
Beginning Robotics
Programming in
Java with LEGO
Mindstorms

T E C H N O L O G Y I N A C T I O N ™

—
Wei Lu

www.allitebooks.com

http://www.allitebooks.org

 Beginning Robotics
Programming in Java

with LEGO Mindstorms

 Wei Lu

www.allitebooks.com

http://www.allitebooks.org

Beginning Robotics Programming in Java with LEGO Mindstorms

Wei Lu
Keene, New Hampshire, USA

ISBN-13 (pbk): 978-1-4842-2004-7 ISBN-13 (electronic): 978-1-4842-2005-4
DOI 10.1007/978-1-4842-2005-4

Library of Congress Control Number: 2016959245

Copyright © 2016 by Wei Lu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Aaron Black
Developmental Editor: Gary Schwartz
Technical Reviewer: Nanyan Wang
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

 My wife Ling, for her endless love and support over the past fi ve years when
I worked on this book.

 My daughter Julia and son Ryan, for giving their dad the best fun times
when testing all of the robot’s programs with them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xi

Acknowledgments ... xiii

Introduction ...xv

 ■Chapter 1: Introduction to Lego Mindstorms and leJOS .. 1

 ■Chapter 2: Introduction to Motor Sensors ... 27

 ■Chapter 3: Controlling Wheeled Vehicles ... 43

 ■Chapter 4: Coordinators and Navigator API ... 65

 ■ Chapter 5: Depth-First Search Algorithm and
Its Implementation with Lego EV3 ... 83

 ■ Chapter 6: Breadth-First Search and Its Implementation
with Lego Mindstorms ... 101

 ■ Chapter 7: Hill-Climbing Search and Its Implementation
with Lego Mindstorms ... 119

 ■ Chapter 8: Dijkstra’s Algorithm and Its Implementation
with Lego Mindstorms ... 139

 ■ Chapter 9: The A* Search Algorithm and Its Implementation
with Lego Mindstorms ... 167

 ■Chapter 10: Introducing the Touch Sensor and Ultrasonic Sensor 183

 ■Chapter 11: Introducing the Light Sensor and Color Sensor 193

 ■Chapter 12: Introduction to Behavior Programming ... 203

 ■Chapter 13: Multithreading Programming with Java leJOS 219

Index ... 231

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xi

Acknowledgments ... xiii

Introduction ...xv

 ■Chapter 1: Introduction to Lego Mindstorms and leJOS .. 1

Introduction to Lego Mindstorms .. 1

Introduction to leJOS ... 3

Lego Mindstorms EV3 ... 3

Lego Mindstorms NXT .. 4

Lego Mindstorms RCX .. 4

JDK Installation ... 5

Testing the JDK Installation .. 8

Installation of leJOS and Its Firmware on Lego EV3 .. 10

Eclipse IDE and Eclipse Plug-In for LeJOS EV3 .. 16

Summary .. 25

 ■Chapter 2: Introduction to Motor Sensors ... 27

Basic Concepts of Java Programming ... 27

Introducing Motors .. 28

Introducing the Motor Class .. 29

Controlling Basic Movement Using Motors ... 29

Using a Tachometer for Inertia Testing ... 31

Controlling the Accurate Rotation of Motors ... 33

Interrupting Rotation... 34

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Regulating the Motor Speed ... 36

Tracing a Straight Line .. 39

Other Motor Methods .. 41

Summary .. 41

 ■Chapter 3: Controlling Wheeled Vehicles ... 43

Introduction to Navigation API ... 43

Basic Movement Using Pilot Classes .. 45

Tracing Out a Square ... 48

Tracing Out an Equilateral Triangle .. 53

Tracing Out a Regular Hexagon ... 58

Summary .. 63

 ■Chapter 4: Coordinators and Navigator API ... 65

Cartesian Coordinate System Basics ... 65

Navigator API Functions .. 66

Controlling the EV3 Brick Hardware .. 69

Programming Practice with the LCD Display ... 73

Programming Practice with Key Presses .. 74

Programming Practice with Navigator API .. 76

Summary .. 81

 ■Chapter 5: Depth-First Search Algorithm and Its Implementation with Lego EV3
.. 83

Overview of DFS Algorithm ... 83

leJOS EV3-Based DFS Algorithm ... 91

Summary .. 100

 ■Chapter 6: Breadth-First Search and Its Implementation with Lego Mindstorms
.. 101

Overview of BFS Algorithm .. 101

leJOS EV3-Based BFS Algorithm ... 108

Summary .. 118

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 7: Hill-Climbing Search and Its Implementation with Lego Mindstorms
.. 119

Introduction to Heuristic Search .. 119

Overview of Hill-Climbing Search .. 123

leJOS EV3-Based Hill-Climbing Algorithm ... 131

Summary .. 138

 ■Chapter 8: Dijkstra’s Algorithm and Its Implementation with Lego Mindstorms
.. 139

Introduction to Dijkstra’s Algorithm .. 139

leJOS EV3-Based Dijkstra’s Algorithm .. 155

Summary .. 165

 ■Chapter 9: The A* Search Algorithm and Its Implementation with Lego
Mindstorms .. 167

What Is the A* Algorithm? ... 167

The Basic Idea of the A* Searching Strategy ... 167

Practice for Path Planning Using the A* Algorithm .. 177

Summary .. 181

 ■Chapter 10: Introducing the Touch Sensor and Ultrasonic Sensor 183

Sensor Classes .. 183

Touch Sensor ... 184

Ultrasonic Sensor .. 186

Programming Practice with Touch Sensor .. 188

Programming Practice with Ultrasonic Sensor ... 190

Summary .. 191

 ■Chapter 11: Introducing the Light Sensor and Color Sensor 193

Light Sensor .. 193

Color Sensor .. 195

Programming Practice with the Color and Light Sensors .. 197

Summary .. 202

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 12: Introduction to Behavior Programming ... 203

Introduction to Behavior Programming ... 203

The Behavior API Functions .. 205

Design Pattern of Behavior Programming .. 206

Programming Practice with Behavior Programming .. 209

Summary .. 217

 ■Chapter 13: Multithreading Programming with Java leJOS 219

The Thread Concept .. 219

Using Threads in leJOS ... 220

Method start() ... 222

Method isAlive () ... 222

Method sleep () ... 222

Practice with Multithreading in Java leJOS .. 223

Summary .. 229

Index ... 231

www.allitebooks.com

http://www.allitebooks.org

xi

 About the Author

 Wei Lu is an Associate Professor of Computer Science at Keene
State College in New Hampshire. He received his Ph.D. in Electrical
and Computer Engineering from the University of Victoria, Canada.
Prior to joining Keene State College, he was a Senior Researcher
with the German Research Centre for Artificial Intelligence (DFKI
GmbH) and worked with Q1 Labs Inc. (Security Systems Division,
IBM since October 2011) as a Secure Software Engineer. His general
areas of research interests include Artificial Intelligence and Cyber
Security. He has had more than 50 papers published by peer-
reviewed journals, book chapters, and conference proceedings. In
addition, he coauthored, Network Intrusion Detection and
Prevention: Concepts and Techniques (Springer, 2010) and has
served as a technical program committee member and a technical
reviewer for more than 70 international conferences and journals.

www.allitebooks.com

http://www.allitebooks.org

xiii

 Acknowledgments

 I would like to express my deepest gratitude to the following people:

 My wife, for her endless love and support over the past five years when I worked
on this book.

 My daughter and son, for giving their dad the best fun times when testing all of
the robot’s programs with them.

 My parents, for giving me the encouragement to keep exploring new
opportunities.

 My colleagues Michael and Shari, for promoting Java robotics programming
computer science education.

 All my students, who participated the course, CS495 Artificial Intelligence and
Robotics. This book would not be published without their motivation.

 Nanyan Wang, for sharing his experience and insights in engineering and
computer science and his technical review of this book.

 The Apress team, for leading me through the entire jungle of authoring a book.
Without their passion for publishing the best robotics programming book in Java
for beginners, I would not have had an opportunity to write and publish this
book.

xv

 Introduction

 There are many cognitive tasks that people can do easily and almost subconsciously, but that have proven
extremely difficult to program on a computer. Artificial Intelligence (AI) is the process of developing
computer systems that can carry out these tasks, and it is devoted to the computational study of intelligent
behavior. Such intelligent behavior includes a wide range of phenomena, such as perception, problem
solving, use of knowledge, planning, learning, and communication in order to take a complicated task and
convert it into simpler steps that the robotics system can handle. Based on the Lego Mindstorms robotic
system, this book develops a wide range of techniques in the Java programming language for modeling these
phenomena, including state-space search, several knowledge representation schemes, and task-specific
methods.

 The book begins with an introduction to Lego Mindstorms EV3 and leJOS, an open source project
created to develop the technological infrastructure, and a tiny Java virtual machine in which to implant
software into Lego Mindstorms products using Java technology. It then continues with a discussion of
problem- solving techniques, such as breadth-first search, depth-first search, heuristic search, hill-climbing
search, and A star (A*) search, and finishes with robotics behavior programming in Java multithreading
programming with a set of sensors.

 A major goal of AI is to give computers the ability to think, or in other words, mimic human behavior.
The problem with this mimicry is that, unfortunately, computers don't function in the same way as the
human brain; that is, they require a series of well reasoned-out steps in order to find a solution. Therefore,
one challenge in robotics programming is how to convert something complex into something simple that
can be done by algorithms. This book bridges the gap between the theoretical AI algorithms and practical
robotics systems by developing a set of algorithms and building them into the well-known Lego Mindstorms
EV3 system in order to achieve an enhanced intelligence.

1© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_1

 CHAPTER 1

 Introduction to Lego Mindstorms
and leJOS

 This chapter provides step-by-step guidance on how to set up the environment for Java robotics
programming with Lego Mindstorms EV3, including a basic overview of Lego Mindstorms EV3 and an
introduction to leJOS EV3. The chapter covers how to install the leJOS EV3 development system onto your
computer, how to install leJOS EV3 firmware into the Lego EV3 brick, and how to install and apply the leJOS
EV3 plug-in for Eclipse IDE. Finally, you will create your first Java robotics program called HelloWorld ,
upload the HelloWorld program from your computer into the Lego EV3 brick through a USB cable, and
execute the program on Lego Mindstorms EV3.

 Introduction to Lego Mindstorms
 Lego Mindstorms is an educational product from Lego designed to help you build robots easily. The product
series has been evolving for decades, and Lego Mindstorms EV3 is the third generation. Figure 1-1 illustrates
a typical Lego Mindstorms EV3 robotics set in which the EV3 brick is the brain of Lego Mindstorms EV3. It is
an intelligent, programmable device that lets a Lego robot perform various intelligent operations .

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2005-4_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0397-2_1

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

2

 As illustrated in Figure 1-1 , typical components of Lego Mindstorms EV3 include motor ports, sensor
ports, a PC connection port, speakers, and EV3 buttons. Further details about the parts that comprise Lego
Mindstorms EV3 can be found at: http://www.lego.com/en-us/mindstorms/downloads .

 The motor ports included in Lego Mindstorms EV3 have four output ports for attaching motors: Ports
A, B, C, and D.

 Sensor Ports have four input ports for attaching sensors: Ports 1, 2, 3, and 4.
 A mini-USB PC connection port is used to connect a USB cable to your local computer and download

programs to the EV3 brick (or to upload data from the robot to your local computer). You can also use the
wireless Bluetooth connection for uploading and downloading programs.

 The speaker included in Lego Mindstorms EV3 makes programs with real sounds possible, and you can
listen to them when you run programs.

 You apply a dark gray button at the center of the EV3 brick for powering on, entering commands, or
running programs. The brick also has a light gray button on the upper-left side, which is used for reversing
actions, aborting a program, and shutting down the EV3. The other four light gray buttons on the EV3 brick
are used for moving left, right, up, and down while walking through the EV3 menu.

 Typical technical specifications for Lego Mindstorms EV3 are listed below. Additional detail on the Lego
EV3 specifications can be found at: http://www.lego.com/en-us/mindstorms/downloads .

• A single main processor controls the robot:

• 32-bit ARM9 processor running at 300 MHz

• Ability to access 64 MB of RAM

• Uses 16 MB of flash memory

 Figure 1-1. Lego Mindstorms EV3

http://www.lego.com/en-us/mindstorms/downloads
http://www.lego.com/en-us/mindstorms/downloads

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

3

• The operating system is Linux based

• Runs on 6 AA batteries or the rechargeable battery pack, which is slightly larger:

• Although 6 AA batteries are theoretically equate to 9 volts, you are more likely to
experience about 7-8 Volts, depending on the charge in the batteries

• Contains four motor/servo ports:

• Three motors (two large motors and one medium-sized motor) come with each
Lego Mindstorms EV3 kit

• Contains four sensor ports:

• Comes with a variety of sensors:

 - Touch

 - Color

 - Ultrasonic

 - Gyro

• Communication:

• Comes with Bluetooth onboard

• A program can be loaded onto the EV3 brick using Bluetooth at a slow speed or
with a USB cable at a much faster speed

• Can be programmed to allow for communications between two (or more) EV3
bricks while the program is executing

• Third-party software can be used to communicate between a PC and an EV3
brick while a program is executing

• Includes a built-in 178 × 128-pixel LCD graphical display

 Introduction to leJOS
 “leJOS” means Lego for Java Operating System, which is an open source language created for developing
software for Lego Mindstorms products using Java technology. The leJOS project offers support for Lego
Mindstorms EV3, and previous versions including Lego Mindstorms NXT and Lego Mindstorms RCX. The
leJOS project delivers the following solutions for Lego Mindstorms:

 Lego Mindstorms EV3
• JVM for EV3 Brick

• leJOS API for EV3 brick

• leJOS PC Communications

• leJOS Tools

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

4

 Lego Mindstorms NXT
• JVM for NXT Brick

• leJOS API for NXT brick

• leJOS PC Communications

• leJOS JavaME Communications

• leJOS Tools

 Lego Mindstorms RCX
• JVM for RCX Brick

• leJOS API for RCX brick

• leJOS PC Communications

• leJOS Tools

 In this book, we are focused on the most recent Lego Mindstorms product: that is, Lego Mindstorms
EV3. Typical official packages provided by leJOS for the EV3 brick are illustrated in Table 1-1 . These packages
allow you to manage the EV3 brick, sensors, and actuators, as well as some other pieces of EV3 hardware.

 Table 1-1. EV3 brick packages

 Package Description

 lejos.hardware To support EV3 hardware

 lejos.hardware.ev3 To access EV3 hardware

 lejos.hardware.lcd To access EV3 LCD

 lejos.hardware.motor To access EV3 motors

 lejos.hardware.port To access EV3 ports

 lejos.hardware.sensor To access all the sensors that are supported on the EV3

 lejos.hardware.video To access video devices

 Table 1-2 lists packages that offer support for some robotics problems, such as localization and
navigation.

Table 1-2 . Robotics/AI packages

 Package Description

 lejos.robotics.localization Localization support

 lejos.robotics.mapping Support for maps

 lejos.robotics.navigation Navigation classes

 lejos.robotics.objectdetection Object detection classes

 ejos.robotics.subsumption Support for subsumption architecture

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

5

 All leJOS releases have documentation on the packages in the format of Javadoc. Details on the
packages provided in leJOS EV3 can be found at: http://www.lejos.org/ev3/docs/ .

 Figure 1-2 shows the leJOS EV3 development documents .

 Figure 1-2. leJOS development documents

 JDK Installation
 The leJOS project is based on Java technology, so you need to install the Java Development Kit (JDK) current
release on your local computer. The JDK release can be found at: http://www.oracle.com/technetwork/
java/index.html .

 A Java Runtime Environment (JRE) is not sufficient, as it does not allow you to compile Java programs.
leJOS EV3 only works with a 32-bit version of the JDK and JRE , so even if you have a 64-bit system, you
should select a 32-bit version of the JDK. Also leJOS EV3 has been tested with JDK versions 1.7, and thus Java
7 is recommended in this book. As an example, the following steps show you how to install JDK using the
Java JDK installer called jdk-7u45-windows-i586.exe .

http://www.lejos.org/ev3/docs/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

6

 INSTALLING THE JDK

 1. Double-click the file jdk-7u45-windows-i586.exe , and you will see the screen
shown in Figure 1-3 . Then, click the Next button.

 Figure 1-3. Step 1 of the JDK Installation

 2. Install the JAVA JDK to the path C:\Program Files (x86)\Java\jdk1.7.0_45 ,
choose all components, and click the Next button, as illustrated in Figure 1-4 . It will
then install JDK components that you chose.

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

7

 3. Click the Close button, as shown in Figure 1-5 . The JAVA JDK is then successfully
installed on your computer at: C:\Program Files (x86)\Java\jdk1.7.0_45 .

 Figure 1-4. Step 2 of the JDK installation

 Figure 1-5. Step 3 of the JDK installation

 4. Once you have installed the J2SE SDK on your computer, it is necessary to check
that you can compile and execute any java program.

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

8

 Testing the JDK Installation
 Open a Shell console on your computer, and type the command Java :

• Java : Java command used to execute Java programs

• Javac : Java command used to compile Java programs

 The reason to perform the first test is because you need to check that your operating system recognizes
the command java , which is used to execute Java programs. If the shell console returns the options to use
the command, as shown in Figure 1-6 , then the test is a success.

 Figure 1-6. Test running the java command

 The second test is necessary to know if your operating system recognizes the command javac , which
is used to compile your programs. Type javac on your keyboard and check the message. If your system
doesn’t recognize the command, then you have to update environment variables in your computer system.
Right-click on your "My Computer" icon and select properties . Click on the tab advanced options . When you
click this command, you will see a new window where you can update the variable path. This path is used to
execute commands directly from a Shell keyboard.

 On the tab Advanced options tab, click on the Environment variables button, as shown in Figure 1-7 .
The path variable is located in the System variables area. Find the variable path , and click the Update button.
Path variables may have many statements because they are used by many applications.

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

9

 To update the path variable, find the path on your computer where the J2SE SDK is located. In this case,
the path is:

 C:\Program Files (x86)\Java\jdk1.7.0_45\bin

 Once you know the path, add it at the end of the content of the System variable path.
 You also need to create a new system variable called JAVA_HOME , and set its value to C:\Program Files

(x86)\Java\jdk1.7.0_45 . Once you have made the changes, reboot the DoS command window, and check
the command javac again.

 If you see the options for the command javac , as shown in Figure 1-8 , then the test is a success —
Congratulations! You have finished the JDK installation. Now you can use your computer to develop Java
programs, and you have the basic java tools installed and configured.

 Figure 1-7. A screenshot of setting up environment variables

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

10

 Installation of leJOS and Its Firmware on Lego EV3
 leJOS can be installed in the leading operating systems such as Windows, Linux, and Mac OS. Since you
have Java installed and working, it’s time to install the leJOS system on your PC and its firmware on the Lego
Mindstorms EV3. To do this, you will need an empty SD card with a maximum of 32GB capacity. Also, the
SD card needs to be formatted with a FAT32 partition. The easiest way to install leJOS is to download the
installer at: http://www.lejos.org .

 INSTALLING LEJOS

 1. Visit https://sourceforge.net/projects/ev3.lejos.p/files/0.9.1-beta/ ,
and then choose Download leJOS_EV3_0.9.1-beta_win32_setup.exe (41.8MB) .
You can then download and save leJOS_EV3_0.9.1-beta_win32_setup.exe on
your computer.

 2. Double-click leJOS_EV3_0.9.1-beta_win32_setup.exe , and you will see a leJOS
EV3 Setup Wizard, as shown in Figure 1-9 .

 Figure 1-8. Test running the javac command

http://www.lejos.org/
https://sourceforge.net/projects/ev3.lejos.p/files/0.9.1-beta/

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

11

 3. Click the Next button, and you will see the screen shown in Figure 1-10 .

 Figure 1-10. Choosing the right JDK for use with leJOS EV3

 Figure 1-9. leJOS setup wizard

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

12

 4. Choose the 32-bit JDK that you installed, for example, jdk1.7.0_45 , and then click
the Next button. You will see the screen shown in Figure 1-11 .

 Figure 1-11. Choosing a folder to install leJOS EV3 program

 5. Make sure that you have installed the JDK and set the path and JAVA_HOME to the
installation directory of your JDK. You can click browse to select the path to which
you want to install. In this example, I chose the destination folder C:\Program
Files (x86)\leJOS EV3 . After you set up the installation folder, click Next button
and you will see the screen shown in Figure 1-12 .

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

13

 6. Check to choose all of the components you wish to install, and then click Next
button. You will see the screen shown in Figure 1-13 .

 Figure 1-12. Choosing ALL components of leJOS

 Figure 1-13. Selecting folders where to install the sample leJOS projects

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

14

 7. Choose to install the Sample Projects and the Development Kit into root folder C,
click Next, and then you can use the default setting to create a Start Menu folder
called leJOS EV3 . After that, click Next and you will see the screen shown in
Figure 1-14 .

 Figure 1-14. General settings for the leJOS installation

 8. Double-check to see if all of the settings are OK, and then click Install. You will
see the installation progress bar, and eventually you will see the screen shown in
Figure 1-15 .

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

15

 9. Make sure that you have your SD card ready, and then click Finish . After that, a
 EV3SDCard utility program will start, as shown in Figure 1-16 .

 Figure 1-15. Finishing the leJOS installation

 Figure 1-16. EV3 SD Card creator

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

16

 10. Choose the right SD Card drive, click the link to Download the EV3 Oracle JRE, and
select the corresponding .gz file. Then click the Create button and you will see that
the EV3 firmware is burned into the SD card, as shown in Figure 1-17 .

 Figure 1-17. Installing the leJOS firmware into the SD card

 After the SD card is created, you then insert it into the EV3 brick, press the central dark gray button
to start up the EV3, and finish the leJOS firmware installation on EV3 brick. A leJOS EV3 logo will be
displayed on the LCD of the brick. After the installation is complete, a leJOS EV3 menu will be displayed
with a default IP address on the top (10.0.1.1). At this point, you are ready to proceed to the next step
and install the Eclipse plug-in for developing leJOS programs into the EV3 brick.

 Eclipse IDE and Eclipse Plug-In for LeJOS EV3
 Of course it is possible to do Java programming by merely using a text editor and a command line. However, it’s
much easier for programmers to click on buttons to make things happen rather than typing in commands and
optional parameters. Generally, standard text editors do not include many features that help you when editing
code, and they do not tell you when you misspell the name of a class or miss inserting a bracket. An Integrated
Development Environment (IDE) is a tool that allows you to enter, compile, and upload code to your EV3
using simple buttons, and it also monitors the code syntax by color coding your code so that you can identify
keywords and variables easily. One of the best open source IDEs is Eclipse by IBM, which is free, powerful, and
easy to use. This section will show you how to set up the Eclipse IDE for programming in Java on leJOS EV3.

 The first step is to download Eclipse at: http://www.eclipse.org/downloads/packages/eclipse-ide-
java-developers/indigosr1 , and search for Eclipse IDE for Java Developers . Please note that you need to
download the 32-bit version of the Eclipse IDE , even if you are using a 64-bit computer, because the leJOS EV3
plug-in will not work with a 64-bit Eclipse version. The download is a .zip file, and you must decompress

http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/indigosr1
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/indigosr1

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

17

the files into a directory. This will be the permanent location for Eclipse program. To run Eclipse, you simply
double-click the executable file in the Eclipse directory. Similarly, in order to delete Eclipse, you merely delete
the Eclipse directory from your computer.

 The first time that you run Eclipse, it will ask you for a workspace location. In this lab, you can select
the workspace as the folder that you used to install the leJOS, which in this case is C:\leJOSEV3Proj , as
illustrated in Figure 1-18 .

 Figure 1-19. Setting up automatic updates in Eclipse

 Figure 1-18. Setting up the workspace for Eclipse

 In case there are software patches or new features, you can set Eclipse up to search automatically for
updates by clicking on Window -> Preferences , double-clicking Install/Update in list, and highlighting
 Automatic Updates . As shown in Figure 1-19 , you place a check mark next to Automatically find new updates
and notify me and then click OK. After that, Eclipse and its plug-ins will be updated automatically.

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

18

 INSTALLING THE ECLIPSE IDE AND ECLIPSE PLU-GIN

 Now that you have Eclipse installed, it’s time to install the LeJOS EV3 plug-in. Follow these steps:

 1. In Eclipse, select Help > Install New Software . You will see a dialog requesting
that you input a URL, as shown in Figure 1-20 .

 Figure 1-20. Step 1 of installing the leJOS EV3 plug-in

 2. Click Add , and you will see another dialog box, as shown in Figure 1-21 . Enter the
name leJOS EV3 , and for the location enter this: http://lejos.sourceforge.net/
tools/eclipse/plugin/ev3 .

 Figure 1-21. Step 2 of installing the leJOS EV3 plug- in

www.allitebooks.com

http://lejos.sourceforge.net/tools/eclipse/plugin/ev3
http://lejos.sourceforge.net/tools/eclipse/plugin/ev3
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

19

 3. Click OK. You should see a new item in the main dialog box, as shown in Figure 1-22 .
Place a check mark in the box next to the new item, and click the Next button.

 Figure 1-22. Step 3 of installing the leJOS EV3 plug-in

 4. Read and accept the license agreement, and click Next button. The plug-in will
install automatically.

 5. When complete, you will be asked to restart Eclipse. Once it has restarted, you will
see some subtle changes in Eclipse. The plug-in will add new leJOS menu items to
a variety of places within Eclipse.

 6. Eclipse will automatically look for the EV3_HOME environment variable to locate
leJOS EV3. Check to make sure that the preferences are what you like. Select
 Windows -> Preferences and then leJOS EV3 from the list. If the leJOS EV3
directory is not correct, either type in the location or browse to it. Make sure that
you browse to the main directory and not one of its subdirectories. After that, you
need to double-check if they are the same as the items illustrated in Figure 1-23 .

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

20

 CREATING AND UPLOADING A PROGRAM: HELLOWORLD

 Now you need to create a place to enter code. Eclipse keeps individual Java projects in its own project
directories. For example, if you create a large, multiclass project dealing with mapping, you would
create your own project within its own directory to store the class and data files.

 In this section, you will create a project that you will use to store code .

 1. Select File > New > Project .

 2. In the next window, double-click leJOS EV3 to expand the folder options. You want
to create a leJOS EV3 project, so select leJOS EV3 project and click the Next button,
as shown in Figure 1-24 .

 Figure 1-23. Preferences for the leJOS EV3 plug- in

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

21

 3. For the project name , enter test and then click Finish, as shown in Figure 1-25 .

 Figure 1-24. A New leJOS project

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

22

 4. In order to add a new class file, select File > New > Class . Enter HelloWorld in
the name field, as shown in Figure 1-26 . Eclipse will also offer other options, such
as automatically adding a main() method. Check this if you want Eclipse to do
some of the typing for you.

 Figure 1-25. Create a new leJOS EV3 project

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

23

 5. Click the Finish button when you are done. You should see a new class file with
some starter code.

 Enter the HelloWorld code that follows into the file.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 Hello World.java
 //An example to display HelloWorld on the LCD screen of EV3 brick
 //**

 // import EV3 hardware packages for EV brick finding,
 // activating keys and LCD
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.BrickFinder;

 Figure 1-26. Add a class in the new leJOS EV3 project

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

24

 import lejos.hardware.Keys;
 import lejos.hardware.lcd.TextLCD;

 public class HelloWorld {

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder.getLocal();

 // instantized LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // drawing text on the LCD screen based on
 // coordinates
 lcddisplay.drawString("HelloWorld", 2, 4);

 // exit program after any button pressed
 buttons.waitForAnyPress();
 }

 }

 6. Click the Save button, turn on your EV3 brick, and then click the green Run button
in the Eclipse toolbar. A pop-up window will appear the first time that you click the
 Run button for a class file. Select the leJOS EV3 program, as shown in Figure 1-27 ,
and click OK. The program will begin uploading. You need to make sure that the EV3
brick is connected to your computer through the mini-USB port .

 Figure 1-27. Running a leJOS EV3 program

CHAPTER 1 ■ INTRODUCTION TO LEGO MINDSTORMS AND LEJOS

25

 Your EV3 will show HelloWorld at the center of the screen when the program is uploaded and
automatically run, assuming that you are using the default settings. If you don’t want the program run
automatically every time it’s uploaded, select Windows > Preferences > leJOS EV3 and uncheck Run
Program after Upload .

 Summary
 This chapter got you started with installing JDK and leJOS system on your local computer and burning the
leJOS EV3 firmware on the Lego Mindstorms EV3 brick using an external SD card . You also ran your first
Java robotics program called HelloWorld using leJOS and your robot. leJOS can be installed in the leading
operating systems such as Windows, Linux, and Mac OS. In particular, you learned the following in this
chapter:

• How to install leJOS EV3 software into your Windows operating system with the
leJOS installer.

• How to install the leJOS EV3 firmware into your Lego EV3 brick.

• How to install and use the leJOS plug-in for the Eclipse IDE.

• How to write source code in Eclipse and then upload and run the program on your
EV3 brick.

• How to install and configure JDK on your local computer.

 In the next chapter, you will learn about EV3 large motors and their corresponding motor classes
provided in leJOS EV3. Then, based on that, you will study how to control basic movement using motors,
how to interrupt rotation, how to regulate the motor speed, and how to trace a straight line.

27© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_2

 CHAPTER 2

 Introduction to Motor Sensors

 This chapter provides an introduction to EV3 large servo motors and their corresponding motor classes
provided in leJOS EV3. In particular, the chapter includes six sample Java projects to cover the following
topics:

 1. Controlling basic movement using motors

 2. Using a Tachometer for inertia testing

 3. Controlling the accurate rotation of motors

 4. Interrupting rotation

 5. Regulating the motor speed

 6. Tracing a straight line

 Basic Concepts of Java Programming
 The leJOS EV3 infrastructure uses the Java programming language to develop and implement software
systems for the Lego Mindstorms EV3 robot. Java is an object-oriented programming language that has
been widely used in the software engineering industry. This book does not aim to tutor you on learning
the Java programming language. Rather, it is assumed that you already have some basic Java programming
experience.

 Any Java program has a main part that is used to manage all operations. In Java, all files are classes, but
there is only one Java class having the method main . In the example program HelloWorld.java , which you
developed in Chapter 1 , the public method main is illustrated in the following program:

 // import EV3 hardware packages for EV brick finding,
 // activating keys and LCD
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.lcd.TextLCD;

 public class HelloWorld {

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder.getLocal();

http://dx.doi.org/10.1007/978-1-4842-2005-4_1

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

28

 // instantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // drawing text on the LCD screen based on
 // coordinates
 lcddisplay.drawString("Hello World", 2, 4);

 // exit program after any button pressed
 buttons.waitForAnyPress();
 }

 }

 In the above program listing for HelloWorld.java , lcddisplay.drawString is used to print the text
 Hello World on the display screen of the Lego EV3 LCD, which is similar to the statement System.out.
println("Hello World") that prints Hello World on the DoS command window.

 In this example, HelloWorld. java is a simple project with a unique class. In practice, however, a Java
project is usually complicated, so often you will have multiple classes, one of which will manipulate the
rest of classes. In summary, any Java class includes an import area, the class encapsulation, and the main
method. The import area declares what Java package you are going to use in a particular class. For example,
in the HelloWorld.java program, you use EV3 Keys and LCD features and then it is required that you import
the package lejos.hardware.Keys and lejos.hardware.lcd.* . In the main method, the main class needs
a main method to execute it. In the HelloWorld class example, it has a main class used to execute some
instructions; that is, lcddisplay.drawString("Hello World", 2, 4) to print Hello World at row 2 and
column 4 on the LCD screen and buttons.waitForAnyPress() to exit program after pressing any buttons on
the EV3 brick.

 Introducing Motors
 Motors are the source of all movement in the Lego EV3 kit, and they play an essential role in all robotics
projects in this book. Therefore, this chapter will familiarize you with the operations of the motor classes
provided in leJOS EV3.

 Using the motor algorithms implemented in the leJOS EV3, you can set up the EV3 robot rotating
precisely to a specified number of degrees, say 240, without crossing over this target number. Moreover, you
can set up a constant speed for a wheeled vehicle, and this can be achieved by tuning the power level in
real time so that when the robot is moving up or down, it can maintain the same speed that you established.
In addition, the motor classes enable the motors to accelerate to full speed by initially starting at a slow
speed and constantly accelerating to reach the specified speed. As a result, you can command the motors to
advance in a direction for thousands of rotations and then have them return to the original point at any time.
Such features open up unlimited ideas for creative navigation and rotation of arms for EV3 robots.

 To work with the three motors provided in the Lego EV3 robotics set, you have to import the lejos.
hardware.motor package. This package comes with four fields: A, B, C, and D for the four motor ports, as
well as a number of methods. For details on doing this, you can check out the Java API function of leJOS EV3
at: http://www.lejos.org/ev3/docs/ . For example, you can set the speed of a motor hooked to port A by
using the following statements:

 EV3LargeRegulatedMotor LEFT_MOTOR =
 new EV3LargeRegulatedMotor(MotorPort.A);
 LEFT_MOTOR.setSpeed(720);

http://www.lejos.org/ev3/docs/

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

29

 This code will set the speed of the LEFT_MOTOR so that it will roll 720 degrees per second (that is, two
complete rotations per second). If you want to have this motor go forward, you say the following:

 LEFT_MOTOR.forward();

 Next, six example Java projects are provided to introduce the motor classes for controlling the motors.
You need to compile, upload, and run all six example programs to complete all of the tasks in this chapter.

 Introducing the Motor Class
 The motor class provides access to the EV3 large servo motors. When controlling the movement of EV3, a
motor must be connected to one of the four EV3 motor ports . The class provides an instance for each port,
namely, MotorPort.A, MotorPort.B, MotorPort.C, and MotorPort.D.

 Each of these four objects is an instance of the class EV3LargeRegulatedMotor , which provides methods
for controlling the motors. In this section, you are given a set of six programs, and by using them, you can
perform experiments to understand how the EV3 large motors perform. These programs are simple enough,
so you don’t need much Java programming experience to write them. Nonetheless, they still allow you to
gain a basic understanding on programming and controlling the motors’ movements.

 Controlling Basic Movement Using Motors
 This program uses the basic motor methods that control motor movement. Methods used in this program
include those shown in Table 2-1 :

 Table 2-1. Basic Motor Methods

 Class Method Function

 EV3LargeRegulatedMotor forward() Motor rotating forward.

 backward() Motor rotating backward.

 stop() Motor stopping quickly.

 Keys waitForAnyPress Wait till any key is pressed.

 LCD drawString(String str,
 int x, int y)

 Print a text string on the LCD at coordinate
row x and column y.

 The program should do the following:

 1. Run motors A and C in the forward direction.

 2. Display FORWARD in the top line.

 3. Wait until a button is pressed.

 4. Run motors A and C backward.

 5. Display BACKWARD in next line.

 6. Wait until a button is pressed.

 7. Stop both motors A and C.

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

30

 The following program implements the motor movements defined above:

 //***
 // Wei Lu Java Robotics Programming with Lego EV3 p1.java
 //Simple motor testing
 //***

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;

 public class p1 {

 public static void main(String[] args) {

 EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying
 // and Keys class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // move robot forward and display status on LCD
 // change directions when button is pressed
 LEFT_MOTOR.forward();
 RIGHT_MOTOR.forward();
 LCD. drawString ("FORWARD", 0, 0);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // move robot backward and display status on LCD
 LEFT_MOTOR.backward();
 RIGHT_MOTOR.backward();
 LCD. drawString ("BACKWARD", 0, 1);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // stop robot and display status on LCD
 LEFT_MOTOR.stop();
 RIGHT_MOTOR.stop();
 LCD. drawString ("STOP", 0, 2);

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

31

 // exit program after any button pressed
 buttons.waitForAnyPress();

 }
 }

 Using a Tachometer for Inertia Testing
 The EV3 large servo motor has a built-in tachometer that keeps track of the current angle (in degrees) of the
motor axle. The purpose of this program is to use the tachometer to find out how quickly the motor stops.

 The program should do the following:

 1. Set the motor speed to 720.

 2. Run MotorPort.A forward.

 3. Wait till the tachometer count reaches 720.

 4. Stop the motor.

 5. Display the tachometer reading on the LCD.

 6. Wait until the motor has actually stopped.

 7. Display the tachometer reading again on the LCD.

 8. Wait for a button press to give you time to record the screen display.

 Due to the inertia of the motors, you will find out that the motor does not stop immediately after you
call the method stop() . New methods used in this program include those shown in Table 2-2 :

 Table 2-2. Methods Used in Tachometer

 Class Method Function

 EV3LargeRegulatedMotor getTachoCount () Gets the motor angle in number of degrees.

 resetTachoCount () Resets the counter number to 0.

 setSpeed(int speed) Sets up the rotation speed in number of
degrees per second.

 getRotationSpeed() Gets the actual speed of motor in number of
degrees per second.

 clear() Clears the LCD screen.

 //**
 //Wei Lu Java Robotics Programming with Lego EV3 p2.java
 //Motor inertia test
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

32

 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;

 public class p2 {

 public static void main(String[] args) {

 EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort.A);

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder.getLocal();

 // instantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // set motor to move 720 degrees per second
 LEFT_MOTOR.setSpeed(720);

 // start forward movement
 LEFT_MOTOR.forward();

 // a counter to count the number of degrees
 // rotated
 int count = 0;

 // continue moving until motor has rotated 720
 // degrees
 while (count < 720)
 count = LEFT_MOTOR.getTachoCount();

 // stop the motor
 LEFT_MOTOR.stop();

 // display the tachometer reading
 LCD. drawString ("Tacho Read: " + count, 0, 0);

 // wait for motor to actually stop and display
 // tacho count.
 // this number will be higher than previous due // to motor inertia
 while (LEFT_MOTOR.getRotationSpeed() > 0);
 LCD. drawString ("Tacho Read: " + LEFT_MOTOR.getTachoCount(), 0, 1);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 LCD. clear ();
 }
 }

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

33

 After running the above program, you will find two numbers printed on the LCD screen. The two
numbers are different. The first number displays what the tachometer reading was when the stop() method
was called. You would expect this number to be 720, since the program waits for the tachometer to reach 720
before it calls method stop() .The second number is higher than the first, however. This is because the motor
does not stop immediately when the stop() method is called, due to the motor's inertia .

