
www.allitebooks.com

http://www.allitebooks.org

Shai Vaingast

Beginning Python
Visualization
Crafting Visual Transformation
Scripts

www.allitebooks.com

http://www.allitebooks.org

Beginning Python Visualization: Crafting Visual Transformation Scripts

Copyright © 2009 by Shai Vaingast

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1843-2

ISBN-13 (electronic): 978-1-4302-1844-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Frank Pohlmann, Michelle Lowman
Technical Reviewer: C. Titus Brown
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at .

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my wife, Orna Vaingast.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author. xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xviii

CHAPTER 1 Navigating the World of Data Visualization . 1

CHAPTER 2 The Environment . 31

CHAPTER 3 Python for Programmers. 53

CHAPTER 4 Data Organization . 101

CHAPTER 5 Processing Text Files . 135

CHAPTER 6 Graphs and Plots . 183

CHAPTER 7 Math Games . 221

CHAPTER 8 Science and Visualization. 249

CHAPTER 9 Image Processing . 285

CHAPTER 10 Advanced File Processing . 319

APPENDIX Additional Source Listing . 343

INDEX . 349

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author. xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xviii

CHAPTER 1 Navigating the World of Data Visualization 1

Gathering Data . 2

Case Study: GPS Data . 2

Scanning Serial Ports . 3

Recording GPS Data . 5

Data Organization . 6

File Format . 6

File Naming Conventions . 7

Data Location . 7

Data Analysis . 8

Walking Directories . 8

Reading CSV Files . 9

Analyzing GPS Data . 12

Extracting GPS Data. 14

Data Visualization . 17

GPS Location Plot. 18

Annotating the Graph. 20

Velocity Plot. 22

Subplots. 23

Text. 23

Tying It All Together . 25

Final Notes and References . 29

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

CHAPTER 2 The Environment . 31

Operating Systems . 32

GNU/Linux . 32

Windows . 33

Choosing an Operating System . 35

Then Again, Why Choose? Using Several Operating Systems 36

The Python Environment. 37

Versions . 37

Python . 38

Python Integrated Development Environments. 39

Scientific Computing . 41

Plotting. 42

Image Processing. 43

Additional Python Packages . 43

Installation Summary. 44

Additional Applications . 45

Editors . 45

A Short List of Text Editors . 47

Spreadsheets . 48

Word Processors . 48

Image Viewers . 49

Version Control Systems. 49

Licensing. 51

Final Notes and References . 52

CHAPTER 3 Python for Programmers . 53

What Is Python? . 53

Interactive Python . 54

Invoking Python . 54

Entering Commands . 55

The Interactive Help System . 56

Moving Around . 57

Running Scripts . 58

Data Types . 60

Numbers . 60

Strings . 65

Booleans . 67

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

Data Structures . 68

Lists . 69

Tuples . 72

Dictionaries . 74

Sets . 78

Variables . 80

Statements . 81

Printing. 81

User Input . 84

Comments . 85

Flow Control . 85

Some Built-in Functions . 92

Defining Functions. 93

Generators. 94

Generator Expressions . 95

Object-Oriented Programming . 96

Modules and Packages. 97

The import Statement . 98

Modules Installed in a System. 99

The dir Statement . 99

Final Notes and References . 99

CHAPTER 4 Data Organization . 101

File Name Conventions . 102

Date and Time in a File Name . 102

Useful File Name Titles . 104

File Name Extensions . 104

In Conclusion . 105

Other Schemes. 107

File Formats . 108

CSV File Format . 109

Binary Files . 117

Readme Files . 123

INI Files . 123

XML . 125

Other File Formats . 126

Locating Data Files . 126

Organization into Directories . 126

Searching for Files . 127

Indexing . 128

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

Catalogs. 131

Files vs. a Database. 133

Final Notes and References . 134

CHAPTER 5 Processing Text Files . 135

Text and Strings. 136

Splitting Text. 136

Joining Strings . 137

Converting Strings to Numbers . 137

Find and Replace . 143

Stripping Strings. 144

String Formatting . 145

String Conditionals. 146

More on Strings . 147

Files . 147

Opening a File. 147

Closing a File . 148

Writing Text. 148

Reading Text . 149

Working with Text Files . 150

Example: Character, Word, and Line Count. 151

Example: head and tail . 152

Example: Splitting and Combining Files. 153

Example: Searching Inside a Text File . 155

Example: Working with Comments . 156

Example: Extracting Numbers from a Text File. 157

CSV Files . 159

The csv Module . 159

The csv.reader Object . 160

The csv.writer Object . 161

More csv Functionality . 161

DictReader and DictWriter Objects . 162

Date and Time . 163

Time Module . 164

The struct_time Tuple . 165

Parsing and Formatting Date and Time . 165

The Epoch: “Linearizing” the Time Base . 168

Additional Time and Date Functions . 173

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xi

Regular Expressions . 173

Regular Expression Patterns . 173

Special Sequences. 175

Alternatives . 175

Ranges . 175

When to Use Regular Expressions. 175

Internationalization and Localization . 176

Locale. 177

Unicode Strings . 178

Final Notes and References . 181

CHAPTER 6 Graphs and Plots . 183

The Matplotlib Package . 183

Interactive Graphs vs. Image Files . 184

Interactive Graphs . 185

Saving Graphs to Files. 187

Plotting Graphs. 189

Lines and Markers . 189

Plotting Several Graphs on One Figure. 191

Line Widths and Marker Sizes . 192

Colors . 193

Controlling the Graph . 194

Axis. 194

Grid and Ticks. 195

Subplots. 196

Erasing the Graph . 197

Adding Text. 197

Title. 198

Axis Labels and Legend . 198

Text Rendering . 199

Mathematical Symbols and Expressions . 200

More Graph Types . 201

Bar Charts . 201

Histograms . 204

Pie Charts . 206

Logarithmic Plots . 207

Polar Plots . 208

Stem Plots . 209

Additional Graphs. 210

www.allitebooks.com

http://www.allitebooks.org

CONTENTSxii

Getting and Setting Values. 213

Setting Figure and Axis Parameters . 215

Patches . 217

Example: Adding Arrows to a Graph . 218

Example: Some Other Patches . 219

Final Notes and References . 220

CHAPTER 7 Math Games . 221

Modules math and cmath . 221

Example: A Newton Fractal . 224

Module random . 228

Using random to Solve Probability Questions 229

Random Sequences. 232

Module NumPy. 233

Array Creation. 234

Slicing, Indexing, and Reshaping . 235

N-Dimensional Arrays . 236

Math Functions. 239

Array Methods and Properties . 241

Other Useful Array Functions . 247

Final Notes and References . 247

CHAPTER 8 Science and Visualization . 249

Finding Your Way: Variables and Functions . 250

SciPy. 250

Linear Algebra . 251

Solving a System of Linear Equations . 251

Vector and Matrix Operations. 252

Matrix Decomposition . 253

Additional Linear Algebra Functionality . 254

Numerical Integration . 254

More Integration Methods . 257

Interpolation and Curve Fitting . 258

Piecewise Linear Interpolation. 258

Polynomials. 260

Uses of Polynomials. 261

Spline Interpolation . 266

CONTENTS xiii

Solving Nonlinear Equations . 267

Special Functions. 268

Signal Processing . 268

Functions where, select, and find . 269

Functions diff and split . 273

Waveforms . 274

Fourier Transform . 275

Example: FFT of a Sampled Cosine Wave . 276

Window Functions . 277

Filtering . 279

Filter Design . 279

Example: Heart-Rate Monitor. 281

Example: Moving Average . 283

Final Notes and References . 284

CHAPTER 9 Image Processing . 285

Reading, Writing, and Displaying Images . 286

Reading Images from File. 286

Image Attributes. 287

Displaying Images . 288

Converting File Formats . 289

Image Manipulation. 291

Creating New Images . 291

Copy and Paste. 292

Crop and Resize . 292

Rotate. 293

Image Annotation. 294

Annotating with Geometrical Shapes . 294

Text Annotations. 295

Image Processing . 300

Matrix Representation and Colors . 300

Example: Counting Objects (Five Parts) . 303

Image Arithmetic . 312

Image Filtering . 315

Final Notes and References . 317

CONTENTSxiv

CHAPTER 10 Advanced File Processing . 319

Binary Files and Random Access . 319

Example: Reading the Nth Field. 321

Example: Efficient Tail Implementation . 322

Example: Creating a Fixed-Size File . 323

Example: Recording Time-Based Binary Data 323

Object Serialization . 325

The Pickle Module . 325

Command-Line Parameters. 327

argv . 327

Example: Creating a Fixed-Size File (Stand-Alone Script) 328

OptParse Module . 329

The FileInput Module . 332

File and Directory Manipulation. 333

Module glob . 334

Additional os Module Functionality . 334

Additional os.path Module Functionality . 335

Module shutil . 336

File Compression . 337

Example: A Compressed tar File . 338

Comparing Files . 339

Module filecmp. 339

Module difflib . 341

Final Notes and References . 342

APPENDIX Additional Source Listing . 343

Nudge Subplots . 343

Magic Square Arrows . 345

Fractal Function Source Code . 347

INDEX . 349

xv

About the Author

SHAI VAINGAST has been an engineer, an engineering manager, and
a director of engineering since 1993. He has worked in the defense
industry and in the medical device industry while being heavily
involved with data processing and visualization. He has several
patents.

xvi

About the Technical Reviewer

C. TITUS BROWN is a professor of Computer Science and Engineering and Microbiology and
Molecular Genetics at Michigan State University, where he studies developmental biology.
Dr. Brown has been using Python for about a decade, and he is the author of several Python
bioinformatics packages as well as several testing tools. You can visit his blog at

.

xvii

Acknowledgments

I’d like to thank the following individuals for their contribution to the book (in alphabetical
order): Shai Ayal, C. Titus Brown, Ehud Cohen, Bryan Crouse, Kylie Johnston, Michelle Lowman,
Rich Lundeen, Frank Pohlmann, Ami Saguy, Sam Saguy, Janet Vaingast, Motty Vaingast, Orna
Vaingast, and Arnon Zeira.

xviii

Introduction

I was always drawn to math and computers, ever since I was a kid playing computer games
on my Sinclair ZX81. When I attended university, I had a special interest in numerical analy-
sis, a field that I felt combines math and computers ideally. During my career, I learned of
MATLAB, widely popular for digital signal processing, numerical analysis, and feedback and
control. MATLAB’s strong suits include a high-level programming language, excellent graph-
ing capabilities, and numerous packages from almost every imaginable engineering field. But
I found that MATLAB wasn’t enough. I worked with very large files and needed the ability to
manipulate both text and data. So I combined Perl, AWK, and Bash scripts to write programs
that automate data analysis and visualization. And along the way, I’ve developed practices and
ideas involving the organization of data—for example, ways to ensure file names are unique
and self-explanatory.

With the increasing popularity of the Internet, I learned of GNU/Linux and the open
source movement. I made an effort to use open source software whenever possible, and so I’ve
learned of GNU-Octave and gnuplot, which together provide excellent scientific computing
functionality. That fit well on my Linux machine: Bash scripts, Perl and AWK, GNU-Octave and
gnuplot.

Knowing I was interested in programming languages and open source software, a friend
suggested I give Python a try. My first impression was that it’s just another programming lan-
guage: I can do most anything I need with Perl and Bash, resorting to C/C++ if things got hairy.
And I’d still need GNU-Octave and gnuplot, so what’s to gain? Eventually, I did learn Python
and discovered that it is far better than my collection of tools. Python provides something that
is extremely appealing: it’s a one-stop shop—you can do it all in Python.

I’ve shared my enthusiasm with friends and colleagues. Many who expressed interest with
the ideas of data processing and visualization would ask, “Can you recommend a book that
teaches the ideas you’re preaching?” And I would tell them, “Of course, numerous books cover
this subject!” But they didn’t want numerous books, just one, with information distilled to
focus on data analysis and visualization. I realized there wasn’t such a title, and this was how
the idea for this book originated.

Who This Book Is For
Although this book is about software, the target audience is not necessarily programmers or
computer scientists. The reader’s main line of work is research or R&D, in his or her field of
interest, be it astrophysics, signal and image processing, or biology. The audience includes

INTRODUCTION xix

-
istry) working on their thesis, dealing with large experimental data sets. The book also
appeals to students working on purely theoretical projects, as they require simulations
and means to analyze the results.

chemical engineering: engineers working with large sets of data from multiple sources.
In EE more specifically, signal processing engineers, communication engineers, and
systems engineers will find the book appealing.

world, willing to dive into a new world of tools.

Python to support their hobby.

The book can be appealing to these groups for different reasons. For scientists and engi-
neers, the book provides the means to be more productive in their work, without investing a
considerable amount of time learning new tools and programs that constantly change. For
programmers and computer enthusiasts, the book can serve as an appetizer, opening up their
world to Python. And because of the unique approach presented here, they might share the
enthusiasm the author has for this wonderful software world. Perhaps it will even entice them
to be part of the large and growing open source community, sharing their own code.

It is assumed that the reader does have minimal proficiency with a computer; namely he
or she must know how to manipulate files, install applications, view and edit files, and use
applications to generate reports and presentations. Background in numerical analysis, signal
processing, and image processing, as well as programming, is of help, but not required.

This book does not intend to serve as an encyclopedia of programming in Python and the
covered packages; nor does it try to be complete. It serves as an introduction to data analysis
and visualization in Python and covers most of the topics associated with that field.

How This Book Is Structured
The book is designed so that you can easily skip back and forth as you engage topics.

Chapter 1 is a case study introducing the topics discussed throughout the book: data anal-
ysis, data management, and, of course, data visualization. The case study involves reading GPS
data, analyzing it, and plotting it along with relevant annotations (direction of travel, speed,
etc.). A fully functional Python script will be built from the ground up, complemented with lots
of explanations. The fruit of our work will be an eye-catching GPS route.

If you’re new to data analysis and visualization, consider reading Chapter 2 first. The
chapter describes how to set up a development environment to perform the tasks associated
with data analysis and visualization in Python, including the selection of an OS, installing
Python, and installing third-party packages.

If you’re new to Python, your next stop should be Chapter 3. In this chapter, I swiftly
discuss the Python programming language. I won’t be overly rehashing basic programming
paradigms; instead I’ll quickly overview the Python programming building blocks.

INTRODUCTIONxx

Regardless of your Python programming experience, I highly encourage you to read Chap-
ter 4 before proceeding to the next chapters. Organization is the key to successful data analysis
and visualization. This chapter covers organizing data files, pros and cons of different file
formats, file naming conventions, finding data files, and automating file creation. The ideas in
Chapter 4 are used throughout the book.

From here on out you have several options. If you intend to process text and data files,
proceed to Chapter 5. Chapter 5 covers text files from all aspects: I/O operations, string pro-
cessing, the csv module, regular expressions, and localization and internationalization. If
Chapter 5 leaves you wanting to know more about file processing, proceed to Chapter 10.
Chapter 10 includes advanced file processing topics: binary files, command-line arguments,
file and directory manipulation, and more. Both Chapters 5 and 10 are complemented with
numerous examples.

If graphs and plots are your heart’s desire, skip directly to Chapter 6. In Chapter 6 I exam-
ine matplotlib and explore its capabilities.

If you’re interested in the numerical aspects of data, it is advised you read Chapter 7
first. Chapter 7 discusses the basic building blocks for scientific computing. Chapter 8 builds
on Chapter 7 and includes more advanced topics such as numerical analysis and signal
processing.

Image processing is an important aspect of data processing. Chapter 9 deals with tools
available as part of the Python Imaging Library (PIL) package and shows how to further
expand the package and perform more complex image processing tasks.

Chapter 10 covers advanced file processing topics including binary files and random
access, object serialization, command-line parameters, file compression, and more.

Finally, the Appendix provides additional source code listings used in the book.

Downloading the Code
The source code for this book is available to readers at in the Source Code sec-
tion of this book’s home page. Please feel free to visit the Apress web site and download all the
code there. You can also check for errata and find related titles from Apress.

Contacting the Author
You can contact me at .

C H A P T E R 1

Navigating the World of Data
Visualization
A Case Study

As an engineer, I work with data all the time. I parse log files, analyze data, estimate values,
and compare the results with theory. Things don’t always add up. So I double-check my analy-
sis, perform more calculations, or run simulations to better understand the results. I refer to
previous work because the ideas are similar or sometimes because they’re dissimilar. I look at
the graphs and realize I’m missing some crucial information. So I add the missing data, but it’s
noisy and needs filtering. Eventually, I realize my implementation of the algorithm is poor or
that there is a better algorithm with better results, and so back to square one. It’s an iterative
process: tweak, test, tweak again until I’m satisfied with the results.

Those are the tasks surrounding research and development (R&D) work. And to be honest,
there’s no systematic method. Most of the time, research is organized chaos. The emphasis,
however, should be on organized, not chaos. Data should be analyzed and presented in a
clear and coherent manner. Sources for graphs well understood and verified to be accurate.
Algorithms tested and proven to be working as intended. The system should be flexible. Intro-
ducing new ideas and challenging previous methods should be easy and testing new ideas on
current data fast and efficient.

In this book I will attempt to address all the topics associated with data processing and
visualization: managing files and directories, reading files of varying formats, performing
signal processing and numerical analysis in a high-level programming language similar to
MATLAB and GNU-Octave, and teaching you Python, a rich and powerful programming lan-
guage, along the way.

In a nutshell, Beginning Python Visualization deals with the processing, analysis, manipu-
lation, and visualization of data using the Python programming language. The book covers the
following:

1

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION2

visualization

formats and storing and organizing data to enable fast, efficient data processing

graphing and plotting, and more

Gathering Data
We spend a considerable time recording and analyzing data. Data is stored in various formats
depending on the tools used to collect it, the nature of the data (e.g., pictures vs. sampled
analog data), the application that will later process the data, and personal preferences. Data
files are of varying sizes; some are very large, others are smaller but in larger quantities. Data

date, grouped together in one big directory or in a database, or adhere to a different scheme
altogether. Typically, the number of data files or the amount of data per file is too large to
allow skimming or browsing with an editor or viewer. Methods and tools are required to find
the data and analyze it to produce meaningful results.

Case Study: GPS Data
You just got a USB GPS receiver for your birthday! You’d like to analyze GPS data and find out
how often you exceed the speed limit and how much time you spend in traffic. You’d like to
track data over a year, or even longer.

Some hardware background: most USB GPS receivers behave as serial ports (this is also
true for Bluetooth GPS devices). What this means is that once a GPS is connected, and assum-
ing it’s installed properly, reading GPS data is as simple as opening the COM port associated
with the GPS and reading the values. GPS values are typically clear text values: numbers and
text. Of course, if you’re planning on recording data from your car, it would make a lot of sense
to hook it up to a laptop rather than a desktop.

recording GPS data.

Note If you wish to follow along with the remainder of the chapter by means of issuing the commands
yourself and viewing the results, you might first want to refer to Chapter 2 and set up Python on your system.
That being said, it’s not necessary, and you can follow along to get an understanding of the book and its
purpose. In fact, I encourage you to come back to this chapter and read it again after you’ve had more expe-
rience with Python.

Python is an interpreted programming language. What this means is each command
is first read and then executed, in contrast to compiled programming languages, where the
entire program is evaluated (compiled) and then executed. One of the important features of

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 3

interpreted programming languages is that it’s easy to run them interactively. That is, perform
a command, examine the results, perform more commands, and examine more results, and so
on. The ability to run Python interactively is very useful, and it allows you to examine topics as
you learn them.

It’s also possible to run Python scripts, that is, noninteractively, and there are several ways
to do that. You can run scripts from the interactive Python prompt by issuing the command

. Or you can enter at the command-line
interface of your operating system. If you’re using IPython, you can issue the command

 instead; and if you’re running IDLE, the Python GUI, you can open the script
 extension is a common convention that distinguishes

Python scripts from other files.
Back to recording GPS data. To be able to access the serial port from Python, we’ll be

using the pySerial module. PySerial, as the name suggests, allows seamless access to serial
ports. To use pySerial we must first read the module to memory, that is, import it using the

 command. If all goes well, we’ll be presented with the Python prompt again.

Note To distinguish between interactive sessions and Python scripts, when code starts with , it
means that the code was run on Python interactively. In case the ellipsis symbol () appears, it means that
this is a continuation of a previously interactively entered command. Lines of text following the symbols
or is Python’s response to the issued command. A code listing that does not start with is a script
written in an editor, and in order to execute it you will have to save it under (or some other
name) and execute it as described previously.

Scanning Serial Ports
Next, we need to find the serial port parameters: the baud rate and the port number. The baud
rate is a GPS parameter, so it’s best to consult the GPS manual (not to worry if you can’t find
this information, I’ll discuss later how to “guess” what it is). As for the port number, this is
determined by your operating system. If you’re not sure how to find the port number, or if the
port number keeps changing when you plug and unplug your GPS, you can use the short pro-
gram in Listing 1-1 to identify active serial ports.

Listing 1-1. Scanning Serial Ports with

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION4

Note Short programs are typically referred to as scripts.

Run and note the result:

This is a rather line by line.
The first line, , loads the pySerial module. We then assign to the Boolean vari-
able the value ; this variable will be used as an indication of whether a serial port
was found or not. We proceed with the loop: the loop goes over the values between and

 as implied by (most systems have less than 64 virtual COM ports). The function
 returns a list of values from to . Our approach to seeing what ports are available

is rather simple: try and open the port, and if all goes well, that port is a candidate. If it was not
possible to open the port, just ignore that port. And so this is exactly how it’s coded!

with the clause, or more figuratively, ask forgiveness. This is eloquently coded with the
/ mechanism.

In our case, the function that’s most likely to fail (raise an exception) is the one that tries
to open a nonexistent port: . The function is part of the serial
module (notice case sensitivity). To access functions within modules, you specify the mod-
ule name, dot (), and the function name. So to call the function within the module
serial, write . The function takes one parameter: the port number.
Python, like C, starts counting at 0, so remember to subtract 1 from your virtual COM port

call to will allow me access to the GPS. If the port is successfully opened, no
exception is raised, and the opened port is associated with the variable .

The next line in the block, , tries to close the port. Closing the port renders
it accessible to other applications, including your own. If you neglect to close the port, Python
will close it for you once the variable associated with it, , is no longer in use. We also print
out a message saying the port is a good candidate and set the flag to .

If the block of commands under fails, the block of commands under is exe-
cuted assuming the condition is met. In our case, if an exception occurred, and if the
exception is of type , which means the port could not be
opened, we want to simply disregard it. This is done using the statement, which does
nothing.

Lastly, once the loop is complete, and in case no port was found, a message indicating
that is printed.

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 5

Note The indentation (tabs) in Python is important because it groups commands together. This is also
true when using Python in an interactive mode. All lines with the same indentation are considered one block.
Python’s indentation is equivalent to C/C++ curly braces— .

Recording GPS Data
Let’s start gathering data. Enter code in Listing 1-2 and record it in the file .

Listing 1-2.

This time, we’ve imported another module: time. The time module provides access to
date and time functions, and we’ll use those to name our GPS data files. We also introduce
an important notion here, comments! Comments in Python are denoted by the sign and
are similar to C++ double slash notation, . Everything from that point onward is considered
a remark. If the sign is at the beginning of a line, then the entire line is a remark, usually
describing the next line or block of code. The exception to the sign indicating a remark is if it
is quoted inside a string, as follows: .

Don’t forget to change the port number to point at your serial port (minus 1) and set
the proper baud rate. Determining the baud rate is not complex either—best to consult the
manual. Mine turned out to be 4800, but if you’re not sure, you can tweak this parameter. The
script will print the output from the GPS on screen so you can change the baud
rate value (in multiples of 2, for example 4800, 9600, and so on) until you see some meaningful
results (i.e., text and numbers).

Running (I’ll get to how it works soon) yields GPS data:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION6

Data is being recorded to file as it is displayed. When you wish to stop viewing and record-
ing GPS data, press Ctrl+C. If you’re running in an interactive Python, once you issue Ctrl+C,
be sure to close the serial port, or you won’t be able to rerun the script . To close
the port, issue the following command:

It’s also a good idea to close the file:

Let’s turn back so I can explain how works. The heart of the script lies in
the following lines of code:

This is a straightforward implementation. The first line, , instructs that the
following block should be run indefinitely, that is, in an infinite loop. That’s why you need to
press Ctrl+C to stop recording. The next three lines are then executed continuously. What we
do is read a line of text from the serial port, store it to file, and print it to screen. Reading GPS
data is carried out by the command . Writing that data to a file for later
processing is done by . Printing the data to screen so the user has some visual
feedback is done with . The reason for the comma following is to suppress an
extra line break.

Data Organization
Let’s turn to selecting file format, file naming conventions, and data location. Now there isn’t
a good solution that fits all, but the methodologies and ideas are simple. The method I’ll use
here is based on file names. I’ll show you how to name data files in a way that lends itself easily
to automatic processing later on.

File Format
A file format is
the Comma Separated Values (CSV) file format. CSV files are text files with values separated by

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 7

CSV is a popular format recognized by most spreadsheets and database applications and,
of course, text editors, seeing as they’re really just text files. As it turns out, the data the GPS
outputs is already comma separated, so all that’s required is to save this information to a file,
as is.

File Naming Conventions
We turn to selecting

-
thing about the contents. Lastly, we’d like the file name extension to tell us how to view the
file. The latter is typically achieved by selecting a proper extension, in our case, . Here are
the naming conventions I chose for this example:

hyphen between the date and time: YYYY-mm-dd-HH-MM-SS, where YYYY stands for
year, mm for month, dd for day, HH for hours, MM for minutes, and SS for seconds. In
case a value is one digit and two digits are required, values will be padded with zeros,

regarding the ISO format, refer to ISO 8601, “Data elements and interchange formats—
Information interchange—Representation of dates and times” ().

 extension.

like this:

Data Location
This is where we store data files:

. All scripts are stored in directory . Both
directories are under the same parent directory . So a relative path from to
is .

to also add a file. Readme files are clear text files describing
the contents of a directory, in as much detail as deemed reasonable: the data source,
data acquisition system, person in charge of data gathering, reason for gathering the
data, and so on. Here’s an example:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION8

Data Analysis
Once data is organized and accessible in files, the next step is to extract information. Informa-
tion can be a value, a graph, or a report pertaining to the problem at hand.

The idea is to use Python’s scripting abilities and the wide range of readily available pack-
ages to write a fully automated application to process, analyze, and visualize data. Scripts are
small pieces of code that are written relatively quickly in a high-level programming language.
The key word here is productivity, the ability to change and test algorithms and extract results
fast. Scripts might not be highly efficient in terms of processing speed, but written properly,

search the hard drive for data files, analyze log files, and extract the maximum and minimum
temperatures, or in our case, analyze GPS data.

Back to our GPS case study. The following is the algorithm we’ll follow:

1. Compile a list of all the data files.

2.

a. Read the data.

b. Process the data.

c. Plot the data.

Walking Directories
To compile a list of all the files having GPS data, we’ll use the function provided with
the module os, which is part of the Python Standard Library. To use os, we issue .

Note To be able to change directories within the Python interpreter, first issue . Then,
to change to a directory, issue . To list directory contents, you can use

. Some interpreters like IPython let you use, among other enhancements,
shell-like commands such as and , which add considerably to usability.

The function iterates through the directory and its subdirectories recur-
sively, looking for files and folders, storing the results in variables , , and . The
second line prints out the root directory for our search, in our case (notice the rela-
tive path), then the subdirectories, and lastly the files themselves, in a list. I’ve only recorded
two data files, but as time progresses, more data is added to this folder, and the number can

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 9

increase substantially. Since we have no subdirectories in folder , the output correspond-
ing to should be an empty list, which is denoted by .

 is a bit of an overkill here. In our case, directory doesn’t have any sub-
directories, and we could have just as easily listed the contents of the directory using the

 function call, as follows:

However, is very useful. It’s not uncommon to have files grouped together in

might want to group files in accordance with the GPS that recorded the data. Or if another
driver is recording GPS data, you might want to put that data in a separate subdirectory within
your directory. In those cases, is exactly what’s needed.

Now that we have a list of all the files in directory , we turn to process only those
with the extension. This is done using the function, which checks whether a

 state-
ment: instructs the loop to skip current execution and proceed to the next

create a full file name path from the directory and the file name, , as shown in
Listing 1-3.

Listing 1-3. Processing Only CSV Files

Reading CSV Files
Our next step is to read the files. Again, we turn to Python’s built-in modules, this time the csv
module. Although the CSV file format is quite popular, there’s no clear definition, and each
spreadsheet and database employs its own “dialect.” The files we’ll be processing adhere to
the most basic CSV file dialect, so we’ll use the default behavior of Python’s csv module. Since
we’ll be reading several CSV files, it stands to reason to define a function to perform this task.
Listing 1-4 shows this function.

Listing 1-4. A Function to Read CSV Files

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION10

The first line defines a function named . CSV file support is introduced
with the csv module, so we have to before calling the function. The function takes
one variable, , and returns an array of rows holding data in the file. What I mean by
this is that every line read is processed and becomes a list, with every comma-separated value

 lets us know the size of the array of lists. It’s also a crude way for us to ensure that
data was actually read into the array.

The second line in the function is called a docstring, and it is characterized by three quotes
() surrounding the text in the following manner: . In this case, a docstring
is used to document the function, that is, what it does. Issuing the command
yields its docstring:

You should use extensively. can be invoked with functions as well as mod-

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 11

Next in our dissection is the line which declares a variable named and ini-
tializes it as an empty list. will be used to store the values from the CSV file.

The csv module helps us read CSV files by automating a lot of the tasks associated with

only provide an overview.
These are the operations to perform in order to read CSV files using the csv module:

1. Open the file for reading.

2. Create a object. The object has functions that help us read CSV
files.

3. Using the object, read the data from the file, a row at a time.

4. Append every row to variable .

5. Close the file.

Let’s try this, a step at a time:

. The opened file can now be referred
to by the variable . Next, we create a object, . We associate the

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION12

object, , with the file . We then iterate through every row of the object and print
that row. Lastly, we close the file by calling . It is considered good practice to close
the file once you’re done with it, but if you neglect to do so, Python will close the file automati-
cally once the variable is no longer in use.

One of the things that you can do in Python is cascade functions. This means you can call
functions on results of other functions. This process can be repeated several times. Cascad-
ing (usually) adds clarity and produces more elegant scripts. In our case, since variable isn’t
really important to us, we discard it after we attach it to a object; so instead of the
preceding code, we can write the following:

The same holds true for variable , so if we’re feeling particularly brave, we can use this
script:

While the script might be shorter, there’s no performance gain. It is therefore suggested
that you cascade functions only if it adds clarity; there’s a good chance you’ll be editing this
code later on, and it’s important to be able to understand what’s going on. In fact, not cas-
cading functions might be useful at times because you might need access to intermediate
variables (such as and in our case).

The object converts each row we read into a row of fields, in the form of a
list. That row is then appended to a list of rows, . This is also the value returned by the
function.

Note By now you’ve seen the dot symbol () used several times, and it might be a bit confusing, so an
explanation is in order. The dot symbol is used to access function members of modules as well as function
members of objects (classes). You’ve seen it in member functions of modules, such as , but
also for objects, such as . In the latter, it means that the file object has a member function
and that function is called to operate on variable . To access these functions, we use the dot operator. We’ll
touch on this again in Chapter 3. Lastly, we use the ellipsis symbol () to denote line continuation when
interactively entering commands in Python.

Analyzing GPS Data
Let’s take a closer look at the GPS data.

.

 and .

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 13

Not being GPS savvy, I looked up the GPS format on the Internet. It turns out the for-
mat is known as NMEA 0183. NMEA stands for the National Marine Electronics Association;
see for more information. The NMEA 0183 data format is described at

. There are a lot of header stamps in the for-
mat, and some might hold useful information for our task.

As mentioned earlier, several header stamps appear in our data files, but which ones

stamps from the NMEA standard are even present in our data files. One option would be to
open the files, look for the headers, and jot down every new header once we see it. Another, of
course, would be to use Python to do that for us.

Python is a very high-level programming language. As such, it has built-in support for
dictionaries (also known as associative arrays in Perl), which are data structures that have a
one-to-one relationship between a key and a value, very much like real dictionaries. Tradi-
tional dictionaries, however, often have several values for a key, that is, several interpretations
(values) for one word (key). You can easily implement this in Python’s using the dictionary
object as well by assigning a list value to a key. That way you can have several entries per one
key, because the key is associated with a list that can hold several values. In reality, it’s still a
one-to-one relationship. But enough about that for now, I’ll cover dictionaries in more detail
in future chapters. What we want to do here is use a dictionary object to hold the number of
times a header is encountered. Our key will be the GPS header stamp, and our value will be a
number, indicating occurrence. We’ll increment the value whenever a key is encountered, as
shown in

Listing 1-5. Function

Some notes about this
the key benefits of docstrings. Docstrings will display all the spaces and line breaks as shown
in the function itself. Next we initialize a variable, , to be our dictionary. We then pro-
cess every list in the GPS data: we only care about the first element of every row, as that’s the
value that holds the GPS header stamps. We then increment the value associated with the key:

. We use the operation to increment the value by 1, similar to how
it’s done in C (Python, however, does not use the operator). If the key does not exist, which
will happen whenever we encounter a new header stamp, an exception will be raised. We

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION14

catch the exception with our statement. In case of an exception, we set the
dictionary value associated with the key to .

The function can be written even more compactly using the diction-
ary method ; see Chapter 3 for details.

Let’s analyze some GPS data:

Turns out there are four distinct GPS headers being generated by my GPS. Of those, only
two interest me: , which holds the number of satellites in view (Hey! It’s really impor-
tant!), and , which holds location and velocity information.

So what we’d like to do is code a function that takes the GPS data and, whenever the
header field is or , extracts the information and stores it in numerical arrays that
will be easier to manipulate later on. Numerical arrays are introduced with the NumPy mod-
ule, so we have to issue . Since we’ll be using a lot of the functionality of NumPy,
SciPy, and matplotlib, an easier approach would be to issue , which imports all
these modules, as follows:

Note The name PyLab comes from Python and MATLAB. PyLab provides MATLAB-like functionality in
Python.

Extracting GPS Data
In the case of a header, the number of satellites is the fourth entry. In case of a
header, we have a bit more interesting information. The second field is the timestamp, the
fourth field is the latitude, the sixth field is the longitude, and the eighth field is the velocity.
Again, turn to the NMEA 0183 format for more details. Table 1-1 summarizes the fields and
their values in a line.

Table 1-1. Information (Excerpt)

Field Name Index Format

Header 0 (fixed)

Timestamp 1 hhmmss.ss

Latitude 3 DDMM.MMM

Velocity 7 VVV.V

Some caveats regarding the information in . We first turn to the timestamp of an
arbitrary line:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 15

In this output, the timestamp appears as . This follows the format hhmmss.ss
where hh are two digits representing the hour (it will always consist of two digits—if the hour
is one digit, say 7 in the morning, a 0 will be added before it), mm are two digits representing
the minute (again, always two digits), and ss.ss are five characters (four digits plus the dot)
representing seconds and fractions of seconds. (There’s also a North/South field as well as
an East/West field. Here, for simplicity, we assume northern hemisphere, but you can easily
change these values by reading the entire structure.)

Note In the ISO time format, we’ve used HHMMSS to denote hours minutes and seconds. Here we follow
the convention in NMEA, which uses hhmmss.ss for hours, minutes, and seconds and sets DD and MM to
angular degrees and minutes.

The timestamp string is a bit hard to work with, especially when plotting data. The first
reason is that it’s a string, not a number. But even if you translated it to a number, the system
does not lend itself nicely to plotting because there are 60 seconds in a minute, not a 100. So
what we want to do is “linearize” the timestamp. To achieve this, we translate the timestamp
as seconds elapsed since midnight, as follows: T = hh * 3600 + mm * 60 + ss.ss.

The second issue we have is that hh, mm, and ss.ss are strings, not numbers. Multiplying
a string in Python does something completely different from what we want here. So we have to
first convert the strings to numerical values, in our case, , because of the decimal point in
the string representing the seconds. This all folds nicely into the following:

The operator denotes the index, so is the second field of (counting starts at
zero) which is a string. The first two characters of a string are denoted by ; this is known
as string slicing. So to access the first two characters of the first field, we write .
Upcoming chapters will include more about strings and methods of slicing them.

Next we tackle latitude and longitude. We face the same issue as with the timestamp, only
here we deal with degrees. Latitude follows the format DDMM.MMM where DD stands for
degrees and MM.MMM stands for minutes. We decide to use degrees this time. To translate
the latitude into decimal degrees, we need to divide the minutes by 60:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION16

require the fourth field, hence . This example also
introduces another notation, , which means the slice of the string from the third character
until the end. Also notice that the code uses and not . When dividing by 60, it’s implied
that you want an integer division; dividing by 60.0 means you want a floating-point division,
which is to say you care about the information past the decimal point. However, seeing as we
already specified that we want the information as a floating-point number as indicated by the

 conversion, the result will be a floating point regardless. Still, it’s good practice to let
Python know what kind of division you really want.

Here are some examples to further illustrate the point:

Longitude information is similar to latitude with a minor difference: longitude degrees are
three characters instead of two (up to 180 degrees, not just up to 90 degrees) so the indices to
the strings are different.

Listing 1-6 presents the entire function to process GPS data.

Listing 1-6. Function

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 17

Some notes about the function:

 is defined as , which is one nautical mile in meters and also one minute on
the equator. The reason the constant is not defined in the function is that we’d like
to use it outside the function as well.

, , , , and
by setting them to an empty list: . Initializing the lists creates them and allows us to
use the method, which adds values to the lists.

 and statements are self-explanatory: is a conditional clause, and is
equivalent to saying “else, if.” That is, if the first condition didn’t succeed, but the next
condition succeeds, execute the following block.

 that appears on the several calculations and on the line indicates
that the operation continues on the next line.

a tuple of arrays. A tuple is an immutable sequence, mean-
ing you cannot change it. So tuple means an unchangeable sequence of items (as
opposed to a list, which is a mutable sequence). The reason we return a tuple and not
a two-dimensional array, for example, is that we might have different lengths of lists to
return: the length of the number of satellites list may be different from the length of the
longitude list, since they originated from different header stamps.

Here’s how you call :

The second line introduces sequence unpacking, which allows multiple assignments.
Armed with all these functions, we’re ready to plot some data!

Data Visualization
Our next step is to visualize the data. We’ll be relying on the matplotlib package heavily. We’ve
already imported matplotlib with the command , so there’s no additional
importing needed at the moment. It’s time to read the data and plot the course.

Our first problem is that the information is given in latitude and longitude. Latitude and
longitude are spherical coordinates, that is, those are points on a sphere, the earth. But we
want a map-like plot, which uses Cartesian coordinates, that is, x and y. So first we have to
transform the spherical coordinates to Cartesian. We’ll use the quick-and-dirty method shown
in Listing 1-7 to do this, one that’s actually quite accurate as long as the distances traveled are
small relative to the radius of the earth.

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION18

Listing 1-7. “Quick-and-Dirty” Spherical to Cartesian Transformation

To justify this to yourself, consider the following reasoning: As you go up to the North
Pole, the circumference at the location you’re at gets smaller and smaller, until at the North
Pole it’s zero. So at latitude 0º, the equator, each degree (longitude) means more distance trav-

 is a function of the longitude value itself but also of the
latitude: the greater the latitude, the smaller a longitude change is in terms of distance. On the
other hand, , which is north to south, is not dependent on longitude.

The next thing to understand is that the earth is a sphere, and whenever we plot an x-y
map, we’re only really plotting a projection of that sphere on a plane of our choosing, hence
we denote it by (px,py), where p stands for “projection.” We’ll take the southeastern-most
point as the start of the GPS data projection: (px,py) = (0,0). This translates into the code
shown in Listing 1-8.

Listing 1-8. Projecting the Traveled Course to Cartesian Coordinates

Some things to note:

 and are arrays of floating-point values. We now operate on entire arrays
seamlessly. This is part of the NumPy package.

 is a constant equal to /180, converting degrees to radians.

subtract the minimum latitude and minimum longitude values from latitude and lon-
gitude values, respectively.

GPS Location Plot
Now the moment we’ve been waiting for, plotting GPS data. To be able to follow along and
plot data, be sure to define the functions and as previ-
ously detailed and set the file name variable to point to your GPS data file. I’ve suppressed
matplotlib responses so that the code is cleaner to follow.

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 19

Figure 1-1. GPS data

We’ve used a substantial number of new functions, all part of the matplotlib package:
, , , , and more. Most of them are self-explanatory:

 and will print a label on the x- and y-axis,
respectively. is used to print a caption above the graph. The string
value in the title is the file name up to the end minus four characters (so as to not dis-
play “.csv”). This is done using string slicing with a negative value, which means “from
the end.”

 prints the labels associated with the graph in a legend box. is highly
configurable (see for details). The example plots the legend at the top-left
corner.

 plots the grid lines. You can control the behavior of the grid quite extensively.

 requires additional explanation as it is the most versatile. The command
 plots and with the color

blue as specified by the character . The plot is labeled “Cruising” so later on, when
we call the
we set the line width to 3.

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION20

 controls the behavior of the graph axis. Normally, I don’t call the
 function because does a decent job at selecting the right values. How-

ever, in this case, it’s important to visualize the data properly, and that means to have
both x- and y-axes with equal increments so the graph is true to the path depicted. This
is achieved by calling . There are other values to control axis behavior as
described by .

 is a rather exotic addition. It stems from the way
we like to view maps and directions. In longitude, increasing values are displayed from
right to left. However, in mathematical graphs, increasing values are typically displayed
from left to right. This function call instructs the x-axis to be incrementing from right to
left, just like maps.

the graph, calling the function displays the output.

Matplotlib, which includes the preceding functions, is a comprehensive plotting package
and will be explored in Chapter 6.

Annotating the Graph
We’d like to add some more information to the GPS graph: we’d like to know where we’ve

, which is part of the
PyLab package. returns an array of indices that satisfy the condition, in our case:

We also calculate when we’re cruising (i.e., not speeding nor standing) for future process-
ing.

To annotate the graph with these points, we add another plot on top of our current plot,
only this time we change the color of the plot, and we use symbols instead of a solid blue line.
The combination indicates a green square symbol (g for green, s for square); the combi-
nation indicates a red circle (r for red, o for circle). I suggest you use different symbols for
standing and speeding, not just colors, because the graph might be printed on a monochrome
printer. The function supports an assortment of symbols and colors; consult with the
interactive help for details. The values we plot are only those returned by the function.

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 21

Figure 1-2. GPS data with additional speed information

We’d also like to know the direction the car is going. To implement this, we’ll use the
 function, which allows the writing of a string to an arbitrary location in the graph. So

to add the text “Hi” at location (10, 10), issue the command . One of the
nice features of the function is that you can rotate the text at an arbitrary angle. So to

. Our
implementation of heading information involves rotating the text “>>>” at the angle the car is
heading. We’ll only do this ten times so as not to clutter the graph with “>” symbols. Calculat-
ing the direction the car is heading at a given point, , is shown in Listing 1-9.

Listing 1-9. Calculating the Heading

Instead of actually using the function , we’ll use the function
. The benefits of using over are twofold: 1) there’s no division that

might cause a divide-by-zero exception in case is zero, and 2) preserves the angle
from –180 degrees to 180 degrees, whereas produces values between 0 degrees and
180 degrees only. The following code adds the direction symbols:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION22

resulting graph.

Figure 1-3. GPS graph with heading

Velocity Plot
We now turn to plotting a graph of the speed. This is a lot simpler:

We start by opening a different figure with the command. We proceed by chang-
ing the timescale units to minutes, a value easier for most humans to follow than seconds.
Selecting the proper units of measurement is important. Most people will find it easier to fol-
low the sentence “I drove for 30 minutes” as opposed to “I drove for 1800 seconds.” We also
set the time axis to start at . Next we plot the velocity as a function of time, in black. Good

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 23

graphs require annotation, so we choose to add two lines describing the thresholds for stand-
ing and speeding as well as text describing those thresholds. To generate the text, we combine
the text “Standing threshold” with the threshold value (after casting it to a string) and use the

shows the final result.

Figure 1-4. Velocity over time

Subplots
We’d also like to display some statistics. But before we do that, it would be preferable to
combine all these plots (GPS, velocity, and statistics) into one figure. To do this, we use the

 function. is a matplotlib function that divides the plot into several smaller

informs subsequent plotting commands that the area to work on is 1 by 2 subplots and the
currently selected subplot is 1, so that’s the left side of the plot area. will
choose the top-right subplot; will choose the lower-right subplot. A selec-
tion I found most readable in this scenario is to have the GPS data take half of the plot area,
the velocity graph a quarter, and the statistics another quarter.

Text
Sometimes, the best way to convey information is using text, not graphics. We’ll be limiting
our work to the statistics quarter for this section. Our first task is to get rid of the plot frame
and the x and y ticks. We just want a plain canvas to display text on. This is achieved by issuing
the following:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION24

The first call to selects our region of work as the lower-right quarter. The second
line removes the axes and hides the frame box.

It’s time to calculate some statistics. It appears that GPS data is being sent in regular inter-
vals, typically one second. So to calculate the time spent standing, in seconds, we calculate
the length of the vector . Likewise, to calculate the time speeding, we can calculate the
length of . To estimate how much these were in percent values, we divide the length of
the and vectors by the length of the velocity vector and multiply by 100. To cal-
culate the average speed, we use the function, which is part of PyLab.

We also would like to calculate the total distance traveled. The distance can be calculated
as the sum of the distances between each two consecutive data points. The function
returns a vector of the differences of the input vector.

This is really useful because now to calculate the distance we can do the following:

which in turn yields the total distance traveled.
To automate the whole process of printing the statistics, we store the text to be printed

in the variable , a list of strings. We also use a method of formatting strings similar to C’s
 function, although the syntax is a bit different. indicates a string; the indicates a

floating point number, in our case indicates a with one digit after the decimal point;
and indicates an integer. The following generates the statistics text:

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 25

To print the text on the canvas, we again use the function, in a loop, iterating
over every string of the list.

We’ve introduced two new functions. One is , which yields the elements of
, in reversed order. The second is , which returns not just each row in the
 array but also the index to each row. So when variable is assigned the value

, the variable is assigned the value , which indicates the ninth row
in . The reason we want to know the index is that we use it as location on the y-axis.
Lastly, the vertical alignment of the text is selected as bottom as suggested by the parameter

 (is short for vertical alignment).

Tying It All Together
combined code to analyze and plot all GPS files in directory .

Listing 1-10. Script

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION26

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 27

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION28

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION 29

Figure 1-5. Output of on some GPS data

Final Notes and References
The GPS problem described here is research in nature: a computation, an intermediate result,
not an end product. Research, or R&D work, especially feasibility studies, requires rapid
responses. This means using readily available tools as much as possible and combining them
to get the job done. If those tools are inexpensive, or free, that’s yet another reason to use them.

Throughout the book, we will examine different packages and modules and see how they
may be used to perform data analysis and visualization. The theme we’ll be using is open
software, including software published under the GNU Public License (GPL) and the Python

of course,
Python.

There are several benefits to developing data analysis and visualization scripts in Python:

Scripts will be numerous and explained in detail, and I aim to cover most of the issues
you are likely to encounter in the real world. Examples include scripts to deal with binary files,
to combine data from different sources, to perform text parsing, to use high-level numerical
algorithms, and much more. Scripts will be written in Python: some will be simple one-liners,
others more complex. Special attention will be given to data visualization and how to achieve
pleasing results in Python.

CHAPTER 1 NAVIGATING THE WORLD OF DATA V ISUALIZATION30

If you’d like to read more about Python in general (and not necessarily for data analysis
and visualization), the Python official web site is an excellent resource:

Official Website,

C H A P T E R 2

The Environment
Tools of the Trade

In the previous chapter we’ve seen a case study involving the collection, analysis, and visual-
ization of GPS data. Unless you’re already familiar with Python and the packages we’ve used,
you should read this chapter and build yourself a development environment.

Analyzing and visualizing data requires several software tools: a text editor to write code,
Python to run and test the scripts, and perhaps a tool to present the results.

I’ve decided to break the discussion of software tools into two categories: general-purpose
software components and specific software components. The general-purpose software com-
ponents are merely a recommendation on my part on tools I think improve productivity. If
you’re already comfortable with another software package, by all means use it over the one
suggested here. The specific software components category, on the other hand, is composed of
tools required to run the examples in the book. To clarify, whenever a component is a required
component, it is clearly mentioned.

The following is a suggested list of software components that I feel provides a solid devel-
opment environment.

General software components:

Specific software components:

This chapter introduces the different software components in a linear fashion, that is, it

supporting software components.

31

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 THE ENVIRONMENT32

Although the chapter is organized in a linear fashion, feel free to skip the general software
components section if you already know what applications you’ll be using. You should, how-

installed; code presented in the book assumes that is the case.

Operating Systems
The development environment is built upon an operating system. There are several options

-

-
ing supported operating systems.

GNU/Linux

-

games, office productivity suites, and much more. A considerable portion of the packages in

Fedora project:

Debian:

Ubuntu:

Gentoo:

some time to acquaint yourself with these distributions to decide on the one that best suits

-

-

synchronize with an online repository and enable downloading and upgrading software. They
also take care of any version conflicts and perform the actual installation tasks such as copying
files and updating system information.

tool to install the software components discussed in this chapter, Python and packages

In case a software application of your liking is not available via the package management
-

CHAPTER 2 THE ENVIRONMENT 33

Python packages, a manual install is straightforward, and an example will be provided later in
Python Package.”

Windows

that is what exact environment Python will be running on. There are three main options to
choose from:

Stand-Alone (Natively)
Unless you have a strong reason against it, this should be your preferred choice if you intend

comes as an executable file with an installer application. After downloading, double-click the

be dealing with also come bundled in this fashion, so installing them should be simple as well.
In case you’d like to install a package that doesn’t come with an installer, you’ll have to

consult with that package’s documentation. By the way, regardless of whether you choose a

to be packages that require a manual installation, so knowing how to do a manual package
install is of value.

Cygwin

an extensive selection to choose from; however, that should not deter you. Install the default
options knowing you can always go back and add or remove applications; it’s as simple as

 All Programs
Bash Shell.

Python. If you want additional functionality—Bash shell, SSH, editors, viewers, version control

it is a bit more complex for a less-experienced user than the stand-alone approach presented

CHAPTER 2 THE ENVIRONMENT34

For example, on my computer, a simple loop summing values was 20 percent slower in

Note Cygwin treats drives differently from Windows as it follows a UNIX directory structure. If you
installed Cygwin under , then this directory is usually denoted as the topmost directory: . To
access directories outside , use the following notation: . For example, if a file
is located in , it is accessible in Cygwin as .

Virtual Machines
The third option, which is

-

Tip Running a virtual machine might be a good option in case you just want to try out Linux in general but
don’t want to go the full route of installing an OS. If that is the case, there is also the option of running a live
CD, which basically means booting a full-fledged Linux OS from CD-ROM. There’s quite a large number of
live CDs available today, with one of the well-known ones being Knoppix ().

INSTALLING COLINUX

As mentioned, installing a Linux VM in Windows is not a trivial task. The process involves several steps that
require Linux and networking expertise. Here’s a set of steps to install coLinux in Windows XP:

1. First, install coLinux with an image of the Linux distribution of your choice.

2. Set up Internet connectivity on the target OS (Linux) so that you can download and update packages.
Update and install packages as needed.

3. Set up a networking connection between the host OS and the target OS so you can transfer data files.

VM packages nowadays, both commercial and open source, automate these tasks and make the instal-
lation a lot more user friendly.

CHAPTER 2 THE ENVIRONMENT 35

small price to pay.

Choosing an Operating System
From a data analysis

which relies heavily on a graphical

files that follow a sequential naming scheme: , , and so forth, which
is rather cryptic. You, on the other hand, would like to rename these files to something a bit
more informative, such as , where is the running index.
So a file named will now be named . You can per-

the number increases, this becomes a tedious task.

Bash, you might issue the following:

overkill; however, once the number of files increases, this is the better approach.

-
ing data files.

Tip There isn’t a right or wrong, whatever OS you choose—the concepts (and code) presented in this
book will work just fine.

CHAPTER 2 THE ENVIRONMENT36

curve, although with today’s distributions the curve has leveled off significantly. Also,

prove a serious disadvantage if your work involves using an already existing piece of

software applications.

combines the GUI experience with UNIX power.
Although relatively new in the data analysis and visualization scene, due to those two

-
sides as I view them are cost and support for legacy hardware.

Table 2-1 summarizes the aforementioned pros and cons.

Table 2-1. Linux, Windows, and Mac OS as Development Environments for Data Processing and
Visualization

Linux Windows MacOS

Then Again, Why Choose? Using Several Operating Systems
The nice thing about Python is that it eliminates the operating system from the equation.
Python is a complete environment, with a “batteries-included” approach: you should be pretty
much good to go, out of the box, after installing Python; the standard library provides full

Python interpreter.

-

If you require more UNIX-like functionality than Python provides but would still like to

CHAPTER 2 THE ENVIRONMENT 37

If you plan on

networking to another machine. Each has its benefits, but remember that you might be deal-
ing with a large number of files, so it would be best if you could access the data on a shared
resource.

Caution Installing an OS is a time-consuming task, taking twice as long if you intend to dual-boot. You
should consult with the Linux documentation of your distribution on how to best achieve dual-booting, and
especially on what OS (Linux or Windows) you should install first. Dual-booting is an advanced topic and is
not suggested for the beginner.

Using a dual-boot system can be annoying at times, especially since you have to reboot
to switch operating systems. Not to mention that the installation process is a bit risky: there

approach is to transfer files using a virtual network interface.

UNIX-

The Python Environment
By now you should’ve
comfortable with downloading and installing packages. It’s now time to install Python. This
section discusses the installation of Python and Python packages to enable programming data
analysis and visualization scripts. A more detailed discussion on using Python both in an inter-

Versions
The book covers Python version 2.5 and should work on version 2.4 as well. As a general
rule, you should opt for the most updated Python version. Unfortunately, that’s not always
possible:

CHAPTER 2 THE ENVIRONMENT38

Python for system administration, and upgrades require extensive testing to ensure the
system is stable. So although a new release of Python becomes available, you might not
be able to use it yet. There are workarounds to that such as installing several versions of

as this topic is beyond the scope of this chapter.

writing, Python 2.6 was released. However, not all the packages used

applicable, I’ve tried to cover the differences between Python 2.6 and

Tip Always make sure you’re downloading and installing a version of a package that is compatible with
the version of Python you’re using. Some packages keep older versions if you need them for compatibility
reasons.

Python
You can download a

-

installer from the
You can install Python from source code, that is, download the source code and compile

that the code does indeed compile properly.
If you are wondering

see
.NET platform, see
afraid they’re not good options for this book. A lot of the code and examples rely heavily on
packages that do not run on Jython or IronPython.

