code for Processing in JavaScript.

 Figure 6-20. The app package is created

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

125

 First we need to download the P5.js library that we need to include in the project. The details of the
download page are shown in Figure 6-22 .

 Figure 6-21. The P5.js web site

 Figure 6-22. Downloading the p5.js complete library

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

126

 Open a new project in Visual Studio 2015. Select the UWP and then the WinJS template, as we have
done before. The result is shown in Figure 6-23 .

 Keep the platform version as it is, the way we have done before, and then click OK, as highlighted in
Figure 6-24 .

 Figure 6-23. Creating a UWP app

 Figure 6-24. Click OK for new project

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

127

 You need to copy the p5.js file to the JS folder, as shown in Figure 6-25 . Once the file is copied, it helps
in implementing Processing logic.

 Now you have to include the p5.js file within the index.html page. Create one JS file, as depicted in
Figure 6-26 , where we will be writing the code logic to get going with Processing.

 Figure 6-25. The p5.js file in the JS folder

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

128

 The functions are the same: We have the setup() and draw() functions, which we have used in
Processing. Hence, we see that the entire logic resembles that of Processing. Let’s take a look at the code in
Listing 6-5 , which allows us to interact with the balls that appear close to the rectangle with the mouse. We
have used mouseX , mouseY utility of Processing all in core JavaScript.

 Listing 6-5. The Code Logic in JS for Processing.

 var angle1 = 0;
 var angle2 = 0;
 var scalar = 70;

 function setup() {
 createCanvas(1920, 1080);
 noStroke();
 rectMode(CENTER);
 }

 function draw() {
 background(0);

 var ang1 = radians(angle1);
 var ang2 = radians(angle2);

 var x1 = mouseX + width / 2 + (scalar * cos(ang1));
 var x2 = pmouseX + width / 2 + (scalar * cos(ang2));

 Figure 6-26. Adding the JS file

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

129

 var y1 = mouseY + height / 2 + (scalar * sin(ang1));
 var y2 = pmouseY + height / 2 + (scalar * sin(ang2));

 fill(255);
 rect(width * 0.5, height * 0.5, 140, 140);

 fill(0, 502, 553);
 ellipse(x1, height * 0.5 - 120, scalar, scalar);
 ellipse(x2, height * 0.5 + 120, scalar, scalar);

 fill(655, 604, 0);
 ellipse(width * 0.5 - 120, y1, scalar, scalar);
 ellipse(width * 0.5 + 120, y2, scalar, scalar);

 angle1 += 2;
 angle2 += 3;
 }

 The index.html file after adding chap5.js looks like Listing 6-6 .

 Listing 6-6. The index.html Page

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8" />
 <title>P5example1</title>
 <link href="lib/winjs-4.0.1/css/ui-light.css" rel="stylesheet" />
 <script src="lib/winjs-4.0.1/js/base.js"></script>
 <script src="lib/winjs-4.0.1/js/ui.js"></script>
 <link href="css/default.css" rel="stylesheet" />
 <script src="js/main.js"></script>
 <script src="js/p5.js"></script>

 </head>
 <body class="win-type-body">

 <script src="js/chap5.js"></script>
 </body>
 </html>

 When you run the app, the output should look like Figure 6-27 .

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

130

 After these experiments, you can see that Processing can be extended easily to Windows 10 UWP with
Processing JS, as well as P5.js, so we have covered a new area in terms of creative coding and Windows 10
UWP. Next we discuss IoT briefly and then extend Processing for IoT with Temboo.

 IoT
 Any device that has a capability to acquire an IP address can be considered an IoT device . If we have a
network where we are connected across numerous devices communicating, sharing information , and
working with responses from each other we can say the network has implemented IoT. IoT devices share
information via cloud and currently service providers such as Windows Azure, IBM Bluemix, and AWS all
offer a different IoT suite for use across these devices.

 There are some special boards for usage across different platforms, such as Intel Edison, Intel Joule,
Raspberry Pi2, and Raspberry Pi3.

 There is a catch with operating systems in these devices, too. The OS is a minified version of the core
OS we use in the everyday laptops and PCs that we are using. For Linux, for example, we have Yocto Linux,
which is a minified version of the core Linux distribution. The same is true with other Linux kernels, too. For
Windows we have a minified version of Windows 10 OS called Windows 10 IoT core .

 Security on an IoT device is implemented via IoT gateways, which store or allow communication
between different IoT devices while checking the information flow gathered in the IoT gateway and
analyzing the headers.

 The IoT devices are connected to different sensors to collect data and share across the connected IoT
network and also to help in visualizing the data.