 Controlling the Accurate Rotation of Motors
 The Motor Class provides a regulator thread that runs all the time, which you can use to stop the motor at
a specified angle. In this example, you will run a test to gauge the accuracy of the rotate() method. The
methods used in this program include those shown in Table 2-3 :

 Table 2-3. Methods Used in the Motor Class Regulator Thread

 Class Method Function

 EV3LargeRegulatedMotor rotate(angle) Rotate through the number of degrees of the defined
 angle.

 rotateTo(angle) Rotate to the specified angle.

 The program should do the following:

 1. Set the speed to 720.

 2. Rotate the motor one complete revolution.

 3. Display the tachometer reading on the LCD, row 0.

 4. Rotate the motor to angle 360.

 5. Display the tachometer reading on the LCD, row 1.

 6. Wait for a button press to give you time to read the LCD.

 7. Clear the LCD.

 The motor usually stops less than 1 degree from the specified angle according to the motor regulator.
This is done by calculating how far the motor will continue to run after the brake has been applied. The
brake is applied before reaching the specified angle, and then a minor adjustment is made to fine-tune the
motor position until it is close enough.

 //***
 // Wei Lu Java Robotics Programming with Lego EV3 p3.java
 //This program demonstrated motor rotation control
 //***

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

34

 public class p3 {

 public static void main(String[] args) {

 EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();
 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();
 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // set motor to move 720 degrees per second
 LEFT_MOTOR.setSpeed(720);

 // rotate the motor one full revolution
 LEFT_MOTOR.rotate(360);

 // display the tacho count in row 0
 LCD. drawString ("Tacho Read: " + LEFT_MOTOR.getTachoCount(), 0, 0);

 // rotate to the angle 360
 LEFT_MOTOR.rotateTo(360);

 // display the tacho count in row 1
 LCD. drawString ("Tacho Read: " + LEFT_MOTOR.getTachoCount(), 0, 1);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 LCD. clear ();
 }
 }

 By running the above program on the Lego EV3, the first tachometer reading will probably be 360 and
the second 359 (or 360 depending on the motors). These two numbers are within a degree of each other.
The first step in the program is to rotate one full rotation. Then it should set the motor to position 360. Since
one rotation is 360 degrees, it is then expected that these numbers will be close. Through demonstration
of the program, you can observe that better precision can be achieved by moving to a certain position than
by calling the stop() method. The motor class predicts when the motor should stop and applies the brake
earlier to make up for the impact of inertia.

 Interrupting Rotation
 Sometimes you will want the motor to stop and something else before it has reached a specified angle. In
this example program, you will have code detect a button press to interrupt the rotation job if you press a
button soon enough. The rotate() methods will not return until the motor has stopped at the target angle.
However, the new methods you use in this program can return immediately. Some new methods used in this
program include those shown in Table 2-4 :

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

35

 The program should do the following:

 1. Start a rotation of 7,200 degrees.

 2. While the motor is rotating, display the Tachometer count at the position of row 0.

 3. When a button is pressed, stop the motor.

 4. After the motor has stopped, display the Tachometer count at the position of row 0.

 5. Record the two numbers read from Tachometers, and then wait for a button
press to exit the program.

 When you press the button before the rotation is complete, the motor will stop without completing its
rotation.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 p4.java
 //interrupting motors using buttons
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.Sound;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;

 public class p4 {

 public static void main(String[] args) {

 EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 Table 2-4. Rotate Method Used in the Motor Class

 Class Method Function

 EV3LargeRegulatedMotor rotate(angle,
immediateReturn)

 Rotate through the number of degrees of the
defined angle , and on the mean time if the value
of immediateReturn is true, the method returns
immediately.

 rotateTo(angle,
immediateReturn)

 Rotate to the specified angle , and on the mean
time if the value of immediateReturn is true, the
method returns immediately.

 (boolean) isMoving() Return true if the motor is always rotating.

 int readButtons() Return the button id number if any button is
pressed.

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

36

 // instantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // sound two beeps before starting program
 Sound. twoBeeps ();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // rotate 7200 degree during which the method has // returned value all the time
 LEFT_MOTOR.rotate(7200, true);

 // return to true if the motor is always rotating
 while (LEFT_MOTOR.isMoving()) {

 // display and refresh the tachometer reading all // the time
 LCD. drawString ("Tacho Read: " + LEFT_MOTOR.getTachoCount(), 0, 0);

 // determining if there is any button
 // pressed, if yes then stop the motor
 if (buttons.readButtons() > 0)
 LEFT_MOTOR.stop();
 }

 // wait until the motor fully stopped
 while (LEFT_MOTOR.getRotationSpeed() > 0)
 ;

 // display the tachometer reading after motor
 // fully stopped
 LCD. drawString ("Tacho Read: " + LEFT_MOTOR.getTachoCount(), 0, 1);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 }
 }

 Regulating the Motor Speed
 The motor class has a regulator thread to control motor speed . The reason behind for doing this is that a
two-wheel vehicle will travel in a straight line only if both motors run at the same speed. The leJOS EV3
keeps each motor rotation synchronized to the system clock, and therefore the regulator compares the
tachometer count with the speed multiplied by the elapsed time. It then adjusts the power to keep these two
numbers matched as closely as possible. Some new methods used in this program include those shown in
Table 2-5 :

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

37

 The Stopwatch class is contained in the package lejos.util.Stopwatch . The program should do the
following:

 1. Create a new stopwatch.

 2. Start the two motors A and C running at 1 revolution/second. (One revolution
is 360.)

 3. Every 200 milliseconds, display all two tachometer count values in the same row.

 4. Repeat step 3 four times, using a different row each time.

 5. Print the maximum difference that you see between the motor tachometer
counts.

 The motors should remain within a few degrees of each other according to your observation, since we
used the regulated large motor EV3 class.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 p5.java
 //Motor speed control comparison
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.utility.Stopwatch;

 public class p5 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 Table 2-5. Regulator Methods Used in the Motor Class

 Function

 Stopwatch elapsed() Returns elapsed time in milliseconds.

 reset() Reset the watch to 0.

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

38

 // the row to print on
 int tachoRow = 0;

 // instantiated a stopwatch class for setting up // the timer
 Stopwatch sw = new Stopwatch();

 // set the motor speed to 1 revolution per second
 LEFT_MOTOR .setSpeed(360);
 RIGHT_MOTOR .setSpeed(360);

 // motors moving forward
 LEFT_MOTOR .forward();
 RIGHT_MOTOR .forward();

 // variables for determining the maximum
 // difference in tacho counts
 int maxTachoCountDiff = Integer. MIN_VALUE ;
 int currTachoCountDiff;

 // perform four repetitions of the test
 for (int i = 0; i < 4; i++) {
 // wait for 200 milliseconds
 sw.reset();
 while (sw.elapsed() < 2000)
 Thread. yield ();

 // display the tacho counts and reset the // max, if changed
 currTachoCountDiff = displayTachoCounts (tachoRow++);
 if (currTachoCountDiff > maxTachoCountDiff)
 maxTachoCountDiff = currTachoCountDiff;

 }

 // stop the motors
 LEFT_MOTOR .stop();
 RIGHT_MOTOR .stop();

 // display the maximum difference in tacho
 // counts, then wait for exit
 LCD. drawString ("Max diff: " + maxTachoCountDiff, 0, tachoRow);

 buttons.waitForAnyPress();
 }

 /**
 * Displays the tachometer count for each motor
 *
 * @param row to print the count in
 *
 * @return Returns the difference between the tacho
 * counts of the two motors
 */

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

39

 private static int displayTachoCounts(int row) {
 // store the tacho counts for the two motors
 int tachoCountLeft = LEFT_MOTOR .getTachoCount();
 int tachoCountRight = RIGHT_MOTOR .getTachoCount();

 // display the tacho counts
 LCD. drawString ("M1: " + tachoCountLeft + " M2: " + tachoCountRight, 0, row);

 // return the difference in the tacho counts
 return Math. abs (tachoCountLeft - tachoCountRight);
 }
 }

 By running the program above, you should observe a result similar to the following:

 Motor 1: 711 Motor 2: 710
 Motor 1: 1493 Motor 2: 1492
 Motor 1: 2212 Motor 2: 2212
 Motor 1: 2934 Motor 2: 2934
 Max diff: 1

 The maximum difference between the two tachometer readings is 1, so you can tell that the two motors
are virtually synchronized.

 Tracing a Straight Line
 In this practice exercise, you need to write a program to run the robot forward for some predetermined
amount of time (say 10,000 ms) and measure how far the robot traveled. The program should do the
following:

 1. Create a new stopwatch.

 2. Start the two motors A and C running forward.

 3. Calculate the elapsed time until it reaches 10,000 ms, displaying the elapsed time
on the LCD screen.

 4. Stop the two motors.

 5. Calculate the ratio of distance to time in centimeters per second.

 Repeat your program three times, and then calculate an average ratio of distance to time, which is the
speed of robot.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 p6.java
 //Write a program to run the robot forward for some predetermined
 //amount of time (say 10000 ms) and measure how far the robot went.
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

40

 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.utility.Stopwatch;

 public class p6 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // instantiated a stopwatch class for setting up the
 // timer
 Stopwatch watch = new Stopwatch();

 // Begin running both motors
 LEFT_MOTOR .forward();
 RIGHT_MOTOR .forward();

 // Clear the screen
 LCD. clear ();

 // Reset the time on the watch
 watch.reset();

 // Display the elapsed time on the LCD until 10000ms
 while (watch.elapsed() < 10000) {
 Thread. yield ();
 LCD. drawString ("" + watch.elapsed(), 0, 0);
 }

 // Stop the motors after 5 seconds
 LEFT_MOTOR .stop();
 RIGHT_MOTOR .stop();

 buttons.waitForAnyPress();
 }
 }

 On average, the robot traveled 99.7 cm in 10,000 milliseconds , so the robot averages a speed of 9.97
cm/sec while traveling forward at 1 revolution per second. Taking into consideration a tread diameter of

CHAPTER 2 ■ INTRODUCTION TO MOTOR SENSORS

41

approximately 3.1 cm and a motor speed set to 360 degrees/second, we can confirm that this result is pretty
close to what we would expect; that is, 3.1 cm * 3.1415926 = 9.74 cm/s, which is pretty close to the speed that
we observed; that is, 9.97 cm/sec.

 Other Motor Methods
 There are many other methods provided with the EV3 large motors. Some of these methods are explained in
Table 2-6 :

 Table 2-6. Other Methods

 Method Function

 boolean isMoving() This method is useful to test if the motor has finished
rotating. isMoving() returns true when the motor is
moving for any reason. For example, if a forward() or
 backward() method has been called, or if a rotate() task
is in progress.

 int getLimitAngle() Returns the angle in number of degrees to which the
motor is currently rotating.

 int getSpeed() Returns the current speed settings.

 int getRotationSpeed() Returns the current velocity of the motor in number of
degrees per second.

 boolean isStalled() Helps you determine if the motor is stalled, or if the
regulation of the motor speed has failed.

 resetTachoCount() This method sets the tachometer count to 0, it resets the
origin on the mean time used by the regulator thread in
deciding when to stop a rotation task.

 void setAcceleration(int acceleration) This method helps you to control how fast the motor
speed will change from one speed to another. Acceleration
is set in number of degrees per second.

 void getAcceleration() Returns the current acceleration value in number of
degrees per second for the motor.

 suspendRegulation() Turns on/off the regulation of the motor. You can use this
method if you want to mix regulated and unregulated
control of the same motor.

 Summary
 In this chapter, you learned about EV3 motor features: how the motors rotate, how to set the speed of the
motors, and the basic idea of speed regulation. Specifically, by using the six example Java leJOS projects
provided in the chapter, you learned how to write and apply leJOS Java programming code to control and
operate the Lego Mindstorms EV3 motors.

 In the next chapter, you will learn about the various methods provided in the Pilot classes of leJOS
EV3. You will also study how to apply these methods to control the wheeled vehicle so that it can trace out a
predefined geometric shape with sides of a predefined length, including a square, triangle, and hexagon.

43© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_3

 CHAPTER 3

 Controlling Wheeled Vehicles

 This chapter introduces various methods provided in the MovePilot class of leJOS EV3. You will learn know
how to apply these methods in the pilot classes to control the wheeled vehicle so that it can trace out a
predefined geometric shape with sides of a predefined length, including a square, triangle, and hexagon.
Specifically, this chapter includes nine example Java projects and covers the following topics:

• Introduction to the navigation API

• Basic movement using pilot classes

• Tracing out a square using movepilot and differentialpilot

• Tracing out a triangle using movepilot and differentialpilot

• Tracing out a hexagon using movepilot and differentialpilot

 Introduction to Navigation API
 You studied how to create a simple control for the EV3 motors in Chapter 2 . As an example, review the
following motor testing program, example1.java :

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example1.java
 //an example for motor testing
 //displaying tachocount about how many degrees rotated when //pressing //ESCAPE button.
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;

 public class example1 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);

http://dx.doi.org/10.1007/978-1-4842-2005-4_2

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

44

 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displyang and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 String message = "MOTOR Testing: ";

 // set up the motor A speed, i.e. 100 degrees per // second
 LEFT_MOTOR .setSpeed(200);

 // motor A moving forward
 LEFT_MOTOR .forward();

 // displaying number of degrees rotated on the
 // LCD until an ESCAPE button is pressed!

 while (buttons.getButtons() != Keys. ID_ESCAPE) {
 LCD. clear ();
 LCD. drawString (message, 0, 1);
 LCD. drawInt (LEFT_MOTOR .getTachoCount(), 0, 2);
 Thread. sleep (1000);
 LCD. refresh ();
 }
 }
 }

 As illustrated in example1. java , when developing an EV3 robotics program to control motors, you need
to indicate which motor you need to program for any action. In this example, you set the speed of Motor A
with the following instruction:

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);

 LEFT_MOTOR .setSpeed(200);
 After that you indicate that Motor A will turn forward using the following instruction:
 LEFT_MOTOR .forward();

 Usually, if you simply use a unique motor, the methods that you could use are as follows:

 1. forward()

 2. backward()

 3. rotate()

 4. rotateTo()

 5. setSpeed()

 6. stop()

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

45

 In actual use, a vehicle is usually equipped with two wheels that are controlled and navigated
independently with two motors. Such navigation is achieved by leJOS navigation API functions through
which a set of classes and methods are provided to control the robot. The leJOS NXJ navigation classes that
control vehicles deal with a hierarchical level of abstractions.

 At the bottom level, the NXTRegulatedMotor class is created to control the motors that turn the wheels.
A DifferentialPilot class is then used to control elementary moves of motors such as rotating in place,
traveling in a straight line, or traveling in an arc.

 At the top level, the NavPathController applies a DifferentialPilot to move the robot through a
complicated path on a plane. An OdometeryPoseProvider is also used to record the information on the robot
location and the direction to which it is heading. In such a hierarchical structure, the flow of control is based
on a top-down approach; that is, the path controller controls the pilot and then the pilot controls the motors.
In this case, the flow of information is from the bottom up in which the pilot collects information from the
motors to control them. The pose provider uses odometer readings information collected from the pilot to
update its current estimate on the robot pose, including the Cartesian coordinates (that is, axis x and axis y)
of the robot and its heading angle (that is, the direction the robot is facing based on the number of degrees
— facing the direction of the positive x axis has 0 degrees, and facing the direction of the positive y axis has
90 degrees). All this information is used by the path controller to calculate the distance to its destination and
the direction. In the leJOS EV3, a MovePilot class is used to replace the DifferentialPilot . However, the
fundamental idea remains the same.

 Basic Movement Using Pilot Classes
 This chapter will cover basic movement using Pilot classes, which is one of the most important steps in
navigation. As you have seen in Chapter 2 , it is possible to move a robot around merely using the motor
classes: that is, simply by rotating the motors forward and backward. However, to drive to specific locations
(that is, to do a precise movement), it is necessary to have controls over the distances a vehicle moves
forward or backward and the angles the robot turns. Therefore, the main goal for basic movement using pilot
is to create vehicles that can perform precise moves. The pilot class is used to drive, steer, and turn a vehicle
precisely, including straight-line travel, on-the-spot rotation, arcs, and stop.

 By packaging a sequence of these movements together, a robot can travel from one location to another
by repeatedly performing a combination of two essential steps, such as the amount the robot travels forward
or backward and the amount the robot rotates clockwise and counterclockwise throughout the movement.

 One of the advantages of using pilot class is that the actual physical characteristics of the robot are
hidden in the navigator package except for the pilot. From the perspective of internal movement, a robot can
roll, walk, jump, or fly from one location to another. However, from the external perspective, you only see the
external pilot methods to make the robot movements all look the same. As a result, using pilot allows you to
program diverse types of robots to participate in navigation, regardless of their physical construction.

 In leJOS, a Move class is used to tell a robot what moves to make, or to indicate what kind of movement a
robot just made. Some of the core methods of the Move class include the following:

 getDistanceTraveled () Obtains the distance the vehicle moves, normally in
number of centimeters.

 getTurnAngle () Gets the angle the vehicle rotated over the
movement in number of degrees.

 getArcRadius () Receives the radius of the arc that the vehicle travels.

 Next you will find out how to perform the movements with a physical robot . In leJOS, a pilot is a class
that controls a specific robot. In particular, the DifferentialPilot class can control a robot with two wheels.
In this chapter, you will use differential motor control because it is capable of all of the moves and it is simple
to build the chassis for it. The DifferentialPilot class steers the vehicle by controlling the speed and

http://dx.doi.org/10.1007/978-1-4842-2005-4_2

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

46

direction of rotation of its motors. The pilot object needs to know to which ports the motors are connected
and whether driving the motors forward makes the robot move forward or backward. The object also needs
to know the diameter of the wheels and the width of the track: that is, the distance between the centers of the
tracks of the two wheels. The reason for this is that the DifferentialPilot class uses the wheel diameter to
calculate the distance it has traveled and uses the track width to calculate how far it has rotated. All of this
information will be passed to the pilot constructor that is illustrated in the following line of code:

 DifferentialPilot(float wheelDiameter, float trackWidth, Motor leftMotor, Motor rightMotor)

 Otherwise, use the following constructor to set the Boolean variable reverse to true so that the motors
will then rotate backward to make the robot move forward:

 DifferentialPilot(float wheelDiameter, float trackWidth, Motor leftMotor, Motor rightMotor,
boolean reverse)

 In conclusion, in order to control the robot moving in a straight line, you can use the following methods:

 void setTravelSpeed(double travelSpeed) Sets the speed of the
motors in the same unit of distance (for example, if diameter of the wheel
is measured in centimeters, then the number set by this method will be in
centimeters per second)

 void forward() Starts the robot moving forward

 void backward() Starts the robot moving backward

 void stop() Stops the robot moving

 void rotate (double angle) Rotates the robot in a number of degrees

 In order to control the distance that the robot moves, you can use the following methods:

 void travel(double distance) Moves the motors a specified distance in the
same unit as the wheel diameter (that is, if diameter of the wheel is measured in
centimeters, then the number set by this method will be in centimeters)

 getMovement().getDistanceTraveled() Returns the distance the vehicle
traveled

 For instance, example2.java is illustrated below to show you how to make the robot move 20
centimeters using the DifferentialPilot class in leJOS NXJ .

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example2.java
 //an example for making basic movement using DifferentialPilot //in leJOS NXJ
 //**

 import lejos.nxt .*;
 import lejos.robotics.navigation.*;

 public class example2 {

 public static void main(String[] args) {

 DifferentialPilot pilot = new DifferentialPilot (3.1, 17.5, Motor .A, Motor .C);
 pilot. travel(20, true) ; // 20 centimeters

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

47

 pilot. rotate(90.0) ;
 while (pilot. isMoving()) {

 if (Button .ESCAPE.isPressed())
 pilot. stop() ;
 Button .waitForPress();

 }
 }
 }

 As seen from the example2.java , you can cause the robot to rotate in place by a specified angle by using
the following:

 void rotate(double degrees)

 Moreover, you need to measure accurately the values for wheelDiameter and trackWidth when using
this method to produce precise movement. The diameter is the widest measurement from one side of a
circle to the other. According to my measurements, the wheel diameter on my robot is 3.1 centimeters. In
order to record accurate rotations when the robot turns, it’s also important to know the measurement from
wheel to wheel, known as the track width . Since Lego tires are symmetrical, the best way to do this is to
measure from the center of one tire to the center of the other tire. The track width in the above example is
17.5 centimeters, according to my measurements. The final parameters for the DifferentialPilot are the
motors for the left and right wheels. In the above example program, the left motor is connected to port A and
the right motor is connected to port C.

 Since MovePilot is used to replace DifferentialPilot in the new leJOS EV3, the following example,
 example3.java , is provided to show you a basic movement control using MovePilot in leJOS EV3.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example3.java
 //an example for making basic movement using MovePilot in //leJOS EV3
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.*;

 public class example3 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

48

 // i nstantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // setup the wheel diameter of left (and right) motor // in centimeters, i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },WheeledChassis. TYPE_
DIFFERENTIAL);
 MovePilot pilot = new MovePilot(chassis);

 // travel 100 centimeter
 pilot.travel(100);

 // rotate 90 degrees
 pilot.rotate(90.0);

 // press the ESCAPE button to stop moving
 while (pilot.isMoving()) {

 if (buttons.getButtons() == Keys. ID_ESCAPE)
 pilot.stop();

 }

 // block the thread until a button is pressed
 buttons.waitForAnyPress();
 }
 }

 Tracing Out a Square
 In this section, you will develop a program to create a robot that traces out a square with sides of a
predetermined length set to 1 meter. You will write, compile, and upload your code into Lego Mindstorms.
In addition, you will also need to work out how long to run the motors to move forward a specified distance
of N centimeters; for example, N is set to 100 centimeters in this case. Furthermore, you will work out how
long to run the motors to rotate 90 degrees (the corners of the square).

 An example program, example4.java , illustrates how to trace out a square using MovePilot in leJOS
EV3.

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

49

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example4.java
 //an example for tracing out a square
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.*;

 public class example4 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // setup the wheel diameter of left (and right) // motor in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the // center of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 =
 WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);

 MovePilot pilot = new MovePilot(chassis);

 // loop 4 times to trace out a square
 for (int sides = 0; sides < 4; sides++) {

 // travel 100 centimeter
 pilot.travel(100);

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

50

 // rotate 90 degrees
 pilot.rotate(90);
 }

 // press the ESCAPE button to stop moving
 while (pilot.isMoving()) {

 if (buttons.getButtons() == Keys. ID_ESCAPE)
 pilot.stop();

 }

 // block the thread until a button is pressed
 buttons.waitForAnyPress();
 }
 }

 In case you use leJOS NXJ, an example program, example5.java , follows to illustrate how to trace
out a square using a set of methods provided in the DifferentialPilot class. The idea behind this is
based on a benchmarking test showing that a vehicle could travel forward at a speed of 30.76 cm/second.
Accordingly, the vehicle needs to travel for 3.25 seconds to complete one side of the square. To implement
this, we applied a sleep function, which starts by moving the robot forward, waiting 3.25 seconds, and then
stopping. Experimental results of evaluating the program showed that this algorithm is more effective than
using the methods of the DifferentialPilot class directly.

 //***
 // Wei Lu Java Robotics Programming with Lego EV3 example5.java
 //an example for tracing out a square using DifferentialPilot in //leJOS NXJ
 //***

 import lejos.nxt .Button;
 import lejos.nxt .LCD;
 import lejos.nxt .Motor;
 import lejos.nxt .NXTRegulatedMotor;
 import lejos.robotics.navigation.DifferentialPilot ;
 import lejos.util .Stopwatch;

 public class example5 {

 // The vehicle's rate of travel forward in centimeters per
 // second
 private static final double FW_SPEED = 30.666666667f;

 // The vehicle's clockwise rotation speed in degrees per
 // second
 private static final double ROTATION_SPEED = 248.297752809f;

 // The vehicle's wheel-width.
 private static final double WHEEL_DIAMETER = 3.1;

 // The vehicle's width
 private static final double TRACK_WIDTH = 17.5;

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

51

 // Reference to left motor
 private static NXTRegulatedMotor LEFT_MOTOR = Motor .A;

 // Reference to right motor
 private static NXTRegulatedMotor RIGHT_MOTOR = Motor .C;

 /**
 * The main entry point for the program.
 */
 public static void main(String[] args) {

 // construct the pilot using the static variables
 DifferentialPilot pilot = new DifferentialPilot (WHEEL_DIAMETER ,
 TRACK_WIDTH , LEFT_MOTOR , RIGHT_MOTOR , false);

 // tracing out a square
 drawSquare (pilot, 100);

 LCD .drawString("tracing is done, press button to exit.", 0, 0);
 Button .waitForPress();
 }

 /**
 * Draws a square of the specified side length
 *
 * @param pilot
 * The pilot to use when drawing the square
 * @param sideLength
 * The length of each leg of the square
 */
 public static void drawSquare(DifferentialPilot pilot, double sideLength) {

 for (int i = 0; i < 4; i++) {

 // delay 500ms to allow the motors to stabilize
 sleep (500);

 // move the vehicle forward
 forward (pilot, sideLength);

 // delay 500ms to allow the motors to stabilize
 sleep (500);

 // rotate the vehicle by 90 degrees to prepare
 // for
 // the next side of the square
 rotate (pilot, 90);
 }
 }

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

52

 /**
 * Move the vehicle forward the specified distance
 *
 * @param pilot
 * The pilot to use for moving forward
 * @param distance
 * The distance to travel
 */
 public static void forward(DifferentialPilot pilot, double distance) {
 // get the number of milliseconds the vehicle should
 // travel based on the
 // vehicle's speed
 int travelTime = getMillisForTravel (distance);

 // begin the pilot forward
 pilot. forward() ;

 // wait for the traveling to finish
 sleep (travelTime);

 // reached the destination - stop
 pilot. stop() ;
 }

 /**
 * Rotate the vehicle by the specified angle. Positive angles * will result in
 * a clockwise rotation. Negative angles will result in a
 * counterclockwise
 * rotation.
 *
 * @param pilot
 * @param angle
 * The angle (in degrees) by which to rotate the
 * vehicle
 */
 public static void rotate(DifferentialPilot pilot, double angle) {

 // determine the number of milliseconds to rotate based // on the vehicle
 // speed
 int travelTime = getMillisForRotate (angle);

 // for negative angles, rotate counterclockwise
 if (angle < 0)
 pilot. rotateLeft() ;
 else
 // for positive angles, rotate clockwise
 pilot. rotateRight() ;

 // block the thread until the motion is complete
 sleep (travelTime);
 pilot. stop() ;
 }

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

53

 /**
 * Gets the milliseconds to travel for a given travel distance
 *
 * @param distance
 * The distance in centimeters to travel
 * @return Returns the number of milliseconds to travel
 */
 public static int getMillisForTravel(double distance) {
 return (int) ((distance / FW_SPEED) * 1000);
 }

 /**
 * Gets the milliseconds to rotate for the specified number of * degrees
 *
 * @param rotateDegree
 * @return the number of milliseconds to rotate
 */
 public static int getMillisForRotate(double rotateDegree) {
 return (int) ((rotateDegree / ROTATION_SPEED) * 1000);
 }

 /**
 * Sleep function using Thread.yield rather than thread.sleep
 *
 * @param millis
 * The number of milliseconds to block the
 * executing thread
 */
 public static void sleep(long millis) {

 // create the stopwatch
 Stopwatch sw = new Stopwatch ();

 // continue waiting while the elapsed time is less than // the time
 // specified
 while (sw.elapsed() < millis)
 Thread. yield ();
 }
 }

 Tracing Out an Equilateral Triangle
 In this section, you will develop a program to create a robot that traces out an equilateral triangle with
sides of a predetermined length set to 1 meter. You will write, compile, and upload your code into Lego
Mindstorms. An example program, example6.java , illustrates how to trace out an equilateral triangle using
 MovePilot in leJOS EV3.

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

54

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example6.java
 //an example for tracing out an equilateral triangle
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.*;

 public class example6 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);

 MovePilot pilot = new MovePilot(chassis);

 // loop 3 times to trace out an equilateral triangle
 for (int sides = 0; sides < 3; sides++) {

 // travel 100 centimeter
 pilot.travel(100);

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

55

 // rotate 120 degrees
 pilot.rotate(120);
 }

 // press the ESCAPE button to stop moving
 while (pilot.isMoving()) {

 if (buttons.getButtons() == Keys. ID_ESCAPE)
 pilot.stop();

 }

 // block the thread until a button is pressed
 buttons.waitForAnyPress();
 }
 }

 In case you use leJOS NXJ, an example program , example7.java , follows to illustrate how to trace out a
triangle using a set of methods provided in the DifferentialPilot class.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example7.java
 //an example for tracing out an equilateral triangle using //DifferentialPilot in leJOS NXJ
 //**

 import lejos.nxt .Button;
 import lejos.nxt .LCD;
 import lejos.nxt .Motor;
 import lejos.nxt .NXTRegulatedMotor;
 import lejos.robotics.navigation.DifferentialPilot ;
 import lejos.util .Stopwatch;

 public class example7 {

 // The vehicle's rate of travel forward in centimeters per
 // second
 private static final double FW_SPEED = 30.666666667f;

 // The vehicle's clockwise rotation speed in degrees per
 // second
 private static final double ROTATION_SPEED = 248.297752809f;

 // The vehicle's wheel-width.
 private static final double WHEEL_DIAMETER = 3.1;

 // The vehicle's track width
 private static final double TRACK_WIDTH = 17.5;

 // Reference to left motor
 private static NXTRegulatedMotor LEFT_MOTOR = Motor .A;

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

56

 // Reference to right motor
 private static NXTRegulatedMotor RIGHT_MOTOR = Motor .C;

 /**
 * The main entry point for the program.
 */
 public static void main(String[] args) {

 // construct the pilot using the static variables
 DifferentialPilot pilot = new DifferentialPilot (WHEEL_DIAMETER ,
 TRACK_WIDTH , LEFT_MOTOR , RIGHT_MOTOR , false);

 // tracing out a triangle
 drawTriangle (pilot, 100);

 LCD .drawString("tracing is done, press button to exit.", 0, 0);
 Button .waitForPress();
 }

 /**
 * Draw an equilateral triangle
 *
 * @param pilot
 * The pilot to use to draw the triangle
 * @param sideLengthCm
 * The side length of the triangle
 */
 public static void drawTriangle(DifferentialPilot pilot, double sideLength) {

 // iterate through the sides of the triangle
 for (int i = 0; i < 3; i++) {

 sleep (500);

 // travel along a side
 forward (pilot, sideLength);

 sleep (500);

 // re-orient to travel along the next side
 rotate (pilot, 120);
 }
 }

 /**
 * Move the vehicle forward the specified distance
 *
 * @param pilot
 * The pilot to use for moving forward
 * @param distance
 * The distance to travel
 */

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

57

 public static void forward(DifferentialPilot pilot, double distance) {
 // get the number of milliseconds the vehicle should
 // travel based on the
 // vehicle's speed
 int travelTime = getMillisForTravel (distance);

 // begin the pilot forward
 pilot. forward() ;

 // wait for the traveling to finish
 sleep (travelTime);

 // reached the destination - stop
 pilot. stop() ;
 }

 /**
 * Rotate the vehicle by the specified angle. Positive angles
 * will result in
 * a clockwise rotation. Negative angles will result in a
 * counterclockwise
 * rotation.
 *
 * @param pilot
 * @param angle
 * The angle (in degrees) by which to rotate the vehicle
 */
 public static void rotate(DifferentialPilot pilot, double angle) {

 // determine the number of milliseconds to rotate based
 // on the vehicle
 // speed
 int travelTime = getMillisForRotate (angle);

 // for negative angles, rotate counterclockwise
 if (angle < 0)
 pilot. rotateLeft() ;
 else
 // for positive angles, rotate clockwise
 pilot. rotateRight() ;

 // block the thread until the motion is complete
 sleep (travelTime);
 pilot. stop() ;
 }

 /**
 * Gets the milliseconds to travel for a given travel distance
 *
 * @param distance
 * The distance in centimeters to travel

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

58

 * @return Returns the number of milliseconds to travel
 */
 public static int getMillisForTravel(double distance) {
 return (int) ((distance / FW_SPEED) * 1000);
 }

 /**
 * Gets the milliseconds to rotate for the specified number of
 * degrees
 *
 * @param rotateDegree
 * @return the number of milliseconds to rotate
 */
 public static int getMillisForRotate(double rotateDegree) {
 return (int) ((rotateDegree / ROTATION_SPEED) * 1000);
 }

 /**
 * Sleep function using Thread.yield rather than thread.sleep
 *
 * @param millis
 * The number of milliseconds to block the executing thread
 */
 public static void sleep(long millis) {

 // create the stopwatch
 Stopwatch sw = new Stopwatch ();

 // continue waiting while the elapsed time is less than // the time
 // specified
 while (sw.elapsed() < millis)
 Thread. yield ();
 }
 }

 Tracing Out a Regular Hexagon
 In this section, you will develop a program to create a robot that traces out a regular hexagon with sides
of a predetermined length set to 50 centimeters. You will write, compile, and upload your code into Lego
Mindstorms. An example program, example8.java , illustrates how to trace out a regular hexagon using
 MovePilot in leJOS EV3.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example8.java
 //an example for tracing out a regular hexagon
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

59

 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.*;

 public class example8 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys // class for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // setup the wheel diameter of left (and right) // motor in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the // center of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential
 // pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);

 MovePilot pilot = new MovePilot(chassis);

 // loop 6 times to trace out a regular hexagon
 for (int sides = 0; sides < 6; sides++) {

 // travel 100 centimeter
 pilot.travel(50);

 // rotate 60 degrees
 pilot.rotate(60);
 }

 // press the ESCAPE button to stop moving
 while (pilot.isMoving()) {

 if (buttons.getButtons() == Keys. ID_ESCAPE)
 pilot.stop();

 }

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

60

 // block the thread until a button is pressed
 buttons.waitForAnyPress();
 }
 }

 In case you use leJOS NXJ, an example program, example9. java , is provided here to illustrate how to
trace out a hexagon using a set of methods provided in the DifferentialPilot class.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 example9.java
 //an example for tracing out a regular hexagon using //DifferentialPilot in leJOS NXJ
 //**

 import lejos.nxt .Button;
 import lejos.nxt .LCD;
 import lejos.nxt .Motor;
 import lejos.nxt .NXTRegulatedMotor;
 import lejos.robotics.navigation. DifferentialPilot ;
 import lejos.util .Stopwatch;

 public class example9 {

 // The vehicle's rate of travel forward in centimeters per
 // second
 private static final double FW_SPEED = 30.666666667f;

 // The vehicle's clockwise rotation speed in degrees per
 // second
 private static final double ROTATION_SPEED = 248.297752809f;

 // The vehicle's wheel-width.
 private static final double WHEEL_DIAMETER = 3.1;

 // The vehicle's wheel-bas
 private static final double TRACK_WIDTH = 17.5;

 // Reference to left motor
 private static NXTRegulatedMotor LEFT_MOTOR = Motor .A;

 // Reference to right motor
 private static NXTRegulatedMotor RIGHT_MOTOR = Motor .C;

 /**
 * The main entry point for the program.
 */
 public static void main(String[] args) {

 // construct the pilot using the static variables
 DifferentialPilot pilot = new DifferentialPilot (WHEEL_DIAMETER ,
 TRACK_WIDTH , LEFT_MOTOR , RIGHT_MOTOR , false);

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

61

 // tracing out a triangle
 drawHexagon (pilot, 50);

 LCD .drawString("tracing is done, press button to exit.", 0, 0);
 Button .waitForPress();
 }

 /**
 * Draw a hexagon with sides of the specified length
 *
 * @param pilot
 * The pilot to use for drawing the hexagn
 * @param sideLengthCm
 * The length of each side of the regular hexagon
 */
 public static void drawHexagon(DifferentialPilot pilot, double sideLength) {

 // iterate through the sides of the hexagon
 for (int i = 0; i < 6; i++) {

 sleep (500);

 // move the vehicle along an edge
 forward (pilot, sideLength);

 sleep (500);

 // rotate the bot to traverse the next leg
 rotate (pilot, 60);
 }
 }

 /**
 * Move the vehicle forward the specified distance
 *
 * @param pilot
 * The pilot to use for moving forward
 * @param distance
 * The distance to travel
 */
 public static void forward(DifferentialPilot pilot, double distance) {
 // get the number of milliseconds the vehicle should
 // travel based on the
 // vehicle's speed
 int travelTime = getMillisForTravel (distance);

 // begin the pilot forward
 pilot. forward() ;

 // wait for the traveling to finish
 sleep (travelTime);

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

62

 // reached the destination - stop
 pilot. stop() ;
 }

 /**
 * Rotate the vehicle by the specified angle. Positive angles
 * will result in
 * a clockwise rotation. Negative angles will result in a
 * counterclockwise
 * rotation.
 *
 * @param pilot
 * @param angle
 * The angle (in degrees) by which to rotate the vehicle
 */
 public static void rotate(DifferentialPilot pilot, double angle) {

 // determine the number of milliseconds to rotate based // on the vehicle
 // speed
 int travelTime = getMillisForRotate (angle);

 // for negative angles, rotate counterclockwise
 if (angle < 0)
 pilot. rotateLeft() ;
 else
 // for positive angles, rotate clockwise
 pilot. rotateRight() ;

 // block the thread until the motion is complete
 sleep (travelTime);
 pilot. stop() ;
 }

 /**
 * Gets the milliseconds to travel for a given travel distance
 *
 * @param distance
 * The distance in centimeters to travel
 * @return Returns the number of milliseconds to travel
 */
 public static int getMillisForTravel(double distance) {
 return (int) ((distance / FW_SPEED) * 1000);
 }

 /**
 * Gets the milliseconds to rotate for the specified number of
 * degrees
 *
 * @param rotateDegree
 * @return the number of milliseconds to rotate
 */

CHAPTER 3 ■ CONTROLLING WHEELED VEHICLES

63

 public static int getMillisForRotate(double rotateDegree) {
 return (int) ((rotateDegree / ROTATION_SPEED) * 1000);
 }

 /**
 * Sleep function using Thread.yield rather than thread.sleep
 *
 * @param millis
 * The number of milliseconds to block the
 * executing thread
 */
 public static void sleep(long millis) {

 // create the stopwatch
 Stopwatch sw = new Stopwatch ();

 // continue waiting while the elapsed time is less than // the time
 // specified
 while (sw.elapsed() < millis)
 Thread. yield ();
 }
 }

 Summary
 In this chapter, you learned about the various methods provided in the MovePilot class of leJOS EV3 and
the DifferentialPilot class of leJOS NXJ. Based on those methods, you now know how to control the
movement of wheeled vehicles precisely. In particular, the nine example Java leJOS projects illustrate in
detail how to trace out a predefined geometric shape with sides of a predefined length using the pilot class
with both Lego Mindstorms EV3 and Lego Mindstorms NXT.