Python Distributions with Scientific Packages
Another option is to use a Python distribution that already bundles a significant number of the

option if you can’t wait to be past the installation phase and up and running code.

CHAPTER 2 THE ENVIRONMENT 39

Tip If you choose the distribution from Enthought or Python(x,y), you can skip the sections related to
SciPy, NumPy, matplotlib, and IPython later in the chapter. Both these distributions include those packages
out of the box.

Python Integrated Development Environments
An integrated development environment -

and will enable a faster learning pace.

Python in a Nutshell: A Desktop Quick Reference and Beginning Python: From Novice to Profes-
sional

IDLE
GUI

Start All Programs Python 2.5 -
lowing features: seamless integration with the Python interpreter, an editor, a debugger, and
a help system. It’s an excellent environment to get up and running, especially if you’re new to
programming.

IPython
As you start working

highly recommended mostly because data analysis and visualization is interactive in nature.
IPython is supported on most platforms. Here’s a short list of the added features that come
with IPython:

-

 for a full account of the
commands you’ve recently typed. You can copy and paste those into a Python script
and save time and effort.

CHAPTER 2 THE ENVIRONMENT40

 or , for
example.

Note IPython is not required but is highly recommended. The code in the book will work without IPython
as well as with it.

IPython comes bundled with

installation documentation.

Note IPython should be installed after Python, GNU Readline, and PyReadline are installed.

CHARACTER COMPLETION WITH GNU READLINE

Character completion with GNU Readline is a welcomed addition to an interactive CLI. With IPython, character
completion can be used to complete

To invoke character completion, start by spelling out the first few characters of the word you wish to
write and then press the Tab key to have GNU Readline try and complete the word for you. The following is
from IPython:

After typing s.is, the user pressed the Tab key and was presented with a list of options. Had the user
spelled the word and pressed Tab, the entire would have appeared automatically at the
prompt.

The way GNU Readline works is that it tries to complete the word by searching for a variable, function,
method, attribute, or file name that matches the typed characters. In case of one option, that word is auto-
matically spelled out at the prompt. In case of several options, all the options are displayed. To select which
of the options you’d rather have completed, supply the next character and then press Tab again. In case of no
matches to the typed word, nothing happens.

CHAPTER 2 THE ENVIRONMENT 41

You can also use the character completion feature to explore methods and attributes of a class, or any
other namespace for that matter. In the following listing, the Tab key is pressed after is entered (notice the
dot).

Scientific Computing
A significant portion of the book is dedicated to the processing of data prior to visualization.

-

at
.

SciPy, NumPy, and matplotlib are all open source software packages and are required to
run the code presented in the book.

NumPy
NumPy provides a powerful N-dimensional array that is the basis for most of the data process-

also provides additional numerical capabilities: linear algebra, Fourier transforms, and more.
NumPy is a mature and stable package and can be downloaded and installed from

SciPy
SciPy builds on top of NumPy and adds additional scientific computing tools. These include
numerical integration, differential equations, interpolation, signal processing, optimization,
linear algebra, and more.

CHAPTER 2 THE ENVIRONMENT42

Even if you’re not interested in scientific computing, I encourage you to give SciPy a try—
it provides additional utility functions to NumPy that are very useful and used extensively in
the book.

SciPy can be downloaded and installed from and will be reviewed
in

Note SciPy relies on NumPy and should be installed after NumPy is installed.

Plotting
step, displaying data graphically to the audience, portraying an idea,

easy plotting and graphing.

Matplotlib
Plotting throughout the book will rely heavily on the matplotlib package, maintained at

can therefore use it both for interactive work, which is very useful in the early stages of an algo-
rithm design; or you can use it in an automatic mode, for example, batch processing, to plot
results to, say, a shared directory or a web server.

-
bilities.

Tip Matplotlib has some additional toolkits available, out of which the one that is of interest especially in
light of Chapter 1 is the basemap toolkit. The basemap toolkit allows working with map projections. I will not
be covering the basemap toolkit in this book.

Gnuplot
An alternative package suggested

-
plot also supports both interactive and hard-copy graphs.

capabilities, opt for gnuplot.

CHAPTER 2 THE ENVIRONMENT 43

Note To use gnuplot from Python, be sure to install both gnuplot and Gnuplot.py. After installing Gnuplot.
py, you’ll have to set the variable to point to the location of the
gnuplot binary executable. Alternatively, you can edit a configuration file to permanently set this variable;
consult with Gnuplot.py’s documentation. In Windows, you’ll also require , which is a part of
gnuplot for Windows and allows sending commands to wgnuplot (the Windows version of the gnuplot appli-
cation).

As mentioned previously, most of the examples in the book rely on matplotlib, so you’ll
need to modify the code if you wish to use gnuplot solely. Unless you have a strong reason not
to use matplotlib, or that gnuplot is already installed on your system and heavily used, I sug-
gest you stick with matplotlib.

Image Processing
Image processing provides the final piece of the puzzle. It is an important part of data visu-

Python Imaging Library

provides a very capable image processing environment for Python.

Additional Python Packages
Numerous Python packages are available, and more are being written every day. The following
are good sources of information on Python packages:

The Python Package Index:

SourceForge:

PySerial
used pySerial to capture GPS data through the serial port. PySerial is available

at .

CHAPTER 2 THE ENVIRONMENT44

Note In Windows, you will also need to install the Python Win32 Extensions (win32all) from
 as well as possibly a real-time library. Consult the

pySerial and Python Win32 Extensions documentation.

Example: Manually Installing a Python Package
As mentioned previously, some Python packages do not come with a stand-alone installer. In
that case, you’ll have to perform a manual install. Not to worry, this is easier than it sounds.

As a general rule, it’s best to read the documentation and follow the instructions. That
being said, most Python packages require a similar set of steps to install:

1.

2. -
pressed files, with extensions such as or , or even self-extracting files.

the extension are downloaded as . If that is the case, rename the file
with the extension

3.
done after Python is installed and working properly on your system.

The first command unpacks the downloaded file to a newly created directory named
; the creation of the new directory is done automatically by the application tar

command changes directory to the temporary directory. The third command performs the
installation and ensures the package is properly installed.

You can also use
from , for better control over install-
ing and maintaining packages, especially packages that depend on other packages. Another
benefit of the package is that you can also install Python packages without worrying about root

Installation Summary
Table 2-2 summarizes the Python packages discussed previously and indicates which software
is required to run the examples in the book.

CHAPTER 2 THE ENVIRONMENT 45

Table 2-2. Package Installation Summary

Software/Package Functionality Required?

Python Python programming language Yes

NumPy N-dimensional arrays and math package Yes

SciPy Scientific tools Yes

Gnuplot, gnuplot.py Plotting and graphing package No

Additional Applications

complete an environment for developing and running data analysis and visualization scripts
in Python.

This section suggests tools to augment the development environment from the open

covering those. The suggested applications are perfectly good for me, but you might have your
own preference, even an application that’s not mentioned here. By all means, use your favor-
ite; this section is mostly intended for those who require some starting points.

Editors
The number one tool in a developer’s arsenal is a text editor. Think of it as your Swiss Army
knife: it can be used to read, write, or modify scripts, view data files, as a scratchpad for ideas,
as a clipboard for intermediate copy and paste, and more. Basic text editors will soon frustrate
you as some are limited in the size of files they can edit, others do not allow several open files,
and yet others are missing syntax highlighting or bookmark capabilities.

Selecting the Proper Editor for You

with a new editor, so consider the following points when you select a text editor or switch from
your current one.

Ease of use -

Multiple file editing: You might be dealing with a considerable number of script files or
even examining data files in the editor. Having one application deal with all these files
removes clutter from your desktop and is generally easier to handle.

CHAPTER 2 THE ENVIRONMENT46

Maximum file size
when you’d like to view large data files.

Syntax highlighting: Syntax highlighting is a feature that displays reserved or specific
syntax of a programming language in a different color or font so that the code is easier

programming languages, including Python. This feature is handy as it will highlight
possible syntax errors as well as make the code more readable.

Line numbering: Errors and warnings typically return line information where they
occurred. Therefore, being able to know what line caused an error without counting

another person.

Most recently used files list: This is a nice feature that allows you to easily access one of
the files you’ve recently viewed or edited, without specifying its full path.

Bookmarks: Bookmarks allow easy navigation and are especially useful with large files.

Macro support and macro recording

Autocompletion: This feature is similar to character completion, described previously
-

used to.

Other features: The preceding is a list of features I consider important. You might have

the proper editor for you.

RECORDING MACROS

Macro recorders are a quick and effective way to perform automation without actually writing code. Suppose
you want to combine every two consecutive lines in a file into one line with symbols in between. This is
not easily done with a search and replace (unless your search and replace also supports new-line characters).
Of course, you could write a Python script to do this, but let’s suppose in this particular case there’s no point
in automation simply because you’ll only do it once. This is exactly where you would use a macro recorder.

First, move your cursor to the beginning of the file (or press Ctrl+Home on some editors to get there).
Now start your macro recorder and perform the following actions: press End to reach the end of the line,
press Del to delete the line separator and combine the two lines into one long line, type &&, move down one
line with the down arrow, and press Home to get to the beginning of the next line. Stop your macro recorder
to finish the recording of your macro. This sequence combines two lines into one, adding in between. Note
that I’ve used the keyboard and not the mouse; this is important, as most macro recorders in editors don’t
support mouse recording.

Next, run the macro N times where N is the number of lines in the file divided by 2 (remember you
combine two lines per run). Or you can run that macro for each pair of lines you want to combine. Some
editors have the option to run the macro to the end of file. The following figure shows a macro recorder in
Notepad++.

CHAPTER 2 THE ENVIRONMENT 47

The macro is highly reliant on the location of the cursor. If you move the cursor to the end of the file and
run the macro, you might get some unintended results.

A Short List of Text Editors

selecting an editor. This is by all means not a comprehensive list of available editors, so shop
around and use the Internet to find more.

Table 2-3. Short List of Open Source Editors

Editor OS/Environment Notes

Has all the features described previ-
-

SciTE
Scintilla Text Editor

A very good text editor, especially if

and X: you can use one editor for

of open files and macro recording
capabilities.

GNU Emacs A very rich

you’re new to Emacs.

A very rich editor that runs on most
any platform; has most of the features

GNU Nano -

but makes up for that in size and
performance. A good candidate when
writing code over a telnet or SSH
connection.

CHAPTER 2 THE ENVIRONMENT48

A BINARY EDITOR

At times it proves useful to edit binary files as well (see Chapter 10 for discussion of binary files). Binary
files typically cannot be viewed nor edited using regular editors (with maybe the exception of Vim). Hexedit
() is a useful utility that allows editing of
binary files. It displays the hex values as well as their ASCII representation (if such is available) and allows
editing of both the hexadecimal and ASCII values. I wouldn’t recommend writing binary files in hexedit, rather
using it to tweak or modify binary files. Hexedit is available with most Linux distributions as well as Cygwin.
To invoke hexedit, issue the following:

While in hexedit, pressing F1 will bring up a help screen. To exit hexedit without saving, press Ctrl+C.

Spreadsheets
Spreadsheets are excellent tools for data processing and visualization. The ease in which a user
can import data from various file formats, organize it, and generate graphs is outstanding.

files are used extensively in data analysis and visualization, and being able to edit them easily
is a great benefit of spreadsheets.

-
cal computations, financial functions, and more. A more experienced user may be able to use
macros to automate tasks or to update results when new data is entered. Because of these fea-
tures, spreadsheets will definitely complement your development environment.

Spreadsheets are not ideal for data processing. They’re designed with an interactive point-

also limited in the amount of data they can process—you typically have to open the entire file
-

tion—it’s hard to capture and document the steps you took to reach a result.
Therefore, we will not be using spreadsheets in this book; however, I will mention their

usage when appropriate. For example, it is of value to know how to export and import data to
and from spreadsheets.

The following are open source spreadsheet applications:

-
able on most platforms.

Word Processors
Finally, it might be of value to write a report or a presentation, displaying the results of your

source applications are available, most notably the following:

CHAPTER 2 THE ENVIRONMENT 49

-
able on most platforms.

Image Viewers
If you plan on performing image processing tasks, an image viewing utility is required. Even
if you’re not really performing an image processing task, for example, generating a hard-copy
graph in known file formats such as PNG and JPG, an image viewing utility is still a must.

image formats.
web

browser.

Version Control Systems

-
eral developers working together simultaneously on the same file.

between the current version and an older one, or even viewing a version of the document
based on date. It might hold such information as who edited the file or the tag assigned to the
document to mark its status.

also a case to be made for even one developer. These management systems are growing in

reason, they’re good software to enhance your development environment.
-

poned until after you’re comfortable with your programming environment. To help offset the

WORKING WITH A VERSION CONTROL SYSTEM

In a nutshell, working with a version control system can be described as follows:

1. Check-out the project: create a local copy of the most updated version of the documents.

2. Modify your local copy: edit source code, fix bugs, and add features.

3. Review your changes: make sure the right files are modified.

4. Commit changes: save the changes you’ve made in the version control repository.

CHAPTER 2 THE ENVIRONMENT50

When you check out a document from the VCS repository, the system ensures you have the most
updated version to work with. This is typically done once, and from here on you edit your local copy. You then
modify your document, and once you’re satisfied with the results, review the changes. Reviewing the changes
can be done by performing a of the file you have with the copy in the repository. You then commit your
changes (also known as checking in) and possibly add a description of the changes. Subsequent modifica-
tions follow steps 2 through 4.

The version control system notifies you in case of a conflict. For example, suppose you checked out
version 1 of the document, but by the time you wish to commit your changes, another developer has already
checked in his version of the document: the system will alert you of a possible conflict, because you’re trying
to update a document which is now version 2, whereas you were working on version 1.

The system also maintains a full history of the project. So even if you’re the only person working on
a project, the ability to go back to previous versions of the project is as simple as checking out an older
revision. Most systems allow checking out of documents based on date, revision, or even a tag that you’ve
previously supplied. Because the system maintains such a complete history, most developers feel that you
should commit changes as often as possible— you won’t be negatively affecting “good” releases.

One final note: if you can, choose to use text files over binary files. Performing a on text files is
supported by most VCS systems and is a valuable tool. With the binary version of the file (e.g., an execut-
able), a yields very little information other than that the current version is not identical to the one in the
repository.

Here’s a set of commands I often use, working on a local copy I’m continually editing, once I’m done
editing my local copy. With Mercurial, I issue

The first command checks the status of the project: which files are modified. The second and third com-
mands check in the local copy and update the repository (where Mercurial stores the files). The last command
ensures I have the most updated version of the project in my local directory.

In CVS, I follow a similar set of commands:

Here are some pointers software applications:

user interfaces including web-based ones.

-
able on most platforms.

CHAPTER 2 THE ENVIRONMENT 51

Example: Directory Structure for the Book

source code, and data for each chapter. I’ve used the following directory structure: each chap-
ter has a directory of its own named
directory corresponding to a chapter, I’ve added four additional directories named , ,

, and ; my data files in directory ;
; and source code in direc-

tory .

Another side benefit of this directory structure is that it is helpful in envisioning how a

the relevant directory for future processing.

Tip This directory structure is also apparent in the source code listing. Since the source code resides in
directory , and data files reside in directory , the relative path to directory data is

. Similarly, the relative path to directory images is .

documents of various revisions to editors, I’ve revisited others, and I’ve sent reviewers yet a
different version. Some would return responses to a revision that I’ve already updated, and so
I had to know what document they’ve edited. If you think about it, in a sense, there were really
several developers for one document, and managing them all is a lot easier with a version con-
trol system.

Licensing

CHAPTER 2 THE ENVIRONMENT52

especially if you intend on distributing your applications. Several software licenses exist, and
I urge you to read each and every one. The same applies for commercial software: ensure you
read the license agreement.

The following is a list of some of the license agreements of the software described in this
chapter. It is neither complete nor comprehensive, and the licenses might change with time,
so be sure to check the most recent license documentation.

GNU licenses, including GPL and LGPL, which cover a substantial number of the pack-
ages described in this chapter:

Linux distributions licenses
choice

Cygwin
 as well as

VMware:

Python:

Enthought (EPD):

IPython:

Matplotlib:

SciPy and NumPy:

Python Imaging Library (PIL):

PySerial:

Python Windows extensions (win32all): refer to the license agreement as part of the
package.

Scintilla and SciTE:

Subversion:

Final Notes and References
By now you should have a full development environment, one that provides all the tools of
the trade. Experiment with your environment, get accustomed to it; in the following chapters
you’ll be using it extensively.

The following provide additional useful information in building a Python development
environment should you want to investigate some more:

Beginning Python: From Novice to Professional, Second Edition,

Python in a Nutshell: A Desktop Quick Reference, Second Edition

C H A P T E R 3

Python for Programmers
The Building Blocks

Python is a very readable language. Assuming you’ve had some previous experience in pro-
gramming, you should be able to read the code presented in the book without much trouble;
you’ll understand what’s going on.

That being said, the book would be incomplete without coverage of the Python program-
ming language. From a book-design perspective, it stands to reason that this chapter appears
in the beginning. But that shouldn’t bind you; feel free to skip it and come back to it later.

Furthermore, this chapter does not cover the full extent of the language. Some Python
topics that I felt were not crucial for data analysis and visualization were left out of scope.
If you would like to learn more about the Python programming language, I’ve listed several
books in the “Final Notes and References” section at the end of the chapter; these books are
all Python oriented and should prove valuable resources.

Now to the chapter itself: I’ll be taking you quickly through the Python building blocks
and complement the discussion with short examples. We’ll start by going through the basics
of invoking and using Python interactively and noninteractively, entering expressions, and
running scripts. We then look at the basic building blocks of most modern programming lan-
guages: data types, structures, variables, printing, flow control, and functions. We continue
with a brief discussion of object-oriented programming (OOP) and finalize with a discussion
of modules and packages.

What Is Python?
Python is an open source, object-oriented, high-level programming language. This is a rather
vague definition; if you’re looking for a more accurate one, have a look at

 and . That being said, I think it’s easier to show what
Python is, rather than try and define it. This really is the purpose of this book in a narrow
sense: using Python effectively for data analysis and visualization and not just learning Python
for the purpose of knowing the language.

Python seemed to have developed a culture around it. You’ll find such notions as
“Pythonic” or “Easier to Ask Forgiveness than Permission” (EAFP) or the “batteries included”
approach—all of which shows that Python is more than just a programming language.

53

CHAPTER 3 PYTHON FOR PROGRAMMERS54

It is rumored that many developers first use the language as a simple tool to solve a
specific problem, but with time they are absolutely captivated to the point they start writing
haikus in Python. I’m afraid I’m not that artistic, so you won’t be seeing any haikus in here.

Here are the language features I view as the most important for the topics presented in
the book:

Open source: Yes, I view this as one of the fundamental aspects about Python. Python,
and its packages, have been developed by an active community. The language evolves
and changes, providing a dynamic environment built on discussion, on actual needs,
on real problems people have to solve. I think this approach ensures a good language
that hopefully will withstand the test of time.

Ease of learning: It’s easy to learn Python, especially if you’re familiar with other pro-
gramming languages—Python combines the best of several programming languages
and programming paradigms in one.

“Batteries included”: Python includes a great number of libraries as part of the standard
library (several will be explored in this book). Additional packages can be installed and
used seamlessly. You should be able to do most, if not all, of the work associated with
data analysis and visualization without ever leaving the Python environment.

Versatility: Python is versatile in that it supports both the early stages of development,
as a rapid application development tool, and later phases of the project, when more
structured programming paradigms are required.

Interactive nature: More about this in the next section.

Interactive Python
The ability to run Python interactively, with a command-line interface (CLI), is an envious
ability. The CLI allows both understanding of the workings of the programming language as
well as your code as you write it. It’s not a new concept, and personally, the first programming
environment I ever used was also interactive in nature: Basic in Sinclair’s ZX-81 (see

 for some nostalgia). At times, when I write C code, I just wish I
could do the same . . .

The interactive nature of Python is elegantly introduced in Guido van Rossum’s “Python
Tutorial” available at (Guido van Rossum is Python’s
creator). Nevertheless, here’s a short introduction to running Python interactively, from a data
analysis and visualization perspective.

Invoking Python
How you invoke Python depends on your platform:

 All Programs
Python 2.5 Python (command line) or IDLE (Python GUI) if you prefer a GUI envi-
ronment. You might have a newer version by now.

CHAPTER 3 PYTHON FOR PROGRAMMERS 55

command:

To exit Python, either press Ctrl+D or enter

Entering Commands
After starting Python in interactive mode, you’re presented with version information along
with a short list of introductory commands, , , , and , and the
Python prompt .

Note Whenever you encounter the prompt in any listings in the book, it is meant to indicate that the
command was issued interactively with the Python interpreter, and you should try it yourself by repeating the
same commands in your Python interpreter. Similarly, when you encounter three dots () at the beginning
of a line of code, it means that this is a continuation of the text entered interactively in the previous line.

Issue any of the these commands by entering the command name and pressing Enter
(from now on, I’ll refrain from mentioning to press Enter or discussing how to erase charac-
ters; I assume you know how to use a CLI). Here’s the output from issuing the command:

Python’s CLI allows entering statements and evaluating expressions. Some basic ones are
described here. Try them to get a feel for the interactive nature of Python:

CHAPTER 3 PYTHON FOR PROGRAMMERS56

The first couple of lines use Python to do basic arithmetic. One of the nice benefits of
using interactive Python as opposed to using a calculator is that you can edit your previous
entries very easily. Plus, you can retrace your steps and find a typo. But that’s hardly the rea-
son for using Python, just an added bonus.

The third line is an assignment: we assign the value to the variable . The next line prints
out the value of times 4. You’ll learn more about variables, functions, and statements soon,
but for now, let’s examine the interactive environment and get you up to speed on how to
work with it efficiently.

The following line shows Python’s string capabilities. A string is typically enclosed in
quotes, so the next command multiplies the string by 4. Which is exactly that: multi-
plied four times results in —pretty cool.

The last line shows what happens when the interpreter encounters a problem: it raises
an exception and reports the reason back to the user. In this particular case, the interpreter
doesn’t know of the function ; this can be easily remedied if we import the function by
issuing , but that’s reserved for later.

The Result Variable
Whenever Python executes a statement, the result is stored in a special variable named . This
is useful when you’re doing some manual calculations:

The result variable keeps on being updated, as shown in this example, so bear that
in mind.

The Interactive Help System
The interactive help system is a valuable tool both when learning the language and when pro-
gramming. Python has a considerable number of functions, modules, and packages, so a help
system is a must. As the name suggests, the help system is an interactive system. Invoking it is
straightforward (notice the required empty parentheses):

Enter to exit the system. Enter a function name to read about it (e.g.,).
If you enter , the help system will respond that there’s no documentation regarding
. The reason for this is that is part of the math module, and to view its help informa-

tion you’ll have to enter instead. Refer to the “Modules and Packages” section later
in this chapter for discussion about modules.

CHAPTER 3 PYTHON FOR PROGRAMMERS 57

You can also view specific function help (noninteractively) using :

In reality what happens when you issue the command is that that func-
tion’s docstring is printed. More about docstrings in the “Defining Functions” section later in
this chapter.

Moving Around
At times, it’s of value to know how to change the current working directory within the Python
interpreter. This is especially important if the code and data are located in different directories;
it might be easier to just switch to another directory as the situation requires.

Suppose you defined a function that accepts a file name as input, reads it, and does some
processing. Furthermore, this function was defined interactively, as you were using the inter-
preter. Now you’d like to run this function on some files, but the path to these files is long and
cumbersome. This is a situation where it’d be much easier to switch to the directory where
the files reside and execute the function with the relatively shorter file name, that is, excluding
the path.

Module os provides us with this functionality. You’ve already seen the os module in
Chapter 1, but this time we use it to move around the interpreter:

In this listing I’ve used several functions. The first line imports the os module, containing
functions required to move around. I’ve then used several functions from the os module:

CHAPTER 3 PYTHON FOR PROGRAMMERS58

 lists directory contents. The function must be supplied
with a string argument. If the string argument is an empty string () or a string with a
single dot in it (), the function will return the contents of the current directory.

your current working directory, issue the command .
This function takes no arguments.

of the function. The function accepts one
string as an argument and, depending on the string, changes directories accordingly.
The function accepts both relative directory paths (such as) as well as full
directory paths ().

Tip In IPython (see Chapter 2), you can use the commands , , and as you would in any Linux
shell instead of using the os module functions (it’s faster to type!).

Running Scripts
The interactive environment can only get you so far. Eventually, you will want to write pro-
grams (scripts) and run them either noninteractively or from within the Python interpreter.

There could be various reasons to write scripts, and most are due to the fact that you
might perform a task more than once. Say the accountants in your company use nonlinear
depreciation equations, and being their favorite programmer they ask you for a personal favor,
so you decide to write a web-based depreciation calculator. Or the clinical people in your
medical device company often require access to log files that are large and require processing,
so they ask you to write an end-of-day report per patient summarizing the day’s events based
on those log files, or . . . and the list goes on and on.

The path I typically follow is that I use the interactive environment in parallel to coding
the script. That is, I run Python interactively, run a few statements, assign some variables, plot
some graphs; if things look good, I copy over the commands I issued to an editor where my
script resides.

Tip In IPython you can issue the command to view a list of recently entered commands.

The benefit of coding interactively is that you can examine the variables and data struc-
tures of your code, without additional debugging tools. If the script raises an exception, you
now have at your fingertips all the variables and data structures: you can reproduce the error
and possibly fix the bug.

Once your script is ready (well it’s never really ready, let’s just agree that it’s ready to be
test-driven), you have several options to run it:

CHAPTER 3 PYTHON FOR PROGRAMMERS 59

Open and choose the script to run. This will open the Python script in the IDLE editor
(if it’s already open, there’s no need to reopen it). To run the script, press F5 or select
Run Module from the Run menu. The output should appear in the Python GUI shell.

 is my favor-
ite option when developing. The reason I prefer this method over the GUI environment
is that I like editing my code in an editor that is not part of an IDE.

Tip If you’re using IPython, you could issue the command instead of
; the benefits are 1) you can use character completion to select the file name,

and 2) you can supply command-line parameters to the script: .

 Even though you might have developed your script in interactive Python, it’s a good
idea to test your script in a shell as well, especially if you’re distributing your code for
others to use: they might not want to run the code interactively. To run the script from
a Linux shell or Cygwin, use this command:

 Or in Windows:

 In Windows, you could also set the variable to include the Python directory path,
in this case, , so invoking the script will not require a full path to the Python
executable:

enjoy both worlds: interactive and noninteractive mode!
This is done by running the script with the switch, which opens up a Python shell
after the script has run and lets you examine variables, interactively:

Tip Since the backslash character () has a special meaning in strings (we’ll get to that later) and is also
used as a path separator in Windows, it’s best to use the slash () character whenever you’re working with
file names and file paths. If you can, opt to use relative paths (e.g., instead of); your code
will be portable across operating systems and much easier to read.

That’s it. I think we’re ready for the language itself now.

CHAPTER 3 PYTHON FOR PROGRAMMERS60

Data Types
Python data types are similar to data types in other programming languages; you’ll see here
strings and numbers just as you would in, say, Basic. But there are some niceties you should
know about even in those basic data types, for example, the data type supports infinite
integer precision.

Numbers
We’ll start off with numbers. Python natively supports , , , and .

Int and Long
The data type int is equivalent to C’s data type, and its precision is system dependent.
I run a 32-bit machine, so on my system, defaults to a 4-byte integer. This means the maxi-
mum I can represent on my system is 231–1, and the minimum is –231. If you’re uncertain
of the bit count on your system or if your code might be running on different platforms (e.g.,
both 32-bit and 64-bit platforms), you can use the following to determine the maximum
value:

The data type long provides infinite integer precision. It’s not limited by the platform.
However, there is a price to be paid: performance. Long integer numbers are denoted in
Python with a trailing character:

I’ve introduced the operator power, denoted by , so is 270. Once you leave the
 range (4 bytes on a 32-bit machine, 8 bytes on a 64-bit machine), that is, your calculation

extends to a number greater than , Python automatically converts the number to a
 integer value, giving it infinite precision. So if your plan was to use an , make sure you

didn’t accidentally cast it into a . Here’s a possible pitfall:

As you can see, the result is a , denoted by the trailing . But surely this number is less
than ! The problem is that the first calculation, 231, already exceeded ,
and now any future computations are performed in infinite precision, denoted by the trailing .

Once a number is , it will keep on being treated as unless you specifically convert
it back to an using the function, assuming the number indeed can be represented as
an .

CHAPTER 3 PYTHON FOR PROGRAMMERS 61

Personally, I haven’t used all that much. I typically use integer values when counting
things (for example, in loops) and 231–1 is more than enough. However, had I required such
a large number, I’d have to jump through a series of hoops in, say, C, but in Python it’s a lot
easier (not effortless, but still easier).

WHY NOT EFFORTLESS?

This is a bit off-topic and is an advanced discussion that assumes some knowledge of Python.
The reason it’s not effortless doing infinite precision with integers is that a lot of the functions we’re

used to working with in Python return , and not . To illustrate this problem, suppose you’d like to
compute a sum of numbers from 1 to N, where N is greater than 232 (yes, there are easier ways but I’m trying
to make a point here). A typical approach would be to use a loop with an iterator as follows:

Note that I’ve used a variable named and not because sum is a built-in function in Python.
Now the problem lies with the call to —the iterator accepts only values. So if you were

to replace the number with, say, , you’d get an error:

which means you’d have to resort to other techniques such as (caution: this is a long run)

It’s definitely doable in Python, but it’s not effortless. That said, doing the same in C is even harder.

Other Useful Bases
Bases that are powers of 2 are native to computing systems. One byte is 28 as opposed to, say,
a power of the decimal system. For this reason, the ability to convert values to and from bases
that are powers of 2 (such as the hexadecimal base or the octal base) to the decimal system is
important.

CHAPTER 3 PYTHON FOR PROGRAMMERS62

Note The octal base is less popular nowadays. However, some octal notations are still active, for exam-
ple, file permissions in Linux systems.

Hexadecimal values are denoted with a leading 0x. Thus, 0x20 is 32 (decimal). You can use
both capital and noncapital letters for digits A–F:

Octal values are denoted with a leading 0 (that’s a zero, not the character O). Thus 020 is
16 (decimal):

Regardless of how you enter numbers, that is, what base you’ve used, they’re still retained
as numbers in Python. Should you want to look up the different base representation, use the

 and function calls. Both these functions return a string:

You can also perform any other base conversion using the function ,
which returns a number, not a string. In case isn’t specified, it is assumed to be 10:

The argument to the function is a string and not a number. So in case you’d like to
convert 101 in base 3 to a decimal value, write or . The latter is
more useful if you’d like to use a variable, that is, .

It’s possible to use higher bases than hexadecimal (base 16), using an increasing number
of letters from the alphabet as the new digits for the base. In base 17, the character is added;
in base 18, the character is used, and so on. So the number in base 17 should be 173–1:

This support for bases is up to value 36, corresponding with the letter “z”.

CHAPTER 3 PYTHON FOR PROGRAMMERS 63

Comparisons
You can compare values using the regular operators: and for greater than and less than,
respectively. Equality checks are done using a double equal sign () to differentiate from the
assignment symbol denoted by a single equal sign (). Inequality is , and you can also use
and for greater-than-or-equal and less-than-or-equal comparisons.

Some comparisons are not allowed, for instance, comparing a complex number
(described in the next section) with an integer value:

Bitwise Operations
Bitwise operators are similar to C’s bitwise operators as shown in Table 3-1.

Table 3-1. Bitwise Operations

Operator Description Example

Bitwise not returns .

Shift left returns .

Shift right returns .

Bitwise exclusive OR (XOR) returns ().

Bitwise AND returns ().

Bitwise OR returns ().

Augmented Assignments
Augmented assignments introduce the operators , , , , , , , , , , and .
This is notation is similar to C/C++ syntax. That is, instead of writing , you can write

. Similarly, instead of writing , you can write . Please note that Python
does not support the increment operator .

Float and Complex
Floating-point values have been around for quite some time, and there’s no escaping them.
Python’s float data type is equivalent to C’s , so it’s really more accurate than C’s
(C’s has fewer bytes than C’s).

CHAPTER 3 PYTHON FOR PROGRAMMERS64

Floating-point values are represented with a dot or with the or character denoting
exponential notation. So if you want to ensure your value is a , either add a leading dot
(or dot zero, or /) or explicitly do so with the function :

The reason specifying a is important is that you might get an integer operation
where you really want a floating-point operation.

Note In Python 3.0, will return a floating-point value; for an integer division, use instead. See
 for more details.

In the first operation and the last operation, the division is integer division, returning the
value . As a general rule, whenever a floating-point number is introduced, any integers (both

 and) are converted to a , and from that point onward the calculation continues
with floating-point values. This is also known as promotion or coercion; and are pro-
moted to a .

You can force a value into a floating-point value by using the function. This works
on strings as well as numbers, as long as the conversion is possible.

The complex data type represents complex numbers and is composed of two floating-
point values, one representing the real part and one representing the imaginary part. The
imaginary part is appended with the trailing letter (or). Accessing the real and imaginary
parts is possible using the and attributes, as follows:

CHAPTER 3 PYTHON FOR PROGRAMMERS 65

You can use most any operator on complex numbers just as you would on floating-point
numbers. Once a computation involving a complex number is encountered, the remaining
computation will remain a , that is, integers and floating-point values are promoted
to complex values. You can convert a number to a complex number using the

 function. In case is provided, it holds the imaginary value of the complex number:

The data type as well as examples on using it will be discussed in Chapter 7.

Strings
Per the classic Python definition, strings are an immutable sequence of characters. This means
a string is a sequence of characters, and it is unchangeable: you can’t change the characters. I
know that this might seem odd at first: you’re probably thinking, “How do I work with strings if
I can’t modify them?” The answer is that you create new strings based on your current string.

Expressing Strings
There are several ways to express a string: single quotes, ; double quotes, ;
and triple-double-quotes, (phew), to name a few. And there are even more: raw
strings denoted by the letter such as and Unicode strings denoted by the letter ,
for example, .

To express a basic string, use single quotes as follows:

In case your string has a quote in it, you’ll have to escape it with a backslash ():

The reason we escaped the quote that’s part of the word is so that the quote before
the letter won’t terminate the string.

Single quotes and double quotes are interchangeable. Therefore, we could’ve achieved the
same result, without escaping the quote that’s part of the word , by replacing the enclos-
ing quote (the ones at the beginning and end) with double quotes:

CHAPTER 3 PYTHON FOR PROGRAMMERS66

But what if we wanted a string that actually does have the backslash before the quote
as well—a string that looks exactly like this: ? Well, one option is to escape the
backslash as well as the quote:

Notice how the interpreter represents that string differently from how it’s printed.
Well, this pattern can keep on going, making things harder to understand. Instead, we

could use a raw string:

A raw string means that everything following the character and the starting quote and
before the ending quote should be taken literally. Have Python escape what needs escaping
and return a proper string back to me!

Note Raw strings will be used extensively in regular expressions so as not to escape special meaning
characters on several levels. See Chapter 5 for details.

Strings can also span multiple lines with a backslash:

This obviously could bring about more disasters—what if you really wanted that backslash
to appear, as well as the line break? Not to worry, time to use triple-double-quotes (or triple-
single-quotes, they’re interchangeable):

If all this sounds too confusing, you’re in good company. To acquaint yourself with these
caveats, launch Python interactively and experiment!

I haven’t talked about Unicode strings here; I’ll touch on that in Chapter 5.

String Operations
So what can you do with strings? Table 3-2 lists some operations that can be performed on
strings, along with examples. In the examples, I’ve selected strings that don’t require escaping

CHAPTER 3 PYTHON FOR PROGRAMMERS 67

so they’re easier to follow, but the same can be applied to any string expression described
previously.

Table 3-2. String Operations

Operator Description Example

Adding and Multiplying

Concatenates strings and . returns
.

Concatenates the string times. returns
.

Indexing and Slicing

 and are positive integer values less than the length of . Negative values are counted from the
end of the string.

Retrieves the th character of returns .

Retrieves a string slice from th character
to the th character, excluding the th
character. If or are negative, they are
counted from the end of the string.

returns .

returns .

Equals with . returns
.

Retrieves a string slice from the th
character to the end.

 returns
.

You can check whether a character is in a string using the operator:

or count the number of characters in a string using the function:

Both and operate on other sequences, as you’ll soon see.
I’ll discuss strings (including Unicode strings and raw strings) in more detail in Chapter 5.

Booleans
I’ve postponed discussion of Boolean values until after you’ve seen some other data types
because Booleans values shine in the context of other data types. Booleans can take two val-
ues: () or ().

CHAPTER 3 PYTHON FOR PROGRAMMERS68

You can cast a value to a Boolean by using the function. Empty strings, as well as
other empty sequences, and the value zero of any form are considered :

Logical Operations
Logical operations , , and operate on Booleans. I assume you know how to use them.
Let’s see if you know the answer to the following . . .

Data Structures
Python, being a high-level programming language, also provides additional, more complex,
data types, which I refer to as data structures. These include lists, tuples, dictionaries, and sets,
to name a few. Data structures make the programming experience a lot more enjoyable.

Python documentation does not necessarily differentiate between data types and data
structures the way I have. My purpose in this distinction is to split the discussion into two
categories: simple data types, which you’re likely to encounter in popular programming lan-
guages (such as C), and more complex data types, or data structures, which you’re likely to see
in higher-level programming languages such as Python and Perl. Regardless of the classifica-
tion presented in this chapter, both are built-in data types as far as Python is concerned.

In a sense, you’ve already been exposed to data structures: strings and complex num-
bers. The string is an immutable sequence, hardly a “simple” data type. By comparison, the
C programming language does not support a native string data type, rather an array of char-
acters, which is to show that strings aren’t really all that basic. But a string is still limited—it’s
a sequence of characters. What about sequences of other objects? And what about mutable
(changeable) sequences?

Not to worry, Python provides those as well. A list in Python is a mutable sequence of arbi-
trary data types. A tuple is quite similar to a list, only that it’s immutable.

We’ll also talk about some more complex data structures that can make programming yet
more entertaining. You’ve already seen a dictionary object in Chapter 1, and we’ll explore that
data structure as well as the set object. Python is also an object-oriented-programming lan-
guage; therefore, a discussion of the class object will be presented after we have talked about
functions.

CHAPTER 3 PYTHON FOR PROGRAMMERS 69

Lastly, there are also additional native data types and structures in Python, but most of
them will be left out of the scope for this book; they’re not a must for data analysis and visual-
ization (with the possible exception of file data types, which will be discussed in Chapter 5).

Lists
A list is a mutable sequence of objects. A list is denoted by brackets:

You can also create a list using the function. This is useful when converting differ-
ent sequences to a list, say, from a string:

A list can be modified. You can add another element to a list by using the operator. The
operator concatenates lists, so you have to supply another list:

The following, however, will fail, since you cannot add an integer to a list:

The proper way to do this would be to form another list, made solely of the value :

If you’re looking to add the value to each and every element of the list , that is,
to modify the list to , you’ll get the details in the sections “The for Statement” and
“List Comprehensions” later in this chapter.

A list is an object too, so you can also have a list inside a list:

Now things get trickier, both in describing the object and in actually performing opera-
tions. Say you’d like to add another list, , to the preceding example. How exactly would
you like to add it? Should the updated list be or

 or (which really is shamelessly tricky)?
The way I like to describe the data structure is as a list of rows. The first

row is and the second row is .
Here are some of the things you can do to concatenate lists:

CHAPTER 3 PYTHON FOR PROGRAMMERS70

The first line adds the elements and . The second line adds the row .
Another option is to use a variable to hold the list, , and use the and

methods:

The method adds an item to the list, in this case the list . The method
 adds elements from the sequence one by one to the list, in this case, the elements

 and . It’s a bit hard to follow at first, but experiment with lists interactively to get a feel for
how to use them properly.

Lists can also be indexed, similarly to strings:

The last statement, , requires some explanation. The statement returns the
second element in the list (indices start at 0, so index 1 is the second element). For our pur-
poses, let’s mentally assign to variable . But variable is a list as well: . So
clearly we can index as well: is . Instead of doing those two steps, we can write this
more compactly as .

Lists much like strings can also be sliced:

You can check whether an item is in a list using the operator:

You can count the number of elements in a list using the statement:

CHAPTER 3 PYTHON FOR PROGRAMMERS 71

Since lists are mutable, they can be reassigned:

or have items removed using the statement:

Lists also have methods, functions that operate only on list objects such as and
, shown previously. To use a method, follow the list object with a dot and the function

name with parentheses and parameters within (empty ones in case of no parameters):

I’ve used the methods , which counts the occurrences of an item in a list, and
, which sorts a list. Table 3-3 describes the list methods along with some examples. In

the examples, assume that is .

Table 3-3. List Methods

Method Description Example

Adds an element to the end of a list. changes
to

.

Returns the number of times
appears in the list.

 returns .

Adds elements to the list from
(more on iterators and iterables later in
this chapter).

 changes
 to

.

Returns the first index of in the list.
If is supplied, this method returns
the first index that is greater than ;
if is supplied, the index also has to
be less than .

 returns .
 returns .

 raises
an exception .

Inserts an object at index . changes
 to

.

Continued

CHAPTER 3 PYTHON FOR PROGRAMMERS72

Method Description Example

Returns the th element in the list and
removes it. If is not supplied, this
method returns the last element.

 returns , and the
modified list is

.
 returns , and

the modified list is
.

Removes the first occurrence of in . changes
to .

Reverses the list. modifies to
.

Sorts the list. You can supply a sort func-
tion to the list; see .

 modifies to
.

Tuples
A tuple is an immutable (unchangeable) sequence of objects. A tuple is denoted by parenthe-
ses and can be created using the function:

Tuples don’t necessarily require parentheses; merely adding a comma suggests the
expression is a tuple:

The expression is not a tuple: it’s the value within parentheses, which is treated
simply as 1.

Tuples behave similarly to lists, with the exception of modification: you can’t modify a
tuple. But you can create a new one based on an existing one:

In the first statement, I’ve created a tuple based on a list. Note that would
raise an exception, because the function expects one argument, not three. In the pre-
ceding code I passed a list as an argument: . I could’ve also written

, effectively achieving the same thing: the first outer set of parentheses in the expression

Table 3-3. Continued

CHAPTER 3 PYTHON FOR PROGRAMMERS 73

is the function parentheses; the inner one is the tuple parentheses. In the second statement
listed, I’ve created a second tuple based on the first one, by multiplying the result variable.

Tuples can contain different data types and data structures:

The preceding is a tuple containing a list and a tuple.
Tuples can also be indexed, similarly to lists and strings. Remember that indexing requires

brackets, not parentheses:

A tuple can be sliced, generating a new tuple:

However, tuples cannot be reassigned:

But the lists within them can be changed, since lists are mutable:

Checking whether an item is in a tuple can be done using the operator:

Finally, it’s common practice to use tuples to perform multiple assignments, also known
as unpacking:

CHAPTER 3 PYTHON FOR PROGRAMMERS74

Dictionaries
Dictionaries are mutable sequences that connect a key with a value. The key must be unique,
whereas the value need not be. I like to use a phonebook analogy when I think about diction-
aries. Every phone number (key) has but one entry (value) associated with it, usually a person;
however, one person (value) can have several phones (keys). The key and value objects can be
most data types, with the exception of some (e.g., another dictionary).

There are several ways to create a dictionary: using the function with a sequence of
(key, value) tuples or using the curly braces () with colons separating keys and values:

There are many parentheses in the first expression: the outermost are the parentheses for
the function , the innermost are specific tuple pairs, and the ones in between denote
a tuple of tuples, because can only accept one argument. A more readable approach
would be to pass a list of tuples, instead of a tuple of tuples:

Retrieving values from a dictionary is achieved using brackets:

Checking for membership in a dictionary is done using the operator, which defaults to
checking against the keys of the dictionary, not the values. If you wish to check against the val-
ues, use the method:

Changing values and assigning new values is done using brackets as well:

CHAPTER 3 PYTHON FOR PROGRAMMERS 75

In the preceding example, the second assignment to the key has overwritten the
previous value, , with the value .

If you think about it, real-world dictionaries may have several entries for one key: the
word “Python” can mean the Python snake or the Python programming language. This behav-
ior can be mimicked in Python dictionaries as well; simply have the value contain a list:

Dictionaries are implemented using a hashing algorithm. This means that retrieving a
value from a key is extremely efficient. There’s a lot of information regarding hashing algo-
rithms and hashing functions on the Internet, so look that up if you’re interested in knowing
how they work. There’s also good discussion on specific Python dictionary implementation in
the Python Cookbook (see “Final Notes and References”). Used properly, a dictionary can sim-
plify your code and make it a lot more efficient. In Chapter 4, I present an example of using a
dictionary to locate duplicate files on a hard drive.

Table 3-4 lists dictionary member functions. In the examples in the table, assume is
.

Table 3-4. Dictionary Methods

Method Description Example

Functions

Removes all items from the dictionary. changes to .

Returns a shallow copy of (see the
“Variables” section later in the chapter).

.

Creates a dictionary from keys . If is
provided, all values are set to . returns

.

Returns the value associated with key .
If is not in the dictionary, this method
returns if provided.

 returns .

Returns if is a key. returns .

Returns key-value tuples. In a sense
this is the opposite of .

 returns
.

Returns the list of keys. returns
.

Returns the value associated with key
 and removes it from the dictionary. If
 is not in the dictionary, this method

returns if provided; otherwise, it
raises an exception.

 returns and
changes to .

Returns an arbitrary key-value tuple and
removes the pair from the dictionary.

 returns
 and changes

to .

Continued

CHAPTER 3 PYTHON FOR PROGRAMMERS76

Method Description Example

Returns the value associated with the
key . If is not in the dictionary, this
method returns if provided and sets

 to .

returns and changes to

.

Updates the dictionary with data from
dictionary .

See the upcoming example in
this section.

Returns the list of values. returns .

Iterators

Iterators will be discussed later in the chapter. For reference purposes, I’ve listed dictionary iterator
methods in this table.

Returns an iterator holding key-value
pairs.

Returns an iterator holding the
dictionary keys.

Returns an iterator holding the
dictionary values.

While most of these member functions are easy to follow (with the exception of iterators,
which we’ll soon get to), I’d like to talk about two member functions that I feel require more
explanation: and .

The method updates the dictionary with key-value pairs from another diction-
ary. For ease of discussion, I’ll refer to the function call . In case a key exists in
both dictionaries and , the value associated with the key in the dictionary is updated
with the value from dictionary . If a key from does not exist in , it is added to along
with its value. The following illustrates this behavior:

The value associated with the key was updated, and the key-value pair
was added.

The next member function I want to talk about is . At first, this seems rather odd;
how is different from simply accessing the key using brackets? The difference is that if
you use brackets and the key is not in the dictionary, a exception is raised. The func-
tion allows checking whether a key is in a dictionary and as a side product also returns a
default value. A good way to show how this is useful is perhaps with an example.

Consider the function presented in Chapter 1 (I’ve removed the doc-
string), shown here in Listing 3-1.

Table 3-4. Continued

CHAPTER 3 PYTHON FOR PROGRAMMERS 77

Listing 3-1. Function

To further illustrate the example, let’s build a short list of GPS commands () to later sort
in a dictionary so you can try the example for yourself. First, we execute a set of commands
similar to those detailed in the function :

The approach is simple. We first try to access a key in the dictionary. If the key exists, we
increment the count. If the key doesn’t exist, an exception is raised, which means it’s a new
entry, so we set it to .

A second approach is to check whether a key exists in a dictionary using the statement
and then follow up with an sentence, as follows:

It’s also possible to use the member function in a similar manner.
A much more elegant approach would be to use the method with a default value

of :

CHAPTER 3 PYTHON FOR PROGRAMMERS78

I chose the first approach in Chapter 1 because I think it’s clearer to those unfamiliar with
the language. However, the last approach presented here is a clear winner in my mind.

Sets
Our last data structure for now will be a set. Sets are sequences of unique items. To create a set,
use the function:

If you pass a duplicate to the function, it will not be added to the set. This is shown
in the second statement where a list multiplied by 8 is passed as an argument.

In a sense, you’ve already been introduced to sets: the keys in a dictionary form a set since
they are unique items.

Set operations are a bit different from the previous sequences you’ve seen. They are
derived from the math operations and include intersection, union, and differences, to name a
few:

The operator is equivalent to the member function . The operator is equivalent
to the member function . The operator is equivalent to the member function

, and much like regular subtraction, the order is important: is different
from .

Table 3-5 lists some set functions. In the examples, assume equals .

CHAPTER 3 PYTHON FOR PROGRAMMERS 79

Table 3-5. Set Methods

Method Description Example

Adds to the set. changes to
.

Removes all elements from the list. changes to
.

Returns a shallow copy of (see a
discussion of shallow copy in the “Vari-
ables” section later in the chapter).

.

Returns the difference of two sets. This
is equivalent to . returns .

Similar to but modifies
the list (not merely returns a copy). changes

 to .

Removes the element from the set. If
 is not in the set, nothing happens (no

exception is raised).

 changes
to .

Returns the intersection of and .
This is equivalent to . returns .

Similar to but modifies the
set (not merely returns a copy). changes

 to .

Returns if is a subset of (all
elements of appear in). returns .

Returns if is a superset of
(all elements of appear in). returns .

Returns an arbitrary element and
removes it from the set.

 returns and
changes to .

Removes from the set. If is
not in the set, this method raises an
exception.

 changes
 to .

Returns the symmetric difference. This
is equivalent to .

.

 returns
.

Similar to but
modifies the set (not merely returns a
copy).

Returns the union of and (all
unique elements that appear in both
sets).

returns
.

Similar to but modifies the set
(not merely returns a copy). changes to

.

CHAPTER 3 PYTHON FOR PROGRAMMERS80

I find I use sets much less than dictionaries. However, using sets at times can be quite
elegant. Consider the example shown in our previous discussion about dictionaries that
enumerates GPS commands. Now suppose you don’t care how many times a GPS command
appears, only what types of GPS commands exist. Then this is easily done with a set:

Variables
Next topic of our discussion is variables. Variables in Python are similar to variables in most
other programming languages. Variable names can consist of characters, digits, and an under-
score, but they have to start with a character or an underscore and must not contain spaces. I
recommend you avoid odd variable names such as (which is a legitimate variable name) as
it might lead to some confusing code. Consider ; that just doesn’t look right.

An important concept regarding variables of data structures in Python is that of binding.
When you assign variable to be equal to variable , which we’ll suppose is a list, Python does
not copy the contents of to . Rather, it sets both and to refer to the same object. This is to
achieve speed and performance.

In case you do want a real copy of the data structure, and not merely another reference,
you have several options:

 method, such as dictionaries.

.

CHAPTER 3 PYTHON FOR PROGRAMMERS 81

Note In case a variable is a more complex structure (e.g., a list of rows), it’s not enough to use
, as the newly constructed list still points to the rows in the original list. In this case, you might want

to use instead. For more information about shallow copy, deep copy, and lazy copy, see
.

Statements
We now turn to Python statements. You’ve already seen the use of statements, but here I’ll
cover more ground by talking about statements I haven’t discussed yet. Python is a rich
language that keeps evolving, so I will not be covering the entire language here. But the state-
ments I cover should be enough to get you going.

I’ve split the discussion into three statement categories: printing, user input, and flow
control. We’ll have some off-track discussions about comments, iterators, and list comprehen-
sions as well.

Printing
One of the basic statements in most programming languages is the statement. You can
use to display Python objects:

Tip The function from module pprint provides an alternative to the statement, one
that formats the output in a “prettier” fashion, such as avoiding word breaks. This is especially useful
if you’re displaying large data structures. To use it, and issue the command

.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 PYTHON FOR PROGRAMMERS82

Suppressing Line Breaks
If you follow a command with a comma, the next statement will continue on the
same line after printing a space:

Format Specifications
The statement is similar to C’s function in that it accepts format specifica-
tions in the form . Other than the and fields, all parameters are
optional. The simplest use of the format specifications is with the operator, as follows:

If more than one specifier is present, provide a tuple after the operator:

The operator is present after the string to be printed and before the tuple containing the
values to be formatted.

Note The function (on which is based) is a complex function with a considerable
number of options and parameters. This section is quite detailed and should provide most of your daily pro-
gramming needs. However, should you wish to explore and some more, a good source of
information is the manual page (also known as the man page). In any Linux (or Cygwin) prompt,
enter for an accurate overview. This is C-level documentation, but C programming skills are
not required.

There are several values can have, but only one is allowed in each specification (e.g.,
the format specifier will be interpreted as a string, followed by the character). Table 3-6
provides a distilled list of types.

CHAPTER 3 PYTHON FOR PROGRAMMERS 83

Table 3-6. Print Format Specification Types

Character Type

Integer

, An engineering notation of a floating-point number with or , respectively (mantissa
and exponent are always present).

Floating-point number

Floating-point number in either or form, omitting trailing zeros and the decimal
point if it’s not needed

Octal

String

, Hexadecimal (lowercase), hexadecimal (uppercase)

Note Starting from Python 3.0, becomes a function and not a statement, and to use you’ll
have to add parentheses: .

We now turn to optional flags in the format specifier.
The value can take several of the following values: 1) a number, specifying the num-

ber of characters to left-align, 2) the character , specifying that in case of a numeric value, the
sign must be present (either or), 3) the character , specifying that the text should be left-
aligned, 4) the character , which modifies behavior of some numeric types (out of the scope
of this discussion—refer to the documentation), and 5) the character , used to left-pad values
with zeros. Here are some examples:

The value specifies minimum width. If the width of the object to print is less than , the
output is left-padded with spaces. If it is greater than , the value is displayed as is:

CHAPTER 3 PYTHON FOR PROGRAMMERS84

The value is preceded with a dot and specifies the maximum number of decimal
points in floating-point numbers, the maximum number of characters to print in a string, or
the minimum number of digits in integers:

You can mix and match format specifiers. Here’s a statement that makes use of
several format specifiers:

The character forces the sign to appear in the output, the digit takes care of the zero
padding, the digit forces the output to be at least eight characters long (the plus symbol,
three digits, the dot symbol, and three more digits), the dot followed by ensures at most three
digits are displayed, and lastly the character announces that this is a floating-point number.

Employing in this manner is especially useful when you want to create text output
that’s properly aligned and can be displayed in a report.

Format specifiers, with the use of the operator, can also be used to format strings, not
only print them:

User Input
We complement our output (printing) discussion with some input discussion, specifically,
user input. Other sorts of input, for example, files and command-line parameters, will be dis-
cussed in future chapters.

User input in Python is done using the function. The function prints
the string, reads a string from the standard input, and returns it, stripped of end-of-line
characters. The argument is optional:

The returns a string, thus even though I’ve input a numeric value,
the function returns the string . I’ve converted the string to a number using the
function.