 Figure 6-27. The p5.js app running in Windows 10 UWP Platform

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

131

 Processing IoT and Temboo
 Temboo
 Temboo is a platform to easily integrate IoT devices and the sensor data across the Web with very simple
logic. The Temboo application on the Web looks like Figure 6-28 .

 Perfect
 You will need to enter a user ID and password to log in; otherwise, you will need to create an account.
 When you log in, you have the option of choosing from where to learn. For this exercise, choose

Processing, as highlighted in Figure 6-29 .

 You will then see that the Processing option is enabled in Temboo, as shown in Figure 6-30 .

 Figure 6-28. Temboo platform

 Figure 6-29. Processing option chosen

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

132

 If you click Get Started With Processing, it will suggest that you download the library and save it to the
 Processing location , as depicted in Figure 6-31 .

 Figure 6-31. How to start Temboo with Processing

 Figure 6-30. Processing option enabled

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

133

 Every possible thing in Temboo is done through Choreo, so let’s see how that looks. Make sure you
have downloaded the library files for Processing and copied them to the correct path. We will be using
Envirosearch Choreo, and start with finding the zip code for Los Angeles, as shown in Figure 6-32 .

 Let’s run the code in Processing. We see the output shown in Figure 6-33 . Name the app FirstChoreo .

 Figure 6-32. Temboo EnviroFacts Choreo

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

134

 The code is given in Listing 6-7 .

 Listing 6-7. The Code for Processing with Temboo

 import com.temboo.core.*;
 import com.temboo.Library.EnviroFacts.Toxins.*;

 // Create a session using your Temboo account application details
 TembooSession session = new TembooSession("abhigeek81", "myFirstApp",
"38cLfZFX8OjQ8qvMW1wiktIE6msnvQv2");

 void setup() {
 // Run the FacilitiesSearchByZip Choreo function
 runFacilitiesSearchByZipChoreo();
 }

 void runFacilitiesSearchByZipChoreo() {
 // Create the Choreo object using your Temboo session
 FacilitiesSearchByZip facilitiesSearchByZipChoreo = new FacilitiesSearchByZip(session);

 Figure 6-33. Running the code in Processing

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

135

 // Set inputs
 facilitiesSearchByZipChoreo.setZip("90001");

 // Run the Choreo and store the results
 FacilitiesSearchByZipResultSet facilitiesSearchByZipResults = facilitiesSearchByZipChoreo.
run();

 // Print results
 println(facilitiesSearchByZipResults.getResponse());

 }Internet of Things (IoT)and TembooCode for Processing

 Next, use the DailyMed Choreo. First use SearchByName for drug details, as depicted in Figure 6-34 .

 The code for this is given in Listing 6-8 .

 Figure 6-34. Searching on a drug name

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

136

 Listing 6-8. The Code for Finding the Drug Detail

 import com.temboo.core.*;
 import com.temboo.Library.DailyMed.*;

 // Create a session using your Temboo account application details
 TembooSession session = new TembooSession("abhigeek81", "myFirstApp",
"38cLfZFX8OjQ8qvMW1wiktIE6msnvQv2");

 void setup() {
 // Run the SearchByName Choreo function
 runSearchByNameChoreo();
 }

 void runSearchByNameChoreo() {
 // Create the Choreo object using your Temboo session
 SearchByName searchByNameChoreo = new SearchByName(session);

 // Set inputs
 searchByNameChoreo.setDrugName("Biseptol");

 // Run the Choreo and store the results
 SearchByNameResultSet searchByNameResults = searchByNameChoreo.run();

 // Print results
 println(searchByNameResults.getResponse());

 }

 When you run the code in Processing, you will get the output shown in Figure 6-35 .

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

137

 Figure 6-35. The output runs

CHAPTER 6 ■ EXTENDING PROCESSING FOR UWP AND IOT WITH TEMBOO

138

 The code for the output is shown in Listing 6-9 .

 Listing 6-9. The Code

 import com.temboo.core.*;
 import com.temboo.Library.DailyMed.*;

 // Create a session using your Temboo account application details
 TembooSession session = new TembooSession("abhigeek81", "myFirstApp",
"38cLfZFX8OjQ8qvMW1wiktIE6msnvQv2");

 void setup() {
 // Run the SearchByName Choreo function
 runSearchByNameChoreo();
 }

 void runSearchByNameChoreo() {
 // Create the Choreo object using your Temboo session
 SearchByName searchByNameChoreo = new SearchByName(session);

 // Set inputs
 searchByNameChoreo.setDrugName("Biseptol");

 // Run the Choreo and store the results
 SearchByNameResultSet searchByNameResults = searchByNameChoreo.run();

 // Print results
 println(searchByNameResults.getResponse());

 }

 Summary
 In this chapter we integrated Processing into Windows 10 UWP and then also extended Processing for
Temboo. The book thus concluded with some simple constructs of creative coding in a different way.