 In the next chapter, you will learn the basics of the Cartesian coordinate system used in leJOS EV3.
Then, based on that, you will study how to apply programming methods in the Navigation class to control
the wheeled vehicle in order to trace out a predefined path with coordinates in a two-dimensional plane.
Moreover, the major hardware components of the Lego EV3 brick will be introduced.

65© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_4

 CHAPTER 4

 Coordinators and Navigator API

 This chapter introduces you the basics of the Cartesian coordinate system used in leJOS EV3. It also teaches
you how to apply programming methods in the Navigation class to control the wheeled vehicle in order to
trace out a predefined path with coordinates in a two-dimensional plane. Moreover, you will learn about the
major hardware components of the Lego EV3 brick, such as the LCD display and the keys for interacting with
the robot. You will also learn how to apply the methods used to control the LCD display and buttons used to
provide input to and obtain output from the robot.

 In particular, this chapter includes seven example Java projects and covers the following topics:

• Introduction to the Cartesian coordinate system

• Basics of the navigator API functions

• Controlling the EV3 brick hardware

• Programming practice with buttons and the LCD display

• Programming practice on tracing a two-dimensional plane

 Cartesian Coordinate System Basics
 From our perspective, we can easily describe a location in words such as “I am located at the corner of
10th Avenue and 2nd Street,” or “I am located at 100 Main Street, Keene, New Hampshire.” However, such
descriptions don’t mean anything to Lego robots, as they have no concept of semantics. Instead, the Lego
robots only understand numbers.

 Thus when programming Lego robots , a Cartesian coordinate system is used to describe locations. As
illustrated in Figure 4-1 , a two-dimensional Cartesian coordinate system keeps track of two numbers: the
values of X and Y. Numbers grow larger and smaller along the X-axis and Y-axis. Both axes start at 0 and
include positive and negative numbers. The axes X and Y divide the Cartesian coordinate system into four
quadrants, namely, areas I, II, III, and IV. Any point in a two-dimensional area can be plotted on this grid
using values of X and Y.

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

66

 Moreover, in a Cartesian coordinate system, rotations to the left side are designated as positive
rotations. This means that if you rotate positive 90 degrees (+90), you have rotated counterclockwise.
Similarly, a rotation of negative 90 degrees(-90) is equivalent to rotating in a clockwise direction.

 Navigator API Functions
 In Chapter 3 , you learned about pilots , such as MovePilot and DifferentialPilot , and how pilots allow a
robot to perform precise moves and drive specific distances. Using the pilot, you will learn about another
class called the Navigator , which tells the pilot how to drive to a specific location based on the Cartesian
coordinate system.

 The Navigator takes a pilot object in its constructor and then calculates a series of movements from one
location to another. The Navigator actually knows nothing about how the robot works or how the pilot object
works out moving around. Instead, the Navigator simply asks the pilot to execute instructions of movements.

 The following code statement instantiates a Navigator and then drives to the target coordinate x = 50, y =
50, in which we will assume a pilot exists:

 Navigator navtest = new Navigator(pilot);
 navtest.goTo(50,50);

 As you learned in Chapter 3 , you can build a pilot object using the following program:

 // setup the wheel diameter of left (and right) motor in
 // centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center of

 Figure 4-1. A Cartesian coordinate system

http://dx.doi.org/10.1007/978-1-4842-2005-4_3
http://dx.doi.org/10.1007/978-1-4842-2005-4_3

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

67

 // wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 }, WheeledChassis. TYPE_
DIFFERENTIAL);
 MovePilot pilot = new MovePilot(chassis);

 In a navigation class, the target coordinates are also known waypoints. You can create your own method
to generate a set of waypoints and then feed the coordinates to the Navigator using waypoint objects. The
following shows you how to use the waypoint:

 Waypoint wp = new Waypoint (50, 50);
 navtest.goTo(wp);

 In the case of finding a path, once a path is found, you can then put the waypoints into a navigation
queue using the addWaypoint() method. For example,

 navtest.addWaypoint(new Waypoint(200,200));

 The Navigator drives a pilot object to make the move control. This is achieved by a PoseProvider that
keeps track of the sequence of robot positions in a route. The route is an instance of the path class, and it
behaves as a first-in, first-out (FIFO) queue. When a waypoint is reached, it is removed from the route queue
and the robot goes to the next waypoint. At any time, new waypoints can be added to the end of the route
queue.

 The following is a list of methods in the Navigation class. All of the methods provided by the Navigation
class are non-blocking, which means that the methods return immediately once they complete their
function.

 void setPath(Path path) Sets the path that the Navigator traverses.

 void addWaypoint(Waypoint waypoint) Adds a waypoint to the end of the path.

 void addWaypoint(float x, float y) Constructs a new waypoint having the
coordinate (x,y) and then adds it to the end of the path.

 void addWaypoint(float x, float y , heading) Creates a new waypoint
having the coordinate (x,y) and then adds it to the end of the path. You can use
this method to specify the heading of the robot when it reaches to the waypoint.

 void followPath() Starts the robot traversing along an existing/current route.

 void followPath(Path path) Starts the robot traversing the path to be
followed.

 void goTo(Waypoint destination) Starts the robot moving toward the
destination. If no path exists, a new one is created consisting of the destination;
otherwise, the destination is added to the existing path.

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

68

 void goTo(double x, double y) Starts the robot moving toward the destination
specified by the coordinate (x,y). If no path exists, a new one is created consisting
of the destination; otherwise, the new waypoint is added to the existing path.

 void goTo(double x, double y, double heading) Starts the robot moving
toward the destination specified by the coordinate (x,y). If no path exists, a new
one is created consisting of the destination; otherwise, the new waypoint is
added to the existing path. You can use this method to specify the heading of the
robot when it reaches the destination waypoint .

 leJOSvoid stop() Stops the robot but preserves the route so that you can
resume its path traversal if you call followPath() .

 boolean isMoving() Returns true if the robot is moving toward a waypoint.

 boolean pathCompleted() Returns true if the robot has reached the final
waypoint.

 void rotateTo(double direction) Rotates the robot to a new directional angle
in the Cartesian plane. When the x-axis is 0, for example, rotateTo(0) will align
the robot with the x-axis. If the y-axis is 90 degrees, rotateTo(90) aligns it with
the y-axis. The numerical value of direction is the absolute heading to which you
can rotate the robot, and it ranges from 0 to 360.

 void waitForStop() Returns true if the robot stopped at the final waypoint of
the path and is no longer moving.

 void singleStep(boolean yes) Controls whether the robot stops at each
waypoint. If yes , you can call this method with a true parameter and then the
robot stops at each waypoint.

 Here is a simple example, ch4p1.java , to move your robot from starting point (0, 0) to the location with
coordinate (50, 50). The units of measurement here are in centimeters because the diameter and track width
employed by pilot uses centimeters (for example, 2.8 centimeters and 18 centimeters).

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p1.java
 //an example for navigation testing
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.*;

 public class ch4p1 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);

 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

69

 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);
 MovePilot pilot = new MovePilot(chassis);

 Navigator navtest = new Navigator(pilot);

 // define a new waypoint as destination
 Waypoint wp = new Waypoint (50, 50);

 // robot moves to the destination waypoint
 navtest.goTo(wp);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();
 }
 }

 Controlling the EV3 Brick Hardware
 The EV3 brick is equipped with 6 AA batteries, or a rechargeable battery pack that is slightly larger. This
durable brick also contains a 32-bit ARM9 processor running at 300MHz. This processor has direct access to
64MB of RAM and 16MB of flash memory. To conserve battery life, the flash RAM stores data and programs
even when there is no power input. Compared to modern computers with 4GB of RAM, the RAM used
by the Lego EV3 is very small. However, this is actually plenty for your robotics projects because modern
computers consume a lot of their RAM capacity for running their operating systems, generating graphics,
and performing other memory-intensive tasks. The robotics programs, however, don’t employ heavy-duty
graphics or perform processor-intensive computing tasks.

 In this section, you will familiarize yourself with the EV3 brick including the buttons used for input, the
liquid crystal display (LCD), and the small speaker used for output. leJOS EV3 provides API (Application
Program Interface) functions used for controlling all of the hardware.

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

70

 The LCD class in leJOS EV3 can be used in text mode or graphics mode. For text display, the EV3 LCD
screen is 16 characters wide by 8 characters deep. It is addressed by using the coordinates (x, y), as shown in
Figure 4-2 , in which x ranges from 0 to 15, and y ranges from 0 to 7.

 Figure 4-2. Coordinate system of LCD display

 The methods used to write to the LCD screen in text mode follow:

 void drawString(String str, int x, int y) Displays a string of text on
the LCD screen starting at coordinate (x,y).

 void drawInt(int i, int x, int y) Displays an integer starting at
coordinate (x,y). The integer is left-aligned and takes up as many characters as
are necessary.

 void drawInt(int i, int places, int x, int y) Displays an integer
starting at coordinate (x,y) with leading spaces to occupy at least the number of
characters specified by the places parameter. This means that the method always
writes to a fixed number of characters specified in places and the previous value
will always be fully overwritten. For example, if the value of places is set to 5,
that means there are 5 characters to be overwritten when displaying an integer
number on the LCD.

 void clear() Clears the display.

 As an example, the program ch2p2. java illustrates how to display the free memory space on the LCD of
EV3 brick:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p2.java
 //An example to test LCD displaying methods
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.BrickFinder;

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

71

 import lejos.hardware.Keys;
 import lejos.hardware.lcd.TextLCD;

 public class ch4p2 {

 public static void main(String[] args) throws InterruptedException {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantized LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // drawing text on the LCD screen based on coordinates
 lcddisplay.drawString("Free RAM:", 0, 0);

 // displaying free memory on the LCD screen
 lcddisplay.drawInt((int) Runtime. getRuntime ().freeMemory(), 0, 1);

 // exit program after any button pressed
 buttons.waitForAnyPress();
 }

 }

 You can also write to the LCD display with System.out.println(String str) . For example, System.
out.println("hello") will display the string hello on the screen and overwrite the existing characters. By
default, the LCD display is refreshed automatically. If you want to control when the LCD is refreshed, you
can call lcddisplay.setAutoRefresh(false) to turn off auto-refreshing and call lcddisplay.refresh()
when you want to refresh the display.

 All six control keys on the EV3 brick are reprogrammable under leJOS EV3. You can use events to listen
for key presses and react accordingly when one is activated. The Keys class contains static instances of the
six keys. These six instances are ENTER , ESCAPE , LEFT , RIGHT , UP , and DOWN .

 Usually, when programming, you want to wait or block the process until a key is pressed. Thus the
simplest way to achieve this is to use the waitForAnyPress() method. For example, to stop code until
 ESCAPE key is pressed, you can do the following:

 buttons.getButtons()==Keys. ID_ESCAPE

 You can also use a simple while loop to stop your code while it waits for the user to press an ESCAPE
button:

 while (buttons.getButtons() != Keys. ID_ESCAPE) { }

 The following program, ch4p3.java , tests if a button is pressed:

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

72

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p3.java
 //an example for button testing
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;

 public class ch4p3 {
 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();
 // Keys class for buttons
 Keys buttons = ev3brick.getKeys();

 // press the ESCAPE key to exit the program
 while (buttons.getButtons() != Keys. ID_ESCAPE) {
 // clearing the LCD screen at first
 LCD. clear ();
 // press the ENTER key so the ENTER will be
 // displayed on the LCD screen
 if (buttons.getButtons() == Keys. ID_ENTER) {
 // displaying ENTER on the LCD screen
 LCD. drawString ("ENTER", 0, 0);
 // leave the string ENTER on the screen
 // for 2 seconds
 Thread. sleep (2000);
 }

 }
 }
 }

 Other methods used for controlling keys include the following:

 static int waitForAnyPress()

 To wait for any key to be pressed, the above command returns the id code of the key that is pressed as
illustrated here:

 button UP ENTER DOWN RIGHT LEFT ESCAPE

 code 1 2 4 8 16 32

 static int readButtons() Reads the current state of all of the keys. The
return value is the sum of all of the codes of the keys that are pressed.

 As illustrated in the above program , ch4p3.java , you will find that Thread.sleep(2000) is used to
add in various delays so that the robot can take breaks to do other things. This happens in many cases
when using sensors (for example, a light sensor or color sensor) to record rapid events that require

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

73

extreme accuracy. Such events could be waiting for a color sensor to detect a black line or an ultrasonic
senor to detect a wall. Therefore, the method Thread.sleep() can be useful for timing different actions or
timestamping events for later analysis.

 Programming Practice with the LCD Display
 In this practice session, you will develop a program that shows “ Here is my RAM ” in the LCD screen for five
seconds and then print out “ I got it. ” An example program, ch4p4.java , illustrates how to achieve this
goal.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p4.java
 //A programming practice example to display free RAM on LCD
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.lcd.TextLCD;
 import lejos.utility.Stopwatch;

 public class ch4p4 {

 public static void main(String[] args) throws InterruptedException {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // LCD class for displaying and Keys class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // for timing dialogs
 Stopwatch sw = new Stopwatch();

 // drawing free RAM on the LCD screen based on
 // coordinates
 lcddisplay.drawString("Here is my RAM:", 0, 0);

 // displaying free memory on the LCD screen
 lcddisplay.drawInt((int) Runtime. getRuntime ().freeMemory(), 0, 1);
 sw.reset();

 // wait for 5 seconds, then display a message
 while (sw.elapsed() < 5000)
 Thread. yield ();
 sw.reset();
 lcddisplay.drawString("I got it", 0, 2);

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

74

 // exit program after any button pressed
 buttons.waitForAnyPress();
 }
 }

 Programming Practice with Key Presses
 In this programming practice session, you will develop two programs to press keys and display
corresponding messages on the LCD. In the first program, you need to display the button being pressed on
the LCD. Its pseudocode is illustrated in the following example:

 while(ESCAPSE is not pressed){
 Clear LCD
 If ENTER is pressed
 Display “ENTER” on first row
 Else if LEFT is pressed
 Display “LEFT” on the first row
 else if RIGHT is pressed
 Display “RIGHT” on the first row
 else if UP is pressed
 Display “UP” on the first row
 else if DOWN is pressed
 Display “DOWN” on the first row
 }

 An example program, ch4p5.java , shows you how to complete this practice session.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p5.java
 //A programming practice example to display various buttons when //they are pressed
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.lcd.TextLCD;

 public class ch4p5 {

 public static void main(String[] args) throws InterruptedException {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // LCD class for displaying and Keys class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

75

 // continue waiting for button pressed while the user // has not pressed
 // escape button
 while (buttons.getButtons() != Keys. ID_ESCAPE) {
 // display a message for enter
 if (buttons.getButtons() == Keys. ID_ENTER) {
 lcddisplay.clear();
 lcddisplay.drawString("ENTER", 0, 0);
 }
 // display a message for left button
 else if (buttons.getButtons() == Keys. ID_LEFT) {
 lcddisplay.clear();
 lcddisplay.drawString("LEFT", 0, 0);
 }
 // display a message for right button
 else if (buttons.getButtons() == Keys. ID_RIGHT) {
 lcddisplay.clear();
 lcddisplay.drawString("RIGHT", 0, 0);
 }
 // display a message for up button
 else if (buttons.getButtons() == Keys. ID_UP) {
 lcddisplay.clear();
 lcddisplay.drawString("UP", 0, 0);
 }
 // display a message for down button
 else if (buttons.getButtons() == Keys. ID_DOWN) {
 lcddisplay.clear();
 lcddisplay.drawString("DOWN", 0, 0);
 }
 }
 }
 }

 In the second practice , you need to write a program that waits for ENTER to be pressed before carrying
out the rest of the program. The pseudocode is illustrated in the following example:

 Clear LCD
 Display "Press ENTER to continue" then Refresh LCD
 Wait for the ESCAPE to be pressed and released
 Display a message that the ESCAPE is indeed pressed and released

 An example program, ch4p6.java , shows you how to complete this practice session.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p6.java
 //A programming practice example to display ESCAPE button pressed
 // and released
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.BrickFinder;

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

76

 import lejos.hardware.Keys;
 import lejos.hardware.lcd.TextLCD;
 import lejos.utility.Stopwatch;

 public class ch4p6 {

 public static void main(String[] args) throws InterruptedException {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // LCD class for displaying and Keys class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // print instructions for the user
 lcddisplay.clear();
 lcddisplay.drawString("Prs ENTER to cont", 0, 0);
 lcddisplay.refresh();

 // wait until ENTER key is pressed
 while (buttons.waitForAnyPress() != Keys. ID_ENTER)
 Thread. yield ();

 // wait until ESCAPE key is pressed, then wait for it // to be released
 while (buttons.getButtons() != Keys. ID_ESCAPE)
 Thread. yield ();

 // once escape is released, indicate that it was and
 // pause for a moment
 // (i.e. 5 seconds) before exiting
 lcddisplay.drawString("Escape was pressed", 0, 1);
 Stopwatch sw = new Stopwatch();
 while (sw.elapsed() < 5000)
 Thread. yield ();
 }
 }

 Programming Practice with Navigator API
 The leJOS Navigator interface provides a set of methods that you can use to control the movements of a robot
precisely, including the ones for moving to any location and for controlling the direction of the movement.
In this practice session, you are going to write a program in which the robot will travel in a two-dimensional
 plane , as shown in Figure 4-3 :

 starting at A(0, 0),
 go to B(50, 50),
 then, go back A(0, 0)
 then go to C(-50, 50),
 then finally come back to A(0, 0).

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

77

 ■ Note The units of the coordinates are measured in centimeters in this practice session. Thus, you must
make sure that your track width and diameter are set to centimeters.

 The pseudocode for this program follows:

 DifferentialPilot ev3robot = new DifferentialPilot(diam,trackwidth,Motor.A,Motor.C);

 NavPathController navbot = new NavPathController(ev3robot);

 Button waitForPress to start

 Display destination’s coordinate (50, 50) on LCD

 Display the message "Press ENTER key" to continue ; Go to location with coordinate 50,50

 Display destination’s coordinate (0, 0) on LCD

 Display the message "Press ENTER key" to continue ; Go to location with coordinate 0,0

 Figure 4-3. A two-dimensional plane for testing navigator API

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

78

 Display destination’s coordinate (-50, 50) on LCD Display the message "Press ENTER key" to
 continue ; Go to location with coordinate -50,50

 Display destination’s coordinate (0, 0) on LCD Display the message "Press ENTER key" to
 continue ; Go to location with coordinate 0,0

 Button waitForPress to exit

 An example program, ch4p7.java , shows you below how to complete this practice.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch4p7.java
 //A programming example to practice navigator API functions
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.TextLCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.MovePilot;
 import lejos.robotics.navigation.Navigator;
 import lejos.robotics.navigation.Waypoint;
 import lejos.utility.TextMenu;

 public class ch4p7 {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(MotorPort. C);

 public static void main(String[] args) throws InterruptedException {

 // menu options for displaying navigator controlling
 String[] menuItems = new String[1];
 menuItems[0] = "Task 1: Navigator";

 // display menu
 TextMenu menu = new TextMenu(menuItems);
 menu.setTitle("NavRobot");

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

79

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);
 MovePilot ev3robot = new MovePilot(chassis);

 Navigator navbot = new Navigator(ev3robot);

 // run routine based on menu choice
 switch (menu.select()) {
 case 0:
 navigate (navbot);
 break ;
 }
 }

 // navigate()
 // demo navigating using way points

 private static void navigate(Navigator nav) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // set up way points
 Waypoint wp1 = new Waypoint(50, 50);
 Waypoint wp2 = new Waypoint(0, 0);
 Waypoint wp3 = new Waypoint(-50, 50);

 // clear menu
 lcddisplay.clear();

 // display current location
 lcddisplay.drawString("At 0, 0", 0, 0);
 lcddisplay.drawString("Press ENTER", 0, 2);
 lcddisplay.drawString("to continue", 0, 3);

 // wait until ENTER key is pressed
 while (buttons.waitForAnyPress() != Keys. ID_ENTER)
 Thread. yield ();

 // navigate to way point one, display new location
 lcddisplay.clear();
 nav.goTo(wp1);
 lcddisplay.drawString("At 50, 50", 0, 0);
 lcddisplay.drawString("Press ENTER", 0, 2);
 lcddisplay.drawString("to continue", 0, 3);

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

80

 // wait until ENTER key is pressed
 while (buttons.waitForAnyPress() != Keys. ID_ENTER)
 Thread. yield ();

 // navigate to way point two, display new location
 lcddisplay.clear();
 nav.goTo(wp2);
 lcddisplay.drawString("At 0, 0", 0, 0);
 lcddisplay.drawString("Press ENTER", 0, 2);
 lcddisplay.drawString("to continue", 0, 3);

 // wait until ENTER key is pressed
 while (buttons.waitForAnyPress() != Keys. ID_ENTER)
 Thread. yield ();

 // navigate to way point 3, display new location
 lcddisplay.clear();
 nav.goTo(wp3);
 lcddisplay.drawString("At -50, 50", 0, 0);
 lcddisplay.drawString("Press ENTER", 0, 2);
 lcddisplay.drawString("to continue", 0, 3);

 // wait until ENTER key is pressed
 while (buttons.waitForAnyPress() != Keys. ID_ENTER)
 Thread. yield ();

 // navigate to way point 2, display new location
 lcddisplay.clear();
 nav.goTo(wp2);
 lcddisplay.drawString("At 0, 0", 0, 0);
 lcddisplay.drawString("Press ENTER", 0, 2);
 lcddisplay.drawString("to exit", 0, 3);

 // wait until ENTER key is pressed
 while (buttons.waitForAnyPress() != Keys. ID_ENTER)
 Thread. yield ();
 }
 }

 As you have seen in the Cartesian coordinate system illustrated in Figure 4-3 , the coordinate at node A
is (0,0), the coordinate at node B is (50,50), and the coordinate at node C is (-50,50). The path of the robot
starts at node A, traverses to node B, then backtracks to node A, traverses to node C, and finally backtracks
to node A. Nodes A, B, and C actually form small elements in the binary tree, and this practices shows the
simplest form of traversing a binary tree.

CHAPTER 4 ■ COORDINATORS AND NAVIGATOR API

81

 Summary
 In this chapter, you learned about the Cartesian coordinate system used in leJOS EV3. You also studied
how to apply various methods in the Navigation class to control the wheeled vehicles so they can trace out
a predefined path with coordinates in a two-dimensional plane. Moreover, you learned about the major
hardware components of EV3 brick: that is, the LCD display and the six keys on the EV3 brick for interacting
with your robot. Finally, you studied applying built-in system methods for controlling the LCD display and
the buttons in order to provide input to and/or obtain output from your robot.

 In the next chapter you will move onto the next component of the book, that is, building intelligence for
your robot by using search strategies. In particular, will learn how to implement a depth-first search (DFS)
algorithm on the tiny Java Virtual Machine (JVM), that is, LeJOS EV3, and then integrating the DFS algorithm
in the LeJOS-based robotics system for localization and path planning, enhancing the existing pathfinding
approaches within the LeJOS system.

83© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_5

 CHAPTER 5

 Depth-First Search Algorithm and
Its Implementation with Lego EV3

 The act of searching falls under the artificial intelligence (AI) umbrella. The major goal of AI is to give
computers the ability to think: in other words, to mimic human behavior. The problem with this mimicry is
that, unfortunately, a computer’s “brain” doesn’t function in the same manner as a human brain: computers
require a series of well-reasoned steps to process in order to find a solution. Thus, your goal is to deconstruct
a complicated task and convert it into simpler steps that the robotics system can handle. This conversion,
from something complex to something simple, is what the search algorithm will do.

 In this chapter, you will learn how to implement a depth-first search (DFS) algorithm on the tiny Java
Virtual Machine (JVM) : that is, of course, leJOS EV3 . As you know, leJOS EV3 is an open source project
created to develop a technological infrastructure in which Java technology is applied to programming
software for robots. Java is an object-oriented programming language. One of the most important features
implemented in leJOS is the leJOS navigation API (discussed in Chapter 4), which can be used to achieve the
goal in which a convenient set of classes and methods are provided to control the robot.

 The classes that control vehicles deal with several levels of abstraction. At the very bottom, there are
the motors that turn the wheels, which are controlled by the RegulatedMotor class. The MovePilot (or
 DifferentialPilot in leJOS NXJ) class uses the motors to control elementary moves: rotate in place, travel
in a straight line, or travel in an arc. At the next level up, the NavPathController uses a DifferentialPilot
to move the robot through a complicated path on a plane. To perform navigation, the path controller needs
the robot location and the direction in which it is heading. It uses an OdometeryPoseProvider to keep this
information up to date. In particular, this chapter will cover the following topics:

• A new depth-first search (DFS) algorithm that can be applied to building arbitrary
tree structures generically.

• Applying and integrating the proposed DFS algorithm in the leJOS-based robotics
system for localization and path planning, enhancing the existing pathfinding
approaches within leJOS system in the process.

 Overview of DFS Algorithm
 Let's first examine how humans solve search problems. First, a representation of how the search problem
exists is required. Figure 5-1 is an example of a search tree . It is a series of interconnected nodes that through
which we will search:

http://dx.doi.org/10.1007/978-1-4842-2005-4_4

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

84

 Figure 5-1. Tree structure of a path

 Depth-first search (DFS) works by taking a node ; checking its neighbors; expanding the first node it
finds among those neighbors; checking to see if that expanded node is your destination; and if not, continue
to explore more nodes. For example, if you want to find a path from A to E, you can use two lists to keep track
of what you are doing: an open list and a closed list . An open list keeps track of what you need to do, and a
closed list keeps track of what you have already done.

 At the beginning, you only have your starting point, node A. You haven't done anything to it yet, so let's
add it to your open list . Then you have an open list including <A> and a closed list including <empty> . Now
let’s explore the neighbors of your A node. Node A’s neighbors are the B, C, and D nodes. Because you are
now done with your A node, you can remove it from your open list and add it to your closed list. Your current
open list then includes <B, C, D> and the closed list contains <A> . Now our open list contains three items.

 For depth-first search, you always explore the first item from your open list. The first item in your open
list is the B node. B is not your destination, so let's explore its neighbors. Because you have now expanded
B, you are going to remove it from the open list and add it to the closed list. Your new nodes are E, F, and G,
and you add these nodes to the beginning of your open list. Then you have an open list including <A, B>,
and a closed list including <E, F, G, C, D> . Now expand the E node. Since it is your intended destination,
you should stop. Therefore, you receive the route A->B->E that is interpreted from the closed list by using the
regular depth-first search algorithm.

 Next let’s see how to use the depth-search approach to solve a path location problem that could be
applied to a GPS system when navigating from a starting city to a destination city. Suppose that you want to
drive from city A (Keene, NH, for example) to city S (let’s say Boston, MA). Given the following route path,
determine a plan for you to start from A and end at S using a depth-first search strategy .

 City Distance

 A to B 20 miles

 A to C 10 miles

 A to D 10 miles

 A to E 20 miles

 B to F 10 miles

 B to M 20 miles

 B to G 10 miles

(continued)

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

85

 City Distance

 C to H 10 miles

 C to I 15 miles

 D to J 20 miles

 E to K 15 miles

 E to L 15 miles

 M to N 20 miles

 M to O 20 miles

 I to P 40 miles

 P to R 20 miles

 P to S 20 miles

 Based on the above information, you can plot a route tree , as illustrated in Figure 5-2 , displaying all of
the possible routes in between the two cities:

 Figure 5-2. Routes in between two cities

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

86

 The following program is an example code that can be used to find a path for you to schedule a travel
plan automatically by using the depth-first search algorithm:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch5p1_main.java
 //Driver class to set up map using ch5p1_GraphNode, ch5p1_Link, and //ch5p1_Graph classes.
 //Calls a depth-first search in ch5p1_Graph class to create //navigation path from a start
 //and end node.
 //**

 public class ch5p1_main {

 public static void main(String[] args) {

 // These objects used to define what your graph looks // like
 ch5p1_Graph searchGraph = new ch5p1_Graph();
 ch5p1_GraphNode A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, R, S;
 ch5p1_Link AB, AC, AD, AE, BF, BM, BG, CH, CI, DJ, EK, EL, MN, MO, IP, PR, PS;

 // define each node
 A = new ch5p1_GraphNode("A");
 B = new ch5p1_GraphNode("B");
 C = new ch5p1_GraphNode("C");
 D = new ch5p1_GraphNode("D");
 E = new ch5p1_GraphNode("E");
 F = new ch5p1_GraphNode("F");
 G = new ch5p1_GraphNode("G");
 H = new ch5p1_GraphNode("H");
 I = new ch5p1_GraphNode("I");
 J = new ch5p1_GraphNode("J");
 K = new ch5p1_GraphNode("K");
 L = new ch5p1_GraphNode("L");
 M = new ch5p1_GraphNode("M");
 N = new ch5p1_GraphNode("N");
 O = new ch5p1_GraphNode("O");
 P = new ch5p1_GraphNode("P");
 R = new ch5p1_GraphNode("R");
 S = new ch5p1_GraphNode("S");

 // define which GraphNodes are connected
 AB = new ch5p1_Link(A, B);
 AC = new ch5p1_Link(A, C);
 AD = new ch5p1_Link(A, D);
 AE = new ch5p1_Link(A, E);
 BF = new ch5p1_Link(B, F);
 BM = new ch5p1_Link(B, M);
 BG = new ch5p1_Link(B, G);
 CH = new ch5p1_Link(C, H);
 CI = new ch5p1_Link(C, I);
 DJ = new ch5p1_Link(D, J);
 EK = new ch5p1_Link(E, K);

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

87

 EL = new ch5p1_Link(E, L);
 MN = new ch5p1_Link(M, N);
 MO = new ch5p1_Link(M, O);
 IP = new ch5p1_Link(I, P);
 PR = new ch5p1_Link(P, R);
 PS = new ch5p1_Link(P, S);

 // add all nodes and links to your graph object
 searchGraph.addNode(A);
 searchGraph.addNode(B);
 searchGraph.addNode(C);
 searchGraph.addNode(D);
 searchGraph.addNode(E);
 searchGraph.addNode(F);
 searchGraph.addNode(G);
 searchGraph.addNode(H);
 searchGraph.addNode(I);
 searchGraph.addNode(J);
 searchGraph.addNode(K);
 searchGraph.addNode(L);
 searchGraph.addNode(M);
 searchGraph.addNode(N);
 searchGraph.addNode(O);
 searchGraph.addNode(P);
 searchGraph.addNode(R);
 searchGraph.addNode(S);

 searchGraph.addLink(AB);
 searchGraph.addLink(AC);
 searchGraph.addLink(AD);
 searchGraph.addLink(AE);
 searchGraph.addLink(BF);
 searchGraph.addLink(BM);
 searchGraph.addLink(BG);
 searchGraph.addLink(CH);
 searchGraph.addLink(CI);
 searchGraph.addLink(DJ);
 searchGraph.addLink(EK);
 searchGraph.addLink(EL);
 searchGraph.addLink(MN);
 searchGraph.addLink(MO);
 searchGraph.addLink(IP);
 searchGraph.addLink(PR);
 searchGraph.addLink(PS);

 // run depth-first search to get from start to
 // destination
 searchGraph.dfsTraverse(
 searchGraph.nodes.get(searchGraph.nodes.indexOf(A)),
 searchGraph.nodes.get(searchGraph.nodes.indexOf(S)));

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

88

 // display path created using dfsTraverse
 // This will be display the path from start to
 // destination

 System. out .println("the path from your current city to the destination city
is: ");

 for (int i = searchGraph.dfsPath.size() - 1; i >= 0; i--) {
 if (i!=0)
 System. out .print(searchGraph.dfsPath.get(i).cityName + "->");
 else System. out .print(searchGraph.dfsPath.

get(i).cityName);
 }
 }
 }

 //**
 //Wei Lu Java Robotics Programming with Lego EV3
 //ch5p1_GraphNode.java
 //Represents name of a graph
 //**

 public class ch5p1_GraphNode {
 String cityName;

 public ch5p1_GraphNode(String cityName) {
 this.cityName = cityName;
 }

 public String toString() {
 return cityName;
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch5p1_Graph.java
 //Represents GraphNodes connected through Links, including method //for doing a depth-first
 //search traversal of the graph.
 //the method dfsTraverse creates a dfsPath list which the robot will //follow to demonstrate
 //how the depth-first search works.
 //**

 import java.util.ArrayList;
 import java.util.Stack;

 public class ch5p1_Graph {

 // nodes and links define the physical creation of your Graph
 ArrayList<ch5p1_GraphNode> nodes;
 ArrayList<ch5p1_Link> links;

 // Two lists used for traversing
 ArrayList<ch5p1_GraphNode> dfsTraverse;
 Stack<ch5p1_Link> travelStack = new Stack<ch5p1_Link>();

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

89

 // List used to define where you would like to move
 ArrayList<ch5p1_GraphNode> dfsPath = new ArrayList<ch5p1_GraphNode>();

 // Constructor of ch5p1_Graph class
 public ch5p1_Graph() {
 nodes = new ArrayList<ch5p1_GraphNode>();
 links = new ArrayList<ch5p1_Link>();
 dfsTraverse = new ArrayList<ch5p1_GraphNode>();
 }// end constructor

 // addNode()
 // Add a city node to the graph

 public void addNode(ch5p1_GraphNode node) {
 nodes.add(node);
 }// end addNode

 // addLink
 // Add link to the graph

 public void addLink(ch5p1_Link link) {
 links.add(link);
 }// end addLink

 // dfsTraverse()
 // perform depth-first search on the graph

 public void dfsTraverse(ch5p1_GraphNode from, ch5p1_GraphNode to) {
 boolean matched;
 ch5p1_Link found;

 // determine if there is a link between from and to
 // if there is a match then add the link to the
 // travelStack and
 // add the nodes to dfsPath
 // This will ultimately repeated by the end of the
 // search

 matched = match(from, to);
 if (matched) {
 travelStack.push(new ch5p1_Link(from, to));
 dfsPath.add(new ch5p1_GraphNode(to.cityName));
 dfsPath.add(new ch5p1_GraphNode(from.cityName));
 return ;
 }

 // if there is no match found you could another path
 // findings
 found = find(from);

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

90

 // if you find a new connection then you could add it // to the travelStack
 // and
 // and the start node to dfsPath
 // recursively call dfsTraverse with the link's to as // start and our
 // destination as the end

 if (found != null) {
 travelStack.push(new ch5p1_Link(from, to));
 dfsTraverse(found.to, to);
 dfsPath.add(new ch5p1_GraphNode(from.cityName));
 }

 // backtrack if you cannot find a new connection
 else if (travelStack.size() > 0) {
 found = travelStack.pop();
 dfsTraverse(found.from, found.to);
 dfsPath.add(new ch5p1_GraphNode(from.cityName));
 }
 }// end dfsTraverse()

 // find() method is used to
 // find the next link to try exploring

 public ch5p1_Link find(ch5p1_GraphNode from) {

 // iterate through the list of links
 for (int a = 0; a < links.size(); a++) {
 // link found
 if (links.get(a).from.equals(from) && !links.get(a).skip) {
 ch5p1_Link foundList = new ch5p1_Link(links.get(a).from,
 links.get(a).to);
 // mark this link as used so we don't
 // match it again
 links.get(a).skip = true ;
 return foundList;
 }
 }
 return null ; // not found
 }// end find()

 // match() method is used to determine if there is a link
 // between a starting
 // node and an ending node

 public boolean match(ch5p1_GraphNode from, ch5p1_GraphNode to) {

 // iterate through list of links
 for (int a = links.size() - 1; a >= 0; a--) {
 if (links.get(a).from.equals(from) && links.get(a).to.equals(to)
 && !links.get(a).skip) {
 links.get(a).skip = true ;
 return true ;
 }
 }

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

91

 return false ;
 }// end match()
 }// end Graph.java

 //**
 //Wei Lu Java Robotics Programming with Lego EV3 ch5p1_Link.java
 //Represents a link between two GraphNodes
 //**

 public class ch5p1_Link {

 ch5p1_GraphNode from;
 ch5p1_GraphNode to;

 // boolean skip is used for traversal to determine if the path // has already
 // been visited or not
 boolean skip;

 public ch5p1_Link(ch5p1_GraphNode from, ch5p1_GraphNode to) {
 this.from = from;
 this.to = to;
 skip = false;
 }
 }

 In the above program, the dfsTraverse() method applied a recursive approach to perform the depth-
first search in which a match() method was used to check the route graph and determine if there is any
path in between from and to. If the answer was yes, then it obtained the information and pushed the route
connection information into the stack and then returned the route path. Otherwise, if the answer was no, it
called a find() method to check the path between from and the other cities, if it can find one, the program
then returned the object of connection information, otherwise the program returned null. If it can find
such a path, it could then push the information to the top of stack, then call dfsTraverse() recursively, and
save the city into the new departure cities. Otherwise, the program backtracked and called dfsTraverse()
recursively until it found the destination.