In Windows, it’s common to see at the end of a script. This ensures that the
command window stays open, waiting for user input and displaying the results of running the

CHAPTER 3 PYTHON FOR PROGRAMMERS 85

script. The default behavior in Windows is that this box is automatically closed, preventing the
user from reading the output, and so overrides this behavior.

Comments
Comments start at the symbol provided it’s not part of a string:

Flow Control
Flow control statements control the behavior of a script. Python provides several flow control
statements, some similar to other programming languages. Typically, a flow control statement
is followed by a block, which is indented to the left.

if, elif, else
The statement follows this syntax:

Behavior is as follows: if evaluates to , the code in is executed.
 can be more than one line long and must be indented to the same level. If is

, is evaluated, causing to be executed if it is . This continues on to
, and so forth. If none of the conditions are met, the is executed.

The statements , , and should be left-aligned. Statements in each block should
be left-aligned as well, but further in than the clause. The colon after the , , and
statements is required. Here’s an example:

CHAPTER 3 PYTHON FOR PROGRAMMERS86

Other than the statement, all other statements (,) are optional. In case of a
short statement, you can write the block on the same line as the statement:

Conditions can be more complex and can include conditionals such as and :

The pass Statement
The statement does nothing, and can be used as a placeholder, for example, in multiple

 assignments:

As you can see, nothing happened, which is exactly what I wanted.

Exceptions: try, else, and finally
Exceptions are Python’s mechanism of dealing with runtime issues. You’ve already seen
exceptions reported and also how to catch them, that is, prevent them from halting program
execution, in Chapter 1.

You can catch, or intercept, exceptions before they stop program execution with the
following syntax:

CHAPTER 3 PYTHON FOR PROGRAMMERS 87

If an exception happens someplace inside the , is executed. In case
 is specified, only exceptions that are of type are caught. You

can have several clauses to deal with different types of exceptions. The is
optional and executed after both the and section have completed execution.

First, let’s see an exception in action, without catching it:

The reason for this exception is that the operator doesn’t know how to multiply
 by (it does know how to do , but that’s a different statement).

As you can see, the exception that was raised was a exception. Let’s catch it and
print it:

We’ve caught the exception in the block, plus we printed what the exception was in
the second print line. Lastly, the code in the block was executed. Let’s run it again, this
time without triggering an exception:

CHAPTER 3 PYTHON FOR PROGRAMMERS88

As you can see, the code in the block was executed regardless of whether the
exception was raised or not.

Now let’s trigger an exception that’s not of the exception. I’ll modify the line
print to print , which raises a different exception:

This time, the exception wasn’t caught by the code (it didn’t print “Exception caught!”)
and was handled by the interpreter because it wasn’t of type .

If you don’t specify an exception condition, all exceptions are caught:

As a general rule, try to make your exception specific, that is, try to specify the exception
condition. If the list of exceptions is too long, maybe wide-range exception catching (i.e., with-
out a condition) is a better approach.

Exceptions are a fundamental part of flow control. The EAFP concept is built around the
idea that it’s at times simpler to just try to perform an operation, later catching the exception
in case of an issue.

Exceptions can occur deep within your code. For instance, say calls ,
which calls . Now let’s suppose an exception occurred in . In case

 doesn’t handle the exception with the / mechanism, the exception
moves to . If doesn’t handle the exception, has a chance.
And finally, if doesn’t handle the exception, the interpreter will issue an exception
and print the cause.

In the preceding scenario, in case does handle the exception, it will not
resurface in . However, if you wish to catch an exception and pass it to the call-
ing function, you can do that. That’s left out of the scope of this discussion; refer to the online
documentation for more details at
under the section Exceptions.

CHAPTER 3 PYTHON FOR PROGRAMMERS 89

You can also raise exceptions of your own. This is of value if you write code and want to
ensure it’s being used properly. Suppose your algorithm only works on odd numbers; a good
approach would be to check whether a parameter passed to the algorithm is odd, and if not,
raise an exception:

In the preceding example, I’ve used an existing exception, . You can create
exceptions of your own or use existing exceptions. For more details and a list of existing excep-
tions, refer to Python’s online documentation:

.

Iterators
Before we move to the statement, I’d like to cover an important concept, iterators. Iterators
are objects that return an element one at a time, instead of returning a full sequence. An object
that can be iterated over is known as iterable. Using iterators is more memory efficient than
using a sequence. For example, the function creates a list of a thousand values,
whereas the iterator creates an iterator object that consumes much less memory:
calls to yield the values from zero to 1000, excluding the value 1000, one at a time.

Python relies heavily on iterators and provides a great number of iterators that work on
data structures I’ve covered. Iterators are best understood in the context of the statement,
so let’s now take a look at this statement.

The for Statement
The statement is one of the most versatile statements in Python. The statement follows the
following syntax:

In case of a one-line block, the can appear on the same line as the statement.
Indentation rules for blocks are the same as those described in the statement (and for any
block for that matter—they must be indented to the same level).

The statement assigns to be a value from and executes the .
This happens for all the values in :

CHAPTER 3 PYTHON FOR PROGRAMMERS90

If you’re interested in a format similar to that of C’s function, use the function:

The statement can also operate on an iterator. The function creates an itera-
tor object, whereas the function creates a list. Both can be used in the context of a
statement:

In the preceding example, I’ve used both and , effectively yielding the
same result. Also, as the preceding code suggests, loops can be nested.

The statement shines in the context of iterators. Let’s cover a few.
The iterator returns one element at a time from a sequence in reversed

order:

The iterator returns both the index to the item in the sequence and the
item, as a tuple:

Some data structures provide iterators themselves. The iterator returns a
(key, value) tuple and is used to iterate over items in a dictionary:

CHAPTER 3 PYTHON FOR PROGRAMMERS 91

List Comprehensions
List comprehensions is a topic I’ve postponed until after we talked about the statement.
They really do apply to lists, but they’re rather hard to explain unless you understand
statements. List comprehensions are an efficient method to create lists from lists, but with a
slightly different notation than a regular loop. List comprehensions follow this syntax:

The clause is optional:

You can also write a nested list comprehension, similar to nested loops:

You’ll encounter numerous uses of list comprehensions throughout the book.

The while Statement
The statement complements loops and is best used in case a condition has to occur
before the loop is terminated. You’ve seen the statement in use in Chapter 1, which
allows recording of GPS data until a Ctrl+C is pressed, and also previously in this chapter. The

 syntax is as follows:

As long as evaluates to , the is executed:

This example will print a star as long as a random number between 0 and 1 is less than 0.9.
I’ve used the function from module random (see Chapter 7).

Statements break and continue
The statements and are used to modify behavior within a loop or a block. The
statement exits a flow control block, and the statement stops execution of the
block but picks up on the next iteration.

CHAPTER 3 PYTHON FOR PROGRAMMERS92

In the first statement, I’ve used the statement when is equal to , effectively
terminating the loop. In the second statement, I’ve merely skipped execution of the
block in case is equal to , suppressing the statement, but resuming on the next value.

Some Built-in Functions
Let’s now turn to built-in Python functions that weren’t covered in any of the previous sec-
tions. By built-in, I mean functions that do not require any command prior to using
them. Table 3-7 presents these functions, in alphabetical order.

Table 3-7. Some Python Built-in Functions

Statement Description Example

Returns if all elements of are not
.

 returns .
 returns .

Returns if some elements of are
.

 returns .
 returns .

Returns the ASCII value of . returns .

Returns if , if , and if
.

 returns .
 returns .

Returns the ordinal value of . This is
the inverse of .

 returns .
 returns .

Returns a list starting at (if supplied,
default is zero), ending right before ,
with an increment step of (if supplied;
default is).

 returns
.

 returns .
 returns .

 returns
.

Returns sequence , sorted. returns
.

Returns sum of elements in . returns .

Returns the type of . returns
.

Returns a list of tuples, each composed
of elements at the same location in the
sequences. is optional.

 returns
.

 returns
.

CHAPTER 3 PYTHON FOR PROGRAMMERS 93

Some of these functions are very useful. For example, have a look at the Newton fractal
example in Chapter 7 for an interesting use of the function.

Defining Functions
Functions are a convenient way to reuse code. Functions in Python are similar to procedures,
subroutines, and functions in other programming languages. There’s no distinction between
a function that returns a value and a function that does not—both are considered functions.
(In some programming languages, if a function doesn’t return a value, it is named differently:
procedure or subroutine, for example.)

Functions are declared as follows:

The keyword defines a start of a function. The name of the function is ;
are optional:

I’ve defined two functions: and . Function requires no parameters, while
function requires one parameter. Using the functions (calling them) requires the addition
of a set of parentheses.

You can also specify optional parameters using an assignment in the list of arguments in
the function name, as follows:

In the first call to , the default value of is . In the second call, that value is
assigned the string .

Functions can return values using the statement:

CHAPTER 3 PYTHON FOR PROGRAMMERS94

The statement doesn’t necessarily have to appear at the end of the function; how-
ever, the function ends execution when it reaches a .

Functions are typically documented with docstrings (which are bold in the following
code):

The benefit of using a docstring immediately after the function declaration is that execut-
ing returns the docstring, which is an excellent way to document a function.

Generators
Generators are functions used to create iterators. The main difference between a generator
and a regular function is that generators return one element at a time using the state-
ment, while functions return one element using the statement (it could be a sequence
or tuple, but it’s essentially one object).

CHAPTER 3 PYTHON FOR PROGRAMMERS 95

In the preceding example, I’ve defined an iterator named that yields the odd ele-
ments in a list (i.e., the first, third, fifth, and so forth). I’ve implemented the iterator using a

 loop and proper indexing.
There are also other methods I could’ve used to implement the iterator, but it’s important

to understand that the motivation behind using an iterator is that of efficiency. A different
implementation could be one that makes use of the indexing operator with a step value of 2, as
follows:

While this might look like more elegant code, in my mind it’s not as good. The reason is
that the loop creates an entire list (albeit half the size), and in case of large lists, this is not
memory efficient. The first implementation, on the other hand, is quite memory efficient.

It’s also possible to implement the function using a loop instead of a loop,
in which case I would suggest using the iterator (over a list comprehension) to avoid
creating additional large data structures.

Generator Expressions
Generator expressions, or genexps, are a compact method to implement simple generators.
Generator expressions follow this syntax:

In a sense, they are very similar to list comprehensions, with the difference being that they
are iterators and not lists, and hence are more memory efficient. Here’s an implementation of
the generator function using a genexp:

or in one big line:

CHAPTER 3 PYTHON FOR PROGRAMMERS96

If I were a bit more conscious about memory usage, I’d notice that I’ve created another list
in the loop: , which probably is not a good idea (from a memory-conscious applica-
tion). A different approach is to use the iterator as follows:

This might be a bit less clear, but it is a more memory-conscious implementation. Alter-
natively, you could also use the iterator, iterating over list elements and only
printing an element if the index is odd. Deciding whether an index is odd or even can be done
using the modulo () operator, which returns the remainder from dividing by a number, in our
case :

Opt for using genexps over list comprehensions if you just want to iterate over items and
don’t require the list itself. Unless you’re using really large data structures (on the order of
scale of the memory you have in your computer), using either is fine.

Object-Oriented Programming
Per the description I’ve given of the Python language in the beginning of the chapter, you can
deduce that Python is an object-oriented programming language. You’ve already seen this. For
example, the data structure list, whose methods are in essence member functions, is an object.

The purpose of this section is to quickly (very quickly!) go over the syntax of object-
oriented programming and to show how to implement a basic object. The reason I won’t be
covering OOP in detail is that this book mostly deals with using objects, rather than coding
them. If you’d like to know more about coding an object, refer to the online Python documen-
tation and the references at the end of this chapter.

The basic data structure to implement object-oriented programming in Python is a class.
Classes have functions, called methods, and variables, called attributes. Listing 3-2 shows a
simple class named that implements the odd functionality, that is, retrieves odd elements.

Listing 3-2. Listing of

CHAPTER 3 PYTHON FOR PROGRAMMERS 97

The first line defines a class named . From here, functions and variables indented per
the usual block rules denote functions and variables belonging to class .

I’ve defined two functions. The first function is the constructor (double under-
scores on both sides). The constructor function is called whenever an object is instantiated, or
created. To instantiate a class object, call the class with parentheses. Here are some ways
you can instantiate the class object (be sure to execute the preceding script first):

The implementation I chose is that in case a parameter is provided, the variable
 is assigned this parameter. An important note here is the use of the argument :

the word is a convention and not a reserved word. Whenever you call a class property or
method, the argument is passed automatically but not spelled out. That is, to instantiate
an object, you enter and not . By passing the argument (hidden),
Python identifies one created object from another. The analogy I like to use is that is simi-
lar to C++’s statement.

Another important concept here is that of scope. Had I not used the notation
 and written instead, the local variable , that is, local to the function

(and not the class), would have been updated. Once the function returned, that variable would
have disappeared. To ensure that the class variable is updated (and not the func-
tion’s local variable), I’ve used the notation .

The second function I defined is , which returns the odd elements in a sequence. To
call the function, use the dot operator after the object, as follows:

So far, I’ve only shown methods, but the class also contains a variable: . To
access this variable, you can use the dot operator as well:

There’s a lot more to object-oriented programming in Python, including most of the con-
cepts that appear in other object-oriented programming languages such as inheritance and
operator overloading, to name a couple. Again, the references at the end of the chapter should
prove valuable resources should you need to learn more about object-oriented programming
and design in Python.

Modules and Packages
One of Python’s strong suits is the extensive number of packages readily available. You’ve seen
how to install packages in Chapter 2; now it’s time to see how to use them.

A module is a set of functions and data structures. In essence, it is similar to a class.
Accessing modules is performed using the module’s namespace, followed by a dot to access

CHAPTER 3 PYTHON FOR PROGRAMMERS98

functions and variables. Packages are collections of modules. Accessing modules within pack-
ages is performed using the dot operator.

It’s also of value to know that it’s possible to extend Python with modules from C and
C++. From a Python user’s perspective, you just import a module and use it as is, regardless of
whether it was written in another programming language.

The import Statement
The statement loads a module, effectively allowing us to access the functions and vari-
ables within the module. You can issue the statement in several ways:

The first method, , loads a module with its namespace. To access the mod-
ule functions, use . The second method loads the module but renames it,
so to use its functions, use . The third statement imports only one function
from the module; to access it simply use its name: . You can have multiple func-
tions imported in this manner by separating the functions with commas. The fourth statement
is identical to the third, only the name of the function is now ; to call the function, enter

. Lastly, the last statement loads all functions from a module; to access the func-
tions you enter their name (without the module name). Here are some examples:

Whether you’ll be loading the entire module or just some pieces of the module is totally
up to you (and a function of the amount of memory you have). At times, though, it’s easier to
load entire modules, and yet at other times it’s important to be able to load modules with their

CHAPTER 3 PYTHON FOR PROGRAMMERS 99

namespace, for example, when two modules have the same function names (such as modules
math and cmath).

Modules Installed in a System
Before you start importing modules and reading about their functions, it would be valuable to
know what modules are currently installed and available in your system. Don’t forget that the
Python Standard Library is vast, with a substantial number of modules and packages to choose
from. Maybe a function you’re looking for already exists in the standard library? Of course, you
can refer to the online documentation, but you can also refer to the interactive help system.

Invoke the interactive help system by entering . At the help prompt, enter .
This will provide a list of available modules in your system. Enter to read more
about that module.

The dir Statement
Another useful statement is the statement, which lists the contents of a specific object (for
example, a class) but in this context, it lists the methods and properties of a module as well:

This is very useful if you’re exploring the functions in a module or if you forgot the exact name
of a function.

Final Notes and References
It is far beyond the scope of this chapter and this book to cover the entire Python program-
ming language. However, this chapter should get you up and running, and you’ll be able to
follow through with the rest of the book with very little need for additional references. That
being said, one of the purposes of the book is to introduce the language and provide additional
resources should you want to expand your knowledge.

I have found the following references of value, and I hope you find them useful as well:

by Guido van Rosso,

Beginning Python: From Novice to Professional, Second Edition by Magnus Lie Hetland
(Apress, 2008)

Dive into Python by Mark Pilgrim (Apress, 2004; free online version also available at
)

Python in a Nutshell: A Desktop Quick Reference by Alex Martelli (O’Reilly, 2006)

Python Cookbook: Recipes from the Python Community by Alex Martelli, Anna Martelli
Ravenscroft, and David Ascher (O’Reilly, 2005)

C H A P T E R 4

Data Organization
Organizing Chaos

A preliminary step to designing and programming an algorithm is gathering data and sorting
it. When you first go out to test a thesis or write code to analyze network traffic, only part of the
information is readily available; some of the data is still unknown. First estimations are made
based on the first set of data files. As data is gathered, new insights and understandings arise,
resulting in possible changes to the processing script and data gathering application, such as
adding a previously unlogged parameter and graphing it over time. Some changes may include
data gathering over substantial longer time periods than originally anticipated. Consequently,
to accommodate for manageable data files, a reduction in the sampling rate is required, imple-
mented by logging only every nth value. Another plausible scenario is that of parsing log files,
where the generating application, for example, a web server, recently went through a software
upgrade altering the file format and the file name scheme.

The situation can get more complex. Some files may have an error due to a hardware mal-
function of the recording apparatus; or some portions of the file are corrupt due to hard drive
issues (back up!), or the application that stored the file had a bug and generated incorrect data.
By now, you realize you need to modify the erroneous data or remove it from your analysis, be
it manually or automatically.

In some cases, part of the data should be used as a teacher set to help define the algo-
rithm, while another set of data should be used as a tester set to estimate performance. In this
case, you may need to feed the algorithm additional information regarding the contents of the
files so that more complex tests can be carried out.

Documenting file contents is important so that the knowledge of what each file contains
is not lost. A few years from now I doubt you’ll remember what each and every file is; but you
might be expected to reuse your previous work. So annotating, or note taking, is of value.
Ideally you’d like the annotations and documentation to reside with the data, and not in an
inaccessible notebook.

By now you have quite a number of different file types: varying number of parameters,
different file lengths, different logging periods, various file formats, several file name schemes,
clean and raw data, annotated data, and much more. Ideally, you’d like to use data from all the
files, even if some of them have partial information or conform to a different file format; they
still hold valuable information. Or it could be that you’d like to use historical information to
ensure backward compatibility with older versions of the software.

101

CHAPTER 4 DATA ORGANIZATION102

A lot of the work has many unknowns. Data gathering is an iterative process in nature,
and if you don’t manage your data files properly, you’ll lose control. I’m not suggesting that we
stop and design an entire data management infrastructure from the get-go. On the contrary,
I think data should be gathered as I’ve described. However, following some simple guidelines
and conventions can make life a lot easier. The purpose of this chapter is to address all these
issues: file names, file formats, data organization, data cleaning, and annotation and data
documentation. I’ll touch on each topic, suggesting guidelines and conventions to help man-
age data more easily for the programmer and the processing application.

File Name Conventions
Our first step in data organization is deciding on a file name convention. You’d be surprised at
the odd names people choose for their files. Not because they’re not inventive enough, rather
because they’ve never given it much thought. File name conventions are also of value when
more than one person accesses the data. A good convention will help all data users locate files
and manage them: your administrator will find it easier to restore previously backed-up files if
he knows the file name pattern. A good naming convention should also have in mind scripts,
or programs, so that automation is easier to implement. For example, if the file names contain
the day of the week, it’s easier to have those limited to three letters, Sun, Mon, Tue, Wed, Thu,
Fri, Sat, instead of full day names, allowing the script that processes them to be less complex.

Date and Time in a File Name
We remember a lot based on date. “Remember that time when we ran that test? That was
when you joined the group, about a year and a half ago.” One of the best ways to capture
date and time information is to use it to name a file. Following this guideline allows easy file
searches. Instead of going through the files one at a time, opening them, and looking at the
contents, you can browse the directory contents and find data based on date. The following
are benefits of using date and time in a file name:

-
ging application is creating file names, because it won’t overwrite existing files. If you
want to further ensure uniqueness, include the time in seconds along with the date
information.

rely on the operating system to record the file names, you will find that there are issues
with that: copying files using different media and/or over a network might not always
retain all the date information such as creation date. They will, however, retain the file
name.

from last month is straightforward to implement.

languages. The application that records the data can be written in C programming
language and not necessarily Python.

CHAPTER 4 DATA ORGANIZATION 103

We therefore would like our file names to embed the date and time, preferably up to a
second resolution. That being said, there are a lot of possible ways to denote date and time.
Personally, I follow the date and time format suggested in ISO 8601: (see
the section “Final Notes and References”) with some modifications, as it is not possible to
have a file name with colon () as is required by the format. Instead of colons, I use a dash ().
Another possible modification is replacing letter used to separate the date and time portions
in the ISO standard with a dash as well. The side benefit of those two replacements (replacing
both the colons and the with a dash) is that now there’s a single field separator that separates
year, month, day, hour, minute, and second. This is quite valuable for automation and is easily
implemented in most programming languages. Some prefer keeping the character as it does
help remind where the date ends and when the time starts, and it’s not all that complex to
manage either. Leaving the or replacing it with a dash are both good options and mostly are
a matter of personal preference. As you’ll soon see, we have a dedicated function for parsing
dates, , that can handle the quite easily.

Python provides us with the function, which splits a string into a list of sub-
strings once is encountered. In this case, will split the date-time format:

The following example extracts the month as an integer:

In the latter example, I chose to operate directly on the string, not saving it in a variable.
The month is the second element in the list, hence to access it I index it: (counting starts at
0). The function converts the string value to an integer.

If you follow the scheme where is used instead of a dash, you can use the function
, which is part of the time module. I assume is short for string-parse-time;

regardless if it’s true, it helps to remember the function name:

Note Small and capital letters are used to distinguish between a date and time fields, mainly because the
character can mean both month and minutes. So the convention is that time is denoted by caps (, ,

) and date is denoted by small letters (, ,). There’s one exception and that’s the year: when using a
four-digit notation (e.g., 2008), the characters are capitalized: .

As you can see, it’s quite easy to extract date and time information in Python from a file
name so long as one conforms to the convention. Processing all the files from, say, April 2008
can be done using a single command followed by an statement.

CHAPTER 4 DATA ORGANIZATION104

Useful File Name Titles
Another important aspect of a file name is a useful title. A short, descriptive title can be a time-
saver. or are good candidates. Avoid titles that describe the data such
as or . You want to describe the system more than the data; the
data will speak for itself when you analyze it. If you do want to describe the data, do so in addi-
tion to describing the system: is a good option.

The following sample titles further clarify this point:

 is lacking system description. What if you have several pumps you want
to test for flow? One alternative is to use the pump’s serial number:
(assuming 472 is the pump’s serial number).

 is probably not a good title either. If you append the date
to this title, you might end up with a title that looks like this:

. So which one is it—year 2009 or year 2008?

 is OK; however, I’d opt to rename it to be less specific, or
should I say, more general: . The reason for the renaming is
that it’s possible you’ll decide to record additional values, say, power, as well as voltage
and current, and unless you want to rename your code to look for different headers,
having a file name titled that also has power values will be a
bit misleading.

File Name Extensions
The last part of the file name convention is an indication of the file format, usually denoted
by the file name extension. File name extensions are typically three characters long (some are
less, such as , and some are longer, such as). We’ll try to follow a convention of three
characters for the extension, again because it will be easier for the processing application. I
suggest thinking about three distinct file name extension subcategories:

Known file formats: Image formats follow very specific extensions: , , ,
, and more. These file names have a meaning, so if you’re recording data in those

file formats, use the known extensions. There are also known extensions for com-
pressed file formats, video file formats, and others, so use them accordingly.

Text file formats: Here I suggest using either a or a extension. If the text file
format is not the Comma Separated Values (CSV) format, use the extension, sug-
gesting it is viewable by most text editors. Exceptions to this guideline include files that
already have a known extension, for example, INI files: although they are text files, you
really want to capture that they’re files holding initialization values. The same would
apply to batch files and shell scripts. But those typically are not data files.

Binary file formats: Binary file formats are not as self-descriptive as CSV files. And
unlike CSV or plain text files, they are hard to view without knowing in advance the
specific file format. For this reason, binary file formats should be accompanied by a
header file that describes the contents and format of the binary files. However, it’s still

CHAPTER 4 DATA ORGANIZATION 105

valuable to know a bit more about the binary file format even if the exact format is
unknown. The following is the suggested convention: one character denoting whether
the data is signed (), unsigned (), or floating point () followed by the number of bits
used to store the data, as described in Table 4-1.

Table 4-1. Suggested Binary File Name Extensions

Description Precision Extension

Signed integers 8, 16, 32, 64 , , , (respectively)

Unsigned integers 8, 16, 32, 64 , , , (respectively)

Floating point 32 (float) f32
64 (double) f64

Other binary file formats: When binary files contain several values of different pre-
cisions, the convention described in the Table 4-1 is not feasible, at least not in a
three-character extension notation. In that case use or where is a num-
ber. The reason for the is that it’s conceivable you’ll have several file formats of
varying precisions, and a good way to tell them apart would be to add an integer prefix.
Notice that they still all end with a , enabling easy file distinction.

In Conclusion
Three items are important to file naming conventions: date and time in a file name, useful and
descriptive file name titles, and proper file name extensions. If you follow these conventions,
you’ll find that writing scripts to manipulate these files is simple.

Using these conventions, we have file names that follow the scheme
 with the placeholders detailed in Table 4-2.

Table 4-2. Convention Scheme for File Name

Placeholder Description

A descriptive title of your choice

Year the file was created

 is .

Day file was created. In the case of the 7th, is .

Hours in 24-hour notation. 11 p.m. would be represented as . Values are from
to .

Minutes. 5 minutes past the hour is .

Seconds. 7 seconds past the minute is .

An extension describing the file format, three characters long (if possible).

CHAPTER 4 DATA ORGANIZATION106

Note In case of values occupying less than the assigned number of digits, a zero is added. So if the time
is 5 minutes past 1 o’clock, the value of will be and the value of will be .

Example: Automating File Name Creation
Listing 4-1 presents an implementation, , that conforms to the file name conven-
tions suggested previously.

Listing 4-1. Creating a Unique File Name,

Here’s the result I got from executing :

Note We’re assuming that files are generated at a slower rate of one file per second and that there’s only
one application logging data, hence a file name based on seconds is unique. Also, in case of a system time
change, there’s a chance of files being nonunique. Before creating a file, we could check whether a file with
the same name exists, but for clarity reasons it’s left out of the script.

The function is part of the time module and provides a tuple of values rep-
resenting the year, month, day of the month, hours, minutes, seconds, week day, day of the
year, and daylight saving time (phew). We only require the first six arguments of
to create our unique file name. To access the first six elements of the tuple, we use the slicing
operator . So returns the very six elements we’re interested in for creating
our unique file name.

Next we use the operator to format the string containing the timestamp:
. The substring means up to four digits; the substring

 means two digits, and in case there are less than two digits, padded with zeros. We
also use the operator to output the final unique file name, which is composed of the strings
stored in variables , , and . In this case we use to format strings
instead of integers.

CHAPTER 4 DATA ORGANIZATION 107

Other Schemes
Unfortunately, automating file name creation and using the date and time mostly applies if
you’re writing the application that generates the data files. That’s not always the case: you
might be using an embedded system’s output files and have no control of the source code. As
long as the system generating the files has a real time clock, and assuming you can change the
code, or later change the file names, following the preceding convention is doable.

On the occasions where a real time clock is unavailable, a different naming scheme should
be employed. One of the alternatives to using a timestamp in a file name is a running index.
That’s a bit more complex than using the date because now we have to figure out what’s the
last index used. That being said, it’s still a good option: it provides consistency, and unless files
are randomly deleted, it also provides some sort of chronological order. Incidentally, that’s the
scheme used by most digital cameras.

Example: Running Index
Listing 4-2 is a suggested running index implementation. The script will look for files accord-
ing to a title and extension and determine a running index (up to 999). It will then create a file
accordingly. Repeatedly running the script will create files with incrementing index values.

Listing 4-2. Running Index Implementation

The general operation of this script is as follows: first we create a file name string with the
current index. Next, we check to see whether the file exists by calling the function ,
which is part of the os.path module (more on os.path in Chapter 10). If the file exists, we

CHAPTER 4 DATA ORGANIZATION108

increment the index and restart the loop; this is done with the statement . In case the
file name we’ve created does not exist, we proceed with writing the data to the file and break-
ing out of the loop. Lastly, in case a unique file name was not available (we check up
to index 999, per variable), the script reports that a unique file name could not be
created.

Notice that we choose to pad the running index with zeros as denoted by the substring
 in the line . This is

generally a good idea and allows easier processing of file names, as they have identical lengths,
and the strings representing the file names can be easily sliced.

Note If you change the value of , be sure to change the format string accordingly. For
example, if is , replace with in the format specifications for .
This can also be done automatically by calculating the number of digits using
and using the result in the format specifications (see the section “Example: Searching Inside a Text File” in
Chapter 5).

File Formats
Up to this point we’ve discussed the form of the file names. Now it is time to discuss the for-
mat of the contents, that is, file formats. As previously pointed out, you may not be able to
choose the file format used to store the data. Assuming you do have influence over the file for-
mat, the question is what format to use. A good file format is portable, easily recognizable, and
does not impact performance drastically, be it size or computation overhead, depending on
the nature of the application.

When you select a file format, consider the amount of data you’ll be dealing with. If you’re
looking at large amounts of data, you want to be as efficient as possible in both storing the
data and accessing it, sacrificing a bit for portability and using a less self-descriptive file for-
mat. This means choosing a binary format. If the amount of data is not large and you want the
data to be self-descriptive and portable as much as possible, choose text file formats, specifi-
cally CSV. By large amounts of data, consider the following:

size to be dealing with is less than 1 terabyte. Of course, this number is ever-changing
as storage space and processing power increase. At times you will find that due to
storage space limitations your only option is going with binary files. The reason for
this is that text representation is not as efficient as binary representations. 8-bit inte-
gers (characters) require 1 byte of storage in binary form and from 1 to 3 bytes in text
form used in CSV. Storing floating-point values, which typically require 4 or 8 bytes
in binary form, will now require a considerably larger amount of bytes. The value
0.00000095367431640625 (which is 2 to the power of minus 20) will now require 22
bytes to represent properly in a CSV file. And that’s not counting the separators and
delimiters.

CHAPTER 4 DATA ORGANIZATION 109

you can process them. There’s no need to parse the data, simply read it. If performance
is your major concern, opt for binary file format.

Note The sentence “The smaller the data files, the faster you can process them” is not always correct.
In case of compressed files, data files are smaller but require more processing power to work with, hence
performance is worse, not better. However, assuming no compression, performance of binary files is usually
better.

So from a high-level file format category, you want to decide whether you’ll be looking at
binary data or text data. Table 4-3 lists the pros and cons of using either.

Table 4-3. Pros and Cons of Binary and Text File Formats

Pros Cons

Text Self-descriptive (usually)
Does not require specific knowledge
of the file format
Can be viewed by any text editor

Not storage efficient
Medium read/write access
Requires “text” parsers

Binary Relatively small storage space
Fast read and write access

Not so self-descriptive
Requires knowledge of the file format
Requires a specific application to view data

Text and binary are high-level categorizations. When dealing with text files, we will mostly
limit our discussion to plain text files and CSV files and touch lightly on other file formats.
When dealing with binary files, we’ll talk mostly about straightforward file formats such as

and and not complex file formats such as and that might support compression
and/or encryption.

CSV File Format
The CSV file format is a text file format and can be viewed by any text editor. Furthermore,
most spreadsheet applications are capable of reading and writing CSV files, parsing the val-
ues properly into rows and cells. In CSV files, values are separated by commas; values are
strings that represent numbers, dates, titles, or any other textual fields. If the string value has
a comma in it, quoting is required, that is, the string will have beginning and ending quotes.
Alternatively, the comma in the field can be escaped (more on this in Chapter 5). CSV format
does not require a fixed number of fields per line (also called a row), which can be quite useful:
it allows easy annotation of headers or descriptions of the data, which in turn can later be read
by most any spreadsheet and/or editor with all the information recorded still intact and easily
accessible.

CHAPTER 4 DATA ORGANIZATION110

The following are the contents of a valid CSV file:

Example: Stock Price Charts
Following a convention that stores a short description of the data in the beginning lines of the
CSV files can be very useful for annotating a graph or a report associated with the data in the
file.

To follow along with the example, ensure your directory structure is similar to that pre-
sented in Chapter 2 in the section “Example: Directory Structure for the Book.” Your base
directory should be ; within there should be three subdirectories named , , and

. If you wish to use a different scheme, be sure to change the file path variable and the
call to function in the script in Listing 4-3, which appears a little later in this section.

For this example you can download data from the NASDAQ stock exchange web site
(). Select a stock, for instance, the NASDAQ-100 (IXNDX) or your com-
pany’s stock chart, you wish to display on the intranet web site. You will be presented with a
chart of the stock. When you click the chart, the NASDAQ web site presents the actual values
used to create the chart. You can choose to download the file in Excel format: do so, and save
the file under directory .

If you open the file in a text editor, you’ll notice that there’s header
information describing what each column means:

In reality, the file format is a form of CSV, the separator being a tab instead of a comma.
We can easily overcome this with Python’s csv module by specifying the delimiter to be tab

. Listing 4-3 shows our implementation, , which reads a stock chart file
and presents a graph with the header information properly displayed. Be sure to save it in
folder . The result will be a PNG image, , in directory .

Listing 4-3. , Plotting NASDAQ File

CHAPTER 4 DATA ORGANIZATION 111

We start by reading the CSV data file and passing a tab as a delimiter. The first line in vari-
able is the header information, describing what each column means: Date, Open, High,
Low, Close/Last, and Volume. The remaining lines are the values to plot. We therefore split the
variable into and , accordingly. We also convert the values to a NumPy array
using the function call . Using a NumPy array, the data will be easier to process and
plot; more about NumPy in Chapter 7.

The following is not so much an explanation of working with CSV files but is important to
fully understand the script.

CHAPTER 4 DATA ORGANIZATION112

Next is the so-called linearization process. Much like in the GPS example of Chapter 1,
data in is not linear. The information is stock prices on a daily basis; however,
stocks are not traded every day, weekends being the prime example but also holidays. If we
plot the information as is, neglecting these “holes” in the data, the picture presented will be
skewed. So instead, we need to choose a different time base, one that will take into consider-

December 31 is 365 or 366 (leap year dependent).
Since I don’t want to get into the process of determining leap years or summing up the

days in each month, I’ve decided to use the time module again. The idea here is to use the
function and as a side effect, retrieve the day-of-the-year value. Function
receives a value representing the number of seconds elapsed since the epoch, a fixed point
in time (see more about the epoch in Chapter 5). While this sounds even more complicated
than calculating the day of the year, in reality it’s easier because of function . Func-
tion receives a tuple of nine values, detailed previously, and returns the number of
seconds since the epoch. So we first construct a tuple of those nine values, the first three being
year, month, and day, which are known to us, and arbitrarily assigning the hour to be 4 p.m.
(which coincides with the end of trade). We leave the remaining fields zero. We then feed this
number to and receive a new tuple, now properly populated with the year of day, the
eighth element of the tuple, accessible with , which we save in vector .

Note The script does not take into account data over more than one year. To accommodate for this, you
could take into consideration the number of days in a year (365 or 366, depending on a leap year) and use
the lowest year as a baseline.

We then plot the data and annotate the graph. For the legend, we use the header values
of the CSV file stored in variable . We also use actual values from the variable
to annotate the start and end of period on the graph itself, the title, and the x-axis label (see
Figure 4-1).

Note If you look closely at the data in , you’ll notice that it’s reversed, that is, backward in
time. One of the side effects of using the day-of-the-year value is that values are now plotted from lower to
higher values, that is, older times are on the left, and newer events are on the right. If you’d like to reverse
this behavior, issue the command .

CHAPTER 4 DATA ORGANIZATION 113

Figure 4-1. Stock price chart output

Example: Automatically Reading Yahoo! Financial Data
The following discussion is a bit off-topic, but as it is a direct continuation of the previous
example, this is probably a logical spot for it.

There’s an alternative method to manually saving the file from NASDAQ. One
such option is using the matplotlib.finance module. The two core functions that fetch the
data and parse it are and (although you
could easily parse the data yourself). Another function of interest is the func-
tion, which plots a candlestick graph of the stocks.

Listing 4-4 is a modification of the previous example to use the functions from the mat-
plotlib.finance module. Notice that there are some other minor changes to the code because
the data structure is a bit different from the NASDAQ file. You can control the stock
you wish to view and the start and end dates by changing the values , , and

.

Listing 4-4. Fetching and Plotting Yahoo! Data

CHAPTER 4 DATA ORGANIZATION114

Some notes:

2008 and not the epoch. This is implemented in line
.

times are updated after the data is fetched and parsed. This is done in line
 and .

Figure 4-2 shows the results of the example in Listing 4-4.

CHAPTER 4 DATA ORGANIZATION 115

Figure 4-2. Automatically generated candlestick graph

Example: Creating a CSV File
The following is an example of writing a list to a CSV file. I assign some arbitrary mixed data
(strings and numbers) to a list named and write it to file. Try it yourself, and then open
the created file to view the file contents.

Here are the contents of the test file, :

CHAPTER 4 DATA ORGANIZATION116

Try changing the values of the list, such as adding a comma to one of the strings. Now,
open the file in a spreadsheet application: did the application manage to read the comma
properly? Open the file in a text editor and notice the string containing the comma is now
quoted. The csv module took care of adding quotes as required. More about the csv module
in Chapter 5.

USING THE CSV MODULE INSTEAD OF THE SPLIT() FUNCTION

So far we’ve used Python’s csv module liberally. You might be wondering why we’re not using the function
 instead of the object. The answer is that the csv module also addresses special

cases such as a string that includes a comma. Consider the following row:

Module csv will handle this properly and return three elements. However, will return four
elements: the quoted string will be broken in two.

CSV Limitations
All’s not roses in the world of CSV. Here are some things to consider:

Size: CSV files are typically not size efficient, compared with binary file formats.

Performance: There’s also a performance hit with CSV files because they require pars-
ing. An application, be it a spreadsheet application or even our code in Python, calls a
function to translate the CSV file into values more easily used by the application. That
is, it parses fields and rows and translates from text to integer or floating point in the
case of number values. Running the parser to read the CSV file takes time, so reading a
large file will take considerable time. If performance is of importance and your applica-
tion reads very large files, consider using a binary file format instead.

What to Store
As a general rule, store as much information as possible. Unfortunately, sometimes that’s sim-
ply not possible. Consider the data rate of an uncompressed HDTV video signal at 1280 720
pixels, 30 frames per second, true colors (24 bits). That’s 1280 720 30 3 bytes per second,
or roughly 83 megabytes per second and on the order scale of today’s hardware limitations.
Which means you’ll have to discard some of the information or compress it, or get better
hardware.

Deciding what to store and what not to store will be very much system dependent. Some
opt for decimating the data, which has its implications. Others decide on discarding a param-
eter they deem less important. Barring file size limitations, consider the following guidelines in
deciding what to store:

CHAPTER 4 DATA ORGANIZATION 117

data, including units of measurement. You can use free-form text for this. Some even
go a further step by adding a special character (e.g.,) at the beginning of every line,
ensuring the reader understands those are remarks and not part of the data.

for both viewing the files using a spreadsheet and for automated scripts to visualize the
data.

You can follow the ISO 8601 specifications, or you might opt to use a different notation.
An alternative valuable notation to ISO 8601 format is to store the number of seconds

you have a number that is very easy to manipulate, as opposed to a date and time that
requires parsing. There’s also a side benefit and that is if you have several files, you can
use the same time base for all of them. The seconds-since-the-epoch notation is very
useful in binary formats.

Here’s an example of the contents of a file that follows the preceding guidelines:

When to Use CSV
Use CSV whenever possible, with the following exceptions:

different format.

Binary Files
Binary files are an efficient method of storing data. The term “binary files” means files that
are not represented as ASCII text; that is, if you open these files in a text editor, the data will
appear to be gibberish. In reality there’s no difference between binary files and text files, other
than what the data in the files represent. From the computer’s perspective, they’re both just
files. So in essence, if the file is not a text file, it’s a binary file, but that’s a loose definition.

As discussed previously, there are merits to using binary file formats, and those are typi-
cally size and performance. There’s also another reason, and that’s the nature of the data. A
digital picture is not easily represented as a text file (it can be though—for example, every pixel

CHAPTER 4 DATA ORGANIZATION118

value is an integer in a CSV file). The same applies to compressed files. Regardless of the rea-
son, it’s almost impossible to avoid using binary files.

In this book, when I refer to binary files, I typically mean one of the following file formats:
an array of values, an array of structs, or other commonly used binary file formats.

An Array of Values
The most simple binary file format we’ll be using is an array of values, that is, a repeating
single data type. The file could be holding 16-bit signed values or unsigned bytes. The array-of-
values file format lends itself nicely to storing simple binary data.

Example: Reading and Writing an Array of Binary Values
The Python data type is an ideal candidate for this sort of binary file handling. The
data type is part of the array module, so to use it, issue the following command:

To create an array, call the function with the data type and optional initialization
parameters, as follows:

The data types listed in Table 4-4 can be used in initializing array objects.

Table 4-4. Array Data Types

Data Type Data Meaning and Size

Character, 1 byte.

Unicode character, 2 bytes.

Signed character, 1 byte.

Unsigned character, 1 byte.

Signed short, 2 bytes.

Unsigned short, 2 bytes.

Unsigned int, size is CPU dependent.

Unsigned int, size is CPU dependent.

Signed long, 4 bytes.

Unsigned long, 4 bytes.

CHAPTER 4 DATA ORGANIZATION 119

Data Type Data Meaning and Size

Floating-point value, 4 bytes.

Floating-point value, 8 bytes.

Of these data types, as a guideline, try not to use the and data types, since they’re
system dependent and might prove problematic when you transfer your code to another sys-
tem (unless of course that functionality is exactly what you require).

Writing array values to file is done using the member function of the data
type:

Reading is performed using the member function of the data type. The
function also requires the number of values to read. If you supply a number greater
than the number of elements in the file, an exception is raised; however, values will still be
retrieved.

An Array of Structs
A more complex binary data structure we’ll be dealing with is an array of structs. The word
“struct” is taken from the C programming language and describes a structure combined of
several data types.

Suppose data is stored as follows: , , , , , , and so forth. This
series can be viewed as an array of structures, with the structure being .
In this sense, an array of values, discussed previously, is also an array of structs with the struct
being a single data type, for example, . If you’re familiar with C, the preceding struc-
ture might be described as in Listing 4-5.

Listing 4-5. A Struct in C

CHAPTER 4 DATA ORGANIZATION120

Note that unlike our previous binary file formats, this one doesn’t lend itself to a nice
extension naming convention such as or , so we simply choose the extension ,
noting that it’s a binary file.

Example: Reading and Writing an Array of Structs
In this example, we’ll create a structure containing two data types (and), write it
to file, and then read it using two different methods: a structure at a time and the entire file at
once. You can follow along by entering the commands interactively at the Python shell.

First, we have to import the struct module:

To illustrate the concept of an array of structs, we’ll create a list of rows. Each row is a list
of three values: a long and two floats, which represent a structure. We’ll generate a relatively
short list, only two rows long:

Next, we define two variables, and , so we don’t have to enter them every
time:

I’m assuming there’s a directory named ; if one does not exist, either create it or
change the value of the variable accordingly. The format means a long, fol-
lowed by a float and a float per Table 4-4. Next, we write the list to file:

The first call to opens a file in binary mode. We then use a loop and iterate
over the rows in the list . Every row is packed using the function . The function

 accepts a format and then the values to pack. The return value is a string that
can be written to file. We then write the string to file. Finally, the last line closes the file.

So now we should have a file named . This file contains the list of
values from the list . Let’s read it a struct at a time:

First, we’ll start by defining a variable equivalent to the size of the struct format:

The function calculates the size in bytes of the format. Armed with the
struct size, we start reading the data, a struct at a time:

CHAPTER 4 DATA ORGANIZATION 121

The first line opens the file for reading in binary mode. We then use the function
to read bytes and store them in the variable . So now the variable holds

the first structure from the binary file, but it isn’t legible yet. We’ll need to unpack it, using
, that is, convert it from a string to a tuple of values using the format speci-

fier . But since we’ll be reading and unpacking several values, it stands to reason to use
a loop as follows:

The condition evaluates to as long as variable is nonempty, hence data
will be processed until the end of the file. Each struct read is unpacked to a tuple of values
using the function. Once a struct is unpacked, we read the next structure.
This continues until all the structs are read from the input file. Lastly, we close the file.

The second method we’ll examine here is reading the entire file at once. To do so, we first
read the entire file to memory, using the function:

If no parameters are provided for , the entire file is read into memory until an end
of file (EOF) is reached. This might not be a problem with small files, but with larger files be
wary; your computer might not be able to handle all the data at once, so you will need to read
the files in chunks per the previous method. Note that I’ve chosen not to assign a file handle
for the data file and let Python handle the closing of the file for me.

The function accepts as a parameter and unpacks the data to a
tuple. However, we need to unpack the entire array, not just the first structure. We can take
the obvious route of using a loop to unpack the binary data a piece at a time. An alterna-
tive approach is to change the format value to from a single to a repetitive

. This allows unpacking of the entire binary data in one call to .
Luckily, Python provides us with a very useful tool for multiplying strings, the multiplication
operator:

We can calculate the size of the array we want to unpack by dividing the length of the data
by the size of one struct. In our case, that’s . So to generate a format to
unpack by, we multiply the format by that value, which folds neatly into the following:

CHAPTER 4 DATA ORGANIZATION122

Note (Advanced readers) This implementation assumes the file is in accordance with the native operat-
ing system’s byte order. If you try to unpack data in this manner with any of the struct’s byte order, size, and
alignment format characters, such as , , , , and , the function will fail.

Other Binary File Formats
Binary files can be more complex and can follow a different scheme from the repeating fixed-
size structure. Some employ compression, which typically involves a non-fixed-size structure.
Others might store data sequentially, that is, using the data of the preceding example, you
could write all the long values, followed by the float values. In that case, a different method to
read the file should be employed, but it’s quite straightforward if you know the file format. In
this book I’ll touch lightly on this topic, specifically about known file types such as pictures
and compressed files. Since the number of file formats is virtually unlimited, the topic is too
vast for one book to cover.

Header Files
Unlike CSV files, with binary files you can’t really tell whether the information is in integer
representation, floating point, or an altogether different scheme. This means that you, the
programmer, need to know in advance what file format you’re dealing with. At first that might
not seem such a complex task, but in reality, it’s not trivial. Even with the same notation as
explained previously in this chapter, say, , you still don’t know what the values represent:
are they sampled voltage values? Is there a timestamp? And you might have several binary file
formats you’re dealing with.

To resolve this, we use a header file to describe each file type, or directory, in case all the
files conform to the same format. A header file is a text file that describes the format of the
binary file. But if we’re using a text file, we might as well use CSV!

It’s a good idea to have the same base file name for the header file as the binary file
(excluding extension). I typically add an extension for my header files; for example,
for file I name the header file

.
Here’s an example of header file contents for an array-of-structs file format:

The nice thing about this structure is that it’s quite self-explanatory. It lends itself easily to
automation and scripting.

I’ve also added a column titled Units. This column is obvious; however, you will find later
that it’s quite useful. Say you know the temperature is an integer, but what exactly does it rep-
resent? Degrees? And if so, are those in Kelvin, Fahrenheit, or Celsius?

CHAPTER 4 DATA ORGANIZATION 123

If the file format is different and does not follow the repeating fixed-size structure format,
you can come up with a header that best describes that file format. In the case of sequential
data, the header file might look like this:

This format implies that the data is sequential, having 100 values for each parameter. This
is a more complex file format and not at all popular due to the complexity associated with
implementing a format that behaves like this; you’d have to remember all the information and
then store it to file instead of gathering values and storing them one at a time. Again, at times,
you’re given data files to work with and can’t control the file format.

Readme Files
Readme files are documentation files placed in a directory describing the contents of the
files in that directory. There’s no clear definition of the contents of Readme files, only that
the information should be in clear text so as to be viewed by any text editor. Some Readme
files have directions on what should be run and how to use the software. Others add author
information and credentials. Using Readme files is an excellent way to document what you’ve
done without the overhead of writing a user’s manual. Here are occasions where I found using
Readme files of value:

data, date and time, person in charge, and so forth. See Chapter 1 for an example of a
Readme file describing data.

multitude of scripts. Describing the entry point, or what the user should run first, is a
time saver—especially if a process is required before running the scripts, for example,
uncompressing the data. Describe that in your Readme file.

there to help; include detail in them according to the level of the user or developer so they
understand what’s going on.

The common full file name for Readme files is .

INI Files
As you add content and capabilities to your scripts, you’ll find that you need to control the
scripts’ behavior using options, such as running the script but only generating a text out-
put, without graphs or running the scripts on a different set of data points. As the number of
options increase, you’ll need methods for controlling the options. There are several ways to
implement options. Following are the common ones:

 in the command .

CHAPTER 4 DATA ORGANIZATION124

behavior of the script, the user changes the values in the configuration file. The script
reads the configuration file and acts accordingly.

The latter option, a configuration file, is also referred to as an INI file. The reason is that
back in the days before the registry was introduced in Windows, applications used to store
parameters in files having the application name and ending with an extension. In Linux
this is commonly referred to as a configuration files; configuration files typically reside in
the directory and have a extension. Python supports INI files natively with the
ConfigParser module.

Much like Readme files describing the data, INI files describe the parameters, options,
and choices used to run a script. They provide a clean way of explaining what the options
mean. The general markup of an INI file (config file) is a section, denoted by brackets, fol-
lowed by a list of parameters and their assigned values and optional remarks, as outlined in
Table 4-5.

Table 4-5. INI File Format

INI/Config Line Format Notes

Section Used to group parameters logically

Parameter or Used to set a parameter to a value

Remark or Used to document sections and parameters

Example: Reading and Writing INI Files
Listing 4-6 shows an implementation of writing an INI file using the ConfigParser module.

Listing 4-6. Creating an INI (Config) File

First we import the ConfigParser module. We then set sections with the
method and parameters and values with the method. Lastly, we create a file and output
the ConfigParser object to file, generating an INI file. The following are the results from run-
ning the script in Listing 4-6:

CHAPTER 4 DATA ORGANIZATION 125

Reading an INI file is even easier. Assuming you have run the previous script, you should
now have an INI file named . The script in Listing 4-7 will read that file
and parse its contents.

Listing 4-7. Reading an INI (Config) File

The function accepts a file name (use if you want to use a
file object) and parses the INI file with the object. The code following the
function call prints the sections, options, and values. Here are the results from running the
script in Listing 4-7:

XML
XML, or Extensible Markup Language, has been growing in popularity as a data file format.
XML is more descriptive than CSV and definitely more descriptive than binary, hence its
popularity. XML is a very good format for data files, but it has its overhead. Mainly it requires a
complex parser to read the data and check data validity. While that’s true for CSV as well, CSV
is much less complex.

XML, however, is left out of scope for this book, mainly because CSV provides us with the
functionality we require, but also because the topic is too large to be addressed properly in this
book. If you do require XML processing, rest assured that Python has extensive XML support.
There’s also a large selection of books available on XML, and I suggest you consult with them
or the Internet should you require XML support.

CHAPTER 4 DATA ORGANIZATION126

Other File Formats
There are a large number of other file formats you’re likely to encounter. These include image

and yes, XML too.
It is far beyond the scope of this book to detail and discuss all these file formats. One of

the benefits of using Python is its popularity and an active developer base with an extensive
number of freely available packages contributed by the Python community. There’s a good
chance there’s already a module out there that’s suitable for reading different file formats and
converting them to programmer-friendly values. For example, a module we’ll be exploring in
Chapter 9, the Python Imaging Library (PIL), supports most popular image formats.

Locating Data Files
As described in the introduction to this chapter, as you gather data, you’re bound to end up
with files of various types: raw data files, clean data files, processed data files, files of older file
formats, and the list goes on and on. The question is, how do you organize all this data, and
furthermore, how do you later locate it for analysis?

This section suggests several approaches to organizing files and what’s more important,
maintaining well-organized data. One approach is storing files in directories and subdirecto-
ries, and we’ll discuss methods to locate the files using that approach; another is to use catalog
files and annotate them.

Organization into Directories
The most popular method of organizing files is in directories. If you go with this approach, try
to have all your subdirectories containing data files in a parent directory named or simi-
lar. If you intend to preprocess the data, split the directory into “raw” and “clean” data. The
reason you want to do this is that you may find out later that the preprocessing algorithm has a
bug or that a different method should be employed to preprocess the data. Or if you manually
preprocessed the data (that is, cleaned up the data files, removed wrong files, edited others,
etc.), you may later realize you accidentally erased the wrong data file or that you made some
other mistake.

From here on, there are several options, for example, putting all the data files in one
directory or creating subdirectories and organizing files there. Personally, I like to split the
directories further for several reasons. One is that it gives me greater control over documenta-
tion: it’s possible to generate Readme files for every directory. The other is that it allows greater
control over what files to process, for example, I could process all files from directory .
Lastly, it helps provide a more aesthetic view, and that’s an important part of any engineering
work.

The actual breakdown into subdirectories is very problem specific. It could be based on
dates, type of files, contents, and pretty much anything else you would like. However, do try to
group the directories in one root directory, as it will be a lot easier to iterate through the data.

CHAPTER 4 DATA ORGANIZATION 127

Searching for Files
One of the obvious methods for searching for a file is by recursively going through all the sub-
directories and looking for files that match a given pattern.

Example: Storing Directory Contents in an Array
When you first look for a file, you don’t always find it on your first search, maybe because
you chose the wrong file name pattern or because of a simple typo. There’s a good chance
you’ll require additional searches. Now if you have a significant number of data files, it can be
tedious to rewalk the entire directory again. Every search is laborious, and time spent finding
files will increase dramatically. Instead, it’s possible to store the intermediate result in a data
structure.

Try this yourself. Define the function , as shown in Listing 4-8, and call it
interactively in Python by issuing . Observe the results
by issuing at the Python shell.

Listing 4-8. A Function to Retrieve All Files in a Directory and Store It in an Array

The function stores an entry to each file in a list (). Each entry in the list holds
the file name, path name, and file size. A path name is the full path plus a name of a file (e.g.,

); a file name is the name of the file excluding the path (e.g.,),
and file size is given in bytes. The function was described in Chapter 1 and should
not require additional clarifications. I’ve made use of the function to
retrieve the size of a file.

CHAPTER 4 DATA ORGANIZATION128

Note In cases where file names contain non-English characters, I’ve seen the function raise
an exception because it was unable to read the file. If you’re dealing with such files, either rename them or
add a / clause to catch the exception.

Indexing
The act of going through directories and recording file information in an organized manner is
called indexing. Done properly, indexing can allow fast searches.

Example: Searching for Duplicate Files
Continuing our previous example, now that we have an array containing all the files in a direc-
tory, we can perform fast searches on the array. We can sort the array based on file size and
find the ten largest files; or we can look for files matching a given pattern. In this example we’ll
explore a more complex search, one that checks for duplicate files. This is a true need, one that
arises especially when dealing with a large number of files.