139

 A
 Alloy framework , 23–25
 Artifi cial intelligence , 8–9
 Audio engine , 2

 B
 Black Gate Games , 26
 Blend trees , 9
 Box2D , 16

 C
 CinderBlocks , 78–79
 Core Platino APP

 classic template , 54
 code for app , 58
 create, fi le structure , 55
 folder creation, storing images , 56–57
 Intel Software Innovator logo , 56
 naming the folder , 58
 project name , 54–55

 Creative coding
 3D space , 71–72
 art installations , 69–70
 openFrameworks (see OpenFrameworks)
 projection mapping (see Projection mapping)
 spatial mapping, Hololens , 74
 styles , 69
 techniques , 72–73

 D, E, F
 Direct X , 3–4

 G
 Game engine

 artifi cial intelligence , 8–9
 audio engine , 2

 blend trees , 9
 components , 1–2
 description , 1
 development logic , 10–11
 Direct X , 3–4
 Havok engine , 7–8
 Open GL , 4–6
 physics , 7
 rendering engine , 2–3
 unity , 11–13
 Unreal 4 , 13–15
 WebGL , 6

 H
 Havok engine , 7–8

 I
 Installation process

 command prompt , 35–36
 completed download process , 37
 .exe fi le to start , 32
 fi nal step , 38
 fi rst dependency , 32–33
 Node.js Setup Wizard , 34–35
 Platino Studio , 40
 Platino Studio setup fi le , 31
 starting , 32
 starting the engine , 39
 Titanium SDK , 36–37

 Intel Graphics for Linux , 6
 Intel Software Innovator , 56, 58
 Internet of Th ings (IoT)

 communication and sharing information , 130
 devices , 130
 operating systems , 130
 security , 130
 and Temboo

 Code for Processing , 134
 EnviroFacts Choreo , 133

 Index

© Abhishek Nandy and Debashree Chanda 2016
A. Nandy and D. Chanda, Beginning Platino Game Engine, DOI 10.1007/978-1-4842-2484-7

■ INDEX

140

 Finding Drug Detail , 136
 FirstChoreo , 133–134
 output , 136, 138
 Processing location , 132
 processing option , 131–132
 Search, drug name , 135
 sensor data , 131
 user , 131

 Windows 10 IoT core , 130

 J, K, L
 JS processing

 canvas tag and adddata-processing sources , 114
 HTML5 , 113
 JavaScript port , 113
 structure , 114
 and Windows 10

 app function , 118
 App Package Wizard , 121, 122
 coding, pde fi le , 117
 confi guration , 123
 copy and paste , 116
 creation, app package , 124
 creative coding , 115
 downloading , 116
 drawing app , 119–120
 coding, index.html Page , 118
 new folder creation , 117
 Open Visual Studio 2015 , 115
 P5.js , 124–128, 130
 UWP app creation , 115

 M, N
 MatterJS , 16–17

 O
 OpenFrameworks

 add-ons , 95–97
 dialog box , 98–99
 download options , 87–88
 download plug-in option , 91–92
 extensions and updates, Visual Studio , 90–91
 home page , 86–87
 key pressed event , 99
 nameing the project , 93
 new project, Visual Studio 2015 , 92
 option , 97–98
 path , 93–95
 plug-in , 88–89
 project output , 99
 running the app , 98

 toolkit , 86
 Visual Studio Start page , 89–90
 window resizing option , 99

 Open GL , 4–6

 P, Q
 P5.js

 creation, UWP app , 126
 downloading , 125
 index.html Page , 129
 JS fi le , 128
 JS folder , 127
 Logic code , 128
 web site , 125
 Windows 10 UWP , 130

 Physics engine , 7
 Physics JS

 Alloy template , 60
 Assets folder

 alloy.js fi le , 62
 app running, mobile device , 67–68
 code for game , 63
 compilation process , 65–66
 index.js fi le , 62
 main.js fi le , 61
 Platino background logo , 63
 runtime error , 66
 window.js fi le , 62

 fl exibility , 60
 folder structure , 61

 Platino game engine
 Alloy framework , 23–25
 Black Gate Games web site , 26
 build , 21–22
 Carlos Manuel Icaza , 27–28
 core features , 26–27
 download , 20
 home page , 19
 John Gould , 27
 Joseph Austin , 27
 learn , 21
 Peach Icaza Pellen , 27
 Titanium SDK , 22–24
 web site , 20

 Platino Store
 cart , 30
 checkout page , 31
 download options , 29–30

 Platino Studio
 app rendered in Firefox , 51
 code for handling android activity , 44
 code for handling iOS device screens , 46
 code for handling iOS fl ow of App , 45
 default app , 51–52

Internet of Th ings (IoT) (cont.)