 The result of running this program is as follows:

 The path from your current city to the destination city is:
 A->B->F->B->M->N->M->O->M->B->G->B->A->C->H->C->I->P->S

 This result shows you the exact path when traversing a graph using a DFS search strategy including the
trace back in more detail.

 leJOS EV3-Based DFS Algorithm
 In a leJOS-based DFS algorithm, each node on the path is a class node called WPNode , which is defined as:

 public WPNode(String newname, WayPoint newwp) {
 nodename = newname;
 nodewp = newwp;
 seen = false ;

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

92

 parent = this ;
 connections = new ArrayList<WPNode>();
 }

 The pseudocode for the leJOS-based DFS algorithm is described in the following:

 1. Constructing the generic tree for search space, such as:

 A = new WPNode("A", new WayPoint(0, 0));
 B = new WPNode("B", new WayPoint(-5, 5));
 C = new WPNode("C", new WayPoint(5, 5));
 A.addLeaf(B);
 A.addLeaf(C);

 2. Declaring a stack to save the route path, for example:

 Stack<WPNode> DFSpath = new Stack<WPNode>();

 3. Setting the current node to the root node, say A . While the destination node is
not found, loop the following:

 a. If the current node has children, set the first unseen node to the current
node and then return.

 b. If the current node has no unseen children, set its parent to the current node
and then return.

 4. Once the destination node is found, push the destination node to the stack and
then push each parent node to the stack.

 5. Generate pilot for two-motor movements, and then set pilot to use appropriate
dimensions and motors.

 6. Pop the waypoint of each path node, and apply the goto(int x, int y) method
to direct the robot to move to the next node.

 Based on the above leJOS-based DFS algorithm , you can develop a program for your robot so that it can
travel the path between starting node A and destination node M, as illustrated in Figure 5-3 :

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

93

 The coordinate at A is (0,0).

 The coordinate at B is (-5,5).

 The coordinate at C is (5,5).

 The coordinate at D is (-10,10).

 The coordinate at E is (0,10).

 The coordinate at F is (-5,15).

 The coordinate at G is (5,15).

 The coordinate at H is (-10,20).

 The coordinate at I is (0,20).

 Figure 5-3. Path in between two nodes

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

94

 The coordinate at J is (-15,25).

 The coordinate at K is (-5,25).

 The coordinate at L is (-10,30).

 The coordinate at M is (0,30).

 Your program should at least display the destination’s coordinate on the LCD and then display the
message “ Press ENTER key to continue. ” Press enter, and your robot moves to the next node. For
instance, suppose that your robot starts from A (0,0) and you want to explore a path to E (0,10) . Assume
that the path your robot explores using a depth-first search is A -> B -> E . At the starting point A, your
program should do the following:

 Display the destination’s coordinate B(-5,5) on the LCD and display the
message “ Press ENTER key to continue ”.

 Go to the location with coordinate -5,5 .

 Display the destination’s coordinate E(0, 10) on the LCD and display the
message “ Press ENTER key to continue. ”

 Go to location with coordinate 0,10 .

 Moreover, your problem should have a string called destination , so it’s intelligent enough when
changing the value of the destination, your robot can explore a new path from starting node A to the new
destination node. (We assume that the starting node is always A, so the from string can be hard-coded.)

 The following programs represent the implementation of a leJOS-based DFS algorithm to explore a path
from node A to the destination node M:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch5p2_main.java
 //Driver class to set up map using ch5p2_GraphNode, ch5p2_Link, and //ch5p2_Graph classes.
 //Calls a depth-first search in ch5p2_Graph class to create //navigation path from a start
 //and end node and then robots will follow the path to move from //start node
 //to destination node
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.MovePilot;
 import lejos.robotics.navigation.Navigator;

 public class ch5p2_main {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. A);

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

95

 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. C);

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);
 MovePilot ev3robot = new MovePilot(chassis);

 Navigator navbot = new Navigator(ev3robot);

 // These objects used to define what your graph looks // like
 ch5p2_Graph searchGraph = new ch5p2_Graph();
 ch5p2_GraphNode A, B, C, D, E, F, G, H, I, J, K, L, M;
 ch5p2_Link AB, AC, BD, BE, EF, EG, FH, FI, HJ, HK, KL, KM;

 // define each node
 A = new ch5p2_GraphNode("A", 0, 0);
 B = new ch5p2_GraphNode("B", -5, 5);
 C = new ch5p2_GraphNode("C", 5, 5);
 D = new ch5p2_GraphNode("D", -10, 10);
 E = new ch5p2_GraphNode("E", 0, 10);
 F = new ch5p2_GraphNode("F", -5, 15);
 G = new ch5p2_GraphNode("G", 5, 15);
 H = new ch5p2_GraphNode("H", -10, 20);
 I = new ch5p2_GraphNode("I", 0, 20);
 J = new ch5p2_GraphNode("J", -15, 25);
 K = new ch5p2_GraphNode("K", -5, 25);
 L = new ch5p2_GraphNode("L", -10, 30);
 M = new ch5p2_GraphNode("M", 0, 30);

 // define which GraphNodes are connected
 AB = new ch5p2_Link(A, B);
 AC = new ch5p2_Link(A, C);
 BD = new ch5p2_Link(B, D);
 BE = new ch5p2_Link(B, E);
 EF = new ch5p2_Link(E, F);
 EG = new ch5p2_Link(E, G);

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

96

 FH = new ch5p2_Link(F, H);
 FI = new ch5p2_Link(F, I);
 HJ = new ch5p2_Link(H, J);
 HK = new ch5p2_Link(H, K);
 KL = new ch5p2_Link(K, L);
 KM = new ch5p2_Link(K, M);

 // add all nodes and links to your graph object
 searchGraph.addNode(A);
 searchGraph.addNode(B);
 searchGraph.addNode(C);
 searchGraph.addNode(D);
 searchGraph.addNode(E);
 searchGraph.addNode(F);
 searchGraph.addNode(G);
 searchGraph.addNode(H);
 searchGraph.addNode(I);
 searchGraph.addNode(J);
 searchGraph.addNode(K);
 searchGraph.addNode(L);
 searchGraph.addNode(M);

 searchGraph.addLink(AB);
 searchGraph.addLink(AC);
 searchGraph.addLink(BD);
 searchGraph.addLink(BE);
 searchGraph.addLink(EF);
 searchGraph.addLink(EG);
 searchGraph.addLink(FH);
 searchGraph.addLink(FI);
 searchGraph.addLink(HJ);
 searchGraph.addLink(HK);
 searchGraph.addLink(KL);
 searchGraph.addLink(KM);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // run depth-first search to get from start to
 // destination
 searchGraph.dfsTraverse(
 searchGraph.nodes.get(searchGraph.nodes.indexOf(A)),
 searchGraph.nodes.get(searchGraph.nodes.indexOf(M)));

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // Robot moves through path from start to destination // by using
 // dfsTraverse
 for (int i = searchGraph.dfsPath.size() - 1; i >= 0; i--) {

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

97

 // go to node
 navbot.goTo(searchGraph.dfsPath.get(i).xLocation,
 searchGraph.dfsPath.get(i).yLocation);

 LCD. clear ();

 // display current location
 LCD. drawString ("At location " + searchGraph.dfsPath.get(i).cityName
 + ", ", 0, 0);

 LCD. drawString (searchGraph.dfsPath.get(i).xLocation + ", "
 + searchGraph.dfsPath.get(i).yLocation, 0, 1);

 LCD. drawString ("Press ENTER key", 0, 2);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();
 }
 }
 }

 //**
 //Wei Lu Java Robotics Programming with Lego EV3
 // ch5p2_GraphNode.java
 //Represents name and coordinates of a node on a graph
 //**

 public class ch5p2_GraphNode {
 String cityName;
 int xLocation, yLocation;

 public ch5p2_GraphNode(String cityName, int xLocation, int yLocation) {
 this.cityName = cityName;
 this.xLocation = xLocation;
 this.yLocation = yLocation;

 }

 public String toString() {
 return cityName + " ("+xLocation +"," + yLocation + ")";
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch5p2_Link.java
 //Represents a link between two GraphNodes
 //**
 public class ch5p2_Link {

 ch5p2_GraphNode from;
 ch5p2_GraphNode to;

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

98

 // boolean skip is used for traversal to determine if the path // has already
 // been visited or not
 boolean skip;

 public ch5p2_Link(ch5p2_GraphNode from, ch5p2_GraphNode to) {
 this .from = from;
 this .to = to;
 skip = false ;
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch5p2_Graph.java
 //Represents GraphNodes connected through Links, including method //for doing a depth-first
 //search of the graph.
 //the method dfsTraverse creates a dfsPath list which the robot will //follow to demonstrate
 //how the depth-first search works.
 //**

 import java.util.ArrayList;
 import java.util.Stack;

 public class ch5p2_Graph {

 // nodes and links define the physical creation of your Graph
 ArrayList<ch5p2_GraphNode> nodes;
 ArrayList<ch5p2_Link> links;

 // Two lists used for traversing
 ArrayList<ch5p2_GraphNode> dfsTraverse;
 Stack<ch5p2_Link> travelStack = new Stack<ch5p2_Link>();

 // List used to define where you would like to move
 ArrayList<ch5p2_GraphNode> dfsPath = new ArrayList<ch5p2_GraphNode>();

 // Constructor of ch5p2_Graph class
 public ch5p2_Graph() {
 nodes = new ArrayList<ch5p2_GraphNode>();
 links = new ArrayList<ch5p2_Link>();
 dfsTraverse = new ArrayList<ch5p2_GraphNode>();
 }// end constructor

 // addNode()
 // Add a city node to the graph

 public void addNode(ch5p2_GraphNode node) {
 nodes.add(node);
 }// end addNode

 // addLink
 // Add link to the graph

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

99

 public void addLink(ch5p2_Link link) {
 links.add(link);
 }// end addLink

 // dfsTraverse()
 // perform depth-first search on the graph

 public void dfsTraverse(ch5p2_GraphNode from, ch5p2_GraphNode to) {
 boolean matched;
 ch5p2_Link found;

 // determine if there is a link between from and to
 // if there is a match then add the link to the
 // travelStack and
 // add the nodes to dfsPath
 // This will be ultimately repeated by the end of the
 // search

 matched = match(from, to);
 if (matched) {
 travelStack.push(new ch5p2_Link(from, to));
 dfsPath.add(new ch5p2_GraphNode(to.cityName,to.xLocation,

to.yLocation));
 dfsPath.add(new ch5p2_GraphNode(from.cityName,from.xLocation, from.

yLocation));
 return ;
 }

 // if there is no match found you could another path
 // findings
 found = find(from);

 // if you find a new connection then you could add it // to the travelStack
 // and
 // and the start node to dfsPath
 // recursively call dfsTraverse with the link's to as // start and our
 // destination as the end

 if (found != null) {
 travelStack.push(new ch5p2_Link(from, to));
 dfsTraverse(found.to, to);
 dfsPath.add(new ch5p2_GraphNode(from.cityName,from.xLocation, from.

yLocation));
 }

 // backtrack if you cannot find a new connection
 else if (travelStack.size() > 0) {
 found = travelStack.pop();
 dfsTraverse(found.from, found.to);
 dfsPath.add(new ch5p2_GraphNode(from.cityName,from.xLocation, from.

yLocation));

CHAPTER 5 ■ DEPTH-FIRST SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO EV3

100

 }
 }// end dfsTraverse()

 // find() method is used to
 // find the next link to try exploring

 public ch5p2_Link find(ch5p2_GraphNode from) {

 // iterate through the list of links
 for (int a = 0; a < links.size(); a++) {
 // link found
 if (links.get(a).from.equals(from) && !links.get(a).skip) {
 ch5p2_Link foundList = new ch5p2_Link(links.get(a).from,
 links.get(a).to);
 // mark this link as used so we don't match it again
 links.get(a).skip = true ;
 return foundList;
 }
 }
 return null ; // not found
 }// end find()

 // match() method is used to determine if there is a link
 // between a starting
 // node and an ending node

 public boolean match(ch5p2_GraphNode from, ch5p2_GraphNode to) {

 // iterate through list of links
 for (int a = links.size() - 1; a >= 0; a--) {
 if (links.get(a).from.equals(from) && links.get(a).to.equals(to)
 && !links.get(a).skip) {
 links.get(a).skip = true ;
 return true ;
 }
 }
 return false ;
 }// end match()
 }// end Graph.java

 Summary
 In this chapter, you learned the fundamentals of a depth-first search algorithm and now know how to apply
it to solve the searching program in practice. You also learned how to build problem-solving agents (that is,
your robot) based on the depth-first search algorithm and the Navigation class that you studied in previous
chapters in which the problem-solving agents were able to find a route path intelligently from a starting
point to any destination.

 In the next chapter, you will learn how to implement a breadth-first search (BFS) algorithm on leJOS
EV3 and how to integrate the implemented BFS algorithm in the leJOS-based robotics system for localization
and path planning.

101© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_6

 CHAPTER 6

 Breadth-First Search and Its
Implementation with Lego
Mindstorms

 Just as you were introduced to the depth-first search (DFS) algorithm in Chapter 5 , in this chapter you will
learn how to implement a breadth-first search (BFS) algorithm in leJOS EV3 . Specifically, this chapter will
cover the following topics:

• A new breadth-first search (BFS) algorithm that can be applied to build arbitrary tree
structures generically.

• Applying and integrating the proposed BFS algorithm in the leJOS-based robotics
system for localization and path planning, which enhances the existing pathfinding
approaches within the leJOS system.

 Overview of BFS Algorithm
 Let's first review how humans solve a search problem. First, you need a representation of how your search
problem exists. Figure 6-1 is an example of your search tree. It shows a series of interconnected nodes
through which you will be searching:

 Figure 6-1. Tree structure of a path

http://dx.doi.org/10.1007/978-1-4842-2005-4_5

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

102

 The breadth-first search algorithm works by taking a node; checking its neighbors; expanding the
first node it finds among its neighbors; checking to see if that expanded node is its destination; and if not,
continues exploring the other neighboring nodes. For example, if you want to find a path from A to E, you
can use two lists to keep track of what you are doing: an open list and a closed list. An open list keeps track of
what you need to do, and a closed list keeps track of what you have already done.

 At the beginning, you only have your starting point, node A. You haven't done anything to it yet, so let's
add it to your open list. Now you have an open list that includes <A> and a closed list that includes <empty> .

 Now let’s explore the neighbors of your A node. Node A’s neighbors are the B, C, and D nodes. Because you
are now finished with the A node, you can remove it from your open list and add it to your closed list. Then the
current open list includes <B, C, D>, and the closed list contains <A> . Now your open list contains three items.

 For breadth-first search, you always explore the first node from your open list. The first item in the
open list is the B node. B is not your destination, so now let's explore its neighbors. Because you have now
expanded B, you are going to remove it from the open list and add it to the closed list. Your new nodes are E,
F, and G, and you can add these nodes to the end of your open list. Then you have a closed list that includes
 <A,B> and an open list that includes < C, D, E, F, G> .

 Next you expand the C node. Since it is not the intended destination, you can remove it from your
open list and add it to your closed list. The current open list then includes <D, E, F, G>, and the closed
list contains <A, B, C> . C has no child, so you move on to visit node D. Since it is also not the intended
destination, you can remove it from your open list and add it to your closed list. The current open list thus
includes <E, F, G> , and the and closed list contains <A, B, C, D> .

 Next you expand node E. Since it is your intended destination, you stop. Thus you receive the route
 A->B->E that is interpreted from the closed list by using the regular breadth-first search algorithm.

 Next let’s see how to use the breadth-first search approach to solve a path-finding problem that could
be applied to a GPS system when navigating from a starting city to a destination city. Suppose that you want
drive from city A (for example, Keene, NH) to city S (for instance, Boston, MA). Given the following route
path, work out a plan for you to start from A and reach S using a breadth-first search strategy.

 City Distance

 A to B 20 miles

 A to C 10 miles

 A to D 10 miles

 A to E 20 miles

 B to F 10 miles

 B to M 20 miles

 B to G 10 miles

 C to H 10 miles

 C to I 15 miles

 D to J 20 miles

 E to K 15 miles

 E to L 15 miles

 M to N 20 miles

 M to O 20 miles

 I to P 40 miles

 P to R 20 miles

 P to S 20 miles

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

103

 Based on the above information, you can plot a route tree as illustrated in Figure 6-2 , displaying all of
the possible routes in between the two cities:

 Figure 6-2. Routes in between two cities

 The following program can be used to find a path for you to schedule a travel plan automatically by
using the breadth-first search algorithm:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch6p1_main.java
 //Driver class to call a breadth-first search algorithm
 //to create navigation path from a start to an end node.
 //**

 import java.util.*;

 class ch6p1_main {

 // This array holds the connection information between two cities.
 ch6p1_GraphNode cityLinks[] = new ch6p1_GraphNode[200];

 // number of path connections on the route graph
 int numConnections = 0;

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

104

 // backtrack stack to store the city nodes
 Stack closedList = new Stack ();

 public static void main(String args[]) {

 // define the start city name
 String from = "A";

 // define the destination city name
 String to = "S";

 ch6p1_main bfsTraveral = new ch6p1_main();

 // set up the route graph
 bfsTraveral.graph();

 bfsTraveral.isNode(from, to);

 if (bfsTraveral.closedList.size() != 0) {
 System. out
 . println("the path from your current city to the

destination city is: ");
 bfsTraveral.BFSroute(to);
 }

 }

 // Add link between two cities

 void addLink(String parent, String child) {
 if (numConnections < 200) {
 cityLinks[numConnections] = new ch6p1_GraphNode(parent, child);
 numConnections++;
 } else
 System. out .println("error to add link\n");
 }

 // Initialize the path link to construct the graph.

 void graph() {

 addLink("A", "B");
 addLink("A", "C");
 addLink("A", "D");
 addLink("A", "E");
 addLink("B", "F");
 addLink("B", "M");
 addLink("B", "G");
 addLink("C", "H");
 addLink("C", "I");
 addLink("D", "J");

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

105

 addLink("E", "K");
 addLink("E", "L");
 addLink("M", "N");
 addLink("M", "O");
 addLink("I", "P");
 addLink("P", "R");
 addLink("P", "S");
 }

 // determine to see if there is a link matched between
 // startCity and endCity
 // if match found, return true, otherwise return false

 int matched(String from, String to) {
 for (int i = numConnections - 1; i > -1; i--) {
 if (cityLinks[i].startCity.equals(from)
 && cityLinks[i].endCity.equals(to) && !cityLinks[i].

visited) {

 // set up visited to true to prevent re-visit
 cityLinks[i].visited = true ;

 // match found
 return 1;
 }
 }
 // match not found
 return 0;
 }

 // Given parent to find any child connected with this parent

 ch6p1_GraphNode find(String parent) {
 for (int i = 0; i < numConnections; i++) {
 if (cityLinks[i].startCity.equals(parent) && !cityLinks[i].visited) {

 ch6p1_GraphNode f = new ch6p1_GraphNode(cityLinks[i].
startCity,

 cityLinks[i].endCity);

 // set up visited to true to prevent re-visit
 cityLinks[i].visited = true ;

 // child (or leaf) returned
 return f;
 }
 }

 // if parent has no child return nothing
 return null ;
 }

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

106

 // using breadth-first search and determining if there is any // route existing
 // in between startCity and endCity

 void isNode(String from, String to) {

 int directconn;
 ch6p1_GraphNode citynode;

 Stack resetList = new Stack ();

 // determine if there is any direct link between from and to
 // if yes push the link of the two cities into closedList
 // stack
 directconn = matched(from, to);
 if (directconn != 0) {
 closedList.push(new ch6p1_GraphNode(from, to)) ;
 return ;
 }

 // find all the children cities connected with the
 // specified parent node

 while ((citynode = find(from)) != null) {
 resetList.push(citynode) ;

 // check further if there is any direct
 // connection between the child
 // and grandchild

 if ((directconn = matched(citynode.endCity, to)) != 0) {
 resetList.push(citynode.endCity) ;
 closedList.push(new ch6p1_GraphNode(from, citynode.

endCity)) ;
 closedList.push(new ch6p1_GraphNode(citynode.endCity, to)) ;
 return ;
 }
 }

 // reset the visited boolean to unvisited and do the
 // breadth first
 // search next

 for (int i = resetList.size(); i != 0; i--)
 resetSkip((ch6p1_GraphNode) resetList.pop());

 // then try the next neighboring city nodes
 citynode = find(from);
 if (citynode != null) {

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

107

 closedList.push(new ch6p1_GraphNode(from, to)) ;
 isNode(citynode.endCity, to);
 } else if (closedList.size() > 0) {

 // trace back and try another link
 citynode = (ch6p1_GraphNode) closedList.pop();
 isNode(citynode.startCity, citynode.endCity);
 }
 }

 // reset visited field of specified parent city node

 void resetSkip(ch6p1_GraphNode citynode) {
 for (int i = 0; i < numConnections; i++)
 if (cityLinks[i].startCity.equals(citynode.startCity)
 && cityLinks[i].endCity.equals(citynode.endCity))
 cityLinks[i].visited = false ;
 }

 // Show the route obtained by the BFS algorithm

 void BFSroute(String to) {

 int num = closedList.size();

 Stack reverseList = new Stack ();

 ch6p1_GraphNode citynode;

 // Reverse the stack to show the path

 for (int i = 0; i < num; i++)
 reverseList.push(closedList.pop()) ;

 for (int i = 0; i < num; i++) {
 citynode = (ch6p1_GraphNode) reverseList.pop();
 System. out .print(citynode.startCity + " -> ");
 }
 System. out .println(to);
 }

 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3
 //ch6p1_GraphNode.java
 //Represents name of a graph
 //**

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

108

 public class ch6p1_GraphNode {

 String startCity;
 String endCity;

 // to determine if the city has been visited or not
 boolean visited;

 ch6p1_GraphNode(String s, String d) {
 startCity = s;
 endCity = d;
 visited = false ;
 }
 }

 Given the startCity A and endCity S, the result of running the program is as follows:

 The path from your current city to the destination city is this:
 A -> C -> I -> P -> S

 This result shows you the exact path when traversing a graph using a BFS search strategy without
including the intermediate trace-back nodes.

 leJOS EV3-Based BFS Algorithm
 In a leJOS- based BFS algorithm, each node on the path is a class node called WPNode , which is defined as the
following:

 public WPNode(String newname, WayPoint newwp) {
 nodename = newname;
 nodewp = newwp;
 seen = false ;
 parent = this ;
 connections = new ArrayList<WPNode>();
 }

 Following is a description of the pseudocode for the leJOS-based BFS algorithm:

 1. Constructing the generic tree for search space, such as:

 A = new WPNode("A", new WayPoint(0, 0));
 B = new WPNode("B", new WayPoint(-5, 5));
 C = new WPNode("C", new WayPoint(5, 5));
 A.addLeaf(B);
 A.addLeaf(C);

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

109

 2. Declare a stack to save the route path, such as:

 Stack<WPNode> BFSpath = new Stack<WPNode>();

 3. Set the current node to root node, say A . While the destination node is not found,
loop the following:

 a. If the current node has children, set the first unseen node to the current
node and then return.

 b. If the current node has no unseen children, set its parent to the current node
and then return.

 4. Once the destination node is found, push the destination node to the stack and
then push each parent node to the stack.

 5. Generate pilot for two-motor movement, and then set pilot to use appropriate
dimensions and motors.

 6. Pop the waypoint of each path node and apply the goto(int x, int y) method
to direct robots moving to the next node.

 Based on the above leJOS-based BFS algorithm, you can develop a program for your robot so that it can
 travel the path between starting node A and destination node M, as illustrated in Figure 6-3 in which you
have the following:

 The coordinate at A is (0,0).
 The coordinate at B is (-5,5).
 The coordinate at C is (5, 5).
 The coordinate at D is (-10,10).
 The coordinate at E is (0,10).
 The coordinate at F is (-5,15).
 The coordinate at G is (5,15).
 The coordinate at H is (-10,20).
 The coordinate at I is (0,20).
 The coordinate at J is (-15,25).
 The coordinate at K is (-5,25).
 The coordinate at L is (-10,30).
 The coordinate at M is (0,30).

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

110

 Your program should at least display the destination’s coordinate on the LCD and then display a
message “ Press ENTER key to continue .” Press Enter, and your robot moves to the next node. For example,
suppose that your robot starts from A (0,0) and you want to explore a path to G (5,15) . Assume that the
path that your robot explores using breadth-first search is A -> B -> E -> G . At starting point A, your
program should do the following:

 Display the destination’s coordinate B(-5, 5) on the LCD and show the message
“ Press ENTER key to continue .”

 Figure 6-3. Path in between two nodes

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

111

 Go to the location with coordinate -5,5 .

 Display the destination’s coordinate E(0, 10) on the LCD, and show the
message “ Press ENTER key to continue .”

 Go to the location with coordinate 0,10 .

 Display the destination’s coordinate G(5, 15) on the LCD, and show the
message “ Press ENTER key to continue .”

 Go to the location with coordinate 5,15.

 Furthermore, your problem should have a string called destination , so that it’s intelligent enough
when changing the value of the destination, your robot can explore a new path from starting node A to the
new destination node. (We assume the starting node is always A, so the from string can be hard-coded.)

 The following programs represent the implementation of a leJOS-based BFS algorithm to explore a path
from node A to destination node M:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch6p2_main.java
 //Driver class to set up map using ch6p2_GraphNode, ch6p2_Link, and //ch6p2_Graph classes.
 //Calls a breadth-first search in ch6p2_Graph class to create //navigation path from a start
 //and end node and then robots will follow the path to move from //start node
 //to destination node
 //**

 // import EV3 hardware packages for EV brick finding, activating
 // keys and LCD
 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.MovePilot;
 import lejos.robotics.navigation.Navigator;

 public class ch6p2_main {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. C);

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

112

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);
 MovePilot ev3robot = new MovePilot(chassis);

 Navigator navbot = new Navigator(ev3robot);

 // These objects used to define what your graph looks like
 ch6p2_Graph searchGraph = new ch6p2_Graph();
 ch6p2_GraphNode A, B, C, D, E, F, G, H, I, J, K, L, M;
 ch6p2_Link AB, AC, BD, BE, EF, EG, FH, FI, HJ, HK, KL, KM;

 // define each node
 A = new ch6p2_GraphNode("A", 0, 0);
 B = new ch6p2_GraphNode("B", -5, 5);
 C = new ch6p2_GraphNode("C", 5, 5);
 D = new ch6p2_GraphNode("D", -10, 10);
 E = new ch6p2_GraphNode("E", 0, 10);
 F = new ch6p2_GraphNode("F", -5, 15);
 G = new ch6p2_GraphNode("G", 5, 15);
 H = new ch6p2_GraphNode("H", -10, 20);
 I = new ch6p2_GraphNode("I", 0, 20);
 J = new ch6p2_GraphNode("J", -15, 25);
 K = new ch6p2_GraphNode("K", -5, 25);
 L = new ch6p2_GraphNode("L", -10, 30);
 M = new ch6p2_GraphNode("M", 0, 30);

 // define which GraphNodes are connected
 AB = new ch6p2_Link(A, B);
 AC = new ch6p2_Link(A, C);
 BD = new ch6p2_Link(B, D);
 BE = new ch6p2_Link(B, E);
 EF = new ch6p2_Link(E, F);
 EG = new ch6p2_Link(E, G);
 FH = new ch6p2_Link(F, H);
 FI = new ch6p2_Link(F, I);
 HJ = new ch6p2_Link(H, J);
 HK = new ch6p2_Link(H, K);
 KL = new ch6p2_Link(K, L);
 KM = new ch6p2_Link(K, M);

 // add all nodes and links to your graph object
 searchGraph.addNode(A);
 searchGraph.addNode(B);

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

113

 searchGraph.addNode(C);
 searchGraph.addNode(D);
 searchGraph.addNode(E);
 searchGraph.addNode(F);
 searchGraph.addNode(G);
 searchGraph.addNode(H);
 searchGraph.addNode(I);
 searchGraph.addNode(J);
 searchGraph.addNode(K);
 searchGraph.addNode(L);
 searchGraph.addNode(M);

 searchGraph.addLink(AB);
 searchGraph.addLink(AC);
 searchGraph.addLink(BD);
 searchGraph.addLink(BE);
 searchGraph.addLink(EF);
 searchGraph.addLink(EG);
 searchGraph.addLink(FH);
 searchGraph.addLink(FI);
 searchGraph.addLink(HJ);
 searchGraph.addLink(HK);
 searchGraph.addLink(KL);
 searchGraph.addLink(KM);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // run breadth-first search to get from start to
 // destination
 searchGraph.bfsTraverse(
 searchGraph.nodes.get(searchGraph.nodes.indexOf(A)),
 searchGraph.nodes.get(searchGraph.nodes.indexOf(M)));

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // Robot moves through path from start to destination // by using
 // bfsTraverse
 for (int i = 0; i < searchGraph.bfsTraverse.size(); i++) {

 // go to node
 navbot.goTo(searchGraph.bfsPath.get(i).xLocation,
 searchGraph.bfsPath.get(i).yLocation);

 LCD. clear ();

 // display current location
 LCD. drawString ("At location " + searchGraph.bfsPath.get(i).cityName
 + ", ", 0, 0);

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

114

 LCD. drawString (searchGraph.bfsPath.get(i).xLocation + ", "
 + searchGraph.bfsPath.get(i).yLocation, 0, 1);

 LCD. drawString ("Press ENTER key", 0, 2);

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 if (i == searchGraph.bfsTraverse.size() - 1) {
 navbot.goTo(searchGraph.bfsTraverse.get(i).to.yLocation,
 searchGraph.bfsTraverse.get(i).

to.xLocation);
 LCD. drawString ("At location "
 + searchGraph.bfsTraverse.get(i).

to.cityName, 0, 0);
 // block the thread until a button is
 // pressed
 buttons.waitForAnyPress();
 }
 }
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch6p2_Link.java
 //Represents a link between two GraphNodes
 //**

 public class ch6p2_Link {

 ch6p2_GraphNode from;
 ch6p2_GraphNode to;

 // boolean skip is used for traversal to determine if the path // has already
 // been visited or not
 boolean skip;

 public ch6p2_Link(ch6p2_GraphNode from, ch6p2_GraphNode to) {
 this .from = from;
 this .to = to;
 skip = false ;
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 //ch6p2_GraphNode.java
 //Represents name and coordinates of a node on a graph
 //**

 public class ch6p2_GraphNode {
 String cityName;
 int xLocation, yLocation;

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

115

 public ch6p2_GraphNode(String cityName, int xLocation, int yLocation) {
 this .cityName = cityName;
 this .xLocation = xLocation;
 this .yLocation = yLocation;

 }

 public String toString() {
 return cityName + " ("+xLocation +"," + yLocation + ")";
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch6p2_Graph.java
 // Represents GraphNodes connected through Links, including method //for doing a breadth-
first

 //search traversal of the graph.
 //the method bfsTraverse creates a bfsPath list which the robot will //follow to demonstrate
 //how the breadth-first search works.
 //**

 import java.util.ArrayList;

 public class ch6p2_Graph {
 // nodes and links define the physical creation of your Graph
 ArrayList<ch6p2_GraphNode> nodes;
 ArrayList<ch6p2_Link> links;

 // a list used for traversing
 ArrayList<ch6p2_Link> bfsTraverse;

 // List used to define where you would like to move
 ArrayList<ch6p2_GraphNode> bfsPath = new ArrayList<ch6p2_GraphNode>();

 // Constructor of ch6p2_Graph class
 public ch6p2_Graph() {
 nodes = new ArrayList<ch6p2_GraphNode>();
 links = new ArrayList<ch6p2_Link>();
 bfsTraverse = new ArrayList<ch6p2_Link>();

 }// end constructor

 // addNode()
 // Add a city node to the graph

 public void addNode(ch6p2_GraphNode node) {
 nodes.add(node);
 }// end addNode

 // addLink
 // Add link to the graph

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

116

 public void addLink(ch6p2_Link link) {
 links.add(link);
 }// end addLink

 // bfsTraverse()
 // perform breadth-first search on the graph

 public void bfsTraverse(ch6p2_GraphNode from, ch6p2_GraphNode to) {

 ArrayList<ch6p2_Link> resetList = new ArrayList<ch6p2_Link>();
 boolean matched = false ;
 ch6p2_Link l;

 // determine if there is a link between from and to
 // if there is a match then add the link to the
 // travelStack and
 // add the nodes to bfsPath
 // This will ultimately repeated by the end of the search

 matched = match(from, to);

 // add to bfsTraverse if match is found
 if (matched) {
 bfsTraverse.add(new ch6p2_Link(from, to));
 return ;
 }

 // continue while links exist
 while ((l = find(from)) != null) {
 resetList.add(l);
 if ((matched = match(l.to, to))) {
 resetList.add(new ch6p2_Link(l.from, to));
 bfsTraverse.add(new ch6p2_Link(from, l.to));
 bfsTraverse.add(new ch6p2_Link(l.to, to));
 return ;
 }
 }

 for (int i = resetList.size(); i != 0; i--) {
 resetSkip((ch6p2_Link) resetList.remove(i - 1));
 }

 // if you find a new connection then you could add it // to the travelStack
 // and
 // and the start node to bfsPath
 // recursively call bfsTraverse with the link's to as // start and our
 // destination as the end

 l = find(from);
 if (l != null) {
 bfsTraverse.add(new ch6p2_Link(from, to));

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

117

 bfsPath.add(new ch6p2_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 bfsTraverse(l.to, to);
 }

 // backtrack if you cannot find a new connection
 else if (bfsTraverse.size() > 0) {
 l = (ch6p2_Link) bfsTraverse.remove(bfsTraverse.size() - 1);
 bfsPath.remove(bfsPath.size() - 1);
 bfsTraverse(l.from, l.to);
 }
 }// end bfsTraverse

 // resetSkip
 // when backtracking reset skip flag so we can visit nodes
 // again
 public void resetSkip(ch6p2_Link l) {
 for (int i = 0; i < links.size(); i++) {
 if (links.get(i).from.equals(l.from)
 && links.get(i).to.equals(l.to)) {
 links.get(i).skip = false ;
 }
 }
 }

 // match() method is used to determine if there is a link
 // between a starting
 // node and an ending node

 public boolean match(ch6p2_GraphNode from, ch6p2_GraphNode to) {
 // iterate through list of links
 for (int x = links.size() - 1; x >= 0; x--) {
 if (links.get(x).from.equals(from) && links.get(x).to.equals(to)
 && !links.get(x).skip) {
 links.get(x).skip = true ;
 return true ;
 }
 }
 return false ;
 }// end match

 // find() method is used to
 // find the next link to try exploring

 public ch6p2_Link find(ch6p2_GraphNode from) {

 // iterate through the list of links
 for (int x = 0; x < links.size(); x++) {
 // link found
 if (links.get(x).from.equals(from) && !links.get(x).skip) {
 ch6p2_Link l = new ch6p2_Link(links.get(x).from,

CHAPTER 6 ■ BREADTH-FIRST SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

118

 links.get(x).to);
 links.get(x).skip = true ;
 // mark this link as used so we don't
 //
match it again
 return l;
 }
 }
 return null ; // not found
 }// end find()
 }// end Graph.java

 Summary
 In this chapter, you learned the fundamentals of the breadth-first search algorithm and how to apply it to
solve the searching program in practice. You also learned how to build problem-solving agents based on
the breadth-first search algorithm and the Navigation class that you studied in previous chapters, in which
problem-solving agents intelligently find a route path from a starting point to any destination.

 In the next chapter, you will get the basic idea behind the heuristic search strategy, learn how to
implement a hill-climbing algorithm on leJOS EV3, and then integrate the implemented hill-climbing
algorithm in the leJOS-based robotics system for localization and path planning.

119© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_7

 CHAPTER 7

 Hill-Climbing Search and Its
Implementation with Lego
Mindstorms

 Just as you were introduced to the depth-first search (DFS) algorithm in Chapter 5 and the breadth-first
search algorithm in Chapter 6 , in this chapter, you will learn the basic ideas behind heuristic search
strategies and how to implement a hill-climbing algorithm, which is one of the most typical heuristic
approaches in leJOS EV3. Specifically, this chapter will cover the following topics:

• A new hill-climbing search algorithm, which can be applied to building arbitrary tree
structures generically.

• Applying and integrating the proposed hill-climbing algorithm in the leJOS-based
robotics system for localization and path planning, which enhances the existing
pathfinding approaches within the leJOS system.

 Introduction to Heuristic Search
 Problem solving is one of the fundamental issues in many artificial intelligence (AI)-related applications .
Typically, there are two problem categories. The first one can be solved by using some sort of deterministic
procedure, such as the calculation of an absolute value , such as the distance between two nodes according
to their coordinates. It is very easy for computers to solve this kind of problem, as they simply translate it
into an equation that it can then execute. The second type of problem, however, does not always lead to
a straightforward deterministic solution . This happens a lot in the real world, and many problems can be
solved only by searching for a solution using search strategies, such as breadth-first search or depth-first
search, which you have seen in Chapters 5 and 6 .

 As you move forward in this chapter, you will learn about the heuristic search approach. You will learn
about some representations and terminology used in AI search strategies through the following example:

 Assume that you lose a book somewhere in the school building. This building is illustrated in Figure 7-1 .

http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_6
http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_6

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

120

 You are standing at the front of the hallway at the “You” block. As you begin your search, you check
room R8. Not finding your book there, you return to the hallway and then check room R7. Not finding your
book there, you then return to the hallway, and so on. By checking each room and returning back and forth
to the hallway, you finally find your book in room R2. Such a scenario can be easily translated into a graphic
as shown in Figure 7-2 below:

 Figure 7-1. Building topology

 Figure 7-2. Graphic representation of your search strategy

 As you have seen in Chapters 5 and 6 , representing search problems in a graphical format is beneficial,
as it provides a convenient way to depict how a solution is found. Throughout this book, when introducing
 AI search algorithms , you will find that the following terms are used:

 Node A discrete point: for example, the hallway in Figure 7-2 .

 Terminal node The node that ends a path: for example, room R8 in Figure 7-2 .

 Search space The set of all of the nodes in a graph.

 Goal The node that the search aims to reach.

 Heuristics Utility function to determine if any specific node is a better next choice
than the another.

 Solution A set of nodes connected and directed en route to the destination goal.