Assuming you have followed the unique file name convention suggested earlier, there
shouldn’t be any duplicate file names. However, that’s not always the case. Consider the fol-
lowing: data is generated by copying pictures from a digital camera. Many digital cameras
follow a simple running index scheme (see the section “Other Schemes” earlier in this chapter)
whereby file names follow the pattern , , and so on, with each
camera having its own string. After you copy the files to your computer, you delete the
old files in the camera, clearing space for new pictures. New pictures taken by the camera will
in turn start from index 1 and eventually, as they’re copied to your computer, will have non-
unique file names. To ensure files are not accidentally overwritten, you copy over each batch
of pictures to a directory of its own, each directory named uniquely based on date and time.
So you end up with several directories, but their contents could contain nonunique file names.
Maybe some are the same. Can we clear some up?

Another scenario is that of backups, or that of using several storage locations, say, your
laptop and your home PC. You may have copies of data lying around in several spots, and the
question again is whether you have multiple copies of the same data. Of course, if you follow
a central server approach and that server is backed up on a regular basis, you’ll find that these
occasions are rare. Still, it’s nice to be able to identify duplicate files, and that’s the motivation
behind this example.

In the example we’ll confine ourselves to the following: we assume files to be identical if
they have the same file name and file size. While this isn’t necessarily true, the example can be
easily modified to compare contents as well.

We’ll show three different implementations and discuss the best solution of the three. In
all three methods we’ll use a dictionary object.

Note To be able to follow along, ensure you’ve defined the function from the previous
example. Run it in interactive Python and store the results in an array as follows:

.

CHAPTER 4 DATA ORGANIZATION 129

Method 1: We use the file name as the unique key in our dictionary, . The value
is a list of . At first, is empty. For every entry, we ask whether
the file name is a key to the dictionary. If it wasn’t encountered, we add the list

 as a value to the key, file name. If the key is in the dictionary, it means that this file
name has been encountered in the past. We then retrieve the file size and compare it with the
current entry file size. Listing 4-9 shows the implementation.

Listing 4-9. Looking for Duplicate Files, Method 1

One of the obvious shortcomings of this method is that there might be several files with
the same file name but different sizes; the algorithm might not catch some of them. For exam-
ple, if the first file is of size A, and several other files have the same file name but are of size B,
the algorithm will not identify files of size B as duplicates.

Method 2: This method uses the path name as the unique key in the dictionary
and the list as the value. Since we’re using the path name as the key,
it’s guaranteed to be unique; there are no two files with the same file name and path name. To
check whether a file name already exists in the dictionary, we iterate through all the elements
in the dictionary using the method. If the file name and the file size are identical,
we announce them to be a duplicate. If not, we add the associated path name as key and the

 as a new value to the dictionary (see Listing 4-10).

Listing 4-10. Looking for Duplicate Files, Method 2

CHAPTER 4 DATA ORGANIZATION130

While this method does resolve the shortcoming of method 1 in that if there are sev-
eral files with the same file name, they will all be checked, the implementation is not a good
one. The major issue is that we use a dictionary object to store values and neglect to use the
inherent hashing mechanism properly: we iterate through all the items linearly. We probably
could’ve just as well used an array.

Method 3: This method uses the file name as the key in the dictionary object . The
difference from method 1 is that instead of a list holding , we now hold
an array of lists for every key, much like in a real dictionary where one
entry (key) might have several definitions (values). The second change we introduce is that
we don’t ask whether the file name (key) is part of the current set of keys. Instead, we simply
access the dictionary object with the file name using the method . If there’s an entry,
we go through the array of values and check for duplicate files. If one
matches, it’s a duplicate. If none matches, we append our new to the
array of current values. In case there’s no entry for the file name, we add it as a new entry to
the dictionary object (see Listing 4-11).

Listing 4-11. Finding Duplicate Files, Method 3

Of the three methods, the third one is the best because it uses hashing properly.
To check performance for yourself, copy the function implementations per Listing 4-9,

4-10, and 4-11 to a text editor, save them under , and then issue
 in an interactive Python shell. Once that’s done, here’s a short

set of commands you can use to measure performance. Be sure to change the vari-
able to point to a directory containing a large number of files, with some duplicates.

CHAPTER 4 DATA ORGANIZATION 131

I’ve imported the method and renamed it to (to save a few characters).
The function , part of the time module, returns the system clock and is very useful
for comparing performance. Notice how I’ve entered three function calls in one line. This is
important: if you split those into three separate sentences, the time it actually took you to write
the command is also added to the time difference, offsetting results.

Note Because method 2 is quite inefficient, for a large number of files or a slow machine it might take
considerable time to compute. Although method 1 seems the fastest, in reality it’s inaccurate and shouldn’t
be used.

In the preceding implementations, we do not check the contents of the files to ensure they
are indeed identical. It is quite possible to add that capability by modifying the functions and
comparing the contents of two files, and , as well:

This method reads the entire files to memory and compares them byte by byte. Note that
this is a not a good option if the files are large; reading chunks or using other mechanisms may
be better (see “Comparing Files” section in Chapter 10).

Catalogs
We’ve discussed splitting data files into directories and subdirectories and mentioned that it’s
a good habit to group files in that manner. While this is an excellent method of maintaining
what’s what, it’s limited to one division. That is, if you’d like to split files into directories based
on several criteria, what do you do with a data file that fits several of those criteria? This is
where catalogs come in handy.

Catalogs are text files that hold data in columns: the first column contains the file names,
and subsequence columns contain subcategories (other criteria). Ideally you’d like to use
CSV because there’s a good chance you’ll be editing the catalog file manually in a spreadsheet
application or automatically with Python; CSV fits that role perfectly.

Once you have a catalog file, it’s easy to select only files meeting a specific criterion and
run a script on those selected files.

Example: Creating a Clean Catalog File
The first step is to generate a basic catalog file, or a clean catalog file. This clean catalog file
is generated automatically, using Python. For every file encountered, the full path as well as

CHAPTER 4 DATA ORGANIZATION132

the file size is retrieved. Listing 4-12 shows an example of creating a clean catalog of files with
extension .

Listing 4-12. Creating a Clean Catalog

To follow along, change the variable to point to a directory containing Python
files, such as the root Python directory (). I chose to list the contents of my
directory.

The script walks the search directory looking for Python files (files ending with the exten-
sion , case insensitive). For every file encountered, we retrieve the file size. We then store all
the information in a CSV file as shown in previous examples.

CHAPTER 4 DATA ORGANIZATION 133

Next you take notes. For example, if a script is a draft, you mark it as such. So now you
have an additional column: “Draft?” The contents of the catalog file will look something like
this:

For the purpose of this exercise, I chose to use files, but you could just as well use the
script on data files. In this manner, running a script on only clean data from the annotated
catalog is manageable and reproducible.

Note Maintaining catalog files is a delicate job. Ensure your catalog files are always under version
control, or better yet, a software configuration management system (for example, CVS, Subversion, or Mer-
curial—see Chapter 2). You will constantly need to re-create clean (unannotated) catalogs if data is added.
Consider investing time in maintaining your catalogs to keep them clean and up to date. If you find that the
number of columns in your catalog files has increased and is unmanageable, consider using a database
instead of a CSV file.

Files vs. a Database
There are a lot of pros for using databases over the management of files in directories. If your
data becomes too complex to manage, rethinking and redesigning your data infrastructure is
not a bad idea. That being said, I personally have found that databases do not add to my pro-
ductivity. In my mind, the reasons are as follows:

The nature of the work: When you design a database, it’s important to know a lot of
the information up front. A good database relies on a good database design. And good
database design relies on knowing the information and structure beforehand. The
work described here does not follow that path. As presented in the beginning of the
chapter, it’s an iterative process; you do not know all the information before you start.
And your application is mostly for your usage, not for end users (at least at first). It’s
not “production-level” code yet. When it does get to production level, that is, it’s an
application to be used by end users, rethinking the data organization is a good idea, at
which point you should consider using a database as well.

CHAPTER 4 DATA ORGANIZATION134

The nature of the data: The nature of the data described here is somewhat flat. There
are not a lot of connections and interconnections and hierarchy and logic. There’s
simply a lot of data. There’s a need to analyze it, fast. Some of the files are quite large,
and while it’s possible store large files in a database, it’s probably not the most effi-
cient way.

Overhead: Databases introduce overhead. Some may argue that it’s not significant,
and they may be right. However, there’s another piece of code, a database engine, that
needs interfacing. Yes, Python provides good database support, but it’s not the same
as opening a file natively in your operating system. The overhead is in several layers:
backup is more complex, code writing requires additional libraries, designing data-
bases requires some experience (which you might not have), transferring the work to
another computer is not easy, and maintenance is also required.

Note It’s worth mentioning that the SQLite database module (sqlite), which is part of the Python Stan-
dard Library, has very little overhead and is an excellent package for working with databases should you
require one.

Immediate interaction: Say you’d like to browse for data and view files. With a database
you’d have to write an application just to extract data, and then to view it. The interac-
tion is less immediate in my mind.

I know I’m not being fair in my analysis; I’m mostly showing the cons of databases. So to
offset that, I’ll say that databases do have their role. If you feel that you’d like to store your data
in a database, you should at least know that Python provides a great number of tools for you to
choose from, so even then, Python is the right programming language for you.

Final Notes and References
Data organization is an important part of any serious data analysis and visualization proj-

ect. If you follow through with the guidelines suggested in this chapter, I believe you will find
that the overhead associated with maintaining data coherently is minimal, and furthermore
that it’s easy to write scripts to process large sets of data.

I have found the following of great value, when deciding on the file name format or the
date and time format in a log file:

standing source of confusion,”

C H A P T E R 5

Processing Text Files
Text Is Everywhere

A considerable amount of data we process is text based. From a simplistic approach, text
files are files that contain characters. The Python scripts we write are text files, the HTML files
our web browser receives are text files, the e-mail messages we read are text files. They’re sim-
ply everywhere. Because of the abundance of text files, you’re likely to analyze data that comes
in some form of a text file.

But in reality, there’s no difference between a text file and another file, say, a binary file.
They’re both just files that occupy space on your hard drive. The important difference is what
text files represent. If you look at data in a text file, a byte at a time, and convert every value
using the ASCII table, you will be able to find (usually) intelligible text.

Note ASCII, short for American Standard Code for Information Interchange, is a 7-bit character encoding.
Each character has a number (0–127) associated with it. Characters can also include digits and symbols. To
view the ASCII table in Python, issue the following: .
Note that nonprintable characters (usually values 32 and below) will be displayed with their hexadecimal
notation.

In a sense, text files are regular files that have information encoded in accordance with
a known code. Nontext files, that is, binary files, will have values that don’t necessarily corre-
spond to the ASCII table, and if you use the ASCII table to decode a binary file, you’ll probably
end up with gibberish, not with text.

Text files can conform to yet another set of rules, say, the CSV format or the XML markup
language. Text files that don’t necessarily conform to any mapping other than the ASCII table
are called plain text files. You’ll mostly encounter plain text files and CSV files in this chapter.

The goal of this chapter is to present tools to work with text. First, we’ll talk about strings
and how to process them, and then continue with a discussion of reading and writing files,
complementing the discussion with a considerable number of examples. We then turn to
some topics that are likely to pop up when dealing with text files: handling CSV files, reading

135

CHAPTER 5 PROCESSING TEXT F ILES136

date and time information and parsing it, and working with regular expressions, a powerful
tool for processing text. Lastly, since date and time are denoted differently around the world,
we turn to a discussion about reading data that originated in a different locale.

Text and Strings
Text is composed of strings of characters, usually separated by spaces or other separators,
such as commas, dots, and punctuation marks. Processing text is therefore based on process-
ing strings.

You’ve already seen a discussion of strings in Chapter 3, one that deals with strings as
sequences of characters: slicing, indexing, and concatenating. But in essence, we didn’t deal
with the string as a text object. You could’ve just as well thought of the string as a sequence of
numbers, and the discussion would still be valid.

While that approach is correct, it’s too simplistic. When we view strings that way, we
lose important information. Consider this book: it’s made of text. But as you read it, there’s
more information than just a sequence of characters. There are words, lines, and punctuation
marks. And even then, there’s still yet more information: for example, words that begin with
a capital letter have a different meaning. Those distinctions are important to us when we’re
reading text.

The following section deals with functions and ideas that help us write code to process
higher-level textual concepts; “string” is no longer merely a sequence of characters.

Splitting Text
The first tool at our disposal is the function, which is a string method:

The function splits a string into a list of strings once a separator is encountered.
The default separator is a whitespace string and is one of the following: carriage return ,
line feed , tab , vertical tab , form feed , and a space. Vertical tabs and form
feeds are less frequently used.

The function does not include the separators in the list, nor does it care how long
the separator string is. This is especially useful if you’re splitting text that’s made of columns,
with a varying number of spaces between fields:

Much like it’s useful to split text on words, it’s also useful to split text on lines. The func-
tion splits a string based on line endings and removes the line
endings, that is, removes the characters or if they exist. In case the optional value

 is , end-of-line characters are retained:

CHAPTER 5 PROCESSING TEXT F ILES 137

Example: Counting the Number of Words and Number of Lines in a String
At times you’d like to count the number of words, or the number of lines in a string. This can
be done by using the function to count the number of elements in the lists generated
from the calls to functions and , as demonstrated in Listing 5-1.

Listing 5-1. Counting the Number of Words and Lines in a String

The function returns a tuple: the first element is the number of words in the string, and
the second element is the number of lines in the string.

Once you define the function, use it as follows:

Joining Strings
Much like you can split a string into a list of strings, you can join a list of strings into a new
string using the member function. Remember, though, that is a string method;
therefore you must have a string to operate on to begin with. So if you’d just like to combine a
list of strings with no spaces in between, you should write the following:

Converting Strings to Numbers
Common use of the function is to parse the text and then extract numeric data, which
usually comes in the form of a string of digits. Once extracted, the strings representing num-
bers can be converted to an actual Python numeric representation instead of a sequence of
digits.

Converting strings to numbers can be done with either , , or function
calls:

CHAPTER 5 PROCESSING TEXT F ILES138

If you try to convert a string that doesn’t represent a number to a number, an exception is
raised:

This can be used to your advantage: say you’re looking to print only the number of items
from the grocery list in previous examples. Simply employ the EAFP principle to convert every
string to a number and print it.

In this example, I took special care to discard only exceptions, which occur in
case of a conversion problem.

Example: Base Conversion—Binary, Octal, Decimal, and Hexadecimal
At times, it’s useful to convert a number from one base representation to another. In case
you’re dealing with octal, decimal, and hexadecimal bases, this is easily achieved using the
functions , , and .

Since we’re dealing with representations of numbers, it stands to reason we use strings.
I’ve therefore chosen to define several functions, all of which accept a string as an argument.
As shown in Listing 5-2, these functions are , , , ,

, and . The names of these functions are self-explanatory.

Listing 5-2. Base Conversion Helper Functions

CHAPTER 5 PROCESSING TEXT F ILES 139

I’ve left out the docstrings: I think the function names are documentation enough. I also
chose to use ; the function would’ve worked just as well. The functions do not
perform any sort of error checking (e.g., ensuring that they received a string as an input).

Here’s a possible use of these functions:

Note In Python 2.6, the notation of the octal base accepts a zero and the character: or . This
change is accompanied with the introduction of binary numbers in Python 2.6 and above. Binary numbers are
denoted with a leading or (zero and the character).

BINARY CONVERSION IN PYTHON 2.5

At the time of the writing of this book, the external packages used to create much of the code did not yet
catch up to Python version 2.6, and so I resorted to using version 2.5. In case you’re in the same boat
and would like to use the binary base-conversion helper functions, here’s a short implementation of the

 function that works in Python 2.5 as well. Combine this function with the function or
 to implement all other base conversions.

The way the function works is as follows. The string representing a decimal value is converted into a
number. The number is then checked for special cases (negative, zero) and proceeds to the conversion in the

 loop.

CHAPTER 5 PROCESSING TEXT F ILES140

Within the loop, if the number’s least significant bit is equal to 1 (condition), a is
added to the list of digits, ; otherwise, a is added to the list. I’ve used a conditional expression
similar to the expression in C (go to and scroll down
to PEP 308). The number is then right-shifted 1 bit, and the whole cycle repeats itself. The loop ends
when the shifted number reaches zero, effectively meaning all its binary digits were converted. Finally, the
function returns a string from the list of digits, only the string has to be reversed since we’ve converted from
the least significant bit first to the most significant bit last. I’ve used the iterator to present the
binary digits in the proper sequence.

The function does not accept negative values. It shouldn’t be too hard to support negative numbers as
well, but I’ve never used negative binary numbers, and so the need has never arisen.

Let’s complete the preceding helper function by implementing the functions ,
, , , and using , as shown in Listing 5-3. If

you’re running version 2.6, I would suggest implementing the function as a simple
; if you’re using version 2.5, use the implementation suggested in the side-

bar “Binary Conversion in Python 2.5.”

Listing 5-3. Binary Conversion Helper Functions

Testing Your Implementation: exec and assert
This is a bit of an off-track discussion and somewhat advanced, but I thought it appropriate in
the context of the preceding discussion.

As you implement the base-conversion helper functions, you’ll find that it’s quite possible
that you’ve made a mistake. Those are implementations of nested function calls and are prone
to human error.

Python provides several testing modules: and (see the Python Standard
Library,). However, I chose a different approach,
one that does not make use of these modules, in hopes of shedding light on two new state-
ments: and .

The first statement, , will return an in case a condition isn’t met.
This is quite useful for testing purposes:

CHAPTER 5 PROCESSING TEXT F ILES 141

Adding statements in your code is a good way to ensure things behave the way you
expect them to, for example, making certain an argument passed to a function is of a specific
type.

Tip statements are not executed when you run Python with the optimization switch turned
on ().

The statement executes a string as if you typed it in the interpreter:

The statement can be used for automating command execution.
At first, might not seem such a big deal. But consider those functions in the previ-

ous example: there are 12 functions corresponding to all combinations of base conversions,
, , , , and so forth. Testing all these functions is tedious.

If you watch closely though, you’ll find there’s a pattern. And when there’s a pattern, it stands
to reason to write a computer program to perform the task for us. This is exactly where
comes to life. The idea is to create a list of strings, each string detailing a function to be exe-
cuted, and then executing each and every string (see Listing 5-4).

Listing 5-4. Testing Base-Conversion Function Implementations

I created two test vectors: and . Variables and are dictionaries containing a
string representing the base as the key and a string representing the number as the value. I
took care in ensuring that the string representing the base names follows the three-letter nota-
tions I’ve used for the function names. I then iterate through my test vector list and execute
each test case (). Let’s break this down into smaller chunks.

CHAPTER 5 PROCESSING TEXT F ILES142

I first create a list comprehension named that generates all permutations of bases as
long as they’re not identical (hence the condition):

To modify this list comprehension to generate actual assertion calls requires some string
manipulation, but you already know how to use format specifiers, so here it is:

I’ve printed a string associated with the command to be executed. The strings represent
commands that check the functionality of the base helper functions. Now all that’s needed is

.

CHAPTER 5 PROCESSING TEXT F ILES 143

Note If you’re using the built-in function available in Python 2.6 and not the implementation of
 in the sidebar “Binary Conversion in Python 2.5,” be sure to change the notation to include a

leading in case of binary values. The octal notation is optional in version 2.6, and the default behav-
ior is just a leading zero without an , so there’s no need to change those. Vector would then be

.

The nice thing about this implementation is that you can easily add other bases, say, the
functions that convert base 5: , , , and so on (I’ve used the nota-
tion , which is short for quinary, base 5).

Find and Replace
The next set of interesting functions are and . The method locates
the first occurrence of a substring in a string and takes the general form

. The parameters and are optional and are used to limit the search
to indices that are greater than or equal to and are less than , if those arguments are
provided:

In case a substring isn’t found, the return value is .

Caution Be sure to compare the value of with , and not with , as (substring not found)
is considered . That is, instead of writing , write .

The function doesn’t really replace items in a string, as strings are immutable.
Instead, it creates a new string, with every occurrence of the old substring replaced with the
new substring:

The method will replace as many occurrences as are possible unless the
argument is provided, as follows: —in which case only the num-
ber of values up to and including will be replaced.

CHAPTER 5 PROCESSING TEXT F ILES144

In case you’d like to know in advance how many substitutions will occur, you can use the
 method, which counts the number of occurrences of a substring in a string:

The method also accepts an optional start-of-search and end-of-search indices:
; the behavior is similar to that of function .

Stripping Strings
Stripping strings is the process of removing extra whitespace characters or other set of char-
acters from a string. The method removes whitespace characters from both
the right side and the left side of a string. If is provided, characters from the string
are used as separators instead of whitespace characters, each character acting as a separa-
tor. Methods and do so on the right or left sides only,
respectively:

Example: Removing Extra Spaces
In this example, we’d like to remove extra spaces from some text. We could try to use the

 method, replacing two spaces with one:

That didn’t work well: there are two spaces between and after the call to .
The reason for this is that is not a recursive search and replace. After a replace
has been made, the function keeps on looking for other occurrences, but the ones that have
already been replaced add up together to form extra spaces again: those are not replaced. For
example, four spaces become two, and not one. Of course, you could keep on replacing until
there are no more changes to the string, but that’s a bit cumbersome.

Another approach is to use , , , and :

CHAPTER 5 PROCESSING TEXT F ILES 145

I’ve used a loop to iterate through the split lines. For every line, I’ve created the list
, which is each word stripped of separators (in our case extra spaces). I then joined

the list of words with a space.
If all this seems considerable effort for a simple task, you’re absolutely right. There are

other, better ways to perform this: regular expressions. More about these in the section
“Regular Expressions” toward the end of this chapter.

String Formatting
Using format specifiers, presented in Chapter 3, you can control string format very accurately.
But format specifiers do not take into consideration that we’re dealing with text and words;
they treat strings mostly as a sequence of characters.

The functions presented in this section add string formatting options that are more suited
for working with words and text.

The methods and return strings with all characters in uppercase or lower-
case, respectively:

The function returns a string with the characters’ case inverted:

The method returns a string with the first letter in uppercase and the
remaining letters in lowercase. Note that this affects only the first character of the string, disre-
garding English grammar rules or whether there are punctuation marks or line breaks:

The method capitalizes every first letter of a sentence. Again, not in accordance
with the English grammar rules, as some words in titles should not be capitalized (e.g., “the”):

The method returns a string of length with left and right padding of
the string with (default is space) so as to have the string centered in the middle:

The methods and perform left and right justification,
respectively, with the optional fill character being :

CHAPTER 5 PROCESSING TEXT F ILES146

String Conditionals
The following is a set of string conditionals: methods that ask questions about strings.

The method returns if a string ends with .
The and arguments limit the search indices similarly to previously discussed string
functions; from now on I’ll refrain from explaining their effect. The function is use-
ful for checking file name extensions, for example:

The second expression evaluates to because is case sensitive. However,
 can be a tuple as well, accommodating several condition tests:

The method is similar to only in that it
checks the beginning of a string.

The methods , , and return if all the characters in the
string are alphabetic, digits, or both, respectively:

The reason the method returns in the preceding example is that the char-
acter (dot) is not alphabetic nor a digit.

Similarly, the methods , , , and return if the
string is all lowercase, all whitespace, of the title form (first letter in every word capitalized), or
all uppercase, respectively:

Note The conditionals starting with , such as , will return if the string is empty.

CHAPTER 5 PROCESSING TEXT F ILES 147

More on Strings
The preceding isn’t a full account of strings and string methods. For example, in Python 2.6
a new formatting function, , is provided (see

). If your work is text-heavy, have a look at the online documentation for addi-
tional information. The discussion that follows relies on the preceding string methods but not
on ones that were not discussed.

Files
Text files are files that contain textual data, that is, text strings. We’ve talked about strings and
text extensively; now it’s time to talk about files.

In Python, you access files using the data type. Working with files is quite similar to
doing so in other programming languages: open a file and receive a file object, read from the
file or write to the file using the file object, and lastly close the file, again using the file object.
You can open a file either for reading, writing, or appending, and you can open it in binary
mode or text mode.

Opening a File
To open a file, use the built-in function. The func-
tion returns a file object that is used for subsequent file operations. The first argument,

, is required. The second argument, , is optional and can take the values listed in
Table 5-1.

Table 5-1. File Open Modes

Mode Description

Opens a file for reading. This is the default value if mode isn’t specified.

Opens a file for writing, overwriting an existing file.

 Opens a file for writing in append mode; all write operations are performed at the end.
If the file doesn’t exist, it is created.

 Opens a file for reading and updating. If the file doesn’t exist, an exception is raised.

Creates a new file for writing and updating, overwriting an existing one.

 Opens a file for reading and writing in append mode. All write operations are performed at
the end. If the file doesn’t exist, it is created.

Adding the character to the mode ensures the file is open in binary mode (e.g.,).
Adding the character to the mode ensures the file is opened in text mode (e.g.,). A file
can be opened either in text mode or in binary mode, but not both (default is text mode).

The difference between binary mode and text mode is whether Python tries to convert
line-ending characters it encounters to . In Windows, the characters are used to
denote the end of the line; in Linux, it’s just . To have a consistent method to access text
files, use text mode. When dealing with binary files, or when it’s important for you to have
end-of-line characters unmodified, use the binary mode.

CHAPTER 5 PROCESSING TEXT F ILES148

Note In append mode, write operations are performed at the end of the file, effectively guarding existing
data, whereas in write mode, you’re allowed to write anywhere in the file, possibly overwriting data.

The third parameter, , is optional as well and determines the file buffering mode.
See for information about buffering.

Closing a File
Contrary to the function, which is a built-in function, the function is a mem-
ber function of the object and not a built-in function. To close files, use the file method

 (assuming is a object). It’s generally good practice to close a file once you’re
done with it. But in case you don’t, Python closes the file for you automatically once the file
object is no longer in use. The following sample shows how to open and close a file:

Writing Text
Once a file is open for writing (or appending) and before it’s closed, you can write strings to it
using the methods and .

The method writes a string to the file:

The contents of the file are

The method writes a sequence of strings to a file:

CHAPTER 5 PROCESSING TEXT F ILES 149

The contents of file are

Notice how does not add spaces nor line breaks.

Note I’ve assumed you are following the book convention of having your source code reside in directory
 and your data directory in . If that’s not the case, change the path to your data files in the

preceding examples.

Reading Text
Once a file is open for reading, you can make use of the methods , , or

 to read the file contents. You can also iterate over the file object to read a line
at a time. I found that when dealing with text files, my code typically falls into one of three
categories:

1. Reading the entire file at once using the methods or . This option is
preferable if the files are not too large.

2. Iterating over the file object, reading a line at a time. This option is preferable for larger
text files.

3. Using a loop with the method . This option is a good candidate in case
you don’t necessarily want to treat the file as lines of text.

Reading the Entire File at Once
Assuming you’re dealing with not-too-large files, using method or to read
the entire file at once should be your first choice.

The method reads bytes from the file, returning them as a string. If is not
specified or negative, the entire file is read. For this example, we’ll use the file gener-
ated in the previous section, “Writing Text” (first snippet of code):

or more compactly:

CHAPTER 5 PROCESSING TEXT F ILES150

The method reads the file at once, returning a list of strings:

Iterating Over the File Object
This option is suited for cases when you want to process your file a line at a time, but you don’t
want to read the entire file at once, due to, say, memory constraints. Here’s an example:

Using a while Loop
Use this method in conjunction with to process chunks of the file at a time. Again, this
is best suited for larger files and in cases where you don’t want to treat a file as a list of lines:

This example reads the file a byte at a time and stops upon encountering the character
or an end-of-file where would then evaluate to .

Working with Text Files
Now that we have the basics covered, that is, reading and writing files and processing strings,
it’s time to combine the two new skills.

This section is presented as a list of examples. The examples can be used for educational
purposes, but they can also be used to form the basis of helper functions for text-based data
processing. With time, I hope you modify the code presented here to best fit your needs.

It is important that you treat these examples for what they are, that is, examples and not
production code. Most of the functions do not perform any sort of error checking or handle
exceptions and should not be used as-is but only for educational purposes. When possible,
I’ve added a discussion on how these examples can be improved upon.

For the purpose of working with larger files than the contrived grocery list used previously,
I’ve selected to use the electronic version of the book Flatland, by Edwin A. Abbott, available
for download from Project Gutenberg, located at . A direct link to

CHAPTER 5 PROCESSING TEXT F ILES 151

the e-book at the time of the writing of this book is
. Once you download the file, save it in folder under the original file name . Your

directory structure should look similar to that presented near the end of Chapter 2 in the sec-
tion “Example: Directory Structure for the Book”:

In this directory structure, is where you code is, as well as your current working direc-
tory, and indicates the location of data files (namely —the Flatland e-book).

Example: Character, Word, and Line Count
Similar to the example presented in the beginning of the chapter, now you’re confronted with
the task of counting the characters, words, and lines in a file, and not just a string.

The solution is an immediate extension of the example provided before, using ,
, and . I’ve named the function , which is a popular command name on

Linux shells (see Listing 5-5).

Listing 5-5. Counting the Number of Characters, Words, and Lines in a File

The function returns a tuple of three elements: the first element is the number of char-
acters in the file, the second element is the number of words, and the third element is the
number of lines. I’ve also selected to open the file in binary mode and not in text mode. This is
so that the number of characters will be counted properly, without any conversions of
to that would throw numbers off count.

Note Notice how I’ve indented the docstring; it’s standard practice that in case more than one line is
needed to document the function, a blank line is added immediately after the short function description.
Subsequent documentation is left justified with no indentation.

It’s possible that you’re dealing with truly large files, in which case a different approach
should be employed: iterating over the file object (see Listing 5-6).

CHAPTER 5 PROCESSING TEXT F ILES152

Listing 5-6. Counting the Number of Characters, Words, and Lines in a Very Large File

Here are the results from running both functions:

Example: head and tail
Most Linux system administrators know and love the and command-line utilities.
It’s a fast check on how an installation is coming along, it’s great for probing message logs, and
it’s good to see whether any errors occurred during boot time.

The way the and command-line utilities work is that they print lines from
the beginning or end of a file, respectively. You’d typically use these commands to look at log
files because most log files are plain text files with data written sequentially: a recent event is
logged at the end of a file.

The following command will print the last 20 lines from the log file (a common
Linux log file):

Using the method , both and functions are easily implemented,
as shown in Listing 5-7.

Listing 5-7. and Functions

CHAPTER 5 PROCESSING TEXT F ILES 153

Note It’s also possible to replace the line with (notice the comma)
to suppress the extra line breaks.

In case your files are too large to be read entirely into memory, things get trickier.
Implementing the function is possible by iterating over the file object, as shown in
Listing 5-8.

Listing 5-8. Function for Very Large Files

You can convince yourself both functions return proper results by modifying the code to
return a list and then comparing the returned values from the two functions.

Unfortunately, implementing the function in a similar manner, iterating over the
file object, is much more complex. First, you’d have to go through the entire file, reading every
line. Remember, this is a large file, therefore doing so will take considerable time. And even
then, the second problem you encounter is that you don’t know in advance which line is the
last line, so you’d either have to perform two passes on the file, on the first one counting the
number of lines and on the second one printing the last lines, or you’d have to continually
store the last lines read. In both cases, yikes. A third approach is to use random access func-
tions to start reading files at the end and work your way backward. This requires use of the
function , which will be covered in Chapter 10.

Example: Splitting and Combining Files
Back in the day, computer users used to transfer files on 360K diskettes. Since this was rather
painful, they opted to use a file compression utility that did both splitting and compressing.
Alas, one of the disks always seemed to be misplaced, rendering the data totally useless.

Which brings up a common task when dealing with large files: you may need to split them
into smaller, more manageable files. By that, I don’t mean that each chunk contains legible
information, merely that now you can use size-limited media (e-mail, flash drive) to transfer
the split files. The receiving end will then need to reconstruct the original file from the split
files.

The function splits a file into smaller files, each with a modified file name
that is composed of the original file name plus the split file index (e.g.,). The function

 combines several files of the preceding pattern into one, as demonstrated in
Listing 5-9.

CHAPTER 5 PROCESSING TEXT F ILES154

Listing 5-9. Splitting and Combining Files

The functions themselves are self-explanatory and should prove easy enough to follow.
Here’s how you would use them:

Now copy the files to a temporary folder, say, and issue

CHAPTER 5 PROCESSING TEXT F ILES 155

To satisfy yourself that indeed the files are identical, issue the following:

In the implementation of the function I’ve chosen to again use the EAFP
approach. Alternatively, I could’ve listed the directory contents using or used the
glob module to achieve the same; the glob module will be discussed in Chapter 10.

While the topic of this section is text files, the functions and
should work on binary files just as well, since we’ve opened the files in binary mode.

Caution The function will overwrite an existing file if it already exists.

Lastly, the function will overwrite a file if it exists; if you’d prefer a differ-
ent functionality, you can use the function to first ensure the file does not
exist and act accordingly (ask for user preference or return without overwriting the file).

Example: Searching Inside a Text File
The examples up to this point dealt with the files themselves, not really with the information
they hold. The examples going forward will look at the contents as well, that is, read the file
and process text.

A common programming task involves searching for a string inside a file. A yet even more
common task is the searching of a string in multiple files, but we leave that to future discus-
sions (see Chapter 10). In Linux, a handy utility achieves this: . also provides more
complex searches, ones that include regular expressions, but in this example we limit our dis-
cussion to simple string searches.

Searching inside a text file is easily implemented in Python, as you can see in Listing 5-10.

Listing 5-10. Searching Inside a Text File

I’ve used the iterator to retrieve both the line and the line number, as the
line number is displayed in the statement later on. I’ve also used the method
to remove the extra new-line character. Here’s the output from running the command

:

CHAPTER 5 PROCESSING TEXT F ILES156

There’s room for improvement of the function . First, the function is case-
sensitive. To allow for case-insensitive searches, I would suggest adding a parameter to the
function that controls whether searches are case sensitive or not. In case of a case-insensitive
search, would make use of the function (or) and convert both the
line to be searched and the search string itself prior to calling .

Another improvement would be to fix the line number indentation. Currently the line
number is right-aligned five spaces. In case the number of lines is 100,000 or greater, this will
create an indentation problem. Changing the implementation to read the entire file at once
gives us a total line count, allowing the calculation of the maximum number of digits using the
function , which is part of the math module (see Chapter 7) as follows:

This will only work if you know the line number in advance, hence the change to the func-
tion to read the entire file at once. Listing 5-11 shows a possible implementation of fixing the
indentation problem.

Listing 5-11. Searching Inside a Text File (Proper Indentation)

Notice how I’ve first created a format specifier, , using a raw string and then used it to
print the line number and the string.

Example: Working with Comments
I find that I repeatedly turn back to code I once wrote. And what’s funny, I seem to remem-
ber mostly the comments. An interesting approach to viewing comments is to think of the
comment symbol () as a separator. With this in mind, you can implement some interesting
searches, as shown in Listing 5-12. For example, you can search inside comments only, or per-
form the complement search, that is, one that ensures you’re not searching comments.

CHAPTER 5 PROCESSING TEXT F ILES 157

Listing 5-12. Working with Comments

This code is hardly foolproof. It assumes that the symbol appears only once, text before
the is always code, and text after is a comment. This is not always true; for example, in the
preceding code, in the fourth line, , is hardly a comment separator. Nev-
ertheless, in many occasions the function works fine.

Using the function in Listing 5-12 as a starting point, you could for example, write a func-
tion to convert comments that are not on a line of their own to be single-line comments. That
is, convert

to

C++ STYLE COMMENTS

I originally encountered this problem with C/C++. A compiler I was using to write code accepted the C++
style comments, whose behavior is similar to Python’s comments (only with the symbols instead of).
However, another older compiler was used that didn’t accept the C++ style comment. I had to convert all my
single-line comments of the form to C-style comments of the form . I used a
script similar to the preceding script. Luckily for me, the symbols didn’t appear anywhere in the code other
than as part of the comments themselves.

Example: Extracting Numbers from a Text File
At times, it’s useful to be able to extract only the numbers in a text file. This could be for the
purpose of creating files based on existing ones, say, for testing purposes. Another scenario
might be you have a system that maintains the number of users in a text file, and you’d like to
write a script to increment that number.

The function presented in Listing 5-13 reads a text file and creates a modified version of
the file with all the numbers incremented. For the purpose of this example, numbers are sepa-
rated by whitespace characters.

CHAPTER 5 PROCESSING TEXT F ILES158

Listing 5-13. Incrementing File Contents

The function reads the entire file into memory and then processes the data a line at a
time (it’s also possible to achieve the same functionality by iterating over a file object). Every
line is split into words. The code then tries to convert every word to a number, and upon suc-
cess, replaces the number with an incremented value. I’ve used the method to do
that, and that’s the reason you see another function call after the increment:
method requires a string, not a number.

In implementing the function, I’ve chosen to use the EAFP approach, that is, I’ve tried to
convert every single word I’ve encountered into an , and then increment it. On success, the
data is modified. If a occurs because the conversion didn’t succeed, it means that
the string cannot be converted to an , in which case I’ve ignored the word.

A different approach might have been to check whether the word is composed of digits
using the method, but that approach will fail on other characters such as the plus
symbol. I think that EAFP here is a clear winner.

To test the function, I again resort to the grocery list. Assume the contents of file
 are as follows:

After executing , a new file,
, is created with the following contents:

CHAPTER 5 PROCESSING TEXT F ILES 159

The function only increments the value because I’ve used the function . Had
I used the function , all first three values would have been properly incremented.
However, the first number would then be converted into a value, and I wanted to leave it
as an .

Handling both and values is possible with nested exception handling. First, the
function tries to use , and if fails, it tries to use (see Listing 5-14).

Listing 5-14. Incrementing File Contents Using and

Lastly, the functions assume that numbers are always separated by spaces, which might
not always be correct. An alternative approach would be to split based on punctuation marks
as well as spaces (see “Example: Words Used Only Once” later in this chapter for splitting on
punctuation marks as well).

CSV Files
Up to this point we’ve been working with plain text files. Plain text files typically do not follow
any format other than their contents are text based. But in reality, when you’re dealing with
data files, they’re more structured than plain text files. As discussed previously in Chapter 4,
the CSV file format is a good format for structured text-based data files. The purpose of this
section is to provide tools for more advanced log file processing that will be presented in the
next section.

The csv Module
The csv module, which is part of the Python Standard Library, provides simple methods to
read and write CSV files. To use the csv module, issue ; the remaining discussion
assumes you’ve imported the csv module properly.

CHAPTER 5 PROCESSING TEXT F ILES160

There are two basic objects you’ll be working with: the and the . As
their names suggest, one is used for reading, while the other is used for writing.

The object splits a line of text into a list of words (also referred to as fields).
While you might think it’s simpler to split the line of text using the string method,
some caveats make this a bit more complex than is apparent.

Consider a CSV file with contents as follows (assume it is stored in the file
):

If I were to use the function, I’d get

Not really what I wanted, plus fields and rows aren’t separated properly.
Using the object, I get a better result:

The csv.reader Object
To create a object, use the following syntax:

. The first parameter, , is the CSV file, but it can also be any iterable object. The
second parameter is the . Since there are no clear definitions of what a CSV file con-
stitutes (and there are quite a bit of nuances), you can specify a , which is a set of rules
instructing the parser how to handle those differences. Furthermore, you can use
an existing and override some parameters of its behavior using the field.

In the previous example, I didn’t specify a , which defaulted to the dialect.
I did provide a format parameter, instructing the to ignore the space at the begin-
ning of the field (there’s an extra space after the comma in the second line of text in my input
file). You can view the list of dialects in your system by issuing .

Once you have a object, you can iterate through the object and retrieve a list of
fields.

CHAPTER 5 PROCESSING TEXT F ILES 161

The csv.writer Object
The object complements the in that it allows writing of CSV files.
Creating a object is similar to creating the object:

. The difference (aside from the write vs. read operation) is that
the object strictly requires a file, and not an iterable object. Once you have a

 object, you can use the or methods:

Note I’ve created a list of rows (notice the double brackets), even though there is but one row. This is to
match the input expected by the object. If you pass the object a list, and not a list
of rows, the results might not match what you expect.

More csv Functionality
The csv module allows considerable customization including the use and creation of user-
defined dialects. I won’t be covering this topic; however, I will be covering some parameters
and their meaning.

The delimiter specifies the field separator. That is, the row is split on an occurrence of the
delimiter, provided it is not escaped or quoted. To change the delimiter, add
as an argument to the object; must be a character:

The parameter specifies the quoting character used to denote a string in a
CSV file.

The preceding example results in the following:

In this example, the date wasn’t quoted, while the text was—the reason being that the text
contained the delimiter. To override quoting behavior, change the value of to

, , , or . The names quite

CHAPTER 5 PROCESSING TEXT F ILES162

obviously indicate their functionality. In case you select a and a field contains
the delimiter, you’d have to supply an as well:

The preceding example results in the following:

DictReader and DictWriter Objects
The csv module provides us with additional useful objects: the and
objects, which are similar to the and objects.

If you follow the convention that places a header at the beginning of a CSV file, that is, that
each column in the CSV file starts with a field name (see Chapter 4 for a discussion of this),
accessing values can be done by accessing the dictionary with the field name as key.

Let’s turn to an example. To follow along, create the file with the fol-
lowing content:

Now let’s create a object:

I’ve accessed the values in the CSV file using and as keys to the diction-
ary object, : and . If columns were switched, the code would still
work as expected.

Similarly, you can create a object as follows:

CHAPTER 5 PROCESSING TEXT F ILES 163

I first created the , a list of strings, and the , a list of rows. I then opened a file
named for writing and attached it to a object named

. As you can see, requires the header information as well.
Now this is where it gets a little tricky. First, I’d like to write the header information to the

CSV file. To do so, I create the following dictionary:

I then pass this dictionary as a parameter to the function , a method of
, in essence creating the header field.

Now, all that’s required is to do the same for the data, that is:

And here are the results:

As you can see, the object is not as simple to work with. That’s why I rarely
use it, although I use quite a bit. For a full account of and ,
please consult with the Python Library Reference.

Date and Time
While text files are important, text isn’t really the object of this book; it has to do more with
numbers. The most universal form of data you’re bound to see when processing data files is
date and time. Text files that record information based on date and time, especially recording
the events that transpired, are commonly referred to as log files.

I recently performed a search for file names containing the word “log” in my
directory. I came up with dozens of files that are indeed log files. I opened some of them in my
favorite editor, and of those that did record date and time, the date and time information was
in varying forms.

One file had timestamps that looked like this:

CHAPTER 5 PROCESSING TEXT F ILES164

Unfortunately, not every line started with a timestamp. Another file looked like this:

And yet another one looked like this:

and this:

Of those log files, the ones I particularly like are those that don’t save hard disk space and
always dump a timestamp in every entry. The reason for this is that parsing the data later can
be done without state machines, simplifying the code considerably. (For a discussion of state
machines, refer to Text Processing in Python by David Mertz [Addison-Wesley, 2003], also
available online at .) Log files that sporadically write date and time
information are even harder to swallow. Clearly, the person writing those did not think of the
parsing application—did he assume that a person will actually read this and not a computer?

So here’s a tip for you, when you implement log files:

Tip When writing log files, start a line of text with full date and time information.

The time module, available as part of the Python Standard Library, allows easy handling of
date and time information.

Time Module
The time module provides a set of helper functions and structures that facilitate handling of
date and time in a simple manner. A point in time, that is, both date and time, can be repre-
sented in one of two ways in the module:

A nine-elements tuple: This tuple includes year, month, day, hours, minutes, seconds,
weekday, Julian day, and DST (DST stands for daylight savings time). Of this tuple, the
values weekday and Julian day are redundant: you can calculate these values based on
other values—year, month, and date. We’ll refer to this tuple as the tuple.

CHAPTER 5 PROCESSING TEXT F ILES 165

Number of seconds since the epoch: The epoch is a fixed time reference point and is sys-
tem dependent. On my system, the epoch is Thu Jan 01 00:00:00 1970. At times people
use the word “epoch” to mean the number of seconds elapsed since the epoch and not
the fixed time reference; this is usually done in context and should be easy enough to
discern.

Some time functions accept the tuple, while others accept the epoch. It’s not
complex to switch representations. With those two notations covered, let’s explore the time
module. But first, to use the module, be sure to issue .

The struct_time Tuple
It’s possible to access a specific tuple element by indexing it; for example, if
is a tuple, is the year value. However, using indices is quite hard to follow,
and you’ll constantly have to look up the documentation to figure out which index is the cor-
rect index to the specific value you’re looking for. Instead, you can use the member variables

, , , , , , , , and to retrieve
these values:

In this example, I’ve introduced the function , which returns the current time
as a tuple.

Parsing and Formatting Date and Time
The functions and are the two functions you’re most likely to use when
dealing with log files. The function , which was introduced in Chapter 4, accepts a
template parse string and the string to parse, and returns a representation of the
time. The function does the opposite: transforms a tuple into a string based on a
supplied pattern. Both functions use a similar notation to indicate the values in the

 tuple, as listed in Table 5-2.

Table 5-2. Selected Identifiers for and

Identifier Description Values Range

Year with century as a decimal number.

Month as a decimal number. 1–12

Day of the month as a decimal number. 1–31

Hour as a decimal number. 0–23

Continued

CHAPTER 5 PROCESSING TEXT F ILES166

Table 5-2. Continued

Identifier Description Values Range

Minutes as a decimal number. 0-59

Seconds as a decimal number. 00–61 (61 for leap seconds)

Weekday as a decimal number. 0–6 (where 0 is Sunday)

Day of the year as a decimal number. 001–366 (366 for leap years)

Time zone field. DST doesn’t have an identifier of
its own and is part of this field.

, Locale’s weekday name, abbreviated and full.

, Locale’s month name, abbreviated and full.

The full table includes additional identifiers and is available online at
.

In the section “Example: Extracting Date and Time Information from File Contents” later
in this chapter, we’ll extract the date and time using the function from some of the
samples I’ve provided at the beginning of the section.

Example: Logging Information with a Date and Timestamp
The purpose of this example is to create a log file in accordance with the tip presented
previously in the “Date and Time” section and the ISO time format recommendation (see
Chapter 4).

We’ll use the function , which returns a tuple containing the
current time. We then format the current time using the function:

(From now on, I’ll assume you either imported the functions by name or imported the
entire time module so I don’t have to write that statement every time.) While this
notation is handy for file names, maybe in log files you’d like to have something a little more
self-explanatory. In such cases, you can use the function:

However, I’ll use the following format:

This is to show formats other than the ISO format and because there’s little room to mis-
understand it. However, I recommend following the ISO time format whenever possible.

CHAPTER 5 PROCESSING TEXT F ILES 167

Tip The ISO date and time format, in my mind, is the preferred method of writing date and time informa-
tion. It might be a little more cryptic at first and might take some getting used to, but it’s consistent and very
easy to work with. For example, to sort date in ISO time format, you can sort the actual string without con-
verting it to numerical values.

The output from adds, in my mind, an unnecessary value, redundant informa-
tion if you will: the day of the week. The format I’ve selected is problematic as well in case of
a different locale (see the section “Locale” later in this chapter), but it’s pretty hard to get it
wrong; it’s probably the most self-explanatory of the formats presented. But it’s more a matter
of personal taste.

So now that we have the date and time as a string, time to write it to a log file. Listing 5-15
presents an example script you can run that generates a log file that adheres to the guidelines
I’ve given in this chapter and previous ones.

Listing 5-15. Creating Log Files

I’ve introduced another function from the time module: . The function
accepts as an argument the amount of time in seconds it should sleep and returns once that
time period has elapsed. I chose to use a fractional value so the log file might appear more
“real,” that is, not in fixed time increments:

Another benefit of the function is that it adds a leading zero for values that
do not require the full length of the field, thus 1 a.m. will show as in the hour fields. This is
extremely useful when parsing, as the time format has a fixed length and can be string sliced.

One of the problems associated with logging is that your program crashes, and you might
lose important information. To overcome this, you can open and close the log file every time
you log data (or once in a while) to protect data in case of a crash—your file is still updated.

CHAPTER 5 PROCESSING TEXT F ILES168

Another alternative is to use the logging module from the Python Standard Library, which I
won’t be covering here. Refer to for informa-
tion about the logging module.

Example: Extracting Date and Time Information from File Contents
We’ve already seen an example of using in Chapter 4. Let’s cover it in more detail
here. This time, we’d like to parse some of the date and time formats presented in the begin-
ning of the section “Date and Time.”

For the purpose of this example, I’ll assign a string to each different time format and parse
every string. By now you should be able to write the wrapper functions to implement reading
and writing from a file using either the regular file operation or the csv module. To show that
the format was read properly, I’ll print the version of the time.

If you look at the time information in the string , it appears that it follows a fixed
length. That’s especially evident because of the leading zero in the month field (). Therefore,
to extract just the date and time information, I’ve sliced the string in the beginning. From
there, I used the function to do the rest of the work. However, had the day been
a value less than or equal to 12 (it’s currently 21), I wouldn’t know in advance whether the
format is or . Furthermore, in case the timestamp isn’t a fixed-size string, I would
need to resort to other methods such as splitting the string and working with substrings.

On to the next string.

This example includes a string with the date and time separated by a tab and a slightly dif-
ferent format. But again, hardly a problem for .

Parsing the date and time information of the remaining strings shouldn’t be too complex.

The Epoch: “Linearizing” the Time Base
Up to this point we’ve been using the tuple exclusively. It’s time to talk about
the epoch representation. As I mentioned, seconds elapsed since the epoch is another time
representation supported by the time module. At times, it’s more beneficial to use an epoch
representation than a representation.

The first reason that springs to my mind is that of visualization. If you want to plot data
as a function of time, and your time base is in the form of a , it’s pretty hard to do.
You’d have to come up with ways to “linearize” the time base so that the time base won’t be
skewed.

CHAPTER 5 PROCESSING TEXT F ILES 169

You’ve seen two examples of linearizing the data. One was in Chapter 1, where I manually
linearized the data by multiplying the hours value by , adding the minutes value multi-
plied by , and then adding the seconds. The second example was given in Chapter 4 where I
used and to calculate the day of the year value as my linear time base.

While these are good options, there’s a more standardized way, and that is using the
epoch notation. As I mentioned previously, the epoch is system dependent and serves as a
reference point in time against which time is measured by the total amount of seconds elapsed
(fractional values are allowed as well).

To figure out the epoch in your system, issue . From here on out, you
already have a linear time base, the epoch representation!

Let’s modify the GPS example from Chapter 1. As you recall, the time information was
as follows: , where the second set of values, after the decimal point, represent
fractions of a second. Let’s consider the values and , which are one
minute and one second apart. The original calculation used multiplications and additions:

The difference between the two values (and what we’re really after, as you recall we set the
start of the time base at zero) is 61 seconds, as should be expected. We can alternatively calcu-
late the epoch representation using the function from the time module and use that
to calculate the time difference:

I’ve used filler values for other unknown fields such as day and month. (Module datetime
of the Python Standard Library provides functionality that deals with time differences as well
but is beyond the scope of this discussion.)

We get the same result. So what’s the benefit of using the epoch-based functions from the
time module? There are several:

Suppose your data recorder also records the date. What happens at midnight? You’ll
get a rollover if you don’t take into account the date, which makes things considerably
more complex. You can of course add the day into calculations. But what happens
when a month changes? That’s a bit more complex: months don’t have the same num-
ber of days in them, so you’d need a lookup table. And what about leap years? You see,
it gets complicated. Instead, use , which takes all of these issues into consider-
ation.

in information from all sorts of data sources and treat them as one.

CHAPTER 5 PROCESSING TEXT F ILES170

-
lenging as well. Instead of coming up with complex representations for the time base,
use the epoch representation (see Chapter 10 for a general discussion of binary files
and an example of time-based binary files).

Example: End-of-Day Report
The end-of-day report is a summary report of a log file presenting data at the end of the day.
Here are two scenarios where this report is useful:

Ending quote for a stock: Suppose you have a log file with the stock prices over a long
period of time, say, a month. The end-of-day report prints the stock price at the end of
trade days.

Patient discharge: A patient is being treated at the hospital and during his treatment all
information is logged. You’d like to know the patient discharge state, that is, you want
to receive an end-of-day report with patient’s status.

To illustrate the problem, we’ll create a log file , , that will be
composed of timestamps and a log message, as follows:

In this case, the log file is sorted, which is to be expected. But even if that’s not the case,
the algorithm we employ should still work properly.

To print an end-of-day report, I’ll use the following algorithm. A dictionary object stores
an end-of-day report per day. The key of the dictionary should uniquely identify a day. I chose
to use the tuple (year, day of the year) for that purpose. For the dictionary value, I’ll be using
a tuple containing the epoch and the message. The reason I’m using the epoch is that first, I
can easily compute it using , and second, it’s a simple value to check against. A larger
epoch value means a more recent event.

We process the file line by line and extract the information to create the key and value to
access the dictionary. In case the key is already in the dictionary, we check whether the infor-
mation in the current line is from a later time, and if it is, we update the value accordingly. If
the key doesn’t exist in the dictionary, we add the computed key and value pair to the diction-
ary. Once we’re done processing the file, we print the dictionary object. As you can see, the
algorithm doesn’t rely on the log file to be sorted to produce correct results.

I’ve chosen to use the csv module to show usage of the module in a full script, presented
in Listing 5-16. In this specific case, a simple split, or string slicing, would’ve worked just as
well.

CHAPTER 5 PROCESSING TEXT F ILES 171

Listing 5-16. End-of-Day Report Implementation

I’ve also introduced a new function from the time module in Listing 5-16, . The
function accepts the number of seconds since the epoch and prints out a date string
representation.

Here are the results from running the script on the preceding log file:

The results are correct, but they aren’t sorted by date. This can be easily remedied if
instead of printing the files you’d store them to a list and then call the function to sort
the list.

CHAPTER 5 PROCESSING TEXT F ILES172

Example: Combining Data from Several Sources Based on the Epoch
One of the benefits of using the epoch is that it is a standard time base to work with. The inten-
tion of this example is to combine data from several sources, in this case two log files, and
present a coherent report. For the purpose of this example, we’ll split the file
from the previous example into two files: and . Our script
should combine them back into a sorted log file.

Following are the contents of :

And the contents of :

Trying to sort these lists based on text will generate the wrong results. So the idea is to
convert every timestamp string into an epoch representation and sort based on that value. For
this purpose we’ll create a list of rows. Each row will be composed of , where

 is the converted time representation and is the entire line of text. We then use the
 function to sort the lists and dump the data back to file, removing the epoch informa-

tion (see Listing 5-17).

Listing 5-17. Script to Combine Two Time-Based Log Files

CHAPTER 5 PROCESSING TEXT F ILES 173

This script assumes you’re combining two files. More often than not, if you need to com-
bine log files, you’ll need to combine more than two files. Refer to Chapter 10 for discussion on
working with several input files.