■ INDEX

141

 fi le structure , 43
 JavaScript fi les , 45
 JS fi le for checking dependencies , 49
 Matrix-like screensaver eff ect , 53
 Mobile App Project , 41
 nameing the project , 43
 open, Windows , 41
 Physics JS. Physics JS
 running the app, Firefox , 53
 script tag, Platino editor , 52
 starting, web project , 42
 tiapp.xml fi le , 50

 Processing
 android mode , 104–105
 download, Android SDK , 105–106
 example , 103
 icon , 100
 IDE, libraries , 101–102
 output , 103–104
 programming language extensions , 102
 running the program , 103–104
 structure , 103

 Projection mapping
 Cinder

 capabilities , 84–85
 CinderBlocks , 78–79
 description , 85
 download , 76–77
 fi le structure, Visual Studio 2013 , 84
 logo , 76
 Tinderbox (see Tinderbox)
 tools , 77–78
 zip fi le , 77

 Conway’s game of life , 75–76
 structure , 70–71
 Sydney Opera House, art eff ect , 74–75

 R, S
 Rendering engine , 2–3

 T
 Tinderbox

 Box2D library , 83–84
 description , 78

 environment options , 81–82
 .exe fi le , 80
 project options , 81
 third-party library , 82–83
 TinderBox-Win folder , 79–80

 Titanium SDK , 22–24, 36–37

 U
 Unity game engine , 11–13
 Universal Windows Platform (UWP)

 API , 108
 capability , 108
 devices

 app using WinJS , 110
 Coding Construct index.html Page , 111
 mobile , 109
 output , 112
 targeting the version of Windows 10–110
 WinJS fi le , 111–113

 IoT (see Internet of Th ings (IoT))
 Microsoft Visual Studio 2015 , 108
 processing JS

 data-processing sources’ , 114
 HTML5 , 113
 JavaScript port , 113
 (*.pde) script , 114
 structure , 114
 and Windows 10 UWP , 115–119
 XMLHTTP , 114

 storage , 108
 Windows 10 , 107–108

 Unreal 4
 blueprints , 14–15
 features , 15
 logo , 13
 platforms , 13–14

 V
 Vulkan API , 5–6

 W, X, Y, Z
 WebGL , 6
 WinJS , 112–113

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Forward
	Chapter 1: Introduction to the Game Engine
	We Start Here
	What Is a Game Engine?
	Audio Engine
	Rendering Engine
	Direct X
	Open GL
	WebGL

	Physics Engine
	Havok Engine

	Artificial Intelligence in Games
	Blend Trees in the Unity Game Engine

	Making a Game Engine
	Different Game Engines
	Unity Game Engine
	Unreal 4 Game Engine
	Blueprints
	Features of Unreal 4 Engine

	Some Special HTML5 and JavaScript Libraries
	Box2D
	MatterJS

	Summary

	Chapter 2: The Platino Game Engine
	 Platino Game Engine
	 Download
	 Learn
	 Build
	 Platino and Titanium SDK
	 Titanium SDK
	 Alloy Framework

	 How the Engine Has Evolved
	 Core Features of Platino Game Engine
	 People Behind the Game Engine
	 John Gould
	 Peach Icaza Pellen
	 Joseph Austin
	 Carlos Manuel Icaza (1966–2016)

	 Summary

	Chapter 3: Installing and Setting Up Platino Game Engine
	The Content
	The Platino Store and the Process of Getting Platino
	Installation of Platino Game Engine
	Summary

	Chapter 4: Getting into Development with Platino Game Engine
	Let’s Make an App
	Building a Core Platino App
	Physics JS
	Assets

	Chapter 5: Creative Coding and Processing
	Creative Coding and Processing
	What Is Creative Coding?
	Art Installations
	Projection Mapping
	A 3D Space
	Creative Coding Techniques
	Spatial Mapping
	Projection Mapping
	Examples of Projection Mapping

	Sketching to Reality
	Different Frameworks
	Cinder
	Tinderbox
	CinderBlocks
	What Can We Do with Cinder?

	openFrameworks

	Processing
	Summary

	Chapter 6: Extending Processing for UWP and IoT with Temboo
	Extending Processing
	UWP
	Device Families
	Consequence of Device Family Choice

	Making a Simple Hello World App with Visual Studio 2015
	WinJS

	Processing JS
	Including the Processing JS library
	How Processing JS Works
	Processing JS and Windows 10 UWP
	A Painting Processing JS App

	P5.js

	IoT
	Processing IoT and Temboo
	Temboo

	Summary

	Index