 In the above lost book scenario, each classroom in the building is called a node . The entire building,
including the eight classrooms, is the search space . The goal , as it turns out, is room R2. Finally, the solution
path is shown in Figure 7-2 via dashed arrows. Classrooms R1, R2, R3, R4, R5, R6, R7, and R8 are terminal
nodes because they lead nowhere. Heuristics are not represented in the graphic. Rather, they are techniques
that you might employ to help you better find a path.

http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_6

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

121

 Given the above example, you probably think that searching for a solution is not difficult at all; that is, you
simply start at the beginning and then search the nodes one by one to reach to your goal. This is true only in an
extremely simple case such as the above lost book example, because the search space is so small (that is, there
are only eight nodes, and you have to try at most eight times to find the solution). In the real world, however, the
search space is usually very large. For example, think about how many cities there are in New Hampshire versus
how many cities there are in the entire United States? As the search space grows, so does the number of possible
paths to the goal. Moreover, one essential issue when adding another node to the search space is that it often adds
much more than one path and thus is not linear. In other words, the number of potential pathways to reach the
goal can increase in a nonlinear fashion when the size of the search space grows.

 In a nonlinear situation, the number of possible paths can quickly become very large. For instance,
consider the number of methods that you can use to arrange three objects A, B, and C. The six total possible
permutations are as follows:

 A B C

 A C B

 B C A

 B A C

 C B A

 C A B

 When you add one more object, you will see that the total possible number of permutations is seven,
because the number of methods in which N objects can be arranged is equal to N! (N factorial). Therefore, if
you have four objects to arrange, there would be 4! permutations (that is, 24 permutations). With five objects,
the number becomes 120 permutations, and with six objects it is increased to 720 permutations. With 100
objects the number of possible permutations is huge: 93326215443944152681699238856266700490715968
264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864
000000000000000000000000 . In such a case, an exhaustive search that examines all of the nodes would not
work because it consumes too much time and too many computing resources. As a result, AI-based search
techniques are essential to search for a solution. The three most fundamental techniques are depth-first
search, breadth-first search, and hill- climbing search .

 Comparing and evaluating the performance of the various AI-based search techniques can be very
complicated. In this book, we are mainly concerned with only two measurements: (1) how quickly a solution
is found and (2) how good the solution is. When you try to find a solution with minimum effort, the first
measurement – that is, how quickly a solution is found – is especially important, and it is typically affected
both by the size of the search space and by the number of nodes actually traversed in the process of finding
the solution. This is because backtracking from dead ends is time consuming, and you want a search that
seldom retraces its steps. In the other cases, the quality of the solution is more important. In AI-based
searching, there is a difference between finding the best solution and finding a good solution. Finding the
best solution requires an exhaustive search as this is the only way to know that the best solution has been
found or that global optimization has been achieved. Finding a good solution, on the other hand, means
finding a solution that is within a defined set of constraints, but it does not matter if a better solution might
exist and that what you achieve could be a local optimal solution.

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

122

 As you saw in Chapter 5 , the depth-first approach can find a good solution when the first try is exclusive
of backtracking. However, when we reorganize the graphic as illustrated in Figure 5-2 of Chapter 5 , finding
a solution might involve considerable backtracking. As a result, the outcome of the example introduced in
Chapter 5 cannot be generalized. Moreover, the performance of depth-first searches can be quite poor when
a particularly long branch with no solution at the end is explored. In such a case, depth-first searches waste
time both in exploring this branch and backtracking to the goal.

 In the example illustrated in Chapter 6 , the breadth-first search performs very well, finding a reasonable
solution. Similar to depth-first searches, this solution cannot be generalized because the first path to be
found depends on the actual physical organization of the node information. Comparing depth-first search
and breadth-first searches, you can find different paths through the same search space. Breadth-first
searching works well when the goal is not located too deeply into the search space. It works very poorly,
however, when the goal is located several layers deep. In such a cases, a breadth-first search expends
substantial effort during the backtracking process.

 Based on the above, it is therefore inaccurate to assert that one search method is always superior to the
other. In many cases, the manner in which a problem is defined can help you choose the appropriate search
method. As you have learned in Chapters 5 and 6 , neither the depth-first search approach nor the breadth-
first search approach attempts to make any rational guesses about whether one node in the search space is
closer to the goal than another. Instead, both search strategies simply move from one node to the next using
a prescribed pattern until the goal is finally reached. In order to increase the probability that a search can
reach its goal faster, you need to add heuristic capabilities to the search algorithm.

 Heuristics are simply rules that increase the likelihood that a search moves forward in a correct
direction. For example, assume that you are lost on White Mountain in New Hampshire. You still want to
climb to the top of mountain, and you know that it very icy and windy at the summit. The woods on White
Mountain are so thick that you cannot see far ahead. Furthermore, the trees are too big to climb in order to
get a look around. However, you know that the temperature at the summit will be colder than at your current
position, so that when you are nearing the summit you will start to “feel” it, as it gets colder and colder.

 You begin by moving uphill. You know that you are moving in the correct direction, because you
are traveling along a path where you feel colder practically with each step. As you move, you can feel the
temperature decrease. Finally, you reach the top of the mountain. In this scenario, the heuristic information
used to find the summit does not guarantee success. However, it increases the probability of an early
success, leading you to reach the goal quickly.

 The basic idea of a heuristic search is that you try to focus on paths that seem to be leading you nearer
to your goal rather than trying all possible search paths. Even though you cannot make sure that you are
really near your goal, you might be able to make a good guess and heuristics help you in making that guess.

 When doing a heuristic search, you need a utility function that scores a node in the search tree
according to how close you are to the goal state. Although it represents just a guess, it should still be helpful
in maximizing or minimizing some constraint. For example, when you apply GPS to set up a route from a
starting place to a destination, there are two possible constraints that you may want to minimize. The first
one is the faster time, and the second one is the shortest distance. The shortest route does not necessarily
translate to the fastest time, or vice versa. In the example in this chapter, we are focused on the hill-climbing
search built on the depth-first search framework, which aims to minimize a constraint called the number of
connections .

http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_5#Fig2
http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_6
http://dx.doi.org/10.1007/978-1-4842-2005-4_5
http://dx.doi.org/10.1007/978-1-4842-2005-4_6

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

123

 Overview of Hill-Climbing Search
 In hill climbing, the basic idea is always to head toward a state that is better than the current one. Thus if you
are at town A and you need to get to town B and town C (with your ultimate goal being town D), then you
should make a move if town B or town C appears to be nearer to town D than town A. In the steepest ascent,
a hill-climbing search will always make your next state the best successor to your current state, and it will
only make a move if that successor is better than your current state. This can be described as follows:

 1. Start with current state (initial state).

 2. Until current state = goal state, OR there is no change in current state, do the
following:

 a. Get the successors of the current state, and use the utility function to assign a
score to each successor.

 b. If one of the successors has a better score than the current state, then set the
new current state to be the successor with the best score.

 c. Since the algorithm does not attempt to test exhaustively every node and
path, you don’t have to maintain a node except the current state.

 3. Hill climbing terminates when there are no successors of the current state that
are better than the current state itself.

 Next let’s see how to use the hill-climbing search approach to solve a pathfinding problem that could
be applied to a GPS system when navigating from a starting city to a destination city. Suppose that you want
to drive from city A (for instance, New York City, NY) to E (for example, Boston, MA) with the minimum
number of nodes using the hill-climbing search algorithm, as shown in Figure 7-3 . Assume that we use the
 Cartesian coordinate system as follows:

 The coordinate at A is (0,0).

 The coordinate at B is (-10,20).

 The coordinate at C is (-15,20).

 The coordinate at D is (0,20).

 The coordinate at E is (0,30).

 The coordinate at F is (-15,30).

 The coordinate at G is (10,20).

 The coordinate at H is (10,10).

 Given the following route path, work out a plan for you to start from A and reach to E using a hill-
climbing search strategy.

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

124

 The following programs can be used to find a path for you to schedule a travel plan automatically by
using the hill-climbing search algorithm :

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch7p1_main.java
 //Driver class to set up map using ch7p1_GraphNode, ch7p1_Link, and //ch7p1_Graph classes.
 //Calls a hill-climbing search in ch7p1_Graph class to create //navigation path from a start
 //and end node
 //**

 public class ch7p1_main {

 public static void main(String[] args) {

 // These objects used to define what your graph looks // like
 ch7p1_Graph searchGraph = new ch7p1_Graph();
 ch7p1_GraphNode A, B, C, D, E, F, G, H;

 Figure 7-3. Routes in between two cities

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

125

 ch7p1_Link AB, AC, AD, BD, CB, CE, CF, DE, DH, FE, GE, HG;

 // define each node
 A = new ch7p1_GraphNode("A", 0, 0);
 B = new ch7p1_GraphNode("B", -10, 20);
 C = new ch7p1_GraphNode("C", -15, 20);
 D = new ch7p1_GraphNode("D", 0, 20);
 E = new ch7p1_GraphNode("E", 0, 30);
 F = new ch7p1_GraphNode("F", -15, 30);
 G = new ch7p1_GraphNode("G", 10, 20);
 H = new ch7p1_GraphNode("H", 10, 10);

 // define which GraphNodes are connected
 AB = new ch7p1_Link(A, B, dist (A.xLocation, A.yLocation, B.xLocation,
 B.yLocation));
 AC = new ch7p1_Link(A, C, dist (A.xLocation, A.yLocation, C.xLocation,
 C.yLocation));
 AD = new ch7p1_Link(A, D, dist (A.xLocation, A.yLocation, D.xLocation,
 D.yLocation));
 BD = new ch7p1_Link(B, D, dist (B.xLocation, B.yLocation, D.xLocation,
 D.yLocation));
 CB = new ch7p1_Link(C, B, dist (C.xLocation, C.yLocation, B.xLocation,
 B.yLocation));
 CE = new ch7p1_Link(C, E, dist (C.xLocation, C.yLocation, E.xLocation,
 E.yLocation));
 CF = new ch7p1_Link(C, F, dist (C.xLocation, C.yLocation, F.xLocation,
 F.yLocation));
 DE = new ch7p1_Link(D, E, dist (D.xLocation, D.yLocation, E.xLocation,
 E.yLocation));
 DH = new ch7p1_Link(D, H, dist (D.xLocation, D.yLocation, H.xLocation,
 H.yLocation));
 FE = new ch7p1_Link(F, E, dist (F.xLocation, F.yLocation, E.xLocation,
 E.yLocation));
 GE = new ch7p1_Link(G, E, dist (G.xLocation, G.yLocation, E.xLocation,
 E.yLocation));
 HG = new ch7p1_Link(H, G, dist (H.xLocation, H.yLocation, G.xLocation,
 G.yLocation));

 // add all nodes and links to your graph object
 searchGraph.addNode(A);
 searchGraph.addNode(B);
 searchGraph.addNode(C);
 searchGraph.addNode(D);
 searchGraph.addNode(E);
 searchGraph.addNode(F);
 searchGraph.addNode(G);
 searchGraph.addNode(H);

 searchGraph.addLink(AB);
 searchGraph.addLink(AC);
 searchGraph.addLink(AD);

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

126

 searchGraph.addLink(BD);
 searchGraph.addLink(CB);
 searchGraph.addLink(CE);
 searchGraph.addLink(CF);
 searchGraph.addLink(DE);
 searchGraph.addLink(DH);
 searchGraph.addLink(FE);
 searchGraph.addLink(GE);
 searchGraph.addLink(HG);

 // run hill-climbing search to get from start to
 // destination
 searchGraph.hillTraverse(
 searchGraph.nodes.get(searchGraph.nodes.indexOf(A)),
 searchGraph.nodes.get(searchGraph.nodes.indexOf(E)));

 // display path created using hillTraverse
 // This will be display the path from start to
 // destination

 System. out
 .println("the path from your current city to the destination

city is: ");
 for (int i = searchGraph.hillPath.size() - 1; i >= 0; i--) {
 int count = 0;
 if (i != 0) {
 for (int j = searchGraph.hillPath.size() - 1; j >= 0; j--) {
 if (searchGraph.hillPath.get(i).cityName ==

searchGraph.hillPath
 .get(j).cityName)
 count++;

 }
 if (count == 1)
 System. out .print(searchGraph.hillPath.get(i).

cityName
 + "->");
 } else
 System. out .print(searchGraph.hillPath.get(i).cityName);
 }

 }

 static int dist(int x1, int y1, int x2, int y2) {
 int distance = 0;

 distance = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);

 return distance;
 }
 }

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

127

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch7p1_Link.java
 //Represents a link between two GraphNodes
 //**

 public class ch7p1_Link {

 ch7p1_GraphNode from;
 ch7p1_GraphNode to;

 int distance;

 // boolean skip is used for traversal to determine if the path // has already
 // been visited or not
 boolean skip;

 public ch7p1_Link(ch7p1_GraphNode from, ch7p1_GraphNode to, int d) {
 this .from = from;
 this .to = to;
 distance = d;
 skip = false ;
 }
 }
 //**
 // Wei Lu Java Robotics Programming with Lego EV3
 // ch7p1_GraphNode.java
 //Represents name and coordinates of a node on a graph
 //**

 public class ch7p1_GraphNode {
 String cityName;
 int xLocation, yLocation;

 public ch7p1_GraphNode(String cityName, int xLocation, int yLocation) {
 this .cityName = cityName;
 this .xLocation = xLocation;
 this .yLocation = yLocation;

 }

 public String toString() {
 return cityName + " ("+xLocation +"," + yLocation + ")";
 }
 }
 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch7p1_Graph.java
 //Represents GraphNodes connected through Links, including method //for doing a hill
climbing
 //search traversal of the graph.
 //the method hillTraverse creates a hillPath list which the robot //will follow to
demonstrate
 //how the hill-climbing search works.
 //**

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

128

 import java.util.ArrayList;
 import java.util.Stack;

 public class ch7p1_Graph {

 // nodes and links define the physical creation of your Graph
 ArrayList<ch7p1_GraphNode> nodes;
 ArrayList<ch7p1_Link> links;

 // Two lists used for traversing
 ArrayList<ch7p1_GraphNode> hillTraverse;
 Stack<ch7p1_Link> travelStack = new Stack<ch7p1_Link>();

 // List used to define where you would like to move
 ArrayList<ch7p1_GraphNode> hillPath = new ArrayList<ch7p1_GraphNode>();

 // Constructor of ch7p1_Graph class
 public ch7p1_Graph() {
 nodes = new ArrayList<ch7p1_GraphNode>();
 links = new ArrayList<ch7p1_Link>();
 hillTraverse = new ArrayList<ch7p1_GraphNode>();
 }// end constructor

 // addNode()
 // Add a city node to the graph

 public void addNode(ch7p1_GraphNode node) {
 nodes.add(node);
 }// end addNode

 // addLink
 // Add link to the graph

 public void addLink(ch7p1_Link link) {
 links.add(link);
 }// end addLink

 // hillTraverse()
 // perform hill-climbing search on the graph

 public void hillTraverse(ch7p1_GraphNode from, ch7p1_GraphNode to) {
 // boolean matched;
 int distance;
 ch7p1_Link found;

 // determine if there is a link between from and to
 // if there is a match then add the link to the
 // travelStack and
 // add the nodes to hillPath
 // This will ultimately repeated by the end of the
 // search

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

129

 distance = match(from, to);
 if (distance != 0) {
 travelStack.push(new ch7p1_Link(from, to, distance));
 hillPath.add(new ch7p1_GraphNode(to.cityName, to.xLocation,
 to.yLocation));
 hillPath.add(new ch7p1_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 return ;
 }

 // if there is no match found you could another path
 // findings
 found = find(from);

 // if you find a new connection then you could add it // to the travelStack
 // and
 // and the start node to hillPath
 // recursively call hillTraverse with the link's to as // start and our
 // destination as the end

 if (found != null) {
 travelStack.push(new ch7p1_Link(from, to, found.distance));
 hillTraverse(found.to, to);
 hillPath.add(new ch7p1_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 }

 // backtrack if you cannot find a new connection
 else if (travelStack.size() > 0) {
 found = travelStack.pop();
 hillTraverse(found.from, found.to);
 hillPath.add(new ch7p1_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 }
 }// end hillTraverse()

 // find() method is used to
 // find the next link to try exploring

 public ch7p1_Link find(ch7p1_GraphNode from) {

 int pos = -1;
 int dist = 0;

 // iterate through the list of links
 for (int a = 0; a < links.size(); a++) {

 if (links.get(a).from.equals(from) && !links.get(a).skip) {

 // Use the longest flight.
 if (links.get(a).distance > dist) {

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

130

 pos = a;
 dist = links.get(a).distance;
 }
 }
 }

 // link found
 if (pos != -1) {

 // mark this link as used so we don't match it
 // again
 links.get(pos).skip = true ;

 ch7p1_Link foundList = new ch7p1_Link(links.get(pos).from,
 links.get(pos).to, links.get(pos).distance);
 return foundList;
 }

 return null ; // not found
 }// end find()

 // match() method is used to determine if there is a link
 // between a starting
 // node and an ending node

 public int match(ch7p1_GraphNode from, ch7p1_GraphNode to) {

 // iterate through list of links
 for (int a = links.size() - 1; a >= 0; a--) {
 if (links.get(a).from.equals(from) && links.get(a).to.equals(to)
 && !links.get(a).skip) {
 links.get(a).skip = true ;
 return links.get(a).distance;
 }
 }
 return 0;
 }// end match()
 }// end Graph.java

 Given startCity A and endCity E, the result of running the programs is as follows:

 the path from your current city to the destination city is:
 A->C->E

 This result shows you the exact path for traversing a graphic using a hill-climbing search strategy
without including the intermediate trace-back nodes .

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

131

 leJOS EV3-Based Hill-Climbing Algorithm
 In this section, you need to develop a program for your robot so that it can travel the path between starting
node A and destination node E, as shown in Figure 7-3 , with the minimum number of nodes and using the
hill-climbing search algorithm.

 You program should at minimum show the destination’s coordinate on the LCD and then display
a message “ Press ENTER key to continue .” When the Enter key is pressed, your robot should move to
the next node. For instance, suppose that your robot starts from A (0,0) and wants to explore a path to E
(0,30) . Assume that the path your robot explores with the minimum number of nodes passed using hill-
climbing search is A -> C -> E . At starting point A, your program should do the following:

 Display destination’s coordinate C(-15, 20) on the LCD.

 Display the message “ Press ENTER key to continue ”.

 Go to the location with coordinate -15,20.

 Display the destination’s coordinate E(0, 30) on the LCD.

 Display the message “ Press ENTER key to continue. ”

 Go to the location with coordinate 0,30.

 Moreover, your problem should have a string called destination, so that it is intelligent enough when
changing the value of the destination that your robot can explore a new path from starting node A to the new
destination node, the robot will pass the minimum number of nodes to reach destination node. (We assume
that the starting node is always A, so the from string can be hard-coded.)

 The following programs represent the implementation of the leJOS-based hill-climbing algorithm
designed to explore a path from node A to the destination node E:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch7p2_main.java
 //Driver class to set up map using ch7p2_GraphNode, ch7p2_Link, and //ch7p2_Graph classes.
 //Calls a hill-climbing search in ch7p2_Graph class to create //navigation path from a start
 //and end node and then robots will follow the path to move from //start node
 //to destination node
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.MovePilot;
 import lejos.robotics.navigation.Navigator;

 public class ch7p2_main {

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. A);

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

132

 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. C);

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // i nstantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);
 MovePilot ev3robot = new MovePilot(chassis);

 Navigator navbot = new Navigator(ev3robot);

 // These objects used to define what your graph looks // like
 ch7p2_Graph searchGraph = new ch7p2_Graph();
 ch7p2_GraphNode A, B, C, D, E, F, G, H;
 ch7p2_Link AB, AC, AD, BD, CB, CE, CF, DE, DH, FE, GE, HG;

 // define each node
 A = new ch7p2_GraphNode("A", 0, 0);
 B = new ch7p2_GraphNode("B", -10, 20);
 C = new ch7p2_GraphNode("C", -15, 20);
 D = new ch7p2_GraphNode("D", 0, 20);
 E = new ch7p2_GraphNode("E", 0, 30);
 F = new ch7p2_GraphNode("F", -15, 30);
 G = new ch7p2_GraphNode("G", 10, 20);
 H = new ch7p2_GraphNode("H", 10, 10);

 // define which GraphNodes are connected
 AB = new ch7p2_Link(A, B, dist (A.xLocation, A.yLocation, B.xLocation,
 B.yLocation));
 AC = new ch7p2_Link(A, C, dist (A.xLocation, A.yLocation, C.xLocation,
 C.yLocation));
 AD = new ch7p2_Link(A, D, dist (A.xLocation, A.yLocation, D.xLocation,
 D.yLocation));
 BD = new ch7p2_Link(B, D, dist (B.xLocation, B.yLocation, D.xLocation,
 D.yLocation));
 CB = new ch7p2_Link(C, B, dist (C.xLocation, C.yLocation, B.xLocation,
 B.yLocation));

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

133

 CE = new ch7p2_Link(C, E, dist (C.xLocation, C.yLocation, E.xLocation,
 E.yLocation));
 CF = new ch7p2_Link(C, F, dist (C.xLocation, C.yLocation, F.xLocation,
 F.yLocation));
 DE = new ch7p2_Link(D, E, dist (D.xLocation, D.yLocation, E.xLocation,
 E.yLocation));
 DH = new ch7p2_Link(D, H, dist (D.xLocation, D.yLocation, H.xLocation,
 H.yLocation));
 FE = new ch7p2_Link(F, E, dist (F.xLocation, F.yLocation, E.xLocation,
 E.yLocation));
 GE = new ch7p2_Link(G, E, dist (G.xLocation, G.yLocation, E.xLocation,
 E.yLocation));
 HG = new ch7p2_Link(H, G, dist (H.xLocation, H.yLocation, G.xLocation,
 G.yLocation));

 // add all nodes and links to your graph object
 searchGraph.addNode(A);
 searchGraph.addNode(B);
 searchGraph.addNode(C);
 searchGraph.addNode(D);
 searchGraph.addNode(E);
 searchGraph.addNode(F);
 searchGraph.addNode(G);
 searchGraph.addNode(H);

 searchGraph.addLink(AB);
 searchGraph.addLink(AC);
 searchGraph.addLink(AD);
 searchGraph.addLink(BD);
 searchGraph.addLink(CB);
 searchGraph.addLink(CE);
 searchGraph.addLink(CF);
 searchGraph.addLink(DE);
 searchGraph.addLink(DH);
 searchGraph.addLink(FE);
 searchGraph.addLink(GE);
 searchGraph.addLink(HG);

 // run hill-climbing search to get from start to
 // destination
 searchGraph.hillTraverse(
 searchGraph.nodes.get(searchGraph.nodes.indexOf(A)),
 searchGraph.nodes.get(searchGraph.nodes.indexOf(E)));

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // Robot moves through path from start to destination // by using
 // hillTraverse

 for (int i = searchGraph.hillPath.size() - 1; i >= 0; i--) {

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

134

 int count = 0;
 for (int j = searchGraph.hillPath.size() - 1; j >= 0; j--) {
 if (searchGraph.hillPath.get(i).cityName == searchGraph.

hillPath
 .get(j).cityName)
 count++;

 }
 if (count == 1) {
 // go to node
 navbot.goTo(searchGraph.hillPath.get(i).xLocation,
 searchGraph.hillPath.get(i).yLocation);

 LCD. clear ();

 // display current location
 LCD. drawString ("At location "
 + searchGraph.hillPath.get(i).cityName + ",

", 0, 0);

 LCD. drawString (searchGraph.hillPath.get(i).xLocation + ", "
 + searchGraph.hillPath.get(i).yLocation, 0,

1);

 LCD. drawString ("Press ENTER key", 0, 2);

 // block the thread until a button is
 // pressed
 buttons.waitForAnyPress();

 }

 }

 }

 static int dist(int x1, int y1, int x2, int y2) {
 int distance = 0;

 distance = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);

 return distance;
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch7p2_Link.java
 //Represents a link between two GraphNodes);
 //**

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

135

 public class ch7p2_Link {

 ch7p2_GraphNode from;
 ch7p2_GraphNode to;

 int distance;

 // boolean skip is used for traversal to determine if the path // has already
 // been visited or not
 boolean skip;

 public ch7p2_Link(ch7p2_GraphNode from, ch7p2_GraphNode to, int d) {
 this .from = from;
 this .to = to;
 distance = d;
 skip = false ;
 }
 }
 //**
 // Wei Lu Java Robotics Programming with Lego EV3 //ch7p1_GraphNode.java
 //Represents name and coordinates of a node on a graph
 //**

 public class ch7p2_GraphNode {
 String cityName;
 int xLocation, yLocation;

 public ch7p2_GraphNode(String cityName, int xLocation, int yLocation) {
 this .cityName = cityName;
 this .xLocation = xLocation;
 this .yLocation = yLocation;

 }

 public String toString() {
 return cityName + " (" + xLocation + "," + yLocation + ")";
 }
 }
 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch7p2_Graph.java
 //Represents GraphNodes connected through Links, including method //for doing a hill
climbing
 //search traversal of the graph.
 //the method hillTraverse creates a hillPath list which the robot //will follow to
demonstrate
 //how the hill-climbing search works.
 //**

 import java.util.ArrayList;);
 import java.util.Stack;

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

136

 public class ch7p2_Graph {

 // nodes and links define the physical creation of your Graph
 ArrayList<ch7p2_GraphNode> nodes;
 ArrayList<ch7p2_Link> links;

 // Two lists used for traversing
 ArrayList<ch7p2_GraphNode> hillTraverse;
 Stack<ch7p2_Link> travelStack = new Stack<ch7p2_Link>();

 // List used to define where you would like to move
 ArrayList<ch7p2_GraphNode> hillPath = new ArrayList<ch7p2_GraphNode>();

 // Constructor of ch7p2_Graph class
 public ch7p2_Graph() {
 nodes = new ArrayList<ch7p2_GraphNode>();
 links = new ArrayList<ch7p2_Link>();
 hillTraverse = new ArrayList<ch7p2_GraphNode>();
 }// end constructor

 // addNode()
 // Add a city node to the graph

 public void addNode(ch7p2_GraphNode node) {
 nodes.add(node);
 }// end addNode

 // addLink
 // Add link to the graph

 public void addLink(ch7p2_Link link) {
 links.add(link);
 }// end addLink

 // hillTraverse()
 // perform hill-climbing search on the graph

 public void hillTraverse(ch7p2_GraphNode from, ch7p2_GraphNode to) {
 // boolean matched;
 int distance;
 ch7p2_Link found;

 // determine if there is a link between from and to
 // if there is a match then add the link to the
 // travelStack and
 // add the nodes to hillPath
 // This will ultimately repeated by the end of the
 // search

 distance = match(from, to);
 if (distance != 0) {

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

137

 travelStack.push(new ch7p2_Link(from, to, distance));
 hillPath.add(new ch7p2_GraphNode(to.cityName, to.xLocation,
 to.yLocation));
 hillPath.add(new ch7p2_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 return ;
 }

 // if there is no match found you could another path
 // findings
 found = find(from);

 // if you find a new connection then you could add it // to the travelStack
 // and
 // and the start node to hillPath
 // recursively call hillTraverse with the link's to as // start and our
 // destination as the end

 if (found != null) {
 travelStack.push(new ch7p2_Link(from, to, found.distance));
 hillTraverse(found.to, to);
 hillPath.add(new ch7p2_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 }

 // backtrack if you cannot find a new connection
 else if (travelStack.size() > 0) {
 found = travelStack.pop();
 hillTraverse(found.from, found.to);
 hillPath.add(new ch7p2_GraphNode(from.cityName, from.xLocation,
 from.yLocation));
 }
 }// end hillTraverse()

 // find() method is used to
 // find the next link to try exploring);

 public ch7p2_Link find(ch7p2_GraphNode from) {

 int pos = -1;
 int dist = 0;

 // iterate through the list of links
 for (int a = 0; a < links.size(); a++) {

 if (links.get(a).from.equals(from) && !links.get(a).skip) {

 // Use the longest flight.
 if (links.get(a).distance > dist) {
 pos = a;
 dist = links.get(a).distance;

CHAPTER 7 ■ HILL-CLIMBING SEARCH AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

138

 }
 }
 }

 // link found
 if (pos != -1) {

 // mark this link as used so we don't match it
 // again
 links.get(pos).skip = true ;

 ch7p2_Link foundList = new ch7p2_Link(links.get(pos).from,
 links.get(pos).to, links.get(pos).distance);
 return foundList;
 }

 return null ; // not found
 }// end find()

 // match() method is used to determine if there is a link
 // between a starting
 // node and an ending node

 public int match(ch7p2_GraphNode from, ch7p2_GraphNode to) {

 // iterate through list of links
 for (int a = links.size() - 1; a >= 0; a--) {
 if (links.get(a).from.equals(from) && links.get(a).to.equals(to)
 && !links.get(a).skip) {
 links.get(a).skip = true ;
 return links.get(a).distance;
 }
 }
 return 0;
 }// end match()
 }// end Graph.java);

 Summary
 In this chapter, you learned about fundamentals of heuristic searching and the hill-climbing algorithm.
You now know how to apply the hill-climbing search algorithm to solve a searching program in practice.
You also learned how to build problem-solving agents based on the hill-climbing search algorithm and the
Navigation class that you studied in previous chapters in which such agents found a route path intelligently
from the starting point to any destination using the shortest number of connections.

 In the next chapter, you will learn Dijkstra's algorithm, which can be used to find the optimal solution
rather than a (or “any”) solution, as defined by the heuristic function in hill climbing. Also, you will learn
how to integrate Dijkstra's algorithm in the leJOS-based robotics system for localization and path planning.

139© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_8

 CHAPTER 8

 Dijkstra’s Algorithm and Its
Implementation with Lego
Mindstorms

 Following up on Chapter 7 ’s discussion of heuristic search algorithms, this chapter will address Dijkstra's
algorithm. This algorithm can be used to find the optimal solution, rather than a “or any” solution, as
defined by the heuristic function in the hill-climbing algorithm. In particular, this chapter will cover the
following topics:

• A new Dijkstra's search algorithm, which can be applied to build arbitrary tree
structures generically.

• Applying and integrating the proposed Dijkstra's algorithm in the leJOS-based
robotics system for localization and path planning, which enhances the existing
pathfinding approaches within the leJOS system.

 Introduction to Dijkstra’s Algorithm
 The hill-climbing algorithm, discussed in Chapter 7 , attempts to minimize the number of connections. As
you learned, such a hill-climbing search found a good route — not the best one, but one that was acceptable.
Moreover, all of the previous search algorithms introduced so far (including BSF and DFS) are able to
determine a solution: that is, any solution, not necessarily the best solution or even a “good” one. Defining
heuristics helped to improve the likelihood of finding a good solution; however, no attempt was made to
ensure that an optimal solution was found. In order to achieve an optimal solution : that is, the best solution,
the well-known Dijkstra's algorithm needs to be applied:

 In any given graph and at any starting node, Dijkstra's algorithm discovers the shortest path from
the starting node to all other nodes.

 Figure 8-1 displays a graphic representing connected nodes: nodes are blue circles labeled A-J. A path is
a blue line connecting two nodes, and each path has an associated distance beside it. Note: the lengths are
not meant to be to scale.

http://dx.doi.org/10.1007/978-1-4842-2005-4_7
http://dx.doi.org/10.1007/978-1-4842-2005-4_7

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

140

 Node A is your starting node, and you want to find the shortest path to all of the other nodes in the
graphic. To do this, you generate a table. This table contains the distance to all nodes in the graphic from the
perspective of the starting node A.

 As seen in Table 8-1 , the initial entries for distances are all set to infinity (or some notional maximum
value). This ensures that any path found will be shorter than the initial value stored in the table.

 Figure 8-1. Graphic representation of connected nodes

 Table 8-1. Initial entries for distances to nodes from Node A

 Node Distance to Node from Node A

 B INFINTE

 C INFINTE

 D INFINTE

 E INFINTE

 F INFINTE

 G INFINTE

 H INFINTE

 I INFINTE

 J INFINTE

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

141

 Node A is the starting node, and as such you will first examine all of the possible paths away from this
node. The options are shown in Table 8-2 .

 Table 8-2. Distance to nodes (from Node A) accessible from Node A

 Node Distance to Node from Node A

 B 7

 C 2

 D 3

 E 17

 Table 8-3. Entries for distances to nodes from Node A

 Node Distance to Node from Node A

 B 7

 C 2

 D 3

 E 17

 F INFINTE

 G INFINTE

 H INFINTE

 I INFINTE

 J INFINTE

 These values are used to update Table 8-1 , and thus you now have Table 8-3 .

 Figure 8-2 shows the routes marked in red. You have four paths from Node A. However, these paths are
not yet guaranteed to be the shortest path. To be sure that you have determined the shortest path, you have
to keep going.

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

142

 The next move in the algorithm is to go to the nearest node from Node A. In this case, that is Node C. At
Node C, you have paths available to Nodes B, G, and J. When calculating the distances , you must determine
them from Node A. The new distances are shown in Table 8-4 .

 Table 8-4. Distance to nodes accessible from Node A

 Node Distance to Node from Node A

 B 5

 G 31

 J 9

 Figure 8-2. Graphic representation in which starting node A has been visited

 These values are then compared to the values that appear in Table 8-3 . You will observe that both of
these values are less than the current values stored in the table. As such, Table 8-3 transforms to Table 8-5 as
follows.

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

143

 This step illustrates one of the advantages of Dijkstra's algorithm: the route to Node B is not the most
direct route, but it is the shortest one. Dijkstra's algorithm can find the shortest route, even when that route
is not the most direct one.

 Again, all paths accessible from Node C have been checked, and the table of the paths has been
updated. Node C is marked as having been visited, as shown in Figure 8-3 .

 Table 8-5. Entries for distances to nodes from Node A

 Node Distance to Node from Node A

 B 5

 C 2

 D 3

 E 17

 F INFINTE

 G 31

 H INFINTE

 I INFINTE

 J 9

 Figure 8-3. Graphic representation in which Node C has been visited

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

144

 In Dijkstra's algorithm, a visited node is never revisited. Furthermore, once a node has been marked as
visited, the path to that node is known to be the shortest route from the initial node.

 As such, you should add another column to your table, as shown in Table 8-6 .

 Table 8-6. Entries for distances to nodes from Node A

 Node Distance to Node from Node A Visited

 B 5 No

 C 2 Yes

 D 3 No

 E 17 No

 F INFINTE No

 G 31 No

 H INFINTE No

 I INFINTE No

 J 9 No

 As these values are being updated, the route that accompanies these distances also needs to be stored.
Once again, the table of paths is checked, and the shortest path to a node that has not been visited is found.
This node becomes the next current node. In this case, that is Node D. The following paths are available from
Node D:

 Table 8-7. Distance to nodes accessible from Node A

 Node Distance to Node from Node A

 J 11

 I 16

 E 8

 The table of all paths is updated to reflect this, and node D is marked as visited. This locks in the
shortest path to Node D, also.

 As can be seen in Table 8-8 , the next-nearest node to Node A is Node B. All paths from Node B are
examined next. In this instance, you have a path to a node that is marked as visited, Node C. We already
know that the path to Node C is as short as it can get.

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

145

 As the Figure 8-4 shows, when you check the path, the only other node accessible from Node B is Node
F. This updates our paths as shown in Table 8-9 :

 Figure 8-4. Graphic representation with Node C and Node D marked visited

 Table 8-8. Entries for distances to nodes from Node A

 Node Distance to Node from Node A Visited

 B 5 No

 C 2 Yes

 D 3 Yes

 E 8 No

 F INFINTE No

 G 31 No

 H INFINTE No

 I 16 No

 J 9 No

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

146

 Table 8-9 again tells us that the next node for you to visit is Node E. You then add up the paths and mark
the nodes as visited. Next you check the path, and the only other node accessible from Node E is Node I.
The distance from Node A to Node I is 27, which is larger than the one that is shown in the table. Therefore,
there is no update for the table in this round, and Node E is marked visited. Continuing with Table 8-9 , you
know that the next node to visit is Node F. As Figure 8-4 shows, when you check the path, the only other node
accessible from Node F is Node G. This updates the paths as shown in Table 8-10 .

 Table 8-9. Entries for distances to nodes from Node A

 Node Distance to Node from Node A Visited

 B 5 Yes

 C 2 Yes

 D 3 Yes

 E 8 No

 F 9 No

 G 31 No

 H INFINTE No

 I 16 No

 J 9 No

 Table 8-10. Entries for distances to nodes from Node A

 Node Distance to Node from Node A Visited

 B 5 Yes

 C 2 Yes

 D 3 Yes

 E 8 Yes

 F 9 Yes

 G 19 No

 H INFINTE No

 I 16 No

 J 9 No

 Table 8-10 tells us that the next node for you to visit is Node J. You then add up the paths and mark the
nodes as visited . Next you check the path, and the only other node accessible from Node J is Node H. This
updates the paths as shown in Table 8-11 .

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

147

 Table 8-11 tells us that the next node for you to visit is Node I. Next you add up the paths and mark
the nodes as visited . When you check the path, the only other node accessible from Node I is Node H. This
updates the paths as shown in Table 8-12 .

 Table 8-11. Entries for distances to nodes from Node A

 Node Distance to Node from Node A Visited

 B 5 Yes

 C 2 Yes

 D 3 Yes

 E 8 Yes

 F 9 Yes

 G 19 No

 H 27 No

 I 16 No

 J 9 Yes

 Table 8-12. Entries for distances to nodes from Node A

 Node Distance to Node from Node A Visited

 B 5 Yes

 C 2 Yes

 D 3 Yes

 E 8 Yes

 F 9 Yes

 G 19 No

 H 22 No

 I 16 Yes

 J 9 Yes

 Table 8-12 tells us that the next node to visit is Node G. You then add up the paths and mark the nodes
as visited. When you check the path, the only other node accessible from Node G is Node H. The distance
from Node A to Node H is 36, which is larger than the 22 shown in the table. Therefore, there is no update
to the table and Node G is marked visited. Now all of the nodes have been visited, and the search will be
terminated. Eventually, you will see Table 8-13 , which shows the shortest distance from Node A to all other
nodes in the graphic shown in Figure 8-1 .