Additional Time and Date Functions
We’ve covered most of the functionality available in the time module. For most of your log file
processing needs and other time-based processing requirements, the module is comprehen-
sive and complete. There are additional time- and date-related modules available in Python.
The datetime module provides functionality that includes operations on dates using a more
object-oriented approach. The calendar module provides general calendar-related operations.
Refer to the Python Standard Library for additional information.

Regular Expressions
Regular expressions are pattern-matching expressions used for searching and replacing text.
At times, they are more flexible than the string operations presented previously. To use regular
expressions, you’ll have to import the regular expression module (named re), which is part of
the standard library. The module re is similar to Perl’s built-in support of regular expressions.

Your next step is to design a pattern to match against and decide what function to use on
that pattern. The most notable functions are , which finds all occurrences of
a regular expression pattern in the string ; , which splits the string
whenever a regular expression pattern is encountered; and , which
substitutes the occurrence of a pattern in a string with a supplied substitute .

There are additional functions in the module, including , , and
to name a few, but I will not be covering those here: the preceding three functions should take
care of most our data processing needs.

Regular Expression Patterns
A regular expression pattern is basically a string. The pattern can contain both regular charac-
ters and special characters. A regular character matches itself. So the pattern matches the
character whenever encountered, and the pattern matches the string when-
ever encountered:

So far, is similar to the function introduced previously in the chapter.
However, the strength of regular expressions lies in the special characters. These characters
provide additional functionality to the pattern itself. Let’s take a look at some. The first one
is the dot character (). The dot character matches any single character except for a new line:

CHAPTER 5 PROCESSING TEXT F ILES174

The character means one or more occurrences of the pattern, the character means
zero or one occurrences of the pattern, and the character means zero or more repetitions
of the pattern. Note that these are modifiers of the pattern, that is, they change the behavior
of the pattern, whereas the dot symbol is not a modifier of the pattern, it’s part of the pattern.
Here are some examples:

The first example finds the pattern composed of zero or one characters, followed by the
character . The second example matches the character followed by any number of
characters.

One might question why is it that the first pattern matched one character before the char-
acter , since obviously zero characters would’ve worked as well? Or why did the second
pattern matched the string where would’ve worked just as well? The answer is
that regular expressions are greedy by default, that is, they try to match as many characters as
possible. You can turn off the greedy behavior by adding a character after the modifiers
presented previously, that is, , , and .

The next special characters are the and characters, which match the start and end
of a string, respectively. Here are some examples that demonstrate these special characters:

These searches can be expressed in English as follows. The first line matches as many
characters as possible between the start of the string and the character . The second line
finds as few characters as possible between the start of the string and the character (notice
the nongreediness modifier,). The third line matches the character and the remaining
characters until the end of the line.

I think we’re ready for an example now.

Example: Removing Extra Spaces with Regular Expressions
Previously in this chapter, I’ve shown how to remove extra spaces in a string. We’ve used

 to split the words on spaces and then to remove the excess spaces. We then
used to combine the list back into a string.

With regular expressions, the same can be achieved more easily:

I’ve used the function with the pattern (a space followed by the plus sign) to
replace one or more spaces with one space.

CHAPTER 5 PROCESSING TEXT F ILES 175

Special Sequences
Special sequences are used to match some interesting combinations. Here’s a short list:
matches a decimal digit, matches a whitespace, and matches an alphanumeric
character. If you use uppercase, the opposite is achieved, that is, matches anything but
a decimal digit, matches anything but a whitespace, and matches anything but an
alphanumeric character. Since the character is a modifier, it’s a good idea to use the raw
string format, , as you’ve seen previously, so as not to escape characters on several levels
(i.e., on the string level and on the regular expression level).

Alternatives
The special character is used to match either or in the regular expression

:

Ranges
You can also match a range of values using brackets. The pattern will match both the
character and the character :

You can also denote a range of characters using the character. The pattern
matches any character from 1 to 5, inclusive.

Lastly, follow up with a after the left bracket to negate the range:

When to Use Regular Expressions
It’s hard to decide whether to use a regular expression or just plain string operations. Regular
expressions are hard to master, but practice makes perfect as the saying goes. Try solving the
same problem with string functions and with regular expressions to get a feel for what’s the
better approach.

If using string operations makes things more complicated to follow, resolve to regular
expressions. At times, a simple regular expression makes the code more readable and elegant.

CHAPTER 5 PROCESSING TEXT F ILES176

Such a case was presented previously in the example of removing extra spaces. At other times,
it’s the other way around. Opt for simplicity and clarity of your code whenever possible.

That being said, there is a special case where I’ve found that using regular expressions is
far better than using string methods, and that is when I’d like to split or replace a string based
on several options. The main reason is that string method requires a separator and
does not accept several options, whereas with regular expressions you can provide a range of
separators.

Example: Words Used Only Once
We finalize this discussion of regular expressions with an example that uses a dictionary in
conjunction with text. The idea is to find words used only once in a file. The motivation behind
this example is that words used only once might be typographical errors in source code.

To implement the solution, we’ll use a dictionary to count the number of occurrences of
each and every word in a file (see Listing 5-18).

Listing 5-18. Finding Words Used Only Once

The function should prove quite readable. The heart of the script lies in the
loop, which splits the text using a regular expression. This is a prime example where a regular
expression is better than the string method : the split happens on either a punctuation
character or a whitespace character by means of the regular expression range specifier, .

Bear in mind that this script is good for mostly source code and not plain-text English. The
reason is that it doesn’t take into consideration such things as plural forms (e.g., “girls” and
“girl” are considered two different words) and other spoken language characteristics.

Internationalization and Localization
At times you’re faced with working with data files that originated in a different locale. This
could pose some problems: date and time notations can be different from what your code
expects, or the text characters can be of another language.

The purpose of this section is to introduce the topic of internationalization (i18n) and
localization (l10n). I’ll touch on two topics: the locale and its impact on date notations, and

CHAPTER 5 PROCESSING TEXT F ILES 177

Unicode, which is a convenient method to support different languages, at least when it comes
to text files.

Note The abbreviation i18n comes from the number of characters between the “i” and the “n” in the
string “internationalization.” Similarly, the abbreviation l10n refers to “localization.”

Locale
In the context of software, locale is a set of rules governing the behavior of some functions that
are either country or language oriented. From a data analysis perspective, if a log file contain-
ing a timestamp of both date and time is used, and the locale is not identical to the one in use,
the function might fail. For example, some countries use day/month/year notation
while others use the month/day/year notation.

To accommodate for different locales, Python provides support via the locale module,
which is part of the Python Standard Library. To use it, issue the command . To
set a locale, issue the command . You can either enable
the entire set of rules using the category or set specific ones. In our case, we’ll
be using , which also controls the behavior of the functions and .

Note The locale module relies on OS locale support. Different operating systems might have different
locale abbreviations. For example, to run the following script on Linux, I had to use the locale

, while on Windows I’ve used . On some Linux distributions, a list of locale aliases
can be found in the file . Unfortunately, I was unable to run the locale
module properly on Cygwin; some poking around suggests that Cygwin does not currently support locale
other than the basic one (named , which is to imply C language implementation).

Generally speaking, you should set your locale upon program entry.

The first line imports the locale module. I then set the locale to be ,
which basically means the language French, the country France. It’s possible to mix language
and country, for example, passing the string to set the language to French but

CHAPTER 5 PROCESSING TEXT F ILES178

the country to Canada. In Windows, I’ve found that the notation works
well, whereas I’ve had some issues with abbreviations (e.g., didn’t work well for me).
In Linux, I’ve found that the notation in the form works well, so for French
Canada, on Linux, I’ve set the locale to .

For additional information regarding the locale module, refer to the Python Standard
Library: .

We’re not done with locale yet; I’ll present another example after talking a bit about
Unicode.

Unicode Strings
The original ASCII table is based on the English language and does not account for a lot of
other languages and symbols. Several designs were introduced to try to resolve this, and lately
it appears that Unicode () is the industry standard.

The Unicode standard addresses such topics as character encoding, character properties,
visual representation, and more. From a very simplistic approach, Unicode tries to support
characters and symbols from other languages by assigning every character (and there are tens
of thousands of those, if not more) a unique integer number while maintaining compatibility
with the ASCII table. This means that some Unicode characters are represented by 4 bytes, not
1 byte.

The problem starts when you want to write your Unicode string to file. Writing 4 bytes
instead of 1 every time is space consuming. If the characters you use are simple English
characters, they are all well within the ASCII table and thus contain less than 8 bits. To write
them, you don’t need 4 bytes—1 byte will suffice. In this case, you can choose to encode your
Unicode string as an 8-bit value, known as UTF-8. UTF stands for Unicode Transformation
Format.

If the characters you use are not all from the English alphabet, you might need more bytes
to represent your Unicode string. In most cases, 2 bytes is more than enough, which means
you can encode your Unicode string using UTF-16 encoding. However, you’re also likely to use
characters from the English alphabet (or other ASCII symbols), in which case some characters
may be encoded with 8 bits. And so some encoding supports those variable size schemes as
well.

From our perspective, it is sufficient to know that Python natively supports Unicode
strings. And furthermore, we can encode and decode Unicode strings using a host of encoding
schemes, including UTF-8 and UTF-16. Unicode strings follow the notation .

Working with Unicode
Unicode strings behave similarly to regular strings. As mentioned previously, if a character
in the Unicode string matches the ASCII value, that value is used. So to construct a Unicode
string made of ASCII characters, simply call the function with the string:

However, if that is the case, and you are using ASCII characters, what’s the point of Uni-
code? Fair enough, let’s add nonstandard characters, that is, characters with ordinal value
above 128.

CHAPTER 5 PROCESSING TEXT F ILES 179

The value corresponds to © and is pretty hard to type on most keyboards. So instead,
I’ve used its ordinal value in Unicode. Python retains the value as an ordinal value and does
not print the symbol associated with it. If we dump the Unicode string to file, it will be possible
to view the special characters in most editors or web browsers. In this case, the generated file
is .

The method accepts only strings, not Unicode strings. So for us to be able to
use the function and write the Unicode strings to file, we’ll have to use the
method, which accepts the encoding to be used. In this case I’ve selected the UTF-8 encoding,
which is widely popular.

The function complements and returns the decoded Unicode string:

For example, to read an entire text file encoded in UTF-16, issue the following:
.

Example: The Hebrew Alphabet
The purpose of this example is to generate a file with the Hebrew alphabet. If you don’t have
Hebrew installed on your system (which I suppose is the case for most folks out there), you can
try other, more popular characters, as I’ll show shortly.

Note Alphabet is a Hebrew word. It is composed of the first two letters of the Hebrew language: Aleph
and Bet.

The Hebrew alphabet, shown in Figure 5-1, starts with the letter Aleph mapping to the
value 0x5D0 and ends at the letter Tav, mapped to value 0x5EA in Unicode. Unless you have
the Hebrew keyboard installed on your system, manually typing Hebrew letters is not a trivial
task. Therefore, you’ll have to construct the alphabet using a Unicode string. Since we don’t
want (or can’t) manually type the values, we’ll construct a list of Unicode letters and then gen-
erate a string from the list. The function will be used to construct the characters from
their ordinal value, similar to the function :

CHAPTER 5 PROCESSING TEXT F ILES180

Figure 5-1. The Hebrew alphabet

Once we have the Unicode string, all that’s required is to write it to file. Since the
function only accepts strings, and not Unicode strings, we have to encode the string. In our
case, the Hebrew Unicode values require 16 bits, so we therefore encode with UTF-16.

The Latin alphabet has special characters, as shown in Figure 5-2: the accented letters,
starting at value 0xC0 and ending at 0x0FF. Therefore, you could modify the preceding script
to generate the Latin special characters as follows:

Figure 5-2. Some interesting Latin characters

Example: Writing Today’s Date in the Current Locale
The purpose of this example is to print the current date and time, in a specific locale, to file.
If you’re using the locale, this will be rather boring. So instead, I’ve
decided to use the Hebrew locale again, since we’re all familiar with it by now (see Listing
5-19). Since Python doesn’t always print other character sets in the interpreter, it’s best to
write the results to file and view them in a text viewer, editor, or web browser.

Listing 5-19. Today’s Date in the Current Locale

CHAPTER 5 PROCESSING TEXT F ILES 181

At first, I try to guess the encoding for Hebrew based on the current platform using the
 value. As I’ve mentioned earlier, Linux, Windows, and Cygwin all have different

locale abbreviations.
After I set the locale, I can query the preferred locale encoding with the function

, which is quite useful in determining how to encode the
Unicode string. Unfortunately, I have found that the preferred encoding in the case of
Hebrew should be and not the one returned by the function.
Lastly, I encode the string and write it to file using UTF-16.

Figure 5-3 shows the results.

Figure 5-3. A date in Hebrew

More on Unicode
The topic of Unicode is vast, and numerous books are available that discuss it. As for online
information, I have found the Python library reference a valuable resource. If you’re looking
for information regarding i18n and l10n in general, including code pages and locale informa-
tion, the following might prove useful:

The Unicode Consortium: .

Wikipedia: . Be sure to follow the links to topics
such as character encoding and Unicode.

International Components for Unicode: .

Final Notes and References
String and text processing is a very large field, especially with the popularity of the Internet
and search engines; most of the data available online is in some form of text. This chapter has
covered a considerable number of the topics associated with text processing in the context of
data analysis.

However, there’s a lot more to learn. Two topics presented here were but briefly dis-
cussed: regular expressions and i18n and l10n. Considerable documentation is available on
the Internet on these two topics, so by all means refer to online resources. I hope that I’ve cov-
ered the basics properly to allow you to proceed without much trouble.

The following book is of great value for the topics discussed in the chapter:

Text Processing in Python by David Mertz (Addison-Wesley, 2003; also available online
at)

C H A P T E R 6

Graphs and Plots
Visualizing Data

Graphs and plots are efficient methods to present data. Done properly, a graph can convey
an idea better than an entire article.

What a graph should portray is a function of your target audience, so when you plot a
graph, bear that in mind. If your target audience is technical people, they might require addi-
tional technical information. If your target audience is investors, another approach is required.
In this chapter we won’t be discussing what to present and what not; instead, assuming you
know what you want to present, I’ll show you how to do so. Examples include how to plot bar
charts and pie charts, how to add markers and control line ticks, how to annotate the graphs
with text and arrows, and more.

Regardless of your target audience, some ideas and methodologies always hold true.
Sources for data should be accurate and verified. Graphs should be easily reproducible by
running the code that generated them. (How many times did your boss ask you to modify
the report? If the graph was generated with a documented script, doing so should prove easy
enough.) And lastly, your graphs should be aesthetically pleasing. Consulting with colleagues
could be beneficial as well: What do they understand from the graph? Was the key idea cap-
tured? Is the output professional?

In this chapter we’ll discuss the basics of creating and annotating graphs. We’ll start by
exploring the function, continue with text and grid annotation, explore some other
types of graphs, and lastly introduce patches, a method to attach graphical objects to a figure.

The Matplotlib Package
The matplotlib package, available at , is the main
graphing and plotting tool used throughout this book. The package is versatile and highly con-
figurable, supporting several graphing interfaces. Matplotlib, together with NumPy and SciPy
(see Chapters 7 and 8), provides MATLAB-like graphing capabilities, with perhaps the limita-
tion of 3-D plots, which matplotlib does not support.

183

CHAPTER 6 GRAPHS AND PLOTS184

The benefits of using matplotlib in the context of data analysis and visualization are as
follows:

is seamless.

The package is quite extensive and allows, for example, embedding plots in a graphical user
interface. Currently, the package supports several graphical interfaces including wxPython
() and PyGTK (), to name a few. However,
GUI topics are beyond the scope of the book. We will focus on plotting graphs rather than dis-
cussing the GUI engine itself. For a full account of matplotlib, try the online documentation,
available as a PDF document, at .

Going forward, you should ensure that you have matplotlib installed and working prop-
erly. Refer to Chapter 2 if you require additional information on installing the package or visit
the package’s web site.

Interactive Graphs vs. Image Files
There are several ways you can use matplotlib:

price images on the fly or displaying traffic information on top of a map.

visualize data.

JPG, PNG (Portable Network Graphics, see), PDF,
and PostScript (PS). This option is best suited for batch processing of a large number
of files.

the development phases of the code.

Of the preceding options, and in view of the book topics, we’ll explore two: 1) generating
plots of varying file formats and 2) using matplotlib interactively. I typically use both options
depending on the stage of my code. In the early stages of development, I work interactively
with a small sample of the data: plot, zoom in, change graph parameters, annotate, rinse and
repeat. Once my code is ready, I let it loose so to speak on the full set of data files. Since that
might mean tens if not hundreds of graph windows, I prefer to write them as files instead, and
then use an image viewer to view the results one at a time.

So let’s start. First and foremost, import PyLab as follows:

CHAPTER 6 GRAPHS AND PLOTS 185

WHERE DOES THIS FUNCTION COME FROM?

A frustration to some, especially those experienced with Python, is that issuing the command
 will import several packages. Some feel they’d like to know whether a specific function is a part of

NumPy or matplotlib. The solution is simple—use ! For example, here’s the output from :

As you can see in the first line, is a function from the NumPy package, or more specifically,
.

As previously mentioned, this imports matplotlib, NumPy, and SciPy. Although gener-
ally speaking you shouldn’t import everything quite so liberally, in the case of PyLab, make
an exception: it’s considerably easier to work with the entire package loaded into memory,
and unless memory is a constraint, the usability is great. Going forward, I’ll assume you’ve
imported PyLab as just described.

Our next step is to plot a graph. We’ll plot the list :

There’s no visible output yet (other than matplotlib’s response), and the reason for this
is we haven’t specified how exactly we want the graph drawn: interactive figures or hard copy
files.

Interactive Graphs
Interactive graphs, like the one shown in Figure 6-1, plot the graph in a separate window in

 at the Python shell or call the function
 in a script.

CHAPTER 6 GRAPHS AND PLOTS186

Figure 6-1. Interactive graph

The function opens up an interactive window. Several notes about this window:

you can see by the label “Figure 1.” This is useful if you
have several windows and would like subsequent plots to either override or appear on
a specific figure. To switch between figures, use the function, where stands
for the figure index. If you’d like a new figure, and don’t particularly care about the
figure index, issue the command , which will create an empty figure with the
next available index.

were created automatically to fit the data. In a lot of the cases,
matplotlib does an excellent job of automatically selecting the right axis (as in this
example). However, if you want a different range of values to be displayed, that’s
doable with the command, more on which appears later in the chapter in the
section “Axis.”

if you’re trying to zoom in on data and find a specific data point. This functionality is
not available when you plot graphs to file (i.e., noninteractive mode).

the graph. The five leftmost buttons are used for zooming and zooming history. The
first button from the left (with the house icon) is used to change axes to the origi-
nal plot axes. The left and right arrow buttons cycle backward and forward through

CHAPTER 6 GRAPHS AND PLOTS 187

previous axes changes. The fourth button allows changing of the axes origin, and the
fifth button from the left enables zooming. The sixth button from the left controls the
margins of the plot in respect to the containing window, and lastly the seventh button
allows saving the image to disk.

Note If you’re not using matplotlib interactively in Python, be sure to call the function after all
graphs have been generated, as it enters a user interface main loop that will stop execution of the rest of
your code. The reason behind this behavior is that matplotlib is designed to be embedded in a GUI as well.
In Windows, if you’re working from interactive Python, you need only issue once; close the figures
(or figures) to return to the shell. Subsequent plots will be drawn automatically without issuing , and
you’ll be able to plot graphs interactively.

Saving Graphs to Files
The function enables writing images of varying formats to a file. Out of the box, mat-
plotlib supports several file formats including PDF, PNG, and PS. The simplest way to generate
a file containing a graph is to issue , where has the extension asso-
ciated with your selected image format:

Note Matplotlib returns objects as they’re created. In the preceding example, the returned object is
noted by the line . Going forward I’ll omit these
responses in the interest of making the interactive code easier to follow.

I called the function with the file name extension as part of the string holding
the file name, instructing to create a PNG file. Similarly, I could’ve created a Post-
Script file by issuing .

The dictionary object holds a list of supported file types in
your system:

CHAPTER 6 GRAPHS AND PLOTS188

FINDING WHAT YOU’RE LOOKING FOR IN COMPLEX MODULES

So how did I figure out holds the supported file types? Did I read the
entire manual? Hardly. Some of the packages we work with are really large, and mastering all the intricacies
of variables and objects that control their behavior is not a trivial task. So I use some quick-and-dirty tricks,
and although they might not be the “proper” way to do things, they help me get the job done, and that’s what
really counts. So let me show you what I’ve done to figure out the available file types.

To figure out the base file types, I issued with a bogus file format: .
The result was, of course, an exception () but I also received some useful information:

 But that’s not
exactly what I wanted; I wanted an enumeration of the file formats so I can index them rather than parse a
string returned by an exception. So I traced back the source of the error from the exception output: the error
originated in file line 1290.
Next, I opened up the file , jumped to line 1290, and started reading the code. Python
is a very readable language, and it didn’t take me long to figure out that the formats are stored in variable

. Since points to the container object, I scrolled up some more and found
that the calling method is named and is part of the class , hence

.
Reading the exceptions generated by matplotlib, along with exploring modules and their names, also

helped me find the objects and
, both listing possible colors (see the section “Colors” later in the chapter). That being said, reading

the manual is also a very viable option.

 argument to to control the output file generated instead

per inch (dpi) and face color for the color of the figure. A more general form of is
. Table 6-1 lists some parameters. In the

examples, assume is a string containing a file name.

CHAPTER 6 GRAPHS AND PLOTS 189

Table 6-1. Parameters

Parameter Description Default Value Example

Resolution in dots per inch None (On my system the
actual dpi is 100.)

* The figure’s face color for white background

File format

* Refer to Table 6-4 for a list of color values.

. The
function supports additional options; see for a full account.

Plotting Graphs
This section details the building blocks of plotting graphs: the function and how to
control it to generate the output we require. We’ve used the command extensively
throughout the book. It’s now time to examine it more closely.

The function is highly customizable, accommodating various options, includ-
ing plotting lines and/or markers, line widths, marker types and sizes, colors, and legend to
associate with each plot. The functionality of is similar to that of MATLAB (

) and GNU-Octave () with some minor
differences, mostly due to the fact that Python has a different syntax from MATLAB and GNU-
Octave.

Lines and Markers
First, we’ll create a vector to plot using NumPy (see Chapter 7 for a full account of the NumPy
package):

If you don’t have a GUI installed with matplotlib, replace with
 and open the generated image file in an image viewer.

Note Going forward, I’ll omit the call from listings. Be sure to issue or if
you’d like to follow along.

CHAPTER 6 GRAPHS AND PLOTS190

I’ve passed the vector as an input to . As a result, drew a graph of the
vector using auto-incrementing integers for an x-axis. Which is to say that if you don’t sup-
ply x-axis values, will automatically generate one for you: is equivalent to

. So let’s supply x-axis values (denoted by variable):

The call to function generates a new figure to plot on so we don’t overwrite the
previous figure.

On to more options. Next we want to plot as a function of but display only markers, not
lines. This is easily done:

To select a different marker, replace the character with any of the markers in
Table 6-2. For a full account of available markers, issue .

Table 6-2. Some Plot Markers

Character Marker Symbol

Circle

Upward-pointing triangle

Square

Plus

Cross (multiplication)

Diamond

Much like there are different markers, there are also different line styles, a few of which
are listed in Table 6-3.

Table 6-3. Some Plot Line Styles

Character(s) Line Style

Solid line

Dashed line

Dash-dot line

Dotted line

If you’d like both markers and lines, concatenate the symbols for line styles and markers.
To plot a dash-dot line and diamond symbols as markers, issue the following:

Figure 6-2 shows the output of the examples in this section.

CHAPTER 6 GRAPHS AND PLOTS 191

Figure 6-2. Output of previous examples. Order is from left to right, top to bottom.

Plotting Several Graphs on One Figure
We use graphs to visualize data and compare it. What’s more natural than displaying several
graphs in one plot so we can compare results? There are two ways to do that in matplotlib. The
first one is by adding more vectors to the function:

or

The second method is by calling repeatedly. Sometimes you might have only
partial data to plot. Say you have vector , but then you modify it and want to print both the
original vector and the newly modified vector. What do you do? One option would be to store
the intermediate value, but what if you have 20 of those? That means calling with some
20+ arguments.

When you call with an already existing figure, there are two possible outcomes.
One is that the figure is erased, and the new plot is drawn. The other is that the figure is not
erased, and the new plot is added to the figure. This behavior is determined by the hold status

 function: calling will
ensure new plots don’t erase the figure, whereas will do the opposite. Issuing the
command with no arguments will toggle the hold status. As a general rule, it’s best to
specify the hold behavior you require and not rely on the default behavior, that is,
or .

CHAPTER 6 GRAPHS AND PLOTS192

Line Widths and Marker Sizes
Next in this discussion of customization is controlling line widths and marker sizes. This is
done by passing (or for short) and (or for short) arguments to

, as shown in Listing 6-1. Both arguments accept a floating-point value; the default
value is 1.

Listing 6-1. Plotting Several Lines in One Graph with Different Line Styles and Markers

Figure 6-3 shows the results of this example.

Figure 6-3. Plotting several graphs in one figure

When you plot multiple lines in one function call, the parameters and
 control all the lines in the same command. If you’d like different lines with

different line styles or different marker sizes in the same figure, draw each plot with an indi-
vidual call to the function and use the function, as shown in Listing 6-2.

Listing 6-2. Different Line Widths in One Graph

CHAPTER 6 GRAPHS AND PLOTS 193

Colors
Finally, on our list of plotting basics is controlling color. Just like marker style and line style,
you can control color with one character, according to the list in Table 6-4.

Table 6-4. Color-Character Lookup Table

Character Color

Blue

Cyan

Green

Black

Magenta

Red

White

As you might have noticed, matplotlib automatically chooses a different color for subse-

color character:

This will plot two lines: the first is a black line with plus markers and a connecting solid
line, and the second is a magenta dotted line.

If you’d like a color that does not appear in Table 6-4, you can choose one from the dic-
tionary object . The dictionary contains a better color selection
and has over a hundred values. And lastly, if that dictionary is not enough, you can provide an
explicit Red-Green-Blue (RGB) value. In case you’re using the dictionary values or an explicit
RBG value, you have to provide the argument as a parameter to a call:

See for additional color information.

Note The function in the preceding example generates a random vector of size .

CHAPTER 6 GRAPHS AND PLOTS194

Controlling the Graph
For a graph to convey an idea aesthetically, the data, although highly important, is not every-
thing. The grid and grid lines, combined with a proper selection of axis and labels, present
additional layers of information that add clarity and contribute to overall graph presentation.

Now that we have the basics of plotting lines and markers covered, we turn to controlling
the figure: controlling the x-axis and y-axis behavior and setting grid lines.

Axis
The function controls the behavior of the x-axis and y-axis ranges. If you do not supply
a parameter to , the return value is a tuple in the form
can use to set the new axis ranges by specifying new values:

. In the special case you’d like to set or retrieve only the x-axis values or y-axis values,
use the functions or , respectively.

Other than the range limits, the function also accepts the following values: ,
, , , and . The value , the default behavior, allows to

select what it thinks are the best values. The value forces each x value to be the same
length as each y value, which is important if you’re trying to convey physical distances, say, in
a GPS plot. The value causes the axis to change so that the maximum and minimum
values of x and y both touch the edges of the graph. The value changes the x-axis and
y-axis ranges so that x and y have both the same length (i.e., aspect ratio of 1). Lastly, calling

 removes the axis and labels.
To illustrate these axis behaviors, I’ve plot a circle, as demonstrated in Listing 6-3.

Listing 6-3. Plotting a Circle

Note The reason I chose a circle of radius 1.2 is that in the case of a radius of “nicer” numbers (say 1.0
or 2.0), the automatic axis solution works very well, and it’s hard to show the effects of the different axis
options.

Figure 6-4 shows the results of applying different axis values to this circle.

CHAPTER 6 GRAPHS AND PLOTS 195

Figure 6-4. Controlling axis behavior

Grid and Ticks
The function draws a grid in the current figure. The grid is composed of a set of hori-

by calling or set it to be either visible or hidden by using or ,
respectively.

To control the ticks (and effectively change the grid lines as well), use the functions
 and , as shown in Listing 6-4. The functions behave similarly to in

that they return the current ticks in case no parameters are passed and are used to set ticks
once parameters are provided. The functions take an array holding the tick values as numbers
and an optional tuple containing text labels. In case the tuple of labels is not provided, the tick
numbers are used as labels.

Listing 6-4. Grid and Tick Example

CHAPTER 6 GRAPHS AND PLOTS196

Figure 6-5 shows the output generated from Listing 6-4 without issuing the last two calls
to and (left graph) and with and calls (right graph).
Notice the labels on the x-axis.

Figure 6-5. Controlling grid and axis: the left graph shows the default , the right graph
displays labels.

I’ve also made use of the functions and , which plot a line across the
x-axis and y-axis, respectively. The and functions accept many param-
eters, including , , and , to name a few.

Subplots
In some of the previous figures in this chapter, I’ve displayed several smaller graphs in one
figure; these are known as subplots. The function splits the figure into subplots and
selects the current subplot. The subplots are numbered from left to right, top to bottom, so the
upper-left subplot is 1, and the lower-right subplot is equivalent to the number of subplots.
Notice that this is different from the default counting behavior used in Python: numbers start
at 1 and not at 0.

To split the figure into 2-by-2 subplots and select the upper-left subplot for plotting, issue
. Alternatively, you can pass the string , which does the same thing:

. It’s also possible to combine subplots of different sizes in one figure. This is
a bit tricky and requires subplotting with different subplot sizes. Listing 6-5 gives an example
that generates a subplot on the upper half of the figure and two subplots on the lower part of
the figure, the results of which you can see in Figure 6-6.

Listing 6-5. Subplots of Varying Sizes

CHAPTER 6 GRAPHS AND PLOTS 197

Figure 6-6. Subplots of varying sizes

Tip Subplots are especially useful in visualizing several aspects of the same data. For example, the GPS
example in Chapter 1 shows x and y coordinates in one subplot and velocity in another subplot. Events (e.g.,
speeding) are marked in both, providing a visual link between the two subplots.

Erasing the Graph
The functions and clear the axes and the figure, respectively. These functions are
useful when you’re working with an interactive environment and would like to clear the cur-
rent axes (i.e., setting the axes to default values and clearing the plotted lines). It’s also possible
to clear the figure altogether, erasing also the axes and subplots, using the function.

Lastly, you can choose to close the figure window; this is done by calling the function
. If you provide a number to , the figure associated with the number is closed.

So will close Figure 1, leaving other figures open. If you’d like to close all the figures,
issue .

Adding Text
There are several options
the and function. The following functions will give you more control over
text in a graph.

CHAPTER 6 GRAPHS AND PLOTS198

Title
The function sets as a title for the graph and appears above the plot area. The
function accepts the arguments listed in Table 6-5.

Table 6-5. Text Arguments

Argument Description Values

Controls the font size , ,
, or an actual size

(i.e.,)

 or Controls the vertical alignment , ,
,

 or Controls the horizontal alignment , ,

All alignments are based on the default location, which is above the graph, centered. So
setting will print the title starting at the middle (horizontally) and extending to the
right. Similarly, setting will print the title ending in the middle of the graph (hori-
zontally). The same applies for vertical alignment. Here’s an example of using the
function:

Axis Labels and Legend
The functions and are similar to only they’re used to set the x-axis
and y-axis labels, respectively. Both these functions accept the text arguments from Table 6-5:

Next on our list of text functions is . The function adds a legend box,
associating a plot with text:

The legend order associates the text with the plot. Had I called with the inverted
list, the result would be a wrong legend.

An alternative approach is to specify the argument with the function call,
and then issue a call to with no parameters:

Figure 6-7 shows the addition of an x-axis label and legend.

CHAPTER 6 GRAPHS AND PLOTS 199

Figure 6-7. Adding an x-axis label and legend

the location of the legend box via the parameter. This is impor-
tant if you don’t want the legend text to hide the graph line. can take one of the following
values: , , , , , ,

, , , , and . Instead of using strings,
you can use numbers: corresponds to , corresponds to , and
corresponds to . Using the value moves the legend to a spot less likely to hide data;
however, performance-wise there may be some impact.

The function has additional options that let you add a drop shadow and control
the spacing between the text within the legend, among other things. Consult with the interac-
tive help for additional information.

Text Rendering
The function accepts the coordinates in graph units , and the string to
print,
arguments in Table 6-5. The following will print text at location (0, 0):

The function has many other arguments such as (which was used in
Chapter 1) and . See for a complete list of arguments.

CHAPTER 6 GRAPHS AND PLOTS200

Mathematical Symbols and Expressions
Last on our list of text-related functions is one that renders mathematical symbols and expres-

To render mathematical expressions, use a raw string and enclose your mathematical expres-
sion with signs. For Greek letters, start with a slash followed by the name of the letter. So to
print Alpha (), your string should be . Fractions can be created using the

 notation; for example, is the symbol divided by four.
Subscripts are denoted with an underscore, so to render the text ai, write .

For additional information, refer to the online matplotlib web site (at the time of the writing
of this book, the following link was available:

). That being said, whenever you encounter a mathematical expression in this
book, you’re more than likely be able to figure out how it works with the small subset of com-
mands presented in this section.

Example: A Summary Graph
The script in Listing 6-6 is an example summarizing the functions we’ve discussed up to this
point: for plotting; , , , and for text annotations; and

, , and for grid control.

Listing 6-6. Plot Summary Example

The result of this example appears in Figure 6-8.

CHAPTER 6 GRAPHS AND PLOTS 201

Figure 6-8. Plot summary example

More Graph Types
While the regular line and marker plots are excellent visualization tools, they’re hardly the only
ones. This section provides a quick overview of some other 2-D graph options.

Bar Charts
A favorite of many, bar charts allow quantitative comparison of several values. To use a bar
chart, call the function , where is the x coordinates of the bar and

 is the bar height. The function allows for considerable customization; issuing
 will provide most of the details.

Example: GDP, N Top Countries
For this example, which plots the purchasing power parity (GDP) of various countries, you’ll
need the CIA GDP Rank Order file, available from the CIA World Factbook (

); this is a tab-
delimited file, perfect for easy data processing. I’ll assume that you’ve downloaded the file
and saved it in folder ; the source code resides in , and the output files are
located in .

CHAPTER 6 GRAPHS AND PLOTS202

First, we’ll define a function to read the data, as we will use it in several examples in the
chapter. The code in Listing 6-7 should be saved under file .

Listing 6-7. Function

The function reads data from the first N countries and returns their GDP alongside the
country names. I’ve made use of two modules. The first, the csv module, reads the data, which
is tab delimited. The second, the re module, gets rid of the dollar sign, comma, and space char-
acters in the GDP value field.

Armed with function, we turn to plot the bar chart (see Listing 6-8).

Listing 6-8. Plotting the GDP Bar Chart

CHAPTER 6 GRAPHS AND PLOTS 203

The script by now should be quite readable. Notice that I’ve decided to put the
 function in a separate file, and so to be able to use the function, I’ve called the

function .
If you scroll down to the end of CIA GDP rank order file, you’ll find a note similar to this:

It’s a good idea to extract the date information and add it to the title (or some other spot of
your choice):

Alternatively, you can modify the function to return this string as well.
Figure 6-9 shows our bar chart.

Figure 6-9. Bar chart showing World GDP rank

CHAPTER 6 GRAPHS AND PLOTS204

It’s also possible to add error bars. To add an error bar equivalent to ±1000 billion dollars
(talk about an error, eh?), add this line to the script shown in Listing 6-8, just after the
function call:

Finally, the function plots a horizontal bar chart instead of a vertical one should
you require one.

Histograms
Histograms are charts that show the frequency, or occurrence, of values. In matplotlib, the
function is used to calculate and draw the histogram chart. At a minimum, you must

them as follows: . Alternatively, you can specify the histogram bins
, where is a list holding histogram bin values. The return value from

 is a tuple of probabilities, bins, and patches. Patches are used to create the bars; I’ll go
into more detail in the “Patches” section later in the chapter.

The function has other customization options, including the histogram orientation
(vertical or horizontal), the alignment of bars, and more. Again, refer to the interactive help:

.

Example: GDP, Histogram
We turn again to the GDP ranks from the CIA World Factbook; this time we plot a histogram
of the N largest economies. Again, we use the function implemented in the
previous example (see Listing 6-9).

Listing 6-9. Plotting GDP Histogram

CHAPTER 6 GRAPHS AND PLOTS 205

Figure 6-10 shows the resulting graph.

Figure 6-10. GDP histogram, N largest economies

Again, the script should prove quite readable. I’d like to turn your attention to what might
appear to be an odd modification I’ve made to the x-axis using the call to function .
The purpose of this call is to modify the default behavior of the x-axis ranges. The motivation
behind this modification is that since I’ve chosen for the histogram bins, the auto-
matic x-axis range includes negative values, because the leftmost bin is centered at zero but
has a width, part of it in the negative x-axis. I didn’t like this behavior and chose to override it
by manually setting the axis. Instead of setting a fixed number, I’ve first retrieved the current
axis by calling , and then modified the x-axis by subtracting and adding half the bin
width, , to the axis.

As a general rule, when you modify default behavior like this, try to use parameters as
much as possible (in the preceding example, using the parameter , not the value , and
retrieving current values with); this will allow for more flexible scripts that cater to a
wider range of input values.

CHAPTER 6 GRAPHS AND PLOTS206

Pie Charts
Pie charts are as simple to use as bar charts. The function that implements pie charts is

, where holds the values to be charted.

Example: GDP, Pie Chart
Listing 6-10 presents a script to generate a pie chart, shown in Figure 6-11, again making use of
the function .

Listing 6-10. Plotting a GDP Pie Chart

Figure 6-11. GDP pie chart, N largest economies

CHAPTER 6 GRAPHS AND PLOTS 207

Note I’ve decided to use the variable instead of so that the call to would be a
little less confusing. Had I stuck with the original name, , the call to pie would’ve been

, which still would’ve worked, but would seem a bit confusing in my
opinion.

Logarithmic Plots
The functions and are used to plot the x-axis and y-axis in a logarithmic
scale, respectively. Logarithmic plots of type are common when plotting power or
intensity values, for example, those of the Richter magnitude scale, which measures seismic
energy. Likewise, measurements of quantities used with frequencies, for example, are com-
monly plotted on a logarithmic x-scale denoting octaves and decades. There’s also the option
of using a plot, which means both x-axis and y-axis are logarithmic. This is the case in
Bode plots, common in engineering fields.

All three functions, , , and , can be modified with argu-
ments similar to those presented with the function.

The function can be
useful in creating a range of values to be plot with the preceding functions. The and
values are the exponent values. generates logarithmically spaced values between

 and , is returned by speci-
fying . If you’d like a base other than 10, set to the value you require.

Figure 6-12 shows the results of the preceding example.

CHAPTER 6 GRAPHS AND PLOTS208

Figure 6-12. Logarithmic plot

Notice that when plotting with , , and , the labels are the
original values, not the logarithms of the values. If you’d like to print the logarithmic values,
you should probably use a regular function with or of the values. This is
useful, for example, in estimating the energy in decibels (dB):

Polar Plots
Polar plots draw polar coordinate values: a radius at a given angle. Polar plots are commonly
used to draw antenna radiation patterns, as they depict the energy the antenna transmits at
any given angle. Polar plots are implemented using the function.

To set the labels along the radius, use the function, which works
similarly to and . If you don’t provide the value, the values are

 at which the labels are plotted (the default is 22.5
degrees). Similarly, the function plots the angle ticks and labels, as demonstrated
in Listing 6-11.

CHAPTER 6 GRAPHS AND PLOTS 209

Listing 6-11. A Polar Plot

Figure 6-13 shows the resulting polar plot.

Figure 6-13. Polar plot

In the title, I’ve used the ± symbol denoted by .

Stem Plots
Stem plots draw a vertical line from (x, 0) to (x, y) for every (x, y) value as well as a marker at (x,
y). Stem plots are used to denote discrete data and are popular for plotting filtering windows
(see Listing 6-12).

Listing 6-12. A Stem Plot of Filter Windows

CHAPTER 6 GRAPHS AND PLOTS210

Figure 6-14 shows the results of this listing.

Figure 6-14. Stem plots of a Hamming window with different N values

In the preceding example, I’ve made use of the function to denote the number
of elements used in the plot, as I think it’s clearer than a title. Notice that I had to supply a list
to (notice the brackets). Had I not supplied a list, the string
would have been split because assumes a sequence of elements and assigns each one
a plot line. I’ve also made use of the function to create a Hamming window, com-
monly used in filtering values.

Additional Graphs
Matplotlib also supports a great number of graphs used to depict more complex data. Here’s a
short list of some of the graphs available:

 and are used for contour plots. Contour plots draw a
line connecting equal (x, y) value pairs. They’re used in weather maps, detailing lines of
equal pressure or temperature; in topographical maps, detailing the terrain; in physics
graphs, to describe fields; and more.

CHAPTER 6 GRAPHS AND PLOTS 211

 displays the frequency contents of data over time. can
be used, for example, to plot the frequencies of a sound wave as a function of time.

 and functions rely on a color map to depict the data.
Color maps are a relation between a value and a color. Matplotlib provides a set of
color maps that include such names as and to ease the selection of
a color map.

 implements quiver plots, which are typically used to describe force
fields in physics. The quiver plot is a set of arrows depicting the force at each point
(direction and magnitude).

Example: Plotting Frequency Content of a Signal
At times it’s of value to plot the frequencies a signal is composed of as a function of time. For
example, in an audio signal, a different frequency means a different note, so plotting frequen-
cies as a function of time is a possible “musical visualization.”

In this example, shown in Listing 6-13, we create a signal composed of several discrete fre-
quencies and display those frequencies as a function of time using a .

Listing 6-13. Specgram of a Signal

I’ve set the frequency of sampling at 256 samples per second and created a signal com-
posed of 100 Hertz (Hz) for 3 seconds, 20 Hz for 7 seconds, and then 80 Hz for 5 seconds. I then
plot the signal using , with the results shown in Figure 6-15.

CHAPTER 6 GRAPHS AND PLOTS212

Figure 6-15. A specgram

Figure 6-15 clearly shows that in the first 2 seconds the frequency is 100 Hz, in the next 8
seconds the frequency is 20 Hz, and in the last 5 seconds the signal’s frequency is 80 Hz.

Note If you look closely at the figure, you’ll notice there’s a half-a-second shift in the specgram. This is
due to an overlapping window of size 128 samples. See for information on the overlapping
window.

colors used to display the specgram using a color map func-
tion. Simply issue or at the end of the script, and observe the results. See

 for a full account of available colormaps.

Example: A Repelling Force Field
The following example illustrates the use of to depict a force field. At each point in
the figure, an arrow points at the direction of the acting force as well as its magnitude, denoted
by the size of the arrow.

CHAPTER 6 GRAPHS AND PLOTS 213

I’ve made use of the function , which generates two matrices: the first is a
matrix of repeating values of , and the second is a matrix of repeating values of . The output
is used to plot the quiver, shown in Figure 6-16. I then update the axis to reflect the proper
ranges.

Figure 6-16. A quiver plot depicting a force field

Getting and Setting Values
As you start plotting and generating visual output, you’ll find that you’re using more and more
of the “helper” functions, functions that don’t necessarily plot the data, rather control the
graph behavior and arrange labels just the way you want them.

So far we’ve used two methods to modify a plot behavior. One was using dedicated func-
tions such as , , and to control the plot ranges. The other method you’ve
seen was passing arguments to functions, for example, the argument in the
function.

CHAPTER 6 GRAPHS AND PLOTS214

A third method is available, one that makes use of the object-oriented design of matplot-
lib. It involves two functions, and , which retrieve and set a matplotlib object’s
parameters. The benefit of using and is that automation is easily achieved.

Up to this point we’ve suppressed the output from matplotlib so that the interactive
scripts are easier to follow. We now turn to looking at those outputs. Whenever you issue a

 command, matplotlib returns a list of matplotlib objects. This is important; the return
value from calling is a list of objects, not the matplotlib object itself, even if you only
have one line to plot.

The function prints a list of properties you can set for , where
is a matplotlib object. The function accepts either a list of matplotlib objects or just one object:

If you’re not sure of what values a parameter can take, issue :

So to hide the plot, you could issue

or to set the label associated with a line, issue

The function also accepts lists of matplotlib objects, in which case all the matplot-
lib objects in the list will be set.

Note To query acceptable parameters, enclose the parameter to be queried in quotes:
. To set a parameter value, do not include the quotes, but do use an assignment:
.

Similarly, to retrieve values, use the function. The function is a little less for-
giving in that it requires one matplotlib object, not a list of objects.

CHAPTER 6 GRAPHS AND PLOTS 215

Setting Figure and Axis Parameters
In the preceding examples we stored the return value from the call to the function ,
which is a matplotlib object of a line, specifically the line we drew (actually, a list containing
one line). But how do we modify the behavior of the figure or the axis?

The function returns a handle to the current figure. The function returns a
handle to the current axis. Armed with these, we can now modify the axis and figure param-
eters.

To set the y label, instead of calling , we could issue the command

But what are the benefits of using in this manner over simply calling ? The
answer is automation. Let’s turn to an example.

Example: Modifying Subplot Parameters
Suppose you’d like to write a function that receives a figure number and then modifies all the
subplot titles in the figure (if they exist) to numbered titles. For example, for a figure of 2-by-2

in advance how many subplots are in a figure.
This is an ideal case for using and , as demonstrated in Listing 6-14.

Listing 6-14. Numbering Subplots

Some notes regarding the function . First, we set the focus to the figure
we’d like to work on by calling . Next, we retrieve a handle to the figure with

. The following step assumes some knowledge of the matplotlib object structure. But
even if you’re not familiar with the structure, it’s pretty simple to figure out what’s going on by
exploring the objects. To illustrate this, create a simple figure with two empty subplots:

CHAPTER 6 GRAPHS AND PLOTS216

Now retrieve the current figure properties with :

(I’ve removed the extra output lines as they’re not important for the discussion.) Look
closely at two properties: and . The parameter holds a list of two values,
and the parameter holds a list of three values. Further examination shows that the

 objects are all contained within the values. In reality, these are the two axes for
the two subplots. So to get a list of these, we can simply call , as the code
indeed does. We then set the titles and call the function to force a redraw.

There’s a caveat in the implementation of the function : numbering is
performed in accordance with the creation of the subplots. That is, if the bottom-left subplot
was created before the top-left subplot, it will have the smaller title value associated with it
and not the regular subplot numbering (left to right, top to bottom). If you’d like to change
this, you’ll have to look at the positions of the subplots and assign numbers accordingly. This
is somewhat more complex and not all that educational, so I’ve opted to leave it out of the dis-
cussion.

A lot of the parameters that are accessible via and are also accessible by
means of dedicated functions. Instead of setting the y-axis label parameter with , you
can call the function. When possible, I prefer using the function version over
and because I think it’s easier to follow.

Exploring the matplotlib object by use of the statement is also a very good method to
probe the capabilities of a matplotlib object. Most of the functions are self-explanatory and
let you set and retrieve values associated with a matplotlib object. In case you’re not sure, use
the function in an interactive Python session. From a partial comparison I’ve made,
matplotlib object methods are equivalent to the properties available with and ,
so you can use either:

Final note: working with and or the set and get methods of the matplotlib
object is an advanced topic. These functions allow closer control of the behavior of plots and
graphs and are not easy to master. They require a good understanding of the matplotlib object

CHAPTER 6 GRAPHS AND PLOTS 217

hierarchy. Regardless of the complexity, I believe this is an important concept. As you draw
more graphs and deal with more data, you’ll find that the default functionality, although great,
isn’t exactly what you want. And in these cases, turning to and is a good option.
I hope that I’ve exposed you enough to the topic to let you experiment on your own.

Patches
So far we’ve worked with text and lines, which are both implemented as matplotlib objects.
But those two objects at times are not enough. A third object, the patch, allows drawing other
types of shapes that don’t necessarily fall under the category of a line or text.

The way you work with patches is that you assign them to an already existing graph,
because in a sense patches are “patched” on top of a figure. Table 6-6 gives a partial listing of
available patches. In this table, the notation indicates a list or tuple of (x, y) values.

Table 6-6. Available Patches

Patch Description

An arrow, starting at location and ending at location

A circle centered at and radius

 An ellipse centered at , of width , height , and rotated
 degrees

A polygon made of vertices specified by points

 A wedge (part of a circle) centered at , of radius , starting
at angle and ending at angle

A rectangle, starting at , of width and height

To use patches, follow these steps:

1. Draw a graph.

2. Create a patch object.

3. Attach the patch object to the figure, using the function.

Note Although this might seem like a considerable effort to add, say an arrow patch, in reality these three
steps can be folded into one line. To draw an arrow from (0, 0) to (1, 1), issue

.

CHAPTER 6 GRAPHS AND PLOTS218

Example: Adding Arrows to a Graph
In this example we’ll draw a graph and connect every two points on the graph with an arrow.

First draw a simple graph:

Now create a list of all the arrows:

This is a bit tricky. First, the function creates a difference of every two elements in
a vector, for example, is . This is exactly what we need for our

 and values for the function. Second, we combine , , , and using the
function and return a list of tuples by using a list comprehension. Luckily for us, uses the
shortest vector, so even though vectors are shorter by 1, it’s not an issue.

Now, all that’s left is to iterate through the list comprehension and attach an arrow to the
graph:

Figure 6-17 shows the added arrows.

Figure 6-17. Patching arrows

CHAPTER 6 GRAPHS AND PLOTS 219

Needless to say, , as well as other patches, can be customized considerably; you
can adjust color, length, width, and more.

Example: Some Other Patches
The code in Listing 6-15 generates a list of patch objects and attaches them to a figure. The fig-
ure is originally empty.

Listing 6-15. Some Patches

Figure 6-18 shows the results of the code in Listing 6-15.

CHAPTER 6 GRAPHS AND PLOTS220

Figure 6-18. Some patches

The patch objects and are not automatically imported to the current
namespace when you issue (unlike , , , and

), so I’ve manually imported them to the namespace with the statement
.

I’ve also passed arguments to the patches to show how to use them: (or),
 (or), (or), (or), and .

Final Notes and References
We’ve explored the matplotlib package, a rich package that supports plotting in Python. The
strong suit of matplotlib is easy plotting of simple and complex graphs with a high-number of
customization options. If you’re not familiar with the package, exploring it with IPython’s tab
completion, complemented by , trial and error, and the manual, should yield excellent
results in no time.

For the purposes of the book and the examples provided, this chapter covers all topics.
However, your needs may be different, and I hope that you now have the tools to explore this
package on your own.

The matplotlib web site is an excellent source of information, and I encourage you to
explore it and learn more about the package.

C H A P T E R 7

Math Games
Preprocessing Data Prior to
Visualization

Math is a fundamental tool in data visualization. Python provides outstanding math support
and as such is an ideal development environment for analysis prior to visualization. There are
several reasons I find using Python for this purpose so appealing. First is Python’s interactive
nature: it’s easy to manipulate data and observe intermediate results, as well as modify and
quickly plot them. The second reason, and probably the factor contributing the most, is the
wide range and popularity of freely available, mature numerical packages. Lastly, Python is
also structured, allowing the development of production-level code used to generate quality
reports.

In this chapter we’ll explore Python’s math capabilities, the built-in modules math,
cmath, and random, and the excellent package we’ll use extensively (and have used in previ-
ous chapters), NumPy.

Modules math and cmath
Python provides two flavors of math modules: math and cmath. The math module has
functions that are common to most programming languages and in essence is using the C
math function calls. Functions from module math return floating-point numbers. In case of
improper arguments an error will be raised:

221

CHAPTER 7 MATH GAMES222

Module cmath returns complex results:

Note If you see in response to , it means that NumPy is already imported but without
complex math. This is probably due to a previously issued or
 command, or you have a Python distribution that loads NumPy automatically, which automatically issues

these commands for you.

Complex numbers are supported natively in Python with the built-in data type.
This is probably a contributing factor to Python’s popularity as a platform for numerical
computation. The imaginary part of complex number has a trailing as shown in the preced-
ing example. Most arithmetic operations and function calls can be performed on complex
numbers.

If you do not require complex number support, opt for using module math over cmath.
First, it will provide you with valuable exception information if the parameter to a function is
out of the domain, as shown previously. Second, cmath always returns complex results, even if
results can be represented as noncomplex numbers, in which case the imaginary value will be
zero. Lastly, some functions are only available in the math module, as listed in Table 7-1.

Table 7-1. Functions Available Only in the math Module

Function Description Example

Returns the smallest integer greater than or
equal to

 returns .
 returns .

Returns the largest integer less than or
equal to

 returns .
 returns .

Returns the absolute value of returns .

Returns the remainder of divided by returns .
 returns .
 returns .

 returns .

Returns the integer and fractional parts of returns .
 returns .

Returns the exponent, , and mantissa, ,
such that x = m 2e

 returns .
 returns .

Returns m 2e returns .
 returns .

CHAPTER 7 MATH GAMES 223

Power, logarithmic, trigonometric, and hyperbolic functions are available in both math
and cmath modules, as listed in Table 7-2, with the exception of the functions ,

, and .

Table 7-2. Power, Logarithmic, Trigonometric, and Hyperbolic Functions in the math and cmath
Modules

Function Description Example (math) Example (cmath)

Power

ex returns
 (e).

 returns .

y

returns .
N/A, use operator .

Square root of returns . returns .

Logarithmic

Logarithms of —if is
not specified, defaults to
natural logarithms

 returns . returns

 (j).

Logarithms of , base 10 returns
.

 returns
.

Trigonometric

, , Sine, cosine, and tangent
of

 returns . returns
.

, , Arc sine, arc cosine, and
arc tangent of

 returns

(/2).

 returns
.

Arc tangent of , preserves
quadrant information and
avoids division by zero

 returns

(- /2).

N/A

(2+ 2) returns . N/A

Hyperbolic

, , Hyperbolic sine, cosine,
and tangent of

 returns . returns

(0).

Constants

, ,

CHAPTER 7 MATH GAMES224

FUNCTION ATAN2

Function is very useful in that it maintains angle values of a point in a plane, as shown previ-
ously in Chapter 1. That is, if and represent coordinates in a plane, returns the angle from
the origin. Consider the point located at (1,1): its angle is 45 degrees (/4); point (–1,–1) has an angle of
–135 degrees (or 225 degrees). If you were to use , both points (1,1) and (–1,–1) would yield 45
degrees, losing quadrant information. However, using the correct values are returned.

There’s also a side benefit that if is zero, the angle is calculated properly, whereas would
raise an exception. Function is not particularly useful in complex math as values already represent
Cartesian points.

Example: A Newton Fractal
In this example we use complex math to create a fractal based on the Newton-Raphson
method (or simply Newton’s method). Fractals are used by scientists to investigate chaotic
systems: systems whose state over time is highly dependent on initial conditions. The purpose
of this example is to show the capabilities of Python’s complex math and explore some ways to
visualize data other than a regular plot; fractals are a perfect match.

Newton’s method is an iterative procedure to find numerical solutions, or roots, to an
equation of the form f(z) = 0 using an initial guess. One of the characteristics of the method
is that in case of several solutions, we cannot tell in advance, based on the initial guess, what
the converged solution will be (usually). If you were to map out the initial guesses based on
the solution, you would find they converge to results in an image known as Newton’s fractal,
which is geometrically interesting.

If you’d like to read more about Newton’s method, have a look at
; there’s a lot of additional information available on the Internet.

The function we’ll map is f(z) = z4 + 1. This function has four roots:

To verify that these are indeed solutions to the equation:

The imaginary parts are on the order of scale of 10-16 and are due to inaccuracies of the
trigonometric functions, , and the floating-point representation; the imaginary parts are
actually zero.

Newton’s method takes an initial guess and calculates the next guess by applying
the equation zn+1 = zn – f(zn) / f'(zn), where f'(z) is the derivative of f(z), or in our case

. To check whether the new value is a “good” solution, we reapply it to
the original equation, f(z), and check how close it is to zero. In reality, we check whether the
absolute value is less than , a predefined small value. The number of iterations is an
indication of how fast the solution was reached. We’ll use this to select the color depth of each
solution: solutions that converged fast will be brighter. Once our guess converges, we check

CHAPTER 7 MATH GAMES 225

what solution it converged to and color it accordingly. Since there are four solutions, there will
be four colors (at varying color depths) in the fractal. Listing 7-1 generates said Newton’s frac-
tal in the region (0, 0)–(1, 1).

Listing 7-1.

CHAPTER 7 MATH GAMES226

We use the Python Imaging Library (PIL) to draw the fractal. We start by creating an RGB
image of size specifying the fractal’s resolution. We then implement Newton’s method
with a loop, and an statement to check for convergence.

While the iteration is straightforward, deciding which of the four solutions a specific guess
converges to and then mapping to the right color and color depth requires some clarifications.

The list is composed of the colors red, green, blue, and yellow, each represented by
a tuple of Red-Green-Blue (RGB) values:

Variable is directly responsible for the color depth (or shade) of the displayed
color. For a small number of iterations, is closer to 255, and for a greater number
of iterations, this number is closer to 0, resulting in a brighter color for faster converging points
(smaller number of iterations).

Once is calculated, we find the solution closest to our converging value. Since
we’re using complex numbers, the value closest is the one with the minimum distance, or in
complex math, the one with the smallest value of .

To implement this, we generate a list of values corresponding to the distances using a list
comprehension. Here’s an example using an arbitrary point:

Next, we combine these values with the numbers 0–3, which represent the indices to the
 list, using the function:

We then find the minimum error by calling the function . To find the correct color,
we index the color associated with , which is the second element in the
zipped tuple. Maybe it’s easier to show interactively than explain:

Finally, we use a list comprehension to multiply the RGB values by the color depth. This is
because the method requires a tuple detailing the RGB values:

CHAPTER 7 MATH GAMES 227

Tip As you experiment with parameters, you may wish to save some of the outputs. These runs can take
a considerable time to complete, so it’s a good idea to have different file names for the outputs as opposed
to a single file name, ensuring files are not accidentally overwritten. Unlike data files, the outputs of these
runs are dependent on input parameters and the code (e.g., version of the script) that generated them and
are not date or time dependent. It doesn’t matter whether the run was performed last week or last year;
the results should be the same. The notation I’ve used is one that details all the parameters used to create
the output within the file name:

. Names of the output files detail the inputs that generated them. An even better
approach (one that in this case will somewhat disturb the pleasing output) is annotating the images with text
describing the parameters used. And lastly, if you use a version control system (see Chapter 2), the version
number of the script that generated the output is a very welcomed addition either in the file name or in an
annotation.

Figure 7-1 is a collage of outputs generated by the script with and values
of ranging from 1 to 9 (top left is ; bottom right is). We’ll touch on collages in
Chapter 9. Figure 7-2 is the result of a longer run with and .

Figure 7-1. Collage of Newton’s fractals with iterations from 1 (top left) to 9 (bottom right)

CHAPTER 7 MATH GAMES228

Figure 7-2. Newton’s fractal, max number of iterations equaling 30

Tip The preceding example explores the region (0, 0)–(1, 1). If you wish to explore around the origin, that
is, around (0, 0), change the line to .

Module random
Other than mathematical functions, Python also provides a rich library for random numbers.
Random numbers are important in a variety of software applications. In game programming,
random numbers are used to change the behavior of elements in the game to make it more
interesting or unpredictable. When writing simulations, random numbers are used to generate

CHAPTER 7 MATH GAMES 229

data that simulates the real world. Random numbers can also be used to answer probability
questions, as you’ll soon see.

The random module provides random values based on a wide variety of distribution func-
tions including uniform distribution, Gaussian distribution, and more. Module random also
supports Python’s lists naturally, with random functions operating on sequences.

Table 7-3 gives a partial list of some useful random functions.

Table 7-3. Functions of the random Module

Function Description Example/Note

Integers

Returns a random number between
and (including and)

 returns or
(randomly).

Same as except it allows a
step value

 returns , ,
or (randomly).

Floating-Point Numbers

Returns a real value between 0.0
and 1.0 (excluding 1.0)

Returns a real value between
 and (excluding)

 returns a
random number between 120
and 220 (excluding 220).

Returns a Gaussian distributed
value with as mean and
as standard deviation

Module random provides an additional number of other distributions: Log normal and
Weibul, to name a couple. Refer to the Python Standard Library documentation for a full
account.

Using random to Solve Probability Questions
The following examples use the random module to solve probability-based questions
numerically.

Example: Hard Disk Head
Return to zero: Consider the following: a hard disk head is normally resting at location 0, rep-
resenting the start of the disk. Files (of size zero) are evenly distributed between location 0 and
1, where 1 represents the end of the disk. The head is required to access files randomly. After
each read, the head returns to location zero. The question is, what is the average distance the
head moves?

The answer is not hard: on average, the head moves a distance of 1.0 (don’t forget it has to
go back to location 0). You can easily verify this using a simple script:

CHAPTER 7 MATH GAMES230

The larger the value of , (and assuming a good implementation), the more accu-
rate the result.

Not returning to zero: Now consider the scenario where the head does not go back to
location 0, but stays where it was before. Finding the average distance the head moves is a bit
harder analytically, but numerically, with a simple script, the solution emerges quickly.

This number turns out to be 1/3.

Example: Friends Meeting
We turn to another example, one that makes use of a visual output as well.

Two friends decide to meet between 8 p.m. and 9 p.m. Once one of the friends arrives at
the designated meeting spot, he waits for 10 minutes for his friend to show up. So if for exam-
ple Friend 1 arrives at 8:40, he’ll wait until 8:50 for Friend 2 to show up. Friend 1 doesn’t know
if Friend 2 already showed up earlier (the same is true for Friend 2, he doesn’t know if Friend 1
showed up). But both friends are smart enough to know that if they arrive at 8:55, for example,
they only need wait until 9:00 and not 9:05. The question: what’s the probability that these two
friends meet?

We again turn to the random module to help us solve this problem (see Listing 7-2). Only
this time, we also visualize the result, hopefully gaining some insight as to how to solve the
question analytically.

Listing 7-2. Friends Meeting

CHAPTER 7 MATH GAMES 231

The first step is to generate a considerable number of events, in this case 40,000. An event
is composed of two numbers: one associated with Friend 1’s time of arrival and one associated
with Friend 2’s time of arrival. We store both their times in lists. The process of generating the
events is performed in the first loop. The function returns a value between and

, which maps out to the time of arrival: is 8 p.m., is 9 p.m.
Now that we have a considerable number of events, we ask at what times the friends meet.

The friends meet if the difference between their times of arrival is less than 10 minutes, or 10
minutes / 60 minutes * 1.0 = 1/6 (1.0 is the range of random values). But it’s also possible that
Friend 1 arrives after Friend 2 and not the other way around. So we should be asking whether

 is less than 1/6, as well as whether is less than 1/6. This can
be elegantly coded as .

The actual implementation makes use of a list comprehension, returning a tuple of (x, y)
values that match the condition , which means the friends have met. We
then construct an array of these values (a NumPy array, more on this shortly) so we can easily
access the x and y vectors, without any loops. We also build a list of times the friends did
not meet because we want to plot both, in different colors and markers.

Next we plot the results and calculate the probability of the friends meeting, numerically,
as shown in Figure 7-3.

This visualization really helps. The corridor in the middle describes the events cor-
responding to the two friends meeting. The probability is the area of this corridor and can
be calculated by the area of the entire square minus the area of the top-left triangle and the
bottom-right triangle. Each triangle has an area of 0.5 (5/6)2, and the total probability of
meeting is 1 – (5/6)2 = 11/36 = 0.3055 . . . which is pretty close to the estimated numerical value
(displayed in the figure title).

CHAPTER 7 MATH GAMES232

Figure 7-3. Visualizing friends meeting

Random Sequences
Another set of functions available under the random module operates on sequences. These
include the functions listed in Table 7-4.

Table 7-4. Functions from the random Module for Operating on Sequences

Function Description

Returns a random element from the sequence

Shuffles the sequence

Returns a subsequence of size from

For the examples in this section, we create a deck-of-cards sequence using the built-
in function. Each card is represented as a tuple holding a number 1–13 and a character, ,

, , , corresponding to spades, hearts, diamonds, and clubs.

CHAPTER 7 MATH GAMES 233

A DECK OF CARDS

There are lots of ways to implement a deck of cards, and the method described here is a bit tricky. The
reason I chose it is that it shows another way of creating a deck of cards other than a double loop (see
Beginning Python: From Novice to Professional for an implementation using a double loop in a list com-
prehension). There are benefits to using loops: they’re straightforward to implement and read, and in this
specific case, we can use full names for the sign of the card (e.g., instead of).

If I were to use NumPy’s object (discussed in the next section), I’d opt to use the line
, but this is tricky too because the division by 4 might yield noninte-

ger values in future versions. Maybe a more prudent approach would be to add a function call.
In any case, what should concern you more is the readability of your code. Don’t forget that there’s a

good chance you’ll be the person maintaining it as well. If you’re more comfortable with a double loop,
use the loop approach. If you’re more comfortable zipping flat arrays, the options shown here are viable
approaches. It’s a matter of personal preference, as performance is hardly an issue. This brings up another
point: performance. Opt for readability over performance if possible. After all, Python is a high-level program-
ming language: if you really need code performance, other programming languages might prove a better
choice. Even better, you can extend Python with other programming languages.

Module NumPy
NumPy’s object has been the basic building block for a lot of the data processing and
visualization scripts presented throughout the book. We now turn to exploring this package
and discussing its usage.

Note Although used in previous chapters, we have not explicitly seen calls to import NumPy. Neverthe-
less, we did use NumPy’s object extensively. The reason we have not seen NumPy imports is that
we have been using the command instead, which imports, among other packages,
the NumPy package as well.

The object provides substantial added functionality to Python’s object and
has a lot in common with Matlab’s matrix data structure. Such functionality includes matrix
operations, linear algebra, and more. It also provides the basic building blocks for more com-
plex numerical methods as will be explored in future chapters. The name “ndarray” stands for
N-dimensional array, and as it implies, this object supports N-dimensional arrays.

CHAPTER 7 MATH GAMES234

NumPy is a full and rich package. I will only cover topics that are important for the ideas
discussed in the book, and as such, this chapter should be considered a quick introduction. If
you’d like to learn more about NumPy, consult with the references at the end of the chapter.

Note I’ll use the terms “array” and “ndarray” interchangeably. In both cases I am referring to NumPy’s
 object—there’s little use for Python’s object once NumPy is imported.

Array Creation
Chapter 3 covered Python’s built-in data structures including tuples, lists, and dictionaries.
If you recall, there were several methods to create most of these data structures: we’ve used
brackets for lists as well as the function, we’ve used curly braces for dictionaries as
well as the function, and so on. Unfortunately, there’s no specific symbol set aside for
NumPy arrays, so the options are to use either the function or functions that return an
array, the array creation functions.

The most straightforward method to create and initialize an array is from a list:

Other methods to create arrays are available, ones that are more useful when dealing with
larger amounts of data points, as described in Table 7-5.

Table 7-5. Array Creation Functions

Function Description Example

N-Dimensional Arrays

Creates an array based on the
sequence . returns

.

Creates an N-dimensional array
initialized with s based on the
tuple .

 returns
.

Similar to , only initialized
with zeros.

 returns

.

CHAPTER 7 MATH GAMES 235

Function Description Example

Two-Dimensional Arrays (Matrices)

Creates a 2-D array of size ,
the major diagonal filled with
ones and the remaining matrix
zeros. If is not provided, it is
assumed equal to .

returns

.

One-Dimensional Arrays (Vectors)

Creates an array of values starting
at , ending at (but excluding)

 with an increment . This
is similar to

, only that
can return noninteger values as well.

returns
.

Creates a linearly spaced vector
of size from to ;
refer to the interactive help for
additional options.

returns

.

Similar to , only values
are spaced evenly from 10start to
10stop on a logarithmic scale; refer
to the online help for additional
options.

returns

.

Some additional array creation functions (,) exist, but in most cases,
you’ll find the ones in Table 7-5 sufficient. There’s some redundancy in those as well:
results in the same array as .

Slicing, Indexing, and Reshaping
Arrays can be resized using the and functions and indexed and sliced using
Python’s slicing and indexing operators, and . The difference between the two functions
is that resizes an existing array, whereas returns a new array based upon
the data in the original array.

CHAPTER 7 MATH GAMES236

N-Dimensional Arrays
NumPy arrays are N-dimensional arrays and can be created in the same manner as 1-D and
2-D arrays:

A useful operator for N-dimensional arrays is , which means, “all the remaining
dimensions.”

One of the common questions is how useful N-dimensional arrays are. Some people feel
that they do pretty well with one or two dimensions and have little use for N-dimensions. My
experience with N-dimensional arrays is that they provide an excellent data storage when
dealing with a combination of several parameters. Consider a simulation with four param-
eters, each parameter having a range of values. Suppose you want to map out the simulation,
that is, calculate the results for every given combination of parameters and also store the
results, because the running time is long. How would you store the results? One method is to
write them to a list, flattening the data. An alternative method is using an N-dimensional array.

CHAPTER 7 MATH GAMES 237

Example: Comparing Mortgages
The following example discusses how to store data as a function of several parameters (typi-
cally more than two) using both N-dimensional arrays and flat data structures.

Since at the time of writing this book the subprime mortgage crisis has hit the world mar-
kets, I thought it appropriate to give an example comparing mortgages. By all means I’m not
financially savvy, so please don’t use this as advice in selecting a mortgage! Now to define the
problem.

Fixed mortgage payments are a function of three parameters: the loan amount (which is
also called the present value), the interest rate, and the number of payments. Banks typically
have different interest rates as a function of the number of payments, a person’s record, and
possibly also the loan value.

So based on these three parameters (present value, interest rate, and number of pay-
ments), we’d like to map out monthly payments—that is, what the expected monthly payment
is for every value in the range of parameters.

For this example, we’ll assume that we’re considering loans in the amounts of $100,000 to
$140,000 in increments of $20,000, mortgage interest rates range from 3 percent to 5 percent
in increments of 0.5 percent, and number of payments is 60 to 300 in increments of 60 (repre-
senting 5 to 25 years in increments of 5 years). We’ll use the function , which is part of the
NumPy package. The function returns a fixed monthly payment for a fixed-rate mortgage (see

).
We construct lists representing the range of values we’d like to map out. We implement

these lists using the function described previously in this chapter.

THE CONVENIENCE OF USING ARANGE() AND LINSPACE()

Here’s another example of why NumPy provides convenience over non-math-oriented data structures. To
implement a list of values with noninteger increments, we can use a list comprehension. For example:

While this is perfectly OK, it’s less readable than something like this:

In the former method (using a list comprehension), you’d have to do some math to realize exactly what
values are being used. In the second method, they’re clearly spelled out: from 3 to 5.5 (excluding 5.5) in
increments of 0.5.

I’m assuming the decision not to include the edge value (i.e., 5.5) in the function is to have it
behave in a similar manner to and . My personal preference would’ve been to include the
edge value.

Alternatively, you could use the function:

which in this specific example is awkward: the number 5 (the last argument) has to be precalculated to reach
an increment of 0.5.

CHAPTER 7 MATH GAMES238

A final note: Those values are annual values, and to use them properly you’d have to divide them by 12
(months) and by 100 (percentage values). Regardless, this is required in both a list comprehension implemen-
tation and an implementation. I’ve left it out so that the example would be clearer to follow. The
ability to multiply (or divide) an array by a value will be shown in the next section.

Next we iterate over the range of loans, the number of payments, and the interest rates
and construct a data structure to hold the results: monthly payments. We examine two data
structures:

rows, with each row being a list containing loan size, number of pay-
ments, interest rate, and monthly payment. This is a native Python list.

interest rate, number of payments, and loan size. This is a 3-D NumPy array.

Listing 7-3 compares these two structures.

Listing 7-3. Flattening Data vs. N-Dimensional Data

The benefit of using an N-dimensional array is that indexing is a lot easier and faster. For
example, assuming is fixed and set at 0, the results can be accessed with .
Achieving the same in a list will probably require iterating over the entire list and compar-
ing the value of the first parameter. There’s overhead both in code in actual performance:

CHAPTER 7 MATH GAMES 239

However, the results of the list are much more readable: they list all combinations of
parameters in human readable form. You could do the same with but that requires a
loop:

In the loops, I’ve used on the list of values we’re iterating over. The rea-
son for this is that NumPy arrays require indices, and those are integers, whereas Python lists
do not. So in a sense, lists here could be more elegant code-wise (no need to use).

Lastly, the list implementation can lend itself very nicely to storage in a CSV file, which in
itself is also a flattened data structure. That being said, you could also flatten the array and do
the same.

Although N-dimensional arrays are interesting data structures, most examples in this
book are based on 1-D arrays (vectors) and 2-D arrays (matrices), as they cover most anything
we do. Even 3-D plots are really represented by 2-D matrices: the indices represent x and y,
and the cell value represents z.

Choosing either N-dimensional arrays or flattened data structures is dependent on the
exact problem you’re trying to solve.

Math Functions
Simple arithmetic operations are possible on arrays: addition, subtraction, division, multi-
plication, and exponentiation as well as most math functions available in math and cmath
modules (albeit now they’re implemented as part of NumPy).

Example: Visualizing Fourier Expansion of a Rectangular Wave
The following is an example showing a Fourier expansion of a rectangular wave using a sum
of sine waves. Fourier expansion is used in numerous applications ranging from solving dif-
ferential equations to signal processing. This example will show how we could treat a NumPy
array as a vector of values and operate on that vector as if it were a function. We use a Fourier
expansion of sine waves (NumPy arrays) to generate a rectangular wave (another NumPy
array). We implement the equation f(t) = 4/(*n)*sin(2* *n*t*num_cycles), which is a Fourier

CHAPTER 7 MATH GAMES240

series expansion of a rectangular wave (see Listing 7-4). The parameter determines
the number of cycles we’re expanding. In this example we’ll set the number to to view two
cycles.

Listing 7-4. Visualizing a Fourier Expansion

We import the entire PyLab module, which also includes NumPy and the plotting
commands: both are required in this example. We then prepare an empty plot: each new cal-
culation of the expansion will be plotted on top of the previous one, so we issue the command

 to ensure subsequent plots do not erase existing ones.
The first array object is created with the command (we could’ve

also used an function call instead). Array object is a 1-D array, a vector. All our sub-
sequent operations and math functions will operate on this vector. We then initialize the series
expansion variable, , using the function. The heart of the computation lies in the
loop. Each sine wave is added to the previous one, and the result is stored in . The simple line

 is in reality operating on entire arrays, showing the strength
of the array object.

We then plot as it is being calculated and annotate the graph once the expansion is com-
plete, as shown in Figure 7-4.

CHAPTER 7 MATH GAMES 241

Figure 7-4. Fourier expansion of a rectangular wave

Array Methods and Properties
Arrays are objects and as such have functions called methods and variables called properties.
Using IPython (see Chapter 2), you can list an object’s methods and properties by using char-
acter completion, accessible via the Tab key. Alternatively, you can issue the following:

I’ve used the preceding list to create Table 7-6; it’s only a subset of the methods and
attributes, and I chose to describe those I feel are the most useful for data processing and visu-
alization. I’ve also split the methods into categories for easier viewing. Methods are denoted
with , while properties do not have a trailing parenthesis. In this table, refers to an array
variable.

CHAPTER 7 MATH GAMES242

Table 7-6. Array Methods and Attributes (Partial)

Function Description Examples

Logical

True if all elements of are true
(nonzero).

 returns
(the first element is zero).

returns
.

True if at least one element of is
true (nonzero).

returns .

A tuple of indices to nonzero ele-
ments of .

 returns
.

Indexing

Sorts elements in . sets to
.

 changes to
.

Returns indices to insert such
that the array’s order is preserved.
Assumes is already sorted.

returns .

Modifying

If an element of is less than ,
returns ; if an element of
is greater than , returns ;
otherwise, returns the element.

returns
.

Returns an array whose elements
match the condition specified in

; equivalent to .
 returns

.
returns

.

Sets all values of an array to ;
equivalent to . sets to

.
 sets to

.

Math

For math examples, assume , which can also be expressed as
.

Cumulative product. Each element
is the product of the previous ele-
ments in the array.

returns
.

Cumulative sum. Each element is
the sum of the previous elements
in the array.

returns
.

CHAPTER 7 MATH GAMES 243

Function Description Examples

 and Real and imaginary values of
elements in .

 returns
.

returns
.

Complex conjugate of (negation
of the imaginary part; rows and
columns transposed).

 returns .

, Maximum and minimum values of
(performed on real part only).

 returns .
 returns .

Mean value of . returns
 (1 /3).

Product of all the values in . returns .
Note that is equal to

.

Peak-to-peak value of ; equi-
valent to .

 returns .

Rounded values of . returns
.

Standard deviation of elements
in .

returns .

Sum of all the values in . returns .
Note that is equal to

.

Sum of the diagonal of a 2-D array.
If is provided, sums the offset
diagonal.

returns .

Variance of elements in . returns .

Shape Related

The values in as a 1-D array. returns
.

Number of dimensions of . returns .

Copies over times, flattened. returns

.

Generates a new array of size (d1, d2,
. . .).

returns
.

Resizes the current array to size (d1,
d2, . . .). sets to

.

A tuple representing shape of . returns .

Transposes a matrix. This is equiva-
lent to conjugate but without negat-
ing the imaginary parts.

returns

.

Continued

CHAPTER 7 MATH GAMES244

Table 7-6. Continued

Function Description Examples

Conversion

Writes an array to file (binary).

Reads an array from file (binary).

Converts an array to a list returns
.

Example: A Magic Square
A magic square is a square with the sum of each row and column equal and the same. Typi-
cally, magic squares do not allow numbers to repeat twice. In this example, we’ll generate
magic squares, populating the values from 1 to N2 in a square of size N by N.

A modern variation on the magic square idea is the Sudoku puzzle game. The ideas pre-
sented in this example can be modified to provide solutions to Sudoku puzzles (see

 for possible strategies for implementing a computer solution).
Back to our example. We’ll create a magic square implementing the De la Loubère method

(also known as the Siamese method), which works for squares of odd values of N only. Con-
structing a magic square is performed by placing the first value, 1, in the middle column at
the top. Incremented values are placed diagonally up and to the right. If the spot up and to
the right is outside the square, it is wrapped around to the bottom row (if exceeded at the top)
or to the first column (if exceeded to the right) or both. If a cell is already occupied, the value
moves a row below (again, wrapping if needed). Figure 7-5 illustrates the algorithm with exam-
ple magic squares of sizes 3 and 5.

Figure 7-5. De la Loubère method

An implementation of the algorithm using an array is presented in Listing 7-5.

CHAPTER 7 MATH GAMES 245

Listing 7-5. Creating a Magic Square

The main loop is quite straightforward and follows the algorithm strictly. However,
calculation of the column and row values using the modulo () operator is tricky and requires
some explanation. Consider the way the algorithm is specified: increment the column value
and check whether the new value is within the size of the matrix. If it is not, wrap it around
to the beginning. A similar approach is taken with the row: decrement and wrap if required.
Instead of implementing these two steps, an increment/decrement followed by an state-
ment, we could use the modulo operation, which captures the idea quite elegantly:

.
I’ve chosen to initialize the variables , , and with a multiple assignment. Multiple

assignments can also be used inside the loop: ;
however, in my mind it’s less clear, and there’s no impact performance-wise. My personal
preference is to use multiple assignments in initializations and not calculations.

I’ve defined another function here, , which checks whether a square is
indeed a magic square. The function also works on even values (which is a plus) and makes
use of the member function of the array object.

Tip Python supports testing via several built-in packages, including and . However,
for the purpose of this example, I’ve chosen to write a dedicated test function, which will further show the
properties of NumPy arrays.

CHAPTER 7 MATH GAMES246

The function returns an array of the sums of columns (i.e., along axis 0);
returns an array summing rows (along axis 1). Here’s a listing demonstrating summing along
the 0 axis and the 1 axis:

As can be seen, the matrix has two rows and three columns. Summing along
axis 0 via returns a 1-D array (a vector) holding the sums of all three columns. Conse-
quently, returns a vector holding the sum of the rows. The next lines show how this can
be used to check for “magic-ness” of a square—both vectors, and , should be
equal element-wise to the sum along an arbitrary axis.

In the function I’ve chosen to compare both sums of columns and of rows
with the sum of the first column: . If you compare a vector (1-D array) with a
scalar (a single value), the result is a vector with each element compared with the scalar. To
ensure all are indeed equal to the required sum, you could use the member function.
I’ve opted to use the notation over because
I think it’s more readable, but that again is personal preference; both do the job.

Note In the function , it’s not enough to check that is equal to
because this only checks that the sums of rows is equal to the sums of columns. However, that’s not a suffi-
cient condition. Consider the array : it satisfies the condition

, but it’s not a magic square. You might raise the question whether the array is a magic
square—the function will return , but maybe this is a trivial case of a magic square.

One other interesting aspect of the Siamese method is that the sum along the diagonal
is also identical to the sum of each row and each column; that’s true for both diagonals. The
function calculates the sum along the diagonal (top left to bottom right). To calculate
the sum of the second diagonal (bottom left to top right), you could use the function.

CHAPTER 7 MATH GAMES 247

Other Useful Array Functions
Other than properties and methods, the NumPy package also provides functions
that operate on arrays but are not part of the object class. For a full account, issue the
following:

As you can see, many functions are available from various fields of interest:

Vector operations: , , , and

Matrix operations: and

Statistical functions: , , , , and

Financial functions: , , and

Polynomial operations: , , , , ,
, and

Operations that change vector and matrix sizes and orientations: , ,
and

Functions that generate windows for filtering: , , ,
, and

We’ll explore some of these functions in Chapter 8. If you’d like to know more about these
functions, issue . For example, here’s a function I particularly like using:

I use to calculate the difference between two consecutive elements in an array. I’ve
used it several times already in the book, including in the section “Example: Adding Arrows to
a Graph” in Chapter 6. You could also modify the friends meeting example in this chapter to
use instead of a list comprehension.

Final Notes and References
The range of applications for which NumPy is of value is large. And as evidence, you’ll find that
a considerable number of packages rely on NumPy, and for a good reason: NumPy provides a
solid base for mathematical arrays.

An interesting module that comes with the Python Standard Library is the decimal mod-
ule. This module provides support for decimal floating-point values and allows, for example,
arbitrary percision. The decimal module is a bit less intuitive than regular numbers in Python,
but should you require higher percision, and provided you’re willing to accept some perfor-
mance loss, this module is a good option. Another module, introduced with Python version
2.6, is the fractions module, which supports rational number arithmetic.

CHAPTER 7 MATH GAMES248

Should you require additional information on NumPy or the other topics discussed in this
chapter, I hope you find the following references of value:

C H A P T E R 8

Science and Visualization
Numerical Analysis and
Signal Processing

I’ve covered a great deal of the topics associated with data analysis and visualization: reading
and writing files, text processing and converting text to numerical data, plotting and graph-
ing, writing scripts, and implementing algorithms. It’s time to take a deeper dive and analyze
numerical data.

This chapter deals with two important topics: numerical analysis and signal processing.
These two topics appear in many sciences: mathematics, computing, engineering, and more.
From a simplistic point of view, numerical analysis is concerned with algorithms that yield
numerical values: a solution to a nonlinear equation, the decimal representation of , and
more. Signal processing deals with processing signals, that is, values that change over time.
Signal processing includes such topics as detection and filtering.

Most universities and colleges offer undergraduate courses that teach these topics. But
you don’t have to be an engineer or a computer scientist to use the methods and ideas dis-
cussed in the chapter. Most of the topics are easy to follow, as I’ve tried to keep the math to a
minimum.

If you have a strong numerical analysis and signal processing background, this chapter
should prove a good starting point for these topics in Python. If you’re new to the ideas of
numerical analysis and signal processing, I hope to shed some light so that you can pick it up
from here with relevant scientific literature. In particular, I’d like to point out one of the books
that made a great deal of impact on me (and many others), Numerical Recipes: The Art of Sci-
entific Computing, Third Edition by William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery (Cambridge University Press, 2007; for more information, see

). Although the book implements algorithms using C/C++ (my original copy was
in the Pascal programming language), it provides a wealth of information on numerical algo-
rithms and should prove easy enough to port to Python.

In my view, the field of numerical analysis is a cookbook of algorithms to numerically
solve mathematical problems. And so in a sense, that’s how the chapter is organized as well: as
a list of problems and solutions. Each topic will be explored with examples in hopes that you’ll
modify the examples to fit your needs. And that’s also how I suggest you refer to the chapter:

249

CHAPTER 8 SCIENCE AND V ISUALIZATION250

as a cookbook of algorithms. While it’s quite possible to read through and learn the algorithms
one at a time, it’s probably easier to read specific sections as you engage problems associated
with them in real life. So my suggestion is this: skim through the table of contents to acquaint
yourself with what’s available, and then try to solve a specific problem by reading the relevant
section.

In this chapter, I’ve used SciPy, matplotlib, and NumPy extensively. These three packages
are rich and complex, and as a result, I was only able to cover some of the functionality, not
all of it. I therefore chose to cover topics and show examples of problems I personally encoun-
tered. I hope you’ll find the examples of value.

Finding Your Way: Variables and Functions
The NumPy package provides us with two useful helper functions. I call them helper functions
because they don’t fall into any specific numerical analysis or signal processing category.

When one works in an interactive environment, one constantly defines variables. It’s hard
to remember what variables are defined and what they mean. The function prints a list
of all variables (NumPy arrays):

The function is great for searching inside docstrings. So to look for functions
that perform numerical integration, issue

SciPy
SciPy () is an open source scientific library for Python. The idea of SciPy
is similar to that of Octave-Forge (), which provides extra
packages for GNU-Octave () and toolboxes that enhance MATLAB
(). SciPy is built on top of NumPy and so requires NumPy to work
properly.

SciPy is organized into several modules, some of which are detailed in Table 8-1.

CHAPTER 8 SCIENCE AND V ISUALIZATION 251

Table 8-1. SciPy Packages

Package Description

Fftpack Fast Fourier Transform

Integrate Integration functions, including ordinary differential equations

Interpolate Interpolation of functions

Linalg Linear algebra

Optimize Optimization functions, including root-solving algorithms

Signal Signal processing

Special Special functions (Airy, Bessel, etc.)

We’ll be exploring most of SciPy modules that deal with numerical analysis and signal
processing. Additional SciPy modules include sparse matrices (module sparse), statistics
(module stats), and more; they will not be covered in this book.

To import a SciPy module, issue :

or

Personally, I prefer the latter option: is shorter to code than
 (plus I think it’s easier to read).

Linear Algebra
Linear algebra is a branch in mathematics that deals with matrices, vectors, and solving
systems of linear equations. SciPy and NumPy provide us with many functions to deal with
these topics: solving systems of linear equations, matrix and vector operations, and matrix
decompositions.

Solving a System of Linear Equations
To solve a system of linear equations, we first write the problem in matrix notation.

We start by defining a matrix, , and a vector, . The matrix is composed of the coefficients
of and , which are 2 and 3 on the first row, hence , and 3 and –1 on the second row,
hence :

CHAPTER 8 SCIENCE AND V ISUALIZATION252

Next we define the vector of the results, :

Now all that’s required is to use the function :

meaning that is equal to 0.5 and is equal to 3.
It’s also possible to reach the solution by calculating the inverse of the matrix and multi-

plying it by vector :

I’ve introduced two functions here: and . The function calculates the
inverse of a matrix, and the function performs a dot product. Had I multiplied
with , I would’ve received an element-by-element multiplication, and not the result we’re
interested in:

Generally speaking, you should use instead of . The function can
handle what mathematicians call “less-behaved” matrices.

Vector and Matrix Operations
Much like , the function returns the dot product of two vectors. So if you’re only
interested in the value of in the previous example, you can write

The function will perform an inner product, that is, multiply every element
in with the corresponding element in and then sum them together:

I’ve implemented an inner product operation with a loop and compared the results
with the results of the function . As can be expected, the results are the same. Note

CHAPTER 8 SCIENCE AND V ISUALIZATION 253

that the function does not multiply an element with its conjugate (negative imaginary
part).

The function works on matrices as well:

Similarly, performs an outer product of two vectors or matrices:

The function will permute axes, and will permute axes and
negate the imaginary part of a matrix or vector:

The function will return the determinant of matrix :

Matrix Decomposition
Matrix decomposition is the rewriting of a matrix to a specific form. There are many decompo-
sitions including LU decomposition, singular value decomposition, and QR decomposition.
NumPy’s linear algebra module supports some matrix decompositions via the functions in
Table 8-2.

CHAPTER 8 SCIENCE AND V ISUALIZATION254

Table 8-2. Some Matrix Decomposition Functions

Function Description

Cholesky decomposition

Eigenvalue decomposition

QR decomposition

Singular value decomposition

The following code performs eigenvalue decomposition with verification of the results:

I’ve created a matrix and calculated its eigenvalues 1,2 (stored in vector) and eigen-
vectors v1,2 (stored in matrix). Once the eigenvalues are evaluated, they can be verified by
calculating det(A – * I), which should be zero; this is done in the second line. Also, for every
eigenvector v = A* v, this is verified in the last two lines.

We will not be covering other matrix decompositions here; if you require additional infor-
mation, is quite informative.

Additional Linear Algebra Functionality
Additional linear algebra functionality is available with the scipy.linalg module. To access
SciPy’s linear algebra functions, issue or .
SciPy’s added functionality includes

 for LU decomposition and for QR matrix
decomposition, as well as functions for other decompositions.

 to calculate a matrix or vector norm.

 and . Matrix function names are similar to
regular function names but with an added character .

Numerical Integration
Numerical integration is the process of numerically computing a definite integral. There are
many occasions where numerical integration is important. Examples include calculating the
area of a shape or the area under a graph, and solving differential equations.

CHAPTER 8 SCIENCE AND V ISUALIZATION 255

For the purpose of this discussion we’ll calculate the area of half a circle of radius 1. We
already know this area to be /2. So in a sense, calculating the area of half a circle is equivalent
to calculating the numerical value of .

First, we create two vectors: and . These two vectors satisfy the circle equation x2 + y2 = 1:

I chose the variable arbitrarily; is the number of points in the vectors and .
To visualize the numerical integration, I plot rectangles that approximate the area of the

circle:

The area under the curve, that is, the integral, is approximately the sum of these squares.
Each square’s area is 0.5*(y[i]+y[i+1])*dx, so the total sum can be written as follows:

I’ve multiplied the result by 2 so we can compare with instead of /2. Obviously, the
bigger is, the closer this number will be to :

As you can see, for = 100, the accuracy is about 1 percent. Figure 8-1 captures this
visually.

CHAPTER 8 SCIENCE AND V ISUALIZATION256

Figure 8-1. Calculating the area of a circle

In calculating the area of the circle, I chose values that are evenly spaced. In case you’d
like to use non-evenly spaced values, the implementation is more complex. Also, the method
uses rectangles to approximate the area under the curve, but in this particular example
(and many others), trapezoidals are probably better suited, which brings us to the function

. The function accepts vectors and and returns the numerical integral. The
following performs numerical integration of non-evenly spaced values using the function

:

Figure 8-2 shows a visual representation of the trapezoidal integration.

CHAPTER 8 SCIENCE AND V ISUALIZATION 257

Figure 8-2. Calculating the area of a circle using the trapezoidal method and non-evenly spaced
values

More Integration Methods
Additional integration algorithms are available with the module scipy.integrate. To use this
module, issue .

We’ll limit our discussion to the algorithm , which uses a Gaussian quadrature to
numerically integrate a mathematical function. Unlike previous methods such as ,
using requires supplying a mathematical function and not the and vectors.

Note I’ve used the term “mathematical function” to differentiate this type of function from a general-
purpose Python function. A mathmatical function is one that returns a numerical value given an input
numerical value, for example, y = f(x). In reality, we implement a mathematical function as a Python function.

CHAPTER 8 SCIENCE AND V ISUALIZATION258

I defined a mathematical function that returns the y coordinate value of
the upper half circle of radius 1, given an x coordinate value. I then called with the argu-
ments , the function to integrate, and and , the range of values to integrate.
The function returns a value and an error.

The module scipy.integrate also supports solving of ordinary differential equations using
functions and . We will not be discussing these functions. If you’re interested in
solving differential equations, refer to the SciPy home page: .

Interpolation and Curve Fitting
Interpolation and curve fitting deal with fitting functions to discrete known values. There are
several reasons you would want to fit functions to points of data, among which are

-
mining other parameters of the experiment.

ones).

Interpolation allows efficient implementations that are tailor-made to a specific prob-
lem. Instead of writing a lookup table for all the possible values, you could come up with an
interpolation polynomial that is more efficient, albeit with possible loss of performance and
accuracy. At other times, you might choose to implement a known function such as
instead of using a library-supplied algorithm to increase performance (again, at the possible
cost of accuracy).

INVERSE SQUARE ROOT AND QUAKE III

If you’re interested in efficient algorithms to calculate numerical functions, you may find the article “Fast
Inverse Square Root” by Chris Lomont, ,
interesting. The article describes a very efficient algorithm to implement the inverse square root of a number
that appeared in the source code of the computer game Quake III. The implementation makes use of the
Newton-Raphson method (and not interpolation). The article assumes knowledge of C.

Piecewise Linear Interpolation
Let’s turn back to our half-a-circle example. This time, we’ll limit ourselves to a quarter of a
circle, that is, positive values of x and y. We start by calculating the y values for x equal to 0,
0.2, . . . , 1. We’ll store the results in vectors and :

CHAPTER 8 SCIENCE AND V ISUALIZATION 259

We’d like to calculate the values of for values equal to 0.1, 0.3, . . . , 0.9 given and
. We’ll use the function for this. The function returns the value of the

piecewise linear function defined by , at a requested point . What this means is
returns the value of a point on a line connecting two adjacent (,) points:

The vector holds the interpolated values at points 0.1, 0.3, . . ., 0.9.
The following visualizes a piecewise linear interpolation for the quarter of a circle:

Figure 8-3 shows the results of this visualization.

Figure 8-3. Piecewise linear interpolation

CHAPTER 8 SCIENCE AND V ISUALIZATION260

For the purpose of the example, the values and are computed, but in reality, these
values can originate from sampled data. As you can see from the graph, the interpolated value
at 0.9 is considerably less accurate than other interpolated values. Typically, the more points
you add, the more accurate the result.

Polynomials
Polynomials are mathematical expressions that involve a sum of integer powers of a variable
multiplied by a coefficient. Examples include 2x2 + x – 1 as well as x. However, sin(x) is not a
polynomial. The reason polynomials are so important is that they involve only basic opera-
tions: addition, subtraction, and multiplication (integer powers can be implemented with
several multiplications), and this property makes them very easy to implement in computing.
Taylor series expansion () is a prime example of
transforming a function to a polynomial, easily computed.

To be able to operate on polynomials with NumPy and SciPy, we represent a polynomial
as a vector. The first element in the vector is the coefficient to the highest power, and the last
element in the array is the coefficient to the lowest power, 0. So to express the polynomial
x2 + 3x + 2, issue the following:

To solve the equation x2 + 3x + 2 = 0, use the function :

Notice that the imaginary parts are zero, and so the roots are –2 and –1.
If you’d like to construct a polynomial from its roots instead of its coefficients, use the

function :

Adding and subtracting polynomials is done using and :

I’ve added x2 + 3x + 2 to x3 and got x3 + x2 + 3x + 2 as a result.
Multiplying and dividing polynomials is done using and . The return

value from is a quotient and a remainder:

CHAPTER 8 SCIENCE AND V ISUALIZATION 261

Performing integration and differentiation on polynomials is done using the functions
and , respectively:

In the first line I created a polynomial from complex numbers; the polynomial created
is stored in and is x2 + 1. Using I calculated the derivative of and got 2x. Using

 I calculate the integral of and got 1/3 x2 + x.

Uses of Polynomials
So why is all this polystuff important? The main reason is that you can use polynomials to
approximate functions both from gathered data and from analytical functions. And since
polynomials only require multiplications and additions, implementing polynomials in an
embedded system, for example, is straightforward.

Fitting polynomials to data is done using the function . Given a vector of
x points and a vector of y points, will return a polynomial of degree n (high-
est power of x) that best fits the set of data points. Another function that is of use is

; this function returns the value of the polynomial at (can be a vector).

Example: Linear Regression
A known curve-fitting algorithm is linear regression. The idea is to draw a straight line in such
a way that the total distance of all the points from the line is minimal.

For the purpose of this example, we’ll create a straight line and then add “measurement
noise” to the values. Confronted with the new “noisy” data, we’ll try to evaluate the first order
polynomial that fits the data. We’ll compare the results with the known true values (see List-
ing 8-1).

Listing 8-1. Linear Regression with

CHAPTER 8 SCIENCE AND V ISUALIZATION262

I’ve randomly selected two values for and , and constructed a linear line with noise
using . Then, I used to fit the data to a first degree polynomial, a straight line.
Lastly, I plot the data along with the newly constructed linear line. Figure 8-4 shows the results
of this linear regression.

Figure 8-4. Linear regression with

CHAPTER 8 SCIENCE AND V ISUALIZATION 263

Example: Linear Regression of Nonlinear Functions
In cases where the function you’re trying to fit isn’t linear, at times it’s still possible to perform
linear regression.

The following is an example of fitting exponential data:

The regression is performed in the call to the function . This time, I’ve passed
and as values allowing a linear regression on or an exponential regression on .
You can see the results of this regression in Figure 8-5.

CHAPTER 8 SCIENCE AND V ISUALIZATION264

Figure 8-5. Fitting exponential data

Example: Approximating Functions with Polynomials
Another set of problems solvable with is approximation of functions using inter-
polation. The motivation behind this is a simple implementation of known functions. For the
purpose of this example, we’ll approximate the function sin(x).

The idea is to create a polynomial that passes through known interpolation points—that
is, calculate the value of sin(x) for known n values of x, and then create a polynomial of degree
n – 1 that passes through all these points.

We start by selecting a set of points from 0 to /2; these will be our interpolation points.
Values outside this range can be computed using trigonometry identities and the interpolation
function. We select five points for interpolation, thus deciding the degree of the interpolation
polynomial to be 4. Once the points are selected, we calculate the sine of these points.

For the purpose of this example, I’ve chosen sine values that can be easily computed using
the function. You might argue that I’m cheating here, because I’m using a nonlinear
function (square root) to calculate sin(x) and not purely polynomials. But you’ve already seen
how to calculate the square root of a number using Newton’s method in Chapter 7.

Tip The selection of interpolation points is an interesting topic, and work by the mathematician Pafnuty
Chebyshev has contributed much to the topic. See
and .

CHAPTER 8 SCIENCE AND V ISUALIZATION 265

The values I’ll select for interpolation are 0, 30, 45, 60, and 90 degrees. The reason I chose
these values is that I know their exact sine values: 0, ½, 2/2, 3/2, and 1, respectively. Or, in
vector form:

Given these, interpolation is straightforward:

So if you were to implement sin(x), all you need is to store the values of given previously
and then write a simple routine to calculate the value of sin(x) using the polynomial. If you’re
using NumPy, simply call .

Let’s plot the difference between our implementation of sin(x) and Python’s built-in sin(x)
function:

Figure 8-6 illustrates this difference.

CHAPTER 8 SCIENCE AND V ISUALIZATION266

Figure 8-6. Interpolation accuracy

The results are quite accurate, less than 0.003 at worst.

Spline Interpolation
The scipy.interpolate module adds additional interpolation functions. One of these is the

 interpolation function. Notice that the arguments to the function
are ordered differently from those of the function . Spline interpolation is a piecewise
polynomial interpolation that adheres to specific rules to yield smooth results.

Let’s turn to the previous circle example:

CHAPTER 8 SCIENCE AND V ISUALIZATION 267

In Figure 8-7, I’ve compared a piecewise linear interpolation with a spline interpolation.
The spline interpolation appears “smoother.”

Figure 8-7. Spline interpolation

Solving Nonlinear Equations
In Chapter 7 we’ve talked about Newton’s method and used it to draw fractals. Newton’s
method was used to solve a nonlinear equation.

The module scipy.optimize provides us with additional tools to solve nonlinear equations,
as well as other optimization routines that will not be discussed here. Of those routines, I’d like
to highlight three: , , and . All these functions try
to solve the equation f = 0, where f is a mathematical function implemented in Python.

Suppose we’d like to calculate 3 for the previous example. The idea is to construct a func-
tion such that the solution will be 3. This is easily done by setting f = x2 – 3 = 0:

CHAPTER 8 SCIENCE AND V ISUALIZATION268

Let’s use the functions , , and to calculate the roots. For
 and , we’ll use x0 = 1, which is called the initial guess. The initial guess is

a value that is close to the desired result. For , we need to provide a region for the
search. We’ll set the region to (1, 2) because we know the square root of 3 is less than 2 but
greater than 1:

Although in the simple case of square root of 3, all these functions provide accurate
results, the algorithms are computationally intensive. In most these functions you can control
how accurate you’d like your result to be by passing proper arguments to the functions. Of
course, for a simple question as the one presented here, it’s best to use .

Special Functions
The scipy.special module provides a host of special functions that surface usually in higher
mathematics and physics. These include

and many more. To use the functions, issue the following:

For a full account, issue .

Signal Processing
Up to this point in the chapter, we’ve dealt with numerical analysis. Going forward, the topics
are related to signal processing. Signal processing is a vast field that deals with signals: values
that change over time. Popular signal processing algorithms include the processing of sound,
such as an equalizer; others include algorithms for radars, CAT scanning, and many more.

This part of the chapter will cover some of the functionality available with the module
scipy.signal and complement the discussion with examples. You’ll learn about some basic
algorithms to detect signals in the presence of noise and functions to design filters. However,

CHAPTER 8 SCIENCE AND V ISUALIZATION 269

this section is but only a taste of the topic, and I encourage you to consult with the references
at the end of the chapter and professional literature for efficient signal processing algorithms.

Functions where, select, and find
The first set of functions we’ll cover is , , and .

The function finds the indices to an array for which a condition is met:

We created a vector holding the squares of the numbers 0–9 and found all the indices to
the vector that satisfy the condition that the squares are less than 50. Notice that the return
value is a vector of indices, and if you require the values and not the indices, you have to
access the original array, which is in the preceding example.

The function accepts three arrays of the same size: , , and , and
then evaluates every element in . If the element evaluates to , the return value is the
corresponding element from ; if the return element evaluates to , the return value is the
corresponding element from :

The function adds functionality to the function
by allowing for several conditions. The function accepts a list of conditions specified in
and returns the corresponding element associated with if a condition is met; if none of
the conditions are met, the value is selected.

The first three elements of are less than 4, so the condition is met, causing the
selection of value . The last three elements are greater than 7, causing the selection of the
value , and values greater than or equal to 4 yet less than 7 are retained as is because the

CHAPTER 8 SCIENCE AND V ISUALIZATION270

default is set to be equal to . As a matter of fact, this functionality is called clipping and
is available as both a method of the NumPy object and as a stand-alone function,

.
So now that you know of the functions , , and , what can you do

with them? The answer is simple: they’re great for picking up values, what we call detection in
signal processing.

Example: Simple Detection of Signal in Noise, Part 1
The detection of signals in the presence of noise plays an integral role in a great number of
applications. For example, it is used in communication systems in the detection of signals
such as radio or television broadcasts and differentiating them from noise, in medicine with
the detection of an ECG signal, and more.

For the purpose of this example, we’ll first construct a clean signal. By a signal, I mean a
one-dimensional array (vector), where values are stored as a function of time. Our purpose will
be to detect “events,” which will be represented by narrow triangles placed randomly in time.
There can be several events in a signal.

To generated a triangular pulse, I’ll use the function (which is really a
window function, more on that later in the chapter in the section “Window Functions”). The
function generates a triangular window of a specified size. We randomly place triangular
pulses in the signal vector, as shown in Listing 8-2.

Listing 8-2. Randomly Placing Triangular Spikes

CHAPTER 8 SCIENCE AND V ISUALIZATION 271

First I defined some parameters I’ll be using. The number of points in the signal is and is
equal to 100. The number of triangular pulses I’ll place is 3, denoted by . Each trian-
gular pulse will be generated using points. The maximum value for the triangular spike
will be , denoting amplitude.

Once I have all the parameters defined, I create two vectors: the time vector, , and the
values vector, . The vector is some arbitrary timestamp, in this example incrementing values
starting at zero and ending at n – 1. The vector is initially set at zero.

Next I randomly place triangular spikes. The location, , where the triangular spike will
be placed is randomly generated with the call to the function that generates a value
between 0 and 1, and so I randomly pick a value between 0 and n – pw + 1 to ensure spikes
aren’t placed outside the vector . Once I have all the spikes placed, I add noise by use of the
function that generates a normally distributed noise, also known as Gaussian distribu-
tion, or “white noise.” I’ve chosen to use a normal distribution with variance 1 and mean 0.
Notice that is different from .

Figure 8-8 shows a randomly generated signal.

Figure 8-8. Three triangular spikes with noise

I did not check to see that spikes do not overlap, so as you run the script at times you’ll
view one or two spikes instead of three. This is fine, since we want to add some randomness to
the example.

So far we’ve just created the signal. Now let’s detect it. For detection, we’ll use a simple
algorithm: whenever a value is above a set threshold, we’ll declare this as an event, or detec-
tion. We’ll set the threshold at and make use of the function , as shown in
Listing 8-3.

CHAPTER 8 SCIENCE AND V ISUALIZATION272

Listing 8-3. Detecting Signals

Figure 8-9 shows the result.

Figure 8-9. Simple signal detection in the presence of noise

CHAPTER 8 SCIENCE AND V ISUALIZATION 273

Functions diff and split
Another set of functions that’s of use in signal detection is and . The function

, which was introduced in previous chapters, returns a vector composed of differences
of elements in . The function splits a vector on .

Example: Simple Detection of Signal in Noise, Part 2
In the previous example, you saw how to perform simple detection using . We’ve dis-
played all points that were above a specific threshold. In many occasions, we’re less interested
with points above a threshold because the threshold is arbitrarily chosen; we’re more inter-
ested with the highest points above a threshold.

Here we pick up from the previous example. This time, we’d like to spot the peak in each
detection. Listing 8-4 presents the code to do that.

Listing 8-4. Peak Detections

The implementation is a bit tricky, so let’s walk through it. The idea is this: we split the
detections into separate groups, and in each group, we find the peak and plot it.

The first problem of splitting detections makes use of the indices of detected values. A
group is considered one detection if the indices are consecutive. Whenever there’s a jump in
indices, it means a new group:

So the group is one group, the group
is the second group, and the group is the last group.

The function will return values other than whenever there’s a new group. When-
ever the difference is greater than 1, it means the start of a new group:

CHAPTER 8 SCIENCE AND V ISUALIZATION274

So we’d like to split on the sixth element (denoted by) and the twelfth element (denoted
by). This is done with the function:

All that’s needed now is finding the peak, which is coded as . In
Figure 8-10, peak detections are marked by squares.

Figure 8-10. Peak detections

Waveforms
Additional SciPy functionality includes several waveforms that can be used when you’re
designing a signal processing algorithm or testing it. These include , ,

, and :

CHAPTER 8 SCIENCE AND V ISUALIZATION 275

Figure 8-11 shows the resulting waveforms.

Figure 8-11. Some waveforms

The difference between waveforms and the triangular window used earlier is that they’re
repetitive, whereas generates a single window.

The functions and are a bit more specialized; refer to the interactive
help for information on using them.

Fourier Transform
Fourier transform is a linear operation that transforms a function from the time domain to the
frequency domain. Much like the sound you hear can be viewed as an amplitude as a function
of time, it can also be viewed by its frequency components: basses are the low frequencies of
audio, for example.

The topic of Fourier transforms is quite large and requires some mathematical rigor. I will
not be trying to address the topic in depth here; instead, I will show how you can use PyLab to
perform Fourier transforms on sampled data.

To convert a signal from time domain to frequency domain, use . FFT, which stands
for Fast Fourier Transform, is an efficient implementation of the transformation. Generally
speaking, if the number of elements in x is a power of 2, the results are quite fast:

CHAPTER 8 SCIENCE AND V ISUALIZATION276

The first was performed on a vector the size of 220, which is a power of 2; the second
one was performed on a shorter vector but the took longer to compute, more than twice as
long, because its size is not a power of 2.

To transform data from the frequency domain to the time domain, use .

Example: FFT of a Sampled Cosine Wave
A cosine wave is made of one frequency (actually, two frequencies if you include the negative
frequency). Let’s generate a cosine wave and calculate its frequency using , as shown in
Listing 8-5.

Listing 8-5. Fourier Transform of a Cosine Wave

I first defined a few parameters: is the number of points in the signal, and is the fre-
quency of the cosine wave. I then created a time vector, , which is made of evenly spaced
samples between 0 and 1, representing 1 second. I then calculated the sampled cosine wave
and plotted it along with its Fourier transform. I’ve chosen to plot the absolute of the trans-
formed signal, seeing as Fourier transforms return complex values (albeit in this case those
complex values are zero). Figure 8-12 shows the results.

CHAPTER 8 SCIENCE AND V ISUALIZATION 277

Figure 8-12. FFT of a signal

Note There’s a frequency content at 25 Hz (the left spike), but there’s also another one at 487 Hz. That’s
really the value corresponding to –25 Hz, that is, 512 – 25. If you’d like to view the frequency domain cen-
tered around 0 Hz, use the function .