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

148

 Using the graphic shown in Figure 8-1 , the following programs use Dijkstra's algorithm to find the
shortest path from starting Node A to all of the other nodes.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3ch8p1_main.java
 //Driver class to set up map using ch8p1_edge, find the shortest //path from
 //starting node A to all the other nodes in a given graph.
 //**

 import java.util.ArrayList;

 public class ch8p1_main {
 static ArrayList<ch8p1_edge> graph = null ;
 static ch8p1_edge[] parents = null ;

 static ArrayList<String> unsolvedConn = null ;
 static ArrayList<String> solvedConn = null ;
 private static ch8p1_minpath finalPath ;

 public static void main(String[] args) {

 // initialize the nodes set
 String[] nodes = { "A", "B", "C", "D", "E", "F", "G", "H", "I", "J" };

 // initialize the map with the nodes
 graph = new ArrayList<ch8p1_edge>();

 graph .add(new ch8p1_edge("A", "B", 7));
 graph .add(new ch8p1_edge("A", "C", 2));
 graph .add(new ch8p1_edge("A", "D", 3));
 graph .add(new ch8p1_edge("A", "E", 17));
 graph .add(new ch8p1_edge("B", "F", 4));
 graph .add(new ch8p1_edge("C", "B", 3));
 graph .add(new ch8p1_edge("C", "G", 29));
 graph .add(new ch8p1_edge("C", "J", 7));

 Table 8-13. Entries for distances to nodes from Node A

 Nod Distance to Node from Node A Visited

 B 5 Yes

 C 2 Yes

 D 3 Yes

 E 8 Yes

 F 9 Yes

 G 19 Yes

 H 22 Yes

 I 16 Yes

 J 9 Yes

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

149

 graph .add(new ch8p1_edge("D", "J", 8));
 graph .add(new ch8p1_edge("D", "I", 13));
 graph .add(new ch8p1_edge("D", "E", 5));
 graph .add(new ch8p1_edge("E", "I", 19));
 graph .add(new ch8p1_edge("F", "G", 10));
 graph .add(new ch8p1_edge("G", "H", 17));
 graph .add(new ch8p1_edge("J", "H", 18));
 graph .add(new ch8p1_edge("I", "H", 6));

 // initialize the unsolved nodes
 unsolvedConn = new ArrayList<String>();

 // sets the parent node in the unsolved connection
 // ArrayList to A
 unsolvedConn .add(nodes[0]);

 // initialize the solved nodes
 solvedConn = new ArrayList<String>();

 // Add all nodes to the solved connection tree
 for (int i = 1; i < nodes.length; i++)
 solvedConn .add(nodes[i]);

 // create a parent array that will store all the edges
 parents = new ch8p1_edge[nodes.length];

 // Set the initial node to A and make its parent null // with a weight cost
 // of zero
 parents [0] = new ch8p1_edge(null , nodes[0], 0);

 for (int i = 0; i < solvedConn .size(); i++) {
 // get all of the String node names that could be // attached the
 // root
 String n = solvedConn .get(i);

 // Check the weights of all the nodes that are
 // attached to the root
 // A node
 // If they are attached will return positive
 // weight if not will
 // return -1
 parents [i + 1] = new ch8p1_edge(nodes[0], n, getEdgeLength (
 nodes[0], n));
 }

 finalPath = null ;
 // while the solved nodes ArrayList is greater than
 // zero
 while (solvedConn .size() > 0) {
 // Create a minimum shortest path object to find // the shortest path
 // to all connected points

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

150

 ch8p1_minpath msp = getMinSideNode ();
 finalPath = msp;

 if (msp.getEdgeLength() == -1)
 msp.outputPath(nodes[0]);
 else
 msp.outputPath();

 String node = msp.getLastNode();
 unsolvedConn .add(node);
 setEdgeLength (node);
 }
 }

 public static String getParent(ch8p1_edge[] parents, String node) {
 if (parents != null) {
 for (ch8p1_edge nd : parents) {
 if (nd.getChildNode() == node) {
 return nd.getParentNode();
 }
 }
 }
 return null ;
 }

 public static void setEdgeLength(String parentNode) {
 if (graph != null && parents != null && solvedConn != null) {
 for (String node : solvedConn) {
 ch8p1_minpath msp = getMinPath (node);
 int w1 = msp.getEdgeLength();
 if (w1 == -1)
 continue ;
 for (ch8p1_edge n : parents) {
 if (n.getChildNode() == node) {
 if (n.getEdgeLength() == -1 ||

n.getEdgeLength() > w1) {
 n.setEdgeLength(w1);
 n.setParentNode(parentNode);
 break ;
 }
 }
 }
 }
 }
 }

 public static int getEdgeLength(String parentNode, String childNode) {
 if (graph != null) {
 for (ch8p1_edge s : graph) {
 if (s.getParentNode() == parentNode
 && s.getChildNode() == childNode)

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

151

 return s.getEdgeLength();
 }
 }
 return -1;
 }

 public static ch8p1_minpath getMinSideNode() {
 // Create a minimum shortest path object
 ch8p1_minpath minMsp = null ;
 // while the solved node ArrayList is greater than zero
 if (solvedConn .size() > 0) {
 // Create an index value set to zero
 int index = 0;
 // for each value in the solved nodes ArrayList
 for (int j = 0; j < solvedConn .size(); j++) {
 // Create a shortest path map get the
 // MinPath of the solved node
 ch8p1_minpath msp = getMinPath (solvedConn .get(j));
 // if there is no minimum shortest path, // if the minimum shortest
 // path
 // does not equal -1
 // AND the minimum shortest path get
 // weight is less than the
 // minimum shortest path get weight
 if (minMsp == null || msp.getEdgeLength() != -1
 && msp.getEdgeLength() < minMsp.

getEdgeLength()) {
 // set the minimum shortest path to // the minimum shortest
 // path
 minMsp = msp;
 // set the index value equal it the // node value j
 index = j;
 }
 }
 // remove the index that you checked in the
 // solved nodes
 solvedConn .remove(index);

 }
 // return the MinShortPath object
 return minMsp;
 }

 public static ch8p1_minpath getMinPath(String node) {
 // Create a Minshort Path object that is an ArrayList // and set the take
 // in node as the base
 // in this case will always be zero
 ch8p1_minpath msp = new ch8p1_minpath(node);
 // if the parents array does not equal null and the
 // unsolved nodes does
 // not equal null

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

152

 if (parents != null && unsolvedConn != null) {
 for (int i = 0; i < unsolvedConn .size(); i++) {
 ch8p1_minpath tempMsp = new ch8p1_minpath(node);
 String parent = unsolvedConn .get(i);
 String curNode = node;
 while (parent != null) {
 int weight = getEdgeLength (parent, curNode);
 if (weight > -1) {
 tempMsp.addNode(parent);
 tempMsp.addEdgeLength(weight);
 curNode = parent;
 parent = getParent (parents , parent);
 } else
 break ;
 }

 if (msp.getEdgeLength() == -1 || tempMsp.getEdgeLength() != -1
 && msp.getEdgeLength() > tempMsp.

getEdgeLength())
 msp = tempMsp;
 }
 }
 return msp;
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch8p1_minpath.java
 //the minimum path from starting node to all the other nodes, //including each node
 //and the corresponding minimum distance as well
 //**

 import java.util.ArrayList;

 public class ch8p1_minpath {
 private ArrayList<String> nodeList;
 private int edgeLength;

 public ch8p1_minpath(String node) {
 nodeList = new ArrayList<String>();
 nodeList.add(node);
 edgeLength = -1;
 }

 public ArrayList<String> getNodeList() {
 return nodeList;
 }

 public void setNodeList(ArrayList<String> nodeList) {
 this .nodeList = nodeList;
 }

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

153

 public void addNode(String node) {
 if (nodeList == null)
 nodeList = new ArrayList<String>();
 nodeList.add(0, node);
 }

 public String getLastNode() {
 int size = nodeList.size();
 return nodeList.get(size - 1);

 }

 public int getEdgeLength() {
 return edgeLength;
 }

 public void setEdgeLength(int edgeLength) {
 this .edgeLength = edgeLength;
 }

 public void outputPath() {
 outputPath(null);
 }

 public void outputPath(String pathNode) {
 String result = "the minimum path of ";
 if (pathNode != null)
 nodeList.add(pathNode);
 for (int i = 0; i < nodeList.size(); i++) {
 result += "" + nodeList.get(i);
 if (i < nodeList.size() - 1)
 result += "->";
 }
 result += " is:" + edgeLength;
 System. out .println(result);
 }

 public void addEdgeLength(int e) {
 if (edgeLength == -1)
 edgeLength = e;
 else
 edgeLength += e;
 }

 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch8p1_edge.java
 //edge class including the parent node and child node
 //and the edge length between two nodes
 //**

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

154

 public class ch8p1_edge {
 private String parentNode;
 private String childNode;
 private int edgeLength;

 public ch8p1_edge(String parentNode, String childNode, int edgeLength) {
 this .parentNode = parentNode;
 this .childNode = childNode;
 this .edgeLength = edgeLength;
 }

 public String getParentNode() {
 return parentNode;
 }

 public void setParentNode(String parentNode) {
 this .parentNode = parentNode;
 }

 public String getChildNode() {
 return childNode;
 }

 public void setChildNode(String childNode) {
 this .childNode = childNode;
 }

 public int getEdgeLength() {
 return edgeLength;
 }

 public void setEdgeLength(int edgeLength) {
 this .edgeLength = edgeLength;
 }

 }

 The result of running the program is as follows:

 The minimum path of A->C is: 2
 The minimum path of A->D is: 3
 The minimum path of A->C->B is: 5
 The minimum path of A->D->E is: 8
 The minimum path of A->C->B->F is: 9
 The minimum path of A->C->J is: 9
 The minimum path of A->D->I is:16
 The minimum path of A->C->B->F->G is: 19
 The minimum path of A->D->I->H is: 22

 As you have seen, this result is exactly same as the one shown in Table 8-13 .

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

155

 leJOS EV3-Based Dijkstra’s Algorithm
 Referring to Figure 8-5 , you will write a program for your robot so it can travel the path between starting
Node A and destination Node I covering the minimum distance possible using Dijkstra's algorithm. Assume
that you use the Cartesian coordinate system :

 The coordinate at A is (0,0).

 The coordinate at B is (-10,20).

 The coordinate at C is (0,20).

 The coordinate at D is (-15,20).

 The coordinate at E is (-15,30).

 The coordinate at F is (0,30).

 The coordinate at G is (10,10).

 The coordinate at H is (10,20).

 The coordinate at I is (10,30).

 Figure 8-5. Graphic to be used for conducting the shortest-path search

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

156

 You program should present at least the destination’s coordinate on the LCD and then show the
message “ Press ENTER Key to continue .” When you press Enter, your robot moves to the next node.
For instance, suppose that your robot starts from Node A(0,0) and you want it to explore a path to Node
G(10,10) . Assume that the path your robot explores with minimum distance covered using Dijkstra's
algorithm is Node A -> Node C -> Node G . At the starting point Node A, your program should do the
following:

 Display the destination’s coordinate Node C(0, 20) on the LCD.

 Display the message “ Press ENTER key to continue. ”

 Go to the location with coordinate 0,20.

 Display the destination’s coordinate Node G(10, 10) on LCD.

 Display the message “ Press ENTER key to continue. ”

 Go to the location with coordinate 10,10.

 Furthermore, your problem should have a string called destination , so that it’s intelligent enough when
changing the value of the destination, your robot can explore a new path from starting Node A to the new
destination node in which the robot will pass with the minimum distance to reach destination node. (We
assume that the starting node is always A, so the from string can be hard-coded.)

 The following programs represent the implementation of the leJOS-based Dijkstra's algorithm designed
to explore the shortest path from Node A to the destination Node I:

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch8p2_main.java
 //Driver class to set up map using ch8p2_edge, find the shortest //path from
 //starting node A to all the other nodes in a given graph.
 //and then robots will follow the path to move from start node A
 //to the given destination node I
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.LCD;
 import lejos.hardware.motor.EV3LargeRegulatedMotor;
 import lejos.hardware.port.MotorPort;
 import lejos.robotics.chassis.Chassis;
 import lejos.robotics.chassis.Wheel;
 import lejos.robotics.chassis.WheeledChassis;
 import lejos.robotics.navigation.MovePilot;
 import lejos.robotics.navigation.Navigator;
 import lejos.robotics.navigation.Waypoint;
 import lejos.robotics.pathfinding.Path;

 import java.util.ArrayList;

 public class ch8p2_main {
 static ArrayList<ch8p2_edge> graph = null ;
 static ch8p2_edge[] parents = null ;

 static ArrayList<String> unsolvedConn = null ;

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

157

 static ArrayList<String> solvedConn = null ;
 private static ch8p2_minpath finalPath ;

 static EV3LargeRegulatedMotor LEFT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. A);
 static EV3LargeRegulatedMotor RIGHT_MOTOR = new EV3LargeRegulatedMotor(
 MotorPort. C);

 static Waypoint[] coordinates = { new Waypoint(0, 0),
 new Waypoint(-10, 20), new Waypoint(0, 20), new Waypoint(-15, 20),
 new Waypoint(-15, 30), new Waypoint(0, 30), new Waypoint(10, 10),
 new Waypoint(10, 20), new Waypoint(10, 30),

 };

 public static void main(String[] args) {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // instantiated LCD class for displaying and Keys class // for buttons
 Keys buttons = ev3brick.getKeys();

 // setup the wheel diameter of left (and right) motor // in centimeters,
 // i.e. 2.8 cm
 // the offset number is the distance between the center // of wheel to
 // the center of robot, i.e. half of track width
 Wheel wheel1 = WheeledChassis. modelWheel (LEFT_MOTOR , 2.8).offset(-9);
 Wheel wheel2 = WheeledChassis. modelWheel (RIGHT_MOTOR , 2.8).offset(9);

 // set up the chassis type, i.e. Differential pilot
 Chassis chassis = new WheeledChassis(new Wheel[] { wheel1, wheel2 },
 WheeledChassis. TYPE_DIFFERENTIAL);
 MovePilot ev3robot = new MovePilot(chassis);

 Navigator navbot = new Navigator(ev3robot);

 // initialize the nodes set
 String[] nodes = { "A", "B", "C", "D", "E", "F", "G", "H", "I" };

 // initialize the map with the nodes
 graph = new ArrayList<ch8p2_edge>();

 graph .add(new ch8p2_edge("A", "B", 22));
 graph .add(new ch8p2_edge("A", "C", 20));
 graph .add(new ch8p2_edge("A", "D", 25));

 graph .add(new ch8p2_edge("B", "C", 10));

 graph .add(new ch8p2_edge("C", "E", 18));
 graph .add(new ch8p2_edge("C", "F", 10));

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

158

 graph .add(new ch8p2_edge("C", "G", 14));
 graph .add(new ch8p2_edge("C", "H", 10));
 graph .add(new ch8p2_edge("C", "I", 18));

 graph .add(new ch8p2_edge("D", "B", 5));
 graph .add(new ch8p2_edge("D", "E", 10));
 graph .add(new ch8p2_edge("D", "F", 18));

 graph .add(new ch8p2_edge("E", "F", 15));

 graph .add(new ch8p2_edge("F", "I", 10));

 graph .add(new ch8p2_edge("G", "H", 10));

 graph .add(new ch8p2_edge("H", "F", 14));
 graph .add(new ch8p2_edge("H", "I", 10));

 // initialize the unsolved nodes
 unsolvedConn = new ArrayList<String>();

 // sets the parent node in the unsolved connection
 // ArrayList to A
 unsolvedConn .add(nodes[0]);

 // initialize the solved nodes
 solvedConn = new ArrayList<String>();

 // Add all nodes to the solved connection tree
 for (int i = 1; i < nodes.length; i++)
 solvedConn .add(nodes[i]);

 // create a parent array that will store all the edges
 parents = new ch8p2_edge[nodes.length];

 // Set the initial node to A and make its parent null // with a weight cost
 // of zero
 parents [0] = new ch8p2_edge(null , nodes[0], 0);

 for (int i = 0; i < solvedConn .size(); i++) {
 // get all of the String node names that could be // attached the
 // root
 String n = solvedConn .get(i);

 // Check the weights of all the nodes that are
 // attached to the root
 // A node
 // If they are attached will return positive
 // weight if not will
 // return -1
 parents [i + 1] = new ch8p2_edge(nodes[0], n, getEdgeLength (
 nodes[0], n));
 }

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

159

 finalPath = null ;
 // while the solved nodes ArrayList is greater than zero
 while (solvedConn .size() > 0) {
 // Create a minimum shortest path object to find // the shortest path
 // to all connected points
 ch8p2_minpath msp = getMinSideNode ();
 finalPath = msp;

 String node = msp.getLastNode();
 unsolvedConn .add(node);
 setEdgeLength (node);
 }
 Path directions = finalPath .buildPath(coordinates);
 navbot.setPath(directions);
 navbot.singleStep(true);
 while (navbot.getWaypoint() != null) {
 if (navbot.getWaypoint() != null) {
 System. out .println("Next destination" + navbot.

getWaypoint());

 }
 System. out .println("Press Enter Key to Continue");
 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 navbot.followPath();
 while (navbot.isMoving())
 ;
 }
 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 }

 public static String getParent(ch8p2_edge[] parents, String node) {
 if (parents != null) {
 for (ch8p2_edge nd : parents) {
 if (nd.getChildNode() == node) {
 return nd.getParentNode();
 }
 }
 }
 return null ;
 }

 public static void setEdgeLength(String parentNode) {
 if (graph != null && parents != null && solvedConn != null) {
 for (String node : solvedConn) {
 ch8p2_minpath msp = getMinPath (node);
 int w1 = msp.getEdgeLength();
 if (w1 == -1)

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

160

 continue ;
 for (ch8p2_edge n : parents) {
 if (n.getChildNode() == node) {
 if (n.getEdgeLength() == -1 ||
n.getEdgeLength() > w1) {
 n.setEdgeLength(w1);
 n.setParentNode(parentNode);
 break ;
 }
 }
 }
 }
 }
 }

 public static int getEdgeLength(String parentNode, String childNode) {
 if (graph != null) {
 for (ch8p2_edge s : graph) {
 if (s.getParentNode() == parentNode
 && s.getChildNode() == childNode)
 return s.getEdgeLength();
 }
 }
 return -1;
 }

 public static ch8p2_minpath getMinSideNode() {
 // Create a minimum shortest path object
 ch8p2_minpath minMsp = null ;
 // while the solved node ArrayList is greater than zero
 if (solvedConn .size() > 0) {
 // Create an index value set to zero
 int index = 0;
 // for each value in the solved nodes ArrayList
 for (int j = 0; j < solvedConn .size(); j++) {
 // Create a shortest path map get the
 // MinPath of the solved node
 ch8p2_minpath msp = getMinPath (solvedConn .get(j));
 // if there is no minimum shortest path, // if the minimum

shortest
 // path
 // does not equal -1
 // AND the minimum shortest path get
 // weight is less than the
 // minimum shortest path get weight
 if (minMsp == null || msp.getEdgeLength() != -1
 && msp.getEdgeLength() < minMsp.

getEdgeLength()) {
 // set the minimum shortest path to // the minimum

shortest
 // path

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

161

 minMsp = msp;
 // set the index value equal it the // node value j
 index = j;
 }
 }
 // remove the index that you checked in the
 // solved nodes
 solvedConn .remove(index);

 }
 // return the MinShortPath object
 return minMsp;
 }

 public static ch8p2_minpath getMinPath(String node) {
 // Create a Minshort Path object that is an ArrayList // and set the take
 // in node as the base
 // in this case will always be zero
 ch8p2_minpath msp = new ch8p2_minpath(node);
 // if the parents array does not equal null and the
 // unsolved nodes does
 // not equal null
 if (parents != null && unsolvedConn != null) {
 for (int i = 0; i < unsolvedConn .size(); i++) {
 ch8p2_minpath tempMsp = new ch8p2_minpath(node);
 String parent = unsolvedConn .get(i);
 String curNode = node;
 while (parent != null) {
 int weight = getEdgeLength (parent, curNode);
 if (weight > -1) {
 tempMsp.addNode(parent);
 tempMsp.addEdgeLength(weight);
 curNode = parent;
 parent = getParent (parents , parent);
 } else
 break ;
 }

 if (msp.getEdgeLength() == -1 || tempMsp.getEdgeLength() !=
-1
 && msp.getEdgeLength() > tempMsp.

getEdgeLength())
 msp = tempMsp;
 }
 }
 return msp;
 }
 }

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

162

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch8p2_edge.java
 //edge class including the parent node and child node
 //and the edge length between two nodes
 //**

 public class ch8p2_edge {
 private String parentNode;
 private String childNode;
 private int edgeLength;

 public ch8p2_edge(String parentNode, String childNode, int edgeLength) {
 this .parentNode = parentNode;
 this .childNode = childNode;
 this .edgeLength = edgeLength;
 }

 public String getParentNode() {
 return parentNode;
 }

 public void setParentNode(String parentNode) {
 this .parentNode = parentNode;
 }

 public String getChildNode() {
 return childNode;
 }

 public void setChildNode(String childNode) {
 this .childNode = childNode;
 }

 public int getEdgeLength() {
 return edgeLength;
 }

 public void setEdgeLength(int edgeLength) {
 this .edgeLength = edgeLength;
 }

 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch8p2_minpath.java
 //the minimum path from starting node to all the other nodes, //including each node
 //and the corresponding minimum distance as well
 //**

 import java.util.ArrayList;

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

163

 import lejos.robotics.navigation.Waypoint;
 import lejos.robotics.pathfinding.Path;

 public class ch8p2_minpath {
 private ArrayList<String> nodeList;
 private int edgeLength;

 public ch8p2_minpath(String node) {
 nodeList = new ArrayList<String>();
 nodeList.add(node);
 edgeLength = -1;
 }

 public ArrayList<String> getNodeList() {
 return nodeList;
 }

 public void setNodeList(ArrayList<String> nodeList) {
 this .nodeList = nodeList;
 }

 public void addNode(String node) {
 if (nodeList == null)
 nodeList = new ArrayList<String>();
 nodeList.add(0, node);
 }

 public String getLastNode() {
 int size = nodeList.size();
 return nodeList.get(size - 1);

 }

 public int getEdgeLength() {
 return edgeLength;
 }

 public void setEdgeLength(int edgeLength) {
 this .edgeLength = edgeLength;
 }

 public void outputPath() {
 outputPath(null);
 }

 public Path buildPath(Waypoint[] coordinates) {
 Path result = new Path();
 int p = 0;
 for (int i = 0; i < nodeList.size(); i++) {
 if (nodeList.get(i).equals("A"))
 p = 0;

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

164

 else if (nodeList.get(i).equals("A"))
 p = 0;
 else if (nodeList.get(i).equals("B"))
 p = 1;
 else if (nodeList.get(i).equals("C"))
 p = 2;
 else if (nodeList.get(i).equals("D"))
 p = 3;
 else if (nodeList.get(i).equals("E"))
 p = 4;
 else if (nodeList.get(i).equals("F"))
 p = 5;
 else if (nodeList.get(i).equals("G"))
 p = 6;
 else if (nodeList.get(i).equals("H"))
 p = 7;
 else if (nodeList.get(i).equals("I"))
 p = 8;
 result.add(coordinates[p]);
 }

 return result;

 }

 public void outputPath(String pathNode) {
 String result = "the munimum path of ";
 if (pathNode != null)
 nodeList.add(pathNode);
 for (int i = 0; i < nodeList.size(); i++) {
 result += "" + nodeList.get(i);
 if (i < nodeList.size() - 1)
 result += "->";
 }
 result += " is:" + edgeLength;
 System. out .println(result);
 }

 public void addEdgeLength(int e) {
 if (edgeLength == -1)
 edgeLength = e;
 else
 edgeLength += e;
 }

 }

CHAPTER 8 ■ DIJKSTRA’S ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

165

 Summary
 This chapter introduced the basic idea behind and the fundamentals of Dijkstra’s search algorithm. You are
now able to apply Dijkstra’s algorithm to solve path-planning issues in practice. In particular, the chapter
presented how to build a problem-solving agent based on Dijkstra’s path-planning algorithm and the
Navigation class in which the problem-solving agent could find a route path intelligently from the starting
point to any destination, covering the shortest distance possible.

 In the next chapter, you will see how to build a problem-solving agent based on the A* path-planning
algorithm and the Navigation class in which the problem-solving agent can intelligently find a route path
from the starting point to any destination in a maze.

167© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_9

 CHAPTER 9

 The A* Search Algorithm and
Its Implementation with Lego
Mindstorms

 This chapter will introduce you to the fundamentals of the A* search algorithm. After completing this chapter,
you will be able to apply the A* algorithm to solve path-planning issues in practice. You will also see how to
build a problem-solving agent based on the A* path-planning algorithm and the Navigation class in which the
problem-solving agent can find a route path intelligently from the starting point to any destination in a maze.

 In particular, this chapter will cover the following topics:

• What is the A* algorithm?

• The basic idea of the A* searching strategy.

• Programming practice for path planning using the A* algorithm.

 What Is the A* Algorithm?
 A-Star (or A*) is a well-known search algorithm that is extremely competitive compared to other search
algorithms when solving path findings in terms of efficiency. In particular, the A* algorithm is best used for
those problems that can be represented as a state space, for example, exploring a path in a maze. Given a
suitable problem, the initial conditions of the problem can be represented with an appropriate initial state ,
and the goal conditions can be represented as the goal state .

 For each action that you perform, the A* algorithm generates successor states to represent the outcome
of that action. If you keep doing this, and at some point one of the generated successor states is the goal state,
then the path from the initial state to the goal state is the solution to your problem. Moreover, the A* algorithm
 generates and processes the successor states in a certain way; that is, whenever it is looking for the next state to
continue, the A* algorithm employs a heuristic function to try to pick the best state to process next.

 The Basic Idea of the A* Searching Strategy
 As shown in Figure 9-1 , assume that you want to get from Node 1 to Node 5 and that there is a wall
separating Node 1 and Node 5. The search area is split into a square-based grid, and the path that you will
try to find is which squares to take to get from Node 1 to Node 5. There are 15 squares, labeled 1 to 15, in the
entire search area. The upper-left corner is Starting Point 1, the upper-right corner is Ending Point 5, and
Nodes 3 and 8 are located at the center to represent the wall.

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

168

 Once you have simplified your search area into a predefined number of nodes, the next step is to
conduct a search to find the shortest path from Starting Point Node 1 to Ending Point Node 5, the ultimate
goal. Starting at Node 1, you check its adjacent squares and then generally search outward until you find
target Node 5.

 You begin the A* search by doing the following:

 1. Begin at Starting Point 1 and add it to an “open list,” which contains squares that
fall along the path that you want to take. Basically, this is a list of squares that
need to be checked out. For example, OpenList = {1} .

 2. Look at all of the reachable squares adjacent to Starting Point 1, ignoring squares
with walls, and also add them to the open list. For each of these squares, save
Node 1 as its “parent square”: that is, OpenList = {1,2,6} .

 3. Drop the Starting Point square 1 from the open list, and then add it to a “closed
list” of squares, which you don’t need to look at again for now. Thus you have
 OpenList = {2,6} and ClosedList = {1} .

 4. All of the adjacent squares are now on the open list of squares to be checked.

 Next you need to choose one of the adjacent squares on the open list to continue. However, there is the
question of which square do you choose? The answer is that it is the one with the lowest F cost, where F is
Path Scoring, which is the key to determining which squares to use.

 F is the sum of G and H (F = G + H) in which G is the cost of moving from starting Node 1 to a given
square on the grid, following the path generated to get there, and H is the estimated cost of moving from
that square on the grid to the final destination, that is, ending Node 5. The heuristic function H involves
generating your path by repeatedly going through your open list and choosing the square with the lowest F
score.

 First let’s look more closely at how you calculate the equation.

 F = G + H

 Figure 9-1. The search area of the A* Algorithm

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

169

 G is the cost of moving from starting Node 1 to the given square using the path generated to get there. In
this example, you assign a cost of 1 to each horizontal or vertical square moved. Thus you have the following:

 G(1->2)=1

 G(1->6)=1

 Heuristic function H can be estimated in a variety of ways. In this example, the Manhattan method is
used, where you calculate the total number of squares moved horizontally and vertically to reach the target
square from the current square, ignoring diagonal movement and any obstacles that may be in the way. As a
result, you have heuristic function H:

 H(2->5)=3

 H(6->5)=5

 F is calculated by adding G and H.

 F(2)=1+3=4

 F(6)=1+5=6

 Next, as illustrated in Figure 9-2 , you simply choose the lowest F score square, which is Node 2, from the
existing nodes on the open list. Then you drop Node 2 from the open list and add it to the closed list , that is,
 OpenList = {6} and ClosedList = {1,2} .

 Figure 9-2. Search from Node 1 to Node 2

 Check all of the adjacent squares of Node 2. Ignoring those that are on the closed list or unreachable
(Node 3 is unreachable because it belongs to the wall), add squares to the open list if they are not on this list
already. Make the selected square the “parent” of the new squares. As a result, you have the following:

 OpenList = {6,7} in which 6’s parent is Node 1 and 7’s parent is Node 2, as
shown in Figure 9-3 .

 ClosedList = {1,2}

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

170

 Now you have two nodes in the open list (Node 6 and Node 7). You then calculate the value of F and
then pick the one with the lowest F cost.

 OpenList = {6,7}

 ClosedList = {1,2}

 In this case, Node 6 and Node 7 have the same F score of 6. So which do you choose? For the purposes
of speed, it can be faster to choose the one with the smaller H score, which is Node 7. Then you simply
choose the lowest F score square, which is Node 7, from existing nodes on the open list and drop Node 7
from the open list and add it to the closed list, that is, OpenList = {6} and ClosedList = {1,2,7} .

 Next you check all of the adjacent squares of Node 7. Ignoring those that are on the closed list or
unreachable (Node 8 is unreachable), add squares to the open list if they are not on this list already. Make
the selected square the “parent” of the new squares, as illustrated in Figure 9-4 . As a result, you have the
following:

 OpenList = {6,12}

 ClosedList = {1,2,7}

 Figure 9-3. Tree structure of nodes after visiting Node 2

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

171

 In this case, Node 6 is already on the open list. You then need to check to see if the current path to that
Node 6 is a better one. Using the current path 1->2->7 , you can calculate current G score of Node 6, G(1->
2->7->6) , which is 3 and then compare it with the previous G score, G(1->6) , which is 1. If the current G
score is lower than the previous one, you change the parent node of Node 6 to Node 7. If it’s not lower than
the previous one, do nothing on the list. Since the previous G score (1->6) is smaller than the current G
score (1->2->7->6) , you don’t have to do anything on the list.

 Next you calculate the function F for Node 6 and Node 12:

• You have known F(6) = 6

• H(12->5)=5

• G(1->12)=3

 Thus you have F(12) = 8 , which is bigger than F(6) . Node 6 is then chosen as the next node, and you
can drop Node 6 from the open list and add it to the closed list as follows:

 OpenList = {12}

 ClosedList = {1,2,7,6}

 Node 6’s parent is 1, as illustrated in Figure 9-5 .

 Figure 9-4. Tree structure of nodes after visiting Node 7

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

172

 Check all of the adjacent squares of Node 6. Ignoring those that are on the closed list or unreachable,
add squares to the open list if they are not on this list already. Make the selected square the “parent” of the
new squares, as illustrated in Figure 9-6 . As a result, you have the following:

 OpenList = {12,11}

 ClosedList = {1,2,7,6}

 Figure 9-6. Tree structure of nodes after visiting Node 6

 Figure 9-5. Tree structure of nodes in which Node 6 is chosen as the next node

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

173

 Next you calculate the function F for Node 11 and Node 12:

• You have known F(12) = 8

• H(11->5)=6

• G(1->11)=2

 Thus you have F(12) = 8 , which is same with F(11) . So which do you choose? Similarly, for the
purposes of speed, it can be faster to choose the one with the smaller H score, which is Node 12.

 Node 12 is then chosen as the next node, and you drop Node 12 from the open list and add it to the
closed list, thus you have the following:

 OpenList = {11}

 ClosedList = {1,2,7,6,12}

 Node 12’s parent is 7, as illustrated in Figure 9-7 .

 Figure 9-7. Tree structure of nodes in which Node 12 is chosen as the next node

 Check all of the adjacent squares of Node 12. Ignoring those that are on the closed list or unreachable,
add squares to the open list if they are not on this list already. Make the selected square the “parent” of the
new squares, as illustrated in Figure 9-8 .

 OpenList = {11,13}

 ClosedList = {1,2,7,6,12}

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

174

 Next you calculate the function F for Node 11 and Node 13:

• You have known F(11) = 8

• H(13->5)=4

• G(1->13)=4

 Thus you have F(13) = 8 , which is same with F(11) . So which do you choose? Similarly, for the
purposes of speed, it can be faster to choose the one with the smaller H score, which is Node 13.

 Node 13 is then chosen as the next node. You drop Node 13 from the open list and add it to the closed
list as follows:

 OpenList = {11}

 ClosedList = {1,2,7,6,12,13}

 Node 13’s parent is 12, as illustrated in Figure 9-9 .

 Figure 9-8. Tree structure of nodes after visiting Node 12

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

175

 Check all of the adjacent squares of Node 13. Ignoring those that are on the closed list or unreachable,
add squares to the open list if they are not on this list already. Make the selected square the “parent” of the
new squares, as illustrated in Figure 9-10 .

 OpenList = {11,14}

 ClosedList = {1,2,7,6,12,13}

 Next you calculate the function F for Node 11 and Node 14:

• You have known F(11)=8

• H(14->5)=5

• G(1->14)=3

 Thus you have F(14) = 8 , which is the same with F(11) . So which do you choose? Similarly, for the
purposes of speed, it can be faster to choose the one with the smaller H score, which is Node 14.

 Figure 9-9. Tree structure of nodes in which Node 13 is chosen as the next node

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

176

 Node 14 is then chosen as the next node. You drop Node 14 from the open list and add it to the closed
list as follows:

 OpenList = {11}

 ClosedList = {1,2,7,6,12,13,14}

 Node 14’s parent is 13.
 Check all of the adjacent squares of Node 14. Ignoring those that are on the closed list or unreachable,

add squares 9 and 15 to the open list if they are not on this list already. Make the selected square the “parent”
of the new squares.

 OpenList = {11,9,15}

 ClosedList = {1,2,7,6,12,13,14}

 Next you calculate the function F for Node 11, Node 9, and Node 15.

• You have known F(11) = 8

• Following our previous thinking, you can calculate F(9) = 8 and F(15) = 8 , which
are same with F(11) .

 Figure 9-10. Tree structure of nodes after visiting Node 13

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

177

 Which do you choose? Similarly, for the purposes of speed, it can be faster to choose the one with the
smaller H score. Node 15 is then chosen as the next node, you drop Node 15 from the open list, and add it to
the closed list as follows:

 OpenList = {11,9}

 ClosedList = {1,2,7,6,12,13,14,15} , 15’s parent is 14

 Check all of the adjacent squares of Node 15. Ignoring those that are on the closed list or unreachable,
add squares to the open list if they are not on this list already. Make the selected square the “parent” of the
new squares.

 OpenList = {11,9,10}

 ClosedList = {1,2,7,6,12,13,14,15}

 Next you calculate the function F for Node 11, Node 9, and Node 10.

 You have F(11)=F(9)=F(10)=8

 Similarly, for the purposes of speed, it can be faster to choose the one with the smaller H score, which
is Node 10. Node 10 is then chosen as the next node, you drop Node 10 from the open list, and add it to the
closed list as follows:

 OpenList = {11,9,5}

 ClosedList = {1,2,7,6,12,13,14,15,10} , 10’s parent is 15

 The goal state Node 5 is found, and you stop it there. Thus the shortest path is in the closed list
according to the parent node, which is the following:

 1->2->7->12->13->14->15->10->5

 Practice for Path Planning Using the A* Algorithm
 Pathfinding on a maze is an interesting problem, which has largely been conquered though computing.
The goal in this practice is to solve a simple maze in the shortest time possible, starting from one point to
another, regardless of the obstacles that stand between these two points. As shown in Figure 9-11 , your robot
will explore the path starting from the blue circle and ending at the green oval. A flat surface is a square with
a dimension of 90 inches by 90 inches: that is, the distance between H and I is 90 inches.

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

178

 From the map in Figure 9-11 , you can see the following:

 The distance between points A and B is 10 inches.

 The distance between points A and H is 20 inches.

 The distance between points A and I is 70 inches.

 The distance between points B and C is 50 inches.

 The distance between points C and D is 20 inches.

 The distance between points J and E is 20 inches.

 The distance between points E and K is 40 inches.

 The distance between points K and L is 20 inches.

 The distance between points L and M is 20 inches.

 To allow for a wide range of maze-solving methods , the starting and ending points of the maze will be
known in advance, as displayed in Figure 9-11 , and there will be no loops. In the real demonstration, you will
mark A using a blue color to identify point A as the starting point (in the case of the Cartesian Coordinates
system, you can, for example, say that A’s coordinator is (0,-20)). Furthermore, you are going to use a green
color to mark line A to H so that your robot can stop when it reaches the green color destination, B). In the
map itself, all intersections will be at right angles. The black color line represents the wall surroundings.