Window Functions
In the FFT example I carefully chose a cosine wave that will have a full number of cycles in
1 second, which is basically any integer number for the frequency value. The reason for this
was had I chosen a noninteger value, I would’ve ended up with a signal that does not have full
wave cycles. The problem with this signal is when you perform the FFT of the signal, you’ll
start seeing other frequencies and not just the frequency of your original signal. The reason for
this is, in essence, FFT assumes the signal is repetitive; that is, it’s not just from 0 to 1 second,
it’s from minus infinity to infinity. And so it treats the signal as if it’s copied left and right an
infinite number of times. If the signal has an integer number of cycles, it will nicely fit when
copied left and right. But in reality, you can’t guarantee an integer number of waves in your
sampled signal, so you’ll start seeing these sampling effects. To minimize the effect, we can
use a window function.

CHAPTER 8 SCIENCE AND V ISUALIZATION278

Several window functions such as , , , and help
minimize this effect but with a cost: the signal itself is also distorted. To use a window, multi-
ply it by the time-domain vector, as shown in Listing 8-6.

Listing 8-6. Hamming Window

I’ve plot the FFT of two vectors: the original and the one with a Hamming window. In Fig-
ure 8-13, you can see I’ve zoomed on the 25.5 Hz frequency to show the effects of the window
function.

Figure 8-13. Signal with Hamming window

CHAPTER 8 SCIENCE AND V ISUALIZATION 279

The scipy.signal module provides additional window functions. To access these, issue

and scroll down to the window functions section.

Filtering
One of the reasons to transform a time-domain signal to a frequency-domain signal is for
the purpose of filtering. A filter is an operation that changes a signal. Much like filters in
your kitchen sink, filters let some frequencies pass (water), while stopping other frequencies
(large food remains). Filters are used in a variety of applications, ranging from audio to radar
systems.

Filters are categorized by their behavior. A filter that lets through low frequencies and
stops high frequencies is called a low-pass filter (LPF). Similarly, a high-pass filter (HPF) will
allow only high frequencies to pass. There are also other categorizations such as band-pass
filters (allows only a specific band of frequencies), band-stop filters (allows anything but a spe-
cific band of frequencies), and notch filters (suppresses very few frequencies).

Filters are further categorized by their behavior to an impulse input—that is, the output of
the filter as a function of time assuming you were to input a short spike to the filter. Filters that
eventually will forget the impulse are known as finite-impulse-response (FIR) filters, and filters
that never forget are known as infinite-impulse-response (IIR) filters. From a very simplistic
approach, if a filter does not rely on previous outputs (no feedback), it is considered an FIR;
otherwise, it’s an IIR.

Filter Design
Assuming you know what filter you wish to design, this section will help you do so. Filter
design is an advanced topic, and as such this section is meant for those who require a few
pointers on designing filters in Python with SciPy.

The scipy.signal module includes several functions to help design a filter. The function
 is used for designing an IIR filter. It is quite complete, and it’s best to read the

online help and follow it through. Other useful IIR design filters include , ,
, and . FIR filter design functionality is provided with functions and
. I won’t be covering those, but should you need to use them, the online help is quite

informative. Finally, if you’d like to view the frequency response of a filter, use the functions
and .

The code in Listing 8-7 will design a low-pass Butterworth filter (an IIR filter) and plot its
frequency response.

CHAPTER 8 SCIENCE AND V ISUALIZATION280

Listing 8-7. Frequency Response of a Filter

I’ve made use of two functions: and . The function designs an
IIR filter with specified parameters (order and cutoff frequency), and the function
returns a frequency response. Note that the frequency response is a complex number, and so
I’ve plot the amplitude in dB of the absolute value: , as shown in Figure 8-14.

CHAPTER 8 SCIENCE AND V ISUALIZATION 281

Figure 8-14. Frequency response of a low-pass filter

To filter data given a specific filter, use the function . Let’s turn to
an example.

Example: Heart-Rate Monitor
For the purpose of this example, I’ll generate a signal that simulates the data generated from a
heart-rate monitor connected to a patient. Please do not use this in any sort of production sys-
tem; it’s merely for educational purposes (and not meant to truly represent heart signals!).

The patient walks around, and as a result, two signals are picked up: 1) the heart signal
and 2) a signal associated with the patient’s movement, or what is typically referred to as a
movement artifact. Listing 8-8 shows these signals in my simulation.

Listing 8-8. Heart Rate Simulation

CHAPTER 8 SCIENCE AND V ISUALIZATION282

I’ve defined several parameters that control the script. The value is equal to the number
of samples per second (some are used to name this value , which stands for frequency of
sampling). The value is the total number of seconds, in this case 2 whole seconds. The value

 is the patient’s heart rate, 100 beats per minute: 100 / 60 = 1.67 Hz. Lastly, I defined the
movement artifact frequency at 0.5 Hz. I then construct a time vector, , and a movement arti-
fact vector, , and add “beats” with triangular waveforms using the function.

Now that I have a heart signal with a movement artifact, I turn to filter out the movement
artifact. I design a second-order Butterworth HPF to do so via the call to and
use the filter parameters to filter the signal using . Figure 8-15 shows the
resulting plot.

CHAPTER 8 SCIENCE AND V ISUALIZATION 283

Figure 8-15. Filtering a signal

Example: Moving Average
On many occasions, filtering is used to “smooth” a signal. A simple algorithm is that of a mov-
ing average. For every two consecutive points, we calculate the average and use that value
instead. The points are overlapping, so a result of using the algorithm on the vector

 would be . But why stop at two samples? Moving average can be performed on
several points, returning the average of those points. In Python, you could write

CHAPTER 8 SCIENCE AND V ISUALIZATION284

This is a straightforward implementation using a loop. The input to the filter is arbitrarily
chosen as 1 – exp(–t) plus noise.

There is an easier approach. A moving average is an FIR filter with all its elements equal
to 1/W, where W is the length of the moving average window. In this case, a quick-and-simple
way to implement a moving average filter instead of the loop is by calling the

 function and passing as the filter values:

Figure 8-16 shows the results of plotting a moving average.

Figure 8-16. Moving average

Final Notes and References
The purpose of this chapter is to serve as a cookbook of algorithms in numerical analysis and
signal processing. I took great care to limit the amount of math used in the examples and yet
still be informative.

The topics covered in the chapter are far too great to be explored in one book, let
alone one chapter. If you find these topics of interest, the following may provide additional
information:

Numerical Recipes: The Art of Scientific Computing, Third Edition by William H. Press,
Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery (Cambridge University
Press, 2007; for more information, see)

C H A P T E R 9

Image Processing
Two-Dimensional Data

Up to this point we’ve mostly dealt with one-dimensional data, that is, graphs and data made
of essentially a series of values. We’ve plotted the data, analyzed it, and created an image that
was later saved to file or displayed to screen.

However, image data files, or the image on your screen, is two dimensional. It is made of
pixels (which is short for picture elements), each pixel having a location in two dimensions, x
and y, and a value corresponding to the color. In this chapter we turn to manipulating images
on the pixel level, that is, operating on the two-dimensional matrix of pixels.

Operations on images are similar to operations performed on one-dimensional data.
Slicing a 1-D array of values and adding those values to another array is equivalent to copy-
ing and pasting images. Saving an array to file is equivalent to writing images in TIFF or JPEG
format. So in a sense, image processing is equivalent to signal processing, only that the signals
now have two dimensions.

Copying and pasting, resizing, and cropping are all simple operations supported by most
GUI-based graphics applications. But with a GUI application, it’s harder to perform these
operations in a systematic and automated manner, for example, resizing several images and
then combining them together to form a collage of images. It’s doable in GUI applications, but
it’s typically not as easy and requires some user skills. Other simple image operations include
converting file formats, rotating images, and cropping them. I’ll cover these image operations,
as well as how to automate them, so results are consistent.

We’ll also deal with data on a numerical level, that is, reading the image, transforming it
into a NumPy matrix, and then operating on the matrix itself. I’ll show how you can imple-
ment some interesting algorithms that involve image processing. Lastly, I’ll touch on some
more complex topics such as filtering, which is the act of modifying a picture to enhance the
visual output.

The basic package we’ll use for all these operations is the Python Imaging Library, or PIL
for short. Be sure to install PIL per the guidelines in Chapter 2. We’ll also be relying on NumPy
and matplotlib.

It is assumed you have read Chapter 6 and Chapter 7; the text here will rely on the mate-
rial covered in those chapters to discuss topics related to image processing.

285

CHAPTER 9 IMAGE PROCESSING286

Reading, Writing, and Displaying Images
The Python Imaging Library provides us with several classes that enable image processing.
The basic class, , supports image operations such as reading an image from file, writing
an image to file, copying and pasting, resizing, and rotating.

Reading Images from File
Let’s get started. To use the class, import it as follows:

Note Going forward, I’ll assume you’ve issued and will refrain from mention-
ing the statement. It’s also possible to simply to write instead of

.

Our first operation is reading an image file. Since we currently don’t have any images,
let’s generate an image and read it from file. We’ll use matplotlib patches for this, as shown in
Listing 9-1. (If you’re not familiar with matplotlib patches, refer to Chapter 6.)

Listing 9-1. Creating an Image

The code in Listing 9-1 draws a filled circle and saves it to file .

Tip I’ve used matplotlib to create an image file to work with, but you just as well could use any image file,
for example, a JPEG picture you took with your digital camera.

Our first operation is to read the file and attach it to an object:

Note In accordance with the directory structure presented in Chapter 2, I assume that you’re currently
running from directory and that directory holds image files. If that is not the case, be
sure to change the path to the images in the examples provided in this chapter.

CHAPTER 9 IMAGE PROCESSING 287

Image Attributes
Now that we have an object associated with an image file, we can query the object’s
attributes:

This is quite a bit of information. We know that the image size is 815 615 pixels wide,
the resolution is 100 dpi, the mode is RGBA (we’ll get to modes a little later in the chapter in
the section “Creating New Images”), the image format is PNG, and the file associated with the
object we’ve created is .

Example: Image Catalog
My experience with analyzing image data is that images are not always taken in a consistent
manner. This means that you, the programmer, have to manually crop, resize, enhance,
or even delete images. This also translates into maintaining a catalog file of some sorts. An
approach I found helpful is creating an automated catalog file and then annotating informa-
tion as I work with data (see Chapter 4 for discussion of catalog files).

The purpose of this example is to create a basic image catalog file. The script makes use
of the attributes presented in the previous section and creates a CSV catalog file in the
parent directory of the searched directory. The catalog file has an extension . That is,
if you’re searching , a catalog file will be created named . The
catalog file includes the name, size, format, and resolution of each image (see Listing 9-2).

Listing 9-2. Creating an Image Catalog

CHAPTER 9 IMAGE PROCESSING288

The script defines a function named , which accepts the directory to
search and produces an image catalog file in CSV format. The variable is a list of rows
containing image information. We iterate through the directory and look for images with the
Easier to Ask Forgiveness than Permission (EAFP) approach: try to open a file as if it were
an image file. In case of success, the catalog is updated. If the file is not an image, exception

 is raised, and we this file.

Note If your directory is supposed to contain strictly images, you might want to add a statement
before the notifying the user that a nonimage file was encountered.

Here are the results I got from running the script in directory (contents of file
):

Displaying Images
You can view an image by calling the method . The method in turn calls the oper-
ating system’s default image viewer, which is usually provided by the OS. To use a different
viewer from the one supplied by the OS, associate the image with an image viewer you desire.
The following will display the image created previously:

CHAPTER 9 IMAGE PROCESSING 289

Converting File Formats
One of the common operations we perform on images is converting the image file format. It’s
important for a couple of reasons: because we want to store images in a more efficient format
using compression, or because the application that accepts the image requires a different
format.

The method enables saving an image to file in a specified image format.
There are two methods to specify a format: with a file name extension and by explicitly speci-
fying the argument.

Assuming you’ve created an image file per the previous listing, you
can read the image and convert the file format to a JPEG file format, as shown in Listing 9-3.

Listing 9-3. Converting PNG to JPEG

In this particular example, you’re not really converting the file, rather creating another file
with a different image format (converting would mean that you also delete the original file).

Or, you could create a function to convert an image to JPEG format, as shown in Listing 9-4.

Listing 9-4. A Function to Convert an Image to JPEG Format

I’ve made use of the function, which is part of the os module to replace the
original extension with a extension. The extension instructs the function to
create a JPEG file.

As mentioned, you can also explicitly specify a format:

In this case, does not add an extension to the file name (that is, the file created is
, not).

CHAPTER 9 IMAGE PROCESSING290

PIL supports a large number of file formats. Most popular image formats can be read by
the class. Furthermore, most images can be saved using known file formats including
JPEG, TIFF, and PNG. However, some image formats can only be read. Other formats such
as MPEG (video files) are supported in identify mode only. For a full account, refer to the PIL
handbook: .

Example: A Function to Convert All Images in a Directory to JPEG Format
A direct continuation of the idea presented previously is to write a function that iterates
through a directory and converts all images to JPEG format, as shown in Listing 9-5. We’ll keep
the original image as well because JPEG uses a lossy compression algorithm, which might
lower the original image quality. However, you can easily modify the example to remove the
original images.

Listing 9-5. Converting All Images in a Directory to JPEG

The script again makes use of the EAFP approach: try to open a file as an image and if all
goes well, convert it to a JPEG image. To run the function, enter .

Note In case the function is called with a nonexisting directory, no output is
generated, not even a warning message. If you require such functionality, be sure to modify the function and
include it.

CHAPTER 9 IMAGE PROCESSING 291

Image Manipulation
So now we can read images, display them, and convert file formats. But in converting file for-
mats, we haven’t really changed the image, we merely saved it in a different format.

In this section we turn to perform basic image manipulations, that is, modifying the con-
tents of an image: cutting and pasting, cropping, and rotating.

Creating New Images
PIL provides us with the ability to create images, not just read them from file. This is especially
useful when you want to copy and paste images from other sources to a new image. The syntax
for creating a new image is . The argument can take one
of the values listed in Table 9-1.

Table 9-1. Image Modes

Mode Description

1 bit per pixel; useful for black-and-white images

 1 byte per pixel (values from 0 to 255), black and white; useful for working with one color
band (see the discussion about color later in the chapter).

 Red, green, and blue, 1 byte per color, also known as true color. RGB is common when
the image background is black such as on a screen monitor.

 Red, green, blue, and a transparency mask, 1 byte per color; common in several file
formats including PNG.

Cyan, magenta, yellow, and black, 1 byte per color. CMYK is common in print.

There are additional image modes, but I won’t be covering them in this chapter. To view
the list of available modes, issue

Refer to the PIL web site for additional information:
.

The argument in the function is a two-element tuple detailing the width
and height of the image. The argument is a function of the mode. For example, in the
case of an RGB image, the color is a tuple in the form (red, green, blue); in case of CMYK, the
color takes the form (cyan, magenta, yellow, black).

CHAPTER 9 IMAGE PROCESSING292

Copy and Paste
The methods and allow copying images and pasting images into other images,
respectively. The method requires no parameters and creates a copy of the current
image. The method pastes the image into the current image; the argument
is a tuple indicating the (x, y) location to paste (top left). Let’s turn to an example that uses the

 method.

Example: Fractal Collage
In this example we make use of the functions , , , and to create a
collage of images. To follow along, you’ll need to modify the fractal script presented in Chap-
ter 7 in Listing 7-1 so that it’s a function instead of a script. The function should be named

 and return an object representing the fractal. Refer to the
Appendix for a listing of the function. Once you create the function, save it under

.
Armed with the function , we create a fractal collage, as shown

in Listing 9-6.

Listing 9-6. A Collage of Fractals

The script generates fractals with increasing numbers of iterations and pastes them into
an image that serves as the image collage. The arguments to the method are chosen so
that the images are pasted from top left to bottom right. I’ve saved the image to file

.
The result from running this script is shown in Figure 7-1 in Chapter 7.

Crop and Resize
Cropping and resizing modify an existing image. The function selects part of the origi-
nal image, and the function resizes an existing image, that is, scales it so it fits the
new size.

CHAPTER 9 IMAGE PROCESSING 293

Assuming you have run the previous collage example, you should now have a file named
. The function accepts a tuple of four values, detailing the box to crop: (x0,

y0, x1, y1). Let’s read the file and crop it to show only 2 by 2 images from the frac-
tal collage:

Suppose you want to show the entire image, but scaled to size (400, 400); in this case
you’d use the function, where is a two-element tuple detailing the width and
height of the resized image:

You can also use the method , which is similar to . The difference is
that returns a modified image copy, whereas modifies the image itself.

In both and methods you can provide a argument that
determines the method of resampling. The acceptable values are (default),

, , and (best quality). Antialiasing has the best
results but might take longer to compute:

Rotate
Lastly on our list of basic operations is the function. The function
rotates an image degrees.

From a user’s perspective, rotating is a basic operation, for example, rotating a scanned
document by a few degrees so it’s properly displayed. But in reality, rotation isn’t such a basic
operation; it requires changing the width and height of the image. In the case of rotating by
90 degrees (or multiples), the function knows to swap the x-axis and the y-axis, but in
case of other rotation values, both axes change, so the total area of the image changes. You can
control whether you want to expand the image so it includes the entire rotated image
or not by passing or , respectively.

CHAPTER 9 IMAGE PROCESSING294

In the first line I’ve created a simple blue image that is 200 pixels wide and 300 pixels high.
I’ve then rotated the image 30 degrees with and without expanding. The results are shown in
Figure 9-1.

Figure 9-1. Rotated images: the left is not expanded, the right is expanded.

Image Annotation
Annotating images is just as important as annotating graphs. However, in some cases, anno-
tating an image with text disrupts the pleasing visual result. That’s probably why it’s less
common in pictures. There’s also the issue of what color to choose. In cases where the picture
is mostly white, you probably want to choose nonwhite annotation.

In this section we’ll cover text annotation as well as geometrical shapes to highlight spe-
cific image features.

Annotating with Geometrical Shapes
PIL provides us with the object, which allows annotations of an existing image. To
import the object, issue . To use the object,
attach it to an existing image:

CHAPTER 9 IMAGE PROCESSING 295

I’ve created an object named and attached it to the image . Going for-
ward, operations performed with the object will be performed on the object:

This will draw a line from (100, 100) to (200, 200).
You can use the functions in Table 9-2 to annotate an image. In the table, assume

.

Table 9-2. Some Functions

Function Description Example

Draws an arc, a part of the circle
bound by the rectangle
(tuple of four elements), starting
at angle and ending at angle

.

 will draw a
quarter of a circle.

Similar to , also draws a line
connecting the arc edges.

Draws an ellipse bound by the
four-element tuple . If you’d
like a circle, use a square for the

 values.

Draws lines connecting elements
in the sequence .

Draws a point at location .

Draws a polygon connecting ele-
ments in the sequence .
The difference from the
function is that the polygon is
always a closed shape, allowing
the use of the argument.

Draws a rectangle specified by the
four-element tuple .

The annotation functions accept the following optional arguments: , which
determines the color of the annotation or the fill object (similar to the argument in
matplotlib); , which determines the line to draw the object (similar to the matplotlib

 argument); and , in case of text annotations.

Text Annotations
Other than geometrical shapes, also provides text annotation with the function

:

CHAPTER 9 IMAGE PROCESSING296

Originally, I had intended on having the text centered horizontally. However, the text
string has width, so I require a method to calculate the width and height of the text in pixels.
Once I have the width and height, I can draw the text at location (80 – width/2, 80 – height/2).
This is done using the function :

Figure 9-2 shows the results with and without taking into consideration the string width
and height.

Figure 9-2. Text annotation using and

Fonts
It’s also possible to use other fonts with the function. To do so, first create an
object. The object is part of PIL, and to import it, issue .
Once is imported, you can use a font with a call to

CHAPTER 9 IMAGE PROCESSING 297

. The returned object can be passed as an argument to the function by
means of the argument.

Of course, to be able to use fonts, they must first be installed in your system. Windows
typically comes with built-in fonts; and on Linux fonts are usually installed with X (as well as
other applications). You can also use fonts from the GNU FreeFont project (

).
However, font and font names are different on varying systems, and not just different

operating systems: my Windows system might have different fonts than your Windows sys-
tem. This means calling might work on one system and
not on another. To overcome this problem, I use the function , which is part of the
matplotlib.font_manager module. The function returns a string with the location
of a font that best matches the requested font.

The following script annotates text with the Vera font using the function:

The first two statements import the proper objects from PIL as well as matplotlib’s font
manager. I then create a one-band image of size (250, 100) followed by the instantiation of an

 object attached to the image.
Next I use matplotlib’s function to find a font that’s closest to the font Vera.

The path to the font is stored in the string . Following that I create an object
named and use that font object to render the text. I then calculate the size of the text and
render it in the middle of a gray background, as shown in Figure 9-3.

Figure 9-3. Font rendering

Note To use a font, you must supply the argument in calls to both functions and
.

CHAPTER 9 IMAGE PROCESSING298

Example: Thumbnail Index Image
In a previous example we’ve created a catalog of images. While that catalog is quite useful, it
doesn’t show the contents of those images. A more useful catalog perhaps would be a collage
of the images annotated with text showing each image’s file name (see Listing 9-7).

Listing 9-7. Thumbnail Index Image

CHAPTER 9 IMAGE PROCESSING 299

The function accepts a directory and produces a thumbnail index
image. Figure 9-4 shows the result from running the function on a collection of images my
daughter particularly likes.

Figure 9-4. Thumbnail index image

For the purpose of this example, I decided not to use and iterate through the
directory listing, instead using . I’ve defined two parameters: , which
holds the number of images on either x- or y-axis, and , which holds the thumbnail
width and height. Next I composed a list of all the files in the requested directory. For every
file, the script tries to open the file as if it were an image file. If indeed a file is an image file, a
thumbnail of the image is created and pasted to the index image. Additionally, the thumbnail

CHAPTER 9 IMAGE PROCESSING300

is annotated with the file name in the top-left corner. There’s some indexing used to deter-
mine the exact location of an image in the thumbnail index image as well as creating a new
thumbnail index image once the current one has filled up.

Tip An alternative approach to displaying the text directly on the thumbnail image is to display it below
the image. This can be done by adding a black (or white) stripe between rows of images.

Image Processing
So far we’ve performed tasks that can also be performed by most GUI-based image editing
applications such as GIMP, the GNU Image Manipulation Program ().
However, GUI-based applications have a GUI user in mind and are not easily automated. We
now turn to explore possibilities of writing scripts to automatically perform operations on
images.

Furthermore, as you start thinking about higher-level image processing algorithms, you
may realize you require access to the actual data, the numbers that represent the image. In this
section, we’ll also show how this can be achieved.

A word of caution: image processing is a vast field. I won’t be covering even the basics
here, rather showing that if you do have an image processing algorithm, it’s quite likely you
can implement it in Python.

Matrix Representation and Colors
An image can be represented by a matrix, each (x, y) point corresponding to a column and row
in the matrix, and the value corresponding to the color.

The color value is a function of the mode (see Table 9-1 earlier for details). For example, in
the case of an RGB image, each value of the matrix is a tuple of 3 bytes, each byte representing
a different color. So in a sense, you can think of the entire image as three matrices, each matrix
corresponding to the colors red, green, and blue, also known as color bands or channels.

Furthermore, each image can be split into these colors (depending on the mode, of
course—there’s no splitting of a 1-bit image into individual colors). This is done with the
method :

Note I’ve assumed you have followed along with the chapter and created a file named
; if not, follow Listing 9-1 to create a image.

CHAPTER 9 IMAGE PROCESSING 301

Each split image is an image by itself, but it now contains only one-color information,
hence its mode is , not .

To retrieve the data associated with the color, that is, the actual values, call the function
. We can then transform the values to a NumPy array for some interesting numerical

processing. Continuing our previous listing:

The image data is stored as a list of all the values in the image, not a matrix representation
of the image. To change it to a matrix, we use the NumPy method :

Now that we have the data as a matrix, we can operate on the matrix instead of the image.
This gives us great flexibility. Say we want to arbitrarily draw a magenta stripe in the middle of
the circle; all that we need to do is modify the matrix associated with the red channel and then
merge it to form a new, modified image.

Note Why does changing the red channel generate a magenta output? The way I’m going to modify the
matrix is by setting the red channel to . This means that my previously blue circle will now be a combina-
tion of blue and red, which is magenta, while the rest of the background, which is white, will remain white.

Let’s do this a step at a time, from the top:

CHAPTER 9 IMAGE PROCESSING302

The first line reads the image from file and displays some image information. I then split
the image into four channels: red, green, blue, and the transparency mask. From here on, I’ll
restrict myself to dealing with the red channel only. First, I retrieve the actual numerical values
associated with the red channel. This is done with a call to . In the same line, I also
transform the data into a NumPy array and reshape the list to a matrix form.

Next I change the data values associated with 200 rows in the middle and set their value to
. This in effect creates the magenta stripe. I then update the red channel with the modified

data by calling the function . The function complements and
expects a list, not a matrix, so I reshape the data back to a 1-D array.

Lastly, I create a new image, this time in RGB mode (I don’t require transparency) by com-
bining the original green and blue channels with the modified red channel. This is done by
calling the function, which is the opposite of the function. Figure 9-5 shows
the results.

Note It’s also possible to perform this task using the object.

Figure 9-5. Circle with a stripe

CHAPTER 9 IMAGE PROCESSING 303

So far we’ve covered an interesting number of functions that enable working on images
with numerical values: , , , and . We’ll use some of them in
a more complex example.

Example: Counting Objects (Five Parts)
The following example is rather long and deals with an interesting aspect of image processing:
counting objects in an image. The idea is to write a script that counts the number of elements
in a picture. Counting elements is a complex task, even for the human mind: What objects
should I count? What constitutes an object? And so on.

The task of counting objects is very useful in a wide variety of applications, as indicated by
just a few examples:

Biology: Estimating the number of bacteria in an image from a microscope

Medicine: Counting the number of axons in a tissue cross-section

Electronics board manufacturing: Counting the number of imperfections in a printed
circuit board or counting the number of resistors

Astronomy: Counting the number of stars

For the purpose of this example, we’ll create an image of the sky at night, with stars placed
randomly. We’ll then write a script to count the number of stars. We’ll have a very sterile
image, one that has a very clean background (black, night sky) and most information in one
channel. However, we’ll add a bit of complexity by varying shapes and sizes of stars.

Once we have an image of the sky at night, I’ll talk a bit about recursion, a topic I have
been avoiding thus far. Recursion will be used to implement an algorithm to fill an image.
Lastly, I’ll discuss some ideas and methods you could use to expand upon this example and
add more capabilities to the algorithm.

Part 1: Twinkle, Twinkle, Little Star
First, we create the stars for our image of the sky at night. The night sky will be composed of
white stars and a black background. Since we want the stars to be of varying sizes and shapes,
we’ll define a function named that creates a matplotlib patch object (see Listing 9-8).

Listing 9-8. A Star Patch, Source of

CHAPTER 9 IMAGE PROCESSING304

The values that control the star patch are , which determines the star’s radius; and
, which control the star’s location; , which determines both the fill and edge color; ,

which controls the number of pointy edges a star has; and , which controls how thin or
thick a star is (on the range of 0 to 1, 1 being very thin).

Tip The default star patch is white because we’ll be using it for the night sky. Be sure to change it to a
different color if you’re using a white background.

I’ve used the object to create the star patch, with some mathematical trickery.
The idea is this: I place N pointy edges on a circle of radius R with the center at (x0, y0) at fixed
angle increments. I then place another set of points at a smaller radius to serve as the inner
edges of the star, again at fixed angle increments but shifted so that each inner point resides
exactly in the middle of the outer edge’s points. The parameter determines the radius of
the inner circle: the larger the value, the smaller the radius, and the “thinner” the star is. Lastly,
I draw a line connecting all these points using the patch object.

Note Be sure to save the star patch listing as file ; we’ll use it in future scripts.

USING A LIST COMPREHENSION

It’s also possible to implement the star patch with list comprehensions. The idea is to zip together the ele-
ments in the polygon list:

Some would prefer this implementation over the previous implementation. Personally, I think both are
fine; choose whichever is easier for you to follow.

It’s also possible to code the entire function as a single statement, but I strongly recommend
against it, as the code would be hard to understand.

The script in Listing 9-9 generates some interesting stars.

CHAPTER 9 IMAGE PROCESSING 305

Listing 9-9. Generating Some Interesting Stars

In this script I’ve decided to iterate over a list of strings and use the statement. The
same string used for the statement is also used to create the title for the subplots (see
Figure 9-6).

Figure 9-6. Some star patches

CHAPTER 9 IMAGE PROCESSING306

Tip To ensure a patch is displayed, issue a call to (or similar) to force a refresh of the
figure.

There’s room for additional work on the patch object; for example, you could
add a parameter, rotating the entire star by degrees. This can be done by
changing the argument to the functions and in the function. Another modi-
fication could include a hollow star, implemented by splitting the and
functionality.

Armed with the star patch, we turn to part 2 of this example: creating an image of the sky
at night.

Part 2: The Sky at Night
To create a simulated image of the night sky, we use the script in Listing 9-10.

Listing 9-10. Creating an Image of the Sky at Night,

CHAPTER 9 IMAGE PROCESSING 307

I’ve imported the function from the module random and decided to rename
it to , which I think is clearer to read. I then define a set of values you can tweak and
observe the results. The values are self-explanatory and include such values as the image size
and number of stars in the image.

The patching of stars is done in the loop, which creates a new star with random values
and adds it to the current figure. I then follow up by updating the image size and removing
the axes. Finally, I save the image to file. Figure 9-7 shows random output from the simulated
night sky.

Figure 9-7. Simulated (random) night sky

CHAPTER 9 IMAGE PROCESSING308

Part 3: Flood Fill and Recursion
We now turn to something completely different: recursion. Recursion describes a scenario
where a function calls itself. Some known recursion algorithms implement the factorial opera-
tion and Fibonacci sequences. We’ll use recursion for image processing, specifically to fill an
image using a flood-fill algorithm.

Flood fill, sometimes also referred to as bucket fill, is an algorithm to fill a closed area of a
specific color with a different color. This is a quite common operation in most image process-
ing applications. Kids love to use it to paint digital coloring images.

To implement flood fill, we’ll use recursion. In the implementation, we’ll assume that the
image to fill is given to us as a NumPy array, more specifically as a 2-D array (i.e., a matrix). It’s
also possible to manipulate a PIL object, but I prefer using a matrix for two reasons:

convert the objects to a NumPy array (matrix).

and methods provided by the object.

So how does flood fill work? Flood fill starts by receiving a point to start filling from. If
the point is the color to be converted, flood fill will change the color to the desired color. It
then moves to a point adjacent to it, say to the right, and calls itself. As the process continues,
points to the right will start filling up with the new color. If the point to the right is not in the
desired color (that is, shouldn’t be painted), the point to the top is checked, and the process
resumes. This process is repeated for left and bottom points surrounding each point. The end
process is a filled, closed object.

FLOOD FILL AND MINESWEEPER

The flood-fill algorithm can also be used in the coding of the game Minesweeper (shipped with Windows).
You can use the algorithm to expand an area and reveal points adjacent to mines. The algorithm will follow
a similar path, and one option would be to create a matrix of values corresponding to whether a square is
empty (value 0) or adjacent to a mine (value equal to the number of mines it is adjacent to), with a different
value indicating a mine (say, value –1). When the user clicks on a square, the flood-fill algorithm kicks in and
decides how many squares to reveal. If you’re not familiar with Minesweeper, I suggest you refrain from try-
ing it; the game is addictive.

Listing 9-11 presents a simple flood-fill implementation.

CHAPTER 9 IMAGE PROCESSING 309

Listing 9-11. Flood-Fill Implementation Using Recursion,

The function is an implementation of the flood-fill algorithm described pre-
viously. I’ve bolded the code where recursion actually happens (the function calling itself).

The function accepts the values and , denoting the point to fill; , which is the NumPy
matrix; and , which is a variable used to keep track of the recursion depth (i.e., how many
times a function calls itself repeatedly).

I’ve chosen to fill all values corresponding to 255 with 128. In essence this means that if
the object is fully red (or green or blue, depending on the band selected), it will be changed
to “half” red. You can modify the function to accept an original color and a new
color as parameters; I chose not to do so, as I think the code looks clearer that way.

Every time a function is called in a recursion, additional memory is consumed. Python
limits the recursion depth with the value . If the running code
exceeds this limit, a recursion exception is raised. It’s possible to increase this number by call-
ing , but that’s only a small fix; inevitably, you’ll reach a memory
limit, which might cause a system crash.

Therefore, it’s best if your code can detect these events beforehand and alert the user if
such an event transpired. I have chosen to do so by returning the value . In case is
greater than the maximum recursion depth, I can notify the user of the event.

It’s also important to note that if your night sky image gets larger or the size of stars get
larger (e.g., a larger radius), or if you save the image at a higher resolution (more points per
star), inevitably you will hit a recursion limit because the areas to fill get larger and larger. So
while this is a viable option to fill objects, maybe a different algorithm should be employed for
production-level code, such as using ’s method.

CHAPTER 9 IMAGE PROCESSING310

USING IMAGEDRAW FOR FLOOD FILL

The object also provides a function, which may be used for the algorithm
presented here. There are several reasons I chose to implement instead of using the

 function:

’s doesn’t return information such as the size of the filled region, which can
be used to enhance the algorithm. That being said, it’s quite possible to use other methods to comple-
ment this such as comparing the image before and after flood filling it.

(and not just up, down, left, and right).

So now that we have the function, how does that help us count the number
of stars at night?

Part 4: Counting Objects
Counting objects is really easy, once you have an implementation of flood fill (see Listing
9-12). The idea is simple: go through every point in your image and fill it. The return value
from flood fill is the actual number of points filled. In case there was nothing to fill, the value
will be zero, but in case flood fill fills an object, the return value will be nonzero, which indi-
cates that flood fill found and filled an object. Future calls to for that pixel will
not fill the object, as it is already filled. Now all that’s required is to count the number of times
flood fill returns a nonzero value, and you have the number of objects!

Listing 9-12. Counting Objects in a Picture

CHAPTER 9 IMAGE PROCESSING 311

The script is an implementation of the preceding algorithm. We start by importing the
proper modules and calling the script , which contains the func-
tion implementation. Next we open the image of the sky at night and split it into individual
color bands. I decided to work strictly on the red band, but in reality, because we are dealing
with black-and-white pictures, I could just as well have chosen any other channel (other than
the transparency). I then access the data and convert it to a NumPy matrix. This is done in the
call .

Next I implement a simple threshold. What I do is change all nonblack values to white by
setting all nonzero values to . Other algorithms use a different approach such as setting all
values above and including 128 to and all values below 128 to . In this particular case, the
results would be very similar. Notice that I run the threshold before I reshape the matrix, the
reason being that I can use the function quite easily that way. I then reshape the image
into a matrix.

Up to this point I’ve been dealing with reading the image, splitting it, and applying a
threshold to the image. Now, I turn to using the function. I go through every
pixel in the matrix and call the function . If the return value is greater than the
recursion limit, I increment the number of times a recursion limit has been reached. If the
return has not reached the recursion limit and is nonzero, I increment the count of objects.

Lastly, I report my results: the number of recursions that exceeded the maximum allowed
value (for debugging purposes more than anything) and the number of stars counted. Here’s a
result from running the script on the night sky image presented earlier:

(We’ll get to why that number is not 25 in the next section.)

CHAPTER 9 IMAGE PROCESSING312

To be sure I’ve counted all the stars in the night sky picture, and furthermore, that I did
not accidentally count objects that are not stars, I decided on some sort of visual feedback of
the result. I do this in the last two lines of the script: I convert the matrix data back to the red
channel and construct a new image with the newly modified red channel.

If you look closely at the newly constructed image (zoom in if you’d like), you’ll see that
at times the edges around stars are not filled properly. I believe that the reason for this is the
quantization effect we’ve used (threshold) that modifies all half-values to black.

Part 5: Optimizing the Algorithm
So why did the algorithm return 23 stars and not 25? (See value in Listing 9-10.) A
plausible reason is that several stars overlapped. This would cause the algorithm to combine
several objects into one. In real pictures (nonsterile, unlike those presented in the example),
there could be other reasons, and this is where you can start tweaking your image processing
algorithm.

But as you start working with “real” data, you’ll find that sometimes the opposite hap-
pens, that is, the algorithm counts more objects than there really are. The reason for this could
be because the images are not ideal, and even small specks, or noise, could throw off the
number count. In that case, a possible solution would be to count only elements whose size is
greater than a fixed value, that is, reading the value returned by and discarding
objects whose size is too small. Another option would be to preprocess the image using a filter
(see the section “Image Filtering” later in this chapter).

Another improvement to the algorithm could be giving it the capability to find the
largest object. Again, this is quite possible by reading the value returned from the function

 and then sorting the results or finding the maximum.
And you can also try to evaluate the luminosity of the night sky, by counting the areas of

all the stars. This might be used to estimate how clear the skies are or, in the case of a micro-
scopic image, help determine whether the size of a bacteria colony has changed.

Some real images might have objects so small that you’ll need to think about flood filling
diagonals as well. That is, consider the character “x” drawn on a 3 3 pixel grid: there’s no pixel
that’s adjacent to another unless you count diagonals. Modifying flood fill to include diagonals
will combine the pixels that make up this “x” into one object.

The point of the matter, now that data is accessible as a NumPy matrix, is that you can
implement whatever algorithm or image processing idea you might have. But in many occa-
sions, you don’t have to resort to the matrix level; PIL provides a good number of support
functions.

Image Arithmetic
PIL provides a set of arithmetic operations via the module ImageChops (Chops is short for
channel operations). In the night sky example, some people would prefer working on a white
background (which could save quite a bit of ink if you’re printing the images). Per the previ-
ous section, you could transfer the image to a NumPy array and then convert it, but in such a
simple case, it makes more sense to use the ImageChops function:

CHAPTER 9 IMAGE PROCESSING 313

In Figure 9-8, I’ve used the image generated by the script (Listing 9-6) with
, , and to show a more pronounced effect

of the image inversion.

Figure 9-8. Inverting an image: the original is on the left, and the inverted image is on the right.

Table 9-3 lists some additional ImageChops operations. Notice that ImageChops opera-
tions operate only one channel (L) or RGB images.

Table 9-3. Some ImageChops Operations

Function Description

 Adds two images as follows:
. The default values of and

 mean a simple addition.

Returns an image of size filled with color
.

Returns an image with the darker pixel from
both images. This a minimum of the two im-
ages, on a pixel-by-pixel level.

Returns the absolute difference of two images.
This is , on a pixel-by-pixel
level.

Returns an image with the lighter pixel from
both images. This a maximum of the two im-
ages, on a pixel-by-pixel level.

 Subtracts two images as follows:
. The default values of and

 mean a simple subtraction.

CHAPTER 9 IMAGE PROCESSING314

There are additional functions available in ImageChops; check out either
 or the PIL web site (

).
You can create some interesting effects using these simple operations. And these

effects can in turn be used for some fast image processing algorithms. Listing 9-13 presents
a script that makes use of the method on two night sky images. To follow along,
run the script and rename the generated file to

; do it again, this time renaming the generated image to .

Listing 9-13. Using on Two Images

I’ve made a collage and separated the images with a white band. Figure 9-9 shows the
result.

CHAPTER 9 IMAGE PROCESSING 315

Figure 9-9. Using

It’s interesting to note that in this specific case, using the function would have
resulted in a similar image.

Image Filtering
Most GUI-based image processing applications come with a bundle of image filters. There’s a
wide variety of filters available, and different applications group them into different categories.
Some of the common filtering categories are blur, enhancement, edge detection, and more.

From an image processing standpoint, image filters are known operations that help us
achieve a specific effect. For example, I once used the counting objects algorithm presented
as an example in this book to try to count the number of bubbles in a printed circuit board
soaked in water. As you probably realize, pictures obtained from a real-life image are not as
sterile as those presented in the sky at night example. And so prior to using the algorithm, I
had to clean up the images. By “clean up” I mean filtering the image using known filters. I
ended up using a threshold combined with a median filter, and then converting the image to a
1-bit (black-and-white) version prior to running the algorithm.

The following text assumes you have some background in image filtering. If not, my sug-
gestion is that you experiment with a GUI application such as GIMP to get a feel for what filters
to use and how they can help you with basic image processing. Once you have the preprocess-
ing figured out, that is, you know what filters you want to run on your image prior to the final
algorithm, you can implement the filters with a Python script that makes use of PIL filters.
(You might not even require a final algorithm if you select the proper filters.)

CHAPTER 9 IMAGE PROCESSING316

PIL provides us with the class , which supports a good number of filters.
To use , import it as follows: (or simply

). Once you’ve imported , call the method that’s part of the
 object (not object) to filter an image:

In the preceding example, I’ve used the night sky images you’ve seen before and inverted
the output so as to work on black stars over white background. I then filtered the image using
a filter (see Figure 9-10). The works on a pixel-by-pixel level. For every
pixel, it returns the minimum pixel from the square of size (in the example, 15) centered on
the given pixel. As you can see, even from this small example, there’s quite a bit to be gained
by working with image filters.

Figure 9-10. Filtering an image: left is the original, and right shows the image filtered with a
 set to .

 provides fixed image enhancement filters easily distinguishable due to their
capitalized names:

By the term “fixed” I mean that they accept no parameters. To use these filters, call the
 method with the fixed filter, as follows:

The names of these filters should provide direction as to what they perform.
 also provides nonfixed filters (i.e., filters that accept parameters). Table 9-4

lists some additional filters supported by the object.

CHAPTER 9 IMAGE PROCESSING 317

Table 9-4. Some Image Filters

Function Description

For every pixel in the original image, returns the pixel with the maxi-
mum value from a square of width placed around the original
pixel. must be odd (3, 5, 7, . . .).

For every pixel in the original image, returns the median pixel from a
square of width placed around the original pixel. must be odd
(3, 5, 7, . . .).

For every pixel in the original image, returns the pixel with the mini-
mum value from a square of width placed around the original
pixel. must be odd (3, 5, 7, . . .).

For every pixel in the original image, returns the most common pixel
from a square of width placed around the original pixel. must
be odd (3, 5, 7, . . .).

Final Notes and References
Image processing is a large field and is gaining more and more popularity as computers
increase in performance. And image processing is only two dimensional; nowadays we see
more and more 3-D data processing as well, including video.

Armed with Python, the Python Imaging Library, and NumPy, even complex image pro-
cessing tasks can be prototyped. However, image processing requires a great deal of memory
and processing power; as you work with images you’ll realize you may require faster tools, and
you may even need to port parts of your code to a lower-level programming language such
as C to gain performance. Nevertheless, Python is an excellent prototyping environment; it
provides fast responses in an interactive environment and can help you define your image
processing algorithm.

Additional information can be found at the following sites:

Imaging Library,

C H A P T E R 1 0

Advanced File Processing
More on Files

A common task of programmers is working with files—not merely reading and writing files,
but also organizing them, moving them around, deleting, compressing, archiving, and more.

I often find myself borrowing code from my previous projects, especially code that deals
with reading and parsing files, typically via copy and paste. But that seems such a waste—why
not come up with a library of functions that addresses most people’s needs?

Other programmers must have felt the same way, and so they turned to writing modules,
libraries of functions to perform these tasks. And many of these are now included with the
Python Standard Library; more are added on a regular basis.

This chapter expands on ideas discussed in Chapters 4 and 5 and examines additional
file-related topics. I also build on some examples from previous chapters as a way to introduce
new topics and create more reusable code.

Binary Files and Random Access
The term binary file describes a nontext file: executable files, image files, or simply data files.
In this section we’ll show some methods of dealing with binary data files.

Working with text files, we’ve used or to read chunks of data from a
file. The function , in a sense, splits the file into smaller chunks of data (i.e., lines of
text).

With binary files, it’s more common to see random access, that is, arbitrary reading of
chunks of data from anywhere in the file. With text files, this is a bit harder because you don’t
know in advance how many characters and words are in a line, so randomly picking the nth
line is not a trivial task. With binary files composed of fixed-length records, random access
allows access to an arbitrary field.

The methods and are random-access file functions. To
better understand what these functions do, you need to understand the concept of file point-
ers. A file pointer points to a location in the file: subsequent read or write operations will
happen at that specific location (assuming the file was opened in a mode that allows random
access read and/or write). Whenever we read or write data from the file, the file pointer is
incremented accordingly.

319

CHAPTER 10 ADVANCED F ILE PROCESSING320

The function sets the file pointer to a value of our choosing; subsequent calls to
 will pick up from the newly “seeked” location. The function returns the current

file pointer value in bytes. Here’s a short interactive Python session describing the works of
 and :

Note As in previous chapters, I assume you’re running an interactive Python session in directory
 and that directory exists.

I’ve created a binary file. Once created, the file pointer associated with the file is set to 0,
as shown by the result from . After writing ten values, the file pointer is at 10.

I’ve changed the file pointer to point to location 5 and wrote again the same ten values.
As a result, the file pointer has changed to 15. Let’s print the contents of the file:

As expected, the result is the string overlapped by another copy of the same
string at location 5.

The argument in the function instructs how the offset
should be calculated. If is (the default), moves bytes relative to the start
of the file. If is , moves the file pointer bytes relative to the end of the
file. Notice that in order to change the file pointer to n bytes before the end of the file, pass
a negative value as an offset. On many systems, it’s possible to seek past the end of the file
(which is a feature, not a bug, as you’ll soon see). If is equal to , moves relative
to the current location. Again, both negative and positive values are allowed. Negative values
for are not allowed if is . Continuing our previous example:

CHAPTER 10 ADVANCED F ILE PROCESSING 321

I’ve set the file pointer to 2 bytes before the end of the file and printed the contents of the file
from that point forward.

Example: Reading the Nth Field
The functions and are especially useful for accessing large binary files that con-
tain fixed-length records. Unlike text files, with binary files of fixed-length records, you can
calculate in advance the location of a field in the file. Combined with , it’s possible to
read a single field. This is especially important in large files where reading the entire file or
even reading the file a value at a time (without seeking directly to the required field) can take a
considerable amount of time.

In this example, shown in Listing 10-1, we combine and with the struct
module (see Chapter 4).

Listing 10-1. Reading the Nth Field

The first part of the script creates a binary file with some made-up data. The second part
reads a single field at location 766 without reading the entire file. This is done by changing the
file pointer to point to location and reading only one field.

CHAPTER 10 ADVANCED F ILE PROCESSING322

Here’s the result from running the script:

Example: Efficient Tail Implementation
In Chapter 5 you saw a possible implementation of head and tail functionality. The tail func-
tionality was harder to implement for a very large file. The reason for this was explained in
Chapter 5. In this example, we turn to implement tail functionality for large files with use of

 and , as demonstrated in Listing 10-2.

Listing 10-2. Function for Large Files

The idea is this: read bytes from the end and store the result in . The parameter is
an arbitrary number and describes the number of bytes to read in one chunk. I’ve set it to .
If contains more than lines (by counting the number of times is encountered),

CHAPTER 10 ADVANCED F ILE PROCESSING 323

break out of the loop and print the last lines of data. If does not contain lines, read
the next chunk of bytes (that is, backward) and add the read bytes to . So in a sense,
we’re going backward from the end of the file, reading chunks of bytes and counting
whether we encountered enough line breaks. If we have, we print those lines; if we haven’t, we
keep reading more data until we either have read the required number of lines or have reached
the beginning of the file.

This implementation is not as straightforward as the one presented in Chapter 5. How-
ever, there is a substantial performance gain for large files.

Example: Creating a Fixed-Size File
Dealing with binary files, at times there’s a requirement to create a large file (of noninitialized
values).

A trick I use to create a file is to seek past the end of the file to a location equivalent to the
required length minus one, and then write and close the file. This (in many systems) creates
a file of the required size.

The following creates an uninitialized file of size 1GB (230 bytes):

Now to ensure that the file was indeed created:

Note The ability to seek past the end of a file is system dependent and not supported by all systems.

Example: Recording Time-Based Binary Data
When recording time-based binary data, a method I particularly like is using the epoch nota-
tion (see Chapter 5). For this example, I’ll be using functions from the time module and from
Python’s array module (not to be confused with NumPy’s array object).

In case you’re simply recording a variable as a function of time, it’s easier if the recorded
variable is in floating-point notation, because now both the time and the value use the same
data type. This allows for a simple use of the array module, as shown in Listing 10-3.

Listing 10-3. Writing Epoch-Based Data in Binary Form

CHAPTER 10 ADVANCED F ILE PROCESSING324

The script runs on average 5 seconds and generates timestamps and values. I’ve made use
of the array method to store binary values to file.

Retrieving data from the binary file is simple as well, as you can see in Listing 10-4.

Listing 10-4. Reading Binary Data Stored with Epoch Notation

Most of the work is performed in the line , which reads values and
stores them in a Python array. I then rearrange the data and display the results:

CHAPTER 10 ADVANCED F ILE PROCESSING 325

I’ve used a trick to rearrange the data. When I convert the data from an array to a list, ,
the values are interlaced: time, value, time, value, and so on. To print values, I can just iterate
through , converting to a time format every odd value. Instead I’ve opted to zip slices of even
and odd values. The following code illustrates this:

Object Serialization
At times, working with an interactive session in Python, it’s useful to be able to save variables
to file. Prior to writing them to file, variables should be serialized, that is, converted into a
stream of bytes. The stream of bytes can then be written to file and later retrieved.

Instead of creating dedicated file formats to deal with all sorts of variable types (lists,
strings, NumPy arrays, and the like), Python provides us with a built-in object serialization
module that is ideal for this purpose: Pickle.

The Pickle Module
Pickle comes in two flavors: the Pickle module and the faster C implementation named
cPickle. With the better performance of cPickle comes a price: you can’t subclass the module.
Personally, I have not found this limitation an issue, so for me, cPickle is a better choice. To
use Pickle, issue ; to use cPickle, issue .

The function serializes an object and writes it to
file. The argument can take the values for ASCII (the default), for binary, and
to indicate support for new Python objects. Both protocols 1 and 2 create binary files. If you
provide a negative value for , the highest version protocol will be used. This is to accom-
modate for future protocol versions of Pickle and cPickle. The function
will read an object from file.

The function serializes the object and returns its string
representation without writing it to file. Similarly, creates an object from a
string.

CHAPTER 10 ADVANCED F ILE PROCESSING326

Example: Saving and Retrieving Python Session Variables
The example in Listing 10-5 makes use of the cPickle module to write variables of varying data
types to file.

Listing 10-5. Pickling Several Objects to File

To pickle objects (i.e., serialize them) and write them to file, I’ve used the function
. You can issue subsequent calls to to store addi-

tional values to file as shown in Listing 10-5.
Now to read the objects from file (see Listing 10-6).

Listing 10-6. Reading Objects from File

Whenever you issue a call to , the return value is a Python object (unless
the end of file is reached). However, the name of the object is not stored. Therefore, I’ve made
use of the statement to create variables named , , and so forth to store the objects.

Here are the results from running the script:

CHAPTER 10 ADVANCED F ILE PROCESSING 327

If you’re using NumPy arrays, you can make use of the functions and pro-
vided by matplotlib. These functions accept a file name and read and write a NumPy array
object to and from file:

If the file name used in and ends with , gzip compression is automati-
cally used (see the section “File Compression” later in this chapter).

Command-Line Parameters
This section, which covers command-line parameters, is a bit of an off-topic discussion. (The
reason I’ve decided to give an overview of command-line parameters before getting into the
details of the FileInput module is that the FileInput module makes sense in the context of
command-line parameters, as you’ll soon see.)

A possible progression from an interactive Python session is creating a stand-alone util-
ity or application—that is, a Python script callable from the shell, be it the command prompt
in Windows or a bash shell in Linux. One of the options of interacting with such a script
is by passing command-line arguments. For example, in the command-line utility, a
command-line parameter could be the number of lines will display. So to list the last 20
lines of a file, you would write

argv
The sys module enables command-line processing with the variable, demonstrated
in Listing 10-7. is a list of strings containing the split shell command entered. The
value in is the name of the Python script.

CHAPTER 10 ADVANCED F ILE PROCESSING328

Listing 10-7. Command-Line Arguments

Save the file as and run in a shell. The
results should look like this:

Example: Creating a Fixed-Size File (Stand-Alone Script)
We turn to modify the code in this chapter from the section “Example: Creating a Fixed-Size
File” to a stand-alone script callable from a CLI (shell or command window). The script, shown
in Listing 10-8 (, accepts the number of bytes and a file name and creates a file
of specified name and size.

Listing 10-8. Creating a Fixed-Size File (Stand-Alone Script),

CHAPTER 10 ADVANCED F ILE PROCESSING 329

I’ve carefully checked the parameters passed by the user to determine whether there are
an adequate number of parameters and if those values are valid. I took special care to ensure
the file can indeed be created. Finally, the code that generates the empty file is simple.

I’ve also introduced the function , provided with the sys module. The function is
especially useful when you’re writing a stand-alone script, as it exits the script immediately.

OptParse Module
Enforcing a strict syntax for command-line parameters renders a script less user friendly. For
instance, in the previous example, you might want the script to automatically create a file
of default size, say 1KB, in case no length is provided. Or you might want to add additional
parameters with default values, further controlling the behavior of the script so that it creates a
path to the file name if it does not exist, for example.

Accommodating additional options as well as default options will cause the code in the
previous listing to grow larger and less maintainable. When the number of options increases,
consider using the OptParse module; the OptParse module is designed to address command-
line parameters in an easy set of library functions.

Tip The module getopt () is an older module that
also provides functions to parse command-line options.

To use the OptParse module, we follow these steps:

1. Create an object.

2. Add options to the parser using the method.

3. Parse the command-line arguments using the method.

The first step is simple: instantiate an object by setting
. Adding options is a bit more complex as there are many possibilities to

choose from (as you’ll soon see). The last step is calling the function , which
returns a list of command-line options.

The return value of is a tuple of options and arguments. The difference
between an option and an argument is that options are, of course, optional, and arguments
(positional arguments per OptParse documentation) are required.

CHAPTER 10 ADVANCED F ILE PROCESSING330

Example: Processing Command-Line Parameters
We’ll modify our previous example so that now the number of bytes per file is an option fol-
lowed by the requested number of bytes (i.e.,), as in Listing 10-9 (.
Furthermore, we’ll add an option switch, also known as an option flag, indicating whether a

 extension should be added to the file name. The existence of the option flag instructs
the script whether to create the extension: there’s no additional value following it.

Listing 10-9. Processing Command-Line Parameters Using OptParse,

First, I’ve imported the OptParse module. I then instantiate an object and
provide it with the default string. The string will be displayed as the first line when-
ever the user issues the command-line switch or , so: .

CHAPTER 10 ADVANCED F ILE PROCESSING 331

I then add options using the method. The method has many
parameters to control how options should be parsed. In my first call, I’ve set how
the user invokes this option: by entering either or . I set the des-
tination for this option to be named . This means that after the option is parsed, I can
access the option value through variable . The type of variable is , as detailed
by the argument, and the default value is in case isn’t provided by the user.
Lastly, the help string associated with this option is detailed: .

Similarly, I set another option named ; this option is a switch, meaning the user will
invoke the switch simply by entering or ; there are no additional values following the
switch (in contrast, the option was accompanied by an value). The argu-
ment instructs OptParse to treat this as a positively acting switch: if is provided, set the flag
to . Lastly, I’ve set the default value to and added a help string:

.
Parsing the command-line options is performed with the call to . Both

options and arguments are then retrieved. The options are accessed via a class parameter, and
the arguments are provided in a list. Following that is the actual creation of the file.

The following are the results from running the script with various options in a bash shell:

The script expects an input as follows: . Calling the script with
command-line parameter or prints out the usage help message. This is implemented
automatically when you use the OptParse module. Next, I’ve issued some valid command-line
parameters and some invalid ones. OptParse handles the parsing of the values, while my code
handles the number of arguments (only one:). I’ve also called the script with full
option names () and abbreviated option names ().

CHAPTER 10 ADVANCED F ILE PROCESSING332

Module OptParse is a rich module with many features. Refer to the online help at
 for a detailed description of the module.

Tip As the number of options increases, consider using the ConfigParser module instead. See
Chapter 4 for an introduction to ConfigParser and the online help (

).

The FileInput Module
Closing our command-line parameters discussion is the FileInput module. The module pro-
vides an easy method for accessing several files (or streams) passed by the command line (i.e.,

). To use the module, issue .
Using the module is straightforward: iterate over . The result from the

iteration is the next line in the current file. Once the end of the file is reached, the next file is
opened automatically, and the process resumes until all lines from all files have been iterated
over.

Table 10-1 lists some useful FileInput methods that can be used to further enhance scripts
that make use of the module.

Table 10-1. Useful FileInput Methods

Method Description

Ends the processing, closing all opened files

Returns the line number in the current file

Returns the name of the file currently being read

Returns the index of the current file

Returns if this is the first line in a file

Returns the cumulative line number of all lines read from all the files

Stops processing the current file and jumps to the next file

Let’s turn to an example.

Example: Combining Data from Several Sources Based on the Epoch
Here we pick up on an example previously presented in Chapter 5 in a section with the same
title as this one. This time we allow for more than two files to be combined, based on the
epoch (see Listing 10-10).

CHAPTER 10 ADVANCED F ILE PROCESSING 333

Listing 10-10. Combining Several Files Based on the Epoch,

The contents of the files are detailed in Chapter 5. Use the script as follows:
. The source code should prove easy to follow.

Example: Searching for Text in Multiple Files
Again, building from an example previously shown in Chapter 5 in the section “Example:
Searching Inside a Text File,” we now search for text in multiple files. To use the script,

, shown in Listing 10-11, issue the command
.

Listing 10-11. Searching for Text in Multiple Files,

The main difference from the previous example is that now the first parameter is the
string to search instead of a file. So I access the command-line parameters and pass the values
from the third parameter onward () to . Doing so will skip the
script name () and the search string ().

The fileinput module also provides support for modifying files as you process the lines
via the argument. Refer to the online help for more on this:

.

File and Directory Manipulation
Other than reading and writing files and processing command-line parameters, manipulat-
ing files is also a task commonly required of a developer. You’ve seen the os.walk module and
some directory operations in previous chapters; here I expand on those, as well as file opera-
tions: deleting files, moving files, and more.

CHAPTER 10 ADVANCED F ILE PROCESSING334

Module glob
The glob module enables searching for files given a file name pattern. The function

 will return a list of all the files matching ; the function
returns an iterator (as opposed to a list in) of all the files matching . I usually
just use the list version, :

 accepts shell-like wildcards such as (matches a string of characters), (matches
one character), (matches any character from a list of characters), and
(matches anything but those characters listed). The following will match a file name that ends
with and contains a number:

This will match a file name that ends with and does not start with :

Please note that glob expressions contain shell wildcards, and so are not regular
expressions.

Tip See also module fnmatch ().

Additional os Module Functionality
You’ve already seen a considerable number of functions from the os and os.path modules (see
the section “Moving Around” in Chapter 3). Table 10-2 lists a few more, not mentioned earlier,
that are especially useful for manipulating files and directories. In the table, assume the cur-
rent working directory is and the file in the directory is

Table 10-2. os Module Functions for Manipulating Files and Directories

Function Description Example

Changes file permissions (in
Windows, only read and write
permissions are changed, all else
is ignored).

changes the file permissions to
read, write, and execute for all.

Changes the group and user own-
ership of a file (not available in
Windows). If you wish to change
only , set to ; if you wish
to change only , set to .

will set the group and user own-
ership of file to root
(assuming root has a of).

CHAPTER 10 ADVANCED F ILE PROCESSING 335

Function Description Example

Deletes the file specified in
.

 will
delete the file .

Removes a directory if it’s empty. will
remove directory if
it’s empty.

Creates a directory. will create
directory .

Creates a directory as well as any
intermediate subdirectories. will create directories

 and
.

Renames a path or file.
 renames file to

.

Renames a path or file including
the creation of intermediate direc-
tories and removal of empty ones.

 will
rename the directory

 to
as well as create subdirectories
that do not exist and remove di-
rectory if it’s empty.

Additional os.path Module Functionality
The module os.path provides functions that help manage file names and file paths. Table 10-3
lists some useful os.path functions. In the table, assume the current working directory is

 and the file in the directory is .

Table 10-3. Useful os.path Functions

Function Description Example

Returns the absolute path of a file
returns .

Returns the file name, excluding
path returns .

Returns the directory name of a
path returns .

Returns if the path or file
specified by exists returns .

Returns the last access time of a
file will print

the access time (is part of
the time module).

Returns creation time of a file Similar to
example.

Continued

CHAPTER 10 ADVANCED F ILE PROCESSING336

Function Description Example

Returns the last modification
time of a file

Similar to
example.

Returns the file size in bytes
returns the size of file in
bytes.

Returns if the path specified
by is an absolute path returns .

returns .

Returns if is a directory returns
.

Returns if is a file
returns .

Joins two or more paths, adding
slashes as needed returns

.

returns
.

Splits a pathname, returning the
path and the file name returns

.

Splits a pathname returning the
extension, including the dot returns

.

Module shutil
The shutil module provides higher-level functions for copying, moving, and renaming files. Of
those, we’ll explore the following: , , , and

. For a full account of the module, refer to
.

I assume a file named exists in the current directory. If yours doesn’t have this
file, create one if you wish to follow along.

First, let’s create a directory with subdirectories and copy to the newly created
directory:

Table 10-3. Continued

CHAPTER 10 ADVANCED F ILE PROCESSING 337

First, I imported several modules and functions: shutil, os, and glob. I then created a
directory (as well as its parent directories): . I made use of the function

 in two ways: first, to copy the file to the newly created directory, and second,
to copy the file to the same directory under a different name, .

I’ve moved the file to directory . The results from confirm the
move.

Now I copy the entire directory leaf under to a new directory named :

And lastly, it’s time for cleanup—I remove both directories as well as their subdirectories:

File Compression
File compression is the process of representing a file in fewer bytes. Compression is typically
divided into two categories: lossy compression and nonlossy compression. In lossy compres-
sion, the compressed data is not identical to the original data; data is lost in the process of
reducing the file size (hopefully nonimportant information is lost). Nonlossy compression
uses clever schemes to represent data in a way that is more efficient. For example, instead of
writing a hundred identical values to file, a nonlossy compression scheme might be to write
the value 100, representing the count, and then the repeating value.

Python provides us with several compression and archiving modules. Archiving modules
are used to create compressed files; compression modules deal with the compression itself
and can be used on strings, not only on files. The distinction is somewhat blurred as some
modules perform both compression and archiving. The modules bz2 (

), gzip (), and zlib (
 as well as) provide nonlossy com-

pression functionality; the modules tarfile ()
and zipfile () provide archiving capabilities.
The names of the packages are also the import names, so to use gzip, issue .

There are some differences between the different modules in terms of compression ratio,
performance, and popularity. They’re all easy to use and provide excellent results. In this sec-
tion we’ll explore the tarfile module.

CHAPTER 10 ADVANCED F ILE PROCESSING338

Example: A Compressed tar File
In the open source community, it’s common to see files distributed with extensions
or . These are compressed tar files; tar stands for tape archive, but in reality there’s
no need for tapes. The example in Listing 10-12 creates several files, archives them, and then
retrieves them from the archive.

Listing 10-12. Creating an Archive

The first section of the script generates five files with some made-up data. Once files are
created, I create a tar file for archiving. The file mode is specified as , which stands for
writing (creating) a tar file compressed with compression algorithm bz2. Other modes include

 for gzip compression and for no compression. Similarly, opening an archive can be
done by specifying , , and .

Once the object is created, we add files to the archive using the
method. If you provide a directory to , the entire directory is added to the archive. I’ve
decided to add the files one at a time in case other files exist in the directory that I don’t wish
to include. Finally, I close the tar file, effectively creating the file .

Retrieving files from an archive is simple as well, as demonstrated in Listing 10-13. The
method will extract all files from an archive. The method
will extract a file that is a member of the archive to a location specified by . The method

 lists the members (files) in an archive.

Listing 10-13. Extracting All Files from an Archive

CHAPTER 10 ADVANCED F ILE PROCESSING 339

Listing 10-14 shows how to extract just the first three files in the archive.

Listing 10-14. Extracting Three Files from an Archive

I’ve made use of the method to retrieve the list of files in the archive and
then indexed only the first three files.

Comparing Files
Ensuring two files are identical is a common task. In case of input data files, it means we can
remove the copy, and our script will both run faster and provide better statistics because now
the data isn’t used twice. The reasons for duplicate files can be numerous as discussed in
Chapter 4.

A simple mechanism for comparing two files can be to open both files, read the entire files
to memory, and then compare the values:

The main benefit of this method is that it’s simple. However, there are several shortcomings:

Inefficiency: Suppose one file is of size 10GB and other file is 1 byte long. By looking at
the file sizes, it’s possible to tell the files are not identical. On the other hand, reading a
10GB file to memory can bring the system to a crawl.

Lack of information: If two files are not identical, what exactly are the differences?

Modules filecmp and difflib from the Python Standard Library provide us with functional-
ity to compare files and find the differences.

Module filecmp
The module filecmp provides functions for file and directory comparisons. The method

 will compare with . If is not provided (or
is), files that have the same stat signature are considered equal. By this I mean files that
have the same system information such as size, creation date, and more (see

 for an explanation of stat). If is , files are also com-
pared for content.

CHAPTER 10 ADVANCED F ILE PROCESSING340

The class enables the comparison of directories and . The
comparison includes all subdirectories as well. The method will print the result from
comparing both directories.

For the following example, I assume you’ve created the file in the previous
compression example. Here, we’ll create two directories, and . Directory will
contain the extracted files from the archive; directory will contain the extracted files from
the archive as well as another subdirectory, , which will also contain the contents of the
archive. We’ll compare the directory contents (see Listing 10-15).

Listing 10-15. Comparing Directories

The results are as follows:

As you can see, comparing directory contents using the filecmp module is easy and simple.

CHAPTER 10 ADVANCED F ILE PROCESSING 341

Module difflib
The module difflib provides several objects and functions to help compare lists of strings
(e.g., text files). Several functions provide a result in different formats. These include

, , and . In this section we’ll examine the
 function; other functions have similar behavior.

First we create two files, and , with similar but not
identical content, as shown in Listing 10-16.

Listing 10-16. Creating Files for Comparison

The two files differ in that the first file contains an extra line in the beginning, and the sec-
ond file contains an extra line in the end. We call to display those differences
(see Listing 10-17).

Listing 10-17. Comparing File Contents

I’ve included the name of the files as parameters to ; this will generate a
report that displays the file names in the header information. Here are the results:

CHAPTER 10 ADVANCED F ILE PROCESSING342

A section starting with means the report addresses the file ; a
section starting with means the report addresses the file . A line start-
ing with a sign implies that the line is missing from the first file; a sign means the line is
included in the first file but not in the second file. The output is similar to output generated by
UNIX command-line utilities.

Additional difflib functionality can be found online at
.

Final Notes and References
Python provides a wealth of libraries that deal with common programming tasks: file process-
ing, command-line parameters, file and directory manipulation, compressing and archiving
files, and many more. There are a great number of additional modules available with the
Python Standard Library:

Standard Library,

A P P E N D I X

Additional Source Listing

This appendix is a collection of source listings that didn’t quite belong in the chapters them-
selves, but nevertheless might be of interest to you.

Nudge Subplots
In generating subplots of size 2 by 2 for this book, I’ve noticed that the text for the x-axis of
the top subplots clashes with the titles of the lower subplots. To overcome this, I’ve defined
nudge_subplot(), a function designed to modify the location of subplots within a figure (see
Listing A-1).

Listing A-1. Source Listing of nudge_subplot()

def nudge_subplot(subp, dy):
 """A helper function to move subplots."""

 sp_ax = subp.get_position()
 sp.set_position([sp_ax.x0, sp_ax.y0+dy,
 sp_ax.x1-sp_ax.x0, sp_ax.y1-sp_ax.y0])

To use the function, store the return value from subplot() and then “nudge” it by calling
nudge_subplot(sp, dy), as shown in Listing A-2, where sp is the subplot and dy is the amount
to nudge (a value of 0.02 for dy usually works well).

Listing A-2. Using nudge_subplot()

from pylab import *

values to plot
t = arange(5)
y = array([1, 2, -1, 1, -2])

plot_cmds = [
 "plot(y)",
 "plot(-y)",
 "plot(y**2)",

343

APPENDIX ■ ADDIT IONAL SOURCE L IST ING344

 "plot(sin(y))"
]

figure()
for i, plot_cmd in enumerate(plot_cmds):
 sp = subplot(2, 2, i+1)
 if i == 1: nudge_subplot(sp, 0.02)
 if i == 3: nudge_subplot(sp, -0.02)
 exec plot_cmd
 title(plot_cmd, fontsize='large')
 xlabel('x values')

In this code, I’ve nudged the right subplots and left the left ones as is, as you can see in
Figure A-1.

Figure A-1. The left subplots are unmoved (the default), and the right subplots are nudged.

The function nudge_subplot() is not backward compatible with older versions of matplot-
lib. For example, with matplotlib version 0.91.4, the function set_position() accepts different
arguments, and so the code needs revising. Nevertheless, the ideas are similar. Listing A-3 is an
implementation that runs on matplotlib version 0.91.4.

APPENDIX ■ ADDIT IONAL SOURCE L IST ING 345

Listing A-3. Source Listing of nudge_subplot_old(), for Older Versions of Matplotlib

def nudge_subplot_old(subp, dy):
 """A helper function to move subplots.

Works on matplotlib version 0.91.4."""

 sp_ax = subp.get_position()
 sp_ax[1] += dy
 sp.set_position(sp_ax)

Magic Square Arrows
In Chapter 7 I presented a figure describing the magic square algorithm. I used matplotlib
patch arrows embedded in the algorithm to plot that figure. Listing A-4 is the source code used
to generate the diagram.

Listing A-4. Magic Square Diagram Creation

from pylab import *

def magic_arrow(x, y, top_right, n, c=0):
 """Draws an arrow from point x, y."""

 d, my_colors = 0.15, 'rbymg'

 if top_right: # top-right arrow
 mc = my_colors[c % len(my_colors)]
 ar = Arrow(x+0.5+d, n-y-0.5+d, 1-2*d, 1-2*d, width=0.2, fc=mc, ec=mc)
 else: # down arrow
 ar = Arrow(x+0.5, n-y-0.5-d, 0, 2*d-1, width=0.2, fc='k', ec='k')

 # patch the arrow
 gca().add_patch(ar)

def show_alg(n=3):
 """Draws a magic square, n must be odd."""

 if n % 2 != 1:
 raise ValueError, "Magic(n) requires n to be odd."

 # prepare the figure, draw grid lines, hide ticks
 axis('scaled')
 axis([0, n, 0, n])
 for i in range(n):
 plot([0, n], [i, i], 'b')

APPENDIX ■ ADDIT IONAL SOURCE L IST ING346

 plot([i, i], [0, n], 'b')
 xticks([])
 yticks([])

 # alternating color index
 altc = 0

 # initialize variables
 m, row, col = zeros([n, n]), 0, n/2

 # go through all the numbers from 1 to n**2
 for num in xrange(1, n**2+1):

 # assign the current number and display it on the figure
 m[row, col] = num
 text(col+0.5, n-row-0.5, str(num), va='center', ha='center')

 # store current row and col
 pcol, prow = col, row

 # increment row and col
 col = (col+1) % n
 row = (row-1) % n

 # if location (col, row) is nonzero, it means the cell
 # is occupied, move down
 if m[row, col]:
 col = pcol % n
 row = (prow+1) % n

 # if current location minus previous location is (1, 1)
 # draw a top-right arrow
 if col-pcol == 1 and prow-row == 1:
 magic_arrow(pcol, prow, True, n, altc)

 # if previous col location is identical to current
 # col location, draw a down arrow (unless it's the last cell)
 elif pcol == col and num != n**2:
 magic_arrow(pcol, prow, False, n)
 altc += 1

 # the following two elif sentences take care of drawing two
 # arrows in case of wrapping: one originating from the current
 # location, the other to the next location
 elif col-pcol == 1 and prow-row != 1:
 magic_arrow(pcol, prow, True, n, altc)
 magic_arrow(pcol, n, True, n, altc)

APPENDIX ■ ADDIT IONAL SOURCE L IST ING 347

 elif col-pcol != 1 and prow-row == 1:
 magic_arrow(pcol, prow, True, n, altc)
 magic_arrow(-1, prow, True, n, altc)

 # last cell
 elif num == n**2:
 pass

 # if we've reached this point, there's a bug
 else:
 raise ValueError, "We should never be here."

def show_some():
 figure()
 for i in range(4):
 subplot(2, 2, i+1)
 show_alg(2*i+3)
 title('N='+str(2*i+3))

show_some()

I’ve defined the function magic_arrow() that draws an arrow at a given position using a
matplotlib arrow patch. The arrow’s direction is determined by comparing the current loca-
tion with the previous location. Other than that, the code is similar to the one discussed in
 Chapter 7.

Fractal Function Source Code
In Chapter 9 I made use of a variation of the fractal script in Chapter 7 to create a collage by
wrapping it within a function. Listing A-5 shows the function used in creating the fractal col-
lage in Chapter 9.

Listing A-5. Fractal Collage Function

from PIL import Image
from cmath import *

def fractal(delta=0.000001, res=800, iters=30):
 """Creates a z**4+1=0 fractal using the Newton-Raphson method."""

 # create an image to draw on, paint it black
 img = Image.new("RGB", (res, res), (0, 0, 0))

 # these are the solutions to the equation z**4+1=0 (Euler's formula)
 solutions = [cos((2*n+1)*pi/4)+1j*sin((2*n+1)*pi/4) for n in range(4)]
 colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)]

APPENDIX ■ ADDIT IONAL SOURCE L IST ING348

 for re in range(0, res):
 for im in range(0, res):
 z = (re+1j*im)/res
 for i in range(iters):
 try:
 z -= (z**4+1)/(4*z**3)
 except ZeroDivisionError:
 # possibly divide by zero exception
 continue
 if(abs(z**4+1) < delta):
 break

 # color depth is a function of the number of iterations
 color_depth = int((iters-i)*255.0/iters)

 # find to which solution this guess converged to
 err = [abs(z-root) for root in solutions]
 distances = zip(err, range(len(colors)))

 # select the color associated with the solution
 color = [i*color_depth for i in colors[min(distances)[1]]]
 img.putpixel((re, im), tuple(color))

 return img

349

Symbols
>>> prompt, 3, 55
+= operation, 13–14, 63
- (range) character in regular expressions, 175
* asterisk character in regular expressions,

174
 \ (backslash character), 59
% (bitwise AND), 63
^ (bitwise exclusive OR), 63
^ (start of a string) character in regular ex-

pressions, 174
~ (bitwise not), 63
| (bitwise OR), 63
| (alternative) character in regular expres-

sions, 175
[] (brackets), 15, 67, 69, 73, 74, 76
(comment symbol), 5, 85, 157
{} curly braces, 74
$ (dollar sign) character in regular expres-

sions, 174
. (dot) symbol, 12
. (dot) symbol in regular expressions, 173
== (double equal sign), 63
… (ellipsis symbol), 3, 12, 236
> (greater than), 63
>= (greater-than-or-equal), 63
!= (inequality), 63
< (less than), 63
<= (less-than-or-equal), 63
% (modulo) operator, 96
% (string formatting), 82–84
) (parenthesis), 71–72, 93, 97
+ (plus) character in regular expressions, 174
? (question mark) in regular expressions, 174
<< (shift left) operator, 63
>> (shift right) operator, 63

A
AbiWord, 48
abspath() function, 335
acos() function, 223

add() function
in sets, 79
ImageChops operation, 313, 315

add_option() function, 329, 331
algebra. See linear algebra
all() function, 92, 242
Alphabet, Hebrew (example), 179
any() function, 92, 242
append() function, 70–71
arc() function, 295
archive files

creating, 338
extracting, 338–339

archiving modules, 337
arctan2(dy, dx) function, 21
argv variable, 327
arithmetic operations, on arrays, 239–240
arange() function, 235–237
array() function, 234
array of values, 118–119
arrays

creating, 234–235
data types, 118–119
functions, 234–235, 247
indexing, 235
math functions, 239–240
methods and properties, 241–246
N-dimensional arrays, 234–239
numerical, 14
one-dimensional, 235
reshaping, 235
slicing, 235
storing directory contents in, 127–128
of structs, 119–122
tuples of, 17
two-dimensional, 235

Arrow() function, 219
arrows, adding to graph, 218–219
ASCII (American Standard Code for Informa-

tion Interchange), 135
asctime() function, 166–167, 169
asin() function, 223

Index

INDEX350

C
Calc, 48
capitalize() function, 145
Cartesian coordinates, 17–18
cascading, functions, 12
catalogs, 131–133
ceil() function, 222
center() function, 145
character completion, with GNU Readline,

40–41
character count, 151–152
chdir() function, 58
children parameter, 216
chirp() function, 274
chmod() function, 334
choice() function, 232
cholesky() function, 253
chord() function, 295
chown() function, 334
chr() function, 92, 179
circles

calculating area of, 255–256
plotting, 194

cla() function, 197
classes, 96–97
clear() method, 76–78
clf() function, 197
clip() function, 242
clock() function, 131
close() function, 148, 197
cmath module, 221–227

functions, 223
Newton fractal (example), 224–227

cmp() function, 92
coLinux, 34
color depth (fractal example), 226
color maps, 211–212
colors

image, 300–303
for plots, 193

COM ports, 2–4
combining files (example), 153–155
combining data based on the epoch, 172–173
command-line interface (CLI), 35, 54–55
command-line parameters, 327–333
commands, entering, 55–56
Comma Separated Values (CSV) files. See CSV

(Comma Separated Values) files
comments, 5, 85, 157
comment symbol (#), 157
comparison operators, 63

assert statement, 140–143
atan() function, 223
atan2() function, 223–224
attributes, 96

array, 241–246
image, 287–288

augmented assignments, 63
autocompletion feature, 46
axes parameter, 216
axhline() function, 196
axis parameters, setting, 215–217
axis behavior, controlling, 194
axis() function, 20, 186, 194, 216
axis labels, 198–199
axvline() function, 196

B
backslash character (\), 59
bar charts, 201–204
Bash, 35
bartlett() function, 278
base conversions, 138–143
base conversions (example), 138–143
basename() function, 335
bases, 61–62
baud rate, 3, 5
binary conversion, in Python 2.5, 139–140
binary editor, 48
binary files, 117–123, 135

array of structs, 119–122
array of values, 118–119
file formats, 104–105
header files with, 122–123
pros and cons, 109
random access and, 319–325

binding, variables, 80
bin() function, 143
bisect() function, 267–268
bitwise AND (%), 63
bitwise exclusive OR (^), 63
bitwise not (~) operator, 63
bitwise operations, 63
bitwise OR (|), 63
Booleans, 67–68
bool() function, 68
break statement, 91–92
bucket fill, 308–312
built-in functions, 92–93
butter() function, 280
bz2 module, 337

INDEX 351

comparing mortgages (example), 237–238
compiled programming languages, 2–3
compile() function, 173
complex data type, 64–65
complex numbers, 222
compress() function, 242
compression (file compression), 337–339
concatenation, of lists, 69
ConfigParser module, 124, 332
configuration files, 123–125
conj() function, 243
conjugate() function, 253
constant() function, 313
constructors, 97
context_diff() function, 341
continue statement, 91–92
contour() function, 210
contour plots, 210
Cooperative Linux, 34
copy() method, 76, 78, 80, 292
cos() function, 223
cosh() function, 223
cosine wave, Fourier transform of, 276–277
count() function, 144
counting objects (image processing exam-

ple), 303–312
cPickle module, 325–327
crop() function, 292–293
cropping images, 292–293
C++ style comments, 157
CSV (Comma Separated Values) files, 6–7,

109–117, 159–163
creating, 115–116
limitations of, 116
processing, 9
reading, 9–12
spreadsheets and, 48
when to use, 117

.csv extension, 7
csv module, 9–12, 116, 159–163
csv.reader object, 160
csv.writer object, 160–161
ctime() function, 171
cumprod() function, 242
cumsum() function, 242
curly braces {}, 74
curve fitting, 258–267
Cygwin, 33–34
Cygwin Net Release Setup Program, 33

D
darker() function, 313
data

combining, based on epoch, 172–173,
332–333

exponential, fitting, 263–264
gathering, 2–6
GPS, 2–6, 12–25
two-dimensional, 285

data analysis, 8–17
GPS data, 12–17
reading CSV files, 9–12

databases, vs. files, 133–134
data files

catalogs, 131–133
compiling list of, 8–9
indexing, 128–131
locating, 126–134
searching for, 127–128
storage location, 7

data organization, 6–7
catalogs, 131–133
directories, 126
file formats, 108–126
file name conventions, 102–108
files vs. databases, 133–134
indexing, 128–131
introduction to, 101–102
searches, 127–128

data storage
decisions on what to store, 116–117
using binary files, 117–123

data structures, 68–80
dictionaries, 68, 74–78
flattened, 238–239
lists, 68–72
ndarrays (NumPy arrays), 233–236
sets, 78–80
tuples, 68, 72–73

data types
array, 118–119
Booleans, 67–68
complex, 64–65
file, 147
float, 63–64
int, 60–61
long, 60–61
strings, 65–67

data visualization, 17–25
annotating the graph, 20–22
plotting GPS data, 18–20

INDEX352

dot() function, 252
dot products, 252
dot (.) symbol, 12, 173
double equal sign (==), 63
double quotes, 65
dual-boot systems, 37
duplicate files, searching for, 128–131

E
EAFP (It’s Easier to Ask Forgiveness than

Permission) motto, 4, 138, 155, 158,
288, 290

editors, 45–48
eig() function, 253
element-by-element multiplication, 252
elif statement, 17, 85–86
ellipse() (ImageDraw function), 295
Ellipse (matplotlib patch object), 217
ellipsis symbol (...), 3, 12, 236
else statement, 85–86
encode() function, 179
end-of-day report, 170–171
endswith() function, 9, 146
Enthought Python Distribution (EPD), 38
enumerate() function, 25, 90, 96, 155
epoch, 165, 168–173, 332–333
exceptions, 56, 86–89
execfile() function, 3, 59
exec statement, 140–143
exists() function, 107–108, 335
exit() function, 329
exp() function, 223
expm() function, 254
exponential data, fitting, 263
extend() function, 70–71
eye() function, 235

F
fabs() function, 222
Fast Fourier Transform, 275–277
fft() function, 275–277
Fedora project (Linux), 32
field names (in CSV files), 162
figure() function, 22–23, 186, 190
filecmp module, 339–340
file compression, 337–339
file formats, 6–7, 104–105, 108–126

binary, 104–105, 109, 117–123
converting image, 289–290
CSV, 6–7, 109–117
header files, 122–123

preprocessing prior to, 221
subplots, 23
using text, 23–25
velocity plot, 22–23

date
extracting from file contents, 168
in file name, 102–103
parsing and formatting, 165–168
writing in current locale (example),

180–181
Debian Linux, 32
decimal module, 247
deck of cards, 233
decode() function, 179
deep copy, 81
def keyword, 93
De la Loubere method, 244–246
delimiter, 161
del statement, 71
determinant of matrix, 253
detection, signal in noise (example), 270–274
det() function, 253
development environment

image viewers, 49
operating systems, 32–37
Python environment, 37–44
software components for, 31–52
spreadsheets, 48
text editors, 45–48
version control systems (VCSs), 49–51
word processors, 48

dict() function, 74
dictionaries, 13, 68, 74–78
dictionary methods, 75
DictReader object, 162–163
DictWriter object, 162–163
diff() function, 24, 218, 247, 273–274
difference() function, 78, 313
difference_update() method, 78
difflib module, 341–342
directories, 126

changing, 8, 57
comparing, 340
compiling list of files in, 8–9
listing contents of, 8
storing in arrays, 127–128

directory manipulation, 333–337
dirname() function, 335
dir statement, 99, 216
discard() method, 78
docstrings, 10, 13–14, 94, 250
doctest module, 140, 245

INDEX 353

image, 104
INI files, 123–125
Readme files, 123
selecting, 108
text, 109
XML, 125

FileInput module, 332–333
file manipulation, 333–337
file names, 7, 102–108

automating creation of, 106
date and time in file name, 102–103
extensions, 104–105
pattern matching, 334
running index implementation, 107–108
titles, 104

file pointers, 319
files

archive, 338–339
binary, 117–123, 135, 319–325
catalog, 131–133
closing, 148
comparing, 339–342
configuration, 123–125
CSV files, 6–12, 109–117, 159–163
data. See data files
vs. databases, 133–134
decisions on what to store, 116–117
directories for, 126
documenting contents of, 101
duplicate, 128–131
fixed-size, 323, 328–329
header, 122–123
indexing, 128–131
log files, 163–168, 172–173
multiple, 45, 333
opening, 147–148
reading, 149–150
reading images from, 286
Readme, 7, 123
saving graphs to, 187–189
searching for, 127–128
tar, 338–339
text. See text files
writing to, 148–149

fill() function, 242
filter design, 279–281
filtering, 279–284
filter() method, 316
filters

finite-impulse-response (FIR) filters, 279
high-pass filters (HPFs), 279
image, 315–317

infinite-impulse-response (IIR) filters, 279
low-pass filters (LPFs), 279

finally statement, 87
find() function, 20, 143–144, 269, 271
findall() function, 173
findfont() function, 297
finite-impulse-response (FIR) filters, 279
firwin() function, 279
fixed-length records, 321–322
fixed-size files, 323, 328–329
flattened data structures, 238–239
flatten() function, 243
float data type, 63–64
float() function, 16, 64, 137–138, 159
floating-point numbers, 16, 63–64
flood fill, 308–312
floor() function, 222
flow control statements, 85–92
fmod() function, 222
fonts, 296–297
formatting

date and time, 165–168
with print statement, 82–84
strings, 145–146

for statement, 89–90
Fourier expansion, 239–240
Fourier transform, 275–279

of cosine wave, 276–277
window functions, 277–279

fractals, 224–227, 347
fractions module, 248
freqs() function, 279
frequency domain, 275
freqz() function, 279–280
frexp() function, 222
fromfile() function, 119, 244
fromkeys() function, 76
fsolve() function, 267–268
functions, 68

approximating, with polynomials, 264–266
built-in, 92–93
cascading, 12
defining, 93–96
fitting to discrete known values, 258–267
Fourier transform, 275–279
generators, 94–95
searching for, 250
special functions, 268
See also specific functions

INDEX354

G
gauss() function, 229
gausspulse() function, 274
gca() function, 215
gcf() function, 215
generator expressions (genexps), 95–96
generators, 94–95
Gentoo Linux, 32, 38
get() function, 76–77
getatime() function, 335
getctime() function, 335
getcwd() function, 58
getdata() function, 301–302
getmtime() function, 335
getopt module, 329
getp() function, 214–217
getsize() function, 336
glob module, 334
gmtime() function, 112, 169
GNU Emacs, 47
GNU/Linux, 32–33
Gnumeric, 48
GNU Nano, 47
GNU Octave, 41, 189
gnuplot, 42–43
GNU Public License (GPL), 29
GNU Readline, 40–41
GPS data

analyzing, 12–14
case study, 2–3, 8
extracting, 14–17
plotting, 18–20
recording, 2–6
visualization, 17–25

GPS graphs, annotating, 20–22
GPS values, 2
graphical user interface (GUI), 35
graphs, 183

adding arrows to, 218–219
additional, 210–213
annotating with text, 197–200
axis, 194
axis labels, 198–199
bar charts, 201–204
colors, 193
controlling, 194–197
erasing, 197
getting and setting values, 213–217
grids and ticks, 195–196
histograms, 204–205

vs. image files, 184–187
interactive, 185–187
legends, 198–199
line widths, 192
logarithmic plots, 207–208
marker sizes, 192
matplotlib package. See matplotlib

package
patches, 217–220
pie charts, 206–207
plotting, 189–193
polar plots, 208–209
saving to files, 187–189
stem plots, 209–210
subplots, 196–197
summary example, 200–201
target audience and, 183
titles, 198
types, 201–213
See also plots

greater than (>), 63
greater-than-or-equal (>=), 63
grep, 155
grid() function, 19, 195–196
grids, 195–196
GUI (graphical user interface), 35
gzip module, 337

H
hamming() function, 210, 278
hanning() function, 278
hashing algorithm, 75
has_key() method, 76–77
header files, 122–123
header stamps, 13
head() function, 152–153
head utility, 152–153
heart-rate monitor (example), 281–282
Hebrew alphabet (example), 179–180
help() function, 10–11, 185, 99
help system, 56–57
hex() function, 62, 138–140
hexadecimal base, 62
hexedit, 48
high-pass filters (HPFs), 279
hist() function, 204–205
histograms, 204–205
history command, 58
hyperbolic function, 223
hypot() function, 223

INDEX 355

I
i18n (internationalization), 177
IDEs (integrated development environ-

ments), 39–41
IDLE, 39
ifft() function, 276
if statement, 17, 85–86
iirdesign() function, 279
imag (imaginary) attribute, 243
image annotation, 294–300

fonts, 296–297
with geometrical shapes, 294–295
text annotations, 295–300

image arithmetic, 312–315
image attributes, 287–288
image catalog, 287–288, 298
ImageChops module, 312–315
Image class, 286
ImageDraw object, 294–300, 310
ImageFilter class, 316–317
image filtering, 315–317
image formats, 104
image modes, 291
image processing, 300–315

counting objects, 303–312
matrix representation and colors, 300–303
packages for, 43
two-dimensional data, 285

images
colors, 300–303
converting file formats, 289–290
copying and pasting, 292
creating, 286, 291
cropping and resizing, 292–293
displaying, 288
manipulation of, 291–294
reading from file, 286
rotating, 293–294
split, 300–301
thumbnail, 298–300

image viewers, 49
import statement, 3, 98–99
indentation (tabs), 5
index() function, 71
indexing, 128–131

arrays, 235
lists, 70
tuples, 73

inequality (!=), 63
infinite-impulse-response (IIR) filters, 279

INI files, 123–125
__init__ function, 97
inner() function, 252–253
inner products, 252
in operator, 67, 70, 74
insert() function, 71
int() function, 60, 62, 103, 137–140, 159
int data type, 60–61
integer division, 64
integrated development environments

(IDEs), 39–41
integration algorithms, 254–258
interactive graphs, 185–187
interactive help system, 56–57
interactive Python, 54–58
interactive sessions, vs. Python scripts, 3
internationalization, 176–181
interp() function, 259, 266
interpolation, 258–267

approximation of functions using, 264–266
piecewise linear interpolation, 258–260
spline interpolation, 266–267

interpreted programming languages, 2–3
intersection() function, 78
intersection_update() method, 78
inverse square root, 258
inv() function, 252
IPython, 39–40
IronPython, 38
isabs() function, 336
isalnum() function, 146
isdigit() function, 158
isdir() function, 336
isfile() function, 336
islower() function, 146
ISO date and time format, 15, 167
isspace() function, 146
issubset() method, 78
issuperset() method, 78
istitle() function, 146
isupper() function, 146
-i switch, 59
items() method, 76
iterators, 89, 90, 94–95
iteritems() method, 76, 90
iterkeys() method, 76
itervalues() method, 76

INDEX356

ljust() function, 145
locale.getpreferredencoding() function, 181
locale module, 177–178
localization, 176–181
localtime() function, 106, 165, 166
loc parameter, 199
log10() function, 223
logarithmic function, 223
logarithmic plots, 207–208
log files, 163–168, 172–173
log() function, 223
logical operations, 68
loglog() function, 207–208
logspace() function, 207, 235
long data type, 60–61
longitude, 15–17
lookfor() function, 250
lower() function, 145
low-pass filters (LPFs), 279
lstrip() function, 144

M
Mac OS, 32, 36
macros

recording, 46–47
support for, 46

magic square arrows, 345–347
magic squares, 244–246
makedir() function, 335
manually installing packages (example), 44
markers, 189–190
marker sizes, 192
match() function, 173
math

math module, 221–227
cmath module, 221–227
data visualization and, 221
Newton fractal (example), 224–227
NumPy module, 233–247
random module, 228–233

mathematical expressions, 200
mathematical symbols, 200
math functions, 239–240
math module, 221–224
MATLAB, 1, 41, 189
matplotlib.finance module, 113
matplotlib objects, 214–216
matplotlib package, 17–19, 41–42, 183–184,

286
file formats supported by, 187–188
getting and setting values, 213–217

J
join() function, 137, 144, 336
JPEG (Joint Photographic Expert Group), 184
justification, text, 145
Jython, 38

K
kaiser() function, 278
keys, 74
keys() method, 76

L
l10n (localization), 177
Latin alphabet, 180
latitude, 15, 17
lazy copy, 81
ldexp() function, 222
legend() function, 19, 198–199, 210
legends, 198–199
len() function, 67, 70, 137, 151
less than (<), 63
less-than-or-equal (<=), 63
licensing, 51–52
lighter() function, 313
linear algebra

additional functionality, 254
matrix decomposition, 253–254
solving systems of linear equations,

251–252
vector and matrix operations, 252–253

linear algebra, 251–254
linear equations, solving systems of, 251–252
linear interpolation, piecewise, 258–260
linearization process, 15, 112
linear regression

of nonlinear functions, 263
with polyfit(), 261–262

line breaks, suppressing, 82
line count, 151–152
line() function, 295
line numbering, 46
lines, 137, 189–190
line widths, 192
linspace() function, 235, 237
Linux, 32–36
list comprehensions, 91, 237–238, 304
listdir() function, 58
list() function, 69
list methods, 71
lists, 68–72

INDEX 357

interactive graphs, 185–187
plotting graphs, 189–193
ways to use, 184

matrix
calculating inverse of, 252
decomposition, 253–254
operations, 252–253
representation, 300–303

MaxFilter, 317
max() function, 243
mean() function, 243
MedianFilter, 317
Mercurial, 50
merge() function, 302
meshgrid() function, 213
methods, 96

array, 241–246
See also functions

Minesweeper, 308
MinFilter, 317
min() function, 226, 243
mkdir() function, 335
mktime() function, 112, 169
ModeFilter, 317
modf() function, 222

modules, 97–99
modulo (%) operator, 96
mortgage comparison (example), 237–239
movement artifact (example), 281
moving average (example), 283–284
multiple files

editing, 45
searching for text in, 333

N
naming conventions. See file names
National Marine Electronics Association

(NMEA), 13
ndarray (NumPy) object, 233–234
ndim attribute, 243
N-dimensional (NumPy) arrays, 234–239

functions for creating, 234
mortgage comparison (example), 237–239
usefulness of, 236

newton() function, 267–268
Newton’s method (also Newton-Raphson

method), 224–227, 258, 267
NMEA 0183 format, 13–14
noise, detection of signal in presence of,

270–274
nonlinear equations, solving, 267–268

nonlinear functions, linear regression of, 263
nonzero() function, 242
Notepad++, 47
nudgeing subplots, 343–344
numbers

base conversions, 138–143
bases, 61–62
bitwise operations, 63
comparisons, 63
complex, 64–65, 222
converting strings to, 15, 137–143
extracting from text file, 157–159
floating-point, 63–64
int data type, 60–61
long data type, 60–61
random, 228–233

numerical analysis, 249–268
curve fitting, 258–267
integration, 254–258
interpolation, 258–267
linear algebra, 251–254
numerical integration, 254–258
polynomials, 260–266
solving nonlinear equations, 267–268
splines, 266–267
special functions, 268
root finding (polynomials), 260

numerical arrays, 14
numerical integration, 254–258
NumPy module, 14, 41–42, 222

array creation, 234–235
array methods and properties, 241–247
lookfor() function, 250
math functions, 239–240
ndarray object, 233–234
N-dimensional arrays, 236–239
slicing, indexing, and reshaping arrays,

235
who() function, 250

O
object-oriented programming, 96–97
objects

counting, in image processing, 303–312
lists, 69–72
tuples, 72–73

object serialization, 325–327
octal base, 62
Octave-Forge, 250
oct() function, 62, 138–140
one-dimensional arrays (vectors), 235

INDEX358

paste() function, 292
patches, 217–220
path names, 127
PATH variable, 59
patterns, regular expression, 173–174
PDF, 184
Pickle module, 325–327
piecewise linear interpolation, 258–260
pie charts, 206–207
plain text files, 135
plot() function, 19–20, 189–193, 214
plot lines, 189–190
plot markers, 189–190
plots, 183

changing color of, 20
contour, 210
displaying several graphs in one, 191
GPS location, 18–20
logarithmic, 207–208
matplotlib package, 183–184
plot summary example, 200–201
polar, 208–209
stem, 209–210
subplots, 196–197, 23
velocity, 22–23
See also graphs

plotting, 189–193
colors, 193
lines and markers, 189–190
line widths, 192
marker sizes, 192
multiple graphs on one figure, 191
packages for, 42–43

PNG (Portable Network Graphics), 184
point() function, 295
polar plots, 208–209
poly() function, 260
polyadd() function, 260
polyder() function, 261
polydiv() function, 260
polyfit() function, 261

approximation of functions, 264–266
linear regression with, 261–262

polygon() function, 295
polyint() function, 261
polymul() function, 260
polynomials, 260–266

approximating functions with, 264–266
linear regression, 261–263
representing as vectors, 260
uses of, 261–266

polysub() function, 260

ones() function, 234
open() function, 147–148
operating systems, 32–37

choosing, 35–36
GNU/Linux, 32–33
Mac OS, 32
using several, 36–37
Windows, 33–35

OptParse module, 329–332
ord() function, 92
os.chdir(path) function, 58
os.chmod() function, 334
os.chown() function, 334
os.getcwd() function, 58
os.listdir(path) function, 58
OS locale support, 177
os.makedirs() function, 335
os.mkdir() function, 335
os module, 57–58, 334–335
os.path.abspath() function, 335
os.path.basename() function, 335
os.path.dirname() function, 335
os.path.exists() function, 107–108, 335
os.path.getatime() function, 335
os.path.getctime() function, 335
os.path.getmtime() function, 335
os.path.getsize() function, 336
os.path.isabs() function, 336
os.path.isdir() function, 336
os.path.isfile() function, 336
os.path.join() function, 137, 144, 336
os.path module, 335–336
os.path.splitext() function, 336
os.path.split() function, 336
os.remove() function, 71, 78, 335
os.rename() function, 335
os.renames() function, 335
os.rmdir() function, 335
os.walk() function, 8–9
outer() function, 253
outer products, 253
output files, naming, 227

P
packages, 41–44, 97–99
packages, manually installing (example), 44
Parallels, 34
parameters, command-line, 327–333
parse_args() method, 329, 331
parsing, date and time, 165–168
pass statement, 4, 86

INDEX 359

polyval() function, 261
pop() function, 71, 76, 78
popitem() method, 76
port numbers, 3–4
PostScript, 184
pow() function, 223
power functions, 223
pprint() function, 81
printf() function, 82, 82
print statement, 81–84
probability questions, solving using random

module, 229–231
prod() function, 243
programming languages

compiled, 2–3
interpreted, 2–3

projections, plotting, 18
properties, array, 241–246
ptp() function, 243
putdata() function, 302
putpixel() function, 226
.py extension, 3
PyGTK, 184
PyLab module, 14, 41, 184–185
PyReadline, 40
pySerial module, 3–4, 43
Python

about, 53–54
as interpreted programming language, 2–3
comments in, 5
data structures, 68–80
data types, 60–68
downloading, 38
entering commands, 55–56
functions, 92–96
help system, 56–57
image processing packages, 43
installation, 37–44
integrated development environments

(IDEs), 39–41
interactive mode, 54–58
invoking, 54–55
language features, 54
math capabilities, 221–248
modules and packages, 97–99
operating systems and, 32–37
packages (additional), 43
plotting packages, 42–43
running interactively, 2–3
running scripts in, 3, 58–59
scientific computing packages, 38, 41–42
stand-alone (natively) environment, 33

statements, 81–92
variables, 80–81
versions, 37–38

Python 2.5, 38, 139–140
Python 2.6, 38
Python 3.0, 38
Python Imaging Library (PIL), 43, 226, 285,

290
Python scripts

vs. interactive sessions, 3
running, 3, 58–59

Python Software Foundation (PSF), 29
Python Standard Library, 8
Python Win32 Extensions, 44
Python(x,y), 38

Q
qr() function, 253
quad() function, 257–258
Quake III, 258
quiver() function, 211–213
quotechar parameter, 161
quotes

double, 65
single, 65
triple-double-quotes, 65–66

R
randint() function, 229
randn() function, 193, 271
random access, 319–321
random() function, 229, 231
random module, 228–233

functions, 229, 232
random sequences, 232
solving probability questions using,

229–231
random numbers, 228–233
random sequences, 232
randrange() function, 229, 307
range() function, 90, 92
ranges, 175
raw_input() function, 84–85
raw strings, 65–66
read() function, 121, 149–150
readline() function, 319
readlines() function, 149–150, 152
Readme files, 7, 123
read(n) function, 319
real attribute, 243
recording gps data, 5–6

INDEX360

rectangle() function, 295
recursion, 308–310
regular expressions, 173–176

patterns, 173–174
ranges, 175
removing extra spaces with, 174
special sequences, 175
when to use, 175–176

remez() function, 279
remove() function, 71, 78, 335
rename() function, 335
renames() function, 335
replace() function, 143–145, 158
report() function, 340
research and development (R&D), 1, 29
reshape() function, 235, 243
reshaping, arrays, 235
resize() function, 235, 243, 292–293
resizing images, 292–293
re.split() function, 173
result variable, 56
return statement, 93
reverse() function, 71
reversed() function, 25, 90
rgrids() function, 208
rjust() function, 145
rmdir() function, 335
Rossum, Guido van, 54
rotate() function, 293–294
round() function, 243
rstrip() function, 144
running index, 107–108
run (IPython) command, 3

S
sample() function, 232
savefig() function, 187–189
save() function, 289
sawtooth() function, 274
scanning serial ports, 3–4
scientific computing packages, 41–42
SciPy module, 41–42, 250–251

importing modules, 251
scipy.interpolate module, 266–267
scipy.integrate module, 257
scipy.optimize module, 267
scipy.signal module, 279
scipy.special module, 268

SciTE (Scintilla Text Editor), 47
scope, 97

scripts, 4
Python, 3, 58–59
running, 3, 58–59
stand-alone, 328–329
storage location, 7
use of, 8

search() function, 173
searching, text files, 155–156
searchsorted() function, 242
seek() function, 319–323
select() function, 269
self argument, 97
semilogx() function, 207
semilogy() function, 207–208
sequences, random, 232
sequence unpacking, 17
Serial() function, 4
serial port parameters, 3
serial ports, 2

accessing, 3
closing, 4, 6
scanning, 3–4

set() function, 78
set operations, 78
setdefault() method, 76
setp() function, 183–217
sets, 78–80
setuptools package, 44
shallow copy, 81
shape attribute, 243
shift left (<<) operator, 63
shift right (>>) operator, 63
show() function, 20, 185–187, 189, 288
shuffle() function, 232
shutil module, 336–337
Siamese method, 244–246
signal processing, 249–250, 268–284

detection of signal in noise, 270–274
diff() function, 273–274
filtering, 279–284
filter design, 279–284
find() function, 269
Fourier transforms, 275–277
select() function, 269
split() function, 273–274
waveforms, 274–275
where() function, 251
window functions, 277–279

signal.triang() function, 270
simulations, random numbers and, 228–229
sin() function, 223, 264–266

INDEX 361

single quotes, 65
sinh() function, 223
sleep() function, 167
slicing

arrays, 235
lists, 70
tuples, 73

software components, 31–52
image viewers, 49
licensing, 51–52
operating systems, 32–37
Python, 37–45
spreadsheets, 48
text editors, 45–48
version control systems, 49–51
word processors, 48–49

software licensing, 51–52
solve() function, 252
sort() function, 71, 242
sorted() function, 92
source listing (additional), 343–347
spaces, removing extra, 144–145, 174
specgram() function, 211–212
special characters, 173–174
special functions, 268
special sequences, 175
spherical coordinates, converting to Carte-

sian coordinates, 17–18
spline() function, 266–267
spline interpolation, 266–267
split() function, 336

cvs module vs., 116
image processing and, 300, 336
regular expressions and, 173
removing extra spaces, 144
signal detection and, 273–274
splitting text, 136–137

splitfile() function, 153–155
splitext() function, 336
split images, 300–301
split() function, 103
splitlines() function, 136, 144, 151
spreadsheets, 48
sqrt() function, 223, 258, 264
square() function, 274
stand-alone (natively) environment, 33
stand-alone scripts, creating, 328–329
star patch (example), 303–306
startswith() function, 146
state machines, 164

statements, 81–92
break, 91–92
comments, 85
continue, 91–92
dir, 99
elif, 85–86
else, 85–86
exceptions, 86–89
flow control, 85–92
for, 89–90
if, 85–86
import, 98–99
pass, 86
print, 81–84
return, 93
try, 86–89
user input, 84–85
while, 91
yield, 94

statistics (GPS example)
calculating, 24
printing, 24–25

std() function, 243
stem plots, 209–210
storage location, of data, 7
str() function, 158
strftime() function, 165–168
string conditionals, 146
string operations, 66–67
strings, 56, 65–68, 136–149

comparing, 341–342
converting to numbers, 15, 137–143
counting number of words and lines in

(example), 137
expressing, 65–66
find and replace, 143–144
formatting, 145–146
joining, 137
raw, 65, 66
splitting, 136–137
stripping, 144–145
Unicode, 65, 178–181
writing to files, 148–149

string slicing, 15
strip() function, 144
strptime() function, 103, 165–166, 168
struct.calcsize() function, 120
structs, array of, 119–122
struct_time tuple, 165–166
struct.unpack() function, 121

INDEX362

plain, 135
reading, 149–150
regular expressions, 173–176
searching inside, 155–156
splitting and combining, 153–155
working with, 150–159
writing to, 148–149
See also CSV files

text() function, 21, 199, 295–300
text rendering, 199
textsize() function, 296
thetagrids() function, 208
thumbnail() function, 293
thumbnail index image, 298–300
ticks, 195–196
time

epoch representation, 168–173
extracting from file contents, 168
in file name, 102–103
linearizing the time base, 168–170
parsing and formatting, 165–168

time-based binary data, 323–325
time domain, 275
time module, 5, 164–165
timestamps, 107, 163
timestamp string, 15
title() function, 145, 198
titles

adding to graph, 198
file name, 104

tofile() function, 244, 324
tolist() function, 244
trace() function, 243
transpose() function, 243, 253
trapz() function, 256
triang() function, 275
trigonometric function, 223
triple-double-quotes, 65–66
try statement, 86–89
tuple() function, 72
tuples, 17, 68, 72–73
two-dimensional arrays, 235
two-dimensional data, 285
type() function, 92

U
Ubuntu Linux, 32
unichr() function, 179
Unicode strings, 65, 178–181
uniform() function, 229
union() function, 78

subdirectories, 126
sub() function, 173–174
subplot() function, 23, 196–197
subplot parameters, modifying, 215–217
subplots, 23, 196–197, 343–344
subtract() function, 313
Subversion, 50
Sudoku puzzles, 244
sum() function, 92, 243, 245–246
svd() function, 253
swapcase() function, 145
symmetric_difference() method, 78
symmetric_difference_update() method, 78
syntax highlighting, 46
sys.argv variable, 327

T
tabs, 5
tail() function, 152–153, 322–323
tail functionality, 322–323
tail utility, 152–153
tan() function, 223
tanh() function, 223
tanm() function, 254
tarfile module, 337
tar files, 338–339
target audience, 183
Taylor series expansion, 260
tell() function, 319–323
TeX syntax, 200
text, 23–25

adding to graphs, 197–200
find and replace, 143–144
removing extra spaces from, 144–145, 174
searching for, in multiple files, 333
splitting, 136–137
strings, 136–147

text annotations, 295–300
text editors, 45–48
text file formats, 104, 109–117
text files, 135–136

character, word, and line count, 151–152
closing, 148
comments, working with (example), 157
date and time, 163–173
extracting numbers from, 157–159
head and tail utilities, 152–153
internationalization and localization,

176–181
log files, 163–168
opening, 147–148

INDEX 363

unittest module, 140, 245
UNIX-like operating systems, 32–33
unpacking, tuples, 73
update() method, 76, 78
upper() function, 145
USB GPS receivers, 2
UTF (Unicode Transformation Format), 178
user input, 84–85

V
ValueError exceptions, 138
values() method, 74–76
var() function, 243
variables, 80–81

binding, 80
printing list of, 250
saving and retrieving, 326–327
scope, 97
serialization of, 325–327

vdot() function, 252
vector operations, 252–253
vectors, 235, 260
velocity plot, 22–23
version control systems (VCSs), 49–51
Vim, 47
virtual machines (VMs), 34–37

W
walk() function, 8–9
walking directories, 8–9
waveforms, 274–275
where() function, 251
while statement, 91
who() function, 250
window functions, 277–279
Windows, 33–36

Cygwin, 33–34
stand-alone (natively), 33
virtual machines (VMs), 34–35

word count (example), 151–152
word processors, 48
words, counting in strings, 137
words, used only once (example), 176
World factbook, CIA, 201
Write, 48
writelines() method, 148
write() method, 148–149, 179
wxPython, 184

X
x-axis, 194
xlabel() function, 19, 198
xlim() function, 205
XML (Extensible Markup Language), 125
xrange() function, 90, 95–96
xticks() function, 195–196
X windows, 47

Y
Yahoo! financial data, reading and plotting,

113–114
y-axis, 194
yield statement, 94
ylabel() function, 19, 198, 216
yticks() function, 195–196

Z
zeros() function, 234
zipfile module, 337
zip() function, 92, 226, 232
zlib module, 337

	cover-large.tif
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	fulltext_10.pdf
	back-matter.pdf