 Figure 9-11. Maze map

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

179

 To summarize, in this practice you will be creating a maze-traveling robot that can explore a path
starting from a blue color area and ending at a green color area on the map. Moreover, your robot can detect
the green color line of the ending area and then stop by identifying it when it finds the final destination.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch9p1.java
 //simple line map and grid using A* search build into LeJOS
 //**

 import lejos.geom.*; //used for rectangle
 import lejos.robotics.RegulatedMotor; //motor controller
 import lejos.robotics.localization.*; //numbers
 import lejos.robotics.mapping.LineMap; //mapping
 import lejos.robotics.navigation.*; //navigation used for the
 // waypoints
 import lejos.robotics.pathfinding.*; //A* search algorithm
 import lejos.util.PilotProps; //not used really
 import lejos.nxt.Sound;
 import lejos.robotics.navigation.DifferentialPilot;

 public class ch9p1 {

 private static final short [] note = { 2349, (115 / 3), 0, (5 / 3), 1760,
 (165 / 3), 0, (35 / 3), 1760, (28 / 3), 0, (13 / 3), 1976,
 (23 / 3), 0, (18 / 3), 1760, (18 / 3), 0, (23 / 3), 1568, (15

/ 3),
 0, (25 / 3), 1480, (103 / 3), 0, (18 / 3), 1175, (180 / 3), 0,
 (20 / 3), 1760, (18 / 3), 0, (23 / 3), 1976, (20 / 3), 0, (20

/ 3),
 1760, (15 / 3), 0, (25 / 3), 1568, (15 / 3), 0, (25 / 3),

2217,
 (98 / 3), 0, (23 / 3), 1760, (88 / 3), 0, (33 / 3), 1760, (75

/ 3),
 0, (5 / 3), 1760, (20 / 3), 0, (20 / 3), 1760, (20 / 3), 0,
 (20 / 3), 1976, (18 / 3), 0, (23 / 3), 1760, (18 / 3), 0, (23

/ 3),
 2217, (225 / 3), 0, (15 / 3), 2217, (218 / 3) };

 static RegulatedMotor leftMotor ; // motors
 static RegulatedMotor rightMotor ;

 public static void main(String[] args) {

 // set up the robot
 PilotProps pp = new PilotProps();
 float wheelDiameter = Float. parseFloat (pp.getProperty(
 PilotProps. KEY_WHEELDIAMETER , "2.11"));
 float trackWidth = Float. parseFloat (pp.getProperty(
 PilotProps. KEY_TRACKWIDTH , "5.45"));

 RegulatedMotor leftMotor = PilotProps. getMotor (pp.getProperty(

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

180

 PilotProps. KEY_LEFTMOTOR , "C"));

 RegulatedMotor rightMotor = PilotProps. getMotor (pp.getProperty(
 PilotProps. KEY_RIGHTMOTOR , "A"));
 leftMotor.setSpeed(750);
 rightMotor.setSpeed(750);
 leftMotor.setAcceleration(1000);
 rightMotor.setAcceleration(1000);
 boolean reverse = Boolean. parseBoolean (pp.getProperty(
 PilotProps. KEY_REVERSE , "false"));

 // new robot object using the setup
 DifferentialPilot robot = new DifferentialPilot(wheelDiameter,
 trackWidth, leftMotor, rightMotor, reverse);

 // make the robot move faster this is over max
 // robot.setTravelSpeed(500);
 robot.setRotateSpeed(600);

 // Create final map:
 Line[] lines = new Line[8]; // six lines inside the map
 lines[0] = new Line(-2.5f, -2.5f, -2.5f, 67.5f);
 // line AG
 lines[1] = new Line(-5.0f, -2.5f, -5.0f, 67.5f);
 lines[2] = new Line(-2.5f, 67.5f, 47.5f, 67.5f);
 // line GF
 lines[3] = new Line(-2.5f, 7.5f, 47.5f, 7.5f);
 // line BC
 lines[4] = new Line(47.5f, 7.5f, 47.5f, 27.5f);
 // line cd
 lines[5] = new Line(44f, 7.5f, 44f, 27.5f);
 // cd broader
 lines[6] = new Line(27.5f, 27.5f, 27.5f, 47.5f);
 // line je
 lines[7] = new Line(27.5f, 47.5f, 67.5f, 47.5f);
 // line ek

 lejos.geom.Rectangle bounds = new Rectangle(-22.5f, -2.5f, 90f, 90f);
 LineMap myMap = new LineMap(lines, bounds); // add the //bounds to the

map

 // Use a regular grid of node points. Grid space = 20. //Clearance = 15:
 FourWayGridMesh grid = new FourWayGridMesh(myMap, 10, 2f);

 // Use A* search:
 AstarSearchAlgorithm alg = new AstarSearchAlgorithm();

 // Give the A* search alg and grid to the PathFinder:
 PathFinder pf = new NodePathFinder(alg, grid);

 // store the location of the robot at a given time

CHAPTER 9 ■ THE A* SEARCH ALGORITHM AND ITS IMPLEMENTATION WITH LEGO MINDSTORMS

181

 PoseProvider posep = new OdometryPoseProvider(robot);

 // new navigator loaded with the robot position, and //path
 NavPathController nav = new NavPathController(robot, posep, pf);

 System. out .println("Planning path…"); // displays as //the path is
 calculated
 nav.goTo(-12, 0); // goto the end location.

 for (int i = 0; i < note .length; i += 2) {
 final short w = note [i + 1];
 final int n = note [i];
 if (n != 0)
 Sound. playTone (n, w * 10);
 try {
 Thread. sleep (w * 10);
 } catch (InterruptedException e) {
 }
 }

 }
 }

 Summary
 This chapter introduces the fundamentals of the A* search algorithm. Upon completing the chapter, you
were able to apply the A* algorithm to solve path-planning issues in practice. Specifically, this chapter
presented how to build a problem-solving agent based on the A* path-planning algorithm and the
Navigation class in which the problem-solving agent found a route path intelligently from the starting point
to any destination and with the shortest distance possible.

 In the next chapter, you will learn how to apply a set of sensors to perform informed movements. In
particular, you will take the wheeled robot that you create and add the two sensors — touch sensor and
ultrasonic sensor — to make it more aware of its surroundings as it moves around.

183© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_10

 CHAPTER 10

 Introducing the Touch Sensor
and Ultrasonic Sensor

 As you saw in Chapter 3 , motors are the most important component for performing movement. In this
chapter, you will learn about a set of sensors that are applied to perform informed movements.

 Think about a robot traveling around your house not equipped with any sensors. Such a travel would
be short lived as the robot ran into a wall without the bumper activating or blocking of the wheels by some
low-level obstacles. However, if you have installed a distance sensor in the robot, you might imagine that the
robot could wander around your house for hours by avoiding obstacles using this distance sensor.

 The LEGO Mindstorms EV3/NXT kit comes with four common sensors: the touch sensor, the color
sensor, the light sensor, and the ultrasonic sensor. In this chapter, you take the wheeled robot that you create
and add two of these four sensors — the touch sensor and the ultrasonic sensor — to make it more aware of
its surroundings as it moves around a room. In the next chapter, you will see how to apply the light sensor
and color sensor to explore the environment surrounding your robot.

 In particular, this chapter will cover the following topics:

• Introduction to the touch sensor

• Introduction to the ultrasonic sensor

• Programming practice with the touch sensor

• Programming practice with the ultrasonic sensor

 Sensor Classes
 The leJOS EV3 provides software abstractions for all types of sensors. In this case, a sensor must be physically
connected to a port in the EV3 brick, and the sensor object must know which port this is. In order to identify
this information, you create an instance of the sensor and then pass this information in its constructor, such
as SensorPort.S1 , SensorPort.S2 , SensorPort.S3 , and SensorPort.S4 . In your code, the sensor classes
must indicate which port they are plugged into. This can be done by using the Port class lejos.hardware.
port.Port .

 The Port class is similar to MotorPort . There are four static Port objects in this class. Generally, these are
used in the constructors for sensors as follows:

 Port portS1 = ev3brick.getPort("S1");
 EV3TouchSensor touchSensor = new EV3TouchSensor(portS1);

http://dx.doi.org/10.1007/978-1-4842-2005-4_3

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

184

 Touch Sensor
 The touch sensor is the most basic sensor in the EV3 robotics kit . It has a simple switch activated by a red
button on the front, as shown in Figure 10-1 :

 Figure 10-1. The Lego EV3 touch sensor

 As seen in Figure 10-1 , the touch button has an axle hole, allowing a LEGO axle to attach directly to
the switch. The touch sensor detects when it is being pressed by something and when it is released again,
and it will return a simple float value indicating if the sensor is pressed or not. The EV3TouchSensor class
implements the Touch interface, which contains a simple method, getTouchMode () . The getTouchMode()
method detects when its front button is pressed in which the sample contains one element. A value of 0
indicates that the button is not pressed, and a value of 1 indicates that the button is pressed.

 In summary, in order to use a touch sensor, you can create an instance of it using the following
 constructor :

 EV3TouchSensor touchSensor = new EV3TouchSensor(portS1);
 SensorMode toucher = touchSensor.getTouchMode();
 float[] sample = new float[toucher.sampleSize()];

 To test if the touch sensor is pressed, you can use the fetchSample () method :

 toucher.fetchSample(sample, 0);
 if (sample[0]==1) then the button is pressed

 The following program waits for the touch sensor to be pressed. After you press the touch sensor, the
value of the touch sensor will be displayed in the LED screen for 50 seconds. The program is terminated until
you press the ESCAPE button on the EV3 brick. The source code follows for this testing program in which
port S1 is used.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch10p1.java
 //an example for touch sensor testing
 //**

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

185

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.TextLCD;
 import lejos.hardware.port.Port;
 import lejos.hardware.sensor.EV3TouchSensor;
 import lejos.hardware.sensor.SensorMode;

 public class ch10p1 {
 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // LCD class for displaying and Keys class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // get a port instance
 Port portS1 = ev3brick.getPort("S1");

 // Get an instance of the touch EV3 sensor
 EV3TouchSensor touchSensor = new EV3TouchSensor(portS1);

 // get an instance of this sensor in measurement mode
 SensorMode toucher = touchSensor.getTouchMode();

 // initialize an array of floats for fetching samples
 float [] samplevalue = new float [toucher.sampleSize()];

 lcddisplay.clear();

 while (buttons.getButtons() != Keys. ID_ESCAPE) {

 // fetch a sample
 toucher.fetchSample(samplevalue, 0);

 lcddisplay.drawString("value: " + samplevalue[0], 0, 0);
 Thread. sleep (50);
 }

 lcddisplay.clear();
 System. out .println("EXIT");
 System. exit (0);
 }

 }

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

186

 Ultrasonic Sensor
 The ultrasonic sensor sends out a sound signal that is nearly inaudible to humans, and then it measures
how long it takes for the reflection to return. Since the speed of sound is well known, the sensor can then
calculate the distance that the signal has traveled. The ultrasonic sensor is often used to avoid obstacles,
navigate between locations, and even build maps in between different positions. The ultrasonic sensor
measures distances to a solid object in centimeters, and it can measure distances of up to 255 centimeters.
The ultrasonic sensor is accurate from 6 to 180 centimeters. Empirical experiments show that the objects
beyond 180 centimeters are not reliably located. Also, it has an accuracy of plus or minus 3 centimeters, even
though accuracy is improved for closer objects.

 As illustrated in Figure 10-2 , the ultrasonic sensor often produces a sonar cone , which means that it
detects objects in front of it within a cone shape. The cone opens at an angle of about 30 degrees, which
means that at a distance of 180 centimeters, the cone is about 90 centimeters in diameter. The cone shape is
good for robots because it’s better to scan a larger area in front of the robots for possible collisions.

 Figure 10-2. The Lego EV3 ultrasonic sensor

 In leJOS NXJ , the ultrasonic sensor is a range sensor that implements the RangeFinder interface. The
following method is used to obtain distances using the RangeFinder interface .

 double distance = rf.getRange();

 This method will return the distance to an object in centimeters. When there are multiple objects
detected from a single scan, the following method can be used to obtain the corresponding distance :

 float [] distances = rf.getRanges();

 To create an instance, you can use the following constructor:

 UltrasonicSensor(Port SensorPort)

 In leJOS NXJ , the ultrasonic sensor operates in two modes: continuous mode by default and ping mode.
In ping mode, the sensor sends a single ping. When operating in continuous mode, the sensor sends out
pings as often as it can and the most-recently obtained result is available via a call to the following:

 int getDistance()

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

187

 The return value is measured in centimeters. If no echo is found, the returned value will be 255.
 The following program will test if your ultrasonic sensor works ; that is, it is able to identify the distance

in centimeters between your robot and the obstacle in front of it. In the program, we use port number S1 and
terminate the program after pressing the ESCAPE key.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch10p2.java
 //an example for ultrasonic sensor testing
 //**

 import lejos.hardware.BrickFinder;
 import lejos.hardware.Keys;
 import lejos.hardware.ev3.EV3;
 import lejos.hardware.lcd.TextLCD;
 import lejos.hardware.port.Port;
 import lejos.hardware.sensor.EV3UltrasonicSensor;
 import lejos.robotics.SampleProvider;

 public class ch10p2 {
 public static void main(String[] args) throws Exception {

 // get EV3 brick
 EV3 ev3brick = (EV3) BrickFinder. getLocal ();

 // LCD class for displaying and Keys class for buttons
 Keys buttons = ev3brick.getKeys();
 TextLCD lcddisplay = ev3brick.getTextLCD();

 // block the thread until a button is pressed
 buttons.waitForAnyPress();

 // get a port instance
 Port portS1 = ev3brick.getPort("S1");

 // Get an instance of the Ultrasonic EV3 sensor
 EV3UltrasonicSensor sonicSensor = new EV3UltrasonicSensor(portS1);

 // get an instance of this sensor in measurement mode
 SampleProvider sonicdistance = sonicSensor.getDistanceMode();

 // initialize an array of floats for fetching samples
 float [] sample = new float [sonicdistance.sampleSize()];

 // fetch a sample
 sonicdistance.fetchSample(sample, 0);

 while (buttons.getButtons() != Keys. ID_ESCAPE) {
 lcddisplay.clear();
 lcddisplay.drawString("distance: " + sample[0], 0, 1);
 try {

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

188

 //Thread.sleep(10000);
 } catch (Exception e) {
 }

 }
 }
 }

 In the above code, to use the Ultrasonic Sensor, you have to create an instance of UltrasonicSensor :

 // get a port instance
 Port portS1 = ev3brick.getPort("S1");
 // Get an instance of the Ultrasonic EV3 sensor
 EV3UltrasonicSensor sonicSensor =
 new EV3UltrasonicSensor(portS1);

 You have to indicate into which port you have plugged the sensor. In the example, Ultrasonic is plugged
into Port 1. If your program needs to know the distance from the sensor to any object, then you need to use
the method getDistanceMode():

 // get an instance of this sensor in measurement mode
 SampleProvider sonicdistance =
 sonicSensor.getDistanceMode();
 // initialize an array of floats for fetching samples
 float[] sample = new float[sonicdistance.sampleSize()];
 // fetch a sample
 sonicdistance.fetchSample(sample, 0);

 In summary, the ultrasonic sensor helps your EV3 robot measure distances and observe where the
objects are located. As you know, the ultrasonic sensor uses the same scientific principle as bats; that is, it
measures distances by calculating the time it takes for a sound wave to detect an object and then return.
Usually, the larger-sized objects with hard surfaces return the best readings compared with those objects
made of soft fabric or those with curved shapes, as the latter are difficult for the sensor to detect.

 Programming Practice with Touch Sensor
 So far, your robots haven’t known anything about their environment. Now you want to begin practicing with
some sensors so that the robot can make some judgments on how best to move. Your task in this section
is to add touch and ultrasonic sensors to your robot so that it moves about its environment performing
obstacle avoidance maneuvers as necessary. Upon starting, the robot should proceed in a straight line
until it is confronted by an obstacle. Once the obstacle is detected, your robot should attempt an avoidance
maneuver. The simplest maneuver is to back up, rotate away from the object, and then proceed again. Your
robot should continue moving and avoiding objects until the program is terminated by a user (for example,
by pressing the ESCAPE button). You should actually produce two different programs: one using the touch
sensor only and the other using the ultrasonic sensor only.

 In this practice, you will develop a program to place the touch sensor at the front of your robot and write
a program so that your robot can move around obstacles. The pseudocode could be the following in which
there is a loop continuously asking the sensor if there is a problem and if evasive actions should be taken. In
this practice, the version of leJOS that we are using is leJOS NXJ.

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

189

 while true
 Move forward
 if (touch sensor is pressed)
 move backward
 appropriate delay
 turn right

 The following example program, ch10p3.java , illustrates how to achieve this goal.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch10p3.java
 //This program has the robot move forward until the touch sensor is //activated.
 //When the sensor is activated the robot will back up, rotate 90 degrees and continue
moving.
 //**

 import lejos.nxt.Button;
 import lejos.nxt.Motor;
 import lejos.nxt.SensorPort;
 import lejos.nxt.TouchSensor;
 import lejos.robotics.navigation.DifferentialPilot;

 public class ch10p3 {
 public static void main(String[] args) {
 // set up differential pilot and nav path controller to // use for
 // navigation
 DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f, Motor. A ,
 Motor. C);
 pilot.setRotateSpeed(60); // rotate speed set slower to // prevent slipping

 // set up touch sensor
 TouchSensor touch = new TouchSensor(SensorPort. S1);

 // wait to begin
 Button. waitForPress ();

 // move forward until touch sensor is pressed
 while (!Button. ESCAPE .isPressed()) {
 pilot.forward();

 // if sensor is pressed, stop, rotate 90 degrees // then continue
 if (touch.isPressed()) {
 pilot.stop();
 pilot.travel(-10);
 pilot.rotate(90);
 }
 }
 }

 }

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

190

 Programming Practice with Ultrasonic Sensor
 In this practice, you will write a program that allows your robot to wander around in an area, avoiding
collisions with walls using the ultrasonic sensor. It should start when you press the ENTER key and stop
when you press the ESCAPE key, constantly showing the distance covered in its LCD. Also, the code for
this program should be able to instruct the robot to back up a certain distance if the range finder detects an
obstacle, rotate away from the object, and then proceed again. An example program, ch10p4.java , follows,
showing you how to achieve this objective.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3 ch10p4.java
 //This program will move the robot forward until the ultrasonic //sensor detects an
 //object within 25cm. When the object is detected the robot will //back up to 30cm,
 //rotate 90 degrees, then continue moving.
 //**

 import lejos.nxt.Button;
 import lejos.nxt.Motor;
 import lejos.nxt.SensorPort;
 import lejos.nxt.UltrasonicSensor;
 import lejos.robotics.navigation.DifferentialPilot;

 public class ch10p4 {

 public static void main(String[] args) {

 int distance;

 // set up differential pilot and nav path controller to // use for
 // navigation
 DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f, Motor. A ,
 Motor. C);

 // rotate speed set slower to prevent slipping
 pilot.setRotateSpeed(180);

 // set up ultrasonic sensor
 UltrasonicSensor ultraSonic = new UltrasonicSensor(SensorPort. S1);

 // wait to begin
 Button. waitForPress ();

 // move forward until distance from object is 25 cm
 while (!Button. ESCAPE .isPressed()) {
 distance = ultraSonic.getDistance();
 while (distance > 25) {
 pilot.forward();
 distance = ultraSonic.getDistance();
 }

CHAPTER 10 ■ INTRODUCING THE TOUCH SENSOR AND ULTRASONIC SENSOR

191

 // if object is closer than 25 cm backup to 30 cm
 if (distance <= 25) {
 while (distance <= 30) {
 pilot.backward();
 distance = ultraSonic.getDistance();
 }

 // rotate 90 degrees and continue loop
 pilot.rotate(90);
 }
 }
 }
 }

 Summary
 In this chapter, you learned about the features of the touch and ultrasonic sensors and how they work. You
also became familiar with the usage of the ultrasonic sensor and touch sensor and learned how to apply the
leJOS NXJ Java programming language to control and operate the touch sensor and ultrasonic sensor to give
the robot the capability of interacting with its environment.

 In the next chapter, you will take the wheeled robot that you create and add the light sensor and color
sensor to make your robot more aware of its surroundings as it moves around the room.

193© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_11

 CHAPTER 11

 Introducing the Light Sensor
and Color Sensor

 The LEGO Mindstorms EV3/NXT kit comes with four common sensors: the touch sensor, the color sensor,
the light sensor, and the ultrasonic sensor. Following through on the coverage of the touch sensor and the
ultrasonic sensor in Chapter 10 , in this chapter you will add the light sensor and the color sensor to the
wheeled robot to increase its awareness of its surroundings as it moves around a room.

 In particular, this chapter will cover the following topics:

• Introduction to the light sensor

• Introduction to the color sensor

• Programming practice with the color and light sensors

 Light Sensor
 The light sensor and the color sensor are integrated into to the same piece of hardware in NXT 2.0. The light
sensor specifically consists of a single tiny lens on the front of the sensor, as seen in Figure 11-1 .

 Figure 11-1. Lego NXT 2.0 light sensor

http://dx.doi.org/10.1007/978-1-4842-2005-4_10

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

194

 The light sensor measures the intensity of light captured by the lens and then executes a set of functions .
By pointing the light sensor downward, the robot can follow a black line or a line consisting of any other
color. By using the sensor, you can also prevent your robot from moving off the edge of the line because
light values decrease significantly when an object is far away. In other words, faraway objects do not reflect
as much light as nearby objects. Moreover, the light sensor can distinguish dark objects from light objects
because less light is reflected back by dark objects.

 To use the light sensor, you first create an instance of it using the following constructor :

 public ColorSensor(SensorPort port);

 Then, once you have an instance of ColorSensor , use method setFloodlight to turn off color detection
so that the ColorSensor detects only the ambient light by using Color.NONE , as follows here. Then use the
method getLightValue() to return a number between 0 and 100 in which the brighter the light, the higher
the light value.

 setFloodlight(Color.NONE)
 int lightvalue = getLightValue()

 The following is an example program that reads the current light value using the light sensor, which is
attached to port S3.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch11p1.java
 //an example for light sensor testing
 //**

 import lejos.nxt.*;
 import lejos.robotics.Color;

 public class ch11p1 {
 public static void main(String[] args) throws Exception {

 // Get an instance of the color/light sensor of NXT 2.0
 ColorSensor lightsensor = new ColorSensor(SensorPort. S1);

 // turn off the color detection, detecting light only
 lightsensor.setFloodlight(Color. NONE);

 LCD. clear ();

 // keep receiving light value until an Escape button is // pressed
 while (!Button. ESCAPE .isPressed()) {
 LCD. drawInt (lightsensor.getLightValue(), 4, 0, 0);
 }

 // clean out the LCD screen
 LCD. clear ();
 }
 }

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

195

 Color Sensor
 As stated earlier, both the color sensor and light sensor are integrated into the same piece of hardware in
 Lego NXT 2.0 . Similar to the light sensor, the color sensor can also be used to detect different colors. As
shown in Figure 11-1 , there is a built-in lamp emitting red, blue, or green light from multicolored LEDs on
the side of the hardware sensor. By implementing the ColorDetector interface, the color sensor can read
red, green, and blue color values, or it can identify colors from a palette. To identify simple predefined colors,
you can use the getColorID() method, which returns an integer representing a color constant.

 int getColor()

 These values are predefined in the lejos.robotics.Color class . For example, Color.GREEN represents
a color value in the green spectrum . You can also retrieve RGB values by using the following code:

 ColorPick cp = new ColorSensor(SensorPort.S1);
 Color colorvalue = cp.getColor();
 int green = colorvalue.getGreen();

 The Color class can further identify the color spectrum by using the Color.getColor() method, which
returns a color constant from a palette of colors.

 The following is an example program that tests if your color sensor works by being able to identify the
different colors in the light.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch11p2.java
 //an example for color sensor testing
 //**

 import java.util.ArrayList;
 import lejos.nxt.Button;
 import lejos.nxt.LCD;
 import lejos.nxt.SensorPort;
 import lejos.robotics.Color;
 import lejos.util.Stopwatch;
 import sensors .ColorStruct;
 import sensors .SensorControl;
 import sensors .UnsupportedSensorException;

 /**
 * Demonstrates the use of color sensors
 */

 public class ch11p2 {

 // The port to use for color sensing
 private static SensorPort _colorPort = SensorPort. S1 ;

 // Stores the number of characters that fit on one line of the // LCD screen.
 private static int LCD_DISP_WIDTH = 16;

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

196

 public static void main(String[] args) {
 try {
 runColorSenseDemo ();
 } catch (UnsupportedOperationException e) {
 handleError (e, true);
 } catch (Throwable e) {
 handleError (e, false);
 }
 }

 /**
 * Demonstrate color sensing
 *
 * @throws UnsupportedSensorException
 * Thrown if _colorPort does not specify a valid
 * color sending
 * port
 */
 private static void runColorSenseDemo() throws UnsupportedSensorException {
 LCD. drawString ("Press to begin…", 0, 0);
 Button. waitForPress ();
 SensorControl sControl = new SensorControl (null , null , _colorPort , null);
 while (!Button. ESCAPE .isPressed()) {
 ColorStruct cvalue = sControl.getSensedColor();
 Color cv = sControl.getRGBColor();
 LCD. clear ();
 LCD. drawString ("Color: " + cvalue, 0, 0);
 LCD. drawString ("Sensed:", 0, 1);
 LCD. drawString (
 cv.getRed() + " " + cv.getGreen() + " " +

cv.getBlue(), 0,2);

 }
 }

 /**
 * Prints an error on the LCD screen so that it does not run
 * off the screen,
 * then waits for escape to be pressed to continue.
 *
 * @param message
 * The message to display on the LCD screen.
 * @param expected
 * Flag indicating if the exception was expected or
 * caught as
 * part of a blanket-catch.
 */
 private static void handleError(Throwable ex, boolean expected) {
 String message;
 if (expected) {
 message = "ERROR: " + ex.getClass().toString() + ex.getMessage();
 } else {

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

197

 message = "UNEXPECTED ERR: " + ex.getClass().toString() +
ex.getMessage();

 }

 LCD. clear ();
 ArrayList<String> messageSplit = new ArrayList<String>();

 // split the message in 16-character segments
 while (message.length() > LCD_DISP_WIDTH) {
 messageSplit.add(new String(message.substring(0, LCD_DISP_WIDTH)));
 message = message.substring(LCD_DISP_WIDTH , message.length());
 }

 int printRow = 0;
 Stopwatch sw = new Stopwatch();
 // print all of the messages
 for (String msg : messageSplit) {
 LCD. drawString ("Here", 0, 4);
 LCD. drawString ("CLS:" + ex.getClass().toString(), 0, 5);
 sw.reset();
 while (sw.elapsed() < 1000)
 Thread. yield ();
 LCD. drawString (msg, 0, printRow);
 printRow++;
 }
 LCD. refresh ();
 LCD. drawString ("Press to exit…", 0, printRow);
 Button. waitForPress ();
 }
 }

 Programming Practice with the Color and Light Sensors
 In this programming practice, your task is to design and program a Mindstorms NXT 2.0 robot to navigate
around two predefined courses. The first course is an area defined by a black line on a white background,
and the second course is equipped with obstacles – that is, two boxes on the black line. Your robot should
recognize when an obstacle is blocking its path, go around the obstacle, and then rejoin the path and
continue onto the end of the path. Figure 11-2 illustrates the two courses that your robot will explore, in
which the red boxes indicate obstacles.

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

198

 In this programming practice, you will be creating a line-following robot that has the following
 functionalities :

 1. Your robot can follow the black line straightforward from the starting point to
the ending point of the line. You don’t have to hard-code the color to indicate
whether you are following a black track on a white background or a white track
on a black background. Instead, your program allows you to pick up the line and
background colors at startup and then wait for a button push to start running.

 2. Your robot can avoid the obstacles on the way to the ending point, and it can
then rejoin the original line smoothly until it reaches the destination point.

 The following program, ch11p3. java is designed to follow the first course without any obstacles.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch11p3.java
 //This program allows your robot to follow a line.
 //If line is lost the robot will rotate left and right at increasing //angles
 //until the line is found again.
 //**

 import lejos.nxt.Button;
 import lejos.nxt.ColorSensor;
 import lejos.nxt.LCD;
 import lejos.nxt.Motor;
 import lejos.nxt.SensorPort;
 import lejos.robotics.navigation.DifferentialPilot;

 Figure 11-2. Two courses for programming practice with color/light sensor

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

199

 public class ch11p3
 {
 public static void main(String[] args)
 {
 // set up differential pilot and nav path controller to // use for navigation
 DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f, Motor. A ,

Motor. C);
 pilot.setTravelSpeed(4);

 //set up color sensor
 ColorSensor colorSense = new ColorSensor(SensorPort. S1);
 colorSense.setFloodlight(false);

 //used to store values returned by color sensor
 //follow is color robot is to follow, search is value //returned by sensor when searching
 int follow, search;

 //degrees robot will rotate when searching for line
 int rotation;

 //calibrate sensor
 LCD. drawString ("Place color sensor\nabove color to follow", 0, 0);
 Button. waitForPress ();
 follow = colorSense.getColorID();

 // place robot on start and wait for button press to
 // begin main loop
 LCD. clear ();
 LCD. drawString ("Place robot", 0, 0);
 Button. waitForPress ();

 // main loop
 // follow line. if line is lost turn left and right to // search for it
 while (!Button. ESCAPE .isPressed())
 {
 rotation = 5;
 search = colorSense.getColorID(); //make sure we // are still on the line

 //line is found continue forward
 while (search == follow)
 {
 pilot.forward();
 search = colorSense.getColorID();
 }

 //line lost
 while (search != follow)
 {
 pilot.rotate(rotation); //rotate right
 search = colorSense.getColorID();
 if (search == follow)

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

200

 break ; //found line again exit loop
 else
 {
 pilot.rotate(-rotation * 2); //rotate left back to

start then to left position
 search = colorSense.getColorID();
 if (search == follow)
 break ;
 //found line again exit loop

 pilot.rotate(rotation);
 //rotate back to center
 }
 rotation+=5; //increase angle of rotation // and continue

search
 }//end search
 }//end main loop
 }//end main()
 }//end ch11p3

 The following program, ch11p4.java , is designed to follow the second course and avoid any obstacles.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch11p4.java
 // Program that allows your robot to follow a line. It uses the
 // ultrasonic
 // sensor to detect if an object is in its path while following the // line.
 // If an object is detected the robot will leave the line and travel // around
 // the object. It will then search for the line and continue
 // traveling.
 //**

 import lejos.nxt.Button;
 import lejos.nxt.ColorSensor;
 import lejos.nxt.LCD;
 import lejos.nxt.Motor;
 import lejos.nxt.SensorPort;
 import lejos.nxt.UltrasonicSensor;
 import lejos.robotics.navigation.DifferentialPilot;

 public class ch11p4 {

 public static void main(String[] args) {
 // set up differential pilot and nav path controller to // use for
 // navigation
 DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f, Motor. A ,
 Motor. C);
 pilot.setTravelSpeed(5);

 UltrasonicSensor ultra = new UltrasonicSensor(SensorPort. S4);

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

201

 // set up color sensor
 ColorSensor colorSense = new ColorSensor(SensorPort. S1);
 colorSense.setFloodlight(false);

 // used to store values returned by color sensor
 // follow is color robot is to follow, search is value // returned by
 // sensor when searching
 int follow, search;

 // degrees robot will rotate when searching for line
 int rotation;

 // calibrate sensor
 LCD. drawString ("Place color sensor\nabove color to follow", 0, 0);
 Button. waitForPress ();
 follow = colorSense.getColorID();

 // place robot on start and wait for button press to
 // begin main loop
 LCD. clear ();
 LCD. drawString ("Place robot", 0, 0);
 Button. waitForPress ();

 // main loop
 // follow line. if line is lost turn left and right to // search for it
 while (!Button. ESCAPE .isPressed()) {
 rotation = 5;
 search = colorSense.getColorID();
 // make sure we // are still on the// line

 // line is found continue forward
 while (search == follow) {
 // object detected
 if (ultra.getDistance() <= 10) {
 // execute 90 degree turn to
 // navigate around object
 pilot.rotate(90);
 pilot.travel(10);
 pilot.rotate(-90);
 pilot.travel(30);
 pilot.rotate(-90);
 search = colorSense.getColorID();

 // find line again
 while (search != follow) {
 pilot.forward();
 search = colorSense.getColorID();

 // line found, rotate until // following again
 if (search == follow) {
 pilot.rotate(90);

CHAPTER 11 ■ INTRODUCING THE LIGHT SENSOR AND COLOR SENSOR

202

 break ;
 }
 }
 }

 // continue following line
 pilot.forward();
 search = colorSense.getColorID();
 }

 // line lost
 while (search != follow) {
 pilot.rotate(rotation); // rotate right
 search = colorSense.getColorID();
 if (search == follow)
 break ; // found line again exit loop
 else {
 pilot.rotate(-rotation * 2);
 // rotate left back to start

 // then to left position
 search = colorSense.getColorID();
 if (search == follow)
 break ;
 // found line again exit loop

 pilot.rotate(rotation);
 // rotate back to center
 }
 rotation += 5; // increase angle of
 // rotation and continue search
 }// end search
 }// end main loop
 }// end main()
 }

 Summary
 In this chapter, you learned about the features of the light sensor and color sensor and how these two
sensors work. You also became familiar with the use of the light senor and the color sensor and learned
how to apply leJOS NXJ JAVA programming to control and operate them to give your robot the capability to
interact with its surrounding environment.

 In the next chapter, you will begin to learn about behavior programming on the basis of subsumption
architecture defined in leJOS. You will also look into how to apply an arbitrator in leJOS Java programming
to control and operate the touch sensor, ultrasonic sensor, and color sensor in the order of a set of behaviors
designed to give your robot the capability to interact with its surrounding environment.

203© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_12

 CHAPTER 12

 Introduction to Behavior
Programming

 Robots have the ability to achieve a set of human-like behaviors, such as sensing, planning, and acting
through using behavior programming. In this chapter, you will learn behavior programming on the basis of
the subsumption architecture defined in leJOS. You will also look into how to apply Arbitrator in leJOS JAVA
programming to control and operate the touch sensor, ultrasonic sensor, and color sensor in a certain order
of a set of behaviors to give the robot the capability to interact with its surrounding environment.

 In particular, this chapter will cover the following topics:

• Introduction to behavior programming

• The behavior API functions

• Design pattern of behavior programming

• Programming practice with behaviors

 Introduction to Behavior Programming
 Behavior programming is based on the Sense-Plan-Act control model , and it requires a little more planning
before you begin coding. Through sensing, a robot takes in information about its environment via sight,
touch, sound, and distance. Through planning, a robot uses sensory information to decide upon an action.
Through acting, a robot uses its moving parts to complete the plan. By implementing the Sense-Plan-Act
model, it will theoretically make your code easier to understand by other programmers who are familiar with
the behavior control model. Moreover, through behavior programming, it becomes easier for you to add or
remove specific behaviors from the overall structure without negative repercussion to the rest of your code.

 Behavior-based robot programming is the act of setting up a series of behaviors to be carried out or goals
to be accomplished. Several simple behaviors can be assembled that can theoretically form a very complex,
logical model in the real world. Behavior-based robot programming theory was originally inspired by insects
and called “hard-wired thinking,” as proposed by Rodney Brooks of the MIT Artificial Intelligence Lab in
1983, as illustrated in Figure 12-1 .

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

204

 Subsumption architecture is a methodology widely used for programming robots that is heavily
associated with behavior-based robotics. Subsumption architecture is a method for decomposing
complicated intelligent behavior into many simpler behavioral modules. In turn, these are organized into
different layers. Each layer implements a specific goal of the agent, and the higher layers are increasingly
more abstract. For instance, a robot's lower layer could be to "avoid an object." By contrast, on top of that
layer might be the one to "wander around." The next higher layer could be the one "explore the world," and
so on. Each of these layers can access all of the sensor data and generate a set of actions for the actuators.
Using this method, the lower layers can function as quickly adapting mechanisms, while the higher layers
work to achieve the overall goal.

 The concept of behavior programming implemented in Java leJOS follow these four rules:

 1. There should be only one behavior active and under the control of the robot at
any time.

 2. Each behavior has a predefined, fixed priority number.

 3. Each behavior has the ability to determine if it should take control or not.

 4. The active behavior with a higher priority than any of the other behaviors should
take control.

 In general, behavior programming of your robot is a problem-solving process , and you could follow
these steps in the order shown when designing the program:

 1. What do you want the robot to do?

 2. How must the robot behave to complete the task?

 3. Decompose the complex task into several simple behaviors, including assigning
a priority to each behavior, and a behavior with higher priority may stop the
current behavior.

 4. Create the program using Java programming language.

 5. Run the program.

 Figure 12-1. Insects “hard-wired thinking ”

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

205

 6. Did the robot behave as required? (Did it perform the task correctly?) If not, do
the following:

 a. Check the robot first. If there’s a problem, can you fix it?

 b. Next, check the program. Problem? Can you fix it?

 c. Finally, go back to the beginning and reread the task. Does your program
really tell the robot what it’s supposed to do?

 The Behavior API Functions
 The Behavior API has one interface and one class, namely, the Behavior interface and Arbitrator class,
respectively. The Behavior interface defines the individual behavior classes, including three public methods:
 takeControl() , action() , and suppress() . Once all of the behaviors are created, an Arbitrator is used to
regulate all of these behaviors to determine which one should be activated and at what time. The Arbitrator
class and the Behavior interface are located in the lejos.subsumption package. Figure 12-2 illustrates
how behavior programming works in Java leJOS. As shown in the figure, the three methods in the Behavior
interface are very simple. Suppose that your robot has three discrete behaviors, you then need to create three
individual classes with each class implementing the Behavior interface. Once these classes are finished, your
code should hand the behavior objects off to the Arbitrator. The Arbitrator is found in the package lejos.
subsumption.Arbitrator , and its constructor is in the following:

 public Arbitrator(Behavior[] behaviors, boolean returnWhenInactive)

 This creates an Arbitrator object that regulates when each of the behaviors will become active,
where the parameter behaviors are used to index the priority of each behavior in the array (for example,
 behaviors[0] has the lowest priority) and if parameter boolean returnWhenInactive has a value of true,
the program exits when there is no behavior that wants to take control. Otherwise, the program runs until
being shut down by pressing the Enter and Escape buttons on the NXT brick. Simply by using a public
method start() , you can start the arbitration system.

 When an Arbitrator object is instantiated, it is given an array of Behavior objects. Once it has these, the
 start() method is called and it begins arbitrating and determining which behavior will become active. The
Arbitrator calls the takeControl() method on each Behavior object, starting with the object with the highest
index number in the behavior array. It works in decreasing priority order until it finds a behavior that wants
to take control. If the priority index of this behavior is greater than that of the currently active behavior, the
active behavior is then suppressed. After that, the action() method is called on the behavior of this index.
Therefore, if several behaviors wish to take control, only the highest priority behavior will become active.

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

206

 Design Pattern of Behavior Programming
 For controlling the performance of the behaviors control system, it is very important that the action()
method terminates promptly when suppress() is called. To achieve this, leJOS actually defines a
design pattern for behavior programming. In this design pattern, the Arbitrator contains a monitor
thread to cycle through each of the behaviors, checking the takeControl() method to see if the
behavior should become active or not. It starts with the behavior with the highest index number and
works its way down the array. Once it comes across a behavior that should take control, the monitor
thread executes suppress() on this active behavior and then starts checking each behavior from the
top again.

 A real-world example and how to use the design pattern concept to solve a problem follows.

 Figure 12-2. Behavior programming

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

207

 As illustrated in Figure 12-3 , you want to move forward on a straight line, and when there is an object in
front of the robot, you can bypass this object. Given this scenario you have two behaviors:

 Behavior 1: Move forward when there is an object detected in front of the robot.
Stop the current behavior and start Behavior 2.

 Behavior 2: Rotate the robot and bypass the object.

 Figure 12-4 illustrates the design pattern of Behavior 1 moving forward .

 Figure 12-3. Scenario for design pattern of behavior programming

 Figure 12-4. Design pattern of Behavior 1 moving forward

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

208

 Figure 12-5 illustrates the design pattern of Behavior 2 rotating to bypass. Figure 12-6 then illustrates
how to manage these two behaviors using the design pattern method, including how to set up a set of
behaviors and how to start the programmed behaviors.

 Figure 12-6. Managing behaviors using design pattern

 Figure 12-5. Design pattern of Behavior 2 rotating to bypass

 To sum up, the idea of using a design pattern to manage behaviors is illustrated in the following
example:

 1. When an Arbitrator object is instantiated, it is given a set of behaviors in an array.

 2. The start() method is then called, and the Arbitrator begins determining which
behaviors should become active.

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

209

 3. The Arbitrator calls the takeControl() method on each behavior, starting with
the object with the highest index number in the array.

 4. The Arbitrator then works its way through each of the behaviors until it finds
a behavior that wants to take control. When it encounters one, it executes the
 action() method of that behavior once and only once.

 5. If two behaviors both want to take control, then only the higher level behavior
will be allowed.

 Programming Practice with Behavior Programming
 For this programming practice, you will be creating a line-following robot that meets the following with the
behavior programming based on subsumption architecture:

 Behavior 1 : Your robot can follow the green line straight from the starting point
until it reaches the first obstacle box.

 Behavior 2 : Your robot can then apply the touch sensor to detect this obstacle
and then move around the first obstacle; that is, you can have your robot move
backward, make an appropriate delay, and then turn right.

 Behavior 3 : After your robot bypasses the first obstacle, it will continue and then
go back to the line in which it will follow a blue-color line straight from the first
obstacle it encounters until it reaches the second obstacle box.

 Behavior 4 : Your robot then avoids collisions with the second obstacle using the
ultrasonic sensor. Once the range finder detects the second obstacle, the robot
rotates away from the object and then proceeds.

 Behavior 5 : After avoiding the obstacles on its way to the ending point, the robot
then rejoins the original blue line smoothly until it reaches the ending point.

 Figure 12-7 illustrates the course for this programming practice.

 Figure 12-7. Moving area for your programing practice

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

210

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch12p1.java
 //This program implements the leJOS behavior capabilities.
 //The robot will begin following a green line. When the touch
 //sensor is activated it will move around an object and search for a
 //blue line. Then when it travels within 15cm of an object it will //avoid it
 //and return to the blue line again.
 //**

 import lejos.nxt.Button;
 import lejos.nxt.LCD;
 import lejos.robotics.subsumption.Arbitrator;
 import lejos.robotics.subsumption.Behavior;

 public class ch12p1 {
 public static void main(String[] args) {
 // create a sensors object to send to the behavior
 // classes
 Sensors sensors = new Sensors();

 // prompt to begin
 LCD. clear ();
 LCD. drawString ("Press to begin", 0, 0);
 Button. waitForPress ();

 // set up behavior classes
 Behavior b1 = new FollowGreen(sensors);
 Behavior b2 = new TouchAvoid(sensors);
 Behavior b3 = new FollowBlue(sensors);
 Behavior b4 = new SonicAvoid(sensors);

 // create behavior array
 Behavior[] bArray = { b1, b3, b2, b4 };

 // send array to arbitrator and begin
 Arbitrator arby = new Arbitrator(bArray);
 arby.start();
 }
 }
 //***
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0
 // FollowGreen.java
 // This behavior follows a green line
 //***

 import lejos.nxt.Motor;
 import lejos.robotics.Color;
 import lejos.robotics.navigation.DifferentialPilot;
 import lejos.robotics.subsumption.Behavior;

 public class FollowGreen implements Behavior {

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

211

 private boolean suppressed;
 // used to store values returned by color sensor
 // follow is color robot is to follow, search is value //returned by sensor
 // when searching
 private int follow, search;

 // degrees robot will rotate when searching for line
 int rotation;
 // set up differential pilot and nav path controller to use //for navigation
 private DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f,
 Motor. A , Motor. C);

 Sensors sensors;

 public FollowGreen(Sensors globalSensors) {
 sensors = globalSensors;
 suppressed = false ;
 pilot.setTravelSpeed(4);
 sensors.colorSense.setFloodlight(false);
 follow = Color. GREEN ;
 }

 @Override
 public boolean takeControl() {
 return true ;
 }

 @Override
 public void action() {
 suppressed = false ;
 search = sensors.colorSense.getColorID();

 // move forward while line is green
 while (!suppressed) {
 Thread. yield ();
 while (search == follow && !suppressed) {
 pilot.forward();
 search = sensors.colorSense.getColorID();
 Thread. yield ();
 }

 // line lost
 while (search != follow && !suppressed) {
 pilot.rotate(rotation); // rotate right
 search = sensors.colorSense.getColorID();
 Thread. yield ();
 if (search == follow)
 break ; // found line again exit loop
 else {
 pilot.rotate(-rotation * 2);
 // rotate left back to start
 // then to left position

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

212

 search = sensors.colorSense.getColorID();
 Thread. yield ();
 if (search == follow)
 break ; // found line again //exit loop

 pilot.rotate(rotation); // rotate //back to center
 }
 rotation += 5; // increase angle of //rotation and continue

search
 Thread. yield ();
 }// end search
 Thread. yield ();
 }
 }

 @Override
 public void suppress() {
 suppressed = true ;
 }
 }// end FollowGreen

 //***
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0
 // Sensors.java
 //Class to store sensor objects to make them available in all //behavior classes
 //***

 import lejos.nxt.ColorSensor;
 import lejos.nxt.SensorPort;
 import lejos.nxt.TouchSensor;
 import lejos.nxt.UltrasonicSensor;

 public class Sensors {
 ColorSensor colorSense;
 TouchSensor touch;
 UltrasonicSensor sonic;
 boolean touchPressed = false ; // used for take control method //in followBlue
 //behavior

 public Sensors() {
 // set up color, touch, and sonic sensors
 colorSense = new ColorSensor(SensorPort. S1);
 touch = new TouchSensor(SensorPort. S2);
 sonic = new UltrasonicSensor(SensorPort. S4);

 }
 }

 //***
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 //SonicAvoid.java
 //This behavior avoids objects using the ultra sonic sensor
 //***

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

213

 import lejos.nxt.LCD;
 import lejos.nxt.Motor;
 import lejos.robotics.Color;
 import lejos.robotics.navigation.DifferentialPilot;
 import lejos.robotics.subsumption.Behavior;

 public class SonicAvoid implements Behavior {
 // set up differential pilot
 private DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f,
 Motor. A , Motor. C);
 private boolean suppressed;
 private int follow, search;
 Sensors sensors;

 public SonicAvoid(Sensors globalSensors) {
 pilot.setTravelSpeed(4);
 suppressed = false ;
 follow = Color. WHITE ;
 sensors = globalSensors;
 }

 // take control when within 15 cm of an object and on a blue //line
 @Override
 public boolean takeControl() {
 return (sensors.sonic.getDistance() < 15 && sensors.colorSense
 .getColorID() == Color. WHITE);
 }

 @Override
 public void action() {
 LCD. drawString ("Sonic triggered", 0, 0);
 suppressed = false ;

 // stop and move around object
 pilot.stop();
 // execute 90 degree turn to navigate around object
 pilot.rotate(90);
 pilot.travel(10);
 pilot.rotate(-90);
 pilot.travel(30);
 pilot.rotate(-90);

 search = sensors.colorSense.getColorID();

 // find line again
 while (search != follow && !suppressed) {
 LCD. drawString ("HERE I AM", 0, 0);
 pilot.forward();
 search = sensors.colorSense.getColorID();

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

214

 // line found, rotate until following again
 if (search == follow) {
 pilot.rotate(90);
 suppressed = true ;
 break ;
 }
 Thread. yield ();
 }
 }

 @Override
 public void suppress() {
 suppressed = true ;
 }

 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 //TouchAvoid.java
 //This class represents a robotic behavior when the touch sensor
 //is activated
 //**

 import lejos.nxt.LCD;
 import lejos.nxt.Motor;
 import lejos.robotics.Color;
 import lejos.robotics.navigation.DifferentialPilot;
 import lejos.robotics.subsumption.Behavior;

 public class TouchAvoid implements Behavior {
 // set up differential pilot
 private DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f,
 Motor. A , Motor. C);
 private boolean suppressed;
 private int follow, search;
 Sensors sensors;

 public TouchAvoid(Sensors globalSensors) {
 pilot.setTravelSpeed(4);
 suppressed = false ;
 follow = Color. WHITE ; // color to follow when
 // relocating line
 sensors = globalSensors;
 }

 @Override
 public boolean takeControl() {
 return sensors.touch.isPressed(); // behavior takes
 // control when touch
 //
sensor is pressed
 }

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

215

 @Override
 public void action() // avoid the object
 {
 LCD. drawString ("BUTTON IS PRESSED", 0, 0);
 sensors.touchPressed = true ; // set flag in sensor //class so robot knows

 // to follow different color later
 suppressed = false ;

 // moves to avoid object
 pilot.stop();
 pilot.travel(-15);
 // execute 90 degree turn to navigate around object
 pilot.rotate(90);
 pilot.travel(10);
 pilot.rotate(-90);
 pilot.travel(30);
 pilot.rotate(-90);

 search = sensors.colorSense.getColorID();

 // find line again
 while (search != follow && !suppressed) {
 // LCD.clear();
 pilot.forward();
 search = sensors.colorSense.getColorID();
 LCD. drawString ("search: " + Integer. toString (search), 0, 0);
 LCD. drawString ("follow: " + follow, 0, 1);

 // line found, rotate until following again
 if (search == follow) {
 pilot.rotate(90);
 suppressed = true ;
 break ;
 }
 Thread. yield ();
 }
 }

 @Override
 public void suppress() {
 suppressed = true ;
 }

 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0
 //FollowBlue.java
 //This behavior follows a blue line
 //**

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

216

 import lejos.nxt.ColorSensor;
 import lejos.nxt.Motor;
 import lejos.nxt.SensorPort;
 import lejos.robotics.Color;
 import lejos.robotics.navigation.DifferentialPilot;
 import lejos.robotics.subsumption.Behavior;

 public class FollowBlue implements Behavior {
 private boolean suppressed;
 // used to store values returned by color sensor
 // follow is color robot is to follow, search is value //returned by sensor
 // when searching
 private int follow, search;

 // degrees robot will rotate when searching for line
 int rotation;
 // set up differential pilot and nav path controller to use //for navigation
 private DifferentialPilot pilot = new DifferentialPilot(4.32f, 12.2f,
 Motor. A , Motor. C);

 Sensors sensors;

 public FollowBlue(Sensors globalSensors) {
 sensors = globalSensors;
 suppressed = false ;
 pilot.setTravelSpeed(4);
 sensors.colorSense.setFloodlight(false);
 follow = Color. WHITE ;
 }

 @Override
 public boolean takeControl() {
 return sensors.touchPressed; // we want this to be the default behavior

 // after the touch sensor has been

 // pressed
 }

 @Override
 public void action() {
 suppressed = false ;
 search = sensors.colorSense.getColorID();

 // move forward if the line is the right color
 while (!suppressed) {
 Thread. yield ();
 while (search == follow && !suppressed) {
 pilot.forward();
 search = sensors.colorSense.getColorID();
 Thread. yield ();
 }

CHAPTER 12 ■ INTRODUCTION TO BEHAVIOR PROGRAMMING

217

 // line lost
 while (search != follow && !suppressed) {
 pilot.rotate(rotation); // rotate right
 search = sensors.colorSense.getColorID();
 Thread. yield ();
 if (search == follow)
 break ; // found line again exit loop
 else {
 pilot.rotate(-rotation * 2);
 // rotate left back to start

// then to left position
 search = sensors.colorSense.getColorID();
 Thread. yield ();
 if (search == follow)
 break ;
 // found line again exit loop

 pilot.rotate(rotation);
 // rotate back to center
 }
 rotation += 5; // increase angle of //rotation and continue
search
 Thread. yield ();
 }// end search
 Thread. yield ();
 }
 }

 @Override
 public void suppress() {
 suppressed = true ;
 }
 }// end FollowBlue

 Summary
 In this chapter, you learned how to do behavior programming using the subsumption architecture defined
in leJOS. You also learned how to apply Arbitrator in the leJOS Java programming language to control and
operate the touch sensor, ultrasonic sensor, and the color sensor in in a certain order of a set of behaviors to
give the robot the capability to interact with its surrounding environment.

 In the next chapter, you will learn the basic concepts of Java leJOS multithreading programming and
then study how to apply it to control and operate the color sensor, touch sensor, and ultrasonic sensor to give
your robot the capability to interact with its surrounding environment.

219© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4_13

 CHAPTER 13

 Multithreading Programming
with Java leJOS

 Multithreading is a very well-known programming feature, which allows you to execute multiple jobs at the
same time. When developing programs for robots, you need to consider this programming feature as the
basis of your programming architecture.

 In this chapter, you will learn the basic concepts of Java leJOS multithreading programming and then
study how to apply it to control and operate the color sensor, touch sensor, and ultrasonic sensor to give your
robot the capability of interacting with its surrounding environment.

 In particular, this chapter will cover the following topics:

• Introduction to the thread concept

• How to use the class thread in leJOS

• Programming practice with multithreading in Java leJOS

 The Thread Concept
 Normally, when you start developing with Java and leJOS, you create programs that execute a set of
operations in order, one by one. For example, see the following program structure where the program
completes Task 1 first, then Task 2, Task 3, and so on until it reaches the last program task, Task 10:

 Program:
 Task 1
 Task 2
 Task 3
 ...
 Task 10

 If you use Java multithreading, however, then you could execute the robot’s tasks in parallel as follows,
where the program executes all 10 tasks at the same time:

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

220

 This is very similar to the operations that our bodies execute in parallel, such as respiration, blood
circulation, digestion, thinking, and walking. In addition, the human brain processes information from your
body sensors in parallel, including seeing, touching, smelling, tasting, and hearing.

 Many current programming languages allow programmers to specify activities to execute concurrently.
This is achieved by using a thread. A thread in Java is the minimum unit in terms of parallel processing.
Therefore, when designing a robot program using threads, you should consider the following ideas:

 1. A thread to manage wireless communication

 2. A thread to manage the locomotion subsystem

 3. A thread to manage the robot arming

 4. A thread to manage the robot’s senses

 The robot’s design process is iterative, because it is a complex task. This is different from traditional a design
process that performs one action at a time, proceeding to the next action only after the previous one has finished.
Here is where threading technology is very useful. When you want to incorporate a new feature in the future, you
simply need to add a new task, a thread, or select the old thread and update it with new capabilities.

 Using Threads in leJOS
 In the following example, ch13p1.java , you will see how to develop your first thread, which is managed by
a main program. This program can print the message “ Hello World ,” and the value of the variable i on the
NXT 2.0 LCD. (i counts how many messages are printed on the screen.) This program executes the thread
 HelloWorldThread until you push the ESCAPE button on the NXT 2.0 brick.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch13p1.java
 //This program executes the thread HelloWorldThread to print the //message
 //"Hello World" and the value of a counter to count how
 //many messages printed on the screen.
 //**

 import lejos.nxt.Button;
 import lejos.nxt.LCD;

 public class ch13p1 {
 private static HelloWorldThread hwt ;

 public static void main(String[] args) {
 int i = 0;

 hwt = new HelloWorldThread();
 hwt .start();
 try {
 while (!Button. ESCAPE .isPressed()) {
 LCD. drawString ("Hello World: " + i, 0, 0);
 ++i;

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

221

 }
 } catch (Exception ex) {
 } finally {
 System. exit (0);
 }
 }
 }

 import lejos.nxt.*;

 public class HelloWorldThread extends Thread {
 private int i = 0;

 public HelloWorldThread() {
 }

 public void run() {
 while (true) {
 LCD. drawString ("Hello World:", 0, 0);
 LCD. drawInt (i, 0, 1);
 LCD. refresh ();
 i++;
 }
 }
 }

 To understand multithreading code , it is very important that you know about the life cycle of a thread.
The possible states of a thread include the following:

 1. Start

 2. Sleep

 3. Interrupted

 4. Yield

 5. Join

 6. Interrupt

 Typically, thread class in Java leJOS has three methods: Start() , IsAlive() , and Sleep() . I will now
introduce each method individually.

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

222

 Method start()
 When you define a thread to execute a task with your robot, you simply need to start it by using a piece of
code like the following:

 private static HelloWorldThread hwt ;

 hwt = new HelloWorldThread();
 hwt .start();

 Method isAlive ()
 In many cases, when working with multiple threads, it is necessary to know if a thread is still alive or not by
using the following code:

 public void run() {
 while (true) {
 LCD. drawString ("Hello World:", 0, 0);
 LCD. drawInt (i, 0, 1);
 LCD. drawString ("" + this.isAlive(), 0, 2);

LCD. refresh ();
 }
 }

 Method sleep ()
 In many other cases, it is really useful to generate a timed pause to make sure that other tasks have
completed by using the sleep method in the following code:

 import lejos.nxt .*;
 public class SleepDemo {
 private static String messages [] = {
 "Java leJOS NXJ",
 "Java leJOS PC API",
 "Java leJOS Mobile API",
 };
 public static void main(String[] args) throws InterruptedException {
 for (int i=0;i< messages .length; i++) {
 Thread. sleep (1000);
 System. out .println(Messages [i]);
 }
 }
 }

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

223

 Practice with Multithreading in Java leJOS
 In this example program, ch13p2.java , you will finish a multithreading program called Music so that your
program can play the music and print a sequence number on the LCD screen at the same time.

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 ch13p2.java
 //This program demonstrates a threaded song/counter program
 //**

 import lejos.nxt.Button;

 public class ch13p2 {
 private static Music mThread ;
 private static Counter cThread ;

 public static void main(String[] args) {
 mThread = new Music();
 cThread = new Counter();

 mThread .start();
 cThread .start();
 try {
 while (!Button. ESCAPE .isPressed()) {
 Thread. yield ();
 }
 System. exit (0);
 } catch (Exception e) {
 }
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 Music.java
 //Play a "song" consisting of predefined beeps on a thread
 //**

 import lejos.nxt.Sound;

 class Music extends Thread {
 public void run() {
 short Low_G = 392, B_Flat = 470, D = 588, C = 523, E_Flat = 627, F = 697, G
= 784, A_Flat = 830;

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

224

 short [] note = {a C, 600, G, 100, F, 100, G, 400, C, 400, 0, 600,
 A_Flat, 100, G, 100, A_Flat, 200, G, 200, F, 400, B_Flat, 600,
 F, 100, E_Flat, 100, F, 400, B_Flat, 400, Low_G, 600, G, 100,
 F, 100, G, 200, F, 200, E_Flat, 200, D, 200, E_Flat, 600, D,
 100, E_Flat, 100, F, 600, E_Flat, 100, F, 100, G, 200, F, 200,
 E_Flat, 200, D, 200, C, 400, A_Flat, 400, G, 1400, A_Flat, 100,
 G, 100, F, 100, G, 1400
 };

 for (int i = 0; i < note.length; i += 2) {
 short w = note[i + 1];
 Sound. playTone (note[i], w);
 Sound. pause (w);
 }
 }
 }

 //**
 // Wei Lu Java Robotics Programming with Lego EV3/NXT2.0 Counter.java
 //Continuously write an incrementing integer to the LCD
 //**

 import lejos.nxt.LCD;

 class Counter extends Thread {
 public void run() {
 for (int i = 0; i < 1000; ++i) {
 LCD. drawInt (i, 0, 2);
 LCD. refresh ();
 try {
 Thread. sleep (1000);
 } catch (Exception e) {
 }
 }
 }
 }

 In Chapter 11 , you created a line-following robot that could follow the green line straight forward from
the starting point to the ending point of a line. The robot that you created also could avoid obstacles along
the way to the ending point and could rejoin the original line smoothly until it reached the ending point.

 In this second practice with multithreading programming, you create a very similar robot to the one that
you created in Chapter 11 . The main goal of the robot in this practice is to follow a green line, as illustrated in
Figure 13-1 , and if it discovers an obstacle, it stops. You have to use a leJOS multithreading programming to
implement this line-following robot .

http://dx.doi.org/10.1007/978-1-4842-2005-4_11
http://dx.doi.org/10.1007/978-1-4842-2005-4_11

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

225

 Figure 13-1. Programming the line-following robot with multithreading

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

226

 In analyzing the tasks involved, you will find that there are two major processes in this program: (1)
follow green lines and (2) discover obstacles en route. Based on this analysis, you can design and develop a
scalable solution with threads: implementing a separate thread used to follow a green line, implementing
another separate thread used to detect obstacles, and implementing one more class to exchange data among
threads.

 import lejos.nxt.*;
 import lejos.robotics.navigation.DifferentialPilot;
 import lejos.robotics.navigation.NavPathController;

 public class ch13p3 {

 private static data DE ;
 private static line LFObj ;
 private static object ODObj ;
 static double diam = 2.8;
 static double trackwidth = 15.5;
 static DifferentialPilot pilot = new DifferentialPilot(diam / 2.54,
 trackwidth / 2.54, Motor. A , Motor. C);
 static UltrasonicSensor sonic = new UltrasonicSensor(SensorPort. S4);
 NavPathController nav = new NavPathController(pilot);// Attaches NavPath

 public static void main(String[] args) {
 DE = new data();
 ODObj = new object(DE , pilot);
 LFObj = new line(DE , pilot);
 ODObj .start();
 LFObj .start();
 while (!Button. ESCAPE .isPressed()) {
 }
 LCD. drawString ("Finished", 0, 7);
 LCD. refresh ();
 }
 }

 public class data {
 // ObstacleDetector
 private boolean obstacleDetected = false;
 // Robot has the following commands: Follow Line, Stop
 private int CMD = 1;

 public data() {
 }

 public boolean isObstacleDetected() {
 return obstacleDetected;
 }

 public void setObstacleDetected(boolean obstacleDetected) {
 this.obstacleDetected = obstacleDetected;
 }

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

227

 public int getCMD() {
 return CMD;
 }

 public void setCMD(int cMD) {
 CMD = cMD;
 }
 }

 import lejos.nxt.*;
 import lejos.robotics.Color;
 import lejos.robotics.navigation.DifferentialPilot;
 import lejos.util.Stopwatch;

 public class line extends Thread {
 data DEObj;
 private ColorSensor cs;
 private UltrasonicSensor us ;
 private DifferentialPilot pilot;
 static boolean leftfirst = true;

 public line(data DE, DifferentialPilot pi) {
 DEObj = DE;
 cs = new ColorSensor(SensorPort. S3);
 us = new UltrasonicSensor(SensorPort. S4);
 pilot = pi;
 }

 public void run() {
 if (DEObj.getCMD() == 1) {
 if (cs.getColorID() == Color. GREEN) {
 pilot.forward();
 } else {
 pilot.travel(1.5);
 int found = 0;
 LCD. clear (6);
 double degrees = 10;
 double look = 0, i = 1;
 if (leftfirst != true) {
 i = 1 * i;
 }
 LCD. drawString ("Looking", 0, 6);
 Stopwatch clock = new Stopwatch();
 clock.reset();
 while (clock.elapsed() < 30000) {
 look = degrees * i;
 pilot.rotate(look);
 pilot.stop();
 int batman = cs.getColor().getColor();
 if (batman == Color. GREEN) {
 LCD. clear (6);

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

228

 LCD. drawString ("Found it!", 0, 6);
 found = 1;
 break;
 } else if (batman == Color. BLACK) {
 found = 2;
 break;
 } else {
 look = look * 2 * 1;
 pilot.rotate(look);
 batman = cs.getColor().getColor();
 if (batman == Color. GREEN) {
 pilot.stop();
 LCD. clear (6);
 LCD. drawString ("Found it!", 0, 6);
 found = 1;
 break;
 } else if (batman == Color. BLACK) {
 found = 2;
 break;
 }
 pilot.rotate(look * 1);
 }
 i++;
 }
 if (look < 0) {
 leftfirst = false;
 } else {
 leftfirst = true;
 }
 }
 } else {
 pilot.stop();
 }
 }
 }

 import lejos.nxt.*;
 import lejos.nxt.ColorSensor.Color;
 import lejos.robotics.navigation.DifferentialPilot;

 public class object extends Thread {
 private data DEObj;
 private UltrasonicSensor us;
 private ColorSensor cs;
 private final int securityDistance = 15;
 private DifferentialPilot pilot;

 public object(data DE, DifferentialPilot pi) {
 DEObj = DE;
 us = new UltrasonicSensor(SensorPort. S4);
 cs = new ColorSensor(SensorPort. S3);

CHAPTER 13 ■ MULTITHREADING PROGRAMMING WITH JAVA LEJOS

229

 pilot = pi;
 }

 public void run() {
 while (true) {
 if (us.getDistance() > securityDistance) {
 DEObj.setCMD(1);
 } else {
 DEObj.setCMD(0);
 pilot.rotate(80);// left
 Motor. B .rotateTo(90);
 while (us.getDistance() < 15) {
 pilot.forward();
 }
 pilot.travel(7);// offline
 pilot.rotate(85);// back on track
 pilot.travel(2);//
 while (us.getDistance() < 30) {
 pilot.forward();
 }
 pilot.travel(8);
 pilot.rotate(85);
 pilot.setTravelSpeed(1);
 while (cs.getColor().getColor() != Color. GREEN) {
 pilot.forward();
 }
 pilot.stop();
 pilot.setTravelSpeed(2.25);
 pilot.travel(2);
 pilot.rotate(85);// left
 Motor. B .rotateTo(0);
 DEObj.setCMD(1);
 }
 }
 }
 }

 Summary
 In this chapter, you learned about the basic concepts of Java leJOS multithreading programming and how
to apply these concepts to control and operate the color sensor , touch sensor, and ultrasonic sensor to give
your robot the capability of interacting with its surrounding environment.

 After reading this book and completing all of the programming practice, take your robot programming
to the next level. For example, try directing your robot remotely by developing Android applications to
manage and control a Lego EV3 device and implementing Java applications that make wireless connections
among various Lego EV3 devices.

231© Wei Lu 2016
W. Lu, Beginning Robotics Programming in Java with LEGO Mindstorms, DOI 10.1007/978-1-4842-2005-4

 A
 A-Star (A*) search algorithm

 adjacent squares , 168, 177
 area , 168
 estimation, cost of moving , 168
 functions , 168
 fundamentals , 167
 generation , 167
 heuristic function , 169
 navigation class , 167
 nodes, open and closed list , 169
 path planning

 creation, maze-traveling robot , 179
 issues , 181
 maze map , 178
 maze-solving methods , 178
 obstacles , 177
 problem-solving agent , 181

 path-planning , 167
 tree structure of nodes , 170–176

 B
 Behavior programming

 add/remove specifi c , 203
 API functions , 205
 course , 209
 creation, line-following robot , 209
 defi nition , 203
 design pattern

 action() method , 206
 management , 208
 move forward , 207
 problem solving , 206
 rotating to bypass , 208
 scenario , 207
 takeControl() method , 206

 insects, “hard-wired thinking” , 204
 moving area , 209

 problem-solving process , 204
 robot , 203
 rules, Java leJOS , 204
 Sense-Plan-Act control model , 203
 subsumption architecture , 204, 217

 Breadth-fi rst search (BFS) algorithm
 leJOS-based (see leJOS-based BFS algorithm)
 path-fi nding problem , 102
 problem-solving agents , 118
 program, travel plan , 103–108
 routes , 103
 schedule, travel plan , 106
 tree structure , 101

 C
 Cartesian coordinate system

 control, EV3 Brick Hardware , 69–72
 Lego robots , 65
 Navigator API Functions , 66–68
 programming methods , 65
 programming practice

 key presses , 74–75
 LCD display , 73
 with Navigator API , 76–77, 80

 rotations , 66
 tracing , 81
 two-dimensional , 65

 Color sensor
 class , 195
 green spectrum , 195
 identifi cation , 195
 Lego NXT 2.0 , 195
 lejos.robotics.Color class , 195
 RGB values , 195
 testing program , 195

 Controlling wheeled vehicles
 Cartesian coordinate system , 63
 Java projects , 43
 leJOS EV3 , 63

 Index

■ INDEX

232

 navigation API , 43–45
 pilot classes

 advantages , 45
 basic movement , 45
 Diff erentialPilot class , 46, 47
 distance , 46
 leJOS NXJ , 46
 measure , 47
 packaging , 45
 physical robot , 45
 regular hexagon tracing , 58, 60
 robot moving , 46
 steers , 45
 steps , 45
 tracing, equilateral triangle , 53, 55
 tracing out a square , 48, 50

 D
 Depth-fi rst search (DFS) algorithm

 artifi cial intelligence , 83
 closed list , 84
 control vehicles , 83
 depth-search approach , 84
 implementation , 83
 leJOS EV3-based , 83, 91–92, 94
 methods , 91
 node , 84
 open list , 84
 problem-solving agents , 100
 recursive approach , 91
 route tree , 85
 search tree , 83
 strategy , 84
 travel plan , 86

 Dijkstra’s algorithm
 advantages , 144
 calculation, distances , 142
 distances to nodes , 141, 143
 graphic representation, connected nodes , 140
 leJOS EV3-based

 Cartesian coordinate system , 156
 destination’s coordinate node , 156
 implementation , 156–164
 shortest-path search , 155
 travel path , 156

 node accessibility , 146
 optimal solution , 139
 outcomes , 155
 programs , 148–150, 152–154
 values , 141
 visited nodes , 144–145, 147, 148

 E, F, G
 EV3 large servo motors

 algorithms , 28
 classes , 28
 Java programming , 27–28
 Lego EV3 robotics , 28
 movement control

 accurate rotation , 33–34
 basic motor methods , 29
 interrupting rotation , 34–35
 program , 29
 program implementation , 30
 speed , 36, 39
 straight line tracing , 39–40
 tachometer, inertia testing , 31, 33

 ports , 29

 H
 Heuristicsearch . See Hill-climbing search
 Hill-climbing search

 Cartesian coordinate system , 123
 description , 123
 heuristics

 AI-based search techniques , 121
 AI-related applications , 119
 AI search algorithms , 120
 breadth-fi rst searches , 122
 calculation of absolute value , 119
 depth-fi rst searches , 122
 functions , 120
 goal , 120
 graphic representation , 120
 node , 120–121
 nonlinear fashion , 121
 paths , 122
 rules , 122
 school building topology , 120
 search space, node , 122
 solution , 120–121
 straightforward deterministic

solution , 119
 terminal node , 120

 implemention, green lines and
obstacles , 226

 leJOS-based hill-climbing algorithm , 131–132,
134–135, 137–138

 pathfi nding problem, GPS
system , 123–130

 problem-solving agents , 138
 routes , 124
 schedule, travel plan , 124

Controlling wheeled vehicles (cont.)

■ INDEX

233

 I
 Integrated Development Environment (IDE) , 16

 J, K
 Java Development Kit (JDK) , 5
 Java Runtime Environment (JRE) , 5

 L
 Lego Mindstorms EV3

 components , 2
 description , 1–2
 Eclipse IDE and plug-in

 32-bit version , 16
 automatic updates , 17
 creating and uploading , 20–24
 IDEs , 16
 installing , 18–20
 workspace , 17

 educational product , 1
 Java robotics programming , 1
 JDK installation

 jdk-7u45-windows-i586.exe , 5–7
 JRE , 5
 release , 5
 testing , 8–10

 leading operating systems, robots , 25
 leJOS installation

 components , 13
 EV3 brick packages , 3, 4
 EV3 development documents , 5
 EV3 SD Card creator , 15
 fi nishing , 15
 fi rmware into SD card , 16
 folder choosing , 12
 general settings , 14
 JDK choosing , 11
 .NXT , 4, 183
 offi cial packages , 4
 RCX , 4
 robotics/AI packages , 4
 wizard , 11

 operations , 1
 SD card , 25
 technical specifi cations , 2–3

 leJOS-based BFS algorithm
 destination , 111
 destination’s coordinate , 110
 implementation , 111–117
 pseudocode , 108–109
 travel path , 109–110
 WPNode , 108

 leJOS EV3-based DFS algorithm , 91–92, 94
 leJOS EV3-based hill-climbing algorithm ,

131–135, 137–138
 Light sensor

 constructor , 194
 functions , 194
 intensity , 194
 Lego NXT 2.0 , 193
 program , 194
 single tiny lens , 193

 M
 Motorsensors . See EV3 large servo

motors
 Multithreading programming

 control , 229
 creation , 219
 developing programs, robots , 219
 execution, robot’s tasks , 219
 Java leJOS

 alive method , 222
 code , 221
 execution , 220
 message , 220
 sleep method , 222
 start method , 222

 languages , 220
 line-following robot , 224–225
 music and sequence number printing,

LCD screen , 223
 processes , 226
 robot’s design process , 220
 sensors , 229
 structure , 219

 N, O, P, Q, R
 Navigator API

 control, robot movements , 76
 coordination , 80
 functions , 66, 68
 measures , 77
 testing, two-dimensional plane , 76

 S
 Sensors

 classes , 183
 color and light

 ch11p3.java, fi rst course , 198
 ch11p4.java , 200
 design and program , 197

■ INDEX

234

 functionalities , 198
 obstacles , 197

 control and operate , 202
 LEGO Mindstorms EV3/NXT kit , 193
 light (see Light sensor)
 touch , 184–185
 ultrasonic (see Ultrasonic sensor)

 T
 Touch sensor

 activation , 184
 constructor , 184
 EV3 robotics kit , 184
 fetchSample () method , 184
 Lego EV3 , 184
 programming practice , 188
 source code , 184
 testing program , 184

 U, V, W, X, Y, Z
 Ultrasonic sensor

 distance measures , 186
 empirical experiments , 186
 EV3 robot measures , 188
 functions , 187
 larger-sized objects , 188
 Lego EV3 , 186
 leJOS NXJ , 186
 measures , 186
 obstacle , 187
 port , 188
 program , 187
 programming practice , 190
 RangeFinder interface , 186
 sonar cone , 186
 sound signal , 186
 usage , 191

Sensors (cont.)

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Lego Mindstorms and leJOS
	Introduction to Lego Mindstorms
	Introduction to leJOS
	Lego Mindstorms EV3
	Lego Mindstorms NXT
	Lego Mindstorms RCX

	JDK Installation
	Testing the JDK Installation
	Installation of leJOS and Its Firmware on Lego EV3
	Eclipse IDE and Eclipse Plug-In for LeJOS EV3
	Summary

	Chapter 2: Introduction to Motor Sensors
	Basic Concepts of Java Programming
	Introducing Motors
	Introducing the Motor Class
	Controlling Basic Movement Using Motors
	Using a Tachometer for Inertia Testing
	Controlling the Accurate Rotation of Motors
	Interrupting Rotation
	Regulating the Motor Speed
	Tracing a Straight Line
	Other Motor Methods

	Summary

	Chapter 3: Controlling Wheeled Vehicles
	Introduction to Navigation API
	Basic Movement Using Pilot Classes
	Tracing Out a Square
	Tracing Out an Equilateral Triangle
	Tracing Out a Regular Hexagon

	Summary

	Chapter 4: Coordinators and Navigator API
	Cartesian Coordinate System Basics
	Navigator API Functions
	Controlling the EV3 Brick Hardware
	Programming Practice with the LCD Display
	Programming Practice with Key Presses
	Programming Practice with Navigator API
	Summary

	Chapter 5: Depth-First Search Algorithm and Its Implementation with Lego EV3
	Overview of DFS Algorithm
	leJOS EV3-Based DFS Algorithm
	Summary

	Chapter 6: Breadth-First Search and Its Implementation with Lego Mindstorms
	Overview of BFS Algorithm
	leJOS EV3-Based BFS Algorithm
	Summary

	Chapter 7: Hill-Climbing Search and Its Implementation with Lego Mindstorms
	Introduction to Heuristic Search
	Overview of Hill-Climbing Search
	leJOS EV3-Based Hill-Climbing Algorithm
	Summary

	Chapter 8: Dijkstra’s Algorithm and Its Implementation with Lego Mindstorms
	Introduction to Dijkstra’s Algorithm
	leJOS EV3-Based Dijkstra’s Algorithm
	Summary

	Chapter 9: The A* Search Algorithm and Its Implementation with Lego Mindstorms
	What Is the A* Algorithm?
	The Basic Idea of the A* Searching Strategy
	Practice for Path Planning Using the A* Algorithm
	Summary

	Chapter 10: Introducing the Touch Sensor and Ultrasonic Sensor
	Sensor Classes
	Touch Sensor
	Ultrasonic Sensor
	Programming Practice with Touch Sensor
	Programming Practice with Ultrasonic Sensor
	Summary

	Chapter 11: Introducing the Light Sensor and Color Sensor
	Light Sensor
	Color Sensor
	Programming Practice with the Color and Light Sensors
	Summary

	Chapter 12: Introduction to Behavior Programming
	Introduction to Behavior Programming
	The Behavior API Functions
	Design Pattern of Behavior Programming
	Programming Practice with Behavior Programming
	Summary

	Chapter 13: Multithreading Programming with Java leJOS
	The Thread Concept
	Using Threads in leJOS
	Method start()
	Method isAlive ()
	Method sleep ()

	Practice with Multithreading in Java leJOS
	Summary

	Index

